xref: /linux/drivers/scsi/scsi_lib.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
245 
246 	if (resid)
247 		*resid = req->data_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 struct scsi_io_context {
281 	void *data;
282 	void (*done)(void *data, char *sense, int result, int resid);
283 	char sense[SCSI_SENSE_BUFFERSIZE];
284 };
285 
286 static struct kmem_cache *scsi_io_context_cache;
287 
288 static void scsi_end_async(struct request *req, int uptodate)
289 {
290 	struct scsi_io_context *sioc = req->end_io_data;
291 
292 	if (sioc->done)
293 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
294 
295 	kmem_cache_free(scsi_io_context_cache, sioc);
296 	__blk_put_request(req->q, req);
297 }
298 
299 static int scsi_merge_bio(struct request *rq, struct bio *bio)
300 {
301 	struct request_queue *q = rq->q;
302 
303 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
304 	if (rq_data_dir(rq) == WRITE)
305 		bio->bi_rw |= (1 << BIO_RW);
306 	blk_queue_bounce(q, &bio);
307 
308 	return blk_rq_append_bio(q, rq, bio);
309 }
310 
311 static void scsi_bi_endio(struct bio *bio, int error)
312 {
313 	bio_put(bio);
314 }
315 
316 /**
317  * scsi_req_map_sg - map a scatterlist into a request
318  * @rq:		request to fill
319  * @sgl:	scatterlist
320  * @nsegs:	number of elements
321  * @bufflen:	len of buffer
322  * @gfp:	memory allocation flags
323  *
324  * scsi_req_map_sg maps a scatterlist into a request so that the
325  * request can be sent to the block layer. We do not trust the scatterlist
326  * sent to use, as some ULDs use that struct to only organize the pages.
327  */
328 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
329 			   int nsegs, unsigned bufflen, gfp_t gfp)
330 {
331 	struct request_queue *q = rq->q;
332 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
333 	unsigned int data_len = bufflen, len, bytes, off;
334 	struct scatterlist *sg;
335 	struct page *page;
336 	struct bio *bio = NULL;
337 	int i, err, nr_vecs = 0;
338 
339 	for_each_sg(sgl, sg, nsegs, i) {
340 		page = sg_page(sg);
341 		off = sg->offset;
342 		len = sg->length;
343 
344 		while (len > 0 && data_len > 0) {
345 			/*
346 			 * sg sends a scatterlist that is larger than
347 			 * the data_len it wants transferred for certain
348 			 * IO sizes
349 			 */
350 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
351 			bytes = min(bytes, data_len);
352 
353 			if (!bio) {
354 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
355 				nr_pages -= nr_vecs;
356 
357 				bio = bio_alloc(gfp, nr_vecs);
358 				if (!bio) {
359 					err = -ENOMEM;
360 					goto free_bios;
361 				}
362 				bio->bi_end_io = scsi_bi_endio;
363 			}
364 
365 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
366 			    bytes) {
367 				bio_put(bio);
368 				err = -EINVAL;
369 				goto free_bios;
370 			}
371 
372 			if (bio->bi_vcnt >= nr_vecs) {
373 				err = scsi_merge_bio(rq, bio);
374 				if (err) {
375 					bio_endio(bio, 0);
376 					goto free_bios;
377 				}
378 				bio = NULL;
379 			}
380 
381 			page++;
382 			len -= bytes;
383 			data_len -=bytes;
384 			off = 0;
385 		}
386 	}
387 
388 	rq->buffer = rq->data = NULL;
389 	rq->data_len = bufflen;
390 	return 0;
391 
392 free_bios:
393 	while ((bio = rq->bio) != NULL) {
394 		rq->bio = bio->bi_next;
395 		/*
396 		 * call endio instead of bio_put incase it was bounced
397 		 */
398 		bio_endio(bio, 0);
399 	}
400 
401 	return err;
402 }
403 
404 /**
405  * scsi_execute_async - insert request
406  * @sdev:	scsi device
407  * @cmd:	scsi command
408  * @cmd_len:	length of scsi cdb
409  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
410  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
411  * @bufflen:	len of buffer
412  * @use_sg:	if buffer is a scatterlist this is the number of elements
413  * @timeout:	request timeout in seconds
414  * @retries:	number of times to retry request
415  * @privdata:	data passed to done()
416  * @done:	callback function when done
417  * @gfp:	memory allocation flags
418  */
419 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
420 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
421 		       int use_sg, int timeout, int retries, void *privdata,
422 		       void (*done)(void *, char *, int, int), gfp_t gfp)
423 {
424 	struct request *req;
425 	struct scsi_io_context *sioc;
426 	int err = 0;
427 	int write = (data_direction == DMA_TO_DEVICE);
428 
429 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
430 	if (!sioc)
431 		return DRIVER_ERROR << 24;
432 
433 	req = blk_get_request(sdev->request_queue, write, gfp);
434 	if (!req)
435 		goto free_sense;
436 	req->cmd_type = REQ_TYPE_BLOCK_PC;
437 	req->cmd_flags |= REQ_QUIET;
438 
439 	if (use_sg)
440 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
441 	else if (bufflen)
442 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
443 
444 	if (err)
445 		goto free_req;
446 
447 	req->cmd_len = cmd_len;
448 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
449 	memcpy(req->cmd, cmd, req->cmd_len);
450 	req->sense = sioc->sense;
451 	req->sense_len = 0;
452 	req->timeout = timeout;
453 	req->retries = retries;
454 	req->end_io_data = sioc;
455 
456 	sioc->data = privdata;
457 	sioc->done = done;
458 
459 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
460 	return 0;
461 
462 free_req:
463 	blk_put_request(req);
464 free_sense:
465 	kmem_cache_free(scsi_io_context_cache, sioc);
466 	return DRIVER_ERROR << 24;
467 }
468 EXPORT_SYMBOL_GPL(scsi_execute_async);
469 
470 /*
471  * Function:    scsi_init_cmd_errh()
472  *
473  * Purpose:     Initialize cmd fields related to error handling.
474  *
475  * Arguments:   cmd	- command that is ready to be queued.
476  *
477  * Notes:       This function has the job of initializing a number of
478  *              fields related to error handling.   Typically this will
479  *              be called once for each command, as required.
480  */
481 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
482 {
483 	cmd->serial_number = 0;
484 	scsi_set_resid(cmd, 0);
485 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
486 	if (cmd->cmd_len == 0)
487 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
488 }
489 
490 void scsi_device_unbusy(struct scsi_device *sdev)
491 {
492 	struct Scsi_Host *shost = sdev->host;
493 	struct scsi_target *starget = scsi_target(sdev);
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(shost->host_lock, flags);
497 	shost->host_busy--;
498 	starget->target_busy--;
499 	if (unlikely(scsi_host_in_recovery(shost) &&
500 		     (shost->host_failed || shost->host_eh_scheduled)))
501 		scsi_eh_wakeup(shost);
502 	spin_unlock(shost->host_lock);
503 	spin_lock(sdev->request_queue->queue_lock);
504 	sdev->device_busy--;
505 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
506 }
507 
508 /*
509  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
510  * and call blk_run_queue for all the scsi_devices on the target -
511  * including current_sdev first.
512  *
513  * Called with *no* scsi locks held.
514  */
515 static void scsi_single_lun_run(struct scsi_device *current_sdev)
516 {
517 	struct Scsi_Host *shost = current_sdev->host;
518 	struct scsi_device *sdev, *tmp;
519 	struct scsi_target *starget = scsi_target(current_sdev);
520 	unsigned long flags;
521 
522 	spin_lock_irqsave(shost->host_lock, flags);
523 	starget->starget_sdev_user = NULL;
524 	spin_unlock_irqrestore(shost->host_lock, flags);
525 
526 	/*
527 	 * Call blk_run_queue for all LUNs on the target, starting with
528 	 * current_sdev. We race with others (to set starget_sdev_user),
529 	 * but in most cases, we will be first. Ideally, each LU on the
530 	 * target would get some limited time or requests on the target.
531 	 */
532 	blk_run_queue(current_sdev->request_queue);
533 
534 	spin_lock_irqsave(shost->host_lock, flags);
535 	if (starget->starget_sdev_user)
536 		goto out;
537 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
538 			same_target_siblings) {
539 		if (sdev == current_sdev)
540 			continue;
541 		if (scsi_device_get(sdev))
542 			continue;
543 
544 		spin_unlock_irqrestore(shost->host_lock, flags);
545 		blk_run_queue(sdev->request_queue);
546 		spin_lock_irqsave(shost->host_lock, flags);
547 
548 		scsi_device_put(sdev);
549 	}
550  out:
551 	spin_unlock_irqrestore(shost->host_lock, flags);
552 }
553 
554 static inline int scsi_device_is_busy(struct scsi_device *sdev)
555 {
556 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
557 		return 1;
558 
559 	return 0;
560 }
561 
562 static inline int scsi_target_is_busy(struct scsi_target *starget)
563 {
564 	return ((starget->can_queue > 0 &&
565 		 starget->target_busy >= starget->can_queue) ||
566 		 starget->target_blocked);
567 }
568 
569 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
570 {
571 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
572 	    shost->host_blocked || shost->host_self_blocked)
573 		return 1;
574 
575 	return 0;
576 }
577 
578 /*
579  * Function:	scsi_run_queue()
580  *
581  * Purpose:	Select a proper request queue to serve next
582  *
583  * Arguments:	q	- last request's queue
584  *
585  * Returns:     Nothing
586  *
587  * Notes:	The previous command was completely finished, start
588  *		a new one if possible.
589  */
590 static void scsi_run_queue(struct request_queue *q)
591 {
592 	struct scsi_device *sdev = q->queuedata;
593 	struct Scsi_Host *shost = sdev->host;
594 	LIST_HEAD(starved_list);
595 	unsigned long flags;
596 
597 	if (scsi_target(sdev)->single_lun)
598 		scsi_single_lun_run(sdev);
599 
600 	spin_lock_irqsave(shost->host_lock, flags);
601 	list_splice_init(&shost->starved_list, &starved_list);
602 
603 	while (!list_empty(&starved_list)) {
604 		int flagset;
605 
606 		/*
607 		 * As long as shost is accepting commands and we have
608 		 * starved queues, call blk_run_queue. scsi_request_fn
609 		 * drops the queue_lock and can add us back to the
610 		 * starved_list.
611 		 *
612 		 * host_lock protects the starved_list and starved_entry.
613 		 * scsi_request_fn must get the host_lock before checking
614 		 * or modifying starved_list or starved_entry.
615 		 */
616 		if (scsi_host_is_busy(shost))
617 			break;
618 
619 		sdev = list_entry(starved_list.next,
620 				  struct scsi_device, starved_entry);
621 		list_del_init(&sdev->starved_entry);
622 		if (scsi_target_is_busy(scsi_target(sdev))) {
623 			list_move_tail(&sdev->starved_entry,
624 				       &shost->starved_list);
625 			continue;
626 		}
627 
628 		spin_unlock(shost->host_lock);
629 
630 		spin_lock(sdev->request_queue->queue_lock);
631 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
632 				!test_bit(QUEUE_FLAG_REENTER,
633 					&sdev->request_queue->queue_flags);
634 		if (flagset)
635 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
636 		__blk_run_queue(sdev->request_queue);
637 		if (flagset)
638 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
639 		spin_unlock(sdev->request_queue->queue_lock);
640 
641 		spin_lock(shost->host_lock);
642 	}
643 	/* put any unprocessed entries back */
644 	list_splice(&starved_list, &shost->starved_list);
645 	spin_unlock_irqrestore(shost->host_lock, flags);
646 
647 	blk_run_queue(q);
648 }
649 
650 /*
651  * Function:	scsi_requeue_command()
652  *
653  * Purpose:	Handle post-processing of completed commands.
654  *
655  * Arguments:	q	- queue to operate on
656  *		cmd	- command that may need to be requeued.
657  *
658  * Returns:	Nothing
659  *
660  * Notes:	After command completion, there may be blocks left
661  *		over which weren't finished by the previous command
662  *		this can be for a number of reasons - the main one is
663  *		I/O errors in the middle of the request, in which case
664  *		we need to request the blocks that come after the bad
665  *		sector.
666  * Notes:	Upon return, cmd is a stale pointer.
667  */
668 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
669 {
670 	struct request *req = cmd->request;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(q->queue_lock, flags);
674 	scsi_unprep_request(req);
675 	blk_requeue_request(q, req);
676 	spin_unlock_irqrestore(q->queue_lock, flags);
677 
678 	scsi_run_queue(q);
679 }
680 
681 void scsi_next_command(struct scsi_cmnd *cmd)
682 {
683 	struct scsi_device *sdev = cmd->device;
684 	struct request_queue *q = sdev->request_queue;
685 
686 	/* need to hold a reference on the device before we let go of the cmd */
687 	get_device(&sdev->sdev_gendev);
688 
689 	scsi_put_command(cmd);
690 	scsi_run_queue(q);
691 
692 	/* ok to remove device now */
693 	put_device(&sdev->sdev_gendev);
694 }
695 
696 void scsi_run_host_queues(struct Scsi_Host *shost)
697 {
698 	struct scsi_device *sdev;
699 
700 	shost_for_each_device(sdev, shost)
701 		scsi_run_queue(sdev->request_queue);
702 }
703 
704 static void __scsi_release_buffers(struct scsi_cmnd *, int);
705 
706 /*
707  * Function:    scsi_end_request()
708  *
709  * Purpose:     Post-processing of completed commands (usually invoked at end
710  *		of upper level post-processing and scsi_io_completion).
711  *
712  * Arguments:   cmd	 - command that is complete.
713  *              error    - 0 if I/O indicates success, < 0 for I/O error.
714  *              bytes    - number of bytes of completed I/O
715  *		requeue  - indicates whether we should requeue leftovers.
716  *
717  * Lock status: Assumed that lock is not held upon entry.
718  *
719  * Returns:     cmd if requeue required, NULL otherwise.
720  *
721  * Notes:       This is called for block device requests in order to
722  *              mark some number of sectors as complete.
723  *
724  *		We are guaranteeing that the request queue will be goosed
725  *		at some point during this call.
726  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
727  */
728 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
729 					  int bytes, int requeue)
730 {
731 	struct request_queue *q = cmd->device->request_queue;
732 	struct request *req = cmd->request;
733 
734 	/*
735 	 * If there are blocks left over at the end, set up the command
736 	 * to queue the remainder of them.
737 	 */
738 	if (blk_end_request(req, error, bytes)) {
739 		int leftover = (req->hard_nr_sectors << 9);
740 
741 		if (blk_pc_request(req))
742 			leftover = req->data_len;
743 
744 		/* kill remainder if no retrys */
745 		if (error && scsi_noretry_cmd(cmd))
746 			blk_end_request(req, error, leftover);
747 		else {
748 			if (requeue) {
749 				/*
750 				 * Bleah.  Leftovers again.  Stick the
751 				 * leftovers in the front of the
752 				 * queue, and goose the queue again.
753 				 */
754 				scsi_release_buffers(cmd);
755 				scsi_requeue_command(q, cmd);
756 				cmd = NULL;
757 			}
758 			return cmd;
759 		}
760 	}
761 
762 	/*
763 	 * This will goose the queue request function at the end, so we don't
764 	 * need to worry about launching another command.
765 	 */
766 	__scsi_release_buffers(cmd, 0);
767 	scsi_next_command(cmd);
768 	return NULL;
769 }
770 
771 static inline unsigned int scsi_sgtable_index(unsigned short nents)
772 {
773 	unsigned int index;
774 
775 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
776 
777 	if (nents <= 8)
778 		index = 0;
779 	else
780 		index = get_count_order(nents) - 3;
781 
782 	return index;
783 }
784 
785 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
786 {
787 	struct scsi_host_sg_pool *sgp;
788 
789 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
790 	mempool_free(sgl, sgp->pool);
791 }
792 
793 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
794 {
795 	struct scsi_host_sg_pool *sgp;
796 
797 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
798 	return mempool_alloc(sgp->pool, gfp_mask);
799 }
800 
801 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
802 			      gfp_t gfp_mask)
803 {
804 	int ret;
805 
806 	BUG_ON(!nents);
807 
808 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
809 			       gfp_mask, scsi_sg_alloc);
810 	if (unlikely(ret))
811 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
812 				scsi_sg_free);
813 
814 	return ret;
815 }
816 
817 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
818 {
819 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
820 }
821 
822 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
823 {
824 
825 	if (cmd->sdb.table.nents)
826 		scsi_free_sgtable(&cmd->sdb);
827 
828 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
829 
830 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
831 		struct scsi_data_buffer *bidi_sdb =
832 			cmd->request->next_rq->special;
833 		scsi_free_sgtable(bidi_sdb);
834 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
835 		cmd->request->next_rq->special = NULL;
836 	}
837 
838 	if (scsi_prot_sg_count(cmd))
839 		scsi_free_sgtable(cmd->prot_sdb);
840 }
841 
842 /*
843  * Function:    scsi_release_buffers()
844  *
845  * Purpose:     Completion processing for block device I/O requests.
846  *
847  * Arguments:   cmd	- command that we are bailing.
848  *
849  * Lock status: Assumed that no lock is held upon entry.
850  *
851  * Returns:     Nothing
852  *
853  * Notes:       In the event that an upper level driver rejects a
854  *		command, we must release resources allocated during
855  *		the __init_io() function.  Primarily this would involve
856  *		the scatter-gather table, and potentially any bounce
857  *		buffers.
858  */
859 void scsi_release_buffers(struct scsi_cmnd *cmd)
860 {
861 	__scsi_release_buffers(cmd, 1);
862 }
863 EXPORT_SYMBOL(scsi_release_buffers);
864 
865 /*
866  * Bidi commands Must be complete as a whole, both sides at once.
867  * If part of the bytes were written and lld returned
868  * scsi_in()->resid and/or scsi_out()->resid this information will be left
869  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
870  * decide what to do with this information.
871  */
872 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
873 {
874 	struct request *req = cmd->request;
875 	unsigned int dlen = req->data_len;
876 	unsigned int next_dlen = req->next_rq->data_len;
877 
878 	req->data_len = scsi_out(cmd)->resid;
879 	req->next_rq->data_len = scsi_in(cmd)->resid;
880 
881 	/* The req and req->next_rq have not been completed */
882 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
883 
884 	scsi_release_buffers(cmd);
885 
886 	/*
887 	 * This will goose the queue request function at the end, so we don't
888 	 * need to worry about launching another command.
889 	 */
890 	scsi_next_command(cmd);
891 }
892 
893 /*
894  * Function:    scsi_io_completion()
895  *
896  * Purpose:     Completion processing for block device I/O requests.
897  *
898  * Arguments:   cmd   - command that is finished.
899  *
900  * Lock status: Assumed that no lock is held upon entry.
901  *
902  * Returns:     Nothing
903  *
904  * Notes:       This function is matched in terms of capabilities to
905  *              the function that created the scatter-gather list.
906  *              In other words, if there are no bounce buffers
907  *              (the normal case for most drivers), we don't need
908  *              the logic to deal with cleaning up afterwards.
909  *
910  *		We must call scsi_end_request().  This will finish off
911  *		the specified number of sectors.  If we are done, the
912  *		command block will be released and the queue function
913  *		will be goosed.  If we are not done then we have to
914  *		figure out what to do next:
915  *
916  *		a) We can call scsi_requeue_command().  The request
917  *		   will be unprepared and put back on the queue.  Then
918  *		   a new command will be created for it.  This should
919  *		   be used if we made forward progress, or if we want
920  *		   to switch from READ(10) to READ(6) for example.
921  *
922  *		b) We can call scsi_queue_insert().  The request will
923  *		   be put back on the queue and retried using the same
924  *		   command as before, possibly after a delay.
925  *
926  *		c) We can call blk_end_request() with -EIO to fail
927  *		   the remainder of the request.
928  */
929 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
930 {
931 	int result = cmd->result;
932 	int this_count;
933 	struct request_queue *q = cmd->device->request_queue;
934 	struct request *req = cmd->request;
935 	int error = 0;
936 	struct scsi_sense_hdr sshdr;
937 	int sense_valid = 0;
938 	int sense_deferred = 0;
939 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
940 	      ACTION_DELAYED_RETRY} action;
941 	char *description = NULL;
942 
943 	if (result) {
944 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
945 		if (sense_valid)
946 			sense_deferred = scsi_sense_is_deferred(&sshdr);
947 	}
948 
949 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
950 		req->errors = result;
951 		if (result) {
952 			if (sense_valid && req->sense) {
953 				/*
954 				 * SG_IO wants current and deferred errors
955 				 */
956 				int len = 8 + cmd->sense_buffer[7];
957 
958 				if (len > SCSI_SENSE_BUFFERSIZE)
959 					len = SCSI_SENSE_BUFFERSIZE;
960 				memcpy(req->sense, cmd->sense_buffer,  len);
961 				req->sense_len = len;
962 			}
963 			if (!sense_deferred)
964 				error = -EIO;
965 		}
966 		if (scsi_bidi_cmnd(cmd)) {
967 			/* will also release_buffers */
968 			scsi_end_bidi_request(cmd);
969 			return;
970 		}
971 		req->data_len = scsi_get_resid(cmd);
972 	}
973 
974 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
975 
976 	/*
977 	 * Next deal with any sectors which we were able to correctly
978 	 * handle.
979 	 */
980 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
981 				      "%d bytes done.\n",
982 				      req->nr_sectors, good_bytes));
983 
984 	/* A number of bytes were successfully read.  If there
985 	 * are leftovers and there is some kind of error
986 	 * (result != 0), retry the rest.
987 	 */
988 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
989 		return;
990 	this_count = blk_rq_bytes(req);
991 
992 	error = -EIO;
993 
994 	if (host_byte(result) == DID_RESET) {
995 		/* Third party bus reset or reset for error recovery
996 		 * reasons.  Just retry the command and see what
997 		 * happens.
998 		 */
999 		action = ACTION_RETRY;
1000 	} else if (sense_valid && !sense_deferred) {
1001 		switch (sshdr.sense_key) {
1002 		case UNIT_ATTENTION:
1003 			if (cmd->device->removable) {
1004 				/* Detected disc change.  Set a bit
1005 				 * and quietly refuse further access.
1006 				 */
1007 				cmd->device->changed = 1;
1008 				description = "Media Changed";
1009 				action = ACTION_FAIL;
1010 			} else {
1011 				/* Must have been a power glitch, or a
1012 				 * bus reset.  Could not have been a
1013 				 * media change, so we just retry the
1014 				 * command and see what happens.
1015 				 */
1016 				action = ACTION_RETRY;
1017 			}
1018 			break;
1019 		case ILLEGAL_REQUEST:
1020 			/* If we had an ILLEGAL REQUEST returned, then
1021 			 * we may have performed an unsupported
1022 			 * command.  The only thing this should be
1023 			 * would be a ten byte read where only a six
1024 			 * byte read was supported.  Also, on a system
1025 			 * where READ CAPACITY failed, we may have
1026 			 * read past the end of the disk.
1027 			 */
1028 			if ((cmd->device->use_10_for_rw &&
1029 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1030 			    (cmd->cmnd[0] == READ_10 ||
1031 			     cmd->cmnd[0] == WRITE_10)) {
1032 				/* This will issue a new 6-byte command. */
1033 				cmd->device->use_10_for_rw = 0;
1034 				action = ACTION_REPREP;
1035 			} else if (sshdr.asc == 0x10) /* DIX */ {
1036 				description = "Host Data Integrity Failure";
1037 				action = ACTION_FAIL;
1038 				error = -EILSEQ;
1039 			} else
1040 				action = ACTION_FAIL;
1041 			break;
1042 		case ABORTED_COMMAND:
1043 			if (sshdr.asc == 0x10) { /* DIF */
1044 				description = "Target Data Integrity Failure";
1045 				action = ACTION_FAIL;
1046 				error = -EILSEQ;
1047 			} else
1048 				action = ACTION_RETRY;
1049 			break;
1050 		case NOT_READY:
1051 			/* If the device is in the process of becoming
1052 			 * ready, or has a temporary blockage, retry.
1053 			 */
1054 			if (sshdr.asc == 0x04) {
1055 				switch (sshdr.ascq) {
1056 				case 0x01: /* becoming ready */
1057 				case 0x04: /* format in progress */
1058 				case 0x05: /* rebuild in progress */
1059 				case 0x06: /* recalculation in progress */
1060 				case 0x07: /* operation in progress */
1061 				case 0x08: /* Long write in progress */
1062 				case 0x09: /* self test in progress */
1063 					action = ACTION_DELAYED_RETRY;
1064 					break;
1065 				default:
1066 					description = "Device not ready";
1067 					action = ACTION_FAIL;
1068 					break;
1069 				}
1070 			} else {
1071 				description = "Device not ready";
1072 				action = ACTION_FAIL;
1073 			}
1074 			break;
1075 		case VOLUME_OVERFLOW:
1076 			/* See SSC3rXX or current. */
1077 			action = ACTION_FAIL;
1078 			break;
1079 		default:
1080 			description = "Unhandled sense code";
1081 			action = ACTION_FAIL;
1082 			break;
1083 		}
1084 	} else {
1085 		description = "Unhandled error code";
1086 		action = ACTION_FAIL;
1087 	}
1088 
1089 	switch (action) {
1090 	case ACTION_FAIL:
1091 		/* Give up and fail the remainder of the request */
1092 		scsi_release_buffers(cmd);
1093 		if (!(req->cmd_flags & REQ_QUIET)) {
1094 			if (description)
1095 				scmd_printk(KERN_INFO, cmd, "%s\n",
1096 					    description);
1097 			scsi_print_result(cmd);
1098 			if (driver_byte(result) & DRIVER_SENSE)
1099 				scsi_print_sense("", cmd);
1100 		}
1101 		blk_end_request(req, -EIO, blk_rq_bytes(req));
1102 		scsi_next_command(cmd);
1103 		break;
1104 	case ACTION_REPREP:
1105 		/* Unprep the request and put it back at the head of the queue.
1106 		 * A new command will be prepared and issued.
1107 		 */
1108 		scsi_release_buffers(cmd);
1109 		scsi_requeue_command(q, cmd);
1110 		break;
1111 	case ACTION_RETRY:
1112 		/* Retry the same command immediately */
1113 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1114 		break;
1115 	case ACTION_DELAYED_RETRY:
1116 		/* Retry the same command after a delay */
1117 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1118 		break;
1119 	}
1120 }
1121 
1122 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1123 			     gfp_t gfp_mask)
1124 {
1125 	int count;
1126 
1127 	/*
1128 	 * If sg table allocation fails, requeue request later.
1129 	 */
1130 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1131 					gfp_mask))) {
1132 		return BLKPREP_DEFER;
1133 	}
1134 
1135 	req->buffer = NULL;
1136 
1137 	/*
1138 	 * Next, walk the list, and fill in the addresses and sizes of
1139 	 * each segment.
1140 	 */
1141 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1142 	BUG_ON(count > sdb->table.nents);
1143 	sdb->table.nents = count;
1144 	if (blk_pc_request(req))
1145 		sdb->length = req->data_len;
1146 	else
1147 		sdb->length = req->nr_sectors << 9;
1148 	return BLKPREP_OK;
1149 }
1150 
1151 /*
1152  * Function:    scsi_init_io()
1153  *
1154  * Purpose:     SCSI I/O initialize function.
1155  *
1156  * Arguments:   cmd   - Command descriptor we wish to initialize
1157  *
1158  * Returns:     0 on success
1159  *		BLKPREP_DEFER if the failure is retryable
1160  *		BLKPREP_KILL if the failure is fatal
1161  */
1162 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1163 {
1164 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1165 	if (error)
1166 		goto err_exit;
1167 
1168 	if (blk_bidi_rq(cmd->request)) {
1169 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1170 			scsi_sdb_cache, GFP_ATOMIC);
1171 		if (!bidi_sdb) {
1172 			error = BLKPREP_DEFER;
1173 			goto err_exit;
1174 		}
1175 
1176 		cmd->request->next_rq->special = bidi_sdb;
1177 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1178 								    GFP_ATOMIC);
1179 		if (error)
1180 			goto err_exit;
1181 	}
1182 
1183 	if (blk_integrity_rq(cmd->request)) {
1184 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1185 		int ivecs, count;
1186 
1187 		BUG_ON(prot_sdb == NULL);
1188 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1189 
1190 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1191 			error = BLKPREP_DEFER;
1192 			goto err_exit;
1193 		}
1194 
1195 		count = blk_rq_map_integrity_sg(cmd->request,
1196 						prot_sdb->table.sgl);
1197 		BUG_ON(unlikely(count > ivecs));
1198 
1199 		cmd->prot_sdb = prot_sdb;
1200 		cmd->prot_sdb->table.nents = count;
1201 	}
1202 
1203 	return BLKPREP_OK ;
1204 
1205 err_exit:
1206 	scsi_release_buffers(cmd);
1207 	if (error == BLKPREP_KILL)
1208 		scsi_put_command(cmd);
1209 	else /* BLKPREP_DEFER */
1210 		scsi_unprep_request(cmd->request);
1211 
1212 	return error;
1213 }
1214 EXPORT_SYMBOL(scsi_init_io);
1215 
1216 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1217 		struct request *req)
1218 {
1219 	struct scsi_cmnd *cmd;
1220 
1221 	if (!req->special) {
1222 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1223 		if (unlikely(!cmd))
1224 			return NULL;
1225 		req->special = cmd;
1226 	} else {
1227 		cmd = req->special;
1228 	}
1229 
1230 	/* pull a tag out of the request if we have one */
1231 	cmd->tag = req->tag;
1232 	cmd->request = req;
1233 
1234 	cmd->cmnd = req->cmd;
1235 
1236 	return cmd;
1237 }
1238 
1239 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1240 {
1241 	struct scsi_cmnd *cmd;
1242 	int ret = scsi_prep_state_check(sdev, req);
1243 
1244 	if (ret != BLKPREP_OK)
1245 		return ret;
1246 
1247 	cmd = scsi_get_cmd_from_req(sdev, req);
1248 	if (unlikely(!cmd))
1249 		return BLKPREP_DEFER;
1250 
1251 	/*
1252 	 * BLOCK_PC requests may transfer data, in which case they must
1253 	 * a bio attached to them.  Or they might contain a SCSI command
1254 	 * that does not transfer data, in which case they may optionally
1255 	 * submit a request without an attached bio.
1256 	 */
1257 	if (req->bio) {
1258 		int ret;
1259 
1260 		BUG_ON(!req->nr_phys_segments);
1261 
1262 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1263 		if (unlikely(ret))
1264 			return ret;
1265 	} else {
1266 		BUG_ON(req->data_len);
1267 		BUG_ON(req->data);
1268 
1269 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1270 		req->buffer = NULL;
1271 	}
1272 
1273 	cmd->cmd_len = req->cmd_len;
1274 	if (!req->data_len)
1275 		cmd->sc_data_direction = DMA_NONE;
1276 	else if (rq_data_dir(req) == WRITE)
1277 		cmd->sc_data_direction = DMA_TO_DEVICE;
1278 	else
1279 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1280 
1281 	cmd->transfersize = req->data_len;
1282 	cmd->allowed = req->retries;
1283 	return BLKPREP_OK;
1284 }
1285 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1286 
1287 /*
1288  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1289  * from filesystems that still need to be translated to SCSI CDBs from
1290  * the ULD.
1291  */
1292 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1293 {
1294 	struct scsi_cmnd *cmd;
1295 	int ret = scsi_prep_state_check(sdev, req);
1296 
1297 	if (ret != BLKPREP_OK)
1298 		return ret;
1299 
1300 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1301 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1302 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1303 		if (ret != BLKPREP_OK)
1304 			return ret;
1305 	}
1306 
1307 	/*
1308 	 * Filesystem requests must transfer data.
1309 	 */
1310 	BUG_ON(!req->nr_phys_segments);
1311 
1312 	cmd = scsi_get_cmd_from_req(sdev, req);
1313 	if (unlikely(!cmd))
1314 		return BLKPREP_DEFER;
1315 
1316 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1317 	return scsi_init_io(cmd, GFP_ATOMIC);
1318 }
1319 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1320 
1321 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1322 {
1323 	int ret = BLKPREP_OK;
1324 
1325 	/*
1326 	 * If the device is not in running state we will reject some
1327 	 * or all commands.
1328 	 */
1329 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1330 		switch (sdev->sdev_state) {
1331 		case SDEV_OFFLINE:
1332 			/*
1333 			 * If the device is offline we refuse to process any
1334 			 * commands.  The device must be brought online
1335 			 * before trying any recovery commands.
1336 			 */
1337 			sdev_printk(KERN_ERR, sdev,
1338 				    "rejecting I/O to offline device\n");
1339 			ret = BLKPREP_KILL;
1340 			break;
1341 		case SDEV_DEL:
1342 			/*
1343 			 * If the device is fully deleted, we refuse to
1344 			 * process any commands as well.
1345 			 */
1346 			sdev_printk(KERN_ERR, sdev,
1347 				    "rejecting I/O to dead device\n");
1348 			ret = BLKPREP_KILL;
1349 			break;
1350 		case SDEV_QUIESCE:
1351 		case SDEV_BLOCK:
1352 		case SDEV_CREATED_BLOCK:
1353 			/*
1354 			 * If the devices is blocked we defer normal commands.
1355 			 */
1356 			if (!(req->cmd_flags & REQ_PREEMPT))
1357 				ret = BLKPREP_DEFER;
1358 			break;
1359 		default:
1360 			/*
1361 			 * For any other not fully online state we only allow
1362 			 * special commands.  In particular any user initiated
1363 			 * command is not allowed.
1364 			 */
1365 			if (!(req->cmd_flags & REQ_PREEMPT))
1366 				ret = BLKPREP_KILL;
1367 			break;
1368 		}
1369 	}
1370 	return ret;
1371 }
1372 EXPORT_SYMBOL(scsi_prep_state_check);
1373 
1374 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1375 {
1376 	struct scsi_device *sdev = q->queuedata;
1377 
1378 	switch (ret) {
1379 	case BLKPREP_KILL:
1380 		req->errors = DID_NO_CONNECT << 16;
1381 		/* release the command and kill it */
1382 		if (req->special) {
1383 			struct scsi_cmnd *cmd = req->special;
1384 			scsi_release_buffers(cmd);
1385 			scsi_put_command(cmd);
1386 			req->special = NULL;
1387 		}
1388 		break;
1389 	case BLKPREP_DEFER:
1390 		/*
1391 		 * If we defer, the elv_next_request() returns NULL, but the
1392 		 * queue must be restarted, so we plug here if no returning
1393 		 * command will automatically do that.
1394 		 */
1395 		if (sdev->device_busy == 0)
1396 			blk_plug_device(q);
1397 		break;
1398 	default:
1399 		req->cmd_flags |= REQ_DONTPREP;
1400 	}
1401 
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL(scsi_prep_return);
1405 
1406 int scsi_prep_fn(struct request_queue *q, struct request *req)
1407 {
1408 	struct scsi_device *sdev = q->queuedata;
1409 	int ret = BLKPREP_KILL;
1410 
1411 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1412 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1413 	return scsi_prep_return(q, req, ret);
1414 }
1415 
1416 /*
1417  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1418  * return 0.
1419  *
1420  * Called with the queue_lock held.
1421  */
1422 static inline int scsi_dev_queue_ready(struct request_queue *q,
1423 				  struct scsi_device *sdev)
1424 {
1425 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1426 		/*
1427 		 * unblock after device_blocked iterates to zero
1428 		 */
1429 		if (--sdev->device_blocked == 0) {
1430 			SCSI_LOG_MLQUEUE(3,
1431 				   sdev_printk(KERN_INFO, sdev,
1432 				   "unblocking device at zero depth\n"));
1433 		} else {
1434 			blk_plug_device(q);
1435 			return 0;
1436 		}
1437 	}
1438 	if (scsi_device_is_busy(sdev))
1439 		return 0;
1440 
1441 	return 1;
1442 }
1443 
1444 
1445 /*
1446  * scsi_target_queue_ready: checks if there we can send commands to target
1447  * @sdev: scsi device on starget to check.
1448  *
1449  * Called with the host lock held.
1450  */
1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452 					   struct scsi_device *sdev)
1453 {
1454 	struct scsi_target *starget = scsi_target(sdev);
1455 
1456 	if (starget->single_lun) {
1457 		if (starget->starget_sdev_user &&
1458 		    starget->starget_sdev_user != sdev)
1459 			return 0;
1460 		starget->starget_sdev_user = sdev;
1461 	}
1462 
1463 	if (starget->target_busy == 0 && starget->target_blocked) {
1464 		/*
1465 		 * unblock after target_blocked iterates to zero
1466 		 */
1467 		if (--starget->target_blocked == 0) {
1468 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1469 					 "unblocking target at zero depth\n"));
1470 		} else {
1471 			blk_plug_device(sdev->request_queue);
1472 			return 0;
1473 		}
1474 	}
1475 
1476 	if (scsi_target_is_busy(starget)) {
1477 		if (list_empty(&sdev->starved_entry)) {
1478 			list_add_tail(&sdev->starved_entry,
1479 				      &shost->starved_list);
1480 			return 0;
1481 		}
1482 	}
1483 
1484 	/* We're OK to process the command, so we can't be starved */
1485 	if (!list_empty(&sdev->starved_entry))
1486 		list_del_init(&sdev->starved_entry);
1487 	return 1;
1488 }
1489 
1490 /*
1491  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1492  * return 0. We must end up running the queue again whenever 0 is
1493  * returned, else IO can hang.
1494  *
1495  * Called with host_lock held.
1496  */
1497 static inline int scsi_host_queue_ready(struct request_queue *q,
1498 				   struct Scsi_Host *shost,
1499 				   struct scsi_device *sdev)
1500 {
1501 	if (scsi_host_in_recovery(shost))
1502 		return 0;
1503 	if (shost->host_busy == 0 && shost->host_blocked) {
1504 		/*
1505 		 * unblock after host_blocked iterates to zero
1506 		 */
1507 		if (--shost->host_blocked == 0) {
1508 			SCSI_LOG_MLQUEUE(3,
1509 				printk("scsi%d unblocking host at zero depth\n",
1510 					shost->host_no));
1511 		} else {
1512 			return 0;
1513 		}
1514 	}
1515 	if (scsi_host_is_busy(shost)) {
1516 		if (list_empty(&sdev->starved_entry))
1517 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1518 		return 0;
1519 	}
1520 
1521 	/* We're OK to process the command, so we can't be starved */
1522 	if (!list_empty(&sdev->starved_entry))
1523 		list_del_init(&sdev->starved_entry);
1524 
1525 	return 1;
1526 }
1527 
1528 /*
1529  * Busy state exporting function for request stacking drivers.
1530  *
1531  * For efficiency, no lock is taken to check the busy state of
1532  * shost/starget/sdev, since the returned value is not guaranteed and
1533  * may be changed after request stacking drivers call the function,
1534  * regardless of taking lock or not.
1535  *
1536  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1537  * (e.g. !sdev), scsi needs to return 'not busy'.
1538  * Otherwise, request stacking drivers may hold requests forever.
1539  */
1540 static int scsi_lld_busy(struct request_queue *q)
1541 {
1542 	struct scsi_device *sdev = q->queuedata;
1543 	struct Scsi_Host *shost;
1544 	struct scsi_target *starget;
1545 
1546 	if (!sdev)
1547 		return 0;
1548 
1549 	shost = sdev->host;
1550 	starget = scsi_target(sdev);
1551 
1552 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1553 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1554 		return 1;
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Kill a request for a dead device
1561  */
1562 static void scsi_kill_request(struct request *req, struct request_queue *q)
1563 {
1564 	struct scsi_cmnd *cmd = req->special;
1565 	struct scsi_device *sdev = cmd->device;
1566 	struct scsi_target *starget = scsi_target(sdev);
1567 	struct Scsi_Host *shost = sdev->host;
1568 
1569 	blkdev_dequeue_request(req);
1570 
1571 	if (unlikely(cmd == NULL)) {
1572 		printk(KERN_CRIT "impossible request in %s.\n",
1573 				 __func__);
1574 		BUG();
1575 	}
1576 
1577 	scsi_init_cmd_errh(cmd);
1578 	cmd->result = DID_NO_CONNECT << 16;
1579 	atomic_inc(&cmd->device->iorequest_cnt);
1580 
1581 	/*
1582 	 * SCSI request completion path will do scsi_device_unbusy(),
1583 	 * bump busy counts.  To bump the counters, we need to dance
1584 	 * with the locks as normal issue path does.
1585 	 */
1586 	sdev->device_busy++;
1587 	spin_unlock(sdev->request_queue->queue_lock);
1588 	spin_lock(shost->host_lock);
1589 	shost->host_busy++;
1590 	starget->target_busy++;
1591 	spin_unlock(shost->host_lock);
1592 	spin_lock(sdev->request_queue->queue_lock);
1593 
1594 	blk_complete_request(req);
1595 }
1596 
1597 static void scsi_softirq_done(struct request *rq)
1598 {
1599 	struct scsi_cmnd *cmd = rq->special;
1600 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1601 	int disposition;
1602 
1603 	INIT_LIST_HEAD(&cmd->eh_entry);
1604 
1605 	/*
1606 	 * Set the serial numbers back to zero
1607 	 */
1608 	cmd->serial_number = 0;
1609 
1610 	atomic_inc(&cmd->device->iodone_cnt);
1611 	if (cmd->result)
1612 		atomic_inc(&cmd->device->ioerr_cnt);
1613 
1614 	disposition = scsi_decide_disposition(cmd);
1615 	if (disposition != SUCCESS &&
1616 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1617 		sdev_printk(KERN_ERR, cmd->device,
1618 			    "timing out command, waited %lus\n",
1619 			    wait_for/HZ);
1620 		disposition = SUCCESS;
1621 	}
1622 
1623 	scsi_log_completion(cmd, disposition);
1624 
1625 	switch (disposition) {
1626 		case SUCCESS:
1627 			scsi_finish_command(cmd);
1628 			break;
1629 		case NEEDS_RETRY:
1630 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1631 			break;
1632 		case ADD_TO_MLQUEUE:
1633 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1634 			break;
1635 		default:
1636 			if (!scsi_eh_scmd_add(cmd, 0))
1637 				scsi_finish_command(cmd);
1638 	}
1639 }
1640 
1641 /*
1642  * Function:    scsi_request_fn()
1643  *
1644  * Purpose:     Main strategy routine for SCSI.
1645  *
1646  * Arguments:   q       - Pointer to actual queue.
1647  *
1648  * Returns:     Nothing
1649  *
1650  * Lock status: IO request lock assumed to be held when called.
1651  */
1652 static void scsi_request_fn(struct request_queue *q)
1653 {
1654 	struct scsi_device *sdev = q->queuedata;
1655 	struct Scsi_Host *shost;
1656 	struct scsi_cmnd *cmd;
1657 	struct request *req;
1658 
1659 	if (!sdev) {
1660 		printk("scsi: killing requests for dead queue\n");
1661 		while ((req = elv_next_request(q)) != NULL)
1662 			scsi_kill_request(req, q);
1663 		return;
1664 	}
1665 
1666 	if(!get_device(&sdev->sdev_gendev))
1667 		/* We must be tearing the block queue down already */
1668 		return;
1669 
1670 	/*
1671 	 * To start with, we keep looping until the queue is empty, or until
1672 	 * the host is no longer able to accept any more requests.
1673 	 */
1674 	shost = sdev->host;
1675 	while (!blk_queue_plugged(q)) {
1676 		int rtn;
1677 		/*
1678 		 * get next queueable request.  We do this early to make sure
1679 		 * that the request is fully prepared even if we cannot
1680 		 * accept it.
1681 		 */
1682 		req = elv_next_request(q);
1683 		if (!req || !scsi_dev_queue_ready(q, sdev))
1684 			break;
1685 
1686 		if (unlikely(!scsi_device_online(sdev))) {
1687 			sdev_printk(KERN_ERR, sdev,
1688 				    "rejecting I/O to offline device\n");
1689 			scsi_kill_request(req, q);
1690 			continue;
1691 		}
1692 
1693 
1694 		/*
1695 		 * Remove the request from the request list.
1696 		 */
1697 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1698 			blkdev_dequeue_request(req);
1699 		sdev->device_busy++;
1700 
1701 		spin_unlock(q->queue_lock);
1702 		cmd = req->special;
1703 		if (unlikely(cmd == NULL)) {
1704 			printk(KERN_CRIT "impossible request in %s.\n"
1705 					 "please mail a stack trace to "
1706 					 "linux-scsi@vger.kernel.org\n",
1707 					 __func__);
1708 			blk_dump_rq_flags(req, "foo");
1709 			BUG();
1710 		}
1711 		spin_lock(shost->host_lock);
1712 
1713 		/*
1714 		 * We hit this when the driver is using a host wide
1715 		 * tag map. For device level tag maps the queue_depth check
1716 		 * in the device ready fn would prevent us from trying
1717 		 * to allocate a tag. Since the map is a shared host resource
1718 		 * we add the dev to the starved list so it eventually gets
1719 		 * a run when a tag is freed.
1720 		 */
1721 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1722 			if (list_empty(&sdev->starved_entry))
1723 				list_add_tail(&sdev->starved_entry,
1724 					      &shost->starved_list);
1725 			goto not_ready;
1726 		}
1727 
1728 		if (!scsi_target_queue_ready(shost, sdev))
1729 			goto not_ready;
1730 
1731 		if (!scsi_host_queue_ready(q, shost, sdev))
1732 			goto not_ready;
1733 
1734 		scsi_target(sdev)->target_busy++;
1735 		shost->host_busy++;
1736 
1737 		/*
1738 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1739 		 *		take the lock again.
1740 		 */
1741 		spin_unlock_irq(shost->host_lock);
1742 
1743 		/*
1744 		 * Finally, initialize any error handling parameters, and set up
1745 		 * the timers for timeouts.
1746 		 */
1747 		scsi_init_cmd_errh(cmd);
1748 
1749 		/*
1750 		 * Dispatch the command to the low-level driver.
1751 		 */
1752 		rtn = scsi_dispatch_cmd(cmd);
1753 		spin_lock_irq(q->queue_lock);
1754 		if(rtn) {
1755 			/* we're refusing the command; because of
1756 			 * the way locks get dropped, we need to
1757 			 * check here if plugging is required */
1758 			if(sdev->device_busy == 0)
1759 				blk_plug_device(q);
1760 
1761 			break;
1762 		}
1763 	}
1764 
1765 	goto out;
1766 
1767  not_ready:
1768 	spin_unlock_irq(shost->host_lock);
1769 
1770 	/*
1771 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1772 	 * must return with queue_lock held.
1773 	 *
1774 	 * Decrementing device_busy without checking it is OK, as all such
1775 	 * cases (host limits or settings) should run the queue at some
1776 	 * later time.
1777 	 */
1778 	spin_lock_irq(q->queue_lock);
1779 	blk_requeue_request(q, req);
1780 	sdev->device_busy--;
1781 	if(sdev->device_busy == 0)
1782 		blk_plug_device(q);
1783  out:
1784 	/* must be careful here...if we trigger the ->remove() function
1785 	 * we cannot be holding the q lock */
1786 	spin_unlock_irq(q->queue_lock);
1787 	put_device(&sdev->sdev_gendev);
1788 	spin_lock_irq(q->queue_lock);
1789 }
1790 
1791 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1792 {
1793 	struct device *host_dev;
1794 	u64 bounce_limit = 0xffffffff;
1795 
1796 	if (shost->unchecked_isa_dma)
1797 		return BLK_BOUNCE_ISA;
1798 	/*
1799 	 * Platforms with virtual-DMA translation
1800 	 * hardware have no practical limit.
1801 	 */
1802 	if (!PCI_DMA_BUS_IS_PHYS)
1803 		return BLK_BOUNCE_ANY;
1804 
1805 	host_dev = scsi_get_device(shost);
1806 	if (host_dev && host_dev->dma_mask)
1807 		bounce_limit = *host_dev->dma_mask;
1808 
1809 	return bounce_limit;
1810 }
1811 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1812 
1813 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1814 					 request_fn_proc *request_fn)
1815 {
1816 	struct request_queue *q;
1817 	struct device *dev = shost->shost_gendev.parent;
1818 
1819 	q = blk_init_queue(request_fn, NULL);
1820 	if (!q)
1821 		return NULL;
1822 
1823 	/*
1824 	 * this limit is imposed by hardware restrictions
1825 	 */
1826 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1827 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1828 
1829 	blk_queue_max_sectors(q, shost->max_sectors);
1830 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1831 	blk_queue_segment_boundary(q, shost->dma_boundary);
1832 	dma_set_seg_boundary(dev, shost->dma_boundary);
1833 
1834 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1835 
1836 	/* New queue, no concurrency on queue_flags */
1837 	if (!shost->use_clustering)
1838 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1839 
1840 	/*
1841 	 * set a reasonable default alignment on word boundaries: the
1842 	 * host and device may alter it using
1843 	 * blk_queue_update_dma_alignment() later.
1844 	 */
1845 	blk_queue_dma_alignment(q, 0x03);
1846 
1847 	return q;
1848 }
1849 EXPORT_SYMBOL(__scsi_alloc_queue);
1850 
1851 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1852 {
1853 	struct request_queue *q;
1854 
1855 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1856 	if (!q)
1857 		return NULL;
1858 
1859 	blk_queue_prep_rq(q, scsi_prep_fn);
1860 	blk_queue_softirq_done(q, scsi_softirq_done);
1861 	blk_queue_rq_timed_out(q, scsi_times_out);
1862 	blk_queue_lld_busy(q, scsi_lld_busy);
1863 	return q;
1864 }
1865 
1866 void scsi_free_queue(struct request_queue *q)
1867 {
1868 	blk_cleanup_queue(q);
1869 }
1870 
1871 /*
1872  * Function:    scsi_block_requests()
1873  *
1874  * Purpose:     Utility function used by low-level drivers to prevent further
1875  *		commands from being queued to the device.
1876  *
1877  * Arguments:   shost       - Host in question
1878  *
1879  * Returns:     Nothing
1880  *
1881  * Lock status: No locks are assumed held.
1882  *
1883  * Notes:       There is no timer nor any other means by which the requests
1884  *		get unblocked other than the low-level driver calling
1885  *		scsi_unblock_requests().
1886  */
1887 void scsi_block_requests(struct Scsi_Host *shost)
1888 {
1889 	shost->host_self_blocked = 1;
1890 }
1891 EXPORT_SYMBOL(scsi_block_requests);
1892 
1893 /*
1894  * Function:    scsi_unblock_requests()
1895  *
1896  * Purpose:     Utility function used by low-level drivers to allow further
1897  *		commands from being queued to the device.
1898  *
1899  * Arguments:   shost       - Host in question
1900  *
1901  * Returns:     Nothing
1902  *
1903  * Lock status: No locks are assumed held.
1904  *
1905  * Notes:       There is no timer nor any other means by which the requests
1906  *		get unblocked other than the low-level driver calling
1907  *		scsi_unblock_requests().
1908  *
1909  *		This is done as an API function so that changes to the
1910  *		internals of the scsi mid-layer won't require wholesale
1911  *		changes to drivers that use this feature.
1912  */
1913 void scsi_unblock_requests(struct Scsi_Host *shost)
1914 {
1915 	shost->host_self_blocked = 0;
1916 	scsi_run_host_queues(shost);
1917 }
1918 EXPORT_SYMBOL(scsi_unblock_requests);
1919 
1920 int __init scsi_init_queue(void)
1921 {
1922 	int i;
1923 
1924 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1925 					sizeof(struct scsi_io_context),
1926 					0, 0, NULL);
1927 	if (!scsi_io_context_cache) {
1928 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1929 		return -ENOMEM;
1930 	}
1931 
1932 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1933 					   sizeof(struct scsi_data_buffer),
1934 					   0, 0, NULL);
1935 	if (!scsi_sdb_cache) {
1936 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1937 		goto cleanup_io_context;
1938 	}
1939 
1940 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1941 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1942 		int size = sgp->size * sizeof(struct scatterlist);
1943 
1944 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1945 				SLAB_HWCACHE_ALIGN, NULL);
1946 		if (!sgp->slab) {
1947 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1948 					sgp->name);
1949 			goto cleanup_sdb;
1950 		}
1951 
1952 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1953 						     sgp->slab);
1954 		if (!sgp->pool) {
1955 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1956 					sgp->name);
1957 			goto cleanup_sdb;
1958 		}
1959 	}
1960 
1961 	return 0;
1962 
1963 cleanup_sdb:
1964 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1965 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1966 		if (sgp->pool)
1967 			mempool_destroy(sgp->pool);
1968 		if (sgp->slab)
1969 			kmem_cache_destroy(sgp->slab);
1970 	}
1971 	kmem_cache_destroy(scsi_sdb_cache);
1972 cleanup_io_context:
1973 	kmem_cache_destroy(scsi_io_context_cache);
1974 
1975 	return -ENOMEM;
1976 }
1977 
1978 void scsi_exit_queue(void)
1979 {
1980 	int i;
1981 
1982 	kmem_cache_destroy(scsi_io_context_cache);
1983 	kmem_cache_destroy(scsi_sdb_cache);
1984 
1985 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1986 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1987 		mempool_destroy(sgp->pool);
1988 		kmem_cache_destroy(sgp->slab);
1989 	}
1990 }
1991 
1992 /**
1993  *	scsi_mode_select - issue a mode select
1994  *	@sdev:	SCSI device to be queried
1995  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1996  *	@sp:	Save page bit (0 == don't save, 1 == save)
1997  *	@modepage: mode page being requested
1998  *	@buffer: request buffer (may not be smaller than eight bytes)
1999  *	@len:	length of request buffer.
2000  *	@timeout: command timeout
2001  *	@retries: number of retries before failing
2002  *	@data: returns a structure abstracting the mode header data
2003  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2004  *		must be SCSI_SENSE_BUFFERSIZE big.
2005  *
2006  *	Returns zero if successful; negative error number or scsi
2007  *	status on error
2008  *
2009  */
2010 int
2011 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2012 		 unsigned char *buffer, int len, int timeout, int retries,
2013 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2014 {
2015 	unsigned char cmd[10];
2016 	unsigned char *real_buffer;
2017 	int ret;
2018 
2019 	memset(cmd, 0, sizeof(cmd));
2020 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2021 
2022 	if (sdev->use_10_for_ms) {
2023 		if (len > 65535)
2024 			return -EINVAL;
2025 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2026 		if (!real_buffer)
2027 			return -ENOMEM;
2028 		memcpy(real_buffer + 8, buffer, len);
2029 		len += 8;
2030 		real_buffer[0] = 0;
2031 		real_buffer[1] = 0;
2032 		real_buffer[2] = data->medium_type;
2033 		real_buffer[3] = data->device_specific;
2034 		real_buffer[4] = data->longlba ? 0x01 : 0;
2035 		real_buffer[5] = 0;
2036 		real_buffer[6] = data->block_descriptor_length >> 8;
2037 		real_buffer[7] = data->block_descriptor_length;
2038 
2039 		cmd[0] = MODE_SELECT_10;
2040 		cmd[7] = len >> 8;
2041 		cmd[8] = len;
2042 	} else {
2043 		if (len > 255 || data->block_descriptor_length > 255 ||
2044 		    data->longlba)
2045 			return -EINVAL;
2046 
2047 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2048 		if (!real_buffer)
2049 			return -ENOMEM;
2050 		memcpy(real_buffer + 4, buffer, len);
2051 		len += 4;
2052 		real_buffer[0] = 0;
2053 		real_buffer[1] = data->medium_type;
2054 		real_buffer[2] = data->device_specific;
2055 		real_buffer[3] = data->block_descriptor_length;
2056 
2057 
2058 		cmd[0] = MODE_SELECT;
2059 		cmd[4] = len;
2060 	}
2061 
2062 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2063 			       sshdr, timeout, retries, NULL);
2064 	kfree(real_buffer);
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(scsi_mode_select);
2068 
2069 /**
2070  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2071  *	@sdev:	SCSI device to be queried
2072  *	@dbd:	set if mode sense will allow block descriptors to be returned
2073  *	@modepage: mode page being requested
2074  *	@buffer: request buffer (may not be smaller than eight bytes)
2075  *	@len:	length of request buffer.
2076  *	@timeout: command timeout
2077  *	@retries: number of retries before failing
2078  *	@data: returns a structure abstracting the mode header data
2079  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2080  *		must be SCSI_SENSE_BUFFERSIZE big.
2081  *
2082  *	Returns zero if unsuccessful, or the header offset (either 4
2083  *	or 8 depending on whether a six or ten byte command was
2084  *	issued) if successful.
2085  */
2086 int
2087 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2088 		  unsigned char *buffer, int len, int timeout, int retries,
2089 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091 	unsigned char cmd[12];
2092 	int use_10_for_ms;
2093 	int header_length;
2094 	int result;
2095 	struct scsi_sense_hdr my_sshdr;
2096 
2097 	memset(data, 0, sizeof(*data));
2098 	memset(&cmd[0], 0, 12);
2099 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2100 	cmd[2] = modepage;
2101 
2102 	/* caller might not be interested in sense, but we need it */
2103 	if (!sshdr)
2104 		sshdr = &my_sshdr;
2105 
2106  retry:
2107 	use_10_for_ms = sdev->use_10_for_ms;
2108 
2109 	if (use_10_for_ms) {
2110 		if (len < 8)
2111 			len = 8;
2112 
2113 		cmd[0] = MODE_SENSE_10;
2114 		cmd[8] = len;
2115 		header_length = 8;
2116 	} else {
2117 		if (len < 4)
2118 			len = 4;
2119 
2120 		cmd[0] = MODE_SENSE;
2121 		cmd[4] = len;
2122 		header_length = 4;
2123 	}
2124 
2125 	memset(buffer, 0, len);
2126 
2127 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2128 				  sshdr, timeout, retries, NULL);
2129 
2130 	/* This code looks awful: what it's doing is making sure an
2131 	 * ILLEGAL REQUEST sense return identifies the actual command
2132 	 * byte as the problem.  MODE_SENSE commands can return
2133 	 * ILLEGAL REQUEST if the code page isn't supported */
2134 
2135 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2136 	    (driver_byte(result) & DRIVER_SENSE)) {
2137 		if (scsi_sense_valid(sshdr)) {
2138 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2139 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2140 				/*
2141 				 * Invalid command operation code
2142 				 */
2143 				sdev->use_10_for_ms = 0;
2144 				goto retry;
2145 			}
2146 		}
2147 	}
2148 
2149 	if(scsi_status_is_good(result)) {
2150 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2151 			     (modepage == 6 || modepage == 8))) {
2152 			/* Initio breakage? */
2153 			header_length = 0;
2154 			data->length = 13;
2155 			data->medium_type = 0;
2156 			data->device_specific = 0;
2157 			data->longlba = 0;
2158 			data->block_descriptor_length = 0;
2159 		} else if(use_10_for_ms) {
2160 			data->length = buffer[0]*256 + buffer[1] + 2;
2161 			data->medium_type = buffer[2];
2162 			data->device_specific = buffer[3];
2163 			data->longlba = buffer[4] & 0x01;
2164 			data->block_descriptor_length = buffer[6]*256
2165 				+ buffer[7];
2166 		} else {
2167 			data->length = buffer[0] + 1;
2168 			data->medium_type = buffer[1];
2169 			data->device_specific = buffer[2];
2170 			data->block_descriptor_length = buffer[3];
2171 		}
2172 		data->header_length = header_length;
2173 	}
2174 
2175 	return result;
2176 }
2177 EXPORT_SYMBOL(scsi_mode_sense);
2178 
2179 /**
2180  *	scsi_test_unit_ready - test if unit is ready
2181  *	@sdev:	scsi device to change the state of.
2182  *	@timeout: command timeout
2183  *	@retries: number of retries before failing
2184  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2185  *		returning sense. Make sure that this is cleared before passing
2186  *		in.
2187  *
2188  *	Returns zero if unsuccessful or an error if TUR failed.  For
2189  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2190  *	translated to success, with the ->changed flag updated.
2191  **/
2192 int
2193 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2194 		     struct scsi_sense_hdr *sshdr_external)
2195 {
2196 	char cmd[] = {
2197 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2198 	};
2199 	struct scsi_sense_hdr *sshdr;
2200 	int result;
2201 
2202 	if (!sshdr_external)
2203 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2204 	else
2205 		sshdr = sshdr_external;
2206 
2207 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2208 	do {
2209 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2210 					  timeout, retries, NULL);
2211 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2212 		    sshdr->sense_key == UNIT_ATTENTION)
2213 			sdev->changed = 1;
2214 	} while (scsi_sense_valid(sshdr) &&
2215 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2216 
2217 	if (!sshdr)
2218 		/* could not allocate sense buffer, so can't process it */
2219 		return result;
2220 
2221 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2222 	    (sshdr->sense_key == UNIT_ATTENTION ||
2223 	     sshdr->sense_key == NOT_READY)) {
2224 		sdev->changed = 1;
2225 		result = 0;
2226 	}
2227 	if (!sshdr_external)
2228 		kfree(sshdr);
2229 	return result;
2230 }
2231 EXPORT_SYMBOL(scsi_test_unit_ready);
2232 
2233 /**
2234  *	scsi_device_set_state - Take the given device through the device state model.
2235  *	@sdev:	scsi device to change the state of.
2236  *	@state:	state to change to.
2237  *
2238  *	Returns zero if unsuccessful or an error if the requested
2239  *	transition is illegal.
2240  */
2241 int
2242 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243 {
2244 	enum scsi_device_state oldstate = sdev->sdev_state;
2245 
2246 	if (state == oldstate)
2247 		return 0;
2248 
2249 	switch (state) {
2250 	case SDEV_CREATED:
2251 		switch (oldstate) {
2252 		case SDEV_CREATED_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_RUNNING:
2260 		switch (oldstate) {
2261 		case SDEV_CREATED:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_QUIESCE:
2264 		case SDEV_BLOCK:
2265 			break;
2266 		default:
2267 			goto illegal;
2268 		}
2269 		break;
2270 
2271 	case SDEV_QUIESCE:
2272 		switch (oldstate) {
2273 		case SDEV_RUNNING:
2274 		case SDEV_OFFLINE:
2275 			break;
2276 		default:
2277 			goto illegal;
2278 		}
2279 		break;
2280 
2281 	case SDEV_OFFLINE:
2282 		switch (oldstate) {
2283 		case SDEV_CREATED:
2284 		case SDEV_RUNNING:
2285 		case SDEV_QUIESCE:
2286 		case SDEV_BLOCK:
2287 			break;
2288 		default:
2289 			goto illegal;
2290 		}
2291 		break;
2292 
2293 	case SDEV_BLOCK:
2294 		switch (oldstate) {
2295 		case SDEV_RUNNING:
2296 		case SDEV_CREATED_BLOCK:
2297 			break;
2298 		default:
2299 			goto illegal;
2300 		}
2301 		break;
2302 
2303 	case SDEV_CREATED_BLOCK:
2304 		switch (oldstate) {
2305 		case SDEV_CREATED:
2306 			break;
2307 		default:
2308 			goto illegal;
2309 		}
2310 		break;
2311 
2312 	case SDEV_CANCEL:
2313 		switch (oldstate) {
2314 		case SDEV_CREATED:
2315 		case SDEV_RUNNING:
2316 		case SDEV_QUIESCE:
2317 		case SDEV_OFFLINE:
2318 		case SDEV_BLOCK:
2319 			break;
2320 		default:
2321 			goto illegal;
2322 		}
2323 		break;
2324 
2325 	case SDEV_DEL:
2326 		switch (oldstate) {
2327 		case SDEV_CREATED:
2328 		case SDEV_RUNNING:
2329 		case SDEV_OFFLINE:
2330 		case SDEV_CANCEL:
2331 			break;
2332 		default:
2333 			goto illegal;
2334 		}
2335 		break;
2336 
2337 	}
2338 	sdev->sdev_state = state;
2339 	return 0;
2340 
2341  illegal:
2342 	SCSI_LOG_ERROR_RECOVERY(1,
2343 				sdev_printk(KERN_ERR, sdev,
2344 					    "Illegal state transition %s->%s\n",
2345 					    scsi_device_state_name(oldstate),
2346 					    scsi_device_state_name(state))
2347 				);
2348 	return -EINVAL;
2349 }
2350 EXPORT_SYMBOL(scsi_device_set_state);
2351 
2352 /**
2353  * 	sdev_evt_emit - emit a single SCSI device uevent
2354  *	@sdev: associated SCSI device
2355  *	@evt: event to emit
2356  *
2357  *	Send a single uevent (scsi_event) to the associated scsi_device.
2358  */
2359 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2360 {
2361 	int idx = 0;
2362 	char *envp[3];
2363 
2364 	switch (evt->evt_type) {
2365 	case SDEV_EVT_MEDIA_CHANGE:
2366 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2367 		break;
2368 
2369 	default:
2370 		/* do nothing */
2371 		break;
2372 	}
2373 
2374 	envp[idx++] = NULL;
2375 
2376 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2377 }
2378 
2379 /**
2380  * 	sdev_evt_thread - send a uevent for each scsi event
2381  *	@work: work struct for scsi_device
2382  *
2383  *	Dispatch queued events to their associated scsi_device kobjects
2384  *	as uevents.
2385  */
2386 void scsi_evt_thread(struct work_struct *work)
2387 {
2388 	struct scsi_device *sdev;
2389 	LIST_HEAD(event_list);
2390 
2391 	sdev = container_of(work, struct scsi_device, event_work);
2392 
2393 	while (1) {
2394 		struct scsi_event *evt;
2395 		struct list_head *this, *tmp;
2396 		unsigned long flags;
2397 
2398 		spin_lock_irqsave(&sdev->list_lock, flags);
2399 		list_splice_init(&sdev->event_list, &event_list);
2400 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2401 
2402 		if (list_empty(&event_list))
2403 			break;
2404 
2405 		list_for_each_safe(this, tmp, &event_list) {
2406 			evt = list_entry(this, struct scsi_event, node);
2407 			list_del(&evt->node);
2408 			scsi_evt_emit(sdev, evt);
2409 			kfree(evt);
2410 		}
2411 	}
2412 }
2413 
2414 /**
2415  * 	sdev_evt_send - send asserted event to uevent thread
2416  *	@sdev: scsi_device event occurred on
2417  *	@evt: event to send
2418  *
2419  *	Assert scsi device event asynchronously.
2420  */
2421 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2422 {
2423 	unsigned long flags;
2424 
2425 #if 0
2426 	/* FIXME: currently this check eliminates all media change events
2427 	 * for polled devices.  Need to update to discriminate between AN
2428 	 * and polled events */
2429 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2430 		kfree(evt);
2431 		return;
2432 	}
2433 #endif
2434 
2435 	spin_lock_irqsave(&sdev->list_lock, flags);
2436 	list_add_tail(&evt->node, &sdev->event_list);
2437 	schedule_work(&sdev->event_work);
2438 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2439 }
2440 EXPORT_SYMBOL_GPL(sdev_evt_send);
2441 
2442 /**
2443  * 	sdev_evt_alloc - allocate a new scsi event
2444  *	@evt_type: type of event to allocate
2445  *	@gfpflags: GFP flags for allocation
2446  *
2447  *	Allocates and returns a new scsi_event.
2448  */
2449 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2450 				  gfp_t gfpflags)
2451 {
2452 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2453 	if (!evt)
2454 		return NULL;
2455 
2456 	evt->evt_type = evt_type;
2457 	INIT_LIST_HEAD(&evt->node);
2458 
2459 	/* evt_type-specific initialization, if any */
2460 	switch (evt_type) {
2461 	case SDEV_EVT_MEDIA_CHANGE:
2462 	default:
2463 		/* do nothing */
2464 		break;
2465 	}
2466 
2467 	return evt;
2468 }
2469 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2470 
2471 /**
2472  * 	sdev_evt_send_simple - send asserted event to uevent thread
2473  *	@sdev: scsi_device event occurred on
2474  *	@evt_type: type of event to send
2475  *	@gfpflags: GFP flags for allocation
2476  *
2477  *	Assert scsi device event asynchronously, given an event type.
2478  */
2479 void sdev_evt_send_simple(struct scsi_device *sdev,
2480 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2481 {
2482 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2483 	if (!evt) {
2484 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2485 			    evt_type);
2486 		return;
2487 	}
2488 
2489 	sdev_evt_send(sdev, evt);
2490 }
2491 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2492 
2493 /**
2494  *	scsi_device_quiesce - Block user issued commands.
2495  *	@sdev:	scsi device to quiesce.
2496  *
2497  *	This works by trying to transition to the SDEV_QUIESCE state
2498  *	(which must be a legal transition).  When the device is in this
2499  *	state, only special requests will be accepted, all others will
2500  *	be deferred.  Since special requests may also be requeued requests,
2501  *	a successful return doesn't guarantee the device will be
2502  *	totally quiescent.
2503  *
2504  *	Must be called with user context, may sleep.
2505  *
2506  *	Returns zero if unsuccessful or an error if not.
2507  */
2508 int
2509 scsi_device_quiesce(struct scsi_device *sdev)
2510 {
2511 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2512 	if (err)
2513 		return err;
2514 
2515 	scsi_run_queue(sdev->request_queue);
2516 	while (sdev->device_busy) {
2517 		msleep_interruptible(200);
2518 		scsi_run_queue(sdev->request_queue);
2519 	}
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL(scsi_device_quiesce);
2523 
2524 /**
2525  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2526  *	@sdev:	scsi device to resume.
2527  *
2528  *	Moves the device from quiesced back to running and restarts the
2529  *	queues.
2530  *
2531  *	Must be called with user context, may sleep.
2532  */
2533 void
2534 scsi_device_resume(struct scsi_device *sdev)
2535 {
2536 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2537 		return;
2538 	scsi_run_queue(sdev->request_queue);
2539 }
2540 EXPORT_SYMBOL(scsi_device_resume);
2541 
2542 static void
2543 device_quiesce_fn(struct scsi_device *sdev, void *data)
2544 {
2545 	scsi_device_quiesce(sdev);
2546 }
2547 
2548 void
2549 scsi_target_quiesce(struct scsi_target *starget)
2550 {
2551 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2552 }
2553 EXPORT_SYMBOL(scsi_target_quiesce);
2554 
2555 static void
2556 device_resume_fn(struct scsi_device *sdev, void *data)
2557 {
2558 	scsi_device_resume(sdev);
2559 }
2560 
2561 void
2562 scsi_target_resume(struct scsi_target *starget)
2563 {
2564 	starget_for_each_device(starget, NULL, device_resume_fn);
2565 }
2566 EXPORT_SYMBOL(scsi_target_resume);
2567 
2568 /**
2569  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2570  * @sdev:	device to block
2571  *
2572  * Block request made by scsi lld's to temporarily stop all
2573  * scsi commands on the specified device.  Called from interrupt
2574  * or normal process context.
2575  *
2576  * Returns zero if successful or error if not
2577  *
2578  * Notes:
2579  *	This routine transitions the device to the SDEV_BLOCK state
2580  *	(which must be a legal transition).  When the device is in this
2581  *	state, all commands are deferred until the scsi lld reenables
2582  *	the device with scsi_device_unblock or device_block_tmo fires.
2583  *	This routine assumes the host_lock is held on entry.
2584  */
2585 int
2586 scsi_internal_device_block(struct scsi_device *sdev)
2587 {
2588 	struct request_queue *q = sdev->request_queue;
2589 	unsigned long flags;
2590 	int err = 0;
2591 
2592 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2593 	if (err) {
2594 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2595 
2596 		if (err)
2597 			return err;
2598 	}
2599 
2600 	/*
2601 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2602 	 * block layer from calling the midlayer with this device's
2603 	 * request queue.
2604 	 */
2605 	spin_lock_irqsave(q->queue_lock, flags);
2606 	blk_stop_queue(q);
2607 	spin_unlock_irqrestore(q->queue_lock, flags);
2608 
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2612 
2613 /**
2614  * scsi_internal_device_unblock - resume a device after a block request
2615  * @sdev:	device to resume
2616  *
2617  * Called by scsi lld's or the midlayer to restart the device queue
2618  * for the previously suspended scsi device.  Called from interrupt or
2619  * normal process context.
2620  *
2621  * Returns zero if successful or error if not.
2622  *
2623  * Notes:
2624  *	This routine transitions the device to the SDEV_RUNNING state
2625  *	(which must be a legal transition) allowing the midlayer to
2626  *	goose the queue for this device.  This routine assumes the
2627  *	host_lock is held upon entry.
2628  */
2629 int
2630 scsi_internal_device_unblock(struct scsi_device *sdev)
2631 {
2632 	struct request_queue *q = sdev->request_queue;
2633 	int err;
2634 	unsigned long flags;
2635 
2636 	/*
2637 	 * Try to transition the scsi device to SDEV_RUNNING
2638 	 * and goose the device queue if successful.
2639 	 */
2640 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2641 	if (err) {
2642 		err = scsi_device_set_state(sdev, SDEV_CREATED);
2643 
2644 		if (err)
2645 			return err;
2646 	}
2647 
2648 	spin_lock_irqsave(q->queue_lock, flags);
2649 	blk_start_queue(q);
2650 	spin_unlock_irqrestore(q->queue_lock, flags);
2651 
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2655 
2656 static void
2657 device_block(struct scsi_device *sdev, void *data)
2658 {
2659 	scsi_internal_device_block(sdev);
2660 }
2661 
2662 static int
2663 target_block(struct device *dev, void *data)
2664 {
2665 	if (scsi_is_target_device(dev))
2666 		starget_for_each_device(to_scsi_target(dev), NULL,
2667 					device_block);
2668 	return 0;
2669 }
2670 
2671 void
2672 scsi_target_block(struct device *dev)
2673 {
2674 	if (scsi_is_target_device(dev))
2675 		starget_for_each_device(to_scsi_target(dev), NULL,
2676 					device_block);
2677 	else
2678 		device_for_each_child(dev, NULL, target_block);
2679 }
2680 EXPORT_SYMBOL_GPL(scsi_target_block);
2681 
2682 static void
2683 device_unblock(struct scsi_device *sdev, void *data)
2684 {
2685 	scsi_internal_device_unblock(sdev);
2686 }
2687 
2688 static int
2689 target_unblock(struct device *dev, void *data)
2690 {
2691 	if (scsi_is_target_device(dev))
2692 		starget_for_each_device(to_scsi_target(dev), NULL,
2693 					device_unblock);
2694 	return 0;
2695 }
2696 
2697 void
2698 scsi_target_unblock(struct device *dev)
2699 {
2700 	if (scsi_is_target_device(dev))
2701 		starget_for_each_device(to_scsi_target(dev), NULL,
2702 					device_unblock);
2703 	else
2704 		device_for_each_child(dev, NULL, target_unblock);
2705 }
2706 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2707 
2708 /**
2709  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2710  * @sgl:	scatter-gather list
2711  * @sg_count:	number of segments in sg
2712  * @offset:	offset in bytes into sg, on return offset into the mapped area
2713  * @len:	bytes to map, on return number of bytes mapped
2714  *
2715  * Returns virtual address of the start of the mapped page
2716  */
2717 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2718 			  size_t *offset, size_t *len)
2719 {
2720 	int i;
2721 	size_t sg_len = 0, len_complete = 0;
2722 	struct scatterlist *sg;
2723 	struct page *page;
2724 
2725 	WARN_ON(!irqs_disabled());
2726 
2727 	for_each_sg(sgl, sg, sg_count, i) {
2728 		len_complete = sg_len; /* Complete sg-entries */
2729 		sg_len += sg->length;
2730 		if (sg_len > *offset)
2731 			break;
2732 	}
2733 
2734 	if (unlikely(i == sg_count)) {
2735 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2736 			"elements %d\n",
2737 		       __func__, sg_len, *offset, sg_count);
2738 		WARN_ON(1);
2739 		return NULL;
2740 	}
2741 
2742 	/* Offset starting from the beginning of first page in this sg-entry */
2743 	*offset = *offset - len_complete + sg->offset;
2744 
2745 	/* Assumption: contiguous pages can be accessed as "page + i" */
2746 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2747 	*offset &= ~PAGE_MASK;
2748 
2749 	/* Bytes in this sg-entry from *offset to the end of the page */
2750 	sg_len = PAGE_SIZE - *offset;
2751 	if (*len > sg_len)
2752 		*len = sg_len;
2753 
2754 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2755 }
2756 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2757 
2758 /**
2759  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2760  * @virt:	virtual address to be unmapped
2761  */
2762 void scsi_kunmap_atomic_sg(void *virt)
2763 {
2764 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2765 }
2766 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2767