1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 /** 188 * scsi_execute_cmd - insert request and wait for the result 189 * @sdev: scsi_device 190 * @cmd: scsi command 191 * @opf: block layer request cmd_flags 192 * @buffer: data buffer 193 * @bufflen: len of buffer 194 * @timeout: request timeout in HZ 195 * @retries: number of times to retry request 196 * @args: Optional args. See struct definition for field descriptions 197 * 198 * Returns the scsi_cmnd result field if a command was executed, or a negative 199 * Linux error code if we didn't get that far. 200 */ 201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 202 blk_opf_t opf, void *buffer, unsigned int bufflen, 203 int timeout, int retries, 204 const struct scsi_exec_args *args) 205 { 206 static const struct scsi_exec_args default_args; 207 struct request *req; 208 struct scsi_cmnd *scmd; 209 int ret; 210 211 if (!args) 212 args = &default_args; 213 else if (WARN_ON_ONCE(args->sense && 214 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 215 return -EINVAL; 216 217 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 218 if (IS_ERR(req)) 219 return PTR_ERR(req); 220 221 if (bufflen) { 222 ret = blk_rq_map_kern(sdev->request_queue, req, 223 buffer, bufflen, GFP_NOIO); 224 if (ret) 225 goto out; 226 } 227 scmd = blk_mq_rq_to_pdu(req); 228 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 229 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 230 scmd->allowed = retries; 231 scmd->flags |= args->scmd_flags; 232 req->timeout = timeout; 233 req->rq_flags |= RQF_QUIET; 234 235 /* 236 * head injection *required* here otherwise quiesce won't work 237 */ 238 blk_execute_rq(req, true); 239 240 /* 241 * Some devices (USB mass-storage in particular) may transfer 242 * garbage data together with a residue indicating that the data 243 * is invalid. Prevent the garbage from being misinterpreted 244 * and prevent security leaks by zeroing out the excess data. 245 */ 246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 248 249 if (args->resid) 250 *args->resid = scmd->resid_len; 251 if (args->sense) 252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 253 if (args->sshdr) 254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 255 args->sshdr); 256 257 ret = scmd->result; 258 out: 259 blk_mq_free_request(req); 260 261 return ret; 262 } 263 EXPORT_SYMBOL(scsi_execute_cmd); 264 265 /* 266 * Wake up the error handler if necessary. Avoid as follows that the error 267 * handler is not woken up if host in-flight requests number == 268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 269 * with an RCU read lock in this function to ensure that this function in 270 * its entirety either finishes before scsi_eh_scmd_add() increases the 271 * host_failed counter or that it notices the shost state change made by 272 * scsi_eh_scmd_add(). 273 */ 274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 275 { 276 unsigned long flags; 277 278 rcu_read_lock(); 279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 280 if (unlikely(scsi_host_in_recovery(shost))) { 281 spin_lock_irqsave(shost->host_lock, flags); 282 if (shost->host_failed || shost->host_eh_scheduled) 283 scsi_eh_wakeup(shost); 284 spin_unlock_irqrestore(shost->host_lock, flags); 285 } 286 rcu_read_unlock(); 287 } 288 289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 290 { 291 struct Scsi_Host *shost = sdev->host; 292 struct scsi_target *starget = scsi_target(sdev); 293 294 scsi_dec_host_busy(shost, cmd); 295 296 if (starget->can_queue > 0) 297 atomic_dec(&starget->target_busy); 298 299 sbitmap_put(&sdev->budget_map, cmd->budget_token); 300 cmd->budget_token = -1; 301 } 302 303 /* 304 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 305 * interrupts disabled. 306 */ 307 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 308 { 309 struct scsi_device *current_sdev = data; 310 311 if (sdev != current_sdev) 312 blk_mq_run_hw_queues(sdev->request_queue, true); 313 } 314 315 /* 316 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 317 * and call blk_run_queue for all the scsi_devices on the target - 318 * including current_sdev first. 319 * 320 * Called with *no* scsi locks held. 321 */ 322 static void scsi_single_lun_run(struct scsi_device *current_sdev) 323 { 324 struct Scsi_Host *shost = current_sdev->host; 325 struct scsi_target *starget = scsi_target(current_sdev); 326 unsigned long flags; 327 328 spin_lock_irqsave(shost->host_lock, flags); 329 starget->starget_sdev_user = NULL; 330 spin_unlock_irqrestore(shost->host_lock, flags); 331 332 /* 333 * Call blk_run_queue for all LUNs on the target, starting with 334 * current_sdev. We race with others (to set starget_sdev_user), 335 * but in most cases, we will be first. Ideally, each LU on the 336 * target would get some limited time or requests on the target. 337 */ 338 blk_mq_run_hw_queues(current_sdev->request_queue, 339 shost->queuecommand_may_block); 340 341 spin_lock_irqsave(shost->host_lock, flags); 342 if (!starget->starget_sdev_user) 343 __starget_for_each_device(starget, current_sdev, 344 scsi_kick_sdev_queue); 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 } 347 348 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 349 { 350 if (scsi_device_busy(sdev) >= sdev->queue_depth) 351 return true; 352 if (atomic_read(&sdev->device_blocked) > 0) 353 return true; 354 return false; 355 } 356 357 static inline bool scsi_target_is_busy(struct scsi_target *starget) 358 { 359 if (starget->can_queue > 0) { 360 if (atomic_read(&starget->target_busy) >= starget->can_queue) 361 return true; 362 if (atomic_read(&starget->target_blocked) > 0) 363 return true; 364 } 365 return false; 366 } 367 368 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 369 { 370 if (atomic_read(&shost->host_blocked) > 0) 371 return true; 372 if (shost->host_self_blocked) 373 return true; 374 return false; 375 } 376 377 static void scsi_starved_list_run(struct Scsi_Host *shost) 378 { 379 LIST_HEAD(starved_list); 380 struct scsi_device *sdev; 381 unsigned long flags; 382 383 spin_lock_irqsave(shost->host_lock, flags); 384 list_splice_init(&shost->starved_list, &starved_list); 385 386 while (!list_empty(&starved_list)) { 387 struct request_queue *slq; 388 389 /* 390 * As long as shost is accepting commands and we have 391 * starved queues, call blk_run_queue. scsi_request_fn 392 * drops the queue_lock and can add us back to the 393 * starved_list. 394 * 395 * host_lock protects the starved_list and starved_entry. 396 * scsi_request_fn must get the host_lock before checking 397 * or modifying starved_list or starved_entry. 398 */ 399 if (scsi_host_is_busy(shost)) 400 break; 401 402 sdev = list_entry(starved_list.next, 403 struct scsi_device, starved_entry); 404 list_del_init(&sdev->starved_entry); 405 if (scsi_target_is_busy(scsi_target(sdev))) { 406 list_move_tail(&sdev->starved_entry, 407 &shost->starved_list); 408 continue; 409 } 410 411 /* 412 * Once we drop the host lock, a racing scsi_remove_device() 413 * call may remove the sdev from the starved list and destroy 414 * it and the queue. Mitigate by taking a reference to the 415 * queue and never touching the sdev again after we drop the 416 * host lock. Note: if __scsi_remove_device() invokes 417 * blk_mq_destroy_queue() before the queue is run from this 418 * function then blk_run_queue() will return immediately since 419 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 420 */ 421 slq = sdev->request_queue; 422 if (!blk_get_queue(slq)) 423 continue; 424 spin_unlock_irqrestore(shost->host_lock, flags); 425 426 blk_mq_run_hw_queues(slq, false); 427 blk_put_queue(slq); 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 } 431 /* put any unprocessed entries back */ 432 list_splice(&starved_list, &shost->starved_list); 433 spin_unlock_irqrestore(shost->host_lock, flags); 434 } 435 436 /** 437 * scsi_run_queue - Select a proper request queue to serve next. 438 * @q: last request's queue 439 * 440 * The previous command was completely finished, start a new one if possible. 441 */ 442 static void scsi_run_queue(struct request_queue *q) 443 { 444 struct scsi_device *sdev = q->queuedata; 445 446 if (scsi_target(sdev)->single_lun) 447 scsi_single_lun_run(sdev); 448 if (!list_empty(&sdev->host->starved_list)) 449 scsi_starved_list_run(sdev->host); 450 451 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 452 blk_mq_kick_requeue_list(q); 453 } 454 455 void scsi_requeue_run_queue(struct work_struct *work) 456 { 457 struct scsi_device *sdev; 458 struct request_queue *q; 459 460 sdev = container_of(work, struct scsi_device, requeue_work); 461 q = sdev->request_queue; 462 scsi_run_queue(q); 463 } 464 465 void scsi_run_host_queues(struct Scsi_Host *shost) 466 { 467 struct scsi_device *sdev; 468 469 shost_for_each_device(sdev, shost) 470 scsi_run_queue(sdev->request_queue); 471 } 472 473 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 474 { 475 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 476 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 477 478 if (drv->uninit_command) 479 drv->uninit_command(cmd); 480 } 481 } 482 483 void scsi_free_sgtables(struct scsi_cmnd *cmd) 484 { 485 if (cmd->sdb.table.nents) 486 sg_free_table_chained(&cmd->sdb.table, 487 SCSI_INLINE_SG_CNT); 488 if (scsi_prot_sg_count(cmd)) 489 sg_free_table_chained(&cmd->prot_sdb->table, 490 SCSI_INLINE_PROT_SG_CNT); 491 } 492 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 493 494 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 495 { 496 scsi_free_sgtables(cmd); 497 scsi_uninit_cmd(cmd); 498 } 499 500 static void scsi_run_queue_async(struct scsi_device *sdev) 501 { 502 if (scsi_host_in_recovery(sdev->host)) 503 return; 504 505 if (scsi_target(sdev)->single_lun || 506 !list_empty(&sdev->host->starved_list)) { 507 kblockd_schedule_work(&sdev->requeue_work); 508 } else { 509 /* 510 * smp_mb() present in sbitmap_queue_clear() or implied in 511 * .end_io is for ordering writing .device_busy in 512 * scsi_device_unbusy() and reading sdev->restarts. 513 */ 514 int old = atomic_read(&sdev->restarts); 515 516 /* 517 * ->restarts has to be kept as non-zero if new budget 518 * contention occurs. 519 * 520 * No need to run queue when either another re-run 521 * queue wins in updating ->restarts or a new budget 522 * contention occurs. 523 */ 524 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 525 blk_mq_run_hw_queues(sdev->request_queue, true); 526 } 527 } 528 529 /* Returns false when no more bytes to process, true if there are more */ 530 static bool scsi_end_request(struct request *req, blk_status_t error, 531 unsigned int bytes) 532 { 533 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 534 struct scsi_device *sdev = cmd->device; 535 struct request_queue *q = sdev->request_queue; 536 537 if (blk_update_request(req, error, bytes)) 538 return true; 539 540 // XXX: 541 if (blk_queue_add_random(q)) 542 add_disk_randomness(req->q->disk); 543 544 if (!blk_rq_is_passthrough(req)) { 545 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 546 cmd->flags &= ~SCMD_INITIALIZED; 547 } 548 549 /* 550 * Calling rcu_barrier() is not necessary here because the 551 * SCSI error handler guarantees that the function called by 552 * call_rcu() has been called before scsi_end_request() is 553 * called. 554 */ 555 destroy_rcu_head(&cmd->rcu); 556 557 /* 558 * In the MQ case the command gets freed by __blk_mq_end_request, 559 * so we have to do all cleanup that depends on it earlier. 560 * 561 * We also can't kick the queues from irq context, so we 562 * will have to defer it to a workqueue. 563 */ 564 scsi_mq_uninit_cmd(cmd); 565 566 /* 567 * queue is still alive, so grab the ref for preventing it 568 * from being cleaned up during running queue. 569 */ 570 percpu_ref_get(&q->q_usage_counter); 571 572 __blk_mq_end_request(req, error); 573 574 scsi_run_queue_async(sdev); 575 576 percpu_ref_put(&q->q_usage_counter); 577 return false; 578 } 579 580 /** 581 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 582 * @result: scsi error code 583 * 584 * Translate a SCSI result code into a blk_status_t value. 585 */ 586 static blk_status_t scsi_result_to_blk_status(int result) 587 { 588 /* 589 * Check the scsi-ml byte first in case we converted a host or status 590 * byte. 591 */ 592 switch (scsi_ml_byte(result)) { 593 case SCSIML_STAT_OK: 594 break; 595 case SCSIML_STAT_RESV_CONFLICT: 596 return BLK_STS_RESV_CONFLICT; 597 case SCSIML_STAT_NOSPC: 598 return BLK_STS_NOSPC; 599 case SCSIML_STAT_MED_ERROR: 600 return BLK_STS_MEDIUM; 601 case SCSIML_STAT_TGT_FAILURE: 602 return BLK_STS_TARGET; 603 case SCSIML_STAT_DL_TIMEOUT: 604 return BLK_STS_DURATION_LIMIT; 605 } 606 607 switch (host_byte(result)) { 608 case DID_OK: 609 if (scsi_status_is_good(result)) 610 return BLK_STS_OK; 611 return BLK_STS_IOERR; 612 case DID_TRANSPORT_FAILFAST: 613 case DID_TRANSPORT_MARGINAL: 614 return BLK_STS_TRANSPORT; 615 default: 616 return BLK_STS_IOERR; 617 } 618 } 619 620 /** 621 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 622 * @rq: request to examine 623 * 624 * Description: 625 * A request could be merge of IOs which require different failure 626 * handling. This function determines the number of bytes which 627 * can be failed from the beginning of the request without 628 * crossing into area which need to be retried further. 629 * 630 * Return: 631 * The number of bytes to fail. 632 */ 633 static unsigned int scsi_rq_err_bytes(const struct request *rq) 634 { 635 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 636 unsigned int bytes = 0; 637 struct bio *bio; 638 639 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 640 return blk_rq_bytes(rq); 641 642 /* 643 * Currently the only 'mixing' which can happen is between 644 * different fastfail types. We can safely fail portions 645 * which have all the failfast bits that the first one has - 646 * the ones which are at least as eager to fail as the first 647 * one. 648 */ 649 for (bio = rq->bio; bio; bio = bio->bi_next) { 650 if ((bio->bi_opf & ff) != ff) 651 break; 652 bytes += bio->bi_iter.bi_size; 653 } 654 655 /* this could lead to infinite loop */ 656 BUG_ON(blk_rq_bytes(rq) && !bytes); 657 return bytes; 658 } 659 660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 661 { 662 struct request *req = scsi_cmd_to_rq(cmd); 663 unsigned long wait_for; 664 665 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 666 return false; 667 668 wait_for = (cmd->allowed + 1) * req->timeout; 669 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 670 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 671 wait_for/HZ); 672 return true; 673 } 674 return false; 675 } 676 677 /* 678 * When ALUA transition state is returned, reprep the cmd to 679 * use the ALUA handler's transition timeout. Delay the reprep 680 * 1 sec to avoid aggressive retries of the target in that 681 * state. 682 */ 683 #define ALUA_TRANSITION_REPREP_DELAY 1000 684 685 /* Helper for scsi_io_completion() when special action required. */ 686 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 687 { 688 struct request *req = scsi_cmd_to_rq(cmd); 689 int level = 0; 690 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 691 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 692 struct scsi_sense_hdr sshdr; 693 bool sense_valid; 694 bool sense_current = true; /* false implies "deferred sense" */ 695 blk_status_t blk_stat; 696 697 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 698 if (sense_valid) 699 sense_current = !scsi_sense_is_deferred(&sshdr); 700 701 blk_stat = scsi_result_to_blk_status(result); 702 703 if (host_byte(result) == DID_RESET) { 704 /* Third party bus reset or reset for error recovery 705 * reasons. Just retry the command and see what 706 * happens. 707 */ 708 action = ACTION_RETRY; 709 } else if (sense_valid && sense_current) { 710 switch (sshdr.sense_key) { 711 case UNIT_ATTENTION: 712 if (cmd->device->removable) { 713 /* Detected disc change. Set a bit 714 * and quietly refuse further access. 715 */ 716 cmd->device->changed = 1; 717 action = ACTION_FAIL; 718 } else { 719 /* Must have been a power glitch, or a 720 * bus reset. Could not have been a 721 * media change, so we just retry the 722 * command and see what happens. 723 */ 724 action = ACTION_RETRY; 725 } 726 break; 727 case ILLEGAL_REQUEST: 728 /* If we had an ILLEGAL REQUEST returned, then 729 * we may have performed an unsupported 730 * command. The only thing this should be 731 * would be a ten byte read where only a six 732 * byte read was supported. Also, on a system 733 * where READ CAPACITY failed, we may have 734 * read past the end of the disk. 735 */ 736 if ((cmd->device->use_10_for_rw && 737 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 738 (cmd->cmnd[0] == READ_10 || 739 cmd->cmnd[0] == WRITE_10)) { 740 /* This will issue a new 6-byte command. */ 741 cmd->device->use_10_for_rw = 0; 742 action = ACTION_REPREP; 743 } else if (sshdr.asc == 0x10) /* DIX */ { 744 action = ACTION_FAIL; 745 blk_stat = BLK_STS_PROTECTION; 746 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 747 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 748 action = ACTION_FAIL; 749 blk_stat = BLK_STS_TARGET; 750 } else 751 action = ACTION_FAIL; 752 break; 753 case ABORTED_COMMAND: 754 action = ACTION_FAIL; 755 if (sshdr.asc == 0x10) /* DIF */ 756 blk_stat = BLK_STS_PROTECTION; 757 break; 758 case NOT_READY: 759 /* If the device is in the process of becoming 760 * ready, or has a temporary blockage, retry. 761 */ 762 if (sshdr.asc == 0x04) { 763 switch (sshdr.ascq) { 764 case 0x01: /* becoming ready */ 765 case 0x04: /* format in progress */ 766 case 0x05: /* rebuild in progress */ 767 case 0x06: /* recalculation in progress */ 768 case 0x07: /* operation in progress */ 769 case 0x08: /* Long write in progress */ 770 case 0x09: /* self test in progress */ 771 case 0x11: /* notify (enable spinup) required */ 772 case 0x14: /* space allocation in progress */ 773 case 0x1a: /* start stop unit in progress */ 774 case 0x1b: /* sanitize in progress */ 775 case 0x1d: /* configuration in progress */ 776 case 0x24: /* depopulation in progress */ 777 case 0x25: /* depopulation restore in progress */ 778 action = ACTION_DELAYED_RETRY; 779 break; 780 case 0x0a: /* ALUA state transition */ 781 action = ACTION_DELAYED_REPREP; 782 break; 783 default: 784 action = ACTION_FAIL; 785 break; 786 } 787 } else 788 action = ACTION_FAIL; 789 break; 790 case VOLUME_OVERFLOW: 791 /* See SSC3rXX or current. */ 792 action = ACTION_FAIL; 793 break; 794 case DATA_PROTECT: 795 action = ACTION_FAIL; 796 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 797 (sshdr.asc == 0x55 && 798 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 799 /* Insufficient zone resources */ 800 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 801 } 802 break; 803 case COMPLETED: 804 fallthrough; 805 default: 806 action = ACTION_FAIL; 807 break; 808 } 809 } else 810 action = ACTION_FAIL; 811 812 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 813 action = ACTION_FAIL; 814 815 switch (action) { 816 case ACTION_FAIL: 817 /* Give up and fail the remainder of the request */ 818 if (!(req->rq_flags & RQF_QUIET)) { 819 static DEFINE_RATELIMIT_STATE(_rs, 820 DEFAULT_RATELIMIT_INTERVAL, 821 DEFAULT_RATELIMIT_BURST); 822 823 if (unlikely(scsi_logging_level)) 824 level = 825 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 826 SCSI_LOG_MLCOMPLETE_BITS); 827 828 /* 829 * if logging is enabled the failure will be printed 830 * in scsi_log_completion(), so avoid duplicate messages 831 */ 832 if (!level && __ratelimit(&_rs)) { 833 scsi_print_result(cmd, NULL, FAILED); 834 if (sense_valid) 835 scsi_print_sense(cmd); 836 scsi_print_command(cmd); 837 } 838 } 839 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 840 return; 841 fallthrough; 842 case ACTION_REPREP: 843 scsi_mq_requeue_cmd(cmd, 0); 844 break; 845 case ACTION_DELAYED_REPREP: 846 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 847 break; 848 case ACTION_RETRY: 849 /* Retry the same command immediately */ 850 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 851 break; 852 case ACTION_DELAYED_RETRY: 853 /* Retry the same command after a delay */ 854 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 855 break; 856 } 857 } 858 859 /* 860 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 861 * new result that may suppress further error checking. Also modifies 862 * *blk_statp in some cases. 863 */ 864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 865 blk_status_t *blk_statp) 866 { 867 bool sense_valid; 868 bool sense_current = true; /* false implies "deferred sense" */ 869 struct request *req = scsi_cmd_to_rq(cmd); 870 struct scsi_sense_hdr sshdr; 871 872 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 873 if (sense_valid) 874 sense_current = !scsi_sense_is_deferred(&sshdr); 875 876 if (blk_rq_is_passthrough(req)) { 877 if (sense_valid) { 878 /* 879 * SG_IO wants current and deferred errors 880 */ 881 cmd->sense_len = min(8 + cmd->sense_buffer[7], 882 SCSI_SENSE_BUFFERSIZE); 883 } 884 if (sense_current) 885 *blk_statp = scsi_result_to_blk_status(result); 886 } else if (blk_rq_bytes(req) == 0 && sense_current) { 887 /* 888 * Flush commands do not transfers any data, and thus cannot use 889 * good_bytes != blk_rq_bytes(req) as the signal for an error. 890 * This sets *blk_statp explicitly for the problem case. 891 */ 892 *blk_statp = scsi_result_to_blk_status(result); 893 } 894 /* 895 * Recovered errors need reporting, but they're always treated as 896 * success, so fiddle the result code here. For passthrough requests 897 * we already took a copy of the original into sreq->result which 898 * is what gets returned to the user 899 */ 900 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 901 bool do_print = true; 902 /* 903 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 904 * skip print since caller wants ATA registers. Only occurs 905 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 906 */ 907 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 908 do_print = false; 909 else if (req->rq_flags & RQF_QUIET) 910 do_print = false; 911 if (do_print) 912 scsi_print_sense(cmd); 913 result = 0; 914 /* for passthrough, *blk_statp may be set */ 915 *blk_statp = BLK_STS_OK; 916 } 917 /* 918 * Another corner case: the SCSI status byte is non-zero but 'good'. 919 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 920 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 921 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 922 * intermediate statuses (both obsolete in SAM-4) as good. 923 */ 924 if ((result & 0xff) && scsi_status_is_good(result)) { 925 result = 0; 926 *blk_statp = BLK_STS_OK; 927 } 928 return result; 929 } 930 931 /** 932 * scsi_io_completion - Completion processing for SCSI commands. 933 * @cmd: command that is finished. 934 * @good_bytes: number of processed bytes. 935 * 936 * We will finish off the specified number of sectors. If we are done, the 937 * command block will be released and the queue function will be goosed. If we 938 * are not done then we have to figure out what to do next: 939 * 940 * a) We can call scsi_mq_requeue_cmd(). The request will be 941 * unprepared and put back on the queue. Then a new command will 942 * be created for it. This should be used if we made forward 943 * progress, or if we want to switch from READ(10) to READ(6) for 944 * example. 945 * 946 * b) We can call scsi_io_completion_action(). The request will be 947 * put back on the queue and retried using the same command as 948 * before, possibly after a delay. 949 * 950 * c) We can call scsi_end_request() with blk_stat other than 951 * BLK_STS_OK, to fail the remainder of the request. 952 */ 953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 954 { 955 int result = cmd->result; 956 struct request *req = scsi_cmd_to_rq(cmd); 957 blk_status_t blk_stat = BLK_STS_OK; 958 959 if (unlikely(result)) /* a nz result may or may not be an error */ 960 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 961 962 /* 963 * Next deal with any sectors which we were able to correctly 964 * handle. 965 */ 966 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 967 "%u sectors total, %d bytes done.\n", 968 blk_rq_sectors(req), good_bytes)); 969 970 /* 971 * Failed, zero length commands always need to drop down 972 * to retry code. Fast path should return in this block. 973 */ 974 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 975 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 976 return; /* no bytes remaining */ 977 } 978 979 /* Kill remainder if no retries. */ 980 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 981 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 982 WARN_ONCE(true, 983 "Bytes remaining after failed, no-retry command"); 984 return; 985 } 986 987 /* 988 * If there had been no error, but we have leftover bytes in the 989 * request just queue the command up again. 990 */ 991 if (likely(result == 0)) 992 scsi_mq_requeue_cmd(cmd, 0); 993 else 994 scsi_io_completion_action(cmd, result); 995 } 996 997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 998 struct request *rq) 999 { 1000 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1001 !op_is_write(req_op(rq)) && 1002 sdev->host->hostt->dma_need_drain(rq); 1003 } 1004 1005 /** 1006 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1007 * @cmd: SCSI command data structure to initialize. 1008 * 1009 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1010 * for @cmd. 1011 * 1012 * Returns: 1013 * * BLK_STS_OK - on success 1014 * * BLK_STS_RESOURCE - if the failure is retryable 1015 * * BLK_STS_IOERR - if the failure is fatal 1016 */ 1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1018 { 1019 struct scsi_device *sdev = cmd->device; 1020 struct request *rq = scsi_cmd_to_rq(cmd); 1021 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1022 struct scatterlist *last_sg = NULL; 1023 blk_status_t ret; 1024 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1025 int count; 1026 1027 if (WARN_ON_ONCE(!nr_segs)) 1028 return BLK_STS_IOERR; 1029 1030 /* 1031 * Make sure there is space for the drain. The driver must adjust 1032 * max_hw_segments to be prepared for this. 1033 */ 1034 if (need_drain) 1035 nr_segs++; 1036 1037 /* 1038 * If sg table allocation fails, requeue request later. 1039 */ 1040 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1041 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1042 return BLK_STS_RESOURCE; 1043 1044 /* 1045 * Next, walk the list, and fill in the addresses and sizes of 1046 * each segment. 1047 */ 1048 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1049 1050 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1051 unsigned int pad_len = 1052 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1053 1054 last_sg->length += pad_len; 1055 cmd->extra_len += pad_len; 1056 } 1057 1058 if (need_drain) { 1059 sg_unmark_end(last_sg); 1060 last_sg = sg_next(last_sg); 1061 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1062 sg_mark_end(last_sg); 1063 1064 cmd->extra_len += sdev->dma_drain_len; 1065 count++; 1066 } 1067 1068 BUG_ON(count > cmd->sdb.table.nents); 1069 cmd->sdb.table.nents = count; 1070 cmd->sdb.length = blk_rq_payload_bytes(rq); 1071 1072 if (blk_integrity_rq(rq)) { 1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1074 int ivecs; 1075 1076 if (WARN_ON_ONCE(!prot_sdb)) { 1077 /* 1078 * This can happen if someone (e.g. multipath) 1079 * queues a command to a device on an adapter 1080 * that does not support DIX. 1081 */ 1082 ret = BLK_STS_IOERR; 1083 goto out_free_sgtables; 1084 } 1085 1086 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1087 1088 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1089 prot_sdb->table.sgl, 1090 SCSI_INLINE_PROT_SG_CNT)) { 1091 ret = BLK_STS_RESOURCE; 1092 goto out_free_sgtables; 1093 } 1094 1095 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1096 prot_sdb->table.sgl); 1097 BUG_ON(count > ivecs); 1098 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1099 1100 cmd->prot_sdb = prot_sdb; 1101 cmd->prot_sdb->table.nents = count; 1102 } 1103 1104 return BLK_STS_OK; 1105 out_free_sgtables: 1106 scsi_free_sgtables(cmd); 1107 return ret; 1108 } 1109 EXPORT_SYMBOL(scsi_alloc_sgtables); 1110 1111 /** 1112 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1113 * @rq: Request associated with the SCSI command to be initialized. 1114 * 1115 * This function initializes the members of struct scsi_cmnd that must be 1116 * initialized before request processing starts and that won't be 1117 * reinitialized if a SCSI command is requeued. 1118 */ 1119 static void scsi_initialize_rq(struct request *rq) 1120 { 1121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1122 1123 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1124 cmd->cmd_len = MAX_COMMAND_SIZE; 1125 cmd->sense_len = 0; 1126 init_rcu_head(&cmd->rcu); 1127 cmd->jiffies_at_alloc = jiffies; 1128 cmd->retries = 0; 1129 } 1130 1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1132 blk_mq_req_flags_t flags) 1133 { 1134 struct request *rq; 1135 1136 rq = blk_mq_alloc_request(q, opf, flags); 1137 if (!IS_ERR(rq)) 1138 scsi_initialize_rq(rq); 1139 return rq; 1140 } 1141 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1142 1143 /* 1144 * Only called when the request isn't completed by SCSI, and not freed by 1145 * SCSI 1146 */ 1147 static void scsi_cleanup_rq(struct request *rq) 1148 { 1149 if (rq->rq_flags & RQF_DONTPREP) { 1150 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1151 rq->rq_flags &= ~RQF_DONTPREP; 1152 } 1153 } 1154 1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1157 { 1158 struct request *rq = scsi_cmd_to_rq(cmd); 1159 1160 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1161 cmd->flags |= SCMD_INITIALIZED; 1162 scsi_initialize_rq(rq); 1163 } 1164 1165 cmd->device = dev; 1166 INIT_LIST_HEAD(&cmd->eh_entry); 1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1168 } 1169 1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1171 struct request *req) 1172 { 1173 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1174 1175 /* 1176 * Passthrough requests may transfer data, in which case they must 1177 * a bio attached to them. Or they might contain a SCSI command 1178 * that does not transfer data, in which case they may optionally 1179 * submit a request without an attached bio. 1180 */ 1181 if (req->bio) { 1182 blk_status_t ret = scsi_alloc_sgtables(cmd); 1183 if (unlikely(ret != BLK_STS_OK)) 1184 return ret; 1185 } else { 1186 BUG_ON(blk_rq_bytes(req)); 1187 1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1189 } 1190 1191 cmd->transfersize = blk_rq_bytes(req); 1192 return BLK_STS_OK; 1193 } 1194 1195 static blk_status_t 1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1197 { 1198 switch (sdev->sdev_state) { 1199 case SDEV_CREATED: 1200 return BLK_STS_OK; 1201 case SDEV_OFFLINE: 1202 case SDEV_TRANSPORT_OFFLINE: 1203 /* 1204 * If the device is offline we refuse to process any 1205 * commands. The device must be brought online 1206 * before trying any recovery commands. 1207 */ 1208 if (!sdev->offline_already) { 1209 sdev->offline_already = true; 1210 sdev_printk(KERN_ERR, sdev, 1211 "rejecting I/O to offline device\n"); 1212 } 1213 return BLK_STS_IOERR; 1214 case SDEV_DEL: 1215 /* 1216 * If the device is fully deleted, we refuse to 1217 * process any commands as well. 1218 */ 1219 sdev_printk(KERN_ERR, sdev, 1220 "rejecting I/O to dead device\n"); 1221 return BLK_STS_IOERR; 1222 case SDEV_BLOCK: 1223 case SDEV_CREATED_BLOCK: 1224 return BLK_STS_RESOURCE; 1225 case SDEV_QUIESCE: 1226 /* 1227 * If the device is blocked we only accept power management 1228 * commands. 1229 */ 1230 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1231 return BLK_STS_RESOURCE; 1232 return BLK_STS_OK; 1233 default: 1234 /* 1235 * For any other not fully online state we only allow 1236 * power management commands. 1237 */ 1238 if (req && !(req->rq_flags & RQF_PM)) 1239 return BLK_STS_OFFLINE; 1240 return BLK_STS_OK; 1241 } 1242 } 1243 1244 /* 1245 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1246 * and return the token else return -1. 1247 */ 1248 static inline int scsi_dev_queue_ready(struct request_queue *q, 1249 struct scsi_device *sdev) 1250 { 1251 int token; 1252 1253 token = sbitmap_get(&sdev->budget_map); 1254 if (token < 0) 1255 return -1; 1256 1257 if (!atomic_read(&sdev->device_blocked)) 1258 return token; 1259 1260 /* 1261 * Only unblock if no other commands are pending and 1262 * if device_blocked has decreased to zero 1263 */ 1264 if (scsi_device_busy(sdev) > 1 || 1265 atomic_dec_return(&sdev->device_blocked) > 0) { 1266 sbitmap_put(&sdev->budget_map, token); 1267 return -1; 1268 } 1269 1270 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1271 "unblocking device at zero depth\n")); 1272 1273 return token; 1274 } 1275 1276 /* 1277 * scsi_target_queue_ready: checks if there we can send commands to target 1278 * @sdev: scsi device on starget to check. 1279 */ 1280 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1281 struct scsi_device *sdev) 1282 { 1283 struct scsi_target *starget = scsi_target(sdev); 1284 unsigned int busy; 1285 1286 if (starget->single_lun) { 1287 spin_lock_irq(shost->host_lock); 1288 if (starget->starget_sdev_user && 1289 starget->starget_sdev_user != sdev) { 1290 spin_unlock_irq(shost->host_lock); 1291 return 0; 1292 } 1293 starget->starget_sdev_user = sdev; 1294 spin_unlock_irq(shost->host_lock); 1295 } 1296 1297 if (starget->can_queue <= 0) 1298 return 1; 1299 1300 busy = atomic_inc_return(&starget->target_busy) - 1; 1301 if (atomic_read(&starget->target_blocked) > 0) { 1302 if (busy) 1303 goto starved; 1304 1305 /* 1306 * unblock after target_blocked iterates to zero 1307 */ 1308 if (atomic_dec_return(&starget->target_blocked) > 0) 1309 goto out_dec; 1310 1311 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1312 "unblocking target at zero depth\n")); 1313 } 1314 1315 if (busy >= starget->can_queue) 1316 goto starved; 1317 1318 return 1; 1319 1320 starved: 1321 spin_lock_irq(shost->host_lock); 1322 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1323 spin_unlock_irq(shost->host_lock); 1324 out_dec: 1325 if (starget->can_queue > 0) 1326 atomic_dec(&starget->target_busy); 1327 return 0; 1328 } 1329 1330 /* 1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1332 * return 0. We must end up running the queue again whenever 0 is 1333 * returned, else IO can hang. 1334 */ 1335 static inline int scsi_host_queue_ready(struct request_queue *q, 1336 struct Scsi_Host *shost, 1337 struct scsi_device *sdev, 1338 struct scsi_cmnd *cmd) 1339 { 1340 if (atomic_read(&shost->host_blocked) > 0) { 1341 if (scsi_host_busy(shost) > 0) 1342 goto starved; 1343 1344 /* 1345 * unblock after host_blocked iterates to zero 1346 */ 1347 if (atomic_dec_return(&shost->host_blocked) > 0) 1348 goto out_dec; 1349 1350 SCSI_LOG_MLQUEUE(3, 1351 shost_printk(KERN_INFO, shost, 1352 "unblocking host at zero depth\n")); 1353 } 1354 1355 if (shost->host_self_blocked) 1356 goto starved; 1357 1358 /* We're OK to process the command, so we can't be starved */ 1359 if (!list_empty(&sdev->starved_entry)) { 1360 spin_lock_irq(shost->host_lock); 1361 if (!list_empty(&sdev->starved_entry)) 1362 list_del_init(&sdev->starved_entry); 1363 spin_unlock_irq(shost->host_lock); 1364 } 1365 1366 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1367 1368 return 1; 1369 1370 starved: 1371 spin_lock_irq(shost->host_lock); 1372 if (list_empty(&sdev->starved_entry)) 1373 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1374 spin_unlock_irq(shost->host_lock); 1375 out_dec: 1376 scsi_dec_host_busy(shost, cmd); 1377 return 0; 1378 } 1379 1380 /* 1381 * Busy state exporting function for request stacking drivers. 1382 * 1383 * For efficiency, no lock is taken to check the busy state of 1384 * shost/starget/sdev, since the returned value is not guaranteed and 1385 * may be changed after request stacking drivers call the function, 1386 * regardless of taking lock or not. 1387 * 1388 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1389 * needs to return 'not busy'. Otherwise, request stacking drivers 1390 * may hold requests forever. 1391 */ 1392 static bool scsi_mq_lld_busy(struct request_queue *q) 1393 { 1394 struct scsi_device *sdev = q->queuedata; 1395 struct Scsi_Host *shost; 1396 1397 if (blk_queue_dying(q)) 1398 return false; 1399 1400 shost = sdev->host; 1401 1402 /* 1403 * Ignore host/starget busy state. 1404 * Since block layer does not have a concept of fairness across 1405 * multiple queues, congestion of host/starget needs to be handled 1406 * in SCSI layer. 1407 */ 1408 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1409 return true; 1410 1411 return false; 1412 } 1413 1414 /* 1415 * Block layer request completion callback. May be called from interrupt 1416 * context. 1417 */ 1418 static void scsi_complete(struct request *rq) 1419 { 1420 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1421 enum scsi_disposition disposition; 1422 1423 INIT_LIST_HEAD(&cmd->eh_entry); 1424 1425 atomic_inc(&cmd->device->iodone_cnt); 1426 if (cmd->result) 1427 atomic_inc(&cmd->device->ioerr_cnt); 1428 1429 disposition = scsi_decide_disposition(cmd); 1430 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1431 disposition = SUCCESS; 1432 1433 scsi_log_completion(cmd, disposition); 1434 1435 switch (disposition) { 1436 case SUCCESS: 1437 scsi_finish_command(cmd); 1438 break; 1439 case NEEDS_RETRY: 1440 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1441 break; 1442 case ADD_TO_MLQUEUE: 1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1444 break; 1445 default: 1446 scsi_eh_scmd_add(cmd); 1447 break; 1448 } 1449 } 1450 1451 /** 1452 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1453 * @cmd: command block we are dispatching. 1454 * 1455 * Return: nonzero return request was rejected and device's queue needs to be 1456 * plugged. 1457 */ 1458 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1459 { 1460 struct Scsi_Host *host = cmd->device->host; 1461 int rtn = 0; 1462 1463 atomic_inc(&cmd->device->iorequest_cnt); 1464 1465 /* check if the device is still usable */ 1466 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1467 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1468 * returns an immediate error upwards, and signals 1469 * that the device is no longer present */ 1470 cmd->result = DID_NO_CONNECT << 16; 1471 goto done; 1472 } 1473 1474 /* Check to see if the scsi lld made this device blocked. */ 1475 if (unlikely(scsi_device_blocked(cmd->device))) { 1476 /* 1477 * in blocked state, the command is just put back on 1478 * the device queue. The suspend state has already 1479 * blocked the queue so future requests should not 1480 * occur until the device transitions out of the 1481 * suspend state. 1482 */ 1483 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1484 "queuecommand : device blocked\n")); 1485 atomic_dec(&cmd->device->iorequest_cnt); 1486 return SCSI_MLQUEUE_DEVICE_BUSY; 1487 } 1488 1489 /* Store the LUN value in cmnd, if needed. */ 1490 if (cmd->device->lun_in_cdb) 1491 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1492 (cmd->device->lun << 5 & 0xe0); 1493 1494 scsi_log_send(cmd); 1495 1496 /* 1497 * Before we queue this command, check if the command 1498 * length exceeds what the host adapter can handle. 1499 */ 1500 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1501 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1502 "queuecommand : command too long. " 1503 "cdb_size=%d host->max_cmd_len=%d\n", 1504 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1505 cmd->result = (DID_ABORT << 16); 1506 goto done; 1507 } 1508 1509 if (unlikely(host->shost_state == SHOST_DEL)) { 1510 cmd->result = (DID_NO_CONNECT << 16); 1511 goto done; 1512 1513 } 1514 1515 trace_scsi_dispatch_cmd_start(cmd); 1516 rtn = host->hostt->queuecommand(host, cmd); 1517 if (rtn) { 1518 atomic_dec(&cmd->device->iorequest_cnt); 1519 trace_scsi_dispatch_cmd_error(cmd, rtn); 1520 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1521 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1522 rtn = SCSI_MLQUEUE_HOST_BUSY; 1523 1524 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1525 "queuecommand : request rejected\n")); 1526 } 1527 1528 return rtn; 1529 done: 1530 scsi_done(cmd); 1531 return 0; 1532 } 1533 1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1536 { 1537 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1538 sizeof(struct scatterlist); 1539 } 1540 1541 static blk_status_t scsi_prepare_cmd(struct request *req) 1542 { 1543 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1544 struct scsi_device *sdev = req->q->queuedata; 1545 struct Scsi_Host *shost = sdev->host; 1546 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1547 struct scatterlist *sg; 1548 1549 scsi_init_command(sdev, cmd); 1550 1551 cmd->eh_eflags = 0; 1552 cmd->prot_type = 0; 1553 cmd->prot_flags = 0; 1554 cmd->submitter = 0; 1555 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1556 cmd->underflow = 0; 1557 cmd->transfersize = 0; 1558 cmd->host_scribble = NULL; 1559 cmd->result = 0; 1560 cmd->extra_len = 0; 1561 cmd->state = 0; 1562 if (in_flight) 1563 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1564 1565 /* 1566 * Only clear the driver-private command data if the LLD does not supply 1567 * a function to initialize that data. 1568 */ 1569 if (!shost->hostt->init_cmd_priv) 1570 memset(cmd + 1, 0, shost->hostt->cmd_size); 1571 1572 cmd->prot_op = SCSI_PROT_NORMAL; 1573 if (blk_rq_bytes(req)) 1574 cmd->sc_data_direction = rq_dma_dir(req); 1575 else 1576 cmd->sc_data_direction = DMA_NONE; 1577 1578 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1579 cmd->sdb.table.sgl = sg; 1580 1581 if (scsi_host_get_prot(shost)) { 1582 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1583 1584 cmd->prot_sdb->table.sgl = 1585 (struct scatterlist *)(cmd->prot_sdb + 1); 1586 } 1587 1588 /* 1589 * Special handling for passthrough commands, which don't go to the ULP 1590 * at all: 1591 */ 1592 if (blk_rq_is_passthrough(req)) 1593 return scsi_setup_scsi_cmnd(sdev, req); 1594 1595 if (sdev->handler && sdev->handler->prep_fn) { 1596 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1597 1598 if (ret != BLK_STS_OK) 1599 return ret; 1600 } 1601 1602 /* Usually overridden by the ULP */ 1603 cmd->allowed = 0; 1604 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1605 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1606 } 1607 1608 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1609 { 1610 struct request *req = scsi_cmd_to_rq(cmd); 1611 1612 switch (cmd->submitter) { 1613 case SUBMITTED_BY_BLOCK_LAYER: 1614 break; 1615 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1616 return scsi_eh_done(cmd); 1617 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1618 return; 1619 } 1620 1621 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1622 return; 1623 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1624 return; 1625 trace_scsi_dispatch_cmd_done(cmd); 1626 1627 if (complete_directly) 1628 blk_mq_complete_request_direct(req, scsi_complete); 1629 else 1630 blk_mq_complete_request(req); 1631 } 1632 1633 void scsi_done(struct scsi_cmnd *cmd) 1634 { 1635 scsi_done_internal(cmd, false); 1636 } 1637 EXPORT_SYMBOL(scsi_done); 1638 1639 void scsi_done_direct(struct scsi_cmnd *cmd) 1640 { 1641 scsi_done_internal(cmd, true); 1642 } 1643 EXPORT_SYMBOL(scsi_done_direct); 1644 1645 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1646 { 1647 struct scsi_device *sdev = q->queuedata; 1648 1649 sbitmap_put(&sdev->budget_map, budget_token); 1650 } 1651 1652 /* 1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1654 * not change behaviour from the previous unplug mechanism, experimentation 1655 * may prove this needs changing. 1656 */ 1657 #define SCSI_QUEUE_DELAY 3 1658 1659 static int scsi_mq_get_budget(struct request_queue *q) 1660 { 1661 struct scsi_device *sdev = q->queuedata; 1662 int token = scsi_dev_queue_ready(q, sdev); 1663 1664 if (token >= 0) 1665 return token; 1666 1667 atomic_inc(&sdev->restarts); 1668 1669 /* 1670 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1671 * .restarts must be incremented before .device_busy is read because the 1672 * code in scsi_run_queue_async() depends on the order of these operations. 1673 */ 1674 smp_mb__after_atomic(); 1675 1676 /* 1677 * If all in-flight requests originated from this LUN are completed 1678 * before reading .device_busy, sdev->device_busy will be observed as 1679 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1680 * soon. Otherwise, completion of one of these requests will observe 1681 * the .restarts flag, and the request queue will be run for handling 1682 * this request, see scsi_end_request(). 1683 */ 1684 if (unlikely(scsi_device_busy(sdev) == 0 && 1685 !scsi_device_blocked(sdev))) 1686 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1687 return -1; 1688 } 1689 1690 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1691 { 1692 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1693 1694 cmd->budget_token = token; 1695 } 1696 1697 static int scsi_mq_get_rq_budget_token(struct request *req) 1698 { 1699 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1700 1701 return cmd->budget_token; 1702 } 1703 1704 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1705 const struct blk_mq_queue_data *bd) 1706 { 1707 struct request *req = bd->rq; 1708 struct request_queue *q = req->q; 1709 struct scsi_device *sdev = q->queuedata; 1710 struct Scsi_Host *shost = sdev->host; 1711 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1712 blk_status_t ret; 1713 int reason; 1714 1715 WARN_ON_ONCE(cmd->budget_token < 0); 1716 1717 /* 1718 * If the device is not in running state we will reject some or all 1719 * commands. 1720 */ 1721 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1722 ret = scsi_device_state_check(sdev, req); 1723 if (ret != BLK_STS_OK) 1724 goto out_put_budget; 1725 } 1726 1727 ret = BLK_STS_RESOURCE; 1728 if (!scsi_target_queue_ready(shost, sdev)) 1729 goto out_put_budget; 1730 if (unlikely(scsi_host_in_recovery(shost))) { 1731 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1732 ret = BLK_STS_OFFLINE; 1733 goto out_dec_target_busy; 1734 } 1735 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1736 goto out_dec_target_busy; 1737 1738 if (!(req->rq_flags & RQF_DONTPREP)) { 1739 ret = scsi_prepare_cmd(req); 1740 if (ret != BLK_STS_OK) 1741 goto out_dec_host_busy; 1742 req->rq_flags |= RQF_DONTPREP; 1743 } else { 1744 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1745 } 1746 1747 cmd->flags &= SCMD_PRESERVED_FLAGS; 1748 if (sdev->simple_tags) 1749 cmd->flags |= SCMD_TAGGED; 1750 if (bd->last) 1751 cmd->flags |= SCMD_LAST; 1752 1753 scsi_set_resid(cmd, 0); 1754 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1755 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1756 1757 blk_mq_start_request(req); 1758 reason = scsi_dispatch_cmd(cmd); 1759 if (reason) { 1760 scsi_set_blocked(cmd, reason); 1761 ret = BLK_STS_RESOURCE; 1762 goto out_dec_host_busy; 1763 } 1764 1765 return BLK_STS_OK; 1766 1767 out_dec_host_busy: 1768 scsi_dec_host_busy(shost, cmd); 1769 out_dec_target_busy: 1770 if (scsi_target(sdev)->can_queue > 0) 1771 atomic_dec(&scsi_target(sdev)->target_busy); 1772 out_put_budget: 1773 scsi_mq_put_budget(q, cmd->budget_token); 1774 cmd->budget_token = -1; 1775 switch (ret) { 1776 case BLK_STS_OK: 1777 break; 1778 case BLK_STS_RESOURCE: 1779 case BLK_STS_ZONE_RESOURCE: 1780 if (scsi_device_blocked(sdev)) 1781 ret = BLK_STS_DEV_RESOURCE; 1782 break; 1783 case BLK_STS_AGAIN: 1784 cmd->result = DID_BUS_BUSY << 16; 1785 if (req->rq_flags & RQF_DONTPREP) 1786 scsi_mq_uninit_cmd(cmd); 1787 break; 1788 default: 1789 if (unlikely(!scsi_device_online(sdev))) 1790 cmd->result = DID_NO_CONNECT << 16; 1791 else 1792 cmd->result = DID_ERROR << 16; 1793 /* 1794 * Make sure to release all allocated resources when 1795 * we hit an error, as we will never see this command 1796 * again. 1797 */ 1798 if (req->rq_flags & RQF_DONTPREP) 1799 scsi_mq_uninit_cmd(cmd); 1800 scsi_run_queue_async(sdev); 1801 break; 1802 } 1803 return ret; 1804 } 1805 1806 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1807 unsigned int hctx_idx, unsigned int numa_node) 1808 { 1809 struct Scsi_Host *shost = set->driver_data; 1810 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1811 struct scatterlist *sg; 1812 int ret = 0; 1813 1814 cmd->sense_buffer = 1815 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1816 if (!cmd->sense_buffer) 1817 return -ENOMEM; 1818 1819 if (scsi_host_get_prot(shost)) { 1820 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1821 shost->hostt->cmd_size; 1822 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1823 } 1824 1825 if (shost->hostt->init_cmd_priv) { 1826 ret = shost->hostt->init_cmd_priv(shost, cmd); 1827 if (ret < 0) 1828 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1829 } 1830 1831 return ret; 1832 } 1833 1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1835 unsigned int hctx_idx) 1836 { 1837 struct Scsi_Host *shost = set->driver_data; 1838 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1839 1840 if (shost->hostt->exit_cmd_priv) 1841 shost->hostt->exit_cmd_priv(shost, cmd); 1842 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1843 } 1844 1845 1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1847 { 1848 struct Scsi_Host *shost = hctx->driver_data; 1849 1850 if (shost->hostt->mq_poll) 1851 return shost->hostt->mq_poll(shost, hctx->queue_num); 1852 1853 return 0; 1854 } 1855 1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1857 unsigned int hctx_idx) 1858 { 1859 struct Scsi_Host *shost = data; 1860 1861 hctx->driver_data = shost; 1862 return 0; 1863 } 1864 1865 static void scsi_map_queues(struct blk_mq_tag_set *set) 1866 { 1867 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1868 1869 if (shost->hostt->map_queues) 1870 return shost->hostt->map_queues(shost); 1871 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1872 } 1873 1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1875 { 1876 struct device *dev = shost->dma_dev; 1877 1878 /* 1879 * this limit is imposed by hardware restrictions 1880 */ 1881 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1882 SG_MAX_SEGMENTS)); 1883 1884 if (scsi_host_prot_dma(shost)) { 1885 shost->sg_prot_tablesize = 1886 min_not_zero(shost->sg_prot_tablesize, 1887 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1888 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1889 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1890 } 1891 1892 blk_queue_max_hw_sectors(q, shost->max_sectors); 1893 blk_queue_segment_boundary(q, shost->dma_boundary); 1894 dma_set_seg_boundary(dev, shost->dma_boundary); 1895 1896 blk_queue_max_segment_size(q, shost->max_segment_size); 1897 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1898 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1899 1900 /* 1901 * Set a reasonable default alignment: The larger of 32-byte (dword), 1902 * which is a common minimum for HBAs, and the minimum DMA alignment, 1903 * which is set by the platform. 1904 * 1905 * Devices that require a bigger alignment can increase it later. 1906 */ 1907 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1908 } 1909 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1910 1911 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1912 .get_budget = scsi_mq_get_budget, 1913 .put_budget = scsi_mq_put_budget, 1914 .queue_rq = scsi_queue_rq, 1915 .complete = scsi_complete, 1916 .timeout = scsi_timeout, 1917 #ifdef CONFIG_BLK_DEBUG_FS 1918 .show_rq = scsi_show_rq, 1919 #endif 1920 .init_request = scsi_mq_init_request, 1921 .exit_request = scsi_mq_exit_request, 1922 .cleanup_rq = scsi_cleanup_rq, 1923 .busy = scsi_mq_lld_busy, 1924 .map_queues = scsi_map_queues, 1925 .init_hctx = scsi_init_hctx, 1926 .poll = scsi_mq_poll, 1927 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1928 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1929 }; 1930 1931 1932 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1933 { 1934 struct Scsi_Host *shost = hctx->driver_data; 1935 1936 shost->hostt->commit_rqs(shost, hctx->queue_num); 1937 } 1938 1939 static const struct blk_mq_ops scsi_mq_ops = { 1940 .get_budget = scsi_mq_get_budget, 1941 .put_budget = scsi_mq_put_budget, 1942 .queue_rq = scsi_queue_rq, 1943 .commit_rqs = scsi_commit_rqs, 1944 .complete = scsi_complete, 1945 .timeout = scsi_timeout, 1946 #ifdef CONFIG_BLK_DEBUG_FS 1947 .show_rq = scsi_show_rq, 1948 #endif 1949 .init_request = scsi_mq_init_request, 1950 .exit_request = scsi_mq_exit_request, 1951 .cleanup_rq = scsi_cleanup_rq, 1952 .busy = scsi_mq_lld_busy, 1953 .map_queues = scsi_map_queues, 1954 .init_hctx = scsi_init_hctx, 1955 .poll = scsi_mq_poll, 1956 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1957 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1958 }; 1959 1960 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1961 { 1962 unsigned int cmd_size, sgl_size; 1963 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1964 1965 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1966 scsi_mq_inline_sgl_size(shost)); 1967 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1968 if (scsi_host_get_prot(shost)) 1969 cmd_size += sizeof(struct scsi_data_buffer) + 1970 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1971 1972 memset(tag_set, 0, sizeof(*tag_set)); 1973 if (shost->hostt->commit_rqs) 1974 tag_set->ops = &scsi_mq_ops; 1975 else 1976 tag_set->ops = &scsi_mq_ops_no_commit; 1977 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1978 tag_set->nr_maps = shost->nr_maps ? : 1; 1979 tag_set->queue_depth = shost->can_queue; 1980 tag_set->cmd_size = cmd_size; 1981 tag_set->numa_node = dev_to_node(shost->dma_dev); 1982 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1983 tag_set->flags |= 1984 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1985 if (shost->queuecommand_may_block) 1986 tag_set->flags |= BLK_MQ_F_BLOCKING; 1987 tag_set->driver_data = shost; 1988 if (shost->host_tagset) 1989 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1990 1991 return blk_mq_alloc_tag_set(tag_set); 1992 } 1993 1994 void scsi_mq_free_tags(struct kref *kref) 1995 { 1996 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1997 tagset_refcnt); 1998 1999 blk_mq_free_tag_set(&shost->tag_set); 2000 complete(&shost->tagset_freed); 2001 } 2002 2003 /** 2004 * scsi_device_from_queue - return sdev associated with a request_queue 2005 * @q: The request queue to return the sdev from 2006 * 2007 * Return the sdev associated with a request queue or NULL if the 2008 * request_queue does not reference a SCSI device. 2009 */ 2010 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2011 { 2012 struct scsi_device *sdev = NULL; 2013 2014 if (q->mq_ops == &scsi_mq_ops_no_commit || 2015 q->mq_ops == &scsi_mq_ops) 2016 sdev = q->queuedata; 2017 if (!sdev || !get_device(&sdev->sdev_gendev)) 2018 sdev = NULL; 2019 2020 return sdev; 2021 } 2022 /* 2023 * pktcdvd should have been integrated into the SCSI layers, but for historical 2024 * reasons like the old IDE driver it isn't. This export allows it to safely 2025 * probe if a given device is a SCSI one and only attach to that. 2026 */ 2027 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2028 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2029 #endif 2030 2031 /** 2032 * scsi_block_requests - Utility function used by low-level drivers to prevent 2033 * further commands from being queued to the device. 2034 * @shost: host in question 2035 * 2036 * There is no timer nor any other means by which the requests get unblocked 2037 * other than the low-level driver calling scsi_unblock_requests(). 2038 */ 2039 void scsi_block_requests(struct Scsi_Host *shost) 2040 { 2041 shost->host_self_blocked = 1; 2042 } 2043 EXPORT_SYMBOL(scsi_block_requests); 2044 2045 /** 2046 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2047 * further commands to be queued to the device. 2048 * @shost: host in question 2049 * 2050 * There is no timer nor any other means by which the requests get unblocked 2051 * other than the low-level driver calling scsi_unblock_requests(). This is done 2052 * as an API function so that changes to the internals of the scsi mid-layer 2053 * won't require wholesale changes to drivers that use this feature. 2054 */ 2055 void scsi_unblock_requests(struct Scsi_Host *shost) 2056 { 2057 shost->host_self_blocked = 0; 2058 scsi_run_host_queues(shost); 2059 } 2060 EXPORT_SYMBOL(scsi_unblock_requests); 2061 2062 void scsi_exit_queue(void) 2063 { 2064 kmem_cache_destroy(scsi_sense_cache); 2065 } 2066 2067 /** 2068 * scsi_mode_select - issue a mode select 2069 * @sdev: SCSI device to be queried 2070 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2071 * @sp: Save page bit (0 == don't save, 1 == save) 2072 * @buffer: request buffer (may not be smaller than eight bytes) 2073 * @len: length of request buffer. 2074 * @timeout: command timeout 2075 * @retries: number of retries before failing 2076 * @data: returns a structure abstracting the mode header data 2077 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2078 * must be SCSI_SENSE_BUFFERSIZE big. 2079 * 2080 * Returns zero if successful; negative error number or scsi 2081 * status on error 2082 * 2083 */ 2084 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2085 unsigned char *buffer, int len, int timeout, int retries, 2086 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2087 { 2088 unsigned char cmd[10]; 2089 unsigned char *real_buffer; 2090 const struct scsi_exec_args exec_args = { 2091 .sshdr = sshdr, 2092 }; 2093 int ret; 2094 2095 memset(cmd, 0, sizeof(cmd)); 2096 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2097 2098 /* 2099 * Use MODE SELECT(10) if the device asked for it or if the mode page 2100 * and the mode select header cannot fit within the maximumm 255 bytes 2101 * of the MODE SELECT(6) command. 2102 */ 2103 if (sdev->use_10_for_ms || 2104 len + 4 > 255 || 2105 data->block_descriptor_length > 255) { 2106 if (len > 65535 - 8) 2107 return -EINVAL; 2108 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2109 if (!real_buffer) 2110 return -ENOMEM; 2111 memcpy(real_buffer + 8, buffer, len); 2112 len += 8; 2113 real_buffer[0] = 0; 2114 real_buffer[1] = 0; 2115 real_buffer[2] = data->medium_type; 2116 real_buffer[3] = data->device_specific; 2117 real_buffer[4] = data->longlba ? 0x01 : 0; 2118 real_buffer[5] = 0; 2119 put_unaligned_be16(data->block_descriptor_length, 2120 &real_buffer[6]); 2121 2122 cmd[0] = MODE_SELECT_10; 2123 put_unaligned_be16(len, &cmd[7]); 2124 } else { 2125 if (data->longlba) 2126 return -EINVAL; 2127 2128 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2129 if (!real_buffer) 2130 return -ENOMEM; 2131 memcpy(real_buffer + 4, buffer, len); 2132 len += 4; 2133 real_buffer[0] = 0; 2134 real_buffer[1] = data->medium_type; 2135 real_buffer[2] = data->device_specific; 2136 real_buffer[3] = data->block_descriptor_length; 2137 2138 cmd[0] = MODE_SELECT; 2139 cmd[4] = len; 2140 } 2141 2142 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2143 timeout, retries, &exec_args); 2144 kfree(real_buffer); 2145 return ret; 2146 } 2147 EXPORT_SYMBOL_GPL(scsi_mode_select); 2148 2149 /** 2150 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2151 * @sdev: SCSI device to be queried 2152 * @dbd: set to prevent mode sense from returning block descriptors 2153 * @modepage: mode page being requested 2154 * @subpage: sub-page of the mode page being requested 2155 * @buffer: request buffer (may not be smaller than eight bytes) 2156 * @len: length of request buffer. 2157 * @timeout: command timeout 2158 * @retries: number of retries before failing 2159 * @data: returns a structure abstracting the mode header data 2160 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2161 * must be SCSI_SENSE_BUFFERSIZE big. 2162 * 2163 * Returns zero if successful, or a negative error number on failure 2164 */ 2165 int 2166 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2167 unsigned char *buffer, int len, int timeout, int retries, 2168 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2169 { 2170 unsigned char cmd[12]; 2171 int use_10_for_ms; 2172 int header_length; 2173 int result, retry_count = retries; 2174 struct scsi_sense_hdr my_sshdr; 2175 const struct scsi_exec_args exec_args = { 2176 /* caller might not be interested in sense, but we need it */ 2177 .sshdr = sshdr ? : &my_sshdr, 2178 }; 2179 2180 memset(data, 0, sizeof(*data)); 2181 memset(&cmd[0], 0, 12); 2182 2183 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2184 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2185 cmd[2] = modepage; 2186 cmd[3] = subpage; 2187 2188 sshdr = exec_args.sshdr; 2189 2190 retry: 2191 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2192 2193 if (use_10_for_ms) { 2194 if (len < 8 || len > 65535) 2195 return -EINVAL; 2196 2197 cmd[0] = MODE_SENSE_10; 2198 put_unaligned_be16(len, &cmd[7]); 2199 header_length = 8; 2200 } else { 2201 if (len < 4) 2202 return -EINVAL; 2203 2204 cmd[0] = MODE_SENSE; 2205 cmd[4] = len; 2206 header_length = 4; 2207 } 2208 2209 memset(buffer, 0, len); 2210 2211 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2212 timeout, retries, &exec_args); 2213 if (result < 0) 2214 return result; 2215 2216 /* This code looks awful: what it's doing is making sure an 2217 * ILLEGAL REQUEST sense return identifies the actual command 2218 * byte as the problem. MODE_SENSE commands can return 2219 * ILLEGAL REQUEST if the code page isn't supported */ 2220 2221 if (!scsi_status_is_good(result)) { 2222 if (scsi_sense_valid(sshdr)) { 2223 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2224 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2225 /* 2226 * Invalid command operation code: retry using 2227 * MODE SENSE(6) if this was a MODE SENSE(10) 2228 * request, except if the request mode page is 2229 * too large for MODE SENSE single byte 2230 * allocation length field. 2231 */ 2232 if (use_10_for_ms) { 2233 if (len > 255) 2234 return -EIO; 2235 sdev->use_10_for_ms = 0; 2236 goto retry; 2237 } 2238 } 2239 if (scsi_status_is_check_condition(result) && 2240 sshdr->sense_key == UNIT_ATTENTION && 2241 retry_count) { 2242 retry_count--; 2243 goto retry; 2244 } 2245 } 2246 return -EIO; 2247 } 2248 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2249 (modepage == 6 || modepage == 8))) { 2250 /* Initio breakage? */ 2251 header_length = 0; 2252 data->length = 13; 2253 data->medium_type = 0; 2254 data->device_specific = 0; 2255 data->longlba = 0; 2256 data->block_descriptor_length = 0; 2257 } else if (use_10_for_ms) { 2258 data->length = get_unaligned_be16(&buffer[0]) + 2; 2259 data->medium_type = buffer[2]; 2260 data->device_specific = buffer[3]; 2261 data->longlba = buffer[4] & 0x01; 2262 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2263 } else { 2264 data->length = buffer[0] + 1; 2265 data->medium_type = buffer[1]; 2266 data->device_specific = buffer[2]; 2267 data->block_descriptor_length = buffer[3]; 2268 } 2269 data->header_length = header_length; 2270 2271 return 0; 2272 } 2273 EXPORT_SYMBOL(scsi_mode_sense); 2274 2275 /** 2276 * scsi_test_unit_ready - test if unit is ready 2277 * @sdev: scsi device to change the state of. 2278 * @timeout: command timeout 2279 * @retries: number of retries before failing 2280 * @sshdr: outpout pointer for decoded sense information. 2281 * 2282 * Returns zero if unsuccessful or an error if TUR failed. For 2283 * removable media, UNIT_ATTENTION sets ->changed flag. 2284 **/ 2285 int 2286 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2287 struct scsi_sense_hdr *sshdr) 2288 { 2289 char cmd[] = { 2290 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2291 }; 2292 const struct scsi_exec_args exec_args = { 2293 .sshdr = sshdr, 2294 }; 2295 int result; 2296 2297 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2298 do { 2299 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2300 timeout, 1, &exec_args); 2301 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2302 sshdr->sense_key == UNIT_ATTENTION) 2303 sdev->changed = 1; 2304 } while (result > 0 && scsi_sense_valid(sshdr) && 2305 sshdr->sense_key == UNIT_ATTENTION && --retries); 2306 2307 return result; 2308 } 2309 EXPORT_SYMBOL(scsi_test_unit_ready); 2310 2311 /** 2312 * scsi_device_set_state - Take the given device through the device state model. 2313 * @sdev: scsi device to change the state of. 2314 * @state: state to change to. 2315 * 2316 * Returns zero if successful or an error if the requested 2317 * transition is illegal. 2318 */ 2319 int 2320 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2321 { 2322 enum scsi_device_state oldstate = sdev->sdev_state; 2323 2324 if (state == oldstate) 2325 return 0; 2326 2327 switch (state) { 2328 case SDEV_CREATED: 2329 switch (oldstate) { 2330 case SDEV_CREATED_BLOCK: 2331 break; 2332 default: 2333 goto illegal; 2334 } 2335 break; 2336 2337 case SDEV_RUNNING: 2338 switch (oldstate) { 2339 case SDEV_CREATED: 2340 case SDEV_OFFLINE: 2341 case SDEV_TRANSPORT_OFFLINE: 2342 case SDEV_QUIESCE: 2343 case SDEV_BLOCK: 2344 break; 2345 default: 2346 goto illegal; 2347 } 2348 break; 2349 2350 case SDEV_QUIESCE: 2351 switch (oldstate) { 2352 case SDEV_RUNNING: 2353 case SDEV_OFFLINE: 2354 case SDEV_TRANSPORT_OFFLINE: 2355 break; 2356 default: 2357 goto illegal; 2358 } 2359 break; 2360 2361 case SDEV_OFFLINE: 2362 case SDEV_TRANSPORT_OFFLINE: 2363 switch (oldstate) { 2364 case SDEV_CREATED: 2365 case SDEV_RUNNING: 2366 case SDEV_QUIESCE: 2367 case SDEV_BLOCK: 2368 break; 2369 default: 2370 goto illegal; 2371 } 2372 break; 2373 2374 case SDEV_BLOCK: 2375 switch (oldstate) { 2376 case SDEV_RUNNING: 2377 case SDEV_CREATED_BLOCK: 2378 case SDEV_QUIESCE: 2379 case SDEV_OFFLINE: 2380 break; 2381 default: 2382 goto illegal; 2383 } 2384 break; 2385 2386 case SDEV_CREATED_BLOCK: 2387 switch (oldstate) { 2388 case SDEV_CREATED: 2389 break; 2390 default: 2391 goto illegal; 2392 } 2393 break; 2394 2395 case SDEV_CANCEL: 2396 switch (oldstate) { 2397 case SDEV_CREATED: 2398 case SDEV_RUNNING: 2399 case SDEV_QUIESCE: 2400 case SDEV_OFFLINE: 2401 case SDEV_TRANSPORT_OFFLINE: 2402 break; 2403 default: 2404 goto illegal; 2405 } 2406 break; 2407 2408 case SDEV_DEL: 2409 switch (oldstate) { 2410 case SDEV_CREATED: 2411 case SDEV_RUNNING: 2412 case SDEV_OFFLINE: 2413 case SDEV_TRANSPORT_OFFLINE: 2414 case SDEV_CANCEL: 2415 case SDEV_BLOCK: 2416 case SDEV_CREATED_BLOCK: 2417 break; 2418 default: 2419 goto illegal; 2420 } 2421 break; 2422 2423 } 2424 sdev->offline_already = false; 2425 sdev->sdev_state = state; 2426 return 0; 2427 2428 illegal: 2429 SCSI_LOG_ERROR_RECOVERY(1, 2430 sdev_printk(KERN_ERR, sdev, 2431 "Illegal state transition %s->%s", 2432 scsi_device_state_name(oldstate), 2433 scsi_device_state_name(state)) 2434 ); 2435 return -EINVAL; 2436 } 2437 EXPORT_SYMBOL(scsi_device_set_state); 2438 2439 /** 2440 * scsi_evt_emit - emit a single SCSI device uevent 2441 * @sdev: associated SCSI device 2442 * @evt: event to emit 2443 * 2444 * Send a single uevent (scsi_event) to the associated scsi_device. 2445 */ 2446 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2447 { 2448 int idx = 0; 2449 char *envp[3]; 2450 2451 switch (evt->evt_type) { 2452 case SDEV_EVT_MEDIA_CHANGE: 2453 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2454 break; 2455 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2456 scsi_rescan_device(sdev); 2457 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2458 break; 2459 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2460 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2461 break; 2462 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2463 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2464 break; 2465 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2466 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2467 break; 2468 case SDEV_EVT_LUN_CHANGE_REPORTED: 2469 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2470 break; 2471 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2472 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2473 break; 2474 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2475 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2476 break; 2477 default: 2478 /* do nothing */ 2479 break; 2480 } 2481 2482 envp[idx++] = NULL; 2483 2484 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2485 } 2486 2487 /** 2488 * scsi_evt_thread - send a uevent for each scsi event 2489 * @work: work struct for scsi_device 2490 * 2491 * Dispatch queued events to their associated scsi_device kobjects 2492 * as uevents. 2493 */ 2494 void scsi_evt_thread(struct work_struct *work) 2495 { 2496 struct scsi_device *sdev; 2497 enum scsi_device_event evt_type; 2498 LIST_HEAD(event_list); 2499 2500 sdev = container_of(work, struct scsi_device, event_work); 2501 2502 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2503 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2504 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2505 2506 while (1) { 2507 struct scsi_event *evt; 2508 struct list_head *this, *tmp; 2509 unsigned long flags; 2510 2511 spin_lock_irqsave(&sdev->list_lock, flags); 2512 list_splice_init(&sdev->event_list, &event_list); 2513 spin_unlock_irqrestore(&sdev->list_lock, flags); 2514 2515 if (list_empty(&event_list)) 2516 break; 2517 2518 list_for_each_safe(this, tmp, &event_list) { 2519 evt = list_entry(this, struct scsi_event, node); 2520 list_del(&evt->node); 2521 scsi_evt_emit(sdev, evt); 2522 kfree(evt); 2523 } 2524 } 2525 } 2526 2527 /** 2528 * sdev_evt_send - send asserted event to uevent thread 2529 * @sdev: scsi_device event occurred on 2530 * @evt: event to send 2531 * 2532 * Assert scsi device event asynchronously. 2533 */ 2534 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2535 { 2536 unsigned long flags; 2537 2538 #if 0 2539 /* FIXME: currently this check eliminates all media change events 2540 * for polled devices. Need to update to discriminate between AN 2541 * and polled events */ 2542 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2543 kfree(evt); 2544 return; 2545 } 2546 #endif 2547 2548 spin_lock_irqsave(&sdev->list_lock, flags); 2549 list_add_tail(&evt->node, &sdev->event_list); 2550 schedule_work(&sdev->event_work); 2551 spin_unlock_irqrestore(&sdev->list_lock, flags); 2552 } 2553 EXPORT_SYMBOL_GPL(sdev_evt_send); 2554 2555 /** 2556 * sdev_evt_alloc - allocate a new scsi event 2557 * @evt_type: type of event to allocate 2558 * @gfpflags: GFP flags for allocation 2559 * 2560 * Allocates and returns a new scsi_event. 2561 */ 2562 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2563 gfp_t gfpflags) 2564 { 2565 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2566 if (!evt) 2567 return NULL; 2568 2569 evt->evt_type = evt_type; 2570 INIT_LIST_HEAD(&evt->node); 2571 2572 /* evt_type-specific initialization, if any */ 2573 switch (evt_type) { 2574 case SDEV_EVT_MEDIA_CHANGE: 2575 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2576 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2577 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2578 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2579 case SDEV_EVT_LUN_CHANGE_REPORTED: 2580 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2581 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2582 default: 2583 /* do nothing */ 2584 break; 2585 } 2586 2587 return evt; 2588 } 2589 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2590 2591 /** 2592 * sdev_evt_send_simple - send asserted event to uevent thread 2593 * @sdev: scsi_device event occurred on 2594 * @evt_type: type of event to send 2595 * @gfpflags: GFP flags for allocation 2596 * 2597 * Assert scsi device event asynchronously, given an event type. 2598 */ 2599 void sdev_evt_send_simple(struct scsi_device *sdev, 2600 enum scsi_device_event evt_type, gfp_t gfpflags) 2601 { 2602 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2603 if (!evt) { 2604 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2605 evt_type); 2606 return; 2607 } 2608 2609 sdev_evt_send(sdev, evt); 2610 } 2611 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2612 2613 /** 2614 * scsi_device_quiesce - Block all commands except power management. 2615 * @sdev: scsi device to quiesce. 2616 * 2617 * This works by trying to transition to the SDEV_QUIESCE state 2618 * (which must be a legal transition). When the device is in this 2619 * state, only power management requests will be accepted, all others will 2620 * be deferred. 2621 * 2622 * Must be called with user context, may sleep. 2623 * 2624 * Returns zero if unsuccessful or an error if not. 2625 */ 2626 int 2627 scsi_device_quiesce(struct scsi_device *sdev) 2628 { 2629 struct request_queue *q = sdev->request_queue; 2630 int err; 2631 2632 /* 2633 * It is allowed to call scsi_device_quiesce() multiple times from 2634 * the same context but concurrent scsi_device_quiesce() calls are 2635 * not allowed. 2636 */ 2637 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2638 2639 if (sdev->quiesced_by == current) 2640 return 0; 2641 2642 blk_set_pm_only(q); 2643 2644 blk_mq_freeze_queue(q); 2645 /* 2646 * Ensure that the effect of blk_set_pm_only() will be visible 2647 * for percpu_ref_tryget() callers that occur after the queue 2648 * unfreeze even if the queue was already frozen before this function 2649 * was called. See also https://lwn.net/Articles/573497/. 2650 */ 2651 synchronize_rcu(); 2652 blk_mq_unfreeze_queue(q); 2653 2654 mutex_lock(&sdev->state_mutex); 2655 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2656 if (err == 0) 2657 sdev->quiesced_by = current; 2658 else 2659 blk_clear_pm_only(q); 2660 mutex_unlock(&sdev->state_mutex); 2661 2662 return err; 2663 } 2664 EXPORT_SYMBOL(scsi_device_quiesce); 2665 2666 /** 2667 * scsi_device_resume - Restart user issued commands to a quiesced device. 2668 * @sdev: scsi device to resume. 2669 * 2670 * Moves the device from quiesced back to running and restarts the 2671 * queues. 2672 * 2673 * Must be called with user context, may sleep. 2674 */ 2675 void scsi_device_resume(struct scsi_device *sdev) 2676 { 2677 /* check if the device state was mutated prior to resume, and if 2678 * so assume the state is being managed elsewhere (for example 2679 * device deleted during suspend) 2680 */ 2681 mutex_lock(&sdev->state_mutex); 2682 if (sdev->sdev_state == SDEV_QUIESCE) 2683 scsi_device_set_state(sdev, SDEV_RUNNING); 2684 if (sdev->quiesced_by) { 2685 sdev->quiesced_by = NULL; 2686 blk_clear_pm_only(sdev->request_queue); 2687 } 2688 mutex_unlock(&sdev->state_mutex); 2689 } 2690 EXPORT_SYMBOL(scsi_device_resume); 2691 2692 static void 2693 device_quiesce_fn(struct scsi_device *sdev, void *data) 2694 { 2695 scsi_device_quiesce(sdev); 2696 } 2697 2698 void 2699 scsi_target_quiesce(struct scsi_target *starget) 2700 { 2701 starget_for_each_device(starget, NULL, device_quiesce_fn); 2702 } 2703 EXPORT_SYMBOL(scsi_target_quiesce); 2704 2705 static void 2706 device_resume_fn(struct scsi_device *sdev, void *data) 2707 { 2708 scsi_device_resume(sdev); 2709 } 2710 2711 void 2712 scsi_target_resume(struct scsi_target *starget) 2713 { 2714 starget_for_each_device(starget, NULL, device_resume_fn); 2715 } 2716 EXPORT_SYMBOL(scsi_target_resume); 2717 2718 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2719 { 2720 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2721 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2722 2723 return 0; 2724 } 2725 2726 void scsi_start_queue(struct scsi_device *sdev) 2727 { 2728 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2729 blk_mq_unquiesce_queue(sdev->request_queue); 2730 } 2731 2732 static void scsi_stop_queue(struct scsi_device *sdev) 2733 { 2734 /* 2735 * The atomic variable of ->queue_stopped covers that 2736 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2737 * 2738 * The caller needs to wait until quiesce is done. 2739 */ 2740 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2741 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2742 } 2743 2744 /** 2745 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2746 * @sdev: device to block 2747 * 2748 * Pause SCSI command processing on the specified device. Does not sleep. 2749 * 2750 * Returns zero if successful or a negative error code upon failure. 2751 * 2752 * Notes: 2753 * This routine transitions the device to the SDEV_BLOCK state (which must be 2754 * a legal transition). When the device is in this state, command processing 2755 * is paused until the device leaves the SDEV_BLOCK state. See also 2756 * scsi_internal_device_unblock_nowait(). 2757 */ 2758 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2759 { 2760 int ret = __scsi_internal_device_block_nowait(sdev); 2761 2762 /* 2763 * The device has transitioned to SDEV_BLOCK. Stop the 2764 * block layer from calling the midlayer with this device's 2765 * request queue. 2766 */ 2767 if (!ret) 2768 scsi_stop_queue(sdev); 2769 return ret; 2770 } 2771 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2772 2773 /** 2774 * scsi_device_block - try to transition to the SDEV_BLOCK state 2775 * @sdev: device to block 2776 * @data: dummy argument, ignored 2777 * 2778 * Pause SCSI command processing on the specified device. Callers must wait 2779 * until all ongoing scsi_queue_rq() calls have finished after this function 2780 * returns. 2781 * 2782 * Note: 2783 * This routine transitions the device to the SDEV_BLOCK state (which must be 2784 * a legal transition). When the device is in this state, command processing 2785 * is paused until the device leaves the SDEV_BLOCK state. See also 2786 * scsi_internal_device_unblock(). 2787 */ 2788 static void scsi_device_block(struct scsi_device *sdev, void *data) 2789 { 2790 int err; 2791 enum scsi_device_state state; 2792 2793 mutex_lock(&sdev->state_mutex); 2794 err = __scsi_internal_device_block_nowait(sdev); 2795 state = sdev->sdev_state; 2796 if (err == 0) 2797 /* 2798 * scsi_stop_queue() must be called with the state_mutex 2799 * held. Otherwise a simultaneous scsi_start_queue() call 2800 * might unquiesce the queue before we quiesce it. 2801 */ 2802 scsi_stop_queue(sdev); 2803 2804 mutex_unlock(&sdev->state_mutex); 2805 2806 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2807 __func__, dev_name(&sdev->sdev_gendev), state); 2808 } 2809 2810 /** 2811 * scsi_internal_device_unblock_nowait - resume a device after a block request 2812 * @sdev: device to resume 2813 * @new_state: state to set the device to after unblocking 2814 * 2815 * Restart the device queue for a previously suspended SCSI device. Does not 2816 * sleep. 2817 * 2818 * Returns zero if successful or a negative error code upon failure. 2819 * 2820 * Notes: 2821 * This routine transitions the device to the SDEV_RUNNING state or to one of 2822 * the offline states (which must be a legal transition) allowing the midlayer 2823 * to goose the queue for this device. 2824 */ 2825 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2826 enum scsi_device_state new_state) 2827 { 2828 switch (new_state) { 2829 case SDEV_RUNNING: 2830 case SDEV_TRANSPORT_OFFLINE: 2831 break; 2832 default: 2833 return -EINVAL; 2834 } 2835 2836 /* 2837 * Try to transition the scsi device to SDEV_RUNNING or one of the 2838 * offlined states and goose the device queue if successful. 2839 */ 2840 switch (sdev->sdev_state) { 2841 case SDEV_BLOCK: 2842 case SDEV_TRANSPORT_OFFLINE: 2843 sdev->sdev_state = new_state; 2844 break; 2845 case SDEV_CREATED_BLOCK: 2846 if (new_state == SDEV_TRANSPORT_OFFLINE || 2847 new_state == SDEV_OFFLINE) 2848 sdev->sdev_state = new_state; 2849 else 2850 sdev->sdev_state = SDEV_CREATED; 2851 break; 2852 case SDEV_CANCEL: 2853 case SDEV_OFFLINE: 2854 break; 2855 default: 2856 return -EINVAL; 2857 } 2858 scsi_start_queue(sdev); 2859 2860 return 0; 2861 } 2862 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2863 2864 /** 2865 * scsi_internal_device_unblock - resume a device after a block request 2866 * @sdev: device to resume 2867 * @new_state: state to set the device to after unblocking 2868 * 2869 * Restart the device queue for a previously suspended SCSI device. May sleep. 2870 * 2871 * Returns zero if successful or a negative error code upon failure. 2872 * 2873 * Notes: 2874 * This routine transitions the device to the SDEV_RUNNING state or to one of 2875 * the offline states (which must be a legal transition) allowing the midlayer 2876 * to goose the queue for this device. 2877 */ 2878 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2879 enum scsi_device_state new_state) 2880 { 2881 int ret; 2882 2883 mutex_lock(&sdev->state_mutex); 2884 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2885 mutex_unlock(&sdev->state_mutex); 2886 2887 return ret; 2888 } 2889 2890 static int 2891 target_block(struct device *dev, void *data) 2892 { 2893 if (scsi_is_target_device(dev)) 2894 starget_for_each_device(to_scsi_target(dev), NULL, 2895 scsi_device_block); 2896 return 0; 2897 } 2898 2899 /** 2900 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 2901 * @dev: a parent device of one or more scsi_target devices 2902 * @shost: the Scsi_Host to which this device belongs 2903 * 2904 * Iterate over all children of @dev, which should be scsi_target devices, 2905 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 2906 * ongoing scsi_queue_rq() calls to finish. May sleep. 2907 * 2908 * Note: 2909 * @dev must not itself be a scsi_target device. 2910 */ 2911 void 2912 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 2913 { 2914 WARN_ON_ONCE(scsi_is_target_device(dev)); 2915 device_for_each_child(dev, NULL, target_block); 2916 blk_mq_wait_quiesce_done(&shost->tag_set); 2917 } 2918 EXPORT_SYMBOL_GPL(scsi_block_targets); 2919 2920 static void 2921 device_unblock(struct scsi_device *sdev, void *data) 2922 { 2923 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2924 } 2925 2926 static int 2927 target_unblock(struct device *dev, void *data) 2928 { 2929 if (scsi_is_target_device(dev)) 2930 starget_for_each_device(to_scsi_target(dev), data, 2931 device_unblock); 2932 return 0; 2933 } 2934 2935 void 2936 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2937 { 2938 if (scsi_is_target_device(dev)) 2939 starget_for_each_device(to_scsi_target(dev), &new_state, 2940 device_unblock); 2941 else 2942 device_for_each_child(dev, &new_state, target_unblock); 2943 } 2944 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2945 2946 /** 2947 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 2948 * @shost: device to block 2949 * 2950 * Pause SCSI command processing for all logical units associated with the SCSI 2951 * host and wait until pending scsi_queue_rq() calls have finished. 2952 * 2953 * Returns zero if successful or a negative error code upon failure. 2954 */ 2955 int 2956 scsi_host_block(struct Scsi_Host *shost) 2957 { 2958 struct scsi_device *sdev; 2959 int ret; 2960 2961 /* 2962 * Call scsi_internal_device_block_nowait so we can avoid 2963 * calling synchronize_rcu() for each LUN. 2964 */ 2965 shost_for_each_device(sdev, shost) { 2966 mutex_lock(&sdev->state_mutex); 2967 ret = scsi_internal_device_block_nowait(sdev); 2968 mutex_unlock(&sdev->state_mutex); 2969 if (ret) { 2970 scsi_device_put(sdev); 2971 return ret; 2972 } 2973 } 2974 2975 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 2976 blk_mq_wait_quiesce_done(&shost->tag_set); 2977 2978 return 0; 2979 } 2980 EXPORT_SYMBOL_GPL(scsi_host_block); 2981 2982 int 2983 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2984 { 2985 struct scsi_device *sdev; 2986 int ret = 0; 2987 2988 shost_for_each_device(sdev, shost) { 2989 ret = scsi_internal_device_unblock(sdev, new_state); 2990 if (ret) { 2991 scsi_device_put(sdev); 2992 break; 2993 } 2994 } 2995 return ret; 2996 } 2997 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2998 2999 /** 3000 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3001 * @sgl: scatter-gather list 3002 * @sg_count: number of segments in sg 3003 * @offset: offset in bytes into sg, on return offset into the mapped area 3004 * @len: bytes to map, on return number of bytes mapped 3005 * 3006 * Returns virtual address of the start of the mapped page 3007 */ 3008 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3009 size_t *offset, size_t *len) 3010 { 3011 int i; 3012 size_t sg_len = 0, len_complete = 0; 3013 struct scatterlist *sg; 3014 struct page *page; 3015 3016 WARN_ON(!irqs_disabled()); 3017 3018 for_each_sg(sgl, sg, sg_count, i) { 3019 len_complete = sg_len; /* Complete sg-entries */ 3020 sg_len += sg->length; 3021 if (sg_len > *offset) 3022 break; 3023 } 3024 3025 if (unlikely(i == sg_count)) { 3026 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3027 "elements %d\n", 3028 __func__, sg_len, *offset, sg_count); 3029 WARN_ON(1); 3030 return NULL; 3031 } 3032 3033 /* Offset starting from the beginning of first page in this sg-entry */ 3034 *offset = *offset - len_complete + sg->offset; 3035 3036 /* Assumption: contiguous pages can be accessed as "page + i" */ 3037 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3038 *offset &= ~PAGE_MASK; 3039 3040 /* Bytes in this sg-entry from *offset to the end of the page */ 3041 sg_len = PAGE_SIZE - *offset; 3042 if (*len > sg_len) 3043 *len = sg_len; 3044 3045 return kmap_atomic(page); 3046 } 3047 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3048 3049 /** 3050 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3051 * @virt: virtual address to be unmapped 3052 */ 3053 void scsi_kunmap_atomic_sg(void *virt) 3054 { 3055 kunmap_atomic(virt); 3056 } 3057 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3058 3059 void sdev_disable_disk_events(struct scsi_device *sdev) 3060 { 3061 atomic_inc(&sdev->disk_events_disable_depth); 3062 } 3063 EXPORT_SYMBOL(sdev_disable_disk_events); 3064 3065 void sdev_enable_disk_events(struct scsi_device *sdev) 3066 { 3067 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3068 return; 3069 atomic_dec(&sdev->disk_events_disable_depth); 3070 } 3071 EXPORT_SYMBOL(sdev_enable_disk_events); 3072 3073 static unsigned char designator_prio(const unsigned char *d) 3074 { 3075 if (d[1] & 0x30) 3076 /* not associated with LUN */ 3077 return 0; 3078 3079 if (d[3] == 0) 3080 /* invalid length */ 3081 return 0; 3082 3083 /* 3084 * Order of preference for lun descriptor: 3085 * - SCSI name string 3086 * - NAA IEEE Registered Extended 3087 * - EUI-64 based 16-byte 3088 * - EUI-64 based 12-byte 3089 * - NAA IEEE Registered 3090 * - NAA IEEE Extended 3091 * - EUI-64 based 8-byte 3092 * - SCSI name string (truncated) 3093 * - T10 Vendor ID 3094 * as longer descriptors reduce the likelyhood 3095 * of identification clashes. 3096 */ 3097 3098 switch (d[1] & 0xf) { 3099 case 8: 3100 /* SCSI name string, variable-length UTF-8 */ 3101 return 9; 3102 case 3: 3103 switch (d[4] >> 4) { 3104 case 6: 3105 /* NAA registered extended */ 3106 return 8; 3107 case 5: 3108 /* NAA registered */ 3109 return 5; 3110 case 4: 3111 /* NAA extended */ 3112 return 4; 3113 case 3: 3114 /* NAA locally assigned */ 3115 return 1; 3116 default: 3117 break; 3118 } 3119 break; 3120 case 2: 3121 switch (d[3]) { 3122 case 16: 3123 /* EUI64-based, 16 byte */ 3124 return 7; 3125 case 12: 3126 /* EUI64-based, 12 byte */ 3127 return 6; 3128 case 8: 3129 /* EUI64-based, 8 byte */ 3130 return 3; 3131 default: 3132 break; 3133 } 3134 break; 3135 case 1: 3136 /* T10 vendor ID */ 3137 return 1; 3138 default: 3139 break; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * scsi_vpd_lun_id - return a unique device identification 3147 * @sdev: SCSI device 3148 * @id: buffer for the identification 3149 * @id_len: length of the buffer 3150 * 3151 * Copies a unique device identification into @id based 3152 * on the information in the VPD page 0x83 of the device. 3153 * The string will be formatted as a SCSI name string. 3154 * 3155 * Returns the length of the identification or error on failure. 3156 * If the identifier is longer than the supplied buffer the actual 3157 * identifier length is returned and the buffer is not zero-padded. 3158 */ 3159 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3160 { 3161 u8 cur_id_prio = 0; 3162 u8 cur_id_size = 0; 3163 const unsigned char *d, *cur_id_str; 3164 const struct scsi_vpd *vpd_pg83; 3165 int id_size = -EINVAL; 3166 3167 rcu_read_lock(); 3168 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3169 if (!vpd_pg83) { 3170 rcu_read_unlock(); 3171 return -ENXIO; 3172 } 3173 3174 /* The id string must be at least 20 bytes + terminating NULL byte */ 3175 if (id_len < 21) { 3176 rcu_read_unlock(); 3177 return -EINVAL; 3178 } 3179 3180 memset(id, 0, id_len); 3181 for (d = vpd_pg83->data + 4; 3182 d < vpd_pg83->data + vpd_pg83->len; 3183 d += d[3] + 4) { 3184 u8 prio = designator_prio(d); 3185 3186 if (prio == 0 || cur_id_prio > prio) 3187 continue; 3188 3189 switch (d[1] & 0xf) { 3190 case 0x1: 3191 /* T10 Vendor ID */ 3192 if (cur_id_size > d[3]) 3193 break; 3194 cur_id_prio = prio; 3195 cur_id_size = d[3]; 3196 if (cur_id_size + 4 > id_len) 3197 cur_id_size = id_len - 4; 3198 cur_id_str = d + 4; 3199 id_size = snprintf(id, id_len, "t10.%*pE", 3200 cur_id_size, cur_id_str); 3201 break; 3202 case 0x2: 3203 /* EUI-64 */ 3204 cur_id_prio = prio; 3205 cur_id_size = d[3]; 3206 cur_id_str = d + 4; 3207 switch (cur_id_size) { 3208 case 8: 3209 id_size = snprintf(id, id_len, 3210 "eui.%8phN", 3211 cur_id_str); 3212 break; 3213 case 12: 3214 id_size = snprintf(id, id_len, 3215 "eui.%12phN", 3216 cur_id_str); 3217 break; 3218 case 16: 3219 id_size = snprintf(id, id_len, 3220 "eui.%16phN", 3221 cur_id_str); 3222 break; 3223 default: 3224 break; 3225 } 3226 break; 3227 case 0x3: 3228 /* NAA */ 3229 cur_id_prio = prio; 3230 cur_id_size = d[3]; 3231 cur_id_str = d + 4; 3232 switch (cur_id_size) { 3233 case 8: 3234 id_size = snprintf(id, id_len, 3235 "naa.%8phN", 3236 cur_id_str); 3237 break; 3238 case 16: 3239 id_size = snprintf(id, id_len, 3240 "naa.%16phN", 3241 cur_id_str); 3242 break; 3243 default: 3244 break; 3245 } 3246 break; 3247 case 0x8: 3248 /* SCSI name string */ 3249 if (cur_id_size > d[3]) 3250 break; 3251 /* Prefer others for truncated descriptor */ 3252 if (d[3] > id_len) { 3253 prio = 2; 3254 if (cur_id_prio > prio) 3255 break; 3256 } 3257 cur_id_prio = prio; 3258 cur_id_size = id_size = d[3]; 3259 cur_id_str = d + 4; 3260 if (cur_id_size >= id_len) 3261 cur_id_size = id_len - 1; 3262 memcpy(id, cur_id_str, cur_id_size); 3263 break; 3264 default: 3265 break; 3266 } 3267 } 3268 rcu_read_unlock(); 3269 3270 return id_size; 3271 } 3272 EXPORT_SYMBOL(scsi_vpd_lun_id); 3273 3274 /* 3275 * scsi_vpd_tpg_id - return a target port group identifier 3276 * @sdev: SCSI device 3277 * 3278 * Returns the Target Port Group identifier from the information 3279 * froom VPD page 0x83 of the device. 3280 * 3281 * Returns the identifier or error on failure. 3282 */ 3283 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3284 { 3285 const unsigned char *d; 3286 const struct scsi_vpd *vpd_pg83; 3287 int group_id = -EAGAIN, rel_port = -1; 3288 3289 rcu_read_lock(); 3290 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3291 if (!vpd_pg83) { 3292 rcu_read_unlock(); 3293 return -ENXIO; 3294 } 3295 3296 d = vpd_pg83->data + 4; 3297 while (d < vpd_pg83->data + vpd_pg83->len) { 3298 switch (d[1] & 0xf) { 3299 case 0x4: 3300 /* Relative target port */ 3301 rel_port = get_unaligned_be16(&d[6]); 3302 break; 3303 case 0x5: 3304 /* Target port group */ 3305 group_id = get_unaligned_be16(&d[6]); 3306 break; 3307 default: 3308 break; 3309 } 3310 d += d[3] + 4; 3311 } 3312 rcu_read_unlock(); 3313 3314 if (group_id >= 0 && rel_id && rel_port != -1) 3315 *rel_id = rel_port; 3316 3317 return group_id; 3318 } 3319 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3320 3321 /** 3322 * scsi_build_sense - build sense data for a command 3323 * @scmd: scsi command for which the sense should be formatted 3324 * @desc: Sense format (non-zero == descriptor format, 3325 * 0 == fixed format) 3326 * @key: Sense key 3327 * @asc: Additional sense code 3328 * @ascq: Additional sense code qualifier 3329 * 3330 **/ 3331 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3332 { 3333 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3334 scmd->result = SAM_STAT_CHECK_CONDITION; 3335 } 3336 EXPORT_SYMBOL_GPL(scsi_build_sense); 3337