xref: /linux/drivers/scsi/scsi_lib.c (revision ae3d56d81507c33024ba7c1eae2ef433aa9bc0d5)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 
172 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
173 		"Inserting command %p into mlqueue\n", cmd));
174 
175 	scsi_set_blocked(cmd, reason);
176 
177 	/*
178 	 * Decrement the counters, since these commands are no longer
179 	 * active on the host/device.
180 	 */
181 	if (unbusy)
182 		scsi_device_unbusy(device);
183 
184 	/*
185 	 * Requeue this command.  It will go before all other commands
186 	 * that are already in the queue. Schedule requeue work under
187 	 * lock such that the kblockd_schedule_work() call happens
188 	 * before blk_cleanup_queue() finishes.
189 	 */
190 	cmd->result = 0;
191 
192 	/*
193 	 * Before a SCSI command is dispatched,
194 	 * get_device(&sdev->sdev_gendev) is called and the host,
195 	 * target and device busy counters are increased. Since
196 	 * requeuing a request causes these actions to be repeated and
197 	 * since scsi_device_unbusy() has already been called,
198 	 * put_device(&device->sdev_gendev) must still be called. Call
199 	 * put_device() after blk_mq_requeue_request() to avoid that
200 	 * removal of the SCSI device can start before requeueing has
201 	 * happened.
202 	 */
203 	blk_mq_requeue_request(cmd->request, true);
204 	put_device(&device->sdev_gendev);
205 }
206 
207 /*
208  * Function:    scsi_queue_insert()
209  *
210  * Purpose:     Insert a command in the midlevel queue.
211  *
212  * Arguments:   cmd    - command that we are adding to queue.
213  *              reason - why we are inserting command to queue.
214  *
215  * Lock status: Assumed that lock is not held upon entry.
216  *
217  * Returns:     Nothing.
218  *
219  * Notes:       We do this for one of two cases.  Either the host is busy
220  *              and it cannot accept any more commands for the time being,
221  *              or the device returned QUEUE_FULL and can accept no more
222  *              commands.
223  * Notes:       This could be called either from an interrupt context or a
224  *              normal process context.
225  */
226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
227 {
228 	__scsi_queue_insert(cmd, reason, true);
229 }
230 
231 
232 /**
233  * __scsi_execute - insert request and wait for the result
234  * @sdev:	scsi device
235  * @cmd:	scsi command
236  * @data_direction: data direction
237  * @buffer:	data buffer
238  * @bufflen:	len of buffer
239  * @sense:	optional sense buffer
240  * @sshdr:	optional decoded sense header
241  * @timeout:	request timeout in seconds
242  * @retries:	number of times to retry request
243  * @flags:	flags for ->cmd_flags
244  * @rq_flags:	flags for ->rq_flags
245  * @resid:	optional residual length
246  *
247  * Returns the scsi_cmnd result field if a command was executed, or a negative
248  * Linux error code if we didn't get that far.
249  */
250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
251 		 int data_direction, void *buffer, unsigned bufflen,
252 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
253 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
254 		 int *resid)
255 {
256 	struct request *req;
257 	struct scsi_request *rq;
258 	int ret = DRIVER_ERROR << 24;
259 
260 	req = blk_get_request(sdev->request_queue,
261 			data_direction == DMA_TO_DEVICE ?
262 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
263 	if (IS_ERR(req))
264 		return ret;
265 	rq = scsi_req(req);
266 
267 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
268 					buffer, bufflen, GFP_NOIO))
269 		goto out;
270 
271 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
272 	memcpy(rq->cmd, cmd, rq->cmd_len);
273 	rq->retries = retries;
274 	req->timeout = timeout;
275 	req->cmd_flags |= flags;
276 	req->rq_flags |= rq_flags | RQF_QUIET;
277 
278 	/*
279 	 * head injection *required* here otherwise quiesce won't work
280 	 */
281 	blk_execute_rq(req->q, NULL, req, 1);
282 
283 	/*
284 	 * Some devices (USB mass-storage in particular) may transfer
285 	 * garbage data together with a residue indicating that the data
286 	 * is invalid.  Prevent the garbage from being misinterpreted
287 	 * and prevent security leaks by zeroing out the excess data.
288 	 */
289 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
290 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
291 
292 	if (resid)
293 		*resid = rq->resid_len;
294 	if (sense && rq->sense_len)
295 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
296 	if (sshdr)
297 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
298 	ret = rq->result;
299  out:
300 	blk_put_request(req);
301 
302 	return ret;
303 }
304 EXPORT_SYMBOL(__scsi_execute);
305 
306 /*
307  * Function:    scsi_init_cmd_errh()
308  *
309  * Purpose:     Initialize cmd fields related to error handling.
310  *
311  * Arguments:   cmd	- command that is ready to be queued.
312  *
313  * Notes:       This function has the job of initializing a number of
314  *              fields related to error handling.   Typically this will
315  *              be called once for each command, as required.
316  */
317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
318 {
319 	cmd->serial_number = 0;
320 	scsi_set_resid(cmd, 0);
321 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
322 	if (cmd->cmd_len == 0)
323 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
324 }
325 
326 /*
327  * Decrement the host_busy counter and wake up the error handler if necessary.
328  * Avoid as follows that the error handler is not woken up if shost->host_busy
329  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
330  * with an RCU read lock in this function to ensure that this function in its
331  * entirety either finishes before scsi_eh_scmd_add() increases the
332  * host_failed counter or that it notices the shost state change made by
333  * scsi_eh_scmd_add().
334  */
335 static void scsi_dec_host_busy(struct Scsi_Host *shost)
336 {
337 	unsigned long flags;
338 
339 	rcu_read_lock();
340 	atomic_dec(&shost->host_busy);
341 	if (unlikely(scsi_host_in_recovery(shost))) {
342 		spin_lock_irqsave(shost->host_lock, flags);
343 		if (shost->host_failed || shost->host_eh_scheduled)
344 			scsi_eh_wakeup(shost);
345 		spin_unlock_irqrestore(shost->host_lock, flags);
346 	}
347 	rcu_read_unlock();
348 }
349 
350 void scsi_device_unbusy(struct scsi_device *sdev)
351 {
352 	struct Scsi_Host *shost = sdev->host;
353 	struct scsi_target *starget = scsi_target(sdev);
354 
355 	scsi_dec_host_busy(shost);
356 
357 	if (starget->can_queue > 0)
358 		atomic_dec(&starget->target_busy);
359 
360 	atomic_dec(&sdev->device_busy);
361 }
362 
363 static void scsi_kick_queue(struct request_queue *q)
364 {
365 	blk_mq_run_hw_queues(q, false);
366 }
367 
368 /*
369  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
370  * and call blk_run_queue for all the scsi_devices on the target -
371  * including current_sdev first.
372  *
373  * Called with *no* scsi locks held.
374  */
375 static void scsi_single_lun_run(struct scsi_device *current_sdev)
376 {
377 	struct Scsi_Host *shost = current_sdev->host;
378 	struct scsi_device *sdev, *tmp;
379 	struct scsi_target *starget = scsi_target(current_sdev);
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(shost->host_lock, flags);
383 	starget->starget_sdev_user = NULL;
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 
386 	/*
387 	 * Call blk_run_queue for all LUNs on the target, starting with
388 	 * current_sdev. We race with others (to set starget_sdev_user),
389 	 * but in most cases, we will be first. Ideally, each LU on the
390 	 * target would get some limited time or requests on the target.
391 	 */
392 	scsi_kick_queue(current_sdev->request_queue);
393 
394 	spin_lock_irqsave(shost->host_lock, flags);
395 	if (starget->starget_sdev_user)
396 		goto out;
397 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
398 			same_target_siblings) {
399 		if (sdev == current_sdev)
400 			continue;
401 		if (scsi_device_get(sdev))
402 			continue;
403 
404 		spin_unlock_irqrestore(shost->host_lock, flags);
405 		scsi_kick_queue(sdev->request_queue);
406 		spin_lock_irqsave(shost->host_lock, flags);
407 
408 		scsi_device_put(sdev);
409 	}
410  out:
411 	spin_unlock_irqrestore(shost->host_lock, flags);
412 }
413 
414 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
415 {
416 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
417 		return true;
418 	if (atomic_read(&sdev->device_blocked) > 0)
419 		return true;
420 	return false;
421 }
422 
423 static inline bool scsi_target_is_busy(struct scsi_target *starget)
424 {
425 	if (starget->can_queue > 0) {
426 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
427 			return true;
428 		if (atomic_read(&starget->target_blocked) > 0)
429 			return true;
430 	}
431 	return false;
432 }
433 
434 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
435 {
436 	if (shost->can_queue > 0 &&
437 	    atomic_read(&shost->host_busy) >= shost->can_queue)
438 		return true;
439 	if (atomic_read(&shost->host_blocked) > 0)
440 		return true;
441 	if (shost->host_self_blocked)
442 		return true;
443 	return false;
444 }
445 
446 static void scsi_starved_list_run(struct Scsi_Host *shost)
447 {
448 	LIST_HEAD(starved_list);
449 	struct scsi_device *sdev;
450 	unsigned long flags;
451 
452 	spin_lock_irqsave(shost->host_lock, flags);
453 	list_splice_init(&shost->starved_list, &starved_list);
454 
455 	while (!list_empty(&starved_list)) {
456 		struct request_queue *slq;
457 
458 		/*
459 		 * As long as shost is accepting commands and we have
460 		 * starved queues, call blk_run_queue. scsi_request_fn
461 		 * drops the queue_lock and can add us back to the
462 		 * starved_list.
463 		 *
464 		 * host_lock protects the starved_list and starved_entry.
465 		 * scsi_request_fn must get the host_lock before checking
466 		 * or modifying starved_list or starved_entry.
467 		 */
468 		if (scsi_host_is_busy(shost))
469 			break;
470 
471 		sdev = list_entry(starved_list.next,
472 				  struct scsi_device, starved_entry);
473 		list_del_init(&sdev->starved_entry);
474 		if (scsi_target_is_busy(scsi_target(sdev))) {
475 			list_move_tail(&sdev->starved_entry,
476 				       &shost->starved_list);
477 			continue;
478 		}
479 
480 		/*
481 		 * Once we drop the host lock, a racing scsi_remove_device()
482 		 * call may remove the sdev from the starved list and destroy
483 		 * it and the queue.  Mitigate by taking a reference to the
484 		 * queue and never touching the sdev again after we drop the
485 		 * host lock.  Note: if __scsi_remove_device() invokes
486 		 * blk_cleanup_queue() before the queue is run from this
487 		 * function then blk_run_queue() will return immediately since
488 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
489 		 */
490 		slq = sdev->request_queue;
491 		if (!blk_get_queue(slq))
492 			continue;
493 		spin_unlock_irqrestore(shost->host_lock, flags);
494 
495 		scsi_kick_queue(slq);
496 		blk_put_queue(slq);
497 
498 		spin_lock_irqsave(shost->host_lock, flags);
499 	}
500 	/* put any unprocessed entries back */
501 	list_splice(&starved_list, &shost->starved_list);
502 	spin_unlock_irqrestore(shost->host_lock, flags);
503 }
504 
505 /*
506  * Function:   scsi_run_queue()
507  *
508  * Purpose:    Select a proper request queue to serve next
509  *
510  * Arguments:  q       - last request's queue
511  *
512  * Returns:     Nothing
513  *
514  * Notes:      The previous command was completely finished, start
515  *             a new one if possible.
516  */
517 static void scsi_run_queue(struct request_queue *q)
518 {
519 	struct scsi_device *sdev = q->queuedata;
520 
521 	if (scsi_target(sdev)->single_lun)
522 		scsi_single_lun_run(sdev);
523 	if (!list_empty(&sdev->host->starved_list))
524 		scsi_starved_list_run(sdev->host);
525 
526 	blk_mq_run_hw_queues(q, false);
527 }
528 
529 void scsi_requeue_run_queue(struct work_struct *work)
530 {
531 	struct scsi_device *sdev;
532 	struct request_queue *q;
533 
534 	sdev = container_of(work, struct scsi_device, requeue_work);
535 	q = sdev->request_queue;
536 	scsi_run_queue(q);
537 }
538 
539 void scsi_run_host_queues(struct Scsi_Host *shost)
540 {
541 	struct scsi_device *sdev;
542 
543 	shost_for_each_device(sdev, shost)
544 		scsi_run_queue(sdev->request_queue);
545 }
546 
547 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
548 {
549 	if (!blk_rq_is_passthrough(cmd->request)) {
550 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
551 
552 		if (drv->uninit_command)
553 			drv->uninit_command(cmd);
554 	}
555 }
556 
557 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
558 {
559 	if (cmd->sdb.table.nents)
560 		sg_free_table_chained(&cmd->sdb.table, true);
561 	if (scsi_prot_sg_count(cmd))
562 		sg_free_table_chained(&cmd->prot_sdb->table, true);
563 }
564 
565 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
566 {
567 	scsi_mq_free_sgtables(cmd);
568 	scsi_uninit_cmd(cmd);
569 	scsi_del_cmd_from_list(cmd);
570 }
571 
572 /* Returns false when no more bytes to process, true if there are more */
573 static bool scsi_end_request(struct request *req, blk_status_t error,
574 		unsigned int bytes)
575 {
576 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
577 	struct scsi_device *sdev = cmd->device;
578 	struct request_queue *q = sdev->request_queue;
579 
580 	if (blk_update_request(req, error, bytes))
581 		return true;
582 
583 	if (blk_queue_add_random(q))
584 		add_disk_randomness(req->rq_disk);
585 
586 	if (!blk_rq_is_scsi(req)) {
587 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
588 		cmd->flags &= ~SCMD_INITIALIZED;
589 		destroy_rcu_head(&cmd->rcu);
590 	}
591 
592 	/*
593 	 * In the MQ case the command gets freed by __blk_mq_end_request,
594 	 * so we have to do all cleanup that depends on it earlier.
595 	 *
596 	 * We also can't kick the queues from irq context, so we
597 	 * will have to defer it to a workqueue.
598 	 */
599 	scsi_mq_uninit_cmd(cmd);
600 
601 	/*
602 	 * queue is still alive, so grab the ref for preventing it
603 	 * from being cleaned up during running queue.
604 	 */
605 	percpu_ref_get(&q->q_usage_counter);
606 
607 	__blk_mq_end_request(req, error);
608 
609 	if (scsi_target(sdev)->single_lun ||
610 	    !list_empty(&sdev->host->starved_list))
611 		kblockd_schedule_work(&sdev->requeue_work);
612 	else
613 		blk_mq_run_hw_queues(q, true);
614 
615 	percpu_ref_put(&q->q_usage_counter);
616 	put_device(&sdev->sdev_gendev);
617 	return false;
618 }
619 
620 /**
621  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
622  * @cmd:	SCSI command
623  * @result:	scsi error code
624  *
625  * Translate a SCSI result code into a blk_status_t value. May reset the host
626  * byte of @cmd->result.
627  */
628 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
629 {
630 	switch (host_byte(result)) {
631 	case DID_OK:
632 		/*
633 		 * Also check the other bytes than the status byte in result
634 		 * to handle the case when a SCSI LLD sets result to
635 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
636 		 */
637 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
638 			return BLK_STS_OK;
639 		return BLK_STS_IOERR;
640 	case DID_TRANSPORT_FAILFAST:
641 		return BLK_STS_TRANSPORT;
642 	case DID_TARGET_FAILURE:
643 		set_host_byte(cmd, DID_OK);
644 		return BLK_STS_TARGET;
645 	case DID_NEXUS_FAILURE:
646 		return BLK_STS_NEXUS;
647 	case DID_ALLOC_FAILURE:
648 		set_host_byte(cmd, DID_OK);
649 		return BLK_STS_NOSPC;
650 	case DID_MEDIUM_ERROR:
651 		set_host_byte(cmd, DID_OK);
652 		return BLK_STS_MEDIUM;
653 	default:
654 		return BLK_STS_IOERR;
655 	}
656 }
657 
658 /* Helper for scsi_io_completion() when "reprep" action required. */
659 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
660 				      struct request_queue *q)
661 {
662 	/* A new command will be prepared and issued. */
663 	scsi_mq_requeue_cmd(cmd);
664 }
665 
666 /* Helper for scsi_io_completion() when special action required. */
667 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
668 {
669 	struct request_queue *q = cmd->device->request_queue;
670 	struct request *req = cmd->request;
671 	int level = 0;
672 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
673 	      ACTION_DELAYED_RETRY} action;
674 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
675 	struct scsi_sense_hdr sshdr;
676 	bool sense_valid;
677 	bool sense_current = true;      /* false implies "deferred sense" */
678 	blk_status_t blk_stat;
679 
680 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
681 	if (sense_valid)
682 		sense_current = !scsi_sense_is_deferred(&sshdr);
683 
684 	blk_stat = scsi_result_to_blk_status(cmd, result);
685 
686 	if (host_byte(result) == DID_RESET) {
687 		/* Third party bus reset or reset for error recovery
688 		 * reasons.  Just retry the command and see what
689 		 * happens.
690 		 */
691 		action = ACTION_RETRY;
692 	} else if (sense_valid && sense_current) {
693 		switch (sshdr.sense_key) {
694 		case UNIT_ATTENTION:
695 			if (cmd->device->removable) {
696 				/* Detected disc change.  Set a bit
697 				 * and quietly refuse further access.
698 				 */
699 				cmd->device->changed = 1;
700 				action = ACTION_FAIL;
701 			} else {
702 				/* Must have been a power glitch, or a
703 				 * bus reset.  Could not have been a
704 				 * media change, so we just retry the
705 				 * command and see what happens.
706 				 */
707 				action = ACTION_RETRY;
708 			}
709 			break;
710 		case ILLEGAL_REQUEST:
711 			/* If we had an ILLEGAL REQUEST returned, then
712 			 * we may have performed an unsupported
713 			 * command.  The only thing this should be
714 			 * would be a ten byte read where only a six
715 			 * byte read was supported.  Also, on a system
716 			 * where READ CAPACITY failed, we may have
717 			 * read past the end of the disk.
718 			 */
719 			if ((cmd->device->use_10_for_rw &&
720 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
721 			    (cmd->cmnd[0] == READ_10 ||
722 			     cmd->cmnd[0] == WRITE_10)) {
723 				/* This will issue a new 6-byte command. */
724 				cmd->device->use_10_for_rw = 0;
725 				action = ACTION_REPREP;
726 			} else if (sshdr.asc == 0x10) /* DIX */ {
727 				action = ACTION_FAIL;
728 				blk_stat = BLK_STS_PROTECTION;
729 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
730 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
731 				action = ACTION_FAIL;
732 				blk_stat = BLK_STS_TARGET;
733 			} else
734 				action = ACTION_FAIL;
735 			break;
736 		case ABORTED_COMMAND:
737 			action = ACTION_FAIL;
738 			if (sshdr.asc == 0x10) /* DIF */
739 				blk_stat = BLK_STS_PROTECTION;
740 			break;
741 		case NOT_READY:
742 			/* If the device is in the process of becoming
743 			 * ready, or has a temporary blockage, retry.
744 			 */
745 			if (sshdr.asc == 0x04) {
746 				switch (sshdr.ascq) {
747 				case 0x01: /* becoming ready */
748 				case 0x04: /* format in progress */
749 				case 0x05: /* rebuild in progress */
750 				case 0x06: /* recalculation in progress */
751 				case 0x07: /* operation in progress */
752 				case 0x08: /* Long write in progress */
753 				case 0x09: /* self test in progress */
754 				case 0x14: /* space allocation in progress */
755 				case 0x1a: /* start stop unit in progress */
756 				case 0x1b: /* sanitize in progress */
757 				case 0x1d: /* configuration in progress */
758 				case 0x24: /* depopulation in progress */
759 					action = ACTION_DELAYED_RETRY;
760 					break;
761 				default:
762 					action = ACTION_FAIL;
763 					break;
764 				}
765 			} else
766 				action = ACTION_FAIL;
767 			break;
768 		case VOLUME_OVERFLOW:
769 			/* See SSC3rXX or current. */
770 			action = ACTION_FAIL;
771 			break;
772 		default:
773 			action = ACTION_FAIL;
774 			break;
775 		}
776 	} else
777 		action = ACTION_FAIL;
778 
779 	if (action != ACTION_FAIL &&
780 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
781 		action = ACTION_FAIL;
782 
783 	switch (action) {
784 	case ACTION_FAIL:
785 		/* Give up and fail the remainder of the request */
786 		if (!(req->rq_flags & RQF_QUIET)) {
787 			static DEFINE_RATELIMIT_STATE(_rs,
788 					DEFAULT_RATELIMIT_INTERVAL,
789 					DEFAULT_RATELIMIT_BURST);
790 
791 			if (unlikely(scsi_logging_level))
792 				level =
793 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
794 						    SCSI_LOG_MLCOMPLETE_BITS);
795 
796 			/*
797 			 * if logging is enabled the failure will be printed
798 			 * in scsi_log_completion(), so avoid duplicate messages
799 			 */
800 			if (!level && __ratelimit(&_rs)) {
801 				scsi_print_result(cmd, NULL, FAILED);
802 				if (driver_byte(result) == DRIVER_SENSE)
803 					scsi_print_sense(cmd);
804 				scsi_print_command(cmd);
805 			}
806 		}
807 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
808 			return;
809 		/*FALLTHRU*/
810 	case ACTION_REPREP:
811 		scsi_io_completion_reprep(cmd, q);
812 		break;
813 	case ACTION_RETRY:
814 		/* Retry the same command immediately */
815 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
816 		break;
817 	case ACTION_DELAYED_RETRY:
818 		/* Retry the same command after a delay */
819 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
820 		break;
821 	}
822 }
823 
824 /*
825  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
826  * new result that may suppress further error checking. Also modifies
827  * *blk_statp in some cases.
828  */
829 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
830 					blk_status_t *blk_statp)
831 {
832 	bool sense_valid;
833 	bool sense_current = true;	/* false implies "deferred sense" */
834 	struct request *req = cmd->request;
835 	struct scsi_sense_hdr sshdr;
836 
837 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
838 	if (sense_valid)
839 		sense_current = !scsi_sense_is_deferred(&sshdr);
840 
841 	if (blk_rq_is_passthrough(req)) {
842 		if (sense_valid) {
843 			/*
844 			 * SG_IO wants current and deferred errors
845 			 */
846 			scsi_req(req)->sense_len =
847 				min(8 + cmd->sense_buffer[7],
848 				    SCSI_SENSE_BUFFERSIZE);
849 		}
850 		if (sense_current)
851 			*blk_statp = scsi_result_to_blk_status(cmd, result);
852 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
853 		/*
854 		 * Flush commands do not transfers any data, and thus cannot use
855 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
856 		 * This sets *blk_statp explicitly for the problem case.
857 		 */
858 		*blk_statp = scsi_result_to_blk_status(cmd, result);
859 	}
860 	/*
861 	 * Recovered errors need reporting, but they're always treated as
862 	 * success, so fiddle the result code here.  For passthrough requests
863 	 * we already took a copy of the original into sreq->result which
864 	 * is what gets returned to the user
865 	 */
866 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
867 		bool do_print = true;
868 		/*
869 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
870 		 * skip print since caller wants ATA registers. Only occurs
871 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
872 		 */
873 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
874 			do_print = false;
875 		else if (req->rq_flags & RQF_QUIET)
876 			do_print = false;
877 		if (do_print)
878 			scsi_print_sense(cmd);
879 		result = 0;
880 		/* for passthrough, *blk_statp may be set */
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	/*
884 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
885 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
886 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
887 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
888 	 * intermediate statuses (both obsolete in SAM-4) as good.
889 	 */
890 	if (status_byte(result) && scsi_status_is_good(result)) {
891 		result = 0;
892 		*blk_statp = BLK_STS_OK;
893 	}
894 	return result;
895 }
896 
897 /*
898  * Function:    scsi_io_completion()
899  *
900  * Purpose:     Completion processing for block device I/O requests.
901  *
902  * Arguments:   cmd   - command that is finished.
903  *
904  * Lock status: Assumed that no lock is held upon entry.
905  *
906  * Returns:     Nothing
907  *
908  * Notes:       We will finish off the specified number of sectors.  If we
909  *		are done, the command block will be released and the queue
910  *		function will be goosed.  If we are not done then we have to
911  *		figure out what to do next:
912  *
913  *		a) We can call scsi_requeue_command().  The request
914  *		   will be unprepared and put back on the queue.  Then
915  *		   a new command will be created for it.  This should
916  *		   be used if we made forward progress, or if we want
917  *		   to switch from READ(10) to READ(6) for example.
918  *
919  *		b) We can call __scsi_queue_insert().  The request will
920  *		   be put back on the queue and retried using the same
921  *		   command as before, possibly after a delay.
922  *
923  *		c) We can call scsi_end_request() with blk_stat other than
924  *		   BLK_STS_OK, to fail the remainder of the request.
925  */
926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
927 {
928 	int result = cmd->result;
929 	struct request_queue *q = cmd->device->request_queue;
930 	struct request *req = cmd->request;
931 	blk_status_t blk_stat = BLK_STS_OK;
932 
933 	if (unlikely(result))	/* a nz result may or may not be an error */
934 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
935 
936 	if (unlikely(blk_rq_is_passthrough(req))) {
937 		/*
938 		 * scsi_result_to_blk_status may have reset the host_byte
939 		 */
940 		scsi_req(req)->result = cmd->result;
941 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
942 	}
943 
944 	/*
945 	 * Next deal with any sectors which we were able to correctly
946 	 * handle.
947 	 */
948 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
949 		"%u sectors total, %d bytes done.\n",
950 		blk_rq_sectors(req), good_bytes));
951 
952 	/*
953 	 * Next deal with any sectors which we were able to correctly
954 	 * handle. Failed, zero length commands always need to drop down
955 	 * to retry code. Fast path should return in this block.
956 	 */
957 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
958 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
959 			return; /* no bytes remaining */
960 	}
961 
962 	/* Kill remainder if no retries. */
963 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
964 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
965 			WARN_ONCE(true,
966 			    "Bytes remaining after failed, no-retry command");
967 		return;
968 	}
969 
970 	/*
971 	 * If there had been no error, but we have leftover bytes in the
972 	 * requeues just queue the command up again.
973 	 */
974 	if (likely(result == 0))
975 		scsi_io_completion_reprep(cmd, q);
976 	else
977 		scsi_io_completion_action(cmd, result);
978 }
979 
980 static blk_status_t scsi_init_sgtable(struct request *req,
981 		struct scsi_data_buffer *sdb)
982 {
983 	int count;
984 
985 	/*
986 	 * If sg table allocation fails, requeue request later.
987 	 */
988 	if (unlikely(sg_alloc_table_chained(&sdb->table,
989 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
990 		return BLK_STS_RESOURCE;
991 
992 	/*
993 	 * Next, walk the list, and fill in the addresses and sizes of
994 	 * each segment.
995 	 */
996 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
997 	BUG_ON(count > sdb->table.nents);
998 	sdb->table.nents = count;
999 	sdb->length = blk_rq_payload_bytes(req);
1000 	return BLK_STS_OK;
1001 }
1002 
1003 /*
1004  * Function:    scsi_init_io()
1005  *
1006  * Purpose:     SCSI I/O initialize function.
1007  *
1008  * Arguments:   cmd   - Command descriptor we wish to initialize
1009  *
1010  * Returns:     BLK_STS_OK on success
1011  *		BLK_STS_RESOURCE if the failure is retryable
1012  *		BLK_STS_IOERR if the failure is fatal
1013  */
1014 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1015 {
1016 	struct request *rq = cmd->request;
1017 	blk_status_t ret;
1018 
1019 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1020 		return BLK_STS_IOERR;
1021 
1022 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1023 	if (ret)
1024 		return ret;
1025 
1026 	if (blk_integrity_rq(rq)) {
1027 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1028 		int ivecs, count;
1029 
1030 		if (WARN_ON_ONCE(!prot_sdb)) {
1031 			/*
1032 			 * This can happen if someone (e.g. multipath)
1033 			 * queues a command to a device on an adapter
1034 			 * that does not support DIX.
1035 			 */
1036 			ret = BLK_STS_IOERR;
1037 			goto out_free_sgtables;
1038 		}
1039 
1040 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1041 
1042 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1043 				prot_sdb->table.sgl)) {
1044 			ret = BLK_STS_RESOURCE;
1045 			goto out_free_sgtables;
1046 		}
1047 
1048 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1049 						prot_sdb->table.sgl);
1050 		BUG_ON(count > ivecs);
1051 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1052 
1053 		cmd->prot_sdb = prot_sdb;
1054 		cmd->prot_sdb->table.nents = count;
1055 	}
1056 
1057 	return BLK_STS_OK;
1058 out_free_sgtables:
1059 	scsi_mq_free_sgtables(cmd);
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL(scsi_init_io);
1063 
1064 /**
1065  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1066  * @rq: Request associated with the SCSI command to be initialized.
1067  *
1068  * This function initializes the members of struct scsi_cmnd that must be
1069  * initialized before request processing starts and that won't be
1070  * reinitialized if a SCSI command is requeued.
1071  *
1072  * Called from inside blk_get_request() for pass-through requests and from
1073  * inside scsi_init_command() for filesystem requests.
1074  */
1075 static void scsi_initialize_rq(struct request *rq)
1076 {
1077 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1078 
1079 	scsi_req_init(&cmd->req);
1080 	init_rcu_head(&cmd->rcu);
1081 	cmd->jiffies_at_alloc = jiffies;
1082 	cmd->retries = 0;
1083 }
1084 
1085 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1086 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1087 {
1088 	struct scsi_device *sdev = cmd->device;
1089 	struct Scsi_Host *shost = sdev->host;
1090 	unsigned long flags;
1091 
1092 	if (shost->use_cmd_list) {
1093 		spin_lock_irqsave(&sdev->list_lock, flags);
1094 		list_add_tail(&cmd->list, &sdev->cmd_list);
1095 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1096 	}
1097 }
1098 
1099 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1100 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1101 {
1102 	struct scsi_device *sdev = cmd->device;
1103 	struct Scsi_Host *shost = sdev->host;
1104 	unsigned long flags;
1105 
1106 	if (shost->use_cmd_list) {
1107 		spin_lock_irqsave(&sdev->list_lock, flags);
1108 		BUG_ON(list_empty(&cmd->list));
1109 		list_del_init(&cmd->list);
1110 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1111 	}
1112 }
1113 
1114 /* Called after a request has been started. */
1115 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1116 {
1117 	void *buf = cmd->sense_buffer;
1118 	void *prot = cmd->prot_sdb;
1119 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1120 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1121 	unsigned long jiffies_at_alloc;
1122 	int retries;
1123 
1124 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1125 		flags |= SCMD_INITIALIZED;
1126 		scsi_initialize_rq(rq);
1127 	}
1128 
1129 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1130 	retries = cmd->retries;
1131 	/* zero out the cmd, except for the embedded scsi_request */
1132 	memset((char *)cmd + sizeof(cmd->req), 0,
1133 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1134 
1135 	cmd->device = dev;
1136 	cmd->sense_buffer = buf;
1137 	cmd->prot_sdb = prot;
1138 	cmd->flags = flags;
1139 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1140 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1141 	cmd->retries = retries;
1142 
1143 	scsi_add_cmd_to_list(cmd);
1144 }
1145 
1146 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1147 		struct request *req)
1148 {
1149 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1150 
1151 	/*
1152 	 * Passthrough requests may transfer data, in which case they must
1153 	 * a bio attached to them.  Or they might contain a SCSI command
1154 	 * that does not transfer data, in which case they may optionally
1155 	 * submit a request without an attached bio.
1156 	 */
1157 	if (req->bio) {
1158 		blk_status_t ret = scsi_init_io(cmd);
1159 		if (unlikely(ret != BLK_STS_OK))
1160 			return ret;
1161 	} else {
1162 		BUG_ON(blk_rq_bytes(req));
1163 
1164 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1165 	}
1166 
1167 	cmd->cmd_len = scsi_req(req)->cmd_len;
1168 	cmd->cmnd = scsi_req(req)->cmd;
1169 	cmd->transfersize = blk_rq_bytes(req);
1170 	cmd->allowed = scsi_req(req)->retries;
1171 	return BLK_STS_OK;
1172 }
1173 
1174 /*
1175  * Setup a normal block command.  These are simple request from filesystems
1176  * that still need to be translated to SCSI CDBs from the ULD.
1177  */
1178 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1179 		struct request *req)
1180 {
1181 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1182 
1183 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1184 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1185 		if (ret != BLK_STS_OK)
1186 			return ret;
1187 	}
1188 
1189 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1190 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1191 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1192 }
1193 
1194 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1195 		struct request *req)
1196 {
1197 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1198 
1199 	if (!blk_rq_bytes(req))
1200 		cmd->sc_data_direction = DMA_NONE;
1201 	else if (rq_data_dir(req) == WRITE)
1202 		cmd->sc_data_direction = DMA_TO_DEVICE;
1203 	else
1204 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1205 
1206 	if (blk_rq_is_scsi(req))
1207 		return scsi_setup_scsi_cmnd(sdev, req);
1208 	else
1209 		return scsi_setup_fs_cmnd(sdev, req);
1210 }
1211 
1212 static blk_status_t
1213 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1214 {
1215 	switch (sdev->sdev_state) {
1216 	case SDEV_OFFLINE:
1217 	case SDEV_TRANSPORT_OFFLINE:
1218 		/*
1219 		 * If the device is offline we refuse to process any
1220 		 * commands.  The device must be brought online
1221 		 * before trying any recovery commands.
1222 		 */
1223 		sdev_printk(KERN_ERR, sdev,
1224 			    "rejecting I/O to offline device\n");
1225 		return BLK_STS_IOERR;
1226 	case SDEV_DEL:
1227 		/*
1228 		 * If the device is fully deleted, we refuse to
1229 		 * process any commands as well.
1230 		 */
1231 		sdev_printk(KERN_ERR, sdev,
1232 			    "rejecting I/O to dead device\n");
1233 		return BLK_STS_IOERR;
1234 	case SDEV_BLOCK:
1235 	case SDEV_CREATED_BLOCK:
1236 		return BLK_STS_RESOURCE;
1237 	case SDEV_QUIESCE:
1238 		/*
1239 		 * If the devices is blocked we defer normal commands.
1240 		 */
1241 		if (req && !(req->rq_flags & RQF_PREEMPT))
1242 			return BLK_STS_RESOURCE;
1243 		return BLK_STS_OK;
1244 	default:
1245 		/*
1246 		 * For any other not fully online state we only allow
1247 		 * special commands.  In particular any user initiated
1248 		 * command is not allowed.
1249 		 */
1250 		if (req && !(req->rq_flags & RQF_PREEMPT))
1251 			return BLK_STS_IOERR;
1252 		return BLK_STS_OK;
1253 	}
1254 }
1255 
1256 /*
1257  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258  * return 0.
1259  *
1260  * Called with the queue_lock held.
1261  */
1262 static inline int scsi_dev_queue_ready(struct request_queue *q,
1263 				  struct scsi_device *sdev)
1264 {
1265 	unsigned int busy;
1266 
1267 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1268 	if (atomic_read(&sdev->device_blocked)) {
1269 		if (busy)
1270 			goto out_dec;
1271 
1272 		/*
1273 		 * unblock after device_blocked iterates to zero
1274 		 */
1275 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1276 			goto out_dec;
1277 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1278 				   "unblocking device at zero depth\n"));
1279 	}
1280 
1281 	if (busy >= sdev->queue_depth)
1282 		goto out_dec;
1283 
1284 	return 1;
1285 out_dec:
1286 	atomic_dec(&sdev->device_busy);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * scsi_target_queue_ready: checks if there we can send commands to target
1292  * @sdev: scsi device on starget to check.
1293  */
1294 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295 					   struct scsi_device *sdev)
1296 {
1297 	struct scsi_target *starget = scsi_target(sdev);
1298 	unsigned int busy;
1299 
1300 	if (starget->single_lun) {
1301 		spin_lock_irq(shost->host_lock);
1302 		if (starget->starget_sdev_user &&
1303 		    starget->starget_sdev_user != sdev) {
1304 			spin_unlock_irq(shost->host_lock);
1305 			return 0;
1306 		}
1307 		starget->starget_sdev_user = sdev;
1308 		spin_unlock_irq(shost->host_lock);
1309 	}
1310 
1311 	if (starget->can_queue <= 0)
1312 		return 1;
1313 
1314 	busy = atomic_inc_return(&starget->target_busy) - 1;
1315 	if (atomic_read(&starget->target_blocked) > 0) {
1316 		if (busy)
1317 			goto starved;
1318 
1319 		/*
1320 		 * unblock after target_blocked iterates to zero
1321 		 */
1322 		if (atomic_dec_return(&starget->target_blocked) > 0)
1323 			goto out_dec;
1324 
1325 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1326 				 "unblocking target at zero depth\n"));
1327 	}
1328 
1329 	if (busy >= starget->can_queue)
1330 		goto starved;
1331 
1332 	return 1;
1333 
1334 starved:
1335 	spin_lock_irq(shost->host_lock);
1336 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1337 	spin_unlock_irq(shost->host_lock);
1338 out_dec:
1339 	if (starget->can_queue > 0)
1340 		atomic_dec(&starget->target_busy);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1346  * return 0. We must end up running the queue again whenever 0 is
1347  * returned, else IO can hang.
1348  */
1349 static inline int scsi_host_queue_ready(struct request_queue *q,
1350 				   struct Scsi_Host *shost,
1351 				   struct scsi_device *sdev)
1352 {
1353 	unsigned int busy;
1354 
1355 	if (scsi_host_in_recovery(shost))
1356 		return 0;
1357 
1358 	busy = atomic_inc_return(&shost->host_busy) - 1;
1359 	if (atomic_read(&shost->host_blocked) > 0) {
1360 		if (busy)
1361 			goto starved;
1362 
1363 		/*
1364 		 * unblock after host_blocked iterates to zero
1365 		 */
1366 		if (atomic_dec_return(&shost->host_blocked) > 0)
1367 			goto out_dec;
1368 
1369 		SCSI_LOG_MLQUEUE(3,
1370 			shost_printk(KERN_INFO, shost,
1371 				     "unblocking host at zero depth\n"));
1372 	}
1373 
1374 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1375 		goto starved;
1376 	if (shost->host_self_blocked)
1377 		goto starved;
1378 
1379 	/* We're OK to process the command, so we can't be starved */
1380 	if (!list_empty(&sdev->starved_entry)) {
1381 		spin_lock_irq(shost->host_lock);
1382 		if (!list_empty(&sdev->starved_entry))
1383 			list_del_init(&sdev->starved_entry);
1384 		spin_unlock_irq(shost->host_lock);
1385 	}
1386 
1387 	return 1;
1388 
1389 starved:
1390 	spin_lock_irq(shost->host_lock);
1391 	if (list_empty(&sdev->starved_entry))
1392 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1393 	spin_unlock_irq(shost->host_lock);
1394 out_dec:
1395 	scsi_dec_host_busy(shost);
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Busy state exporting function for request stacking drivers.
1401  *
1402  * For efficiency, no lock is taken to check the busy state of
1403  * shost/starget/sdev, since the returned value is not guaranteed and
1404  * may be changed after request stacking drivers call the function,
1405  * regardless of taking lock or not.
1406  *
1407  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1408  * needs to return 'not busy'. Otherwise, request stacking drivers
1409  * may hold requests forever.
1410  */
1411 static bool scsi_mq_lld_busy(struct request_queue *q)
1412 {
1413 	struct scsi_device *sdev = q->queuedata;
1414 	struct Scsi_Host *shost;
1415 
1416 	if (blk_queue_dying(q))
1417 		return false;
1418 
1419 	shost = sdev->host;
1420 
1421 	/*
1422 	 * Ignore host/starget busy state.
1423 	 * Since block layer does not have a concept of fairness across
1424 	 * multiple queues, congestion of host/starget needs to be handled
1425 	 * in SCSI layer.
1426 	 */
1427 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1428 		return true;
1429 
1430 	return false;
1431 }
1432 
1433 static void scsi_softirq_done(struct request *rq)
1434 {
1435 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1436 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1437 	int disposition;
1438 
1439 	INIT_LIST_HEAD(&cmd->eh_entry);
1440 
1441 	atomic_inc(&cmd->device->iodone_cnt);
1442 	if (cmd->result)
1443 		atomic_inc(&cmd->device->ioerr_cnt);
1444 
1445 	disposition = scsi_decide_disposition(cmd);
1446 	if (disposition != SUCCESS &&
1447 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448 		sdev_printk(KERN_ERR, cmd->device,
1449 			    "timing out command, waited %lus\n",
1450 			    wait_for/HZ);
1451 		disposition = SUCCESS;
1452 	}
1453 
1454 	scsi_log_completion(cmd, disposition);
1455 
1456 	switch (disposition) {
1457 		case SUCCESS:
1458 			scsi_finish_command(cmd);
1459 			break;
1460 		case NEEDS_RETRY:
1461 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1462 			break;
1463 		case ADD_TO_MLQUEUE:
1464 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1465 			break;
1466 		default:
1467 			scsi_eh_scmd_add(cmd);
1468 			break;
1469 	}
1470 }
1471 
1472 /**
1473  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1474  * @cmd: command block we are dispatching.
1475  *
1476  * Return: nonzero return request was rejected and device's queue needs to be
1477  * plugged.
1478  */
1479 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1480 {
1481 	struct Scsi_Host *host = cmd->device->host;
1482 	int rtn = 0;
1483 
1484 	atomic_inc(&cmd->device->iorequest_cnt);
1485 
1486 	/* check if the device is still usable */
1487 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1488 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1489 		 * returns an immediate error upwards, and signals
1490 		 * that the device is no longer present */
1491 		cmd->result = DID_NO_CONNECT << 16;
1492 		goto done;
1493 	}
1494 
1495 	/* Check to see if the scsi lld made this device blocked. */
1496 	if (unlikely(scsi_device_blocked(cmd->device))) {
1497 		/*
1498 		 * in blocked state, the command is just put back on
1499 		 * the device queue.  The suspend state has already
1500 		 * blocked the queue so future requests should not
1501 		 * occur until the device transitions out of the
1502 		 * suspend state.
1503 		 */
1504 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1505 			"queuecommand : device blocked\n"));
1506 		return SCSI_MLQUEUE_DEVICE_BUSY;
1507 	}
1508 
1509 	/* Store the LUN value in cmnd, if needed. */
1510 	if (cmd->device->lun_in_cdb)
1511 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1512 			       (cmd->device->lun << 5 & 0xe0);
1513 
1514 	scsi_log_send(cmd);
1515 
1516 	/*
1517 	 * Before we queue this command, check if the command
1518 	 * length exceeds what the host adapter can handle.
1519 	 */
1520 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1521 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1522 			       "queuecommand : command too long. "
1523 			       "cdb_size=%d host->max_cmd_len=%d\n",
1524 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1525 		cmd->result = (DID_ABORT << 16);
1526 		goto done;
1527 	}
1528 
1529 	if (unlikely(host->shost_state == SHOST_DEL)) {
1530 		cmd->result = (DID_NO_CONNECT << 16);
1531 		goto done;
1532 
1533 	}
1534 
1535 	trace_scsi_dispatch_cmd_start(cmd);
1536 	rtn = host->hostt->queuecommand(host, cmd);
1537 	if (rtn) {
1538 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1539 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1540 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1541 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1542 
1543 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1544 			"queuecommand : request rejected\n"));
1545 	}
1546 
1547 	return rtn;
1548  done:
1549 	cmd->scsi_done(cmd);
1550 	return 0;
1551 }
1552 
1553 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1554 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1555 {
1556 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1557 		sizeof(struct scatterlist);
1558 }
1559 
1560 static blk_status_t scsi_mq_prep_fn(struct request *req)
1561 {
1562 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1563 	struct scsi_device *sdev = req->q->queuedata;
1564 	struct Scsi_Host *shost = sdev->host;
1565 	struct scatterlist *sg;
1566 
1567 	scsi_init_command(sdev, cmd);
1568 
1569 	req->special = cmd;
1570 
1571 	cmd->request = req;
1572 
1573 	cmd->tag = req->tag;
1574 	cmd->prot_op = SCSI_PROT_NORMAL;
1575 
1576 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1577 	cmd->sdb.table.sgl = sg;
1578 
1579 	if (scsi_host_get_prot(shost)) {
1580 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1581 
1582 		cmd->prot_sdb->table.sgl =
1583 			(struct scatterlist *)(cmd->prot_sdb + 1);
1584 	}
1585 
1586 	blk_mq_start_request(req);
1587 
1588 	return scsi_setup_cmnd(sdev, req);
1589 }
1590 
1591 static void scsi_mq_done(struct scsi_cmnd *cmd)
1592 {
1593 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1594 		return;
1595 	trace_scsi_dispatch_cmd_done(cmd);
1596 
1597 	/*
1598 	 * If the block layer didn't complete the request due to a timeout
1599 	 * injection, scsi must clear its internal completed state so that the
1600 	 * timeout handler will see it needs to escalate its own error
1601 	 * recovery.
1602 	 */
1603 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1604 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1605 }
1606 
1607 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1608 {
1609 	struct request_queue *q = hctx->queue;
1610 	struct scsi_device *sdev = q->queuedata;
1611 
1612 	atomic_dec(&sdev->device_busy);
1613 	put_device(&sdev->sdev_gendev);
1614 }
1615 
1616 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1617 {
1618 	struct request_queue *q = hctx->queue;
1619 	struct scsi_device *sdev = q->queuedata;
1620 
1621 	if (!get_device(&sdev->sdev_gendev))
1622 		goto out;
1623 	if (!scsi_dev_queue_ready(q, sdev))
1624 		goto out_put_device;
1625 
1626 	return true;
1627 
1628 out_put_device:
1629 	put_device(&sdev->sdev_gendev);
1630 out:
1631 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1632 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1633 	return false;
1634 }
1635 
1636 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1637 			 const struct blk_mq_queue_data *bd)
1638 {
1639 	struct request *req = bd->rq;
1640 	struct request_queue *q = req->q;
1641 	struct scsi_device *sdev = q->queuedata;
1642 	struct Scsi_Host *shost = sdev->host;
1643 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1644 	blk_status_t ret;
1645 	int reason;
1646 
1647 	/*
1648 	 * If the device is not in running state we will reject some or all
1649 	 * commands.
1650 	 */
1651 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1652 		ret = scsi_prep_state_check(sdev, req);
1653 		if (ret != BLK_STS_OK)
1654 			goto out_put_budget;
1655 	}
1656 
1657 	ret = BLK_STS_RESOURCE;
1658 	if (!scsi_target_queue_ready(shost, sdev))
1659 		goto out_put_budget;
1660 	if (!scsi_host_queue_ready(q, shost, sdev))
1661 		goto out_dec_target_busy;
1662 
1663 	if (!(req->rq_flags & RQF_DONTPREP)) {
1664 		ret = scsi_mq_prep_fn(req);
1665 		if (ret != BLK_STS_OK)
1666 			goto out_dec_host_busy;
1667 		req->rq_flags |= RQF_DONTPREP;
1668 	} else {
1669 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1670 		blk_mq_start_request(req);
1671 	}
1672 
1673 	if (sdev->simple_tags)
1674 		cmd->flags |= SCMD_TAGGED;
1675 	else
1676 		cmd->flags &= ~SCMD_TAGGED;
1677 
1678 	scsi_init_cmd_errh(cmd);
1679 	cmd->scsi_done = scsi_mq_done;
1680 
1681 	reason = scsi_dispatch_cmd(cmd);
1682 	if (reason) {
1683 		scsi_set_blocked(cmd, reason);
1684 		ret = BLK_STS_RESOURCE;
1685 		goto out_dec_host_busy;
1686 	}
1687 
1688 	return BLK_STS_OK;
1689 
1690 out_dec_host_busy:
1691 	scsi_dec_host_busy(shost);
1692 out_dec_target_busy:
1693 	if (scsi_target(sdev)->can_queue > 0)
1694 		atomic_dec(&scsi_target(sdev)->target_busy);
1695 out_put_budget:
1696 	scsi_mq_put_budget(hctx);
1697 	switch (ret) {
1698 	case BLK_STS_OK:
1699 		break;
1700 	case BLK_STS_RESOURCE:
1701 		if (atomic_read(&sdev->device_busy) ||
1702 		    scsi_device_blocked(sdev))
1703 			ret = BLK_STS_DEV_RESOURCE;
1704 		break;
1705 	default:
1706 		/*
1707 		 * Make sure to release all allocated ressources when
1708 		 * we hit an error, as we will never see this command
1709 		 * again.
1710 		 */
1711 		if (req->rq_flags & RQF_DONTPREP)
1712 			scsi_mq_uninit_cmd(cmd);
1713 		break;
1714 	}
1715 	return ret;
1716 }
1717 
1718 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1719 		bool reserved)
1720 {
1721 	if (reserved)
1722 		return BLK_EH_RESET_TIMER;
1723 	return scsi_times_out(req);
1724 }
1725 
1726 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1727 				unsigned int hctx_idx, unsigned int numa_node)
1728 {
1729 	struct Scsi_Host *shost = set->driver_data;
1730 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1731 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1732 	struct scatterlist *sg;
1733 
1734 	if (unchecked_isa_dma)
1735 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1736 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1737 						    GFP_KERNEL, numa_node);
1738 	if (!cmd->sense_buffer)
1739 		return -ENOMEM;
1740 	cmd->req.sense = cmd->sense_buffer;
1741 
1742 	if (scsi_host_get_prot(shost)) {
1743 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1744 			shost->hostt->cmd_size;
1745 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1752 				 unsigned int hctx_idx)
1753 {
1754 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1755 
1756 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757 			       cmd->sense_buffer);
1758 }
1759 
1760 static int scsi_map_queues(struct blk_mq_tag_set *set)
1761 {
1762 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763 
1764 	if (shost->hostt->map_queues)
1765 		return shost->hostt->map_queues(shost);
1766 	return blk_mq_map_queues(&set->map[0]);
1767 }
1768 
1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770 {
1771 	struct device *dev = shost->dma_dev;
1772 
1773 	/*
1774 	 * this limit is imposed by hardware restrictions
1775 	 */
1776 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777 					SG_MAX_SEGMENTS));
1778 
1779 	if (scsi_host_prot_dma(shost)) {
1780 		shost->sg_prot_tablesize =
1781 			min_not_zero(shost->sg_prot_tablesize,
1782 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785 	}
1786 
1787 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1788 	if (shost->unchecked_isa_dma)
1789 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1790 	blk_queue_segment_boundary(q, shost->dma_boundary);
1791 	dma_set_seg_boundary(dev, shost->dma_boundary);
1792 
1793 	blk_queue_max_segment_size(q,
1794 		min(shost->max_segment_size, dma_get_max_seg_size(dev)));
1795 
1796 	/*
1797 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1798 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1799 	 * which is set by the platform.
1800 	 *
1801 	 * Devices that require a bigger alignment can increase it later.
1802 	 */
1803 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1804 }
1805 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1806 
1807 static const struct blk_mq_ops scsi_mq_ops = {
1808 	.get_budget	= scsi_mq_get_budget,
1809 	.put_budget	= scsi_mq_put_budget,
1810 	.queue_rq	= scsi_queue_rq,
1811 	.complete	= scsi_softirq_done,
1812 	.timeout	= scsi_timeout,
1813 #ifdef CONFIG_BLK_DEBUG_FS
1814 	.show_rq	= scsi_show_rq,
1815 #endif
1816 	.init_request	= scsi_mq_init_request,
1817 	.exit_request	= scsi_mq_exit_request,
1818 	.initialize_rq_fn = scsi_initialize_rq,
1819 	.busy		= scsi_mq_lld_busy,
1820 	.map_queues	= scsi_map_queues,
1821 };
1822 
1823 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1824 {
1825 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1826 	if (IS_ERR(sdev->request_queue))
1827 		return NULL;
1828 
1829 	sdev->request_queue->queuedata = sdev;
1830 	__scsi_init_queue(sdev->host, sdev->request_queue);
1831 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1832 	return sdev->request_queue;
1833 }
1834 
1835 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1836 {
1837 	unsigned int cmd_size, sgl_size;
1838 
1839 	sgl_size = scsi_mq_sgl_size(shost);
1840 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1841 	if (scsi_host_get_prot(shost))
1842 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
1843 
1844 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1845 	shost->tag_set.ops = &scsi_mq_ops;
1846 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1847 	shost->tag_set.queue_depth = shost->can_queue;
1848 	shost->tag_set.cmd_size = cmd_size;
1849 	shost->tag_set.numa_node = NUMA_NO_NODE;
1850 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1851 	shost->tag_set.flags |=
1852 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1853 	shost->tag_set.driver_data = shost;
1854 
1855 	return blk_mq_alloc_tag_set(&shost->tag_set);
1856 }
1857 
1858 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1859 {
1860 	blk_mq_free_tag_set(&shost->tag_set);
1861 }
1862 
1863 /**
1864  * scsi_device_from_queue - return sdev associated with a request_queue
1865  * @q: The request queue to return the sdev from
1866  *
1867  * Return the sdev associated with a request queue or NULL if the
1868  * request_queue does not reference a SCSI device.
1869  */
1870 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1871 {
1872 	struct scsi_device *sdev = NULL;
1873 
1874 	if (q->mq_ops == &scsi_mq_ops)
1875 		sdev = q->queuedata;
1876 	if (!sdev || !get_device(&sdev->sdev_gendev))
1877 		sdev = NULL;
1878 
1879 	return sdev;
1880 }
1881 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1882 
1883 /*
1884  * Function:    scsi_block_requests()
1885  *
1886  * Purpose:     Utility function used by low-level drivers to prevent further
1887  *		commands from being queued to the device.
1888  *
1889  * Arguments:   shost       - Host in question
1890  *
1891  * Returns:     Nothing
1892  *
1893  * Lock status: No locks are assumed held.
1894  *
1895  * Notes:       There is no timer nor any other means by which the requests
1896  *		get unblocked other than the low-level driver calling
1897  *		scsi_unblock_requests().
1898  */
1899 void scsi_block_requests(struct Scsi_Host *shost)
1900 {
1901 	shost->host_self_blocked = 1;
1902 }
1903 EXPORT_SYMBOL(scsi_block_requests);
1904 
1905 /*
1906  * Function:    scsi_unblock_requests()
1907  *
1908  * Purpose:     Utility function used by low-level drivers to allow further
1909  *		commands from being queued to the device.
1910  *
1911  * Arguments:   shost       - Host in question
1912  *
1913  * Returns:     Nothing
1914  *
1915  * Lock status: No locks are assumed held.
1916  *
1917  * Notes:       There is no timer nor any other means by which the requests
1918  *		get unblocked other than the low-level driver calling
1919  *		scsi_unblock_requests().
1920  *
1921  *		This is done as an API function so that changes to the
1922  *		internals of the scsi mid-layer won't require wholesale
1923  *		changes to drivers that use this feature.
1924  */
1925 void scsi_unblock_requests(struct Scsi_Host *shost)
1926 {
1927 	shost->host_self_blocked = 0;
1928 	scsi_run_host_queues(shost);
1929 }
1930 EXPORT_SYMBOL(scsi_unblock_requests);
1931 
1932 int __init scsi_init_queue(void)
1933 {
1934 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1935 					   sizeof(struct scsi_data_buffer),
1936 					   0, 0, NULL);
1937 	if (!scsi_sdb_cache) {
1938 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1939 		return -ENOMEM;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 void scsi_exit_queue(void)
1946 {
1947 	kmem_cache_destroy(scsi_sense_cache);
1948 	kmem_cache_destroy(scsi_sense_isadma_cache);
1949 	kmem_cache_destroy(scsi_sdb_cache);
1950 }
1951 
1952 /**
1953  *	scsi_mode_select - issue a mode select
1954  *	@sdev:	SCSI device to be queried
1955  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1956  *	@sp:	Save page bit (0 == don't save, 1 == save)
1957  *	@modepage: mode page being requested
1958  *	@buffer: request buffer (may not be smaller than eight bytes)
1959  *	@len:	length of request buffer.
1960  *	@timeout: command timeout
1961  *	@retries: number of retries before failing
1962  *	@data: returns a structure abstracting the mode header data
1963  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1964  *		must be SCSI_SENSE_BUFFERSIZE big.
1965  *
1966  *	Returns zero if successful; negative error number or scsi
1967  *	status on error
1968  *
1969  */
1970 int
1971 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1972 		 unsigned char *buffer, int len, int timeout, int retries,
1973 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1974 {
1975 	unsigned char cmd[10];
1976 	unsigned char *real_buffer;
1977 	int ret;
1978 
1979 	memset(cmd, 0, sizeof(cmd));
1980 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1981 
1982 	if (sdev->use_10_for_ms) {
1983 		if (len > 65535)
1984 			return -EINVAL;
1985 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1986 		if (!real_buffer)
1987 			return -ENOMEM;
1988 		memcpy(real_buffer + 8, buffer, len);
1989 		len += 8;
1990 		real_buffer[0] = 0;
1991 		real_buffer[1] = 0;
1992 		real_buffer[2] = data->medium_type;
1993 		real_buffer[3] = data->device_specific;
1994 		real_buffer[4] = data->longlba ? 0x01 : 0;
1995 		real_buffer[5] = 0;
1996 		real_buffer[6] = data->block_descriptor_length >> 8;
1997 		real_buffer[7] = data->block_descriptor_length;
1998 
1999 		cmd[0] = MODE_SELECT_10;
2000 		cmd[7] = len >> 8;
2001 		cmd[8] = len;
2002 	} else {
2003 		if (len > 255 || data->block_descriptor_length > 255 ||
2004 		    data->longlba)
2005 			return -EINVAL;
2006 
2007 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2008 		if (!real_buffer)
2009 			return -ENOMEM;
2010 		memcpy(real_buffer + 4, buffer, len);
2011 		len += 4;
2012 		real_buffer[0] = 0;
2013 		real_buffer[1] = data->medium_type;
2014 		real_buffer[2] = data->device_specific;
2015 		real_buffer[3] = data->block_descriptor_length;
2016 
2017 
2018 		cmd[0] = MODE_SELECT;
2019 		cmd[4] = len;
2020 	}
2021 
2022 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2023 			       sshdr, timeout, retries, NULL);
2024 	kfree(real_buffer);
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(scsi_mode_select);
2028 
2029 /**
2030  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2031  *	@sdev:	SCSI device to be queried
2032  *	@dbd:	set if mode sense will allow block descriptors to be returned
2033  *	@modepage: mode page being requested
2034  *	@buffer: request buffer (may not be smaller than eight bytes)
2035  *	@len:	length of request buffer.
2036  *	@timeout: command timeout
2037  *	@retries: number of retries before failing
2038  *	@data: returns a structure abstracting the mode header data
2039  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2040  *		must be SCSI_SENSE_BUFFERSIZE big.
2041  *
2042  *	Returns zero if unsuccessful, or the header offset (either 4
2043  *	or 8 depending on whether a six or ten byte command was
2044  *	issued) if successful.
2045  */
2046 int
2047 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2048 		  unsigned char *buffer, int len, int timeout, int retries,
2049 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2050 {
2051 	unsigned char cmd[12];
2052 	int use_10_for_ms;
2053 	int header_length;
2054 	int result, retry_count = retries;
2055 	struct scsi_sense_hdr my_sshdr;
2056 
2057 	memset(data, 0, sizeof(*data));
2058 	memset(&cmd[0], 0, 12);
2059 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2060 	cmd[2] = modepage;
2061 
2062 	/* caller might not be interested in sense, but we need it */
2063 	if (!sshdr)
2064 		sshdr = &my_sshdr;
2065 
2066  retry:
2067 	use_10_for_ms = sdev->use_10_for_ms;
2068 
2069 	if (use_10_for_ms) {
2070 		if (len < 8)
2071 			len = 8;
2072 
2073 		cmd[0] = MODE_SENSE_10;
2074 		cmd[8] = len;
2075 		header_length = 8;
2076 	} else {
2077 		if (len < 4)
2078 			len = 4;
2079 
2080 		cmd[0] = MODE_SENSE;
2081 		cmd[4] = len;
2082 		header_length = 4;
2083 	}
2084 
2085 	memset(buffer, 0, len);
2086 
2087 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2088 				  sshdr, timeout, retries, NULL);
2089 
2090 	/* This code looks awful: what it's doing is making sure an
2091 	 * ILLEGAL REQUEST sense return identifies the actual command
2092 	 * byte as the problem.  MODE_SENSE commands can return
2093 	 * ILLEGAL REQUEST if the code page isn't supported */
2094 
2095 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2096 	    driver_byte(result) == DRIVER_SENSE) {
2097 		if (scsi_sense_valid(sshdr)) {
2098 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2099 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2100 				/*
2101 				 * Invalid command operation code
2102 				 */
2103 				sdev->use_10_for_ms = 0;
2104 				goto retry;
2105 			}
2106 		}
2107 	}
2108 
2109 	if(scsi_status_is_good(result)) {
2110 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2111 			     (modepage == 6 || modepage == 8))) {
2112 			/* Initio breakage? */
2113 			header_length = 0;
2114 			data->length = 13;
2115 			data->medium_type = 0;
2116 			data->device_specific = 0;
2117 			data->longlba = 0;
2118 			data->block_descriptor_length = 0;
2119 		} else if(use_10_for_ms) {
2120 			data->length = buffer[0]*256 + buffer[1] + 2;
2121 			data->medium_type = buffer[2];
2122 			data->device_specific = buffer[3];
2123 			data->longlba = buffer[4] & 0x01;
2124 			data->block_descriptor_length = buffer[6]*256
2125 				+ buffer[7];
2126 		} else {
2127 			data->length = buffer[0] + 1;
2128 			data->medium_type = buffer[1];
2129 			data->device_specific = buffer[2];
2130 			data->block_descriptor_length = buffer[3];
2131 		}
2132 		data->header_length = header_length;
2133 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2134 		   scsi_sense_valid(sshdr) &&
2135 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2136 		retry_count--;
2137 		goto retry;
2138 	}
2139 
2140 	return result;
2141 }
2142 EXPORT_SYMBOL(scsi_mode_sense);
2143 
2144 /**
2145  *	scsi_test_unit_ready - test if unit is ready
2146  *	@sdev:	scsi device to change the state of.
2147  *	@timeout: command timeout
2148  *	@retries: number of retries before failing
2149  *	@sshdr: outpout pointer for decoded sense information.
2150  *
2151  *	Returns zero if unsuccessful or an error if TUR failed.  For
2152  *	removable media, UNIT_ATTENTION sets ->changed flag.
2153  **/
2154 int
2155 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2156 		     struct scsi_sense_hdr *sshdr)
2157 {
2158 	char cmd[] = {
2159 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2160 	};
2161 	int result;
2162 
2163 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2164 	do {
2165 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2166 					  timeout, 1, NULL);
2167 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2168 		    sshdr->sense_key == UNIT_ATTENTION)
2169 			sdev->changed = 1;
2170 	} while (scsi_sense_valid(sshdr) &&
2171 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2172 
2173 	return result;
2174 }
2175 EXPORT_SYMBOL(scsi_test_unit_ready);
2176 
2177 /**
2178  *	scsi_device_set_state - Take the given device through the device state model.
2179  *	@sdev:	scsi device to change the state of.
2180  *	@state:	state to change to.
2181  *
2182  *	Returns zero if successful or an error if the requested
2183  *	transition is illegal.
2184  */
2185 int
2186 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2187 {
2188 	enum scsi_device_state oldstate = sdev->sdev_state;
2189 
2190 	if (state == oldstate)
2191 		return 0;
2192 
2193 	switch (state) {
2194 	case SDEV_CREATED:
2195 		switch (oldstate) {
2196 		case SDEV_CREATED_BLOCK:
2197 			break;
2198 		default:
2199 			goto illegal;
2200 		}
2201 		break;
2202 
2203 	case SDEV_RUNNING:
2204 		switch (oldstate) {
2205 		case SDEV_CREATED:
2206 		case SDEV_OFFLINE:
2207 		case SDEV_TRANSPORT_OFFLINE:
2208 		case SDEV_QUIESCE:
2209 		case SDEV_BLOCK:
2210 			break;
2211 		default:
2212 			goto illegal;
2213 		}
2214 		break;
2215 
2216 	case SDEV_QUIESCE:
2217 		switch (oldstate) {
2218 		case SDEV_RUNNING:
2219 		case SDEV_OFFLINE:
2220 		case SDEV_TRANSPORT_OFFLINE:
2221 			break;
2222 		default:
2223 			goto illegal;
2224 		}
2225 		break;
2226 
2227 	case SDEV_OFFLINE:
2228 	case SDEV_TRANSPORT_OFFLINE:
2229 		switch (oldstate) {
2230 		case SDEV_CREATED:
2231 		case SDEV_RUNNING:
2232 		case SDEV_QUIESCE:
2233 		case SDEV_BLOCK:
2234 			break;
2235 		default:
2236 			goto illegal;
2237 		}
2238 		break;
2239 
2240 	case SDEV_BLOCK:
2241 		switch (oldstate) {
2242 		case SDEV_RUNNING:
2243 		case SDEV_CREATED_BLOCK:
2244 		case SDEV_OFFLINE:
2245 			break;
2246 		default:
2247 			goto illegal;
2248 		}
2249 		break;
2250 
2251 	case SDEV_CREATED_BLOCK:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED:
2254 			break;
2255 		default:
2256 			goto illegal;
2257 		}
2258 		break;
2259 
2260 	case SDEV_CANCEL:
2261 		switch (oldstate) {
2262 		case SDEV_CREATED:
2263 		case SDEV_RUNNING:
2264 		case SDEV_QUIESCE:
2265 		case SDEV_OFFLINE:
2266 		case SDEV_TRANSPORT_OFFLINE:
2267 			break;
2268 		default:
2269 			goto illegal;
2270 		}
2271 		break;
2272 
2273 	case SDEV_DEL:
2274 		switch (oldstate) {
2275 		case SDEV_CREATED:
2276 		case SDEV_RUNNING:
2277 		case SDEV_OFFLINE:
2278 		case SDEV_TRANSPORT_OFFLINE:
2279 		case SDEV_CANCEL:
2280 		case SDEV_BLOCK:
2281 		case SDEV_CREATED_BLOCK:
2282 			break;
2283 		default:
2284 			goto illegal;
2285 		}
2286 		break;
2287 
2288 	}
2289 	sdev->sdev_state = state;
2290 	return 0;
2291 
2292  illegal:
2293 	SCSI_LOG_ERROR_RECOVERY(1,
2294 				sdev_printk(KERN_ERR, sdev,
2295 					    "Illegal state transition %s->%s",
2296 					    scsi_device_state_name(oldstate),
2297 					    scsi_device_state_name(state))
2298 				);
2299 	return -EINVAL;
2300 }
2301 EXPORT_SYMBOL(scsi_device_set_state);
2302 
2303 /**
2304  * 	sdev_evt_emit - emit a single SCSI device uevent
2305  *	@sdev: associated SCSI device
2306  *	@evt: event to emit
2307  *
2308  *	Send a single uevent (scsi_event) to the associated scsi_device.
2309  */
2310 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2311 {
2312 	int idx = 0;
2313 	char *envp[3];
2314 
2315 	switch (evt->evt_type) {
2316 	case SDEV_EVT_MEDIA_CHANGE:
2317 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2318 		break;
2319 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2320 		scsi_rescan_device(&sdev->sdev_gendev);
2321 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2322 		break;
2323 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2324 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2325 		break;
2326 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2327 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2328 		break;
2329 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2330 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2331 		break;
2332 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2333 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2334 		break;
2335 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2336 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2337 		break;
2338 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2339 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2340 		break;
2341 	default:
2342 		/* do nothing */
2343 		break;
2344 	}
2345 
2346 	envp[idx++] = NULL;
2347 
2348 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2349 }
2350 
2351 /**
2352  * 	sdev_evt_thread - send a uevent for each scsi event
2353  *	@work: work struct for scsi_device
2354  *
2355  *	Dispatch queued events to their associated scsi_device kobjects
2356  *	as uevents.
2357  */
2358 void scsi_evt_thread(struct work_struct *work)
2359 {
2360 	struct scsi_device *sdev;
2361 	enum scsi_device_event evt_type;
2362 	LIST_HEAD(event_list);
2363 
2364 	sdev = container_of(work, struct scsi_device, event_work);
2365 
2366 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2367 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2368 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2369 
2370 	while (1) {
2371 		struct scsi_event *evt;
2372 		struct list_head *this, *tmp;
2373 		unsigned long flags;
2374 
2375 		spin_lock_irqsave(&sdev->list_lock, flags);
2376 		list_splice_init(&sdev->event_list, &event_list);
2377 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2378 
2379 		if (list_empty(&event_list))
2380 			break;
2381 
2382 		list_for_each_safe(this, tmp, &event_list) {
2383 			evt = list_entry(this, struct scsi_event, node);
2384 			list_del(&evt->node);
2385 			scsi_evt_emit(sdev, evt);
2386 			kfree(evt);
2387 		}
2388 	}
2389 }
2390 
2391 /**
2392  * 	sdev_evt_send - send asserted event to uevent thread
2393  *	@sdev: scsi_device event occurred on
2394  *	@evt: event to send
2395  *
2396  *	Assert scsi device event asynchronously.
2397  */
2398 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2399 {
2400 	unsigned long flags;
2401 
2402 #if 0
2403 	/* FIXME: currently this check eliminates all media change events
2404 	 * for polled devices.  Need to update to discriminate between AN
2405 	 * and polled events */
2406 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2407 		kfree(evt);
2408 		return;
2409 	}
2410 #endif
2411 
2412 	spin_lock_irqsave(&sdev->list_lock, flags);
2413 	list_add_tail(&evt->node, &sdev->event_list);
2414 	schedule_work(&sdev->event_work);
2415 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2416 }
2417 EXPORT_SYMBOL_GPL(sdev_evt_send);
2418 
2419 /**
2420  * 	sdev_evt_alloc - allocate a new scsi event
2421  *	@evt_type: type of event to allocate
2422  *	@gfpflags: GFP flags for allocation
2423  *
2424  *	Allocates and returns a new scsi_event.
2425  */
2426 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2427 				  gfp_t gfpflags)
2428 {
2429 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2430 	if (!evt)
2431 		return NULL;
2432 
2433 	evt->evt_type = evt_type;
2434 	INIT_LIST_HEAD(&evt->node);
2435 
2436 	/* evt_type-specific initialization, if any */
2437 	switch (evt_type) {
2438 	case SDEV_EVT_MEDIA_CHANGE:
2439 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2440 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2441 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2442 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2443 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2444 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2445 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2446 	default:
2447 		/* do nothing */
2448 		break;
2449 	}
2450 
2451 	return evt;
2452 }
2453 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2454 
2455 /**
2456  * 	sdev_evt_send_simple - send asserted event to uevent thread
2457  *	@sdev: scsi_device event occurred on
2458  *	@evt_type: type of event to send
2459  *	@gfpflags: GFP flags for allocation
2460  *
2461  *	Assert scsi device event asynchronously, given an event type.
2462  */
2463 void sdev_evt_send_simple(struct scsi_device *sdev,
2464 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2465 {
2466 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2467 	if (!evt) {
2468 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2469 			    evt_type);
2470 		return;
2471 	}
2472 
2473 	sdev_evt_send(sdev, evt);
2474 }
2475 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2476 
2477 /**
2478  *	scsi_device_quiesce - Block user issued commands.
2479  *	@sdev:	scsi device to quiesce.
2480  *
2481  *	This works by trying to transition to the SDEV_QUIESCE state
2482  *	(which must be a legal transition).  When the device is in this
2483  *	state, only special requests will be accepted, all others will
2484  *	be deferred.  Since special requests may also be requeued requests,
2485  *	a successful return doesn't guarantee the device will be
2486  *	totally quiescent.
2487  *
2488  *	Must be called with user context, may sleep.
2489  *
2490  *	Returns zero if unsuccessful or an error if not.
2491  */
2492 int
2493 scsi_device_quiesce(struct scsi_device *sdev)
2494 {
2495 	struct request_queue *q = sdev->request_queue;
2496 	int err;
2497 
2498 	/*
2499 	 * It is allowed to call scsi_device_quiesce() multiple times from
2500 	 * the same context but concurrent scsi_device_quiesce() calls are
2501 	 * not allowed.
2502 	 */
2503 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2504 
2505 	if (sdev->quiesced_by == current)
2506 		return 0;
2507 
2508 	blk_set_pm_only(q);
2509 
2510 	blk_mq_freeze_queue(q);
2511 	/*
2512 	 * Ensure that the effect of blk_set_pm_only() will be visible
2513 	 * for percpu_ref_tryget() callers that occur after the queue
2514 	 * unfreeze even if the queue was already frozen before this function
2515 	 * was called. See also https://lwn.net/Articles/573497/.
2516 	 */
2517 	synchronize_rcu();
2518 	blk_mq_unfreeze_queue(q);
2519 
2520 	mutex_lock(&sdev->state_mutex);
2521 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2522 	if (err == 0)
2523 		sdev->quiesced_by = current;
2524 	else
2525 		blk_clear_pm_only(q);
2526 	mutex_unlock(&sdev->state_mutex);
2527 
2528 	return err;
2529 }
2530 EXPORT_SYMBOL(scsi_device_quiesce);
2531 
2532 /**
2533  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2534  *	@sdev:	scsi device to resume.
2535  *
2536  *	Moves the device from quiesced back to running and restarts the
2537  *	queues.
2538  *
2539  *	Must be called with user context, may sleep.
2540  */
2541 void scsi_device_resume(struct scsi_device *sdev)
2542 {
2543 	/* check if the device state was mutated prior to resume, and if
2544 	 * so assume the state is being managed elsewhere (for example
2545 	 * device deleted during suspend)
2546 	 */
2547 	mutex_lock(&sdev->state_mutex);
2548 	WARN_ON_ONCE(!sdev->quiesced_by);
2549 	sdev->quiesced_by = NULL;
2550 	blk_clear_pm_only(sdev->request_queue);
2551 	if (sdev->sdev_state == SDEV_QUIESCE)
2552 		scsi_device_set_state(sdev, SDEV_RUNNING);
2553 	mutex_unlock(&sdev->state_mutex);
2554 }
2555 EXPORT_SYMBOL(scsi_device_resume);
2556 
2557 static void
2558 device_quiesce_fn(struct scsi_device *sdev, void *data)
2559 {
2560 	scsi_device_quiesce(sdev);
2561 }
2562 
2563 void
2564 scsi_target_quiesce(struct scsi_target *starget)
2565 {
2566 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2567 }
2568 EXPORT_SYMBOL(scsi_target_quiesce);
2569 
2570 static void
2571 device_resume_fn(struct scsi_device *sdev, void *data)
2572 {
2573 	scsi_device_resume(sdev);
2574 }
2575 
2576 void
2577 scsi_target_resume(struct scsi_target *starget)
2578 {
2579 	starget_for_each_device(starget, NULL, device_resume_fn);
2580 }
2581 EXPORT_SYMBOL(scsi_target_resume);
2582 
2583 /**
2584  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2585  * @sdev: device to block
2586  *
2587  * Pause SCSI command processing on the specified device. Does not sleep.
2588  *
2589  * Returns zero if successful or a negative error code upon failure.
2590  *
2591  * Notes:
2592  * This routine transitions the device to the SDEV_BLOCK state (which must be
2593  * a legal transition). When the device is in this state, command processing
2594  * is paused until the device leaves the SDEV_BLOCK state. See also
2595  * scsi_internal_device_unblock_nowait().
2596  */
2597 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2598 {
2599 	struct request_queue *q = sdev->request_queue;
2600 	int err = 0;
2601 
2602 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2603 	if (err) {
2604 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2605 
2606 		if (err)
2607 			return err;
2608 	}
2609 
2610 	/*
2611 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2612 	 * block layer from calling the midlayer with this device's
2613 	 * request queue.
2614 	 */
2615 	blk_mq_quiesce_queue_nowait(q);
2616 	return 0;
2617 }
2618 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2619 
2620 /**
2621  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2622  * @sdev: device to block
2623  *
2624  * Pause SCSI command processing on the specified device and wait until all
2625  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2626  *
2627  * Returns zero if successful or a negative error code upon failure.
2628  *
2629  * Note:
2630  * This routine transitions the device to the SDEV_BLOCK state (which must be
2631  * a legal transition). When the device is in this state, command processing
2632  * is paused until the device leaves the SDEV_BLOCK state. See also
2633  * scsi_internal_device_unblock().
2634  *
2635  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2636  * scsi_internal_device_block() has blocked a SCSI device and also
2637  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2638  */
2639 static int scsi_internal_device_block(struct scsi_device *sdev)
2640 {
2641 	struct request_queue *q = sdev->request_queue;
2642 	int err;
2643 
2644 	mutex_lock(&sdev->state_mutex);
2645 	err = scsi_internal_device_block_nowait(sdev);
2646 	if (err == 0)
2647 		blk_mq_quiesce_queue(q);
2648 	mutex_unlock(&sdev->state_mutex);
2649 
2650 	return err;
2651 }
2652 
2653 void scsi_start_queue(struct scsi_device *sdev)
2654 {
2655 	struct request_queue *q = sdev->request_queue;
2656 
2657 	blk_mq_unquiesce_queue(q);
2658 }
2659 
2660 /**
2661  * scsi_internal_device_unblock_nowait - resume a device after a block request
2662  * @sdev:	device to resume
2663  * @new_state:	state to set the device to after unblocking
2664  *
2665  * Restart the device queue for a previously suspended SCSI device. Does not
2666  * sleep.
2667  *
2668  * Returns zero if successful or a negative error code upon failure.
2669  *
2670  * Notes:
2671  * This routine transitions the device to the SDEV_RUNNING state or to one of
2672  * the offline states (which must be a legal transition) allowing the midlayer
2673  * to goose the queue for this device.
2674  */
2675 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2676 					enum scsi_device_state new_state)
2677 {
2678 	/*
2679 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2680 	 * offlined states and goose the device queue if successful.
2681 	 */
2682 	switch (sdev->sdev_state) {
2683 	case SDEV_BLOCK:
2684 	case SDEV_TRANSPORT_OFFLINE:
2685 		sdev->sdev_state = new_state;
2686 		break;
2687 	case SDEV_CREATED_BLOCK:
2688 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2689 		    new_state == SDEV_OFFLINE)
2690 			sdev->sdev_state = new_state;
2691 		else
2692 			sdev->sdev_state = SDEV_CREATED;
2693 		break;
2694 	case SDEV_CANCEL:
2695 	case SDEV_OFFLINE:
2696 		break;
2697 	default:
2698 		return -EINVAL;
2699 	}
2700 	scsi_start_queue(sdev);
2701 
2702 	return 0;
2703 }
2704 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2705 
2706 /**
2707  * scsi_internal_device_unblock - resume a device after a block request
2708  * @sdev:	device to resume
2709  * @new_state:	state to set the device to after unblocking
2710  *
2711  * Restart the device queue for a previously suspended SCSI device. May sleep.
2712  *
2713  * Returns zero if successful or a negative error code upon failure.
2714  *
2715  * Notes:
2716  * This routine transitions the device to the SDEV_RUNNING state or to one of
2717  * the offline states (which must be a legal transition) allowing the midlayer
2718  * to goose the queue for this device.
2719  */
2720 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2721 					enum scsi_device_state new_state)
2722 {
2723 	int ret;
2724 
2725 	mutex_lock(&sdev->state_mutex);
2726 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2727 	mutex_unlock(&sdev->state_mutex);
2728 
2729 	return ret;
2730 }
2731 
2732 static void
2733 device_block(struct scsi_device *sdev, void *data)
2734 {
2735 	scsi_internal_device_block(sdev);
2736 }
2737 
2738 static int
2739 target_block(struct device *dev, void *data)
2740 {
2741 	if (scsi_is_target_device(dev))
2742 		starget_for_each_device(to_scsi_target(dev), NULL,
2743 					device_block);
2744 	return 0;
2745 }
2746 
2747 void
2748 scsi_target_block(struct device *dev)
2749 {
2750 	if (scsi_is_target_device(dev))
2751 		starget_for_each_device(to_scsi_target(dev), NULL,
2752 					device_block);
2753 	else
2754 		device_for_each_child(dev, NULL, target_block);
2755 }
2756 EXPORT_SYMBOL_GPL(scsi_target_block);
2757 
2758 static void
2759 device_unblock(struct scsi_device *sdev, void *data)
2760 {
2761 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2762 }
2763 
2764 static int
2765 target_unblock(struct device *dev, void *data)
2766 {
2767 	if (scsi_is_target_device(dev))
2768 		starget_for_each_device(to_scsi_target(dev), data,
2769 					device_unblock);
2770 	return 0;
2771 }
2772 
2773 void
2774 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2775 {
2776 	if (scsi_is_target_device(dev))
2777 		starget_for_each_device(to_scsi_target(dev), &new_state,
2778 					device_unblock);
2779 	else
2780 		device_for_each_child(dev, &new_state, target_unblock);
2781 }
2782 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2783 
2784 /**
2785  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2786  * @sgl:	scatter-gather list
2787  * @sg_count:	number of segments in sg
2788  * @offset:	offset in bytes into sg, on return offset into the mapped area
2789  * @len:	bytes to map, on return number of bytes mapped
2790  *
2791  * Returns virtual address of the start of the mapped page
2792  */
2793 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2794 			  size_t *offset, size_t *len)
2795 {
2796 	int i;
2797 	size_t sg_len = 0, len_complete = 0;
2798 	struct scatterlist *sg;
2799 	struct page *page;
2800 
2801 	WARN_ON(!irqs_disabled());
2802 
2803 	for_each_sg(sgl, sg, sg_count, i) {
2804 		len_complete = sg_len; /* Complete sg-entries */
2805 		sg_len += sg->length;
2806 		if (sg_len > *offset)
2807 			break;
2808 	}
2809 
2810 	if (unlikely(i == sg_count)) {
2811 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2812 			"elements %d\n",
2813 		       __func__, sg_len, *offset, sg_count);
2814 		WARN_ON(1);
2815 		return NULL;
2816 	}
2817 
2818 	/* Offset starting from the beginning of first page in this sg-entry */
2819 	*offset = *offset - len_complete + sg->offset;
2820 
2821 	/* Assumption: contiguous pages can be accessed as "page + i" */
2822 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2823 	*offset &= ~PAGE_MASK;
2824 
2825 	/* Bytes in this sg-entry from *offset to the end of the page */
2826 	sg_len = PAGE_SIZE - *offset;
2827 	if (*len > sg_len)
2828 		*len = sg_len;
2829 
2830 	return kmap_atomic(page);
2831 }
2832 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2833 
2834 /**
2835  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2836  * @virt:	virtual address to be unmapped
2837  */
2838 void scsi_kunmap_atomic_sg(void *virt)
2839 {
2840 	kunmap_atomic(virt);
2841 }
2842 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2843 
2844 void sdev_disable_disk_events(struct scsi_device *sdev)
2845 {
2846 	atomic_inc(&sdev->disk_events_disable_depth);
2847 }
2848 EXPORT_SYMBOL(sdev_disable_disk_events);
2849 
2850 void sdev_enable_disk_events(struct scsi_device *sdev)
2851 {
2852 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2853 		return;
2854 	atomic_dec(&sdev->disk_events_disable_depth);
2855 }
2856 EXPORT_SYMBOL(sdev_enable_disk_events);
2857 
2858 /**
2859  * scsi_vpd_lun_id - return a unique device identification
2860  * @sdev: SCSI device
2861  * @id:   buffer for the identification
2862  * @id_len:  length of the buffer
2863  *
2864  * Copies a unique device identification into @id based
2865  * on the information in the VPD page 0x83 of the device.
2866  * The string will be formatted as a SCSI name string.
2867  *
2868  * Returns the length of the identification or error on failure.
2869  * If the identifier is longer than the supplied buffer the actual
2870  * identifier length is returned and the buffer is not zero-padded.
2871  */
2872 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2873 {
2874 	u8 cur_id_type = 0xff;
2875 	u8 cur_id_size = 0;
2876 	const unsigned char *d, *cur_id_str;
2877 	const struct scsi_vpd *vpd_pg83;
2878 	int id_size = -EINVAL;
2879 
2880 	rcu_read_lock();
2881 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2882 	if (!vpd_pg83) {
2883 		rcu_read_unlock();
2884 		return -ENXIO;
2885 	}
2886 
2887 	/*
2888 	 * Look for the correct descriptor.
2889 	 * Order of preference for lun descriptor:
2890 	 * - SCSI name string
2891 	 * - NAA IEEE Registered Extended
2892 	 * - EUI-64 based 16-byte
2893 	 * - EUI-64 based 12-byte
2894 	 * - NAA IEEE Registered
2895 	 * - NAA IEEE Extended
2896 	 * - T10 Vendor ID
2897 	 * as longer descriptors reduce the likelyhood
2898 	 * of identification clashes.
2899 	 */
2900 
2901 	/* The id string must be at least 20 bytes + terminating NULL byte */
2902 	if (id_len < 21) {
2903 		rcu_read_unlock();
2904 		return -EINVAL;
2905 	}
2906 
2907 	memset(id, 0, id_len);
2908 	d = vpd_pg83->data + 4;
2909 	while (d < vpd_pg83->data + vpd_pg83->len) {
2910 		/* Skip designators not referring to the LUN */
2911 		if ((d[1] & 0x30) != 0x00)
2912 			goto next_desig;
2913 
2914 		switch (d[1] & 0xf) {
2915 		case 0x1:
2916 			/* T10 Vendor ID */
2917 			if (cur_id_size > d[3])
2918 				break;
2919 			/* Prefer anything */
2920 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2921 				break;
2922 			cur_id_size = d[3];
2923 			if (cur_id_size + 4 > id_len)
2924 				cur_id_size = id_len - 4;
2925 			cur_id_str = d + 4;
2926 			cur_id_type = d[1] & 0xf;
2927 			id_size = snprintf(id, id_len, "t10.%*pE",
2928 					   cur_id_size, cur_id_str);
2929 			break;
2930 		case 0x2:
2931 			/* EUI-64 */
2932 			if (cur_id_size > d[3])
2933 				break;
2934 			/* Prefer NAA IEEE Registered Extended */
2935 			if (cur_id_type == 0x3 &&
2936 			    cur_id_size == d[3])
2937 				break;
2938 			cur_id_size = d[3];
2939 			cur_id_str = d + 4;
2940 			cur_id_type = d[1] & 0xf;
2941 			switch (cur_id_size) {
2942 			case 8:
2943 				id_size = snprintf(id, id_len,
2944 						   "eui.%8phN",
2945 						   cur_id_str);
2946 				break;
2947 			case 12:
2948 				id_size = snprintf(id, id_len,
2949 						   "eui.%12phN",
2950 						   cur_id_str);
2951 				break;
2952 			case 16:
2953 				id_size = snprintf(id, id_len,
2954 						   "eui.%16phN",
2955 						   cur_id_str);
2956 				break;
2957 			default:
2958 				cur_id_size = 0;
2959 				break;
2960 			}
2961 			break;
2962 		case 0x3:
2963 			/* NAA */
2964 			if (cur_id_size > d[3])
2965 				break;
2966 			cur_id_size = d[3];
2967 			cur_id_str = d + 4;
2968 			cur_id_type = d[1] & 0xf;
2969 			switch (cur_id_size) {
2970 			case 8:
2971 				id_size = snprintf(id, id_len,
2972 						   "naa.%8phN",
2973 						   cur_id_str);
2974 				break;
2975 			case 16:
2976 				id_size = snprintf(id, id_len,
2977 						   "naa.%16phN",
2978 						   cur_id_str);
2979 				break;
2980 			default:
2981 				cur_id_size = 0;
2982 				break;
2983 			}
2984 			break;
2985 		case 0x8:
2986 			/* SCSI name string */
2987 			if (cur_id_size + 4 > d[3])
2988 				break;
2989 			/* Prefer others for truncated descriptor */
2990 			if (cur_id_size && d[3] > id_len)
2991 				break;
2992 			cur_id_size = id_size = d[3];
2993 			cur_id_str = d + 4;
2994 			cur_id_type = d[1] & 0xf;
2995 			if (cur_id_size >= id_len)
2996 				cur_id_size = id_len - 1;
2997 			memcpy(id, cur_id_str, cur_id_size);
2998 			/* Decrease priority for truncated descriptor */
2999 			if (cur_id_size != id_size)
3000 				cur_id_size = 6;
3001 			break;
3002 		default:
3003 			break;
3004 		}
3005 next_desig:
3006 		d += d[3] + 4;
3007 	}
3008 	rcu_read_unlock();
3009 
3010 	return id_size;
3011 }
3012 EXPORT_SYMBOL(scsi_vpd_lun_id);
3013 
3014 /*
3015  * scsi_vpd_tpg_id - return a target port group identifier
3016  * @sdev: SCSI device
3017  *
3018  * Returns the Target Port Group identifier from the information
3019  * froom VPD page 0x83 of the device.
3020  *
3021  * Returns the identifier or error on failure.
3022  */
3023 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3024 {
3025 	const unsigned char *d;
3026 	const struct scsi_vpd *vpd_pg83;
3027 	int group_id = -EAGAIN, rel_port = -1;
3028 
3029 	rcu_read_lock();
3030 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3031 	if (!vpd_pg83) {
3032 		rcu_read_unlock();
3033 		return -ENXIO;
3034 	}
3035 
3036 	d = vpd_pg83->data + 4;
3037 	while (d < vpd_pg83->data + vpd_pg83->len) {
3038 		switch (d[1] & 0xf) {
3039 		case 0x4:
3040 			/* Relative target port */
3041 			rel_port = get_unaligned_be16(&d[6]);
3042 			break;
3043 		case 0x5:
3044 			/* Target port group */
3045 			group_id = get_unaligned_be16(&d[6]);
3046 			break;
3047 		default:
3048 			break;
3049 		}
3050 		d += d[3] + 4;
3051 	}
3052 	rcu_read_unlock();
3053 
3054 	if (group_id >= 0 && rel_id && rel_port != -1)
3055 		*rel_id = rel_port;
3056 
3057 	return group_id;
3058 }
3059 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3060