1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 172 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 173 "Inserting command %p into mlqueue\n", cmd)); 174 175 scsi_set_blocked(cmd, reason); 176 177 /* 178 * Decrement the counters, since these commands are no longer 179 * active on the host/device. 180 */ 181 if (unbusy) 182 scsi_device_unbusy(device); 183 184 /* 185 * Requeue this command. It will go before all other commands 186 * that are already in the queue. Schedule requeue work under 187 * lock such that the kblockd_schedule_work() call happens 188 * before blk_cleanup_queue() finishes. 189 */ 190 cmd->result = 0; 191 192 /* 193 * Before a SCSI command is dispatched, 194 * get_device(&sdev->sdev_gendev) is called and the host, 195 * target and device busy counters are increased. Since 196 * requeuing a request causes these actions to be repeated and 197 * since scsi_device_unbusy() has already been called, 198 * put_device(&device->sdev_gendev) must still be called. Call 199 * put_device() after blk_mq_requeue_request() to avoid that 200 * removal of the SCSI device can start before requeueing has 201 * happened. 202 */ 203 blk_mq_requeue_request(cmd->request, true); 204 put_device(&device->sdev_gendev); 205 } 206 207 /* 208 * Function: scsi_queue_insert() 209 * 210 * Purpose: Insert a command in the midlevel queue. 211 * 212 * Arguments: cmd - command that we are adding to queue. 213 * reason - why we are inserting command to queue. 214 * 215 * Lock status: Assumed that lock is not held upon entry. 216 * 217 * Returns: Nothing. 218 * 219 * Notes: We do this for one of two cases. Either the host is busy 220 * and it cannot accept any more commands for the time being, 221 * or the device returned QUEUE_FULL and can accept no more 222 * commands. 223 * Notes: This could be called either from an interrupt context or a 224 * normal process context. 225 */ 226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 227 { 228 __scsi_queue_insert(cmd, reason, true); 229 } 230 231 232 /** 233 * __scsi_execute - insert request and wait for the result 234 * @sdev: scsi device 235 * @cmd: scsi command 236 * @data_direction: data direction 237 * @buffer: data buffer 238 * @bufflen: len of buffer 239 * @sense: optional sense buffer 240 * @sshdr: optional decoded sense header 241 * @timeout: request timeout in seconds 242 * @retries: number of times to retry request 243 * @flags: flags for ->cmd_flags 244 * @rq_flags: flags for ->rq_flags 245 * @resid: optional residual length 246 * 247 * Returns the scsi_cmnd result field if a command was executed, or a negative 248 * Linux error code if we didn't get that far. 249 */ 250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 251 int data_direction, void *buffer, unsigned bufflen, 252 unsigned char *sense, struct scsi_sense_hdr *sshdr, 253 int timeout, int retries, u64 flags, req_flags_t rq_flags, 254 int *resid) 255 { 256 struct request *req; 257 struct scsi_request *rq; 258 int ret = DRIVER_ERROR << 24; 259 260 req = blk_get_request(sdev->request_queue, 261 data_direction == DMA_TO_DEVICE ? 262 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 263 if (IS_ERR(req)) 264 return ret; 265 rq = scsi_req(req); 266 267 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 268 buffer, bufflen, GFP_NOIO)) 269 goto out; 270 271 rq->cmd_len = COMMAND_SIZE(cmd[0]); 272 memcpy(rq->cmd, cmd, rq->cmd_len); 273 rq->retries = retries; 274 req->timeout = timeout; 275 req->cmd_flags |= flags; 276 req->rq_flags |= rq_flags | RQF_QUIET; 277 278 /* 279 * head injection *required* here otherwise quiesce won't work 280 */ 281 blk_execute_rq(req->q, NULL, req, 1); 282 283 /* 284 * Some devices (USB mass-storage in particular) may transfer 285 * garbage data together with a residue indicating that the data 286 * is invalid. Prevent the garbage from being misinterpreted 287 * and prevent security leaks by zeroing out the excess data. 288 */ 289 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 290 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 291 292 if (resid) 293 *resid = rq->resid_len; 294 if (sense && rq->sense_len) 295 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 296 if (sshdr) 297 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 298 ret = rq->result; 299 out: 300 blk_put_request(req); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(__scsi_execute); 305 306 /* 307 * Function: scsi_init_cmd_errh() 308 * 309 * Purpose: Initialize cmd fields related to error handling. 310 * 311 * Arguments: cmd - command that is ready to be queued. 312 * 313 * Notes: This function has the job of initializing a number of 314 * fields related to error handling. Typically this will 315 * be called once for each command, as required. 316 */ 317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 318 { 319 cmd->serial_number = 0; 320 scsi_set_resid(cmd, 0); 321 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 322 if (cmd->cmd_len == 0) 323 cmd->cmd_len = scsi_command_size(cmd->cmnd); 324 } 325 326 /* 327 * Decrement the host_busy counter and wake up the error handler if necessary. 328 * Avoid as follows that the error handler is not woken up if shost->host_busy 329 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 330 * with an RCU read lock in this function to ensure that this function in its 331 * entirety either finishes before scsi_eh_scmd_add() increases the 332 * host_failed counter or that it notices the shost state change made by 333 * scsi_eh_scmd_add(). 334 */ 335 static void scsi_dec_host_busy(struct Scsi_Host *shost) 336 { 337 unsigned long flags; 338 339 rcu_read_lock(); 340 atomic_dec(&shost->host_busy); 341 if (unlikely(scsi_host_in_recovery(shost))) { 342 spin_lock_irqsave(shost->host_lock, flags); 343 if (shost->host_failed || shost->host_eh_scheduled) 344 scsi_eh_wakeup(shost); 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 } 347 rcu_read_unlock(); 348 } 349 350 void scsi_device_unbusy(struct scsi_device *sdev) 351 { 352 struct Scsi_Host *shost = sdev->host; 353 struct scsi_target *starget = scsi_target(sdev); 354 355 scsi_dec_host_busy(shost); 356 357 if (starget->can_queue > 0) 358 atomic_dec(&starget->target_busy); 359 360 atomic_dec(&sdev->device_busy); 361 } 362 363 static void scsi_kick_queue(struct request_queue *q) 364 { 365 blk_mq_run_hw_queues(q, false); 366 } 367 368 /* 369 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 370 * and call blk_run_queue for all the scsi_devices on the target - 371 * including current_sdev first. 372 * 373 * Called with *no* scsi locks held. 374 */ 375 static void scsi_single_lun_run(struct scsi_device *current_sdev) 376 { 377 struct Scsi_Host *shost = current_sdev->host; 378 struct scsi_device *sdev, *tmp; 379 struct scsi_target *starget = scsi_target(current_sdev); 380 unsigned long flags; 381 382 spin_lock_irqsave(shost->host_lock, flags); 383 starget->starget_sdev_user = NULL; 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 386 /* 387 * Call blk_run_queue for all LUNs on the target, starting with 388 * current_sdev. We race with others (to set starget_sdev_user), 389 * but in most cases, we will be first. Ideally, each LU on the 390 * target would get some limited time or requests on the target. 391 */ 392 scsi_kick_queue(current_sdev->request_queue); 393 394 spin_lock_irqsave(shost->host_lock, flags); 395 if (starget->starget_sdev_user) 396 goto out; 397 list_for_each_entry_safe(sdev, tmp, &starget->devices, 398 same_target_siblings) { 399 if (sdev == current_sdev) 400 continue; 401 if (scsi_device_get(sdev)) 402 continue; 403 404 spin_unlock_irqrestore(shost->host_lock, flags); 405 scsi_kick_queue(sdev->request_queue); 406 spin_lock_irqsave(shost->host_lock, flags); 407 408 scsi_device_put(sdev); 409 } 410 out: 411 spin_unlock_irqrestore(shost->host_lock, flags); 412 } 413 414 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 415 { 416 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 417 return true; 418 if (atomic_read(&sdev->device_blocked) > 0) 419 return true; 420 return false; 421 } 422 423 static inline bool scsi_target_is_busy(struct scsi_target *starget) 424 { 425 if (starget->can_queue > 0) { 426 if (atomic_read(&starget->target_busy) >= starget->can_queue) 427 return true; 428 if (atomic_read(&starget->target_blocked) > 0) 429 return true; 430 } 431 return false; 432 } 433 434 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 435 { 436 if (shost->can_queue > 0 && 437 atomic_read(&shost->host_busy) >= shost->can_queue) 438 return true; 439 if (atomic_read(&shost->host_blocked) > 0) 440 return true; 441 if (shost->host_self_blocked) 442 return true; 443 return false; 444 } 445 446 static void scsi_starved_list_run(struct Scsi_Host *shost) 447 { 448 LIST_HEAD(starved_list); 449 struct scsi_device *sdev; 450 unsigned long flags; 451 452 spin_lock_irqsave(shost->host_lock, flags); 453 list_splice_init(&shost->starved_list, &starved_list); 454 455 while (!list_empty(&starved_list)) { 456 struct request_queue *slq; 457 458 /* 459 * As long as shost is accepting commands and we have 460 * starved queues, call blk_run_queue. scsi_request_fn 461 * drops the queue_lock and can add us back to the 462 * starved_list. 463 * 464 * host_lock protects the starved_list and starved_entry. 465 * scsi_request_fn must get the host_lock before checking 466 * or modifying starved_list or starved_entry. 467 */ 468 if (scsi_host_is_busy(shost)) 469 break; 470 471 sdev = list_entry(starved_list.next, 472 struct scsi_device, starved_entry); 473 list_del_init(&sdev->starved_entry); 474 if (scsi_target_is_busy(scsi_target(sdev))) { 475 list_move_tail(&sdev->starved_entry, 476 &shost->starved_list); 477 continue; 478 } 479 480 /* 481 * Once we drop the host lock, a racing scsi_remove_device() 482 * call may remove the sdev from the starved list and destroy 483 * it and the queue. Mitigate by taking a reference to the 484 * queue and never touching the sdev again after we drop the 485 * host lock. Note: if __scsi_remove_device() invokes 486 * blk_cleanup_queue() before the queue is run from this 487 * function then blk_run_queue() will return immediately since 488 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 489 */ 490 slq = sdev->request_queue; 491 if (!blk_get_queue(slq)) 492 continue; 493 spin_unlock_irqrestore(shost->host_lock, flags); 494 495 scsi_kick_queue(slq); 496 blk_put_queue(slq); 497 498 spin_lock_irqsave(shost->host_lock, flags); 499 } 500 /* put any unprocessed entries back */ 501 list_splice(&starved_list, &shost->starved_list); 502 spin_unlock_irqrestore(shost->host_lock, flags); 503 } 504 505 /* 506 * Function: scsi_run_queue() 507 * 508 * Purpose: Select a proper request queue to serve next 509 * 510 * Arguments: q - last request's queue 511 * 512 * Returns: Nothing 513 * 514 * Notes: The previous command was completely finished, start 515 * a new one if possible. 516 */ 517 static void scsi_run_queue(struct request_queue *q) 518 { 519 struct scsi_device *sdev = q->queuedata; 520 521 if (scsi_target(sdev)->single_lun) 522 scsi_single_lun_run(sdev); 523 if (!list_empty(&sdev->host->starved_list)) 524 scsi_starved_list_run(sdev->host); 525 526 blk_mq_run_hw_queues(q, false); 527 } 528 529 void scsi_requeue_run_queue(struct work_struct *work) 530 { 531 struct scsi_device *sdev; 532 struct request_queue *q; 533 534 sdev = container_of(work, struct scsi_device, requeue_work); 535 q = sdev->request_queue; 536 scsi_run_queue(q); 537 } 538 539 void scsi_run_host_queues(struct Scsi_Host *shost) 540 { 541 struct scsi_device *sdev; 542 543 shost_for_each_device(sdev, shost) 544 scsi_run_queue(sdev->request_queue); 545 } 546 547 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 548 { 549 if (!blk_rq_is_passthrough(cmd->request)) { 550 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 551 552 if (drv->uninit_command) 553 drv->uninit_command(cmd); 554 } 555 } 556 557 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 558 { 559 if (cmd->sdb.table.nents) 560 sg_free_table_chained(&cmd->sdb.table, true); 561 if (scsi_prot_sg_count(cmd)) 562 sg_free_table_chained(&cmd->prot_sdb->table, true); 563 } 564 565 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 566 { 567 scsi_mq_free_sgtables(cmd); 568 scsi_uninit_cmd(cmd); 569 scsi_del_cmd_from_list(cmd); 570 } 571 572 /* Returns false when no more bytes to process, true if there are more */ 573 static bool scsi_end_request(struct request *req, blk_status_t error, 574 unsigned int bytes) 575 { 576 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 577 struct scsi_device *sdev = cmd->device; 578 struct request_queue *q = sdev->request_queue; 579 580 if (blk_update_request(req, error, bytes)) 581 return true; 582 583 if (blk_queue_add_random(q)) 584 add_disk_randomness(req->rq_disk); 585 586 if (!blk_rq_is_scsi(req)) { 587 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 588 cmd->flags &= ~SCMD_INITIALIZED; 589 destroy_rcu_head(&cmd->rcu); 590 } 591 592 /* 593 * In the MQ case the command gets freed by __blk_mq_end_request, 594 * so we have to do all cleanup that depends on it earlier. 595 * 596 * We also can't kick the queues from irq context, so we 597 * will have to defer it to a workqueue. 598 */ 599 scsi_mq_uninit_cmd(cmd); 600 601 /* 602 * queue is still alive, so grab the ref for preventing it 603 * from being cleaned up during running queue. 604 */ 605 percpu_ref_get(&q->q_usage_counter); 606 607 __blk_mq_end_request(req, error); 608 609 if (scsi_target(sdev)->single_lun || 610 !list_empty(&sdev->host->starved_list)) 611 kblockd_schedule_work(&sdev->requeue_work); 612 else 613 blk_mq_run_hw_queues(q, true); 614 615 percpu_ref_put(&q->q_usage_counter); 616 put_device(&sdev->sdev_gendev); 617 return false; 618 } 619 620 /** 621 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 622 * @cmd: SCSI command 623 * @result: scsi error code 624 * 625 * Translate a SCSI result code into a blk_status_t value. May reset the host 626 * byte of @cmd->result. 627 */ 628 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 629 { 630 switch (host_byte(result)) { 631 case DID_OK: 632 /* 633 * Also check the other bytes than the status byte in result 634 * to handle the case when a SCSI LLD sets result to 635 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 636 */ 637 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 638 return BLK_STS_OK; 639 return BLK_STS_IOERR; 640 case DID_TRANSPORT_FAILFAST: 641 return BLK_STS_TRANSPORT; 642 case DID_TARGET_FAILURE: 643 set_host_byte(cmd, DID_OK); 644 return BLK_STS_TARGET; 645 case DID_NEXUS_FAILURE: 646 return BLK_STS_NEXUS; 647 case DID_ALLOC_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_NOSPC; 650 case DID_MEDIUM_ERROR: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_MEDIUM; 653 default: 654 return BLK_STS_IOERR; 655 } 656 } 657 658 /* Helper for scsi_io_completion() when "reprep" action required. */ 659 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 660 struct request_queue *q) 661 { 662 /* A new command will be prepared and issued. */ 663 scsi_mq_requeue_cmd(cmd); 664 } 665 666 /* Helper for scsi_io_completion() when special action required. */ 667 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 668 { 669 struct request_queue *q = cmd->device->request_queue; 670 struct request *req = cmd->request; 671 int level = 0; 672 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 673 ACTION_DELAYED_RETRY} action; 674 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 675 struct scsi_sense_hdr sshdr; 676 bool sense_valid; 677 bool sense_current = true; /* false implies "deferred sense" */ 678 blk_status_t blk_stat; 679 680 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 681 if (sense_valid) 682 sense_current = !scsi_sense_is_deferred(&sshdr); 683 684 blk_stat = scsi_result_to_blk_status(cmd, result); 685 686 if (host_byte(result) == DID_RESET) { 687 /* Third party bus reset or reset for error recovery 688 * reasons. Just retry the command and see what 689 * happens. 690 */ 691 action = ACTION_RETRY; 692 } else if (sense_valid && sense_current) { 693 switch (sshdr.sense_key) { 694 case UNIT_ATTENTION: 695 if (cmd->device->removable) { 696 /* Detected disc change. Set a bit 697 * and quietly refuse further access. 698 */ 699 cmd->device->changed = 1; 700 action = ACTION_FAIL; 701 } else { 702 /* Must have been a power glitch, or a 703 * bus reset. Could not have been a 704 * media change, so we just retry the 705 * command and see what happens. 706 */ 707 action = ACTION_RETRY; 708 } 709 break; 710 case ILLEGAL_REQUEST: 711 /* If we had an ILLEGAL REQUEST returned, then 712 * we may have performed an unsupported 713 * command. The only thing this should be 714 * would be a ten byte read where only a six 715 * byte read was supported. Also, on a system 716 * where READ CAPACITY failed, we may have 717 * read past the end of the disk. 718 */ 719 if ((cmd->device->use_10_for_rw && 720 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 721 (cmd->cmnd[0] == READ_10 || 722 cmd->cmnd[0] == WRITE_10)) { 723 /* This will issue a new 6-byte command. */ 724 cmd->device->use_10_for_rw = 0; 725 action = ACTION_REPREP; 726 } else if (sshdr.asc == 0x10) /* DIX */ { 727 action = ACTION_FAIL; 728 blk_stat = BLK_STS_PROTECTION; 729 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 730 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 731 action = ACTION_FAIL; 732 blk_stat = BLK_STS_TARGET; 733 } else 734 action = ACTION_FAIL; 735 break; 736 case ABORTED_COMMAND: 737 action = ACTION_FAIL; 738 if (sshdr.asc == 0x10) /* DIF */ 739 blk_stat = BLK_STS_PROTECTION; 740 break; 741 case NOT_READY: 742 /* If the device is in the process of becoming 743 * ready, or has a temporary blockage, retry. 744 */ 745 if (sshdr.asc == 0x04) { 746 switch (sshdr.ascq) { 747 case 0x01: /* becoming ready */ 748 case 0x04: /* format in progress */ 749 case 0x05: /* rebuild in progress */ 750 case 0x06: /* recalculation in progress */ 751 case 0x07: /* operation in progress */ 752 case 0x08: /* Long write in progress */ 753 case 0x09: /* self test in progress */ 754 case 0x14: /* space allocation in progress */ 755 case 0x1a: /* start stop unit in progress */ 756 case 0x1b: /* sanitize in progress */ 757 case 0x1d: /* configuration in progress */ 758 case 0x24: /* depopulation in progress */ 759 action = ACTION_DELAYED_RETRY; 760 break; 761 default: 762 action = ACTION_FAIL; 763 break; 764 } 765 } else 766 action = ACTION_FAIL; 767 break; 768 case VOLUME_OVERFLOW: 769 /* See SSC3rXX or current. */ 770 action = ACTION_FAIL; 771 break; 772 default: 773 action = ACTION_FAIL; 774 break; 775 } 776 } else 777 action = ACTION_FAIL; 778 779 if (action != ACTION_FAIL && 780 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 781 action = ACTION_FAIL; 782 783 switch (action) { 784 case ACTION_FAIL: 785 /* Give up and fail the remainder of the request */ 786 if (!(req->rq_flags & RQF_QUIET)) { 787 static DEFINE_RATELIMIT_STATE(_rs, 788 DEFAULT_RATELIMIT_INTERVAL, 789 DEFAULT_RATELIMIT_BURST); 790 791 if (unlikely(scsi_logging_level)) 792 level = 793 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 794 SCSI_LOG_MLCOMPLETE_BITS); 795 796 /* 797 * if logging is enabled the failure will be printed 798 * in scsi_log_completion(), so avoid duplicate messages 799 */ 800 if (!level && __ratelimit(&_rs)) { 801 scsi_print_result(cmd, NULL, FAILED); 802 if (driver_byte(result) == DRIVER_SENSE) 803 scsi_print_sense(cmd); 804 scsi_print_command(cmd); 805 } 806 } 807 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 808 return; 809 /*FALLTHRU*/ 810 case ACTION_REPREP: 811 scsi_io_completion_reprep(cmd, q); 812 break; 813 case ACTION_RETRY: 814 /* Retry the same command immediately */ 815 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 816 break; 817 case ACTION_DELAYED_RETRY: 818 /* Retry the same command after a delay */ 819 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 820 break; 821 } 822 } 823 824 /* 825 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 826 * new result that may suppress further error checking. Also modifies 827 * *blk_statp in some cases. 828 */ 829 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 830 blk_status_t *blk_statp) 831 { 832 bool sense_valid; 833 bool sense_current = true; /* false implies "deferred sense" */ 834 struct request *req = cmd->request; 835 struct scsi_sense_hdr sshdr; 836 837 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 838 if (sense_valid) 839 sense_current = !scsi_sense_is_deferred(&sshdr); 840 841 if (blk_rq_is_passthrough(req)) { 842 if (sense_valid) { 843 /* 844 * SG_IO wants current and deferred errors 845 */ 846 scsi_req(req)->sense_len = 847 min(8 + cmd->sense_buffer[7], 848 SCSI_SENSE_BUFFERSIZE); 849 } 850 if (sense_current) 851 *blk_statp = scsi_result_to_blk_status(cmd, result); 852 } else if (blk_rq_bytes(req) == 0 && sense_current) { 853 /* 854 * Flush commands do not transfers any data, and thus cannot use 855 * good_bytes != blk_rq_bytes(req) as the signal for an error. 856 * This sets *blk_statp explicitly for the problem case. 857 */ 858 *blk_statp = scsi_result_to_blk_status(cmd, result); 859 } 860 /* 861 * Recovered errors need reporting, but they're always treated as 862 * success, so fiddle the result code here. For passthrough requests 863 * we already took a copy of the original into sreq->result which 864 * is what gets returned to the user 865 */ 866 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 867 bool do_print = true; 868 /* 869 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 870 * skip print since caller wants ATA registers. Only occurs 871 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 872 */ 873 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 874 do_print = false; 875 else if (req->rq_flags & RQF_QUIET) 876 do_print = false; 877 if (do_print) 878 scsi_print_sense(cmd); 879 result = 0; 880 /* for passthrough, *blk_statp may be set */ 881 *blk_statp = BLK_STS_OK; 882 } 883 /* 884 * Another corner case: the SCSI status byte is non-zero but 'good'. 885 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 886 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 887 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 888 * intermediate statuses (both obsolete in SAM-4) as good. 889 */ 890 if (status_byte(result) && scsi_status_is_good(result)) { 891 result = 0; 892 *blk_statp = BLK_STS_OK; 893 } 894 return result; 895 } 896 897 /* 898 * Function: scsi_io_completion() 899 * 900 * Purpose: Completion processing for block device I/O requests. 901 * 902 * Arguments: cmd - command that is finished. 903 * 904 * Lock status: Assumed that no lock is held upon entry. 905 * 906 * Returns: Nothing 907 * 908 * Notes: We will finish off the specified number of sectors. If we 909 * are done, the command block will be released and the queue 910 * function will be goosed. If we are not done then we have to 911 * figure out what to do next: 912 * 913 * a) We can call scsi_requeue_command(). The request 914 * will be unprepared and put back on the queue. Then 915 * a new command will be created for it. This should 916 * be used if we made forward progress, or if we want 917 * to switch from READ(10) to READ(6) for example. 918 * 919 * b) We can call __scsi_queue_insert(). The request will 920 * be put back on the queue and retried using the same 921 * command as before, possibly after a delay. 922 * 923 * c) We can call scsi_end_request() with blk_stat other than 924 * BLK_STS_OK, to fail the remainder of the request. 925 */ 926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 927 { 928 int result = cmd->result; 929 struct request_queue *q = cmd->device->request_queue; 930 struct request *req = cmd->request; 931 blk_status_t blk_stat = BLK_STS_OK; 932 933 if (unlikely(result)) /* a nz result may or may not be an error */ 934 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 935 936 if (unlikely(blk_rq_is_passthrough(req))) { 937 /* 938 * scsi_result_to_blk_status may have reset the host_byte 939 */ 940 scsi_req(req)->result = cmd->result; 941 scsi_req(req)->resid_len = scsi_get_resid(cmd); 942 } 943 944 /* 945 * Next deal with any sectors which we were able to correctly 946 * handle. 947 */ 948 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 949 "%u sectors total, %d bytes done.\n", 950 blk_rq_sectors(req), good_bytes)); 951 952 /* 953 * Next deal with any sectors which we were able to correctly 954 * handle. Failed, zero length commands always need to drop down 955 * to retry code. Fast path should return in this block. 956 */ 957 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 958 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 959 return; /* no bytes remaining */ 960 } 961 962 /* Kill remainder if no retries. */ 963 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 964 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 965 WARN_ONCE(true, 966 "Bytes remaining after failed, no-retry command"); 967 return; 968 } 969 970 /* 971 * If there had been no error, but we have leftover bytes in the 972 * requeues just queue the command up again. 973 */ 974 if (likely(result == 0)) 975 scsi_io_completion_reprep(cmd, q); 976 else 977 scsi_io_completion_action(cmd, result); 978 } 979 980 static blk_status_t scsi_init_sgtable(struct request *req, 981 struct scsi_data_buffer *sdb) 982 { 983 int count; 984 985 /* 986 * If sg table allocation fails, requeue request later. 987 */ 988 if (unlikely(sg_alloc_table_chained(&sdb->table, 989 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 990 return BLK_STS_RESOURCE; 991 992 /* 993 * Next, walk the list, and fill in the addresses and sizes of 994 * each segment. 995 */ 996 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 997 BUG_ON(count > sdb->table.nents); 998 sdb->table.nents = count; 999 sdb->length = blk_rq_payload_bytes(req); 1000 return BLK_STS_OK; 1001 } 1002 1003 /* 1004 * Function: scsi_init_io() 1005 * 1006 * Purpose: SCSI I/O initialize function. 1007 * 1008 * Arguments: cmd - Command descriptor we wish to initialize 1009 * 1010 * Returns: BLK_STS_OK on success 1011 * BLK_STS_RESOURCE if the failure is retryable 1012 * BLK_STS_IOERR if the failure is fatal 1013 */ 1014 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1015 { 1016 struct request *rq = cmd->request; 1017 blk_status_t ret; 1018 1019 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1020 return BLK_STS_IOERR; 1021 1022 ret = scsi_init_sgtable(rq, &cmd->sdb); 1023 if (ret) 1024 return ret; 1025 1026 if (blk_integrity_rq(rq)) { 1027 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1028 int ivecs, count; 1029 1030 if (WARN_ON_ONCE(!prot_sdb)) { 1031 /* 1032 * This can happen if someone (e.g. multipath) 1033 * queues a command to a device on an adapter 1034 * that does not support DIX. 1035 */ 1036 ret = BLK_STS_IOERR; 1037 goto out_free_sgtables; 1038 } 1039 1040 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1041 1042 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1043 prot_sdb->table.sgl)) { 1044 ret = BLK_STS_RESOURCE; 1045 goto out_free_sgtables; 1046 } 1047 1048 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1049 prot_sdb->table.sgl); 1050 BUG_ON(count > ivecs); 1051 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1052 1053 cmd->prot_sdb = prot_sdb; 1054 cmd->prot_sdb->table.nents = count; 1055 } 1056 1057 return BLK_STS_OK; 1058 out_free_sgtables: 1059 scsi_mq_free_sgtables(cmd); 1060 return ret; 1061 } 1062 EXPORT_SYMBOL(scsi_init_io); 1063 1064 /** 1065 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1066 * @rq: Request associated with the SCSI command to be initialized. 1067 * 1068 * This function initializes the members of struct scsi_cmnd that must be 1069 * initialized before request processing starts and that won't be 1070 * reinitialized if a SCSI command is requeued. 1071 * 1072 * Called from inside blk_get_request() for pass-through requests and from 1073 * inside scsi_init_command() for filesystem requests. 1074 */ 1075 static void scsi_initialize_rq(struct request *rq) 1076 { 1077 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1078 1079 scsi_req_init(&cmd->req); 1080 init_rcu_head(&cmd->rcu); 1081 cmd->jiffies_at_alloc = jiffies; 1082 cmd->retries = 0; 1083 } 1084 1085 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1086 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1087 { 1088 struct scsi_device *sdev = cmd->device; 1089 struct Scsi_Host *shost = sdev->host; 1090 unsigned long flags; 1091 1092 if (shost->use_cmd_list) { 1093 spin_lock_irqsave(&sdev->list_lock, flags); 1094 list_add_tail(&cmd->list, &sdev->cmd_list); 1095 spin_unlock_irqrestore(&sdev->list_lock, flags); 1096 } 1097 } 1098 1099 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1100 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1101 { 1102 struct scsi_device *sdev = cmd->device; 1103 struct Scsi_Host *shost = sdev->host; 1104 unsigned long flags; 1105 1106 if (shost->use_cmd_list) { 1107 spin_lock_irqsave(&sdev->list_lock, flags); 1108 BUG_ON(list_empty(&cmd->list)); 1109 list_del_init(&cmd->list); 1110 spin_unlock_irqrestore(&sdev->list_lock, flags); 1111 } 1112 } 1113 1114 /* Called after a request has been started. */ 1115 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1116 { 1117 void *buf = cmd->sense_buffer; 1118 void *prot = cmd->prot_sdb; 1119 struct request *rq = blk_mq_rq_from_pdu(cmd); 1120 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1121 unsigned long jiffies_at_alloc; 1122 int retries; 1123 1124 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1125 flags |= SCMD_INITIALIZED; 1126 scsi_initialize_rq(rq); 1127 } 1128 1129 jiffies_at_alloc = cmd->jiffies_at_alloc; 1130 retries = cmd->retries; 1131 /* zero out the cmd, except for the embedded scsi_request */ 1132 memset((char *)cmd + sizeof(cmd->req), 0, 1133 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1134 1135 cmd->device = dev; 1136 cmd->sense_buffer = buf; 1137 cmd->prot_sdb = prot; 1138 cmd->flags = flags; 1139 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1140 cmd->jiffies_at_alloc = jiffies_at_alloc; 1141 cmd->retries = retries; 1142 1143 scsi_add_cmd_to_list(cmd); 1144 } 1145 1146 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1147 struct request *req) 1148 { 1149 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1150 1151 /* 1152 * Passthrough requests may transfer data, in which case they must 1153 * a bio attached to them. Or they might contain a SCSI command 1154 * that does not transfer data, in which case they may optionally 1155 * submit a request without an attached bio. 1156 */ 1157 if (req->bio) { 1158 blk_status_t ret = scsi_init_io(cmd); 1159 if (unlikely(ret != BLK_STS_OK)) 1160 return ret; 1161 } else { 1162 BUG_ON(blk_rq_bytes(req)); 1163 1164 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1165 } 1166 1167 cmd->cmd_len = scsi_req(req)->cmd_len; 1168 cmd->cmnd = scsi_req(req)->cmd; 1169 cmd->transfersize = blk_rq_bytes(req); 1170 cmd->allowed = scsi_req(req)->retries; 1171 return BLK_STS_OK; 1172 } 1173 1174 /* 1175 * Setup a normal block command. These are simple request from filesystems 1176 * that still need to be translated to SCSI CDBs from the ULD. 1177 */ 1178 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1179 struct request *req) 1180 { 1181 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1182 1183 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1184 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1185 if (ret != BLK_STS_OK) 1186 return ret; 1187 } 1188 1189 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1190 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1191 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1192 } 1193 1194 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1195 struct request *req) 1196 { 1197 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1198 1199 if (!blk_rq_bytes(req)) 1200 cmd->sc_data_direction = DMA_NONE; 1201 else if (rq_data_dir(req) == WRITE) 1202 cmd->sc_data_direction = DMA_TO_DEVICE; 1203 else 1204 cmd->sc_data_direction = DMA_FROM_DEVICE; 1205 1206 if (blk_rq_is_scsi(req)) 1207 return scsi_setup_scsi_cmnd(sdev, req); 1208 else 1209 return scsi_setup_fs_cmnd(sdev, req); 1210 } 1211 1212 static blk_status_t 1213 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1214 { 1215 switch (sdev->sdev_state) { 1216 case SDEV_OFFLINE: 1217 case SDEV_TRANSPORT_OFFLINE: 1218 /* 1219 * If the device is offline we refuse to process any 1220 * commands. The device must be brought online 1221 * before trying any recovery commands. 1222 */ 1223 sdev_printk(KERN_ERR, sdev, 1224 "rejecting I/O to offline device\n"); 1225 return BLK_STS_IOERR; 1226 case SDEV_DEL: 1227 /* 1228 * If the device is fully deleted, we refuse to 1229 * process any commands as well. 1230 */ 1231 sdev_printk(KERN_ERR, sdev, 1232 "rejecting I/O to dead device\n"); 1233 return BLK_STS_IOERR; 1234 case SDEV_BLOCK: 1235 case SDEV_CREATED_BLOCK: 1236 return BLK_STS_RESOURCE; 1237 case SDEV_QUIESCE: 1238 /* 1239 * If the devices is blocked we defer normal commands. 1240 */ 1241 if (req && !(req->rq_flags & RQF_PREEMPT)) 1242 return BLK_STS_RESOURCE; 1243 return BLK_STS_OK; 1244 default: 1245 /* 1246 * For any other not fully online state we only allow 1247 * special commands. In particular any user initiated 1248 * command is not allowed. 1249 */ 1250 if (req && !(req->rq_flags & RQF_PREEMPT)) 1251 return BLK_STS_IOERR; 1252 return BLK_STS_OK; 1253 } 1254 } 1255 1256 /* 1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1258 * return 0. 1259 * 1260 * Called with the queue_lock held. 1261 */ 1262 static inline int scsi_dev_queue_ready(struct request_queue *q, 1263 struct scsi_device *sdev) 1264 { 1265 unsigned int busy; 1266 1267 busy = atomic_inc_return(&sdev->device_busy) - 1; 1268 if (atomic_read(&sdev->device_blocked)) { 1269 if (busy) 1270 goto out_dec; 1271 1272 /* 1273 * unblock after device_blocked iterates to zero 1274 */ 1275 if (atomic_dec_return(&sdev->device_blocked) > 0) 1276 goto out_dec; 1277 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1278 "unblocking device at zero depth\n")); 1279 } 1280 1281 if (busy >= sdev->queue_depth) 1282 goto out_dec; 1283 1284 return 1; 1285 out_dec: 1286 atomic_dec(&sdev->device_busy); 1287 return 0; 1288 } 1289 1290 /* 1291 * scsi_target_queue_ready: checks if there we can send commands to target 1292 * @sdev: scsi device on starget to check. 1293 */ 1294 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1295 struct scsi_device *sdev) 1296 { 1297 struct scsi_target *starget = scsi_target(sdev); 1298 unsigned int busy; 1299 1300 if (starget->single_lun) { 1301 spin_lock_irq(shost->host_lock); 1302 if (starget->starget_sdev_user && 1303 starget->starget_sdev_user != sdev) { 1304 spin_unlock_irq(shost->host_lock); 1305 return 0; 1306 } 1307 starget->starget_sdev_user = sdev; 1308 spin_unlock_irq(shost->host_lock); 1309 } 1310 1311 if (starget->can_queue <= 0) 1312 return 1; 1313 1314 busy = atomic_inc_return(&starget->target_busy) - 1; 1315 if (atomic_read(&starget->target_blocked) > 0) { 1316 if (busy) 1317 goto starved; 1318 1319 /* 1320 * unblock after target_blocked iterates to zero 1321 */ 1322 if (atomic_dec_return(&starget->target_blocked) > 0) 1323 goto out_dec; 1324 1325 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1326 "unblocking target at zero depth\n")); 1327 } 1328 1329 if (busy >= starget->can_queue) 1330 goto starved; 1331 1332 return 1; 1333 1334 starved: 1335 spin_lock_irq(shost->host_lock); 1336 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1337 spin_unlock_irq(shost->host_lock); 1338 out_dec: 1339 if (starget->can_queue > 0) 1340 atomic_dec(&starget->target_busy); 1341 return 0; 1342 } 1343 1344 /* 1345 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1346 * return 0. We must end up running the queue again whenever 0 is 1347 * returned, else IO can hang. 1348 */ 1349 static inline int scsi_host_queue_ready(struct request_queue *q, 1350 struct Scsi_Host *shost, 1351 struct scsi_device *sdev) 1352 { 1353 unsigned int busy; 1354 1355 if (scsi_host_in_recovery(shost)) 1356 return 0; 1357 1358 busy = atomic_inc_return(&shost->host_busy) - 1; 1359 if (atomic_read(&shost->host_blocked) > 0) { 1360 if (busy) 1361 goto starved; 1362 1363 /* 1364 * unblock after host_blocked iterates to zero 1365 */ 1366 if (atomic_dec_return(&shost->host_blocked) > 0) 1367 goto out_dec; 1368 1369 SCSI_LOG_MLQUEUE(3, 1370 shost_printk(KERN_INFO, shost, 1371 "unblocking host at zero depth\n")); 1372 } 1373 1374 if (shost->can_queue > 0 && busy >= shost->can_queue) 1375 goto starved; 1376 if (shost->host_self_blocked) 1377 goto starved; 1378 1379 /* We're OK to process the command, so we can't be starved */ 1380 if (!list_empty(&sdev->starved_entry)) { 1381 spin_lock_irq(shost->host_lock); 1382 if (!list_empty(&sdev->starved_entry)) 1383 list_del_init(&sdev->starved_entry); 1384 spin_unlock_irq(shost->host_lock); 1385 } 1386 1387 return 1; 1388 1389 starved: 1390 spin_lock_irq(shost->host_lock); 1391 if (list_empty(&sdev->starved_entry)) 1392 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1393 spin_unlock_irq(shost->host_lock); 1394 out_dec: 1395 scsi_dec_host_busy(shost); 1396 return 0; 1397 } 1398 1399 /* 1400 * Busy state exporting function for request stacking drivers. 1401 * 1402 * For efficiency, no lock is taken to check the busy state of 1403 * shost/starget/sdev, since the returned value is not guaranteed and 1404 * may be changed after request stacking drivers call the function, 1405 * regardless of taking lock or not. 1406 * 1407 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1408 * needs to return 'not busy'. Otherwise, request stacking drivers 1409 * may hold requests forever. 1410 */ 1411 static bool scsi_mq_lld_busy(struct request_queue *q) 1412 { 1413 struct scsi_device *sdev = q->queuedata; 1414 struct Scsi_Host *shost; 1415 1416 if (blk_queue_dying(q)) 1417 return false; 1418 1419 shost = sdev->host; 1420 1421 /* 1422 * Ignore host/starget busy state. 1423 * Since block layer does not have a concept of fairness across 1424 * multiple queues, congestion of host/starget needs to be handled 1425 * in SCSI layer. 1426 */ 1427 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1428 return true; 1429 1430 return false; 1431 } 1432 1433 static void scsi_softirq_done(struct request *rq) 1434 { 1435 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1436 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1437 int disposition; 1438 1439 INIT_LIST_HEAD(&cmd->eh_entry); 1440 1441 atomic_inc(&cmd->device->iodone_cnt); 1442 if (cmd->result) 1443 atomic_inc(&cmd->device->ioerr_cnt); 1444 1445 disposition = scsi_decide_disposition(cmd); 1446 if (disposition != SUCCESS && 1447 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1448 sdev_printk(KERN_ERR, cmd->device, 1449 "timing out command, waited %lus\n", 1450 wait_for/HZ); 1451 disposition = SUCCESS; 1452 } 1453 1454 scsi_log_completion(cmd, disposition); 1455 1456 switch (disposition) { 1457 case SUCCESS: 1458 scsi_finish_command(cmd); 1459 break; 1460 case NEEDS_RETRY: 1461 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1462 break; 1463 case ADD_TO_MLQUEUE: 1464 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1465 break; 1466 default: 1467 scsi_eh_scmd_add(cmd); 1468 break; 1469 } 1470 } 1471 1472 /** 1473 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1474 * @cmd: command block we are dispatching. 1475 * 1476 * Return: nonzero return request was rejected and device's queue needs to be 1477 * plugged. 1478 */ 1479 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1480 { 1481 struct Scsi_Host *host = cmd->device->host; 1482 int rtn = 0; 1483 1484 atomic_inc(&cmd->device->iorequest_cnt); 1485 1486 /* check if the device is still usable */ 1487 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1488 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1489 * returns an immediate error upwards, and signals 1490 * that the device is no longer present */ 1491 cmd->result = DID_NO_CONNECT << 16; 1492 goto done; 1493 } 1494 1495 /* Check to see if the scsi lld made this device blocked. */ 1496 if (unlikely(scsi_device_blocked(cmd->device))) { 1497 /* 1498 * in blocked state, the command is just put back on 1499 * the device queue. The suspend state has already 1500 * blocked the queue so future requests should not 1501 * occur until the device transitions out of the 1502 * suspend state. 1503 */ 1504 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1505 "queuecommand : device blocked\n")); 1506 return SCSI_MLQUEUE_DEVICE_BUSY; 1507 } 1508 1509 /* Store the LUN value in cmnd, if needed. */ 1510 if (cmd->device->lun_in_cdb) 1511 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1512 (cmd->device->lun << 5 & 0xe0); 1513 1514 scsi_log_send(cmd); 1515 1516 /* 1517 * Before we queue this command, check if the command 1518 * length exceeds what the host adapter can handle. 1519 */ 1520 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1521 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1522 "queuecommand : command too long. " 1523 "cdb_size=%d host->max_cmd_len=%d\n", 1524 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1525 cmd->result = (DID_ABORT << 16); 1526 goto done; 1527 } 1528 1529 if (unlikely(host->shost_state == SHOST_DEL)) { 1530 cmd->result = (DID_NO_CONNECT << 16); 1531 goto done; 1532 1533 } 1534 1535 trace_scsi_dispatch_cmd_start(cmd); 1536 rtn = host->hostt->queuecommand(host, cmd); 1537 if (rtn) { 1538 trace_scsi_dispatch_cmd_error(cmd, rtn); 1539 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1540 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1541 rtn = SCSI_MLQUEUE_HOST_BUSY; 1542 1543 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1544 "queuecommand : request rejected\n")); 1545 } 1546 1547 return rtn; 1548 done: 1549 cmd->scsi_done(cmd); 1550 return 0; 1551 } 1552 1553 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1554 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1555 { 1556 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1557 sizeof(struct scatterlist); 1558 } 1559 1560 static blk_status_t scsi_mq_prep_fn(struct request *req) 1561 { 1562 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1563 struct scsi_device *sdev = req->q->queuedata; 1564 struct Scsi_Host *shost = sdev->host; 1565 struct scatterlist *sg; 1566 1567 scsi_init_command(sdev, cmd); 1568 1569 req->special = cmd; 1570 1571 cmd->request = req; 1572 1573 cmd->tag = req->tag; 1574 cmd->prot_op = SCSI_PROT_NORMAL; 1575 1576 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1577 cmd->sdb.table.sgl = sg; 1578 1579 if (scsi_host_get_prot(shost)) { 1580 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1581 1582 cmd->prot_sdb->table.sgl = 1583 (struct scatterlist *)(cmd->prot_sdb + 1); 1584 } 1585 1586 blk_mq_start_request(req); 1587 1588 return scsi_setup_cmnd(sdev, req); 1589 } 1590 1591 static void scsi_mq_done(struct scsi_cmnd *cmd) 1592 { 1593 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1594 return; 1595 trace_scsi_dispatch_cmd_done(cmd); 1596 1597 /* 1598 * If the block layer didn't complete the request due to a timeout 1599 * injection, scsi must clear its internal completed state so that the 1600 * timeout handler will see it needs to escalate its own error 1601 * recovery. 1602 */ 1603 if (unlikely(!blk_mq_complete_request(cmd->request))) 1604 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1605 } 1606 1607 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1608 { 1609 struct request_queue *q = hctx->queue; 1610 struct scsi_device *sdev = q->queuedata; 1611 1612 atomic_dec(&sdev->device_busy); 1613 put_device(&sdev->sdev_gendev); 1614 } 1615 1616 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1617 { 1618 struct request_queue *q = hctx->queue; 1619 struct scsi_device *sdev = q->queuedata; 1620 1621 if (!get_device(&sdev->sdev_gendev)) 1622 goto out; 1623 if (!scsi_dev_queue_ready(q, sdev)) 1624 goto out_put_device; 1625 1626 return true; 1627 1628 out_put_device: 1629 put_device(&sdev->sdev_gendev); 1630 out: 1631 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1632 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1633 return false; 1634 } 1635 1636 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1637 const struct blk_mq_queue_data *bd) 1638 { 1639 struct request *req = bd->rq; 1640 struct request_queue *q = req->q; 1641 struct scsi_device *sdev = q->queuedata; 1642 struct Scsi_Host *shost = sdev->host; 1643 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1644 blk_status_t ret; 1645 int reason; 1646 1647 /* 1648 * If the device is not in running state we will reject some or all 1649 * commands. 1650 */ 1651 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1652 ret = scsi_prep_state_check(sdev, req); 1653 if (ret != BLK_STS_OK) 1654 goto out_put_budget; 1655 } 1656 1657 ret = BLK_STS_RESOURCE; 1658 if (!scsi_target_queue_ready(shost, sdev)) 1659 goto out_put_budget; 1660 if (!scsi_host_queue_ready(q, shost, sdev)) 1661 goto out_dec_target_busy; 1662 1663 if (!(req->rq_flags & RQF_DONTPREP)) { 1664 ret = scsi_mq_prep_fn(req); 1665 if (ret != BLK_STS_OK) 1666 goto out_dec_host_busy; 1667 req->rq_flags |= RQF_DONTPREP; 1668 } else { 1669 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1670 blk_mq_start_request(req); 1671 } 1672 1673 if (sdev->simple_tags) 1674 cmd->flags |= SCMD_TAGGED; 1675 else 1676 cmd->flags &= ~SCMD_TAGGED; 1677 1678 scsi_init_cmd_errh(cmd); 1679 cmd->scsi_done = scsi_mq_done; 1680 1681 reason = scsi_dispatch_cmd(cmd); 1682 if (reason) { 1683 scsi_set_blocked(cmd, reason); 1684 ret = BLK_STS_RESOURCE; 1685 goto out_dec_host_busy; 1686 } 1687 1688 return BLK_STS_OK; 1689 1690 out_dec_host_busy: 1691 scsi_dec_host_busy(shost); 1692 out_dec_target_busy: 1693 if (scsi_target(sdev)->can_queue > 0) 1694 atomic_dec(&scsi_target(sdev)->target_busy); 1695 out_put_budget: 1696 scsi_mq_put_budget(hctx); 1697 switch (ret) { 1698 case BLK_STS_OK: 1699 break; 1700 case BLK_STS_RESOURCE: 1701 if (atomic_read(&sdev->device_busy) || 1702 scsi_device_blocked(sdev)) 1703 ret = BLK_STS_DEV_RESOURCE; 1704 break; 1705 default: 1706 /* 1707 * Make sure to release all allocated ressources when 1708 * we hit an error, as we will never see this command 1709 * again. 1710 */ 1711 if (req->rq_flags & RQF_DONTPREP) 1712 scsi_mq_uninit_cmd(cmd); 1713 break; 1714 } 1715 return ret; 1716 } 1717 1718 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1719 bool reserved) 1720 { 1721 if (reserved) 1722 return BLK_EH_RESET_TIMER; 1723 return scsi_times_out(req); 1724 } 1725 1726 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1727 unsigned int hctx_idx, unsigned int numa_node) 1728 { 1729 struct Scsi_Host *shost = set->driver_data; 1730 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1731 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1732 struct scatterlist *sg; 1733 1734 if (unchecked_isa_dma) 1735 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1736 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1737 GFP_KERNEL, numa_node); 1738 if (!cmd->sense_buffer) 1739 return -ENOMEM; 1740 cmd->req.sense = cmd->sense_buffer; 1741 1742 if (scsi_host_get_prot(shost)) { 1743 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1744 shost->hostt->cmd_size; 1745 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1746 } 1747 1748 return 0; 1749 } 1750 1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1752 unsigned int hctx_idx) 1753 { 1754 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1755 1756 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1757 cmd->sense_buffer); 1758 } 1759 1760 static int scsi_map_queues(struct blk_mq_tag_set *set) 1761 { 1762 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1763 1764 if (shost->hostt->map_queues) 1765 return shost->hostt->map_queues(shost); 1766 return blk_mq_map_queues(&set->map[0]); 1767 } 1768 1769 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1770 { 1771 struct device *dev = shost->dma_dev; 1772 1773 /* 1774 * this limit is imposed by hardware restrictions 1775 */ 1776 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1777 SG_MAX_SEGMENTS)); 1778 1779 if (scsi_host_prot_dma(shost)) { 1780 shost->sg_prot_tablesize = 1781 min_not_zero(shost->sg_prot_tablesize, 1782 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1783 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1784 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1785 } 1786 1787 blk_queue_max_hw_sectors(q, shost->max_sectors); 1788 if (shost->unchecked_isa_dma) 1789 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1790 blk_queue_segment_boundary(q, shost->dma_boundary); 1791 dma_set_seg_boundary(dev, shost->dma_boundary); 1792 1793 blk_queue_max_segment_size(q, 1794 min(shost->max_segment_size, dma_get_max_seg_size(dev))); 1795 1796 /* 1797 * Set a reasonable default alignment: The larger of 32-byte (dword), 1798 * which is a common minimum for HBAs, and the minimum DMA alignment, 1799 * which is set by the platform. 1800 * 1801 * Devices that require a bigger alignment can increase it later. 1802 */ 1803 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1804 } 1805 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1806 1807 static const struct blk_mq_ops scsi_mq_ops = { 1808 .get_budget = scsi_mq_get_budget, 1809 .put_budget = scsi_mq_put_budget, 1810 .queue_rq = scsi_queue_rq, 1811 .complete = scsi_softirq_done, 1812 .timeout = scsi_timeout, 1813 #ifdef CONFIG_BLK_DEBUG_FS 1814 .show_rq = scsi_show_rq, 1815 #endif 1816 .init_request = scsi_mq_init_request, 1817 .exit_request = scsi_mq_exit_request, 1818 .initialize_rq_fn = scsi_initialize_rq, 1819 .busy = scsi_mq_lld_busy, 1820 .map_queues = scsi_map_queues, 1821 }; 1822 1823 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1824 { 1825 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1826 if (IS_ERR(sdev->request_queue)) 1827 return NULL; 1828 1829 sdev->request_queue->queuedata = sdev; 1830 __scsi_init_queue(sdev->host, sdev->request_queue); 1831 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1832 return sdev->request_queue; 1833 } 1834 1835 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1836 { 1837 unsigned int cmd_size, sgl_size; 1838 1839 sgl_size = scsi_mq_sgl_size(shost); 1840 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1841 if (scsi_host_get_prot(shost)) 1842 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1843 1844 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1845 shost->tag_set.ops = &scsi_mq_ops; 1846 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1847 shost->tag_set.queue_depth = shost->can_queue; 1848 shost->tag_set.cmd_size = cmd_size; 1849 shost->tag_set.numa_node = NUMA_NO_NODE; 1850 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1851 shost->tag_set.flags |= 1852 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1853 shost->tag_set.driver_data = shost; 1854 1855 return blk_mq_alloc_tag_set(&shost->tag_set); 1856 } 1857 1858 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1859 { 1860 blk_mq_free_tag_set(&shost->tag_set); 1861 } 1862 1863 /** 1864 * scsi_device_from_queue - return sdev associated with a request_queue 1865 * @q: The request queue to return the sdev from 1866 * 1867 * Return the sdev associated with a request queue or NULL if the 1868 * request_queue does not reference a SCSI device. 1869 */ 1870 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1871 { 1872 struct scsi_device *sdev = NULL; 1873 1874 if (q->mq_ops == &scsi_mq_ops) 1875 sdev = q->queuedata; 1876 if (!sdev || !get_device(&sdev->sdev_gendev)) 1877 sdev = NULL; 1878 1879 return sdev; 1880 } 1881 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1882 1883 /* 1884 * Function: scsi_block_requests() 1885 * 1886 * Purpose: Utility function used by low-level drivers to prevent further 1887 * commands from being queued to the device. 1888 * 1889 * Arguments: shost - Host in question 1890 * 1891 * Returns: Nothing 1892 * 1893 * Lock status: No locks are assumed held. 1894 * 1895 * Notes: There is no timer nor any other means by which the requests 1896 * get unblocked other than the low-level driver calling 1897 * scsi_unblock_requests(). 1898 */ 1899 void scsi_block_requests(struct Scsi_Host *shost) 1900 { 1901 shost->host_self_blocked = 1; 1902 } 1903 EXPORT_SYMBOL(scsi_block_requests); 1904 1905 /* 1906 * Function: scsi_unblock_requests() 1907 * 1908 * Purpose: Utility function used by low-level drivers to allow further 1909 * commands from being queued to the device. 1910 * 1911 * Arguments: shost - Host in question 1912 * 1913 * Returns: Nothing 1914 * 1915 * Lock status: No locks are assumed held. 1916 * 1917 * Notes: There is no timer nor any other means by which the requests 1918 * get unblocked other than the low-level driver calling 1919 * scsi_unblock_requests(). 1920 * 1921 * This is done as an API function so that changes to the 1922 * internals of the scsi mid-layer won't require wholesale 1923 * changes to drivers that use this feature. 1924 */ 1925 void scsi_unblock_requests(struct Scsi_Host *shost) 1926 { 1927 shost->host_self_blocked = 0; 1928 scsi_run_host_queues(shost); 1929 } 1930 EXPORT_SYMBOL(scsi_unblock_requests); 1931 1932 int __init scsi_init_queue(void) 1933 { 1934 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1935 sizeof(struct scsi_data_buffer), 1936 0, 0, NULL); 1937 if (!scsi_sdb_cache) { 1938 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1939 return -ENOMEM; 1940 } 1941 1942 return 0; 1943 } 1944 1945 void scsi_exit_queue(void) 1946 { 1947 kmem_cache_destroy(scsi_sense_cache); 1948 kmem_cache_destroy(scsi_sense_isadma_cache); 1949 kmem_cache_destroy(scsi_sdb_cache); 1950 } 1951 1952 /** 1953 * scsi_mode_select - issue a mode select 1954 * @sdev: SCSI device to be queried 1955 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1956 * @sp: Save page bit (0 == don't save, 1 == save) 1957 * @modepage: mode page being requested 1958 * @buffer: request buffer (may not be smaller than eight bytes) 1959 * @len: length of request buffer. 1960 * @timeout: command timeout 1961 * @retries: number of retries before failing 1962 * @data: returns a structure abstracting the mode header data 1963 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1964 * must be SCSI_SENSE_BUFFERSIZE big. 1965 * 1966 * Returns zero if successful; negative error number or scsi 1967 * status on error 1968 * 1969 */ 1970 int 1971 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1972 unsigned char *buffer, int len, int timeout, int retries, 1973 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1974 { 1975 unsigned char cmd[10]; 1976 unsigned char *real_buffer; 1977 int ret; 1978 1979 memset(cmd, 0, sizeof(cmd)); 1980 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1981 1982 if (sdev->use_10_for_ms) { 1983 if (len > 65535) 1984 return -EINVAL; 1985 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1986 if (!real_buffer) 1987 return -ENOMEM; 1988 memcpy(real_buffer + 8, buffer, len); 1989 len += 8; 1990 real_buffer[0] = 0; 1991 real_buffer[1] = 0; 1992 real_buffer[2] = data->medium_type; 1993 real_buffer[3] = data->device_specific; 1994 real_buffer[4] = data->longlba ? 0x01 : 0; 1995 real_buffer[5] = 0; 1996 real_buffer[6] = data->block_descriptor_length >> 8; 1997 real_buffer[7] = data->block_descriptor_length; 1998 1999 cmd[0] = MODE_SELECT_10; 2000 cmd[7] = len >> 8; 2001 cmd[8] = len; 2002 } else { 2003 if (len > 255 || data->block_descriptor_length > 255 || 2004 data->longlba) 2005 return -EINVAL; 2006 2007 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2008 if (!real_buffer) 2009 return -ENOMEM; 2010 memcpy(real_buffer + 4, buffer, len); 2011 len += 4; 2012 real_buffer[0] = 0; 2013 real_buffer[1] = data->medium_type; 2014 real_buffer[2] = data->device_specific; 2015 real_buffer[3] = data->block_descriptor_length; 2016 2017 2018 cmd[0] = MODE_SELECT; 2019 cmd[4] = len; 2020 } 2021 2022 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2023 sshdr, timeout, retries, NULL); 2024 kfree(real_buffer); 2025 return ret; 2026 } 2027 EXPORT_SYMBOL_GPL(scsi_mode_select); 2028 2029 /** 2030 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2031 * @sdev: SCSI device to be queried 2032 * @dbd: set if mode sense will allow block descriptors to be returned 2033 * @modepage: mode page being requested 2034 * @buffer: request buffer (may not be smaller than eight bytes) 2035 * @len: length of request buffer. 2036 * @timeout: command timeout 2037 * @retries: number of retries before failing 2038 * @data: returns a structure abstracting the mode header data 2039 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2040 * must be SCSI_SENSE_BUFFERSIZE big. 2041 * 2042 * Returns zero if unsuccessful, or the header offset (either 4 2043 * or 8 depending on whether a six or ten byte command was 2044 * issued) if successful. 2045 */ 2046 int 2047 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2048 unsigned char *buffer, int len, int timeout, int retries, 2049 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2050 { 2051 unsigned char cmd[12]; 2052 int use_10_for_ms; 2053 int header_length; 2054 int result, retry_count = retries; 2055 struct scsi_sense_hdr my_sshdr; 2056 2057 memset(data, 0, sizeof(*data)); 2058 memset(&cmd[0], 0, 12); 2059 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2060 cmd[2] = modepage; 2061 2062 /* caller might not be interested in sense, but we need it */ 2063 if (!sshdr) 2064 sshdr = &my_sshdr; 2065 2066 retry: 2067 use_10_for_ms = sdev->use_10_for_ms; 2068 2069 if (use_10_for_ms) { 2070 if (len < 8) 2071 len = 8; 2072 2073 cmd[0] = MODE_SENSE_10; 2074 cmd[8] = len; 2075 header_length = 8; 2076 } else { 2077 if (len < 4) 2078 len = 4; 2079 2080 cmd[0] = MODE_SENSE; 2081 cmd[4] = len; 2082 header_length = 4; 2083 } 2084 2085 memset(buffer, 0, len); 2086 2087 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2088 sshdr, timeout, retries, NULL); 2089 2090 /* This code looks awful: what it's doing is making sure an 2091 * ILLEGAL REQUEST sense return identifies the actual command 2092 * byte as the problem. MODE_SENSE commands can return 2093 * ILLEGAL REQUEST if the code page isn't supported */ 2094 2095 if (use_10_for_ms && !scsi_status_is_good(result) && 2096 driver_byte(result) == DRIVER_SENSE) { 2097 if (scsi_sense_valid(sshdr)) { 2098 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2099 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2100 /* 2101 * Invalid command operation code 2102 */ 2103 sdev->use_10_for_ms = 0; 2104 goto retry; 2105 } 2106 } 2107 } 2108 2109 if(scsi_status_is_good(result)) { 2110 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2111 (modepage == 6 || modepage == 8))) { 2112 /* Initio breakage? */ 2113 header_length = 0; 2114 data->length = 13; 2115 data->medium_type = 0; 2116 data->device_specific = 0; 2117 data->longlba = 0; 2118 data->block_descriptor_length = 0; 2119 } else if(use_10_for_ms) { 2120 data->length = buffer[0]*256 + buffer[1] + 2; 2121 data->medium_type = buffer[2]; 2122 data->device_specific = buffer[3]; 2123 data->longlba = buffer[4] & 0x01; 2124 data->block_descriptor_length = buffer[6]*256 2125 + buffer[7]; 2126 } else { 2127 data->length = buffer[0] + 1; 2128 data->medium_type = buffer[1]; 2129 data->device_specific = buffer[2]; 2130 data->block_descriptor_length = buffer[3]; 2131 } 2132 data->header_length = header_length; 2133 } else if ((status_byte(result) == CHECK_CONDITION) && 2134 scsi_sense_valid(sshdr) && 2135 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2136 retry_count--; 2137 goto retry; 2138 } 2139 2140 return result; 2141 } 2142 EXPORT_SYMBOL(scsi_mode_sense); 2143 2144 /** 2145 * scsi_test_unit_ready - test if unit is ready 2146 * @sdev: scsi device to change the state of. 2147 * @timeout: command timeout 2148 * @retries: number of retries before failing 2149 * @sshdr: outpout pointer for decoded sense information. 2150 * 2151 * Returns zero if unsuccessful or an error if TUR failed. For 2152 * removable media, UNIT_ATTENTION sets ->changed flag. 2153 **/ 2154 int 2155 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2156 struct scsi_sense_hdr *sshdr) 2157 { 2158 char cmd[] = { 2159 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2160 }; 2161 int result; 2162 2163 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2164 do { 2165 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2166 timeout, 1, NULL); 2167 if (sdev->removable && scsi_sense_valid(sshdr) && 2168 sshdr->sense_key == UNIT_ATTENTION) 2169 sdev->changed = 1; 2170 } while (scsi_sense_valid(sshdr) && 2171 sshdr->sense_key == UNIT_ATTENTION && --retries); 2172 2173 return result; 2174 } 2175 EXPORT_SYMBOL(scsi_test_unit_ready); 2176 2177 /** 2178 * scsi_device_set_state - Take the given device through the device state model. 2179 * @sdev: scsi device to change the state of. 2180 * @state: state to change to. 2181 * 2182 * Returns zero if successful or an error if the requested 2183 * transition is illegal. 2184 */ 2185 int 2186 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2187 { 2188 enum scsi_device_state oldstate = sdev->sdev_state; 2189 2190 if (state == oldstate) 2191 return 0; 2192 2193 switch (state) { 2194 case SDEV_CREATED: 2195 switch (oldstate) { 2196 case SDEV_CREATED_BLOCK: 2197 break; 2198 default: 2199 goto illegal; 2200 } 2201 break; 2202 2203 case SDEV_RUNNING: 2204 switch (oldstate) { 2205 case SDEV_CREATED: 2206 case SDEV_OFFLINE: 2207 case SDEV_TRANSPORT_OFFLINE: 2208 case SDEV_QUIESCE: 2209 case SDEV_BLOCK: 2210 break; 2211 default: 2212 goto illegal; 2213 } 2214 break; 2215 2216 case SDEV_QUIESCE: 2217 switch (oldstate) { 2218 case SDEV_RUNNING: 2219 case SDEV_OFFLINE: 2220 case SDEV_TRANSPORT_OFFLINE: 2221 break; 2222 default: 2223 goto illegal; 2224 } 2225 break; 2226 2227 case SDEV_OFFLINE: 2228 case SDEV_TRANSPORT_OFFLINE: 2229 switch (oldstate) { 2230 case SDEV_CREATED: 2231 case SDEV_RUNNING: 2232 case SDEV_QUIESCE: 2233 case SDEV_BLOCK: 2234 break; 2235 default: 2236 goto illegal; 2237 } 2238 break; 2239 2240 case SDEV_BLOCK: 2241 switch (oldstate) { 2242 case SDEV_RUNNING: 2243 case SDEV_CREATED_BLOCK: 2244 case SDEV_OFFLINE: 2245 break; 2246 default: 2247 goto illegal; 2248 } 2249 break; 2250 2251 case SDEV_CREATED_BLOCK: 2252 switch (oldstate) { 2253 case SDEV_CREATED: 2254 break; 2255 default: 2256 goto illegal; 2257 } 2258 break; 2259 2260 case SDEV_CANCEL: 2261 switch (oldstate) { 2262 case SDEV_CREATED: 2263 case SDEV_RUNNING: 2264 case SDEV_QUIESCE: 2265 case SDEV_OFFLINE: 2266 case SDEV_TRANSPORT_OFFLINE: 2267 break; 2268 default: 2269 goto illegal; 2270 } 2271 break; 2272 2273 case SDEV_DEL: 2274 switch (oldstate) { 2275 case SDEV_CREATED: 2276 case SDEV_RUNNING: 2277 case SDEV_OFFLINE: 2278 case SDEV_TRANSPORT_OFFLINE: 2279 case SDEV_CANCEL: 2280 case SDEV_BLOCK: 2281 case SDEV_CREATED_BLOCK: 2282 break; 2283 default: 2284 goto illegal; 2285 } 2286 break; 2287 2288 } 2289 sdev->sdev_state = state; 2290 return 0; 2291 2292 illegal: 2293 SCSI_LOG_ERROR_RECOVERY(1, 2294 sdev_printk(KERN_ERR, sdev, 2295 "Illegal state transition %s->%s", 2296 scsi_device_state_name(oldstate), 2297 scsi_device_state_name(state)) 2298 ); 2299 return -EINVAL; 2300 } 2301 EXPORT_SYMBOL(scsi_device_set_state); 2302 2303 /** 2304 * sdev_evt_emit - emit a single SCSI device uevent 2305 * @sdev: associated SCSI device 2306 * @evt: event to emit 2307 * 2308 * Send a single uevent (scsi_event) to the associated scsi_device. 2309 */ 2310 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2311 { 2312 int idx = 0; 2313 char *envp[3]; 2314 2315 switch (evt->evt_type) { 2316 case SDEV_EVT_MEDIA_CHANGE: 2317 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2318 break; 2319 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2320 scsi_rescan_device(&sdev->sdev_gendev); 2321 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2322 break; 2323 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2324 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2325 break; 2326 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2327 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2328 break; 2329 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2330 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2331 break; 2332 case SDEV_EVT_LUN_CHANGE_REPORTED: 2333 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2334 break; 2335 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2336 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2337 break; 2338 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2339 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2340 break; 2341 default: 2342 /* do nothing */ 2343 break; 2344 } 2345 2346 envp[idx++] = NULL; 2347 2348 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2349 } 2350 2351 /** 2352 * sdev_evt_thread - send a uevent for each scsi event 2353 * @work: work struct for scsi_device 2354 * 2355 * Dispatch queued events to their associated scsi_device kobjects 2356 * as uevents. 2357 */ 2358 void scsi_evt_thread(struct work_struct *work) 2359 { 2360 struct scsi_device *sdev; 2361 enum scsi_device_event evt_type; 2362 LIST_HEAD(event_list); 2363 2364 sdev = container_of(work, struct scsi_device, event_work); 2365 2366 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2367 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2368 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2369 2370 while (1) { 2371 struct scsi_event *evt; 2372 struct list_head *this, *tmp; 2373 unsigned long flags; 2374 2375 spin_lock_irqsave(&sdev->list_lock, flags); 2376 list_splice_init(&sdev->event_list, &event_list); 2377 spin_unlock_irqrestore(&sdev->list_lock, flags); 2378 2379 if (list_empty(&event_list)) 2380 break; 2381 2382 list_for_each_safe(this, tmp, &event_list) { 2383 evt = list_entry(this, struct scsi_event, node); 2384 list_del(&evt->node); 2385 scsi_evt_emit(sdev, evt); 2386 kfree(evt); 2387 } 2388 } 2389 } 2390 2391 /** 2392 * sdev_evt_send - send asserted event to uevent thread 2393 * @sdev: scsi_device event occurred on 2394 * @evt: event to send 2395 * 2396 * Assert scsi device event asynchronously. 2397 */ 2398 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2399 { 2400 unsigned long flags; 2401 2402 #if 0 2403 /* FIXME: currently this check eliminates all media change events 2404 * for polled devices. Need to update to discriminate between AN 2405 * and polled events */ 2406 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2407 kfree(evt); 2408 return; 2409 } 2410 #endif 2411 2412 spin_lock_irqsave(&sdev->list_lock, flags); 2413 list_add_tail(&evt->node, &sdev->event_list); 2414 schedule_work(&sdev->event_work); 2415 spin_unlock_irqrestore(&sdev->list_lock, flags); 2416 } 2417 EXPORT_SYMBOL_GPL(sdev_evt_send); 2418 2419 /** 2420 * sdev_evt_alloc - allocate a new scsi event 2421 * @evt_type: type of event to allocate 2422 * @gfpflags: GFP flags for allocation 2423 * 2424 * Allocates and returns a new scsi_event. 2425 */ 2426 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2427 gfp_t gfpflags) 2428 { 2429 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2430 if (!evt) 2431 return NULL; 2432 2433 evt->evt_type = evt_type; 2434 INIT_LIST_HEAD(&evt->node); 2435 2436 /* evt_type-specific initialization, if any */ 2437 switch (evt_type) { 2438 case SDEV_EVT_MEDIA_CHANGE: 2439 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2440 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2441 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2442 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2443 case SDEV_EVT_LUN_CHANGE_REPORTED: 2444 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2445 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2446 default: 2447 /* do nothing */ 2448 break; 2449 } 2450 2451 return evt; 2452 } 2453 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2454 2455 /** 2456 * sdev_evt_send_simple - send asserted event to uevent thread 2457 * @sdev: scsi_device event occurred on 2458 * @evt_type: type of event to send 2459 * @gfpflags: GFP flags for allocation 2460 * 2461 * Assert scsi device event asynchronously, given an event type. 2462 */ 2463 void sdev_evt_send_simple(struct scsi_device *sdev, 2464 enum scsi_device_event evt_type, gfp_t gfpflags) 2465 { 2466 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2467 if (!evt) { 2468 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2469 evt_type); 2470 return; 2471 } 2472 2473 sdev_evt_send(sdev, evt); 2474 } 2475 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2476 2477 /** 2478 * scsi_device_quiesce - Block user issued commands. 2479 * @sdev: scsi device to quiesce. 2480 * 2481 * This works by trying to transition to the SDEV_QUIESCE state 2482 * (which must be a legal transition). When the device is in this 2483 * state, only special requests will be accepted, all others will 2484 * be deferred. Since special requests may also be requeued requests, 2485 * a successful return doesn't guarantee the device will be 2486 * totally quiescent. 2487 * 2488 * Must be called with user context, may sleep. 2489 * 2490 * Returns zero if unsuccessful or an error if not. 2491 */ 2492 int 2493 scsi_device_quiesce(struct scsi_device *sdev) 2494 { 2495 struct request_queue *q = sdev->request_queue; 2496 int err; 2497 2498 /* 2499 * It is allowed to call scsi_device_quiesce() multiple times from 2500 * the same context but concurrent scsi_device_quiesce() calls are 2501 * not allowed. 2502 */ 2503 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2504 2505 if (sdev->quiesced_by == current) 2506 return 0; 2507 2508 blk_set_pm_only(q); 2509 2510 blk_mq_freeze_queue(q); 2511 /* 2512 * Ensure that the effect of blk_set_pm_only() will be visible 2513 * for percpu_ref_tryget() callers that occur after the queue 2514 * unfreeze even if the queue was already frozen before this function 2515 * was called. See also https://lwn.net/Articles/573497/. 2516 */ 2517 synchronize_rcu(); 2518 blk_mq_unfreeze_queue(q); 2519 2520 mutex_lock(&sdev->state_mutex); 2521 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2522 if (err == 0) 2523 sdev->quiesced_by = current; 2524 else 2525 blk_clear_pm_only(q); 2526 mutex_unlock(&sdev->state_mutex); 2527 2528 return err; 2529 } 2530 EXPORT_SYMBOL(scsi_device_quiesce); 2531 2532 /** 2533 * scsi_device_resume - Restart user issued commands to a quiesced device. 2534 * @sdev: scsi device to resume. 2535 * 2536 * Moves the device from quiesced back to running and restarts the 2537 * queues. 2538 * 2539 * Must be called with user context, may sleep. 2540 */ 2541 void scsi_device_resume(struct scsi_device *sdev) 2542 { 2543 /* check if the device state was mutated prior to resume, and if 2544 * so assume the state is being managed elsewhere (for example 2545 * device deleted during suspend) 2546 */ 2547 mutex_lock(&sdev->state_mutex); 2548 WARN_ON_ONCE(!sdev->quiesced_by); 2549 sdev->quiesced_by = NULL; 2550 blk_clear_pm_only(sdev->request_queue); 2551 if (sdev->sdev_state == SDEV_QUIESCE) 2552 scsi_device_set_state(sdev, SDEV_RUNNING); 2553 mutex_unlock(&sdev->state_mutex); 2554 } 2555 EXPORT_SYMBOL(scsi_device_resume); 2556 2557 static void 2558 device_quiesce_fn(struct scsi_device *sdev, void *data) 2559 { 2560 scsi_device_quiesce(sdev); 2561 } 2562 2563 void 2564 scsi_target_quiesce(struct scsi_target *starget) 2565 { 2566 starget_for_each_device(starget, NULL, device_quiesce_fn); 2567 } 2568 EXPORT_SYMBOL(scsi_target_quiesce); 2569 2570 static void 2571 device_resume_fn(struct scsi_device *sdev, void *data) 2572 { 2573 scsi_device_resume(sdev); 2574 } 2575 2576 void 2577 scsi_target_resume(struct scsi_target *starget) 2578 { 2579 starget_for_each_device(starget, NULL, device_resume_fn); 2580 } 2581 EXPORT_SYMBOL(scsi_target_resume); 2582 2583 /** 2584 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2585 * @sdev: device to block 2586 * 2587 * Pause SCSI command processing on the specified device. Does not sleep. 2588 * 2589 * Returns zero if successful or a negative error code upon failure. 2590 * 2591 * Notes: 2592 * This routine transitions the device to the SDEV_BLOCK state (which must be 2593 * a legal transition). When the device is in this state, command processing 2594 * is paused until the device leaves the SDEV_BLOCK state. See also 2595 * scsi_internal_device_unblock_nowait(). 2596 */ 2597 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2598 { 2599 struct request_queue *q = sdev->request_queue; 2600 int err = 0; 2601 2602 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2603 if (err) { 2604 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2605 2606 if (err) 2607 return err; 2608 } 2609 2610 /* 2611 * The device has transitioned to SDEV_BLOCK. Stop the 2612 * block layer from calling the midlayer with this device's 2613 * request queue. 2614 */ 2615 blk_mq_quiesce_queue_nowait(q); 2616 return 0; 2617 } 2618 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2619 2620 /** 2621 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2622 * @sdev: device to block 2623 * 2624 * Pause SCSI command processing on the specified device and wait until all 2625 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2626 * 2627 * Returns zero if successful or a negative error code upon failure. 2628 * 2629 * Note: 2630 * This routine transitions the device to the SDEV_BLOCK state (which must be 2631 * a legal transition). When the device is in this state, command processing 2632 * is paused until the device leaves the SDEV_BLOCK state. See also 2633 * scsi_internal_device_unblock(). 2634 * 2635 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2636 * scsi_internal_device_block() has blocked a SCSI device and also 2637 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2638 */ 2639 static int scsi_internal_device_block(struct scsi_device *sdev) 2640 { 2641 struct request_queue *q = sdev->request_queue; 2642 int err; 2643 2644 mutex_lock(&sdev->state_mutex); 2645 err = scsi_internal_device_block_nowait(sdev); 2646 if (err == 0) 2647 blk_mq_quiesce_queue(q); 2648 mutex_unlock(&sdev->state_mutex); 2649 2650 return err; 2651 } 2652 2653 void scsi_start_queue(struct scsi_device *sdev) 2654 { 2655 struct request_queue *q = sdev->request_queue; 2656 2657 blk_mq_unquiesce_queue(q); 2658 } 2659 2660 /** 2661 * scsi_internal_device_unblock_nowait - resume a device after a block request 2662 * @sdev: device to resume 2663 * @new_state: state to set the device to after unblocking 2664 * 2665 * Restart the device queue for a previously suspended SCSI device. Does not 2666 * sleep. 2667 * 2668 * Returns zero if successful or a negative error code upon failure. 2669 * 2670 * Notes: 2671 * This routine transitions the device to the SDEV_RUNNING state or to one of 2672 * the offline states (which must be a legal transition) allowing the midlayer 2673 * to goose the queue for this device. 2674 */ 2675 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2676 enum scsi_device_state new_state) 2677 { 2678 /* 2679 * Try to transition the scsi device to SDEV_RUNNING or one of the 2680 * offlined states and goose the device queue if successful. 2681 */ 2682 switch (sdev->sdev_state) { 2683 case SDEV_BLOCK: 2684 case SDEV_TRANSPORT_OFFLINE: 2685 sdev->sdev_state = new_state; 2686 break; 2687 case SDEV_CREATED_BLOCK: 2688 if (new_state == SDEV_TRANSPORT_OFFLINE || 2689 new_state == SDEV_OFFLINE) 2690 sdev->sdev_state = new_state; 2691 else 2692 sdev->sdev_state = SDEV_CREATED; 2693 break; 2694 case SDEV_CANCEL: 2695 case SDEV_OFFLINE: 2696 break; 2697 default: 2698 return -EINVAL; 2699 } 2700 scsi_start_queue(sdev); 2701 2702 return 0; 2703 } 2704 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2705 2706 /** 2707 * scsi_internal_device_unblock - resume a device after a block request 2708 * @sdev: device to resume 2709 * @new_state: state to set the device to after unblocking 2710 * 2711 * Restart the device queue for a previously suspended SCSI device. May sleep. 2712 * 2713 * Returns zero if successful or a negative error code upon failure. 2714 * 2715 * Notes: 2716 * This routine transitions the device to the SDEV_RUNNING state or to one of 2717 * the offline states (which must be a legal transition) allowing the midlayer 2718 * to goose the queue for this device. 2719 */ 2720 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2721 enum scsi_device_state new_state) 2722 { 2723 int ret; 2724 2725 mutex_lock(&sdev->state_mutex); 2726 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2727 mutex_unlock(&sdev->state_mutex); 2728 2729 return ret; 2730 } 2731 2732 static void 2733 device_block(struct scsi_device *sdev, void *data) 2734 { 2735 scsi_internal_device_block(sdev); 2736 } 2737 2738 static int 2739 target_block(struct device *dev, void *data) 2740 { 2741 if (scsi_is_target_device(dev)) 2742 starget_for_each_device(to_scsi_target(dev), NULL, 2743 device_block); 2744 return 0; 2745 } 2746 2747 void 2748 scsi_target_block(struct device *dev) 2749 { 2750 if (scsi_is_target_device(dev)) 2751 starget_for_each_device(to_scsi_target(dev), NULL, 2752 device_block); 2753 else 2754 device_for_each_child(dev, NULL, target_block); 2755 } 2756 EXPORT_SYMBOL_GPL(scsi_target_block); 2757 2758 static void 2759 device_unblock(struct scsi_device *sdev, void *data) 2760 { 2761 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2762 } 2763 2764 static int 2765 target_unblock(struct device *dev, void *data) 2766 { 2767 if (scsi_is_target_device(dev)) 2768 starget_for_each_device(to_scsi_target(dev), data, 2769 device_unblock); 2770 return 0; 2771 } 2772 2773 void 2774 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2775 { 2776 if (scsi_is_target_device(dev)) 2777 starget_for_each_device(to_scsi_target(dev), &new_state, 2778 device_unblock); 2779 else 2780 device_for_each_child(dev, &new_state, target_unblock); 2781 } 2782 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2783 2784 /** 2785 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2786 * @sgl: scatter-gather list 2787 * @sg_count: number of segments in sg 2788 * @offset: offset in bytes into sg, on return offset into the mapped area 2789 * @len: bytes to map, on return number of bytes mapped 2790 * 2791 * Returns virtual address of the start of the mapped page 2792 */ 2793 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2794 size_t *offset, size_t *len) 2795 { 2796 int i; 2797 size_t sg_len = 0, len_complete = 0; 2798 struct scatterlist *sg; 2799 struct page *page; 2800 2801 WARN_ON(!irqs_disabled()); 2802 2803 for_each_sg(sgl, sg, sg_count, i) { 2804 len_complete = sg_len; /* Complete sg-entries */ 2805 sg_len += sg->length; 2806 if (sg_len > *offset) 2807 break; 2808 } 2809 2810 if (unlikely(i == sg_count)) { 2811 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2812 "elements %d\n", 2813 __func__, sg_len, *offset, sg_count); 2814 WARN_ON(1); 2815 return NULL; 2816 } 2817 2818 /* Offset starting from the beginning of first page in this sg-entry */ 2819 *offset = *offset - len_complete + sg->offset; 2820 2821 /* Assumption: contiguous pages can be accessed as "page + i" */ 2822 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2823 *offset &= ~PAGE_MASK; 2824 2825 /* Bytes in this sg-entry from *offset to the end of the page */ 2826 sg_len = PAGE_SIZE - *offset; 2827 if (*len > sg_len) 2828 *len = sg_len; 2829 2830 return kmap_atomic(page); 2831 } 2832 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2833 2834 /** 2835 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2836 * @virt: virtual address to be unmapped 2837 */ 2838 void scsi_kunmap_atomic_sg(void *virt) 2839 { 2840 kunmap_atomic(virt); 2841 } 2842 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2843 2844 void sdev_disable_disk_events(struct scsi_device *sdev) 2845 { 2846 atomic_inc(&sdev->disk_events_disable_depth); 2847 } 2848 EXPORT_SYMBOL(sdev_disable_disk_events); 2849 2850 void sdev_enable_disk_events(struct scsi_device *sdev) 2851 { 2852 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2853 return; 2854 atomic_dec(&sdev->disk_events_disable_depth); 2855 } 2856 EXPORT_SYMBOL(sdev_enable_disk_events); 2857 2858 /** 2859 * scsi_vpd_lun_id - return a unique device identification 2860 * @sdev: SCSI device 2861 * @id: buffer for the identification 2862 * @id_len: length of the buffer 2863 * 2864 * Copies a unique device identification into @id based 2865 * on the information in the VPD page 0x83 of the device. 2866 * The string will be formatted as a SCSI name string. 2867 * 2868 * Returns the length of the identification or error on failure. 2869 * If the identifier is longer than the supplied buffer the actual 2870 * identifier length is returned and the buffer is not zero-padded. 2871 */ 2872 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2873 { 2874 u8 cur_id_type = 0xff; 2875 u8 cur_id_size = 0; 2876 const unsigned char *d, *cur_id_str; 2877 const struct scsi_vpd *vpd_pg83; 2878 int id_size = -EINVAL; 2879 2880 rcu_read_lock(); 2881 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2882 if (!vpd_pg83) { 2883 rcu_read_unlock(); 2884 return -ENXIO; 2885 } 2886 2887 /* 2888 * Look for the correct descriptor. 2889 * Order of preference for lun descriptor: 2890 * - SCSI name string 2891 * - NAA IEEE Registered Extended 2892 * - EUI-64 based 16-byte 2893 * - EUI-64 based 12-byte 2894 * - NAA IEEE Registered 2895 * - NAA IEEE Extended 2896 * - T10 Vendor ID 2897 * as longer descriptors reduce the likelyhood 2898 * of identification clashes. 2899 */ 2900 2901 /* The id string must be at least 20 bytes + terminating NULL byte */ 2902 if (id_len < 21) { 2903 rcu_read_unlock(); 2904 return -EINVAL; 2905 } 2906 2907 memset(id, 0, id_len); 2908 d = vpd_pg83->data + 4; 2909 while (d < vpd_pg83->data + vpd_pg83->len) { 2910 /* Skip designators not referring to the LUN */ 2911 if ((d[1] & 0x30) != 0x00) 2912 goto next_desig; 2913 2914 switch (d[1] & 0xf) { 2915 case 0x1: 2916 /* T10 Vendor ID */ 2917 if (cur_id_size > d[3]) 2918 break; 2919 /* Prefer anything */ 2920 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2921 break; 2922 cur_id_size = d[3]; 2923 if (cur_id_size + 4 > id_len) 2924 cur_id_size = id_len - 4; 2925 cur_id_str = d + 4; 2926 cur_id_type = d[1] & 0xf; 2927 id_size = snprintf(id, id_len, "t10.%*pE", 2928 cur_id_size, cur_id_str); 2929 break; 2930 case 0x2: 2931 /* EUI-64 */ 2932 if (cur_id_size > d[3]) 2933 break; 2934 /* Prefer NAA IEEE Registered Extended */ 2935 if (cur_id_type == 0x3 && 2936 cur_id_size == d[3]) 2937 break; 2938 cur_id_size = d[3]; 2939 cur_id_str = d + 4; 2940 cur_id_type = d[1] & 0xf; 2941 switch (cur_id_size) { 2942 case 8: 2943 id_size = snprintf(id, id_len, 2944 "eui.%8phN", 2945 cur_id_str); 2946 break; 2947 case 12: 2948 id_size = snprintf(id, id_len, 2949 "eui.%12phN", 2950 cur_id_str); 2951 break; 2952 case 16: 2953 id_size = snprintf(id, id_len, 2954 "eui.%16phN", 2955 cur_id_str); 2956 break; 2957 default: 2958 cur_id_size = 0; 2959 break; 2960 } 2961 break; 2962 case 0x3: 2963 /* NAA */ 2964 if (cur_id_size > d[3]) 2965 break; 2966 cur_id_size = d[3]; 2967 cur_id_str = d + 4; 2968 cur_id_type = d[1] & 0xf; 2969 switch (cur_id_size) { 2970 case 8: 2971 id_size = snprintf(id, id_len, 2972 "naa.%8phN", 2973 cur_id_str); 2974 break; 2975 case 16: 2976 id_size = snprintf(id, id_len, 2977 "naa.%16phN", 2978 cur_id_str); 2979 break; 2980 default: 2981 cur_id_size = 0; 2982 break; 2983 } 2984 break; 2985 case 0x8: 2986 /* SCSI name string */ 2987 if (cur_id_size + 4 > d[3]) 2988 break; 2989 /* Prefer others for truncated descriptor */ 2990 if (cur_id_size && d[3] > id_len) 2991 break; 2992 cur_id_size = id_size = d[3]; 2993 cur_id_str = d + 4; 2994 cur_id_type = d[1] & 0xf; 2995 if (cur_id_size >= id_len) 2996 cur_id_size = id_len - 1; 2997 memcpy(id, cur_id_str, cur_id_size); 2998 /* Decrease priority for truncated descriptor */ 2999 if (cur_id_size != id_size) 3000 cur_id_size = 6; 3001 break; 3002 default: 3003 break; 3004 } 3005 next_desig: 3006 d += d[3] + 4; 3007 } 3008 rcu_read_unlock(); 3009 3010 return id_size; 3011 } 3012 EXPORT_SYMBOL(scsi_vpd_lun_id); 3013 3014 /* 3015 * scsi_vpd_tpg_id - return a target port group identifier 3016 * @sdev: SCSI device 3017 * 3018 * Returns the Target Port Group identifier from the information 3019 * froom VPD page 0x83 of the device. 3020 * 3021 * Returns the identifier or error on failure. 3022 */ 3023 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3024 { 3025 const unsigned char *d; 3026 const struct scsi_vpd *vpd_pg83; 3027 int group_id = -EAGAIN, rel_port = -1; 3028 3029 rcu_read_lock(); 3030 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3031 if (!vpd_pg83) { 3032 rcu_read_unlock(); 3033 return -ENXIO; 3034 } 3035 3036 d = vpd_pg83->data + 4; 3037 while (d < vpd_pg83->data + vpd_pg83->len) { 3038 switch (d[1] & 0xf) { 3039 case 0x4: 3040 /* Relative target port */ 3041 rel_port = get_unaligned_be16(&d[6]); 3042 break; 3043 case 0x5: 3044 /* Target port group */ 3045 group_id = get_unaligned_be16(&d[6]); 3046 break; 3047 default: 3048 break; 3049 } 3050 d += d[3] + 4; 3051 } 3052 rcu_read_unlock(); 3053 3054 if (group_id >= 0 && rel_id && rel_port != -1) 3055 *rel_id = rel_port; 3056 3057 return group_id; 3058 } 3059 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3060