1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static DEFINE_MUTEX(scsi_sense_cache_mutex); 57 58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 59 60 int scsi_init_sense_cache(struct Scsi_Host *shost) 61 { 62 int ret = 0; 63 64 mutex_lock(&scsi_sense_cache_mutex); 65 if (!scsi_sense_cache) { 66 scsi_sense_cache = 67 kmem_cache_create_usercopy("scsi_sense_cache", 68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 69 0, SCSI_SENSE_BUFFERSIZE, NULL); 70 if (!scsi_sense_cache) 71 ret = -ENOMEM; 72 } 73 mutex_unlock(&scsi_sense_cache_mutex); 74 return ret; 75 } 76 77 /* 78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 79 * not change behaviour from the previous unplug mechanism, experimentation 80 * may prove this needs changing. 81 */ 82 #define SCSI_QUEUE_DELAY 3 83 84 static void 85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 86 { 87 struct Scsi_Host *host = cmd->device->host; 88 struct scsi_device *device = cmd->device; 89 struct scsi_target *starget = scsi_target(device); 90 91 /* 92 * Set the appropriate busy bit for the device/host. 93 * 94 * If the host/device isn't busy, assume that something actually 95 * completed, and that we should be able to queue a command now. 96 * 97 * Note that the prior mid-layer assumption that any host could 98 * always queue at least one command is now broken. The mid-layer 99 * will implement a user specifiable stall (see 100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 101 * if a command is requeued with no other commands outstanding 102 * either for the device or for the host. 103 */ 104 switch (reason) { 105 case SCSI_MLQUEUE_HOST_BUSY: 106 atomic_set(&host->host_blocked, host->max_host_blocked); 107 break; 108 case SCSI_MLQUEUE_DEVICE_BUSY: 109 case SCSI_MLQUEUE_EH_RETRY: 110 atomic_set(&device->device_blocked, 111 device->max_device_blocked); 112 break; 113 case SCSI_MLQUEUE_TARGET_BUSY: 114 atomic_set(&starget->target_blocked, 115 starget->max_target_blocked); 116 break; 117 } 118 } 119 120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 121 { 122 if (cmd->request->rq_flags & RQF_DONTPREP) { 123 cmd->request->rq_flags &= ~RQF_DONTPREP; 124 scsi_mq_uninit_cmd(cmd); 125 } else { 126 WARN_ON_ONCE(true); 127 } 128 blk_mq_requeue_request(cmd->request, true); 129 } 130 131 /** 132 * __scsi_queue_insert - private queue insertion 133 * @cmd: The SCSI command being requeued 134 * @reason: The reason for the requeue 135 * @unbusy: Whether the queue should be unbusied 136 * 137 * This is a private queue insertion. The public interface 138 * scsi_queue_insert() always assumes the queue should be unbusied 139 * because it's always called before the completion. This function is 140 * for a requeue after completion, which should only occur in this 141 * file. 142 */ 143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 144 { 145 struct scsi_device *device = cmd->device; 146 147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 148 "Inserting command %p into mlqueue\n", cmd)); 149 150 scsi_set_blocked(cmd, reason); 151 152 /* 153 * Decrement the counters, since these commands are no longer 154 * active on the host/device. 155 */ 156 if (unbusy) 157 scsi_device_unbusy(device, cmd); 158 159 /* 160 * Requeue this command. It will go before all other commands 161 * that are already in the queue. Schedule requeue work under 162 * lock such that the kblockd_schedule_work() call happens 163 * before blk_cleanup_queue() finishes. 164 */ 165 cmd->result = 0; 166 167 blk_mq_requeue_request(cmd->request, true); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 188 /** 189 * __scsi_execute - insert request and wait for the result 190 * @sdev: scsi device 191 * @cmd: scsi command 192 * @data_direction: data direction 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @sense: optional sense buffer 196 * @sshdr: optional decoded sense header 197 * @timeout: request timeout in seconds 198 * @retries: number of times to retry request 199 * @flags: flags for ->cmd_flags 200 * @rq_flags: flags for ->rq_flags 201 * @resid: optional residual length 202 * 203 * Returns the scsi_cmnd result field if a command was executed, or a negative 204 * Linux error code if we didn't get that far. 205 */ 206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 207 int data_direction, void *buffer, unsigned bufflen, 208 unsigned char *sense, struct scsi_sense_hdr *sshdr, 209 int timeout, int retries, u64 flags, req_flags_t rq_flags, 210 int *resid) 211 { 212 struct request *req; 213 struct scsi_request *rq; 214 int ret = DRIVER_ERROR << 24; 215 216 req = blk_get_request(sdev->request_queue, 217 data_direction == DMA_TO_DEVICE ? 218 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 219 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 220 if (IS_ERR(req)) 221 return ret; 222 rq = scsi_req(req); 223 224 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 225 buffer, bufflen, GFP_NOIO)) 226 goto out; 227 228 rq->cmd_len = COMMAND_SIZE(cmd[0]); 229 memcpy(rq->cmd, cmd, rq->cmd_len); 230 rq->retries = retries; 231 req->timeout = timeout; 232 req->cmd_flags |= flags; 233 req->rq_flags |= rq_flags | RQF_QUIET; 234 235 /* 236 * head injection *required* here otherwise quiesce won't work 237 */ 238 blk_execute_rq(NULL, req, 1); 239 240 /* 241 * Some devices (USB mass-storage in particular) may transfer 242 * garbage data together with a residue indicating that the data 243 * is invalid. Prevent the garbage from being misinterpreted 244 * and prevent security leaks by zeroing out the excess data. 245 */ 246 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 247 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 248 249 if (resid) 250 *resid = rq->resid_len; 251 if (sense && rq->sense_len) 252 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 253 if (sshdr) 254 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 255 ret = rq->result; 256 out: 257 blk_put_request(req); 258 259 return ret; 260 } 261 EXPORT_SYMBOL(__scsi_execute); 262 263 /* 264 * Wake up the error handler if necessary. Avoid as follows that the error 265 * handler is not woken up if host in-flight requests number == 266 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 267 * with an RCU read lock in this function to ensure that this function in 268 * its entirety either finishes before scsi_eh_scmd_add() increases the 269 * host_failed counter or that it notices the shost state change made by 270 * scsi_eh_scmd_add(). 271 */ 272 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 273 { 274 unsigned long flags; 275 276 rcu_read_lock(); 277 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 278 if (unlikely(scsi_host_in_recovery(shost))) { 279 spin_lock_irqsave(shost->host_lock, flags); 280 if (shost->host_failed || shost->host_eh_scheduled) 281 scsi_eh_wakeup(shost); 282 spin_unlock_irqrestore(shost->host_lock, flags); 283 } 284 rcu_read_unlock(); 285 } 286 287 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 288 { 289 struct Scsi_Host *shost = sdev->host; 290 struct scsi_target *starget = scsi_target(sdev); 291 292 scsi_dec_host_busy(shost, cmd); 293 294 if (starget->can_queue > 0) 295 atomic_dec(&starget->target_busy); 296 297 sbitmap_put(&sdev->budget_map, cmd->budget_token); 298 cmd->budget_token = -1; 299 } 300 301 static void scsi_kick_queue(struct request_queue *q) 302 { 303 blk_mq_run_hw_queues(q, false); 304 } 305 306 /* 307 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 308 * and call blk_run_queue for all the scsi_devices on the target - 309 * including current_sdev first. 310 * 311 * Called with *no* scsi locks held. 312 */ 313 static void scsi_single_lun_run(struct scsi_device *current_sdev) 314 { 315 struct Scsi_Host *shost = current_sdev->host; 316 struct scsi_device *sdev, *tmp; 317 struct scsi_target *starget = scsi_target(current_sdev); 318 unsigned long flags; 319 320 spin_lock_irqsave(shost->host_lock, flags); 321 starget->starget_sdev_user = NULL; 322 spin_unlock_irqrestore(shost->host_lock, flags); 323 324 /* 325 * Call blk_run_queue for all LUNs on the target, starting with 326 * current_sdev. We race with others (to set starget_sdev_user), 327 * but in most cases, we will be first. Ideally, each LU on the 328 * target would get some limited time or requests on the target. 329 */ 330 scsi_kick_queue(current_sdev->request_queue); 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 if (starget->starget_sdev_user) 334 goto out; 335 list_for_each_entry_safe(sdev, tmp, &starget->devices, 336 same_target_siblings) { 337 if (sdev == current_sdev) 338 continue; 339 if (scsi_device_get(sdev)) 340 continue; 341 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 scsi_kick_queue(sdev->request_queue); 344 spin_lock_irqsave(shost->host_lock, flags); 345 346 scsi_device_put(sdev); 347 } 348 out: 349 spin_unlock_irqrestore(shost->host_lock, flags); 350 } 351 352 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 353 { 354 if (scsi_device_busy(sdev) >= sdev->queue_depth) 355 return true; 356 if (atomic_read(&sdev->device_blocked) > 0) 357 return true; 358 return false; 359 } 360 361 static inline bool scsi_target_is_busy(struct scsi_target *starget) 362 { 363 if (starget->can_queue > 0) { 364 if (atomic_read(&starget->target_busy) >= starget->can_queue) 365 return true; 366 if (atomic_read(&starget->target_blocked) > 0) 367 return true; 368 } 369 return false; 370 } 371 372 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 373 { 374 if (atomic_read(&shost->host_blocked) > 0) 375 return true; 376 if (shost->host_self_blocked) 377 return true; 378 return false; 379 } 380 381 static void scsi_starved_list_run(struct Scsi_Host *shost) 382 { 383 LIST_HEAD(starved_list); 384 struct scsi_device *sdev; 385 unsigned long flags; 386 387 spin_lock_irqsave(shost->host_lock, flags); 388 list_splice_init(&shost->starved_list, &starved_list); 389 390 while (!list_empty(&starved_list)) { 391 struct request_queue *slq; 392 393 /* 394 * As long as shost is accepting commands and we have 395 * starved queues, call blk_run_queue. scsi_request_fn 396 * drops the queue_lock and can add us back to the 397 * starved_list. 398 * 399 * host_lock protects the starved_list and starved_entry. 400 * scsi_request_fn must get the host_lock before checking 401 * or modifying starved_list or starved_entry. 402 */ 403 if (scsi_host_is_busy(shost)) 404 break; 405 406 sdev = list_entry(starved_list.next, 407 struct scsi_device, starved_entry); 408 list_del_init(&sdev->starved_entry); 409 if (scsi_target_is_busy(scsi_target(sdev))) { 410 list_move_tail(&sdev->starved_entry, 411 &shost->starved_list); 412 continue; 413 } 414 415 /* 416 * Once we drop the host lock, a racing scsi_remove_device() 417 * call may remove the sdev from the starved list and destroy 418 * it and the queue. Mitigate by taking a reference to the 419 * queue and never touching the sdev again after we drop the 420 * host lock. Note: if __scsi_remove_device() invokes 421 * blk_cleanup_queue() before the queue is run from this 422 * function then blk_run_queue() will return immediately since 423 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 424 */ 425 slq = sdev->request_queue; 426 if (!blk_get_queue(slq)) 427 continue; 428 spin_unlock_irqrestore(shost->host_lock, flags); 429 430 scsi_kick_queue(slq); 431 blk_put_queue(slq); 432 433 spin_lock_irqsave(shost->host_lock, flags); 434 } 435 /* put any unprocessed entries back */ 436 list_splice(&starved_list, &shost->starved_list); 437 spin_unlock_irqrestore(shost->host_lock, flags); 438 } 439 440 /** 441 * scsi_run_queue - Select a proper request queue to serve next. 442 * @q: last request's queue 443 * 444 * The previous command was completely finished, start a new one if possible. 445 */ 446 static void scsi_run_queue(struct request_queue *q) 447 { 448 struct scsi_device *sdev = q->queuedata; 449 450 if (scsi_target(sdev)->single_lun) 451 scsi_single_lun_run(sdev); 452 if (!list_empty(&sdev->host->starved_list)) 453 scsi_starved_list_run(sdev->host); 454 455 blk_mq_run_hw_queues(q, false); 456 } 457 458 void scsi_requeue_run_queue(struct work_struct *work) 459 { 460 struct scsi_device *sdev; 461 struct request_queue *q; 462 463 sdev = container_of(work, struct scsi_device, requeue_work); 464 q = sdev->request_queue; 465 scsi_run_queue(q); 466 } 467 468 void scsi_run_host_queues(struct Scsi_Host *shost) 469 { 470 struct scsi_device *sdev; 471 472 shost_for_each_device(sdev, shost) 473 scsi_run_queue(sdev->request_queue); 474 } 475 476 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 477 { 478 if (!blk_rq_is_passthrough(cmd->request)) { 479 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 480 481 if (drv->uninit_command) 482 drv->uninit_command(cmd); 483 } 484 } 485 486 void scsi_free_sgtables(struct scsi_cmnd *cmd) 487 { 488 if (cmd->sdb.table.nents) 489 sg_free_table_chained(&cmd->sdb.table, 490 SCSI_INLINE_SG_CNT); 491 if (scsi_prot_sg_count(cmd)) 492 sg_free_table_chained(&cmd->prot_sdb->table, 493 SCSI_INLINE_PROT_SG_CNT); 494 } 495 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 496 497 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 498 { 499 scsi_free_sgtables(cmd); 500 scsi_uninit_cmd(cmd); 501 } 502 503 static void scsi_run_queue_async(struct scsi_device *sdev) 504 { 505 if (scsi_target(sdev)->single_lun || 506 !list_empty(&sdev->host->starved_list)) { 507 kblockd_schedule_work(&sdev->requeue_work); 508 } else { 509 /* 510 * smp_mb() present in sbitmap_queue_clear() or implied in 511 * .end_io is for ordering writing .device_busy in 512 * scsi_device_unbusy() and reading sdev->restarts. 513 */ 514 int old = atomic_read(&sdev->restarts); 515 516 /* 517 * ->restarts has to be kept as non-zero if new budget 518 * contention occurs. 519 * 520 * No need to run queue when either another re-run 521 * queue wins in updating ->restarts or a new budget 522 * contention occurs. 523 */ 524 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 525 blk_mq_run_hw_queues(sdev->request_queue, true); 526 } 527 } 528 529 /* Returns false when no more bytes to process, true if there are more */ 530 static bool scsi_end_request(struct request *req, blk_status_t error, 531 unsigned int bytes) 532 { 533 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 534 struct scsi_device *sdev = cmd->device; 535 struct request_queue *q = sdev->request_queue; 536 537 if (blk_update_request(req, error, bytes)) 538 return true; 539 540 if (blk_queue_add_random(q)) 541 add_disk_randomness(req->rq_disk); 542 543 if (!blk_rq_is_scsi(req)) { 544 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 545 cmd->flags &= ~SCMD_INITIALIZED; 546 } 547 548 /* 549 * Calling rcu_barrier() is not necessary here because the 550 * SCSI error handler guarantees that the function called by 551 * call_rcu() has been called before scsi_end_request() is 552 * called. 553 */ 554 destroy_rcu_head(&cmd->rcu); 555 556 /* 557 * In the MQ case the command gets freed by __blk_mq_end_request, 558 * so we have to do all cleanup that depends on it earlier. 559 * 560 * We also can't kick the queues from irq context, so we 561 * will have to defer it to a workqueue. 562 */ 563 scsi_mq_uninit_cmd(cmd); 564 565 /* 566 * queue is still alive, so grab the ref for preventing it 567 * from being cleaned up during running queue. 568 */ 569 percpu_ref_get(&q->q_usage_counter); 570 571 __blk_mq_end_request(req, error); 572 573 scsi_run_queue_async(sdev); 574 575 percpu_ref_put(&q->q_usage_counter); 576 return false; 577 } 578 579 /** 580 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 581 * @cmd: SCSI command 582 * @result: scsi error code 583 * 584 * Translate a SCSI result code into a blk_status_t value. May reset the host 585 * byte of @cmd->result. 586 */ 587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 588 { 589 switch (host_byte(result)) { 590 case DID_OK: 591 /* 592 * Also check the other bytes than the status byte in result 593 * to handle the case when a SCSI LLD sets result to 594 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 595 */ 596 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 597 return BLK_STS_OK; 598 return BLK_STS_IOERR; 599 case DID_TRANSPORT_FAILFAST: 600 case DID_TRANSPORT_MARGINAL: 601 return BLK_STS_TRANSPORT; 602 case DID_TARGET_FAILURE: 603 set_host_byte(cmd, DID_OK); 604 return BLK_STS_TARGET; 605 case DID_NEXUS_FAILURE: 606 set_host_byte(cmd, DID_OK); 607 return BLK_STS_NEXUS; 608 case DID_ALLOC_FAILURE: 609 set_host_byte(cmd, DID_OK); 610 return BLK_STS_NOSPC; 611 case DID_MEDIUM_ERROR: 612 set_host_byte(cmd, DID_OK); 613 return BLK_STS_MEDIUM; 614 default: 615 return BLK_STS_IOERR; 616 } 617 } 618 619 /* Helper for scsi_io_completion() when "reprep" action required. */ 620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 621 struct request_queue *q) 622 { 623 /* A new command will be prepared and issued. */ 624 scsi_mq_requeue_cmd(cmd); 625 } 626 627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 628 { 629 struct request *req = cmd->request; 630 unsigned long wait_for; 631 632 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 633 return false; 634 635 wait_for = (cmd->allowed + 1) * req->timeout; 636 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 637 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 638 wait_for/HZ); 639 return true; 640 } 641 return false; 642 } 643 644 /* Helper for scsi_io_completion() when special action required. */ 645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 646 { 647 struct request_queue *q = cmd->device->request_queue; 648 struct request *req = cmd->request; 649 int level = 0; 650 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 651 ACTION_DELAYED_RETRY} action; 652 struct scsi_sense_hdr sshdr; 653 bool sense_valid; 654 bool sense_current = true; /* false implies "deferred sense" */ 655 blk_status_t blk_stat; 656 657 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 658 if (sense_valid) 659 sense_current = !scsi_sense_is_deferred(&sshdr); 660 661 blk_stat = scsi_result_to_blk_status(cmd, result); 662 663 if (host_byte(result) == DID_RESET) { 664 /* Third party bus reset or reset for error recovery 665 * reasons. Just retry the command and see what 666 * happens. 667 */ 668 action = ACTION_RETRY; 669 } else if (sense_valid && sense_current) { 670 switch (sshdr.sense_key) { 671 case UNIT_ATTENTION: 672 if (cmd->device->removable) { 673 /* Detected disc change. Set a bit 674 * and quietly refuse further access. 675 */ 676 cmd->device->changed = 1; 677 action = ACTION_FAIL; 678 } else { 679 /* Must have been a power glitch, or a 680 * bus reset. Could not have been a 681 * media change, so we just retry the 682 * command and see what happens. 683 */ 684 action = ACTION_RETRY; 685 } 686 break; 687 case ILLEGAL_REQUEST: 688 /* If we had an ILLEGAL REQUEST returned, then 689 * we may have performed an unsupported 690 * command. The only thing this should be 691 * would be a ten byte read where only a six 692 * byte read was supported. Also, on a system 693 * where READ CAPACITY failed, we may have 694 * read past the end of the disk. 695 */ 696 if ((cmd->device->use_10_for_rw && 697 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 698 (cmd->cmnd[0] == READ_10 || 699 cmd->cmnd[0] == WRITE_10)) { 700 /* This will issue a new 6-byte command. */ 701 cmd->device->use_10_for_rw = 0; 702 action = ACTION_REPREP; 703 } else if (sshdr.asc == 0x10) /* DIX */ { 704 action = ACTION_FAIL; 705 blk_stat = BLK_STS_PROTECTION; 706 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 707 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 708 action = ACTION_FAIL; 709 blk_stat = BLK_STS_TARGET; 710 } else 711 action = ACTION_FAIL; 712 break; 713 case ABORTED_COMMAND: 714 action = ACTION_FAIL; 715 if (sshdr.asc == 0x10) /* DIF */ 716 blk_stat = BLK_STS_PROTECTION; 717 break; 718 case NOT_READY: 719 /* If the device is in the process of becoming 720 * ready, or has a temporary blockage, retry. 721 */ 722 if (sshdr.asc == 0x04) { 723 switch (sshdr.ascq) { 724 case 0x01: /* becoming ready */ 725 case 0x04: /* format in progress */ 726 case 0x05: /* rebuild in progress */ 727 case 0x06: /* recalculation in progress */ 728 case 0x07: /* operation in progress */ 729 case 0x08: /* Long write in progress */ 730 case 0x09: /* self test in progress */ 731 case 0x14: /* space allocation in progress */ 732 case 0x1a: /* start stop unit in progress */ 733 case 0x1b: /* sanitize in progress */ 734 case 0x1d: /* configuration in progress */ 735 case 0x24: /* depopulation in progress */ 736 action = ACTION_DELAYED_RETRY; 737 break; 738 case 0x0a: /* ALUA state transition */ 739 blk_stat = BLK_STS_AGAIN; 740 fallthrough; 741 default: 742 action = ACTION_FAIL; 743 break; 744 } 745 } else 746 action = ACTION_FAIL; 747 break; 748 case VOLUME_OVERFLOW: 749 /* See SSC3rXX or current. */ 750 action = ACTION_FAIL; 751 break; 752 case DATA_PROTECT: 753 action = ACTION_FAIL; 754 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 755 (sshdr.asc == 0x55 && 756 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 757 /* Insufficient zone resources */ 758 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 759 } 760 break; 761 default: 762 action = ACTION_FAIL; 763 break; 764 } 765 } else 766 action = ACTION_FAIL; 767 768 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 769 action = ACTION_FAIL; 770 771 switch (action) { 772 case ACTION_FAIL: 773 /* Give up and fail the remainder of the request */ 774 if (!(req->rq_flags & RQF_QUIET)) { 775 static DEFINE_RATELIMIT_STATE(_rs, 776 DEFAULT_RATELIMIT_INTERVAL, 777 DEFAULT_RATELIMIT_BURST); 778 779 if (unlikely(scsi_logging_level)) 780 level = 781 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 782 SCSI_LOG_MLCOMPLETE_BITS); 783 784 /* 785 * if logging is enabled the failure will be printed 786 * in scsi_log_completion(), so avoid duplicate messages 787 */ 788 if (!level && __ratelimit(&_rs)) { 789 scsi_print_result(cmd, NULL, FAILED); 790 if (driver_byte(result) == DRIVER_SENSE) 791 scsi_print_sense(cmd); 792 scsi_print_command(cmd); 793 } 794 } 795 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 796 return; 797 fallthrough; 798 case ACTION_REPREP: 799 scsi_io_completion_reprep(cmd, q); 800 break; 801 case ACTION_RETRY: 802 /* Retry the same command immediately */ 803 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 804 break; 805 case ACTION_DELAYED_RETRY: 806 /* Retry the same command after a delay */ 807 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 808 break; 809 } 810 } 811 812 /* 813 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 814 * new result that may suppress further error checking. Also modifies 815 * *blk_statp in some cases. 816 */ 817 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 818 blk_status_t *blk_statp) 819 { 820 bool sense_valid; 821 bool sense_current = true; /* false implies "deferred sense" */ 822 struct request *req = cmd->request; 823 struct scsi_sense_hdr sshdr; 824 825 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 826 if (sense_valid) 827 sense_current = !scsi_sense_is_deferred(&sshdr); 828 829 if (blk_rq_is_passthrough(req)) { 830 if (sense_valid) { 831 /* 832 * SG_IO wants current and deferred errors 833 */ 834 scsi_req(req)->sense_len = 835 min(8 + cmd->sense_buffer[7], 836 SCSI_SENSE_BUFFERSIZE); 837 } 838 if (sense_current) 839 *blk_statp = scsi_result_to_blk_status(cmd, result); 840 } else if (blk_rq_bytes(req) == 0 && sense_current) { 841 /* 842 * Flush commands do not transfers any data, and thus cannot use 843 * good_bytes != blk_rq_bytes(req) as the signal for an error. 844 * This sets *blk_statp explicitly for the problem case. 845 */ 846 *blk_statp = scsi_result_to_blk_status(cmd, result); 847 } 848 /* 849 * Recovered errors need reporting, but they're always treated as 850 * success, so fiddle the result code here. For passthrough requests 851 * we already took a copy of the original into sreq->result which 852 * is what gets returned to the user 853 */ 854 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 855 bool do_print = true; 856 /* 857 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 858 * skip print since caller wants ATA registers. Only occurs 859 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 860 */ 861 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 862 do_print = false; 863 else if (req->rq_flags & RQF_QUIET) 864 do_print = false; 865 if (do_print) 866 scsi_print_sense(cmd); 867 result = 0; 868 /* for passthrough, *blk_statp may be set */ 869 *blk_statp = BLK_STS_OK; 870 } 871 /* 872 * Another corner case: the SCSI status byte is non-zero but 'good'. 873 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 874 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 875 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 876 * intermediate statuses (both obsolete in SAM-4) as good. 877 */ 878 if (status_byte(result) && scsi_status_is_good(result)) { 879 result = 0; 880 *blk_statp = BLK_STS_OK; 881 } 882 return result; 883 } 884 885 /** 886 * scsi_io_completion - Completion processing for SCSI commands. 887 * @cmd: command that is finished. 888 * @good_bytes: number of processed bytes. 889 * 890 * We will finish off the specified number of sectors. If we are done, the 891 * command block will be released and the queue function will be goosed. If we 892 * are not done then we have to figure out what to do next: 893 * 894 * a) We can call scsi_io_completion_reprep(). The request will be 895 * unprepared and put back on the queue. Then a new command will 896 * be created for it. This should be used if we made forward 897 * progress, or if we want to switch from READ(10) to READ(6) for 898 * example. 899 * 900 * b) We can call scsi_io_completion_action(). The request will be 901 * put back on the queue and retried using the same command as 902 * before, possibly after a delay. 903 * 904 * c) We can call scsi_end_request() with blk_stat other than 905 * BLK_STS_OK, to fail the remainder of the request. 906 */ 907 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 908 { 909 int result = cmd->result; 910 struct request_queue *q = cmd->device->request_queue; 911 struct request *req = cmd->request; 912 blk_status_t blk_stat = BLK_STS_OK; 913 914 if (unlikely(result)) /* a nz result may or may not be an error */ 915 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 916 917 if (unlikely(blk_rq_is_passthrough(req))) { 918 /* 919 * scsi_result_to_blk_status may have reset the host_byte 920 */ 921 scsi_req(req)->result = cmd->result; 922 } 923 924 /* 925 * Next deal with any sectors which we were able to correctly 926 * handle. 927 */ 928 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 929 "%u sectors total, %d bytes done.\n", 930 blk_rq_sectors(req), good_bytes)); 931 932 /* 933 * Failed, zero length commands always need to drop down 934 * to retry code. Fast path should return in this block. 935 */ 936 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 937 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 938 return; /* no bytes remaining */ 939 } 940 941 /* Kill remainder if no retries. */ 942 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 943 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 944 WARN_ONCE(true, 945 "Bytes remaining after failed, no-retry command"); 946 return; 947 } 948 949 /* 950 * If there had been no error, but we have leftover bytes in the 951 * requeues just queue the command up again. 952 */ 953 if (likely(result == 0)) 954 scsi_io_completion_reprep(cmd, q); 955 else 956 scsi_io_completion_action(cmd, result); 957 } 958 959 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 960 struct request *rq) 961 { 962 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 963 !op_is_write(req_op(rq)) && 964 sdev->host->hostt->dma_need_drain(rq); 965 } 966 967 /** 968 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 969 * @cmd: SCSI command data structure to initialize. 970 * 971 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 972 * for @cmd. 973 * 974 * Returns: 975 * * BLK_STS_OK - on success 976 * * BLK_STS_RESOURCE - if the failure is retryable 977 * * BLK_STS_IOERR - if the failure is fatal 978 */ 979 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 980 { 981 struct scsi_device *sdev = cmd->device; 982 struct request *rq = cmd->request; 983 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 984 struct scatterlist *last_sg = NULL; 985 blk_status_t ret; 986 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 987 int count; 988 989 if (WARN_ON_ONCE(!nr_segs)) 990 return BLK_STS_IOERR; 991 992 /* 993 * Make sure there is space for the drain. The driver must adjust 994 * max_hw_segments to be prepared for this. 995 */ 996 if (need_drain) 997 nr_segs++; 998 999 /* 1000 * If sg table allocation fails, requeue request later. 1001 */ 1002 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1003 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1004 return BLK_STS_RESOURCE; 1005 1006 /* 1007 * Next, walk the list, and fill in the addresses and sizes of 1008 * each segment. 1009 */ 1010 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1011 1012 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1013 unsigned int pad_len = 1014 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1015 1016 last_sg->length += pad_len; 1017 cmd->extra_len += pad_len; 1018 } 1019 1020 if (need_drain) { 1021 sg_unmark_end(last_sg); 1022 last_sg = sg_next(last_sg); 1023 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1024 sg_mark_end(last_sg); 1025 1026 cmd->extra_len += sdev->dma_drain_len; 1027 count++; 1028 } 1029 1030 BUG_ON(count > cmd->sdb.table.nents); 1031 cmd->sdb.table.nents = count; 1032 cmd->sdb.length = blk_rq_payload_bytes(rq); 1033 1034 if (blk_integrity_rq(rq)) { 1035 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1036 int ivecs; 1037 1038 if (WARN_ON_ONCE(!prot_sdb)) { 1039 /* 1040 * This can happen if someone (e.g. multipath) 1041 * queues a command to a device on an adapter 1042 * that does not support DIX. 1043 */ 1044 ret = BLK_STS_IOERR; 1045 goto out_free_sgtables; 1046 } 1047 1048 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1049 1050 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1051 prot_sdb->table.sgl, 1052 SCSI_INLINE_PROT_SG_CNT)) { 1053 ret = BLK_STS_RESOURCE; 1054 goto out_free_sgtables; 1055 } 1056 1057 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1058 prot_sdb->table.sgl); 1059 BUG_ON(count > ivecs); 1060 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1061 1062 cmd->prot_sdb = prot_sdb; 1063 cmd->prot_sdb->table.nents = count; 1064 } 1065 1066 return BLK_STS_OK; 1067 out_free_sgtables: 1068 scsi_free_sgtables(cmd); 1069 return ret; 1070 } 1071 EXPORT_SYMBOL(scsi_alloc_sgtables); 1072 1073 /** 1074 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1075 * @rq: Request associated with the SCSI command to be initialized. 1076 * 1077 * This function initializes the members of struct scsi_cmnd that must be 1078 * initialized before request processing starts and that won't be 1079 * reinitialized if a SCSI command is requeued. 1080 * 1081 * Called from inside blk_get_request() for pass-through requests and from 1082 * inside scsi_init_command() for filesystem requests. 1083 */ 1084 static void scsi_initialize_rq(struct request *rq) 1085 { 1086 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1087 1088 scsi_req_init(&cmd->req); 1089 init_rcu_head(&cmd->rcu); 1090 cmd->jiffies_at_alloc = jiffies; 1091 cmd->retries = 0; 1092 } 1093 1094 /* 1095 * Only called when the request isn't completed by SCSI, and not freed by 1096 * SCSI 1097 */ 1098 static void scsi_cleanup_rq(struct request *rq) 1099 { 1100 if (rq->rq_flags & RQF_DONTPREP) { 1101 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1102 rq->rq_flags &= ~RQF_DONTPREP; 1103 } 1104 } 1105 1106 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1107 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1108 { 1109 void *buf = cmd->sense_buffer; 1110 void *prot = cmd->prot_sdb; 1111 struct request *rq = blk_mq_rq_from_pdu(cmd); 1112 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1113 unsigned long jiffies_at_alloc; 1114 int retries, to_clear; 1115 bool in_flight; 1116 int budget_token = cmd->budget_token; 1117 1118 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1119 flags |= SCMD_INITIALIZED; 1120 scsi_initialize_rq(rq); 1121 } 1122 1123 jiffies_at_alloc = cmd->jiffies_at_alloc; 1124 retries = cmd->retries; 1125 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1126 /* 1127 * Zero out the cmd, except for the embedded scsi_request. Only clear 1128 * the driver-private command data if the LLD does not supply a 1129 * function to initialize that data. 1130 */ 1131 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1132 if (!dev->host->hostt->init_cmd_priv) 1133 to_clear += dev->host->hostt->cmd_size; 1134 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1135 1136 cmd->device = dev; 1137 cmd->sense_buffer = buf; 1138 cmd->prot_sdb = prot; 1139 cmd->flags = flags; 1140 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1141 cmd->jiffies_at_alloc = jiffies_at_alloc; 1142 cmd->retries = retries; 1143 if (in_flight) 1144 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1145 cmd->budget_token = budget_token; 1146 1147 } 1148 1149 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1150 struct request *req) 1151 { 1152 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1153 1154 /* 1155 * Passthrough requests may transfer data, in which case they must 1156 * a bio attached to them. Or they might contain a SCSI command 1157 * that does not transfer data, in which case they may optionally 1158 * submit a request without an attached bio. 1159 */ 1160 if (req->bio) { 1161 blk_status_t ret = scsi_alloc_sgtables(cmd); 1162 if (unlikely(ret != BLK_STS_OK)) 1163 return ret; 1164 } else { 1165 BUG_ON(blk_rq_bytes(req)); 1166 1167 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1168 } 1169 1170 cmd->cmd_len = scsi_req(req)->cmd_len; 1171 if (cmd->cmd_len == 0) 1172 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1173 cmd->cmnd = scsi_req(req)->cmd; 1174 cmd->transfersize = blk_rq_bytes(req); 1175 cmd->allowed = scsi_req(req)->retries; 1176 return BLK_STS_OK; 1177 } 1178 1179 static blk_status_t 1180 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1181 { 1182 switch (sdev->sdev_state) { 1183 case SDEV_CREATED: 1184 return BLK_STS_OK; 1185 case SDEV_OFFLINE: 1186 case SDEV_TRANSPORT_OFFLINE: 1187 /* 1188 * If the device is offline we refuse to process any 1189 * commands. The device must be brought online 1190 * before trying any recovery commands. 1191 */ 1192 if (!sdev->offline_already) { 1193 sdev->offline_already = true; 1194 sdev_printk(KERN_ERR, sdev, 1195 "rejecting I/O to offline device\n"); 1196 } 1197 return BLK_STS_IOERR; 1198 case SDEV_DEL: 1199 /* 1200 * If the device is fully deleted, we refuse to 1201 * process any commands as well. 1202 */ 1203 sdev_printk(KERN_ERR, sdev, 1204 "rejecting I/O to dead device\n"); 1205 return BLK_STS_IOERR; 1206 case SDEV_BLOCK: 1207 case SDEV_CREATED_BLOCK: 1208 return BLK_STS_RESOURCE; 1209 case SDEV_QUIESCE: 1210 /* 1211 * If the device is blocked we only accept power management 1212 * commands. 1213 */ 1214 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1215 return BLK_STS_RESOURCE; 1216 return BLK_STS_OK; 1217 default: 1218 /* 1219 * For any other not fully online state we only allow 1220 * power management commands. 1221 */ 1222 if (req && !(req->rq_flags & RQF_PM)) 1223 return BLK_STS_IOERR; 1224 return BLK_STS_OK; 1225 } 1226 } 1227 1228 /* 1229 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1230 * and return the token else return -1. 1231 */ 1232 static inline int scsi_dev_queue_ready(struct request_queue *q, 1233 struct scsi_device *sdev) 1234 { 1235 int token; 1236 1237 token = sbitmap_get(&sdev->budget_map); 1238 if (atomic_read(&sdev->device_blocked)) { 1239 if (token < 0) 1240 goto out; 1241 1242 if (scsi_device_busy(sdev) > 1) 1243 goto out_dec; 1244 1245 /* 1246 * unblock after device_blocked iterates to zero 1247 */ 1248 if (atomic_dec_return(&sdev->device_blocked) > 0) 1249 goto out_dec; 1250 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1251 "unblocking device at zero depth\n")); 1252 } 1253 1254 return token; 1255 out_dec: 1256 if (token >= 0) 1257 sbitmap_put(&sdev->budget_map, token); 1258 out: 1259 return -1; 1260 } 1261 1262 /* 1263 * scsi_target_queue_ready: checks if there we can send commands to target 1264 * @sdev: scsi device on starget to check. 1265 */ 1266 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1267 struct scsi_device *sdev) 1268 { 1269 struct scsi_target *starget = scsi_target(sdev); 1270 unsigned int busy; 1271 1272 if (starget->single_lun) { 1273 spin_lock_irq(shost->host_lock); 1274 if (starget->starget_sdev_user && 1275 starget->starget_sdev_user != sdev) { 1276 spin_unlock_irq(shost->host_lock); 1277 return 0; 1278 } 1279 starget->starget_sdev_user = sdev; 1280 spin_unlock_irq(shost->host_lock); 1281 } 1282 1283 if (starget->can_queue <= 0) 1284 return 1; 1285 1286 busy = atomic_inc_return(&starget->target_busy) - 1; 1287 if (atomic_read(&starget->target_blocked) > 0) { 1288 if (busy) 1289 goto starved; 1290 1291 /* 1292 * unblock after target_blocked iterates to zero 1293 */ 1294 if (atomic_dec_return(&starget->target_blocked) > 0) 1295 goto out_dec; 1296 1297 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1298 "unblocking target at zero depth\n")); 1299 } 1300 1301 if (busy >= starget->can_queue) 1302 goto starved; 1303 1304 return 1; 1305 1306 starved: 1307 spin_lock_irq(shost->host_lock); 1308 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1309 spin_unlock_irq(shost->host_lock); 1310 out_dec: 1311 if (starget->can_queue > 0) 1312 atomic_dec(&starget->target_busy); 1313 return 0; 1314 } 1315 1316 /* 1317 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1318 * return 0. We must end up running the queue again whenever 0 is 1319 * returned, else IO can hang. 1320 */ 1321 static inline int scsi_host_queue_ready(struct request_queue *q, 1322 struct Scsi_Host *shost, 1323 struct scsi_device *sdev, 1324 struct scsi_cmnd *cmd) 1325 { 1326 if (scsi_host_in_recovery(shost)) 1327 return 0; 1328 1329 if (atomic_read(&shost->host_blocked) > 0) { 1330 if (scsi_host_busy(shost) > 0) 1331 goto starved; 1332 1333 /* 1334 * unblock after host_blocked iterates to zero 1335 */ 1336 if (atomic_dec_return(&shost->host_blocked) > 0) 1337 goto out_dec; 1338 1339 SCSI_LOG_MLQUEUE(3, 1340 shost_printk(KERN_INFO, shost, 1341 "unblocking host at zero depth\n")); 1342 } 1343 1344 if (shost->host_self_blocked) 1345 goto starved; 1346 1347 /* We're OK to process the command, so we can't be starved */ 1348 if (!list_empty(&sdev->starved_entry)) { 1349 spin_lock_irq(shost->host_lock); 1350 if (!list_empty(&sdev->starved_entry)) 1351 list_del_init(&sdev->starved_entry); 1352 spin_unlock_irq(shost->host_lock); 1353 } 1354 1355 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1356 1357 return 1; 1358 1359 starved: 1360 spin_lock_irq(shost->host_lock); 1361 if (list_empty(&sdev->starved_entry)) 1362 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1363 spin_unlock_irq(shost->host_lock); 1364 out_dec: 1365 scsi_dec_host_busy(shost, cmd); 1366 return 0; 1367 } 1368 1369 /* 1370 * Busy state exporting function for request stacking drivers. 1371 * 1372 * For efficiency, no lock is taken to check the busy state of 1373 * shost/starget/sdev, since the returned value is not guaranteed and 1374 * may be changed after request stacking drivers call the function, 1375 * regardless of taking lock or not. 1376 * 1377 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1378 * needs to return 'not busy'. Otherwise, request stacking drivers 1379 * may hold requests forever. 1380 */ 1381 static bool scsi_mq_lld_busy(struct request_queue *q) 1382 { 1383 struct scsi_device *sdev = q->queuedata; 1384 struct Scsi_Host *shost; 1385 1386 if (blk_queue_dying(q)) 1387 return false; 1388 1389 shost = sdev->host; 1390 1391 /* 1392 * Ignore host/starget busy state. 1393 * Since block layer does not have a concept of fairness across 1394 * multiple queues, congestion of host/starget needs to be handled 1395 * in SCSI layer. 1396 */ 1397 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1398 return true; 1399 1400 return false; 1401 } 1402 1403 /* 1404 * Block layer request completion callback. May be called from interrupt 1405 * context. 1406 */ 1407 static void scsi_complete(struct request *rq) 1408 { 1409 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1410 enum scsi_disposition disposition; 1411 1412 INIT_LIST_HEAD(&cmd->eh_entry); 1413 1414 atomic_inc(&cmd->device->iodone_cnt); 1415 if (cmd->result) 1416 atomic_inc(&cmd->device->ioerr_cnt); 1417 1418 disposition = scsi_decide_disposition(cmd); 1419 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1420 disposition = SUCCESS; 1421 1422 scsi_log_completion(cmd, disposition); 1423 1424 switch (disposition) { 1425 case SUCCESS: 1426 scsi_finish_command(cmd); 1427 break; 1428 case NEEDS_RETRY: 1429 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1430 break; 1431 case ADD_TO_MLQUEUE: 1432 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1433 break; 1434 default: 1435 scsi_eh_scmd_add(cmd); 1436 break; 1437 } 1438 } 1439 1440 /** 1441 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1442 * @cmd: command block we are dispatching. 1443 * 1444 * Return: nonzero return request was rejected and device's queue needs to be 1445 * plugged. 1446 */ 1447 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1448 { 1449 struct Scsi_Host *host = cmd->device->host; 1450 int rtn = 0; 1451 1452 atomic_inc(&cmd->device->iorequest_cnt); 1453 1454 /* check if the device is still usable */ 1455 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1456 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1457 * returns an immediate error upwards, and signals 1458 * that the device is no longer present */ 1459 cmd->result = DID_NO_CONNECT << 16; 1460 goto done; 1461 } 1462 1463 /* Check to see if the scsi lld made this device blocked. */ 1464 if (unlikely(scsi_device_blocked(cmd->device))) { 1465 /* 1466 * in blocked state, the command is just put back on 1467 * the device queue. The suspend state has already 1468 * blocked the queue so future requests should not 1469 * occur until the device transitions out of the 1470 * suspend state. 1471 */ 1472 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1473 "queuecommand : device blocked\n")); 1474 return SCSI_MLQUEUE_DEVICE_BUSY; 1475 } 1476 1477 /* Store the LUN value in cmnd, if needed. */ 1478 if (cmd->device->lun_in_cdb) 1479 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1480 (cmd->device->lun << 5 & 0xe0); 1481 1482 scsi_log_send(cmd); 1483 1484 /* 1485 * Before we queue this command, check if the command 1486 * length exceeds what the host adapter can handle. 1487 */ 1488 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1489 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1490 "queuecommand : command too long. " 1491 "cdb_size=%d host->max_cmd_len=%d\n", 1492 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1493 cmd->result = (DID_ABORT << 16); 1494 goto done; 1495 } 1496 1497 if (unlikely(host->shost_state == SHOST_DEL)) { 1498 cmd->result = (DID_NO_CONNECT << 16); 1499 goto done; 1500 1501 } 1502 1503 trace_scsi_dispatch_cmd_start(cmd); 1504 rtn = host->hostt->queuecommand(host, cmd); 1505 if (rtn) { 1506 trace_scsi_dispatch_cmd_error(cmd, rtn); 1507 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1508 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1509 rtn = SCSI_MLQUEUE_HOST_BUSY; 1510 1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1512 "queuecommand : request rejected\n")); 1513 } 1514 1515 return rtn; 1516 done: 1517 cmd->scsi_done(cmd); 1518 return 0; 1519 } 1520 1521 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1522 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1523 { 1524 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1525 sizeof(struct scatterlist); 1526 } 1527 1528 static blk_status_t scsi_prepare_cmd(struct request *req) 1529 { 1530 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1531 struct scsi_device *sdev = req->q->queuedata; 1532 struct Scsi_Host *shost = sdev->host; 1533 struct scatterlist *sg; 1534 1535 scsi_init_command(sdev, cmd); 1536 1537 cmd->request = req; 1538 cmd->tag = req->tag; 1539 cmd->prot_op = SCSI_PROT_NORMAL; 1540 if (blk_rq_bytes(req)) 1541 cmd->sc_data_direction = rq_dma_dir(req); 1542 else 1543 cmd->sc_data_direction = DMA_NONE; 1544 1545 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1546 cmd->sdb.table.sgl = sg; 1547 1548 if (scsi_host_get_prot(shost)) { 1549 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1550 1551 cmd->prot_sdb->table.sgl = 1552 (struct scatterlist *)(cmd->prot_sdb + 1); 1553 } 1554 1555 /* 1556 * Special handling for passthrough commands, which don't go to the ULP 1557 * at all: 1558 */ 1559 if (blk_rq_is_scsi(req)) 1560 return scsi_setup_scsi_cmnd(sdev, req); 1561 1562 if (sdev->handler && sdev->handler->prep_fn) { 1563 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1564 1565 if (ret != BLK_STS_OK) 1566 return ret; 1567 } 1568 1569 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1570 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1571 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1572 } 1573 1574 static void scsi_mq_done(struct scsi_cmnd *cmd) 1575 { 1576 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1577 return; 1578 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1579 return; 1580 trace_scsi_dispatch_cmd_done(cmd); 1581 blk_mq_complete_request(cmd->request); 1582 } 1583 1584 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1585 { 1586 struct scsi_device *sdev = q->queuedata; 1587 1588 sbitmap_put(&sdev->budget_map, budget_token); 1589 } 1590 1591 static int scsi_mq_get_budget(struct request_queue *q) 1592 { 1593 struct scsi_device *sdev = q->queuedata; 1594 int token = scsi_dev_queue_ready(q, sdev); 1595 1596 if (token >= 0) 1597 return token; 1598 1599 atomic_inc(&sdev->restarts); 1600 1601 /* 1602 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1603 * .restarts must be incremented before .device_busy is read because the 1604 * code in scsi_run_queue_async() depends on the order of these operations. 1605 */ 1606 smp_mb__after_atomic(); 1607 1608 /* 1609 * If all in-flight requests originated from this LUN are completed 1610 * before reading .device_busy, sdev->device_busy will be observed as 1611 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1612 * soon. Otherwise, completion of one of these requests will observe 1613 * the .restarts flag, and the request queue will be run for handling 1614 * this request, see scsi_end_request(). 1615 */ 1616 if (unlikely(scsi_device_busy(sdev) == 0 && 1617 !scsi_device_blocked(sdev))) 1618 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1619 return -1; 1620 } 1621 1622 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1623 { 1624 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1625 1626 cmd->budget_token = token; 1627 } 1628 1629 static int scsi_mq_get_rq_budget_token(struct request *req) 1630 { 1631 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1632 1633 return cmd->budget_token; 1634 } 1635 1636 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1637 const struct blk_mq_queue_data *bd) 1638 { 1639 struct request *req = bd->rq; 1640 struct request_queue *q = req->q; 1641 struct scsi_device *sdev = q->queuedata; 1642 struct Scsi_Host *shost = sdev->host; 1643 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1644 blk_status_t ret; 1645 int reason; 1646 1647 WARN_ON_ONCE(cmd->budget_token < 0); 1648 1649 /* 1650 * If the device is not in running state we will reject some or all 1651 * commands. 1652 */ 1653 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1654 ret = scsi_device_state_check(sdev, req); 1655 if (ret != BLK_STS_OK) 1656 goto out_put_budget; 1657 } 1658 1659 ret = BLK_STS_RESOURCE; 1660 if (!scsi_target_queue_ready(shost, sdev)) 1661 goto out_put_budget; 1662 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1663 goto out_dec_target_busy; 1664 1665 if (!(req->rq_flags & RQF_DONTPREP)) { 1666 ret = scsi_prepare_cmd(req); 1667 if (ret != BLK_STS_OK) 1668 goto out_dec_host_busy; 1669 req->rq_flags |= RQF_DONTPREP; 1670 } else { 1671 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1672 } 1673 1674 cmd->flags &= SCMD_PRESERVED_FLAGS; 1675 if (sdev->simple_tags) 1676 cmd->flags |= SCMD_TAGGED; 1677 if (bd->last) 1678 cmd->flags |= SCMD_LAST; 1679 1680 scsi_set_resid(cmd, 0); 1681 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1682 cmd->scsi_done = scsi_mq_done; 1683 1684 blk_mq_start_request(req); 1685 reason = scsi_dispatch_cmd(cmd); 1686 if (reason) { 1687 scsi_set_blocked(cmd, reason); 1688 ret = BLK_STS_RESOURCE; 1689 goto out_dec_host_busy; 1690 } 1691 1692 return BLK_STS_OK; 1693 1694 out_dec_host_busy: 1695 scsi_dec_host_busy(shost, cmd); 1696 out_dec_target_busy: 1697 if (scsi_target(sdev)->can_queue > 0) 1698 atomic_dec(&scsi_target(sdev)->target_busy); 1699 out_put_budget: 1700 scsi_mq_put_budget(q, cmd->budget_token); 1701 cmd->budget_token = -1; 1702 switch (ret) { 1703 case BLK_STS_OK: 1704 break; 1705 case BLK_STS_RESOURCE: 1706 case BLK_STS_ZONE_RESOURCE: 1707 if (scsi_device_blocked(sdev)) 1708 ret = BLK_STS_DEV_RESOURCE; 1709 break; 1710 case BLK_STS_AGAIN: 1711 scsi_req(req)->result = DID_BUS_BUSY << 16; 1712 if (req->rq_flags & RQF_DONTPREP) 1713 scsi_mq_uninit_cmd(cmd); 1714 break; 1715 default: 1716 if (unlikely(!scsi_device_online(sdev))) 1717 scsi_req(req)->result = DID_NO_CONNECT << 16; 1718 else 1719 scsi_req(req)->result = DID_ERROR << 16; 1720 /* 1721 * Make sure to release all allocated resources when 1722 * we hit an error, as we will never see this command 1723 * again. 1724 */ 1725 if (req->rq_flags & RQF_DONTPREP) 1726 scsi_mq_uninit_cmd(cmd); 1727 scsi_run_queue_async(sdev); 1728 break; 1729 } 1730 return ret; 1731 } 1732 1733 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1734 bool reserved) 1735 { 1736 if (reserved) 1737 return BLK_EH_RESET_TIMER; 1738 return scsi_times_out(req); 1739 } 1740 1741 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1742 unsigned int hctx_idx, unsigned int numa_node) 1743 { 1744 struct Scsi_Host *shost = set->driver_data; 1745 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1746 struct scatterlist *sg; 1747 int ret = 0; 1748 1749 cmd->sense_buffer = 1750 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1751 if (!cmd->sense_buffer) 1752 return -ENOMEM; 1753 cmd->req.sense = cmd->sense_buffer; 1754 1755 if (scsi_host_get_prot(shost)) { 1756 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1757 shost->hostt->cmd_size; 1758 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1759 } 1760 1761 if (shost->hostt->init_cmd_priv) { 1762 ret = shost->hostt->init_cmd_priv(shost, cmd); 1763 if (ret < 0) 1764 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1765 } 1766 1767 return ret; 1768 } 1769 1770 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1771 unsigned int hctx_idx) 1772 { 1773 struct Scsi_Host *shost = set->driver_data; 1774 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1775 1776 if (shost->hostt->exit_cmd_priv) 1777 shost->hostt->exit_cmd_priv(shost, cmd); 1778 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1779 } 1780 1781 1782 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx) 1783 { 1784 struct Scsi_Host *shost = hctx->driver_data; 1785 1786 if (shost->hostt->mq_poll) 1787 return shost->hostt->mq_poll(shost, hctx->queue_num); 1788 1789 return 0; 1790 } 1791 1792 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1793 unsigned int hctx_idx) 1794 { 1795 struct Scsi_Host *shost = data; 1796 1797 hctx->driver_data = shost; 1798 return 0; 1799 } 1800 1801 static int scsi_map_queues(struct blk_mq_tag_set *set) 1802 { 1803 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1804 1805 if (shost->hostt->map_queues) 1806 return shost->hostt->map_queues(shost); 1807 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1808 } 1809 1810 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1811 { 1812 struct device *dev = shost->dma_dev; 1813 1814 /* 1815 * this limit is imposed by hardware restrictions 1816 */ 1817 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1818 SG_MAX_SEGMENTS)); 1819 1820 if (scsi_host_prot_dma(shost)) { 1821 shost->sg_prot_tablesize = 1822 min_not_zero(shost->sg_prot_tablesize, 1823 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1824 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1825 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1826 } 1827 1828 if (dev->dma_mask) { 1829 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1830 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1831 } 1832 blk_queue_max_hw_sectors(q, shost->max_sectors); 1833 blk_queue_segment_boundary(q, shost->dma_boundary); 1834 dma_set_seg_boundary(dev, shost->dma_boundary); 1835 1836 blk_queue_max_segment_size(q, shost->max_segment_size); 1837 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1838 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1839 1840 /* 1841 * Set a reasonable default alignment: The larger of 32-byte (dword), 1842 * which is a common minimum for HBAs, and the minimum DMA alignment, 1843 * which is set by the platform. 1844 * 1845 * Devices that require a bigger alignment can increase it later. 1846 */ 1847 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1848 } 1849 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1850 1851 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1852 .get_budget = scsi_mq_get_budget, 1853 .put_budget = scsi_mq_put_budget, 1854 .queue_rq = scsi_queue_rq, 1855 .complete = scsi_complete, 1856 .timeout = scsi_timeout, 1857 #ifdef CONFIG_BLK_DEBUG_FS 1858 .show_rq = scsi_show_rq, 1859 #endif 1860 .init_request = scsi_mq_init_request, 1861 .exit_request = scsi_mq_exit_request, 1862 .initialize_rq_fn = scsi_initialize_rq, 1863 .cleanup_rq = scsi_cleanup_rq, 1864 .busy = scsi_mq_lld_busy, 1865 .map_queues = scsi_map_queues, 1866 .init_hctx = scsi_init_hctx, 1867 .poll = scsi_mq_poll, 1868 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1869 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1870 }; 1871 1872 1873 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1874 { 1875 struct Scsi_Host *shost = hctx->driver_data; 1876 1877 shost->hostt->commit_rqs(shost, hctx->queue_num); 1878 } 1879 1880 static const struct blk_mq_ops scsi_mq_ops = { 1881 .get_budget = scsi_mq_get_budget, 1882 .put_budget = scsi_mq_put_budget, 1883 .queue_rq = scsi_queue_rq, 1884 .commit_rqs = scsi_commit_rqs, 1885 .complete = scsi_complete, 1886 .timeout = scsi_timeout, 1887 #ifdef CONFIG_BLK_DEBUG_FS 1888 .show_rq = scsi_show_rq, 1889 #endif 1890 .init_request = scsi_mq_init_request, 1891 .exit_request = scsi_mq_exit_request, 1892 .initialize_rq_fn = scsi_initialize_rq, 1893 .cleanup_rq = scsi_cleanup_rq, 1894 .busy = scsi_mq_lld_busy, 1895 .map_queues = scsi_map_queues, 1896 .init_hctx = scsi_init_hctx, 1897 .poll = scsi_mq_poll, 1898 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1899 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1900 }; 1901 1902 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1903 { 1904 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1905 if (IS_ERR(sdev->request_queue)) 1906 return NULL; 1907 1908 sdev->request_queue->queuedata = sdev; 1909 __scsi_init_queue(sdev->host, sdev->request_queue); 1910 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1911 return sdev->request_queue; 1912 } 1913 1914 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1915 { 1916 unsigned int cmd_size, sgl_size; 1917 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1918 1919 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1920 scsi_mq_inline_sgl_size(shost)); 1921 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1922 if (scsi_host_get_prot(shost)) 1923 cmd_size += sizeof(struct scsi_data_buffer) + 1924 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1925 1926 memset(tag_set, 0, sizeof(*tag_set)); 1927 if (shost->hostt->commit_rqs) 1928 tag_set->ops = &scsi_mq_ops; 1929 else 1930 tag_set->ops = &scsi_mq_ops_no_commit; 1931 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1932 tag_set->nr_maps = shost->nr_maps ? : 1; 1933 tag_set->queue_depth = shost->can_queue; 1934 tag_set->cmd_size = cmd_size; 1935 tag_set->numa_node = NUMA_NO_NODE; 1936 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1937 tag_set->flags |= 1938 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1939 tag_set->driver_data = shost; 1940 if (shost->host_tagset) 1941 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1942 1943 return blk_mq_alloc_tag_set(tag_set); 1944 } 1945 1946 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1947 { 1948 blk_mq_free_tag_set(&shost->tag_set); 1949 } 1950 1951 /** 1952 * scsi_device_from_queue - return sdev associated with a request_queue 1953 * @q: The request queue to return the sdev from 1954 * 1955 * Return the sdev associated with a request queue or NULL if the 1956 * request_queue does not reference a SCSI device. 1957 */ 1958 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1959 { 1960 struct scsi_device *sdev = NULL; 1961 1962 if (q->mq_ops == &scsi_mq_ops_no_commit || 1963 q->mq_ops == &scsi_mq_ops) 1964 sdev = q->queuedata; 1965 if (!sdev || !get_device(&sdev->sdev_gendev)) 1966 sdev = NULL; 1967 1968 return sdev; 1969 } 1970 1971 /** 1972 * scsi_block_requests - Utility function used by low-level drivers to prevent 1973 * further commands from being queued to the device. 1974 * @shost: host in question 1975 * 1976 * There is no timer nor any other means by which the requests get unblocked 1977 * other than the low-level driver calling scsi_unblock_requests(). 1978 */ 1979 void scsi_block_requests(struct Scsi_Host *shost) 1980 { 1981 shost->host_self_blocked = 1; 1982 } 1983 EXPORT_SYMBOL(scsi_block_requests); 1984 1985 /** 1986 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1987 * further commands to be queued to the device. 1988 * @shost: host in question 1989 * 1990 * There is no timer nor any other means by which the requests get unblocked 1991 * other than the low-level driver calling scsi_unblock_requests(). This is done 1992 * as an API function so that changes to the internals of the scsi mid-layer 1993 * won't require wholesale changes to drivers that use this feature. 1994 */ 1995 void scsi_unblock_requests(struct Scsi_Host *shost) 1996 { 1997 shost->host_self_blocked = 0; 1998 scsi_run_host_queues(shost); 1999 } 2000 EXPORT_SYMBOL(scsi_unblock_requests); 2001 2002 void scsi_exit_queue(void) 2003 { 2004 kmem_cache_destroy(scsi_sense_cache); 2005 } 2006 2007 /** 2008 * scsi_mode_select - issue a mode select 2009 * @sdev: SCSI device to be queried 2010 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2011 * @sp: Save page bit (0 == don't save, 1 == save) 2012 * @modepage: mode page being requested 2013 * @buffer: request buffer (may not be smaller than eight bytes) 2014 * @len: length of request buffer. 2015 * @timeout: command timeout 2016 * @retries: number of retries before failing 2017 * @data: returns a structure abstracting the mode header data 2018 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2019 * must be SCSI_SENSE_BUFFERSIZE big. 2020 * 2021 * Returns zero if successful; negative error number or scsi 2022 * status on error 2023 * 2024 */ 2025 int 2026 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2027 unsigned char *buffer, int len, int timeout, int retries, 2028 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2029 { 2030 unsigned char cmd[10]; 2031 unsigned char *real_buffer; 2032 int ret; 2033 2034 memset(cmd, 0, sizeof(cmd)); 2035 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2036 2037 if (sdev->use_10_for_ms) { 2038 if (len > 65535) 2039 return -EINVAL; 2040 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2041 if (!real_buffer) 2042 return -ENOMEM; 2043 memcpy(real_buffer + 8, buffer, len); 2044 len += 8; 2045 real_buffer[0] = 0; 2046 real_buffer[1] = 0; 2047 real_buffer[2] = data->medium_type; 2048 real_buffer[3] = data->device_specific; 2049 real_buffer[4] = data->longlba ? 0x01 : 0; 2050 real_buffer[5] = 0; 2051 real_buffer[6] = data->block_descriptor_length >> 8; 2052 real_buffer[7] = data->block_descriptor_length; 2053 2054 cmd[0] = MODE_SELECT_10; 2055 cmd[7] = len >> 8; 2056 cmd[8] = len; 2057 } else { 2058 if (len > 255 || data->block_descriptor_length > 255 || 2059 data->longlba) 2060 return -EINVAL; 2061 2062 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2063 if (!real_buffer) 2064 return -ENOMEM; 2065 memcpy(real_buffer + 4, buffer, len); 2066 len += 4; 2067 real_buffer[0] = 0; 2068 real_buffer[1] = data->medium_type; 2069 real_buffer[2] = data->device_specific; 2070 real_buffer[3] = data->block_descriptor_length; 2071 2072 cmd[0] = MODE_SELECT; 2073 cmd[4] = len; 2074 } 2075 2076 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2077 sshdr, timeout, retries, NULL); 2078 kfree(real_buffer); 2079 return ret; 2080 } 2081 EXPORT_SYMBOL_GPL(scsi_mode_select); 2082 2083 /** 2084 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2085 * @sdev: SCSI device to be queried 2086 * @dbd: set if mode sense will allow block descriptors to be returned 2087 * @modepage: mode page being requested 2088 * @buffer: request buffer (may not be smaller than eight bytes) 2089 * @len: length of request buffer. 2090 * @timeout: command timeout 2091 * @retries: number of retries before failing 2092 * @data: returns a structure abstracting the mode header data 2093 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2094 * must be SCSI_SENSE_BUFFERSIZE big. 2095 * 2096 * Returns zero if unsuccessful, or the header offset (either 4 2097 * or 8 depending on whether a six or ten byte command was 2098 * issued) if successful. 2099 */ 2100 int 2101 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2102 unsigned char *buffer, int len, int timeout, int retries, 2103 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2104 { 2105 unsigned char cmd[12]; 2106 int use_10_for_ms; 2107 int header_length; 2108 int result, retry_count = retries; 2109 struct scsi_sense_hdr my_sshdr; 2110 2111 memset(data, 0, sizeof(*data)); 2112 memset(&cmd[0], 0, 12); 2113 2114 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2115 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2116 cmd[2] = modepage; 2117 2118 /* caller might not be interested in sense, but we need it */ 2119 if (!sshdr) 2120 sshdr = &my_sshdr; 2121 2122 retry: 2123 use_10_for_ms = sdev->use_10_for_ms; 2124 2125 if (use_10_for_ms) { 2126 if (len < 8) 2127 len = 8; 2128 2129 cmd[0] = MODE_SENSE_10; 2130 cmd[8] = len; 2131 header_length = 8; 2132 } else { 2133 if (len < 4) 2134 len = 4; 2135 2136 cmd[0] = MODE_SENSE; 2137 cmd[4] = len; 2138 header_length = 4; 2139 } 2140 2141 memset(buffer, 0, len); 2142 2143 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2144 sshdr, timeout, retries, NULL); 2145 2146 /* This code looks awful: what it's doing is making sure an 2147 * ILLEGAL REQUEST sense return identifies the actual command 2148 * byte as the problem. MODE_SENSE commands can return 2149 * ILLEGAL REQUEST if the code page isn't supported */ 2150 2151 if (use_10_for_ms && !scsi_status_is_good(result) && 2152 driver_byte(result) == DRIVER_SENSE) { 2153 if (scsi_sense_valid(sshdr)) { 2154 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2155 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2156 /* 2157 * Invalid command operation code 2158 */ 2159 sdev->use_10_for_ms = 0; 2160 goto retry; 2161 } 2162 } 2163 } 2164 2165 if (scsi_status_is_good(result)) { 2166 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2167 (modepage == 6 || modepage == 8))) { 2168 /* Initio breakage? */ 2169 header_length = 0; 2170 data->length = 13; 2171 data->medium_type = 0; 2172 data->device_specific = 0; 2173 data->longlba = 0; 2174 data->block_descriptor_length = 0; 2175 } else if (use_10_for_ms) { 2176 data->length = buffer[0]*256 + buffer[1] + 2; 2177 data->medium_type = buffer[2]; 2178 data->device_specific = buffer[3]; 2179 data->longlba = buffer[4] & 0x01; 2180 data->block_descriptor_length = buffer[6]*256 2181 + buffer[7]; 2182 } else { 2183 data->length = buffer[0] + 1; 2184 data->medium_type = buffer[1]; 2185 data->device_specific = buffer[2]; 2186 data->block_descriptor_length = buffer[3]; 2187 } 2188 data->header_length = header_length; 2189 } else if ((status_byte(result) == CHECK_CONDITION) && 2190 scsi_sense_valid(sshdr) && 2191 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2192 retry_count--; 2193 goto retry; 2194 } 2195 2196 return result; 2197 } 2198 EXPORT_SYMBOL(scsi_mode_sense); 2199 2200 /** 2201 * scsi_test_unit_ready - test if unit is ready 2202 * @sdev: scsi device to change the state of. 2203 * @timeout: command timeout 2204 * @retries: number of retries before failing 2205 * @sshdr: outpout pointer for decoded sense information. 2206 * 2207 * Returns zero if unsuccessful or an error if TUR failed. For 2208 * removable media, UNIT_ATTENTION sets ->changed flag. 2209 **/ 2210 int 2211 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2212 struct scsi_sense_hdr *sshdr) 2213 { 2214 char cmd[] = { 2215 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2216 }; 2217 int result; 2218 2219 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2220 do { 2221 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2222 timeout, 1, NULL); 2223 if (sdev->removable && scsi_sense_valid(sshdr) && 2224 sshdr->sense_key == UNIT_ATTENTION) 2225 sdev->changed = 1; 2226 } while (scsi_sense_valid(sshdr) && 2227 sshdr->sense_key == UNIT_ATTENTION && --retries); 2228 2229 return result; 2230 } 2231 EXPORT_SYMBOL(scsi_test_unit_ready); 2232 2233 /** 2234 * scsi_device_set_state - Take the given device through the device state model. 2235 * @sdev: scsi device to change the state of. 2236 * @state: state to change to. 2237 * 2238 * Returns zero if successful or an error if the requested 2239 * transition is illegal. 2240 */ 2241 int 2242 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2243 { 2244 enum scsi_device_state oldstate = sdev->sdev_state; 2245 2246 if (state == oldstate) 2247 return 0; 2248 2249 switch (state) { 2250 case SDEV_CREATED: 2251 switch (oldstate) { 2252 case SDEV_CREATED_BLOCK: 2253 break; 2254 default: 2255 goto illegal; 2256 } 2257 break; 2258 2259 case SDEV_RUNNING: 2260 switch (oldstate) { 2261 case SDEV_CREATED: 2262 case SDEV_OFFLINE: 2263 case SDEV_TRANSPORT_OFFLINE: 2264 case SDEV_QUIESCE: 2265 case SDEV_BLOCK: 2266 break; 2267 default: 2268 goto illegal; 2269 } 2270 break; 2271 2272 case SDEV_QUIESCE: 2273 switch (oldstate) { 2274 case SDEV_RUNNING: 2275 case SDEV_OFFLINE: 2276 case SDEV_TRANSPORT_OFFLINE: 2277 break; 2278 default: 2279 goto illegal; 2280 } 2281 break; 2282 2283 case SDEV_OFFLINE: 2284 case SDEV_TRANSPORT_OFFLINE: 2285 switch (oldstate) { 2286 case SDEV_CREATED: 2287 case SDEV_RUNNING: 2288 case SDEV_QUIESCE: 2289 case SDEV_BLOCK: 2290 break; 2291 default: 2292 goto illegal; 2293 } 2294 break; 2295 2296 case SDEV_BLOCK: 2297 switch (oldstate) { 2298 case SDEV_RUNNING: 2299 case SDEV_CREATED_BLOCK: 2300 case SDEV_QUIESCE: 2301 case SDEV_OFFLINE: 2302 break; 2303 default: 2304 goto illegal; 2305 } 2306 break; 2307 2308 case SDEV_CREATED_BLOCK: 2309 switch (oldstate) { 2310 case SDEV_CREATED: 2311 break; 2312 default: 2313 goto illegal; 2314 } 2315 break; 2316 2317 case SDEV_CANCEL: 2318 switch (oldstate) { 2319 case SDEV_CREATED: 2320 case SDEV_RUNNING: 2321 case SDEV_QUIESCE: 2322 case SDEV_OFFLINE: 2323 case SDEV_TRANSPORT_OFFLINE: 2324 break; 2325 default: 2326 goto illegal; 2327 } 2328 break; 2329 2330 case SDEV_DEL: 2331 switch (oldstate) { 2332 case SDEV_CREATED: 2333 case SDEV_RUNNING: 2334 case SDEV_OFFLINE: 2335 case SDEV_TRANSPORT_OFFLINE: 2336 case SDEV_CANCEL: 2337 case SDEV_BLOCK: 2338 case SDEV_CREATED_BLOCK: 2339 break; 2340 default: 2341 goto illegal; 2342 } 2343 break; 2344 2345 } 2346 sdev->offline_already = false; 2347 sdev->sdev_state = state; 2348 return 0; 2349 2350 illegal: 2351 SCSI_LOG_ERROR_RECOVERY(1, 2352 sdev_printk(KERN_ERR, sdev, 2353 "Illegal state transition %s->%s", 2354 scsi_device_state_name(oldstate), 2355 scsi_device_state_name(state)) 2356 ); 2357 return -EINVAL; 2358 } 2359 EXPORT_SYMBOL(scsi_device_set_state); 2360 2361 /** 2362 * scsi_evt_emit - emit a single SCSI device uevent 2363 * @sdev: associated SCSI device 2364 * @evt: event to emit 2365 * 2366 * Send a single uevent (scsi_event) to the associated scsi_device. 2367 */ 2368 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2369 { 2370 int idx = 0; 2371 char *envp[3]; 2372 2373 switch (evt->evt_type) { 2374 case SDEV_EVT_MEDIA_CHANGE: 2375 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2376 break; 2377 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2378 scsi_rescan_device(&sdev->sdev_gendev); 2379 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2380 break; 2381 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2382 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2383 break; 2384 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2385 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2386 break; 2387 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2388 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2389 break; 2390 case SDEV_EVT_LUN_CHANGE_REPORTED: 2391 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2392 break; 2393 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2394 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2395 break; 2396 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2397 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2398 break; 2399 default: 2400 /* do nothing */ 2401 break; 2402 } 2403 2404 envp[idx++] = NULL; 2405 2406 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2407 } 2408 2409 /** 2410 * scsi_evt_thread - send a uevent for each scsi event 2411 * @work: work struct for scsi_device 2412 * 2413 * Dispatch queued events to their associated scsi_device kobjects 2414 * as uevents. 2415 */ 2416 void scsi_evt_thread(struct work_struct *work) 2417 { 2418 struct scsi_device *sdev; 2419 enum scsi_device_event evt_type; 2420 LIST_HEAD(event_list); 2421 2422 sdev = container_of(work, struct scsi_device, event_work); 2423 2424 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2425 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2426 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2427 2428 while (1) { 2429 struct scsi_event *evt; 2430 struct list_head *this, *tmp; 2431 unsigned long flags; 2432 2433 spin_lock_irqsave(&sdev->list_lock, flags); 2434 list_splice_init(&sdev->event_list, &event_list); 2435 spin_unlock_irqrestore(&sdev->list_lock, flags); 2436 2437 if (list_empty(&event_list)) 2438 break; 2439 2440 list_for_each_safe(this, tmp, &event_list) { 2441 evt = list_entry(this, struct scsi_event, node); 2442 list_del(&evt->node); 2443 scsi_evt_emit(sdev, evt); 2444 kfree(evt); 2445 } 2446 } 2447 } 2448 2449 /** 2450 * sdev_evt_send - send asserted event to uevent thread 2451 * @sdev: scsi_device event occurred on 2452 * @evt: event to send 2453 * 2454 * Assert scsi device event asynchronously. 2455 */ 2456 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2457 { 2458 unsigned long flags; 2459 2460 #if 0 2461 /* FIXME: currently this check eliminates all media change events 2462 * for polled devices. Need to update to discriminate between AN 2463 * and polled events */ 2464 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2465 kfree(evt); 2466 return; 2467 } 2468 #endif 2469 2470 spin_lock_irqsave(&sdev->list_lock, flags); 2471 list_add_tail(&evt->node, &sdev->event_list); 2472 schedule_work(&sdev->event_work); 2473 spin_unlock_irqrestore(&sdev->list_lock, flags); 2474 } 2475 EXPORT_SYMBOL_GPL(sdev_evt_send); 2476 2477 /** 2478 * sdev_evt_alloc - allocate a new scsi event 2479 * @evt_type: type of event to allocate 2480 * @gfpflags: GFP flags for allocation 2481 * 2482 * Allocates and returns a new scsi_event. 2483 */ 2484 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2485 gfp_t gfpflags) 2486 { 2487 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2488 if (!evt) 2489 return NULL; 2490 2491 evt->evt_type = evt_type; 2492 INIT_LIST_HEAD(&evt->node); 2493 2494 /* evt_type-specific initialization, if any */ 2495 switch (evt_type) { 2496 case SDEV_EVT_MEDIA_CHANGE: 2497 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2498 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2499 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2500 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2501 case SDEV_EVT_LUN_CHANGE_REPORTED: 2502 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2503 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2504 default: 2505 /* do nothing */ 2506 break; 2507 } 2508 2509 return evt; 2510 } 2511 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2512 2513 /** 2514 * sdev_evt_send_simple - send asserted event to uevent thread 2515 * @sdev: scsi_device event occurred on 2516 * @evt_type: type of event to send 2517 * @gfpflags: GFP flags for allocation 2518 * 2519 * Assert scsi device event asynchronously, given an event type. 2520 */ 2521 void sdev_evt_send_simple(struct scsi_device *sdev, 2522 enum scsi_device_event evt_type, gfp_t gfpflags) 2523 { 2524 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2525 if (!evt) { 2526 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2527 evt_type); 2528 return; 2529 } 2530 2531 sdev_evt_send(sdev, evt); 2532 } 2533 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2534 2535 /** 2536 * scsi_device_quiesce - Block all commands except power management. 2537 * @sdev: scsi device to quiesce. 2538 * 2539 * This works by trying to transition to the SDEV_QUIESCE state 2540 * (which must be a legal transition). When the device is in this 2541 * state, only power management requests will be accepted, all others will 2542 * be deferred. 2543 * 2544 * Must be called with user context, may sleep. 2545 * 2546 * Returns zero if unsuccessful or an error if not. 2547 */ 2548 int 2549 scsi_device_quiesce(struct scsi_device *sdev) 2550 { 2551 struct request_queue *q = sdev->request_queue; 2552 int err; 2553 2554 /* 2555 * It is allowed to call scsi_device_quiesce() multiple times from 2556 * the same context but concurrent scsi_device_quiesce() calls are 2557 * not allowed. 2558 */ 2559 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2560 2561 if (sdev->quiesced_by == current) 2562 return 0; 2563 2564 blk_set_pm_only(q); 2565 2566 blk_mq_freeze_queue(q); 2567 /* 2568 * Ensure that the effect of blk_set_pm_only() will be visible 2569 * for percpu_ref_tryget() callers that occur after the queue 2570 * unfreeze even if the queue was already frozen before this function 2571 * was called. See also https://lwn.net/Articles/573497/. 2572 */ 2573 synchronize_rcu(); 2574 blk_mq_unfreeze_queue(q); 2575 2576 mutex_lock(&sdev->state_mutex); 2577 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2578 if (err == 0) 2579 sdev->quiesced_by = current; 2580 else 2581 blk_clear_pm_only(q); 2582 mutex_unlock(&sdev->state_mutex); 2583 2584 return err; 2585 } 2586 EXPORT_SYMBOL(scsi_device_quiesce); 2587 2588 /** 2589 * scsi_device_resume - Restart user issued commands to a quiesced device. 2590 * @sdev: scsi device to resume. 2591 * 2592 * Moves the device from quiesced back to running and restarts the 2593 * queues. 2594 * 2595 * Must be called with user context, may sleep. 2596 */ 2597 void scsi_device_resume(struct scsi_device *sdev) 2598 { 2599 /* check if the device state was mutated prior to resume, and if 2600 * so assume the state is being managed elsewhere (for example 2601 * device deleted during suspend) 2602 */ 2603 mutex_lock(&sdev->state_mutex); 2604 if (sdev->sdev_state == SDEV_QUIESCE) 2605 scsi_device_set_state(sdev, SDEV_RUNNING); 2606 if (sdev->quiesced_by) { 2607 sdev->quiesced_by = NULL; 2608 blk_clear_pm_only(sdev->request_queue); 2609 } 2610 mutex_unlock(&sdev->state_mutex); 2611 } 2612 EXPORT_SYMBOL(scsi_device_resume); 2613 2614 static void 2615 device_quiesce_fn(struct scsi_device *sdev, void *data) 2616 { 2617 scsi_device_quiesce(sdev); 2618 } 2619 2620 void 2621 scsi_target_quiesce(struct scsi_target *starget) 2622 { 2623 starget_for_each_device(starget, NULL, device_quiesce_fn); 2624 } 2625 EXPORT_SYMBOL(scsi_target_quiesce); 2626 2627 static void 2628 device_resume_fn(struct scsi_device *sdev, void *data) 2629 { 2630 scsi_device_resume(sdev); 2631 } 2632 2633 void 2634 scsi_target_resume(struct scsi_target *starget) 2635 { 2636 starget_for_each_device(starget, NULL, device_resume_fn); 2637 } 2638 EXPORT_SYMBOL(scsi_target_resume); 2639 2640 /** 2641 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2642 * @sdev: device to block 2643 * 2644 * Pause SCSI command processing on the specified device. Does not sleep. 2645 * 2646 * Returns zero if successful or a negative error code upon failure. 2647 * 2648 * Notes: 2649 * This routine transitions the device to the SDEV_BLOCK state (which must be 2650 * a legal transition). When the device is in this state, command processing 2651 * is paused until the device leaves the SDEV_BLOCK state. See also 2652 * scsi_internal_device_unblock_nowait(). 2653 */ 2654 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2655 { 2656 struct request_queue *q = sdev->request_queue; 2657 int err = 0; 2658 2659 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2660 if (err) { 2661 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2662 2663 if (err) 2664 return err; 2665 } 2666 2667 /* 2668 * The device has transitioned to SDEV_BLOCK. Stop the 2669 * block layer from calling the midlayer with this device's 2670 * request queue. 2671 */ 2672 blk_mq_quiesce_queue_nowait(q); 2673 return 0; 2674 } 2675 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2676 2677 /** 2678 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2679 * @sdev: device to block 2680 * 2681 * Pause SCSI command processing on the specified device and wait until all 2682 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2683 * 2684 * Returns zero if successful or a negative error code upon failure. 2685 * 2686 * Note: 2687 * This routine transitions the device to the SDEV_BLOCK state (which must be 2688 * a legal transition). When the device is in this state, command processing 2689 * is paused until the device leaves the SDEV_BLOCK state. See also 2690 * scsi_internal_device_unblock(). 2691 */ 2692 static int scsi_internal_device_block(struct scsi_device *sdev) 2693 { 2694 struct request_queue *q = sdev->request_queue; 2695 int err; 2696 2697 mutex_lock(&sdev->state_mutex); 2698 err = scsi_internal_device_block_nowait(sdev); 2699 if (err == 0) 2700 blk_mq_quiesce_queue(q); 2701 mutex_unlock(&sdev->state_mutex); 2702 2703 return err; 2704 } 2705 2706 void scsi_start_queue(struct scsi_device *sdev) 2707 { 2708 struct request_queue *q = sdev->request_queue; 2709 2710 blk_mq_unquiesce_queue(q); 2711 } 2712 2713 /** 2714 * scsi_internal_device_unblock_nowait - resume a device after a block request 2715 * @sdev: device to resume 2716 * @new_state: state to set the device to after unblocking 2717 * 2718 * Restart the device queue for a previously suspended SCSI device. Does not 2719 * sleep. 2720 * 2721 * Returns zero if successful or a negative error code upon failure. 2722 * 2723 * Notes: 2724 * This routine transitions the device to the SDEV_RUNNING state or to one of 2725 * the offline states (which must be a legal transition) allowing the midlayer 2726 * to goose the queue for this device. 2727 */ 2728 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2729 enum scsi_device_state new_state) 2730 { 2731 switch (new_state) { 2732 case SDEV_RUNNING: 2733 case SDEV_TRANSPORT_OFFLINE: 2734 break; 2735 default: 2736 return -EINVAL; 2737 } 2738 2739 /* 2740 * Try to transition the scsi device to SDEV_RUNNING or one of the 2741 * offlined states and goose the device queue if successful. 2742 */ 2743 switch (sdev->sdev_state) { 2744 case SDEV_BLOCK: 2745 case SDEV_TRANSPORT_OFFLINE: 2746 sdev->sdev_state = new_state; 2747 break; 2748 case SDEV_CREATED_BLOCK: 2749 if (new_state == SDEV_TRANSPORT_OFFLINE || 2750 new_state == SDEV_OFFLINE) 2751 sdev->sdev_state = new_state; 2752 else 2753 sdev->sdev_state = SDEV_CREATED; 2754 break; 2755 case SDEV_CANCEL: 2756 case SDEV_OFFLINE: 2757 break; 2758 default: 2759 return -EINVAL; 2760 } 2761 scsi_start_queue(sdev); 2762 2763 return 0; 2764 } 2765 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2766 2767 /** 2768 * scsi_internal_device_unblock - resume a device after a block request 2769 * @sdev: device to resume 2770 * @new_state: state to set the device to after unblocking 2771 * 2772 * Restart the device queue for a previously suspended SCSI device. May sleep. 2773 * 2774 * Returns zero if successful or a negative error code upon failure. 2775 * 2776 * Notes: 2777 * This routine transitions the device to the SDEV_RUNNING state or to one of 2778 * the offline states (which must be a legal transition) allowing the midlayer 2779 * to goose the queue for this device. 2780 */ 2781 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2782 enum scsi_device_state new_state) 2783 { 2784 int ret; 2785 2786 mutex_lock(&sdev->state_mutex); 2787 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2788 mutex_unlock(&sdev->state_mutex); 2789 2790 return ret; 2791 } 2792 2793 static void 2794 device_block(struct scsi_device *sdev, void *data) 2795 { 2796 int ret; 2797 2798 ret = scsi_internal_device_block(sdev); 2799 2800 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2801 dev_name(&sdev->sdev_gendev), ret); 2802 } 2803 2804 static int 2805 target_block(struct device *dev, void *data) 2806 { 2807 if (scsi_is_target_device(dev)) 2808 starget_for_each_device(to_scsi_target(dev), NULL, 2809 device_block); 2810 return 0; 2811 } 2812 2813 void 2814 scsi_target_block(struct device *dev) 2815 { 2816 if (scsi_is_target_device(dev)) 2817 starget_for_each_device(to_scsi_target(dev), NULL, 2818 device_block); 2819 else 2820 device_for_each_child(dev, NULL, target_block); 2821 } 2822 EXPORT_SYMBOL_GPL(scsi_target_block); 2823 2824 static void 2825 device_unblock(struct scsi_device *sdev, void *data) 2826 { 2827 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2828 } 2829 2830 static int 2831 target_unblock(struct device *dev, void *data) 2832 { 2833 if (scsi_is_target_device(dev)) 2834 starget_for_each_device(to_scsi_target(dev), data, 2835 device_unblock); 2836 return 0; 2837 } 2838 2839 void 2840 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2841 { 2842 if (scsi_is_target_device(dev)) 2843 starget_for_each_device(to_scsi_target(dev), &new_state, 2844 device_unblock); 2845 else 2846 device_for_each_child(dev, &new_state, target_unblock); 2847 } 2848 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2849 2850 int 2851 scsi_host_block(struct Scsi_Host *shost) 2852 { 2853 struct scsi_device *sdev; 2854 int ret = 0; 2855 2856 /* 2857 * Call scsi_internal_device_block_nowait so we can avoid 2858 * calling synchronize_rcu() for each LUN. 2859 */ 2860 shost_for_each_device(sdev, shost) { 2861 mutex_lock(&sdev->state_mutex); 2862 ret = scsi_internal_device_block_nowait(sdev); 2863 mutex_unlock(&sdev->state_mutex); 2864 if (ret) { 2865 scsi_device_put(sdev); 2866 break; 2867 } 2868 } 2869 2870 /* 2871 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2872 * calling synchronize_rcu() once is enough. 2873 */ 2874 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2875 2876 if (!ret) 2877 synchronize_rcu(); 2878 2879 return ret; 2880 } 2881 EXPORT_SYMBOL_GPL(scsi_host_block); 2882 2883 int 2884 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2885 { 2886 struct scsi_device *sdev; 2887 int ret = 0; 2888 2889 shost_for_each_device(sdev, shost) { 2890 ret = scsi_internal_device_unblock(sdev, new_state); 2891 if (ret) { 2892 scsi_device_put(sdev); 2893 break; 2894 } 2895 } 2896 return ret; 2897 } 2898 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2899 2900 /** 2901 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2902 * @sgl: scatter-gather list 2903 * @sg_count: number of segments in sg 2904 * @offset: offset in bytes into sg, on return offset into the mapped area 2905 * @len: bytes to map, on return number of bytes mapped 2906 * 2907 * Returns virtual address of the start of the mapped page 2908 */ 2909 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2910 size_t *offset, size_t *len) 2911 { 2912 int i; 2913 size_t sg_len = 0, len_complete = 0; 2914 struct scatterlist *sg; 2915 struct page *page; 2916 2917 WARN_ON(!irqs_disabled()); 2918 2919 for_each_sg(sgl, sg, sg_count, i) { 2920 len_complete = sg_len; /* Complete sg-entries */ 2921 sg_len += sg->length; 2922 if (sg_len > *offset) 2923 break; 2924 } 2925 2926 if (unlikely(i == sg_count)) { 2927 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2928 "elements %d\n", 2929 __func__, sg_len, *offset, sg_count); 2930 WARN_ON(1); 2931 return NULL; 2932 } 2933 2934 /* Offset starting from the beginning of first page in this sg-entry */ 2935 *offset = *offset - len_complete + sg->offset; 2936 2937 /* Assumption: contiguous pages can be accessed as "page + i" */ 2938 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2939 *offset &= ~PAGE_MASK; 2940 2941 /* Bytes in this sg-entry from *offset to the end of the page */ 2942 sg_len = PAGE_SIZE - *offset; 2943 if (*len > sg_len) 2944 *len = sg_len; 2945 2946 return kmap_atomic(page); 2947 } 2948 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2949 2950 /** 2951 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2952 * @virt: virtual address to be unmapped 2953 */ 2954 void scsi_kunmap_atomic_sg(void *virt) 2955 { 2956 kunmap_atomic(virt); 2957 } 2958 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2959 2960 void sdev_disable_disk_events(struct scsi_device *sdev) 2961 { 2962 atomic_inc(&sdev->disk_events_disable_depth); 2963 } 2964 EXPORT_SYMBOL(sdev_disable_disk_events); 2965 2966 void sdev_enable_disk_events(struct scsi_device *sdev) 2967 { 2968 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2969 return; 2970 atomic_dec(&sdev->disk_events_disable_depth); 2971 } 2972 EXPORT_SYMBOL(sdev_enable_disk_events); 2973 2974 static unsigned char designator_prio(const unsigned char *d) 2975 { 2976 if (d[1] & 0x30) 2977 /* not associated with LUN */ 2978 return 0; 2979 2980 if (d[3] == 0) 2981 /* invalid length */ 2982 return 0; 2983 2984 /* 2985 * Order of preference for lun descriptor: 2986 * - SCSI name string 2987 * - NAA IEEE Registered Extended 2988 * - EUI-64 based 16-byte 2989 * - EUI-64 based 12-byte 2990 * - NAA IEEE Registered 2991 * - NAA IEEE Extended 2992 * - EUI-64 based 8-byte 2993 * - SCSI name string (truncated) 2994 * - T10 Vendor ID 2995 * as longer descriptors reduce the likelyhood 2996 * of identification clashes. 2997 */ 2998 2999 switch (d[1] & 0xf) { 3000 case 8: 3001 /* SCSI name string, variable-length UTF-8 */ 3002 return 9; 3003 case 3: 3004 switch (d[4] >> 4) { 3005 case 6: 3006 /* NAA registered extended */ 3007 return 8; 3008 case 5: 3009 /* NAA registered */ 3010 return 5; 3011 case 4: 3012 /* NAA extended */ 3013 return 4; 3014 case 3: 3015 /* NAA locally assigned */ 3016 return 1; 3017 default: 3018 break; 3019 } 3020 break; 3021 case 2: 3022 switch (d[3]) { 3023 case 16: 3024 /* EUI64-based, 16 byte */ 3025 return 7; 3026 case 12: 3027 /* EUI64-based, 12 byte */ 3028 return 6; 3029 case 8: 3030 /* EUI64-based, 8 byte */ 3031 return 3; 3032 default: 3033 break; 3034 } 3035 break; 3036 case 1: 3037 /* T10 vendor ID */ 3038 return 1; 3039 default: 3040 break; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /** 3047 * scsi_vpd_lun_id - return a unique device identification 3048 * @sdev: SCSI device 3049 * @id: buffer for the identification 3050 * @id_len: length of the buffer 3051 * 3052 * Copies a unique device identification into @id based 3053 * on the information in the VPD page 0x83 of the device. 3054 * The string will be formatted as a SCSI name string. 3055 * 3056 * Returns the length of the identification or error on failure. 3057 * If the identifier is longer than the supplied buffer the actual 3058 * identifier length is returned and the buffer is not zero-padded. 3059 */ 3060 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3061 { 3062 u8 cur_id_prio = 0; 3063 u8 cur_id_size = 0; 3064 const unsigned char *d, *cur_id_str; 3065 const struct scsi_vpd *vpd_pg83; 3066 int id_size = -EINVAL; 3067 3068 rcu_read_lock(); 3069 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3070 if (!vpd_pg83) { 3071 rcu_read_unlock(); 3072 return -ENXIO; 3073 } 3074 3075 /* The id string must be at least 20 bytes + terminating NULL byte */ 3076 if (id_len < 21) { 3077 rcu_read_unlock(); 3078 return -EINVAL; 3079 } 3080 3081 memset(id, 0, id_len); 3082 for (d = vpd_pg83->data + 4; 3083 d < vpd_pg83->data + vpd_pg83->len; 3084 d += d[3] + 4) { 3085 u8 prio = designator_prio(d); 3086 3087 if (prio == 0 || cur_id_prio > prio) 3088 continue; 3089 3090 switch (d[1] & 0xf) { 3091 case 0x1: 3092 /* T10 Vendor ID */ 3093 if (cur_id_size > d[3]) 3094 break; 3095 cur_id_prio = prio; 3096 cur_id_size = d[3]; 3097 if (cur_id_size + 4 > id_len) 3098 cur_id_size = id_len - 4; 3099 cur_id_str = d + 4; 3100 id_size = snprintf(id, id_len, "t10.%*pE", 3101 cur_id_size, cur_id_str); 3102 break; 3103 case 0x2: 3104 /* EUI-64 */ 3105 cur_id_prio = prio; 3106 cur_id_size = d[3]; 3107 cur_id_str = d + 4; 3108 switch (cur_id_size) { 3109 case 8: 3110 id_size = snprintf(id, id_len, 3111 "eui.%8phN", 3112 cur_id_str); 3113 break; 3114 case 12: 3115 id_size = snprintf(id, id_len, 3116 "eui.%12phN", 3117 cur_id_str); 3118 break; 3119 case 16: 3120 id_size = snprintf(id, id_len, 3121 "eui.%16phN", 3122 cur_id_str); 3123 break; 3124 default: 3125 break; 3126 } 3127 break; 3128 case 0x3: 3129 /* NAA */ 3130 cur_id_prio = prio; 3131 cur_id_size = d[3]; 3132 cur_id_str = d + 4; 3133 switch (cur_id_size) { 3134 case 8: 3135 id_size = snprintf(id, id_len, 3136 "naa.%8phN", 3137 cur_id_str); 3138 break; 3139 case 16: 3140 id_size = snprintf(id, id_len, 3141 "naa.%16phN", 3142 cur_id_str); 3143 break; 3144 default: 3145 break; 3146 } 3147 break; 3148 case 0x8: 3149 /* SCSI name string */ 3150 if (cur_id_size > d[3]) 3151 break; 3152 /* Prefer others for truncated descriptor */ 3153 if (d[3] > id_len) { 3154 prio = 2; 3155 if (cur_id_prio > prio) 3156 break; 3157 } 3158 cur_id_prio = prio; 3159 cur_id_size = id_size = d[3]; 3160 cur_id_str = d + 4; 3161 if (cur_id_size >= id_len) 3162 cur_id_size = id_len - 1; 3163 memcpy(id, cur_id_str, cur_id_size); 3164 break; 3165 default: 3166 break; 3167 } 3168 } 3169 rcu_read_unlock(); 3170 3171 return id_size; 3172 } 3173 EXPORT_SYMBOL(scsi_vpd_lun_id); 3174 3175 /* 3176 * scsi_vpd_tpg_id - return a target port group identifier 3177 * @sdev: SCSI device 3178 * 3179 * Returns the Target Port Group identifier from the information 3180 * froom VPD page 0x83 of the device. 3181 * 3182 * Returns the identifier or error on failure. 3183 */ 3184 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3185 { 3186 const unsigned char *d; 3187 const struct scsi_vpd *vpd_pg83; 3188 int group_id = -EAGAIN, rel_port = -1; 3189 3190 rcu_read_lock(); 3191 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3192 if (!vpd_pg83) { 3193 rcu_read_unlock(); 3194 return -ENXIO; 3195 } 3196 3197 d = vpd_pg83->data + 4; 3198 while (d < vpd_pg83->data + vpd_pg83->len) { 3199 switch (d[1] & 0xf) { 3200 case 0x4: 3201 /* Relative target port */ 3202 rel_port = get_unaligned_be16(&d[6]); 3203 break; 3204 case 0x5: 3205 /* Target port group */ 3206 group_id = get_unaligned_be16(&d[6]); 3207 break; 3208 default: 3209 break; 3210 } 3211 d += d[3] + 4; 3212 } 3213 rcu_read_unlock(); 3214 3215 if (group_id >= 0 && rel_id && rel_port != -1) 3216 *rel_id = rel_port; 3217 3218 return group_id; 3219 } 3220 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3221