1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * __scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, GFP_NOIO)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(__scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 atomic_dec(&shost->host_busy); 349 if (unlikely(scsi_host_in_recovery(shost))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 if (shost->host_failed || shost->host_eh_scheduled) 352 scsi_eh_wakeup(shost); 353 spin_unlock_irqrestore(shost->host_lock, flags); 354 } 355 rcu_read_unlock(); 356 } 357 358 void scsi_device_unbusy(struct scsi_device *sdev) 359 { 360 struct Scsi_Host *shost = sdev->host; 361 struct scsi_target *starget = scsi_target(sdev); 362 363 scsi_dec_host_busy(shost); 364 365 if (starget->can_queue > 0) 366 atomic_dec(&starget->target_busy); 367 368 atomic_dec(&sdev->device_busy); 369 } 370 371 static void scsi_kick_queue(struct request_queue *q) 372 { 373 if (q->mq_ops) 374 blk_mq_run_hw_queues(q, false); 375 else 376 blk_run_queue(q); 377 } 378 379 /* 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 381 * and call blk_run_queue for all the scsi_devices on the target - 382 * including current_sdev first. 383 * 384 * Called with *no* scsi locks held. 385 */ 386 static void scsi_single_lun_run(struct scsi_device *current_sdev) 387 { 388 struct Scsi_Host *shost = current_sdev->host; 389 struct scsi_device *sdev, *tmp; 390 struct scsi_target *starget = scsi_target(current_sdev); 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 starget->starget_sdev_user = NULL; 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 397 /* 398 * Call blk_run_queue for all LUNs on the target, starting with 399 * current_sdev. We race with others (to set starget_sdev_user), 400 * but in most cases, we will be first. Ideally, each LU on the 401 * target would get some limited time or requests on the target. 402 */ 403 scsi_kick_queue(current_sdev->request_queue); 404 405 spin_lock_irqsave(shost->host_lock, flags); 406 if (starget->starget_sdev_user) 407 goto out; 408 list_for_each_entry_safe(sdev, tmp, &starget->devices, 409 same_target_siblings) { 410 if (sdev == current_sdev) 411 continue; 412 if (scsi_device_get(sdev)) 413 continue; 414 415 spin_unlock_irqrestore(shost->host_lock, flags); 416 scsi_kick_queue(sdev->request_queue); 417 spin_lock_irqsave(shost->host_lock, flags); 418 419 scsi_device_put(sdev); 420 } 421 out: 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 426 { 427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 428 return true; 429 if (atomic_read(&sdev->device_blocked) > 0) 430 return true; 431 return false; 432 } 433 434 static inline bool scsi_target_is_busy(struct scsi_target *starget) 435 { 436 if (starget->can_queue > 0) { 437 if (atomic_read(&starget->target_busy) >= starget->can_queue) 438 return true; 439 if (atomic_read(&starget->target_blocked) > 0) 440 return true; 441 } 442 return false; 443 } 444 445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 446 { 447 if (shost->can_queue > 0 && 448 atomic_read(&shost->host_busy) >= shost->can_queue) 449 return true; 450 if (atomic_read(&shost->host_blocked) > 0) 451 return true; 452 if (shost->host_self_blocked) 453 return true; 454 return false; 455 } 456 457 static void scsi_starved_list_run(struct Scsi_Host *shost) 458 { 459 LIST_HEAD(starved_list); 460 struct scsi_device *sdev; 461 unsigned long flags; 462 463 spin_lock_irqsave(shost->host_lock, flags); 464 list_splice_init(&shost->starved_list, &starved_list); 465 466 while (!list_empty(&starved_list)) { 467 struct request_queue *slq; 468 469 /* 470 * As long as shost is accepting commands and we have 471 * starved queues, call blk_run_queue. scsi_request_fn 472 * drops the queue_lock and can add us back to the 473 * starved_list. 474 * 475 * host_lock protects the starved_list and starved_entry. 476 * scsi_request_fn must get the host_lock before checking 477 * or modifying starved_list or starved_entry. 478 */ 479 if (scsi_host_is_busy(shost)) 480 break; 481 482 sdev = list_entry(starved_list.next, 483 struct scsi_device, starved_entry); 484 list_del_init(&sdev->starved_entry); 485 if (scsi_target_is_busy(scsi_target(sdev))) { 486 list_move_tail(&sdev->starved_entry, 487 &shost->starved_list); 488 continue; 489 } 490 491 /* 492 * Once we drop the host lock, a racing scsi_remove_device() 493 * call may remove the sdev from the starved list and destroy 494 * it and the queue. Mitigate by taking a reference to the 495 * queue and never touching the sdev again after we drop the 496 * host lock. Note: if __scsi_remove_device() invokes 497 * blk_cleanup_queue() before the queue is run from this 498 * function then blk_run_queue() will return immediately since 499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 500 */ 501 slq = sdev->request_queue; 502 if (!blk_get_queue(slq)) 503 continue; 504 spin_unlock_irqrestore(shost->host_lock, flags); 505 506 scsi_kick_queue(slq); 507 blk_put_queue(slq); 508 509 spin_lock_irqsave(shost->host_lock, flags); 510 } 511 /* put any unprocessed entries back */ 512 list_splice(&starved_list, &shost->starved_list); 513 spin_unlock_irqrestore(shost->host_lock, flags); 514 } 515 516 /* 517 * Function: scsi_run_queue() 518 * 519 * Purpose: Select a proper request queue to serve next 520 * 521 * Arguments: q - last request's queue 522 * 523 * Returns: Nothing 524 * 525 * Notes: The previous command was completely finished, start 526 * a new one if possible. 527 */ 528 static void scsi_run_queue(struct request_queue *q) 529 { 530 struct scsi_device *sdev = q->queuedata; 531 532 if (scsi_target(sdev)->single_lun) 533 scsi_single_lun_run(sdev); 534 if (!list_empty(&sdev->host->starved_list)) 535 scsi_starved_list_run(sdev->host); 536 537 if (q->mq_ops) 538 blk_mq_run_hw_queues(q, false); 539 else 540 blk_run_queue(q); 541 } 542 543 void scsi_requeue_run_queue(struct work_struct *work) 544 { 545 struct scsi_device *sdev; 546 struct request_queue *q; 547 548 sdev = container_of(work, struct scsi_device, requeue_work); 549 q = sdev->request_queue; 550 scsi_run_queue(q); 551 } 552 553 /* 554 * Function: scsi_requeue_command() 555 * 556 * Purpose: Handle post-processing of completed commands. 557 * 558 * Arguments: q - queue to operate on 559 * cmd - command that may need to be requeued. 560 * 561 * Returns: Nothing 562 * 563 * Notes: After command completion, there may be blocks left 564 * over which weren't finished by the previous command 565 * this can be for a number of reasons - the main one is 566 * I/O errors in the middle of the request, in which case 567 * we need to request the blocks that come after the bad 568 * sector. 569 * Notes: Upon return, cmd is a stale pointer. 570 */ 571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 572 { 573 struct scsi_device *sdev = cmd->device; 574 struct request *req = cmd->request; 575 unsigned long flags; 576 577 spin_lock_irqsave(q->queue_lock, flags); 578 blk_unprep_request(req); 579 req->special = NULL; 580 scsi_put_command(cmd); 581 blk_requeue_request(q, req); 582 spin_unlock_irqrestore(q->queue_lock, flags); 583 584 scsi_run_queue(q); 585 586 put_device(&sdev->sdev_gendev); 587 } 588 589 void scsi_run_host_queues(struct Scsi_Host *shost) 590 { 591 struct scsi_device *sdev; 592 593 shost_for_each_device(sdev, shost) 594 scsi_run_queue(sdev->request_queue); 595 } 596 597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 598 { 599 if (!blk_rq_is_passthrough(cmd->request)) { 600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 601 602 if (drv->uninit_command) 603 drv->uninit_command(cmd); 604 } 605 } 606 607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 608 { 609 struct scsi_data_buffer *sdb; 610 611 if (cmd->sdb.table.nents) 612 sg_free_table_chained(&cmd->sdb.table, true); 613 if (cmd->request->next_rq) { 614 sdb = cmd->request->next_rq->special; 615 if (sdb) 616 sg_free_table_chained(&sdb->table, true); 617 } 618 if (scsi_prot_sg_count(cmd)) 619 sg_free_table_chained(&cmd->prot_sdb->table, true); 620 } 621 622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 623 { 624 scsi_mq_free_sgtables(cmd); 625 scsi_uninit_cmd(cmd); 626 scsi_del_cmd_from_list(cmd); 627 } 628 629 /* 630 * Function: scsi_release_buffers() 631 * 632 * Purpose: Free resources allocate for a scsi_command. 633 * 634 * Arguments: cmd - command that we are bailing. 635 * 636 * Lock status: Assumed that no lock is held upon entry. 637 * 638 * Returns: Nothing 639 * 640 * Notes: In the event that an upper level driver rejects a 641 * command, we must release resources allocated during 642 * the __init_io() function. Primarily this would involve 643 * the scatter-gather table. 644 */ 645 static void scsi_release_buffers(struct scsi_cmnd *cmd) 646 { 647 if (cmd->sdb.table.nents) 648 sg_free_table_chained(&cmd->sdb.table, false); 649 650 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 651 652 if (scsi_prot_sg_count(cmd)) 653 sg_free_table_chained(&cmd->prot_sdb->table, false); 654 } 655 656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 657 { 658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 659 660 sg_free_table_chained(&bidi_sdb->table, false); 661 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 662 cmd->request->next_rq->special = NULL; 663 } 664 665 /* Returns false when no more bytes to process, true if there are more */ 666 static bool scsi_end_request(struct request *req, blk_status_t error, 667 unsigned int bytes, unsigned int bidi_bytes) 668 { 669 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 670 struct scsi_device *sdev = cmd->device; 671 struct request_queue *q = sdev->request_queue; 672 673 if (blk_update_request(req, error, bytes)) 674 return true; 675 676 /* Bidi request must be completed as a whole */ 677 if (unlikely(bidi_bytes) && 678 blk_update_request(req->next_rq, error, bidi_bytes)) 679 return true; 680 681 if (blk_queue_add_random(q)) 682 add_disk_randomness(req->rq_disk); 683 684 if (!blk_rq_is_scsi(req)) { 685 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 686 cmd->flags &= ~SCMD_INITIALIZED; 687 destroy_rcu_head(&cmd->rcu); 688 } 689 690 if (req->mq_ctx) { 691 /* 692 * In the MQ case the command gets freed by __blk_mq_end_request, 693 * so we have to do all cleanup that depends on it earlier. 694 * 695 * We also can't kick the queues from irq context, so we 696 * will have to defer it to a workqueue. 697 */ 698 scsi_mq_uninit_cmd(cmd); 699 700 /* 701 * queue is still alive, so grab the ref for preventing it 702 * from being cleaned up during running queue. 703 */ 704 percpu_ref_get(&q->q_usage_counter); 705 706 __blk_mq_end_request(req, error); 707 708 if (scsi_target(sdev)->single_lun || 709 !list_empty(&sdev->host->starved_list)) 710 kblockd_schedule_work(&sdev->requeue_work); 711 else 712 blk_mq_run_hw_queues(q, true); 713 714 percpu_ref_put(&q->q_usage_counter); 715 } else { 716 unsigned long flags; 717 718 if (bidi_bytes) 719 scsi_release_bidi_buffers(cmd); 720 scsi_release_buffers(cmd); 721 scsi_put_command(cmd); 722 723 spin_lock_irqsave(q->queue_lock, flags); 724 blk_finish_request(req, error); 725 spin_unlock_irqrestore(q->queue_lock, flags); 726 727 scsi_run_queue(q); 728 } 729 730 put_device(&sdev->sdev_gendev); 731 return false; 732 } 733 734 /** 735 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 736 * @cmd: SCSI command 737 * @result: scsi error code 738 * 739 * Translate a SCSI result code into a blk_status_t value. May reset the host 740 * byte of @cmd->result. 741 */ 742 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 743 { 744 switch (host_byte(result)) { 745 case DID_OK: 746 /* 747 * Also check the other bytes than the status byte in result 748 * to handle the case when a SCSI LLD sets result to 749 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 750 */ 751 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 752 return BLK_STS_OK; 753 return BLK_STS_IOERR; 754 case DID_TRANSPORT_FAILFAST: 755 return BLK_STS_TRANSPORT; 756 case DID_TARGET_FAILURE: 757 set_host_byte(cmd, DID_OK); 758 return BLK_STS_TARGET; 759 case DID_NEXUS_FAILURE: 760 return BLK_STS_NEXUS; 761 case DID_ALLOC_FAILURE: 762 set_host_byte(cmd, DID_OK); 763 return BLK_STS_NOSPC; 764 case DID_MEDIUM_ERROR: 765 set_host_byte(cmd, DID_OK); 766 return BLK_STS_MEDIUM; 767 default: 768 return BLK_STS_IOERR; 769 } 770 } 771 772 /* Helper for scsi_io_completion() when "reprep" action required. */ 773 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 774 struct request_queue *q) 775 { 776 /* A new command will be prepared and issued. */ 777 if (q->mq_ops) { 778 scsi_mq_requeue_cmd(cmd); 779 } else { 780 /* Unprep request and put it back at head of the queue. */ 781 scsi_release_buffers(cmd); 782 scsi_requeue_command(q, cmd); 783 } 784 } 785 786 /* Helper for scsi_io_completion() when special action required. */ 787 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 788 { 789 struct request_queue *q = cmd->device->request_queue; 790 struct request *req = cmd->request; 791 int level = 0; 792 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 793 ACTION_DELAYED_RETRY} action; 794 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 795 struct scsi_sense_hdr sshdr; 796 bool sense_valid; 797 bool sense_current = true; /* false implies "deferred sense" */ 798 blk_status_t blk_stat; 799 800 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 801 if (sense_valid) 802 sense_current = !scsi_sense_is_deferred(&sshdr); 803 804 blk_stat = scsi_result_to_blk_status(cmd, result); 805 806 if (host_byte(result) == DID_RESET) { 807 /* Third party bus reset or reset for error recovery 808 * reasons. Just retry the command and see what 809 * happens. 810 */ 811 action = ACTION_RETRY; 812 } else if (sense_valid && sense_current) { 813 switch (sshdr.sense_key) { 814 case UNIT_ATTENTION: 815 if (cmd->device->removable) { 816 /* Detected disc change. Set a bit 817 * and quietly refuse further access. 818 */ 819 cmd->device->changed = 1; 820 action = ACTION_FAIL; 821 } else { 822 /* Must have been a power glitch, or a 823 * bus reset. Could not have been a 824 * media change, so we just retry the 825 * command and see what happens. 826 */ 827 action = ACTION_RETRY; 828 } 829 break; 830 case ILLEGAL_REQUEST: 831 /* If we had an ILLEGAL REQUEST returned, then 832 * we may have performed an unsupported 833 * command. The only thing this should be 834 * would be a ten byte read where only a six 835 * byte read was supported. Also, on a system 836 * where READ CAPACITY failed, we may have 837 * read past the end of the disk. 838 */ 839 if ((cmd->device->use_10_for_rw && 840 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 841 (cmd->cmnd[0] == READ_10 || 842 cmd->cmnd[0] == WRITE_10)) { 843 /* This will issue a new 6-byte command. */ 844 cmd->device->use_10_for_rw = 0; 845 action = ACTION_REPREP; 846 } else if (sshdr.asc == 0x10) /* DIX */ { 847 action = ACTION_FAIL; 848 blk_stat = BLK_STS_PROTECTION; 849 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 850 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 851 action = ACTION_FAIL; 852 blk_stat = BLK_STS_TARGET; 853 } else 854 action = ACTION_FAIL; 855 break; 856 case ABORTED_COMMAND: 857 action = ACTION_FAIL; 858 if (sshdr.asc == 0x10) /* DIF */ 859 blk_stat = BLK_STS_PROTECTION; 860 break; 861 case NOT_READY: 862 /* If the device is in the process of becoming 863 * ready, or has a temporary blockage, retry. 864 */ 865 if (sshdr.asc == 0x04) { 866 switch (sshdr.ascq) { 867 case 0x01: /* becoming ready */ 868 case 0x04: /* format in progress */ 869 case 0x05: /* rebuild in progress */ 870 case 0x06: /* recalculation in progress */ 871 case 0x07: /* operation in progress */ 872 case 0x08: /* Long write in progress */ 873 case 0x09: /* self test in progress */ 874 case 0x14: /* space allocation in progress */ 875 case 0x1a: /* start stop unit in progress */ 876 case 0x1b: /* sanitize in progress */ 877 case 0x1d: /* configuration in progress */ 878 case 0x24: /* depopulation in progress */ 879 action = ACTION_DELAYED_RETRY; 880 break; 881 default: 882 action = ACTION_FAIL; 883 break; 884 } 885 } else 886 action = ACTION_FAIL; 887 break; 888 case VOLUME_OVERFLOW: 889 /* See SSC3rXX or current. */ 890 action = ACTION_FAIL; 891 break; 892 default: 893 action = ACTION_FAIL; 894 break; 895 } 896 } else 897 action = ACTION_FAIL; 898 899 if (action != ACTION_FAIL && 900 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 901 action = ACTION_FAIL; 902 903 switch (action) { 904 case ACTION_FAIL: 905 /* Give up and fail the remainder of the request */ 906 if (!(req->rq_flags & RQF_QUIET)) { 907 static DEFINE_RATELIMIT_STATE(_rs, 908 DEFAULT_RATELIMIT_INTERVAL, 909 DEFAULT_RATELIMIT_BURST); 910 911 if (unlikely(scsi_logging_level)) 912 level = 913 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 914 SCSI_LOG_MLCOMPLETE_BITS); 915 916 /* 917 * if logging is enabled the failure will be printed 918 * in scsi_log_completion(), so avoid duplicate messages 919 */ 920 if (!level && __ratelimit(&_rs)) { 921 scsi_print_result(cmd, NULL, FAILED); 922 if (driver_byte(result) == DRIVER_SENSE) 923 scsi_print_sense(cmd); 924 scsi_print_command(cmd); 925 } 926 } 927 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0)) 928 return; 929 /*FALLTHRU*/ 930 case ACTION_REPREP: 931 scsi_io_completion_reprep(cmd, q); 932 break; 933 case ACTION_RETRY: 934 /* Retry the same command immediately */ 935 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 936 break; 937 case ACTION_DELAYED_RETRY: 938 /* Retry the same command after a delay */ 939 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 940 break; 941 } 942 } 943 944 /* 945 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 946 * new result that may suppress further error checking. Also modifies 947 * *blk_statp in some cases. 948 */ 949 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 950 blk_status_t *blk_statp) 951 { 952 bool sense_valid; 953 bool sense_current = true; /* false implies "deferred sense" */ 954 struct request *req = cmd->request; 955 struct scsi_sense_hdr sshdr; 956 957 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 958 if (sense_valid) 959 sense_current = !scsi_sense_is_deferred(&sshdr); 960 961 if (blk_rq_is_passthrough(req)) { 962 if (sense_valid) { 963 /* 964 * SG_IO wants current and deferred errors 965 */ 966 scsi_req(req)->sense_len = 967 min(8 + cmd->sense_buffer[7], 968 SCSI_SENSE_BUFFERSIZE); 969 } 970 if (sense_current) 971 *blk_statp = scsi_result_to_blk_status(cmd, result); 972 } else if (blk_rq_bytes(req) == 0 && sense_current) { 973 /* 974 * Flush commands do not transfers any data, and thus cannot use 975 * good_bytes != blk_rq_bytes(req) as the signal for an error. 976 * This sets *blk_statp explicitly for the problem case. 977 */ 978 *blk_statp = scsi_result_to_blk_status(cmd, result); 979 } 980 /* 981 * Recovered errors need reporting, but they're always treated as 982 * success, so fiddle the result code here. For passthrough requests 983 * we already took a copy of the original into sreq->result which 984 * is what gets returned to the user 985 */ 986 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 987 bool do_print = true; 988 /* 989 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 990 * skip print since caller wants ATA registers. Only occurs 991 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 992 */ 993 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 994 do_print = false; 995 else if (req->rq_flags & RQF_QUIET) 996 do_print = false; 997 if (do_print) 998 scsi_print_sense(cmd); 999 result = 0; 1000 /* for passthrough, *blk_statp may be set */ 1001 *blk_statp = BLK_STS_OK; 1002 } 1003 /* 1004 * Another corner case: the SCSI status byte is non-zero but 'good'. 1005 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1006 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1007 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1008 * intermediate statuses (both obsolete in SAM-4) as good. 1009 */ 1010 if (status_byte(result) && scsi_status_is_good(result)) { 1011 result = 0; 1012 *blk_statp = BLK_STS_OK; 1013 } 1014 return result; 1015 } 1016 1017 /* 1018 * Function: scsi_io_completion() 1019 * 1020 * Purpose: Completion processing for block device I/O requests. 1021 * 1022 * Arguments: cmd - command that is finished. 1023 * 1024 * Lock status: Assumed that no lock is held upon entry. 1025 * 1026 * Returns: Nothing 1027 * 1028 * Notes: We will finish off the specified number of sectors. If we 1029 * are done, the command block will be released and the queue 1030 * function will be goosed. If we are not done then we have to 1031 * figure out what to do next: 1032 * 1033 * a) We can call scsi_requeue_command(). The request 1034 * will be unprepared and put back on the queue. Then 1035 * a new command will be created for it. This should 1036 * be used if we made forward progress, or if we want 1037 * to switch from READ(10) to READ(6) for example. 1038 * 1039 * b) We can call __scsi_queue_insert(). The request will 1040 * be put back on the queue and retried using the same 1041 * command as before, possibly after a delay. 1042 * 1043 * c) We can call scsi_end_request() with blk_stat other than 1044 * BLK_STS_OK, to fail the remainder of the request. 1045 */ 1046 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1047 { 1048 int result = cmd->result; 1049 struct request_queue *q = cmd->device->request_queue; 1050 struct request *req = cmd->request; 1051 blk_status_t blk_stat = BLK_STS_OK; 1052 1053 if (unlikely(result)) /* a nz result may or may not be an error */ 1054 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1055 1056 if (unlikely(blk_rq_is_passthrough(req))) { 1057 /* 1058 * scsi_result_to_blk_status may have reset the host_byte 1059 */ 1060 scsi_req(req)->result = cmd->result; 1061 scsi_req(req)->resid_len = scsi_get_resid(cmd); 1062 1063 if (unlikely(scsi_bidi_cmnd(cmd))) { 1064 /* 1065 * Bidi commands Must be complete as a whole, 1066 * both sides at once. 1067 */ 1068 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 1069 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 1070 blk_rq_bytes(req->next_rq))) 1071 WARN_ONCE(true, 1072 "Bidi command with remaining bytes"); 1073 return; 1074 } 1075 } 1076 1077 /* no bidi support yet, other than in pass-through */ 1078 if (unlikely(blk_bidi_rq(req))) { 1079 WARN_ONCE(true, "Only support bidi command in passthrough"); 1080 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n"); 1081 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req), 1082 blk_rq_bytes(req->next_rq))) 1083 WARN_ONCE(true, "Bidi command with remaining bytes"); 1084 return; 1085 } 1086 1087 /* 1088 * Next deal with any sectors which we were able to correctly 1089 * handle. 1090 */ 1091 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1092 "%u sectors total, %d bytes done.\n", 1093 blk_rq_sectors(req), good_bytes)); 1094 1095 /* 1096 * Next deal with any sectors which we were able to correctly 1097 * handle. Failed, zero length commands always need to drop down 1098 * to retry code. Fast path should return in this block. 1099 */ 1100 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1101 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0))) 1102 return; /* no bytes remaining */ 1103 } 1104 1105 /* Kill remainder if no retries. */ 1106 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1107 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0)) 1108 WARN_ONCE(true, 1109 "Bytes remaining after failed, no-retry command"); 1110 return; 1111 } 1112 1113 /* 1114 * If there had been no error, but we have leftover bytes in the 1115 * requeues just queue the command up again. 1116 */ 1117 if (likely(result == 0)) 1118 scsi_io_completion_reprep(cmd, q); 1119 else 1120 scsi_io_completion_action(cmd, result); 1121 } 1122 1123 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1124 { 1125 int count; 1126 1127 /* 1128 * If sg table allocation fails, requeue request later. 1129 */ 1130 if (unlikely(sg_alloc_table_chained(&sdb->table, 1131 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1132 return BLKPREP_DEFER; 1133 1134 /* 1135 * Next, walk the list, and fill in the addresses and sizes of 1136 * each segment. 1137 */ 1138 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1139 BUG_ON(count > sdb->table.nents); 1140 sdb->table.nents = count; 1141 sdb->length = blk_rq_payload_bytes(req); 1142 return BLKPREP_OK; 1143 } 1144 1145 /* 1146 * Function: scsi_init_io() 1147 * 1148 * Purpose: SCSI I/O initialize function. 1149 * 1150 * Arguments: cmd - Command descriptor we wish to initialize 1151 * 1152 * Returns: 0 on success 1153 * BLKPREP_DEFER if the failure is retryable 1154 * BLKPREP_KILL if the failure is fatal 1155 */ 1156 int scsi_init_io(struct scsi_cmnd *cmd) 1157 { 1158 struct scsi_device *sdev = cmd->device; 1159 struct request *rq = cmd->request; 1160 bool is_mq = (rq->mq_ctx != NULL); 1161 int error = BLKPREP_KILL; 1162 1163 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1164 goto err_exit; 1165 1166 error = scsi_init_sgtable(rq, &cmd->sdb); 1167 if (error) 1168 goto err_exit; 1169 1170 if (blk_bidi_rq(rq)) { 1171 if (!rq->q->mq_ops) { 1172 struct scsi_data_buffer *bidi_sdb = 1173 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1174 if (!bidi_sdb) { 1175 error = BLKPREP_DEFER; 1176 goto err_exit; 1177 } 1178 1179 rq->next_rq->special = bidi_sdb; 1180 } 1181 1182 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1183 if (error) 1184 goto err_exit; 1185 } 1186 1187 if (blk_integrity_rq(rq)) { 1188 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1189 int ivecs, count; 1190 1191 if (prot_sdb == NULL) { 1192 /* 1193 * This can happen if someone (e.g. multipath) 1194 * queues a command to a device on an adapter 1195 * that does not support DIX. 1196 */ 1197 WARN_ON_ONCE(1); 1198 error = BLKPREP_KILL; 1199 goto err_exit; 1200 } 1201 1202 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1203 1204 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1205 prot_sdb->table.sgl)) { 1206 error = BLKPREP_DEFER; 1207 goto err_exit; 1208 } 1209 1210 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1211 prot_sdb->table.sgl); 1212 BUG_ON(count > ivecs); 1213 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1214 1215 cmd->prot_sdb = prot_sdb; 1216 cmd->prot_sdb->table.nents = count; 1217 } 1218 1219 return BLKPREP_OK; 1220 err_exit: 1221 if (is_mq) { 1222 scsi_mq_free_sgtables(cmd); 1223 } else { 1224 scsi_release_buffers(cmd); 1225 cmd->request->special = NULL; 1226 scsi_put_command(cmd); 1227 put_device(&sdev->sdev_gendev); 1228 } 1229 return error; 1230 } 1231 EXPORT_SYMBOL(scsi_init_io); 1232 1233 /** 1234 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1235 * @rq: Request associated with the SCSI command to be initialized. 1236 * 1237 * This function initializes the members of struct scsi_cmnd that must be 1238 * initialized before request processing starts and that won't be 1239 * reinitialized if a SCSI command is requeued. 1240 * 1241 * Called from inside blk_get_request() for pass-through requests and from 1242 * inside scsi_init_command() for filesystem requests. 1243 */ 1244 static void scsi_initialize_rq(struct request *rq) 1245 { 1246 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1247 1248 scsi_req_init(&cmd->req); 1249 init_rcu_head(&cmd->rcu); 1250 cmd->jiffies_at_alloc = jiffies; 1251 cmd->retries = 0; 1252 } 1253 1254 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1255 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1256 { 1257 struct scsi_device *sdev = cmd->device; 1258 struct Scsi_Host *shost = sdev->host; 1259 unsigned long flags; 1260 1261 if (shost->use_cmd_list) { 1262 spin_lock_irqsave(&sdev->list_lock, flags); 1263 list_add_tail(&cmd->list, &sdev->cmd_list); 1264 spin_unlock_irqrestore(&sdev->list_lock, flags); 1265 } 1266 } 1267 1268 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1269 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1270 { 1271 struct scsi_device *sdev = cmd->device; 1272 struct Scsi_Host *shost = sdev->host; 1273 unsigned long flags; 1274 1275 if (shost->use_cmd_list) { 1276 spin_lock_irqsave(&sdev->list_lock, flags); 1277 BUG_ON(list_empty(&cmd->list)); 1278 list_del_init(&cmd->list); 1279 spin_unlock_irqrestore(&sdev->list_lock, flags); 1280 } 1281 } 1282 1283 /* Called after a request has been started. */ 1284 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1285 { 1286 void *buf = cmd->sense_buffer; 1287 void *prot = cmd->prot_sdb; 1288 struct request *rq = blk_mq_rq_from_pdu(cmd); 1289 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1290 unsigned long jiffies_at_alloc; 1291 int retries; 1292 1293 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1294 flags |= SCMD_INITIALIZED; 1295 scsi_initialize_rq(rq); 1296 } 1297 1298 jiffies_at_alloc = cmd->jiffies_at_alloc; 1299 retries = cmd->retries; 1300 /* zero out the cmd, except for the embedded scsi_request */ 1301 memset((char *)cmd + sizeof(cmd->req), 0, 1302 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1303 1304 cmd->device = dev; 1305 cmd->sense_buffer = buf; 1306 cmd->prot_sdb = prot; 1307 cmd->flags = flags; 1308 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1309 cmd->jiffies_at_alloc = jiffies_at_alloc; 1310 cmd->retries = retries; 1311 1312 scsi_add_cmd_to_list(cmd); 1313 } 1314 1315 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1316 { 1317 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1318 1319 /* 1320 * Passthrough requests may transfer data, in which case they must 1321 * a bio attached to them. Or they might contain a SCSI command 1322 * that does not transfer data, in which case they may optionally 1323 * submit a request without an attached bio. 1324 */ 1325 if (req->bio) { 1326 int ret = scsi_init_io(cmd); 1327 if (unlikely(ret)) 1328 return ret; 1329 } else { 1330 BUG_ON(blk_rq_bytes(req)); 1331 1332 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1333 } 1334 1335 cmd->cmd_len = scsi_req(req)->cmd_len; 1336 cmd->cmnd = scsi_req(req)->cmd; 1337 cmd->transfersize = blk_rq_bytes(req); 1338 cmd->allowed = scsi_req(req)->retries; 1339 return BLKPREP_OK; 1340 } 1341 1342 /* 1343 * Setup a normal block command. These are simple request from filesystems 1344 * that still need to be translated to SCSI CDBs from the ULD. 1345 */ 1346 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1347 { 1348 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1349 1350 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1351 int ret = sdev->handler->prep_fn(sdev, req); 1352 if (ret != BLKPREP_OK) 1353 return ret; 1354 } 1355 1356 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1357 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1358 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1359 } 1360 1361 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1362 { 1363 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1364 1365 if (!blk_rq_bytes(req)) 1366 cmd->sc_data_direction = DMA_NONE; 1367 else if (rq_data_dir(req) == WRITE) 1368 cmd->sc_data_direction = DMA_TO_DEVICE; 1369 else 1370 cmd->sc_data_direction = DMA_FROM_DEVICE; 1371 1372 if (blk_rq_is_scsi(req)) 1373 return scsi_setup_scsi_cmnd(sdev, req); 1374 else 1375 return scsi_setup_fs_cmnd(sdev, req); 1376 } 1377 1378 static int 1379 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1380 { 1381 int ret = BLKPREP_OK; 1382 1383 /* 1384 * If the device is not in running state we will reject some 1385 * or all commands. 1386 */ 1387 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1388 switch (sdev->sdev_state) { 1389 case SDEV_OFFLINE: 1390 case SDEV_TRANSPORT_OFFLINE: 1391 /* 1392 * If the device is offline we refuse to process any 1393 * commands. The device must be brought online 1394 * before trying any recovery commands. 1395 */ 1396 sdev_printk(KERN_ERR, sdev, 1397 "rejecting I/O to offline device\n"); 1398 ret = BLKPREP_KILL; 1399 break; 1400 case SDEV_DEL: 1401 /* 1402 * If the device is fully deleted, we refuse to 1403 * process any commands as well. 1404 */ 1405 sdev_printk(KERN_ERR, sdev, 1406 "rejecting I/O to dead device\n"); 1407 ret = BLKPREP_KILL; 1408 break; 1409 case SDEV_BLOCK: 1410 case SDEV_CREATED_BLOCK: 1411 ret = BLKPREP_DEFER; 1412 break; 1413 case SDEV_QUIESCE: 1414 /* 1415 * If the devices is blocked we defer normal commands. 1416 */ 1417 if (req && !(req->rq_flags & RQF_PREEMPT)) 1418 ret = BLKPREP_DEFER; 1419 break; 1420 default: 1421 /* 1422 * For any other not fully online state we only allow 1423 * special commands. In particular any user initiated 1424 * command is not allowed. 1425 */ 1426 if (req && !(req->rq_flags & RQF_PREEMPT)) 1427 ret = BLKPREP_KILL; 1428 break; 1429 } 1430 } 1431 return ret; 1432 } 1433 1434 static int 1435 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1436 { 1437 struct scsi_device *sdev = q->queuedata; 1438 1439 switch (ret) { 1440 case BLKPREP_KILL: 1441 case BLKPREP_INVALID: 1442 scsi_req(req)->result = DID_NO_CONNECT << 16; 1443 /* release the command and kill it */ 1444 if (req->special) { 1445 struct scsi_cmnd *cmd = req->special; 1446 scsi_release_buffers(cmd); 1447 scsi_put_command(cmd); 1448 put_device(&sdev->sdev_gendev); 1449 req->special = NULL; 1450 } 1451 break; 1452 case BLKPREP_DEFER: 1453 /* 1454 * If we defer, the blk_peek_request() returns NULL, but the 1455 * queue must be restarted, so we schedule a callback to happen 1456 * shortly. 1457 */ 1458 if (atomic_read(&sdev->device_busy) == 0) 1459 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1460 break; 1461 default: 1462 req->rq_flags |= RQF_DONTPREP; 1463 } 1464 1465 return ret; 1466 } 1467 1468 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1469 { 1470 struct scsi_device *sdev = q->queuedata; 1471 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1472 int ret; 1473 1474 ret = scsi_prep_state_check(sdev, req); 1475 if (ret != BLKPREP_OK) 1476 goto out; 1477 1478 if (!req->special) { 1479 /* Bail if we can't get a reference to the device */ 1480 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1481 ret = BLKPREP_DEFER; 1482 goto out; 1483 } 1484 1485 scsi_init_command(sdev, cmd); 1486 req->special = cmd; 1487 } 1488 1489 cmd->tag = req->tag; 1490 cmd->request = req; 1491 cmd->prot_op = SCSI_PROT_NORMAL; 1492 1493 ret = scsi_setup_cmnd(sdev, req); 1494 out: 1495 return scsi_prep_return(q, req, ret); 1496 } 1497 1498 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1499 { 1500 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1501 } 1502 1503 /* 1504 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1505 * return 0. 1506 * 1507 * Called with the queue_lock held. 1508 */ 1509 static inline int scsi_dev_queue_ready(struct request_queue *q, 1510 struct scsi_device *sdev) 1511 { 1512 unsigned int busy; 1513 1514 busy = atomic_inc_return(&sdev->device_busy) - 1; 1515 if (atomic_read(&sdev->device_blocked)) { 1516 if (busy) 1517 goto out_dec; 1518 1519 /* 1520 * unblock after device_blocked iterates to zero 1521 */ 1522 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1523 /* 1524 * For the MQ case we take care of this in the caller. 1525 */ 1526 if (!q->mq_ops) 1527 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1528 goto out_dec; 1529 } 1530 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1531 "unblocking device at zero depth\n")); 1532 } 1533 1534 if (busy >= sdev->queue_depth) 1535 goto out_dec; 1536 1537 return 1; 1538 out_dec: 1539 atomic_dec(&sdev->device_busy); 1540 return 0; 1541 } 1542 1543 /* 1544 * scsi_target_queue_ready: checks if there we can send commands to target 1545 * @sdev: scsi device on starget to check. 1546 */ 1547 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1548 struct scsi_device *sdev) 1549 { 1550 struct scsi_target *starget = scsi_target(sdev); 1551 unsigned int busy; 1552 1553 if (starget->single_lun) { 1554 spin_lock_irq(shost->host_lock); 1555 if (starget->starget_sdev_user && 1556 starget->starget_sdev_user != sdev) { 1557 spin_unlock_irq(shost->host_lock); 1558 return 0; 1559 } 1560 starget->starget_sdev_user = sdev; 1561 spin_unlock_irq(shost->host_lock); 1562 } 1563 1564 if (starget->can_queue <= 0) 1565 return 1; 1566 1567 busy = atomic_inc_return(&starget->target_busy) - 1; 1568 if (atomic_read(&starget->target_blocked) > 0) { 1569 if (busy) 1570 goto starved; 1571 1572 /* 1573 * unblock after target_blocked iterates to zero 1574 */ 1575 if (atomic_dec_return(&starget->target_blocked) > 0) 1576 goto out_dec; 1577 1578 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1579 "unblocking target at zero depth\n")); 1580 } 1581 1582 if (busy >= starget->can_queue) 1583 goto starved; 1584 1585 return 1; 1586 1587 starved: 1588 spin_lock_irq(shost->host_lock); 1589 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1590 spin_unlock_irq(shost->host_lock); 1591 out_dec: 1592 if (starget->can_queue > 0) 1593 atomic_dec(&starget->target_busy); 1594 return 0; 1595 } 1596 1597 /* 1598 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1599 * return 0. We must end up running the queue again whenever 0 is 1600 * returned, else IO can hang. 1601 */ 1602 static inline int scsi_host_queue_ready(struct request_queue *q, 1603 struct Scsi_Host *shost, 1604 struct scsi_device *sdev) 1605 { 1606 unsigned int busy; 1607 1608 if (scsi_host_in_recovery(shost)) 1609 return 0; 1610 1611 busy = atomic_inc_return(&shost->host_busy) - 1; 1612 if (atomic_read(&shost->host_blocked) > 0) { 1613 if (busy) 1614 goto starved; 1615 1616 /* 1617 * unblock after host_blocked iterates to zero 1618 */ 1619 if (atomic_dec_return(&shost->host_blocked) > 0) 1620 goto out_dec; 1621 1622 SCSI_LOG_MLQUEUE(3, 1623 shost_printk(KERN_INFO, shost, 1624 "unblocking host at zero depth\n")); 1625 } 1626 1627 if (shost->can_queue > 0 && busy >= shost->can_queue) 1628 goto starved; 1629 if (shost->host_self_blocked) 1630 goto starved; 1631 1632 /* We're OK to process the command, so we can't be starved */ 1633 if (!list_empty(&sdev->starved_entry)) { 1634 spin_lock_irq(shost->host_lock); 1635 if (!list_empty(&sdev->starved_entry)) 1636 list_del_init(&sdev->starved_entry); 1637 spin_unlock_irq(shost->host_lock); 1638 } 1639 1640 return 1; 1641 1642 starved: 1643 spin_lock_irq(shost->host_lock); 1644 if (list_empty(&sdev->starved_entry)) 1645 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1646 spin_unlock_irq(shost->host_lock); 1647 out_dec: 1648 scsi_dec_host_busy(shost); 1649 return 0; 1650 } 1651 1652 /* 1653 * Busy state exporting function for request stacking drivers. 1654 * 1655 * For efficiency, no lock is taken to check the busy state of 1656 * shost/starget/sdev, since the returned value is not guaranteed and 1657 * may be changed after request stacking drivers call the function, 1658 * regardless of taking lock or not. 1659 * 1660 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1661 * needs to return 'not busy'. Otherwise, request stacking drivers 1662 * may hold requests forever. 1663 */ 1664 static int scsi_lld_busy(struct request_queue *q) 1665 { 1666 struct scsi_device *sdev = q->queuedata; 1667 struct Scsi_Host *shost; 1668 1669 if (blk_queue_dying(q)) 1670 return 0; 1671 1672 shost = sdev->host; 1673 1674 /* 1675 * Ignore host/starget busy state. 1676 * Since block layer does not have a concept of fairness across 1677 * multiple queues, congestion of host/starget needs to be handled 1678 * in SCSI layer. 1679 */ 1680 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1681 return 1; 1682 1683 return 0; 1684 } 1685 1686 /* 1687 * Kill a request for a dead device 1688 */ 1689 static void scsi_kill_request(struct request *req, struct request_queue *q) 1690 { 1691 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1692 struct scsi_device *sdev; 1693 struct scsi_target *starget; 1694 struct Scsi_Host *shost; 1695 1696 blk_start_request(req); 1697 1698 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1699 1700 sdev = cmd->device; 1701 starget = scsi_target(sdev); 1702 shost = sdev->host; 1703 scsi_init_cmd_errh(cmd); 1704 cmd->result = DID_NO_CONNECT << 16; 1705 atomic_inc(&cmd->device->iorequest_cnt); 1706 1707 /* 1708 * SCSI request completion path will do scsi_device_unbusy(), 1709 * bump busy counts. To bump the counters, we need to dance 1710 * with the locks as normal issue path does. 1711 */ 1712 atomic_inc(&sdev->device_busy); 1713 atomic_inc(&shost->host_busy); 1714 if (starget->can_queue > 0) 1715 atomic_inc(&starget->target_busy); 1716 1717 blk_complete_request(req); 1718 } 1719 1720 static void scsi_softirq_done(struct request *rq) 1721 { 1722 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1723 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1724 int disposition; 1725 1726 INIT_LIST_HEAD(&cmd->eh_entry); 1727 1728 atomic_inc(&cmd->device->iodone_cnt); 1729 if (cmd->result) 1730 atomic_inc(&cmd->device->ioerr_cnt); 1731 1732 disposition = scsi_decide_disposition(cmd); 1733 if (disposition != SUCCESS && 1734 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1735 sdev_printk(KERN_ERR, cmd->device, 1736 "timing out command, waited %lus\n", 1737 wait_for/HZ); 1738 disposition = SUCCESS; 1739 } 1740 1741 scsi_log_completion(cmd, disposition); 1742 1743 switch (disposition) { 1744 case SUCCESS: 1745 scsi_finish_command(cmd); 1746 break; 1747 case NEEDS_RETRY: 1748 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1749 break; 1750 case ADD_TO_MLQUEUE: 1751 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1752 break; 1753 default: 1754 scsi_eh_scmd_add(cmd); 1755 break; 1756 } 1757 } 1758 1759 /** 1760 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1761 * @cmd: command block we are dispatching. 1762 * 1763 * Return: nonzero return request was rejected and device's queue needs to be 1764 * plugged. 1765 */ 1766 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1767 { 1768 struct Scsi_Host *host = cmd->device->host; 1769 int rtn = 0; 1770 1771 atomic_inc(&cmd->device->iorequest_cnt); 1772 1773 /* check if the device is still usable */ 1774 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1775 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1776 * returns an immediate error upwards, and signals 1777 * that the device is no longer present */ 1778 cmd->result = DID_NO_CONNECT << 16; 1779 goto done; 1780 } 1781 1782 /* Check to see if the scsi lld made this device blocked. */ 1783 if (unlikely(scsi_device_blocked(cmd->device))) { 1784 /* 1785 * in blocked state, the command is just put back on 1786 * the device queue. The suspend state has already 1787 * blocked the queue so future requests should not 1788 * occur until the device transitions out of the 1789 * suspend state. 1790 */ 1791 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1792 "queuecommand : device blocked\n")); 1793 return SCSI_MLQUEUE_DEVICE_BUSY; 1794 } 1795 1796 /* Store the LUN value in cmnd, if needed. */ 1797 if (cmd->device->lun_in_cdb) 1798 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1799 (cmd->device->lun << 5 & 0xe0); 1800 1801 scsi_log_send(cmd); 1802 1803 /* 1804 * Before we queue this command, check if the command 1805 * length exceeds what the host adapter can handle. 1806 */ 1807 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1808 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1809 "queuecommand : command too long. " 1810 "cdb_size=%d host->max_cmd_len=%d\n", 1811 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1812 cmd->result = (DID_ABORT << 16); 1813 goto done; 1814 } 1815 1816 if (unlikely(host->shost_state == SHOST_DEL)) { 1817 cmd->result = (DID_NO_CONNECT << 16); 1818 goto done; 1819 1820 } 1821 1822 trace_scsi_dispatch_cmd_start(cmd); 1823 rtn = host->hostt->queuecommand(host, cmd); 1824 if (rtn) { 1825 trace_scsi_dispatch_cmd_error(cmd, rtn); 1826 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1827 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1828 rtn = SCSI_MLQUEUE_HOST_BUSY; 1829 1830 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1831 "queuecommand : request rejected\n")); 1832 } 1833 1834 return rtn; 1835 done: 1836 cmd->scsi_done(cmd); 1837 return 0; 1838 } 1839 1840 /** 1841 * scsi_done - Invoke completion on finished SCSI command. 1842 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1843 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1844 * 1845 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1846 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1847 * calls blk_complete_request() for further processing. 1848 * 1849 * This function is interrupt context safe. 1850 */ 1851 static void scsi_done(struct scsi_cmnd *cmd) 1852 { 1853 trace_scsi_dispatch_cmd_done(cmd); 1854 blk_complete_request(cmd->request); 1855 } 1856 1857 /* 1858 * Function: scsi_request_fn() 1859 * 1860 * Purpose: Main strategy routine for SCSI. 1861 * 1862 * Arguments: q - Pointer to actual queue. 1863 * 1864 * Returns: Nothing 1865 * 1866 * Lock status: request queue lock assumed to be held when called. 1867 * 1868 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1869 * protection for ZBC disks. 1870 */ 1871 static void scsi_request_fn(struct request_queue *q) 1872 __releases(q->queue_lock) 1873 __acquires(q->queue_lock) 1874 { 1875 struct scsi_device *sdev = q->queuedata; 1876 struct Scsi_Host *shost; 1877 struct scsi_cmnd *cmd; 1878 struct request *req; 1879 1880 /* 1881 * To start with, we keep looping until the queue is empty, or until 1882 * the host is no longer able to accept any more requests. 1883 */ 1884 shost = sdev->host; 1885 for (;;) { 1886 int rtn; 1887 /* 1888 * get next queueable request. We do this early to make sure 1889 * that the request is fully prepared even if we cannot 1890 * accept it. 1891 */ 1892 req = blk_peek_request(q); 1893 if (!req) 1894 break; 1895 1896 if (unlikely(!scsi_device_online(sdev))) { 1897 sdev_printk(KERN_ERR, sdev, 1898 "rejecting I/O to offline device\n"); 1899 scsi_kill_request(req, q); 1900 continue; 1901 } 1902 1903 if (!scsi_dev_queue_ready(q, sdev)) 1904 break; 1905 1906 /* 1907 * Remove the request from the request list. 1908 */ 1909 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1910 blk_start_request(req); 1911 1912 spin_unlock_irq(q->queue_lock); 1913 cmd = blk_mq_rq_to_pdu(req); 1914 if (cmd != req->special) { 1915 printk(KERN_CRIT "impossible request in %s.\n" 1916 "please mail a stack trace to " 1917 "linux-scsi@vger.kernel.org\n", 1918 __func__); 1919 blk_dump_rq_flags(req, "foo"); 1920 BUG(); 1921 } 1922 1923 /* 1924 * We hit this when the driver is using a host wide 1925 * tag map. For device level tag maps the queue_depth check 1926 * in the device ready fn would prevent us from trying 1927 * to allocate a tag. Since the map is a shared host resource 1928 * we add the dev to the starved list so it eventually gets 1929 * a run when a tag is freed. 1930 */ 1931 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1932 spin_lock_irq(shost->host_lock); 1933 if (list_empty(&sdev->starved_entry)) 1934 list_add_tail(&sdev->starved_entry, 1935 &shost->starved_list); 1936 spin_unlock_irq(shost->host_lock); 1937 goto not_ready; 1938 } 1939 1940 if (!scsi_target_queue_ready(shost, sdev)) 1941 goto not_ready; 1942 1943 if (!scsi_host_queue_ready(q, shost, sdev)) 1944 goto host_not_ready; 1945 1946 if (sdev->simple_tags) 1947 cmd->flags |= SCMD_TAGGED; 1948 else 1949 cmd->flags &= ~SCMD_TAGGED; 1950 1951 /* 1952 * Finally, initialize any error handling parameters, and set up 1953 * the timers for timeouts. 1954 */ 1955 scsi_init_cmd_errh(cmd); 1956 1957 /* 1958 * Dispatch the command to the low-level driver. 1959 */ 1960 cmd->scsi_done = scsi_done; 1961 rtn = scsi_dispatch_cmd(cmd); 1962 if (rtn) { 1963 scsi_queue_insert(cmd, rtn); 1964 spin_lock_irq(q->queue_lock); 1965 goto out_delay; 1966 } 1967 spin_lock_irq(q->queue_lock); 1968 } 1969 1970 return; 1971 1972 host_not_ready: 1973 if (scsi_target(sdev)->can_queue > 0) 1974 atomic_dec(&scsi_target(sdev)->target_busy); 1975 not_ready: 1976 /* 1977 * lock q, handle tag, requeue req, and decrement device_busy. We 1978 * must return with queue_lock held. 1979 * 1980 * Decrementing device_busy without checking it is OK, as all such 1981 * cases (host limits or settings) should run the queue at some 1982 * later time. 1983 */ 1984 spin_lock_irq(q->queue_lock); 1985 blk_requeue_request(q, req); 1986 atomic_dec(&sdev->device_busy); 1987 out_delay: 1988 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1989 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1990 } 1991 1992 static inline blk_status_t prep_to_mq(int ret) 1993 { 1994 switch (ret) { 1995 case BLKPREP_OK: 1996 return BLK_STS_OK; 1997 case BLKPREP_DEFER: 1998 return BLK_STS_RESOURCE; 1999 default: 2000 return BLK_STS_IOERR; 2001 } 2002 } 2003 2004 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 2005 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 2006 { 2007 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 2008 sizeof(struct scatterlist); 2009 } 2010 2011 static int scsi_mq_prep_fn(struct request *req) 2012 { 2013 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2014 struct scsi_device *sdev = req->q->queuedata; 2015 struct Scsi_Host *shost = sdev->host; 2016 struct scatterlist *sg; 2017 2018 scsi_init_command(sdev, cmd); 2019 2020 req->special = cmd; 2021 2022 cmd->request = req; 2023 2024 cmd->tag = req->tag; 2025 cmd->prot_op = SCSI_PROT_NORMAL; 2026 2027 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2028 cmd->sdb.table.sgl = sg; 2029 2030 if (scsi_host_get_prot(shost)) { 2031 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 2032 2033 cmd->prot_sdb->table.sgl = 2034 (struct scatterlist *)(cmd->prot_sdb + 1); 2035 } 2036 2037 if (blk_bidi_rq(req)) { 2038 struct request *next_rq = req->next_rq; 2039 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 2040 2041 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 2042 bidi_sdb->table.sgl = 2043 (struct scatterlist *)(bidi_sdb + 1); 2044 2045 next_rq->special = bidi_sdb; 2046 } 2047 2048 blk_mq_start_request(req); 2049 2050 return scsi_setup_cmnd(sdev, req); 2051 } 2052 2053 static void scsi_mq_done(struct scsi_cmnd *cmd) 2054 { 2055 trace_scsi_dispatch_cmd_done(cmd); 2056 blk_mq_complete_request(cmd->request); 2057 } 2058 2059 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 2060 { 2061 struct request_queue *q = hctx->queue; 2062 struct scsi_device *sdev = q->queuedata; 2063 2064 atomic_dec(&sdev->device_busy); 2065 put_device(&sdev->sdev_gendev); 2066 } 2067 2068 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2069 { 2070 struct request_queue *q = hctx->queue; 2071 struct scsi_device *sdev = q->queuedata; 2072 2073 if (!get_device(&sdev->sdev_gendev)) 2074 goto out; 2075 if (!scsi_dev_queue_ready(q, sdev)) 2076 goto out_put_device; 2077 2078 return true; 2079 2080 out_put_device: 2081 put_device(&sdev->sdev_gendev); 2082 out: 2083 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2084 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2085 return false; 2086 } 2087 2088 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2089 const struct blk_mq_queue_data *bd) 2090 { 2091 struct request *req = bd->rq; 2092 struct request_queue *q = req->q; 2093 struct scsi_device *sdev = q->queuedata; 2094 struct Scsi_Host *shost = sdev->host; 2095 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2096 blk_status_t ret; 2097 int reason; 2098 2099 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2100 if (ret != BLK_STS_OK) 2101 goto out_put_budget; 2102 2103 ret = BLK_STS_RESOURCE; 2104 if (!scsi_target_queue_ready(shost, sdev)) 2105 goto out_put_budget; 2106 if (!scsi_host_queue_ready(q, shost, sdev)) 2107 goto out_dec_target_busy; 2108 2109 if (!(req->rq_flags & RQF_DONTPREP)) { 2110 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2111 if (ret != BLK_STS_OK) 2112 goto out_dec_host_busy; 2113 req->rq_flags |= RQF_DONTPREP; 2114 } else { 2115 blk_mq_start_request(req); 2116 } 2117 2118 if (sdev->simple_tags) 2119 cmd->flags |= SCMD_TAGGED; 2120 else 2121 cmd->flags &= ~SCMD_TAGGED; 2122 2123 scsi_init_cmd_errh(cmd); 2124 cmd->scsi_done = scsi_mq_done; 2125 2126 reason = scsi_dispatch_cmd(cmd); 2127 if (reason) { 2128 scsi_set_blocked(cmd, reason); 2129 ret = BLK_STS_RESOURCE; 2130 goto out_dec_host_busy; 2131 } 2132 2133 return BLK_STS_OK; 2134 2135 out_dec_host_busy: 2136 scsi_dec_host_busy(shost); 2137 out_dec_target_busy: 2138 if (scsi_target(sdev)->can_queue > 0) 2139 atomic_dec(&scsi_target(sdev)->target_busy); 2140 out_put_budget: 2141 scsi_mq_put_budget(hctx); 2142 switch (ret) { 2143 case BLK_STS_OK: 2144 break; 2145 case BLK_STS_RESOURCE: 2146 if (atomic_read(&sdev->device_busy) || 2147 scsi_device_blocked(sdev)) 2148 ret = BLK_STS_DEV_RESOURCE; 2149 break; 2150 default: 2151 /* 2152 * Make sure to release all allocated ressources when 2153 * we hit an error, as we will never see this command 2154 * again. 2155 */ 2156 if (req->rq_flags & RQF_DONTPREP) 2157 scsi_mq_uninit_cmd(cmd); 2158 break; 2159 } 2160 return ret; 2161 } 2162 2163 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2164 bool reserved) 2165 { 2166 if (reserved) 2167 return BLK_EH_RESET_TIMER; 2168 return scsi_times_out(req); 2169 } 2170 2171 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2172 unsigned int hctx_idx, unsigned int numa_node) 2173 { 2174 struct Scsi_Host *shost = set->driver_data; 2175 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2176 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2177 struct scatterlist *sg; 2178 2179 if (unchecked_isa_dma) 2180 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2181 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2182 GFP_KERNEL, numa_node); 2183 if (!cmd->sense_buffer) 2184 return -ENOMEM; 2185 cmd->req.sense = cmd->sense_buffer; 2186 2187 if (scsi_host_get_prot(shost)) { 2188 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2189 shost->hostt->cmd_size; 2190 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2191 } 2192 2193 return 0; 2194 } 2195 2196 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2197 unsigned int hctx_idx) 2198 { 2199 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2200 2201 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2202 cmd->sense_buffer); 2203 } 2204 2205 static int scsi_map_queues(struct blk_mq_tag_set *set) 2206 { 2207 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2208 2209 if (shost->hostt->map_queues) 2210 return shost->hostt->map_queues(shost); 2211 return blk_mq_map_queues(set); 2212 } 2213 2214 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2215 { 2216 struct device *dev = shost->dma_dev; 2217 2218 /* 2219 * this limit is imposed by hardware restrictions 2220 */ 2221 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2222 SG_MAX_SEGMENTS)); 2223 2224 if (scsi_host_prot_dma(shost)) { 2225 shost->sg_prot_tablesize = 2226 min_not_zero(shost->sg_prot_tablesize, 2227 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2228 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2229 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2230 } 2231 2232 blk_queue_max_hw_sectors(q, shost->max_sectors); 2233 if (shost->unchecked_isa_dma) 2234 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 2235 blk_queue_segment_boundary(q, shost->dma_boundary); 2236 dma_set_seg_boundary(dev, shost->dma_boundary); 2237 2238 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2239 2240 if (!shost->use_clustering) 2241 q->limits.cluster = 0; 2242 2243 /* 2244 * Set a reasonable default alignment: The larger of 32-byte (dword), 2245 * which is a common minimum for HBAs, and the minimum DMA alignment, 2246 * which is set by the platform. 2247 * 2248 * Devices that require a bigger alignment can increase it later. 2249 */ 2250 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2251 } 2252 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2253 2254 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2255 gfp_t gfp) 2256 { 2257 struct Scsi_Host *shost = q->rq_alloc_data; 2258 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2259 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2260 2261 memset(cmd, 0, sizeof(*cmd)); 2262 2263 if (unchecked_isa_dma) 2264 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2265 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2266 NUMA_NO_NODE); 2267 if (!cmd->sense_buffer) 2268 goto fail; 2269 cmd->req.sense = cmd->sense_buffer; 2270 2271 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2272 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2273 if (!cmd->prot_sdb) 2274 goto fail_free_sense; 2275 } 2276 2277 return 0; 2278 2279 fail_free_sense: 2280 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2281 fail: 2282 return -ENOMEM; 2283 } 2284 2285 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2286 { 2287 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2288 2289 if (cmd->prot_sdb) 2290 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2291 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2292 cmd->sense_buffer); 2293 } 2294 2295 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2296 { 2297 struct Scsi_Host *shost = sdev->host; 2298 struct request_queue *q; 2299 2300 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2301 if (!q) 2302 return NULL; 2303 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2304 q->rq_alloc_data = shost; 2305 q->request_fn = scsi_request_fn; 2306 q->init_rq_fn = scsi_old_init_rq; 2307 q->exit_rq_fn = scsi_old_exit_rq; 2308 q->initialize_rq_fn = scsi_initialize_rq; 2309 2310 if (blk_init_allocated_queue(q) < 0) { 2311 blk_cleanup_queue(q); 2312 return NULL; 2313 } 2314 2315 __scsi_init_queue(shost, q); 2316 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2317 blk_queue_prep_rq(q, scsi_prep_fn); 2318 blk_queue_unprep_rq(q, scsi_unprep_fn); 2319 blk_queue_softirq_done(q, scsi_softirq_done); 2320 blk_queue_rq_timed_out(q, scsi_times_out); 2321 blk_queue_lld_busy(q, scsi_lld_busy); 2322 return q; 2323 } 2324 2325 static const struct blk_mq_ops scsi_mq_ops = { 2326 .get_budget = scsi_mq_get_budget, 2327 .put_budget = scsi_mq_put_budget, 2328 .queue_rq = scsi_queue_rq, 2329 .complete = scsi_softirq_done, 2330 .timeout = scsi_timeout, 2331 #ifdef CONFIG_BLK_DEBUG_FS 2332 .show_rq = scsi_show_rq, 2333 #endif 2334 .init_request = scsi_mq_init_request, 2335 .exit_request = scsi_mq_exit_request, 2336 .initialize_rq_fn = scsi_initialize_rq, 2337 .map_queues = scsi_map_queues, 2338 }; 2339 2340 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2341 { 2342 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2343 if (IS_ERR(sdev->request_queue)) 2344 return NULL; 2345 2346 sdev->request_queue->queuedata = sdev; 2347 __scsi_init_queue(sdev->host, sdev->request_queue); 2348 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2349 return sdev->request_queue; 2350 } 2351 2352 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2353 { 2354 unsigned int cmd_size, sgl_size; 2355 2356 sgl_size = scsi_mq_sgl_size(shost); 2357 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2358 if (scsi_host_get_prot(shost)) 2359 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2360 2361 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2362 shost->tag_set.ops = &scsi_mq_ops; 2363 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2364 shost->tag_set.queue_depth = shost->can_queue; 2365 shost->tag_set.cmd_size = cmd_size; 2366 shost->tag_set.numa_node = NUMA_NO_NODE; 2367 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2368 shost->tag_set.flags |= 2369 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2370 shost->tag_set.driver_data = shost; 2371 2372 return blk_mq_alloc_tag_set(&shost->tag_set); 2373 } 2374 2375 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2376 { 2377 blk_mq_free_tag_set(&shost->tag_set); 2378 } 2379 2380 /** 2381 * scsi_device_from_queue - return sdev associated with a request_queue 2382 * @q: The request queue to return the sdev from 2383 * 2384 * Return the sdev associated with a request queue or NULL if the 2385 * request_queue does not reference a SCSI device. 2386 */ 2387 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2388 { 2389 struct scsi_device *sdev = NULL; 2390 2391 if (q->mq_ops) { 2392 if (q->mq_ops == &scsi_mq_ops) 2393 sdev = q->queuedata; 2394 } else if (q->request_fn == scsi_request_fn) 2395 sdev = q->queuedata; 2396 if (!sdev || !get_device(&sdev->sdev_gendev)) 2397 sdev = NULL; 2398 2399 return sdev; 2400 } 2401 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2402 2403 /* 2404 * Function: scsi_block_requests() 2405 * 2406 * Purpose: Utility function used by low-level drivers to prevent further 2407 * commands from being queued to the device. 2408 * 2409 * Arguments: shost - Host in question 2410 * 2411 * Returns: Nothing 2412 * 2413 * Lock status: No locks are assumed held. 2414 * 2415 * Notes: There is no timer nor any other means by which the requests 2416 * get unblocked other than the low-level driver calling 2417 * scsi_unblock_requests(). 2418 */ 2419 void scsi_block_requests(struct Scsi_Host *shost) 2420 { 2421 shost->host_self_blocked = 1; 2422 } 2423 EXPORT_SYMBOL(scsi_block_requests); 2424 2425 /* 2426 * Function: scsi_unblock_requests() 2427 * 2428 * Purpose: Utility function used by low-level drivers to allow further 2429 * commands from being queued to the device. 2430 * 2431 * Arguments: shost - Host in question 2432 * 2433 * Returns: Nothing 2434 * 2435 * Lock status: No locks are assumed held. 2436 * 2437 * Notes: There is no timer nor any other means by which the requests 2438 * get unblocked other than the low-level driver calling 2439 * scsi_unblock_requests(). 2440 * 2441 * This is done as an API function so that changes to the 2442 * internals of the scsi mid-layer won't require wholesale 2443 * changes to drivers that use this feature. 2444 */ 2445 void scsi_unblock_requests(struct Scsi_Host *shost) 2446 { 2447 shost->host_self_blocked = 0; 2448 scsi_run_host_queues(shost); 2449 } 2450 EXPORT_SYMBOL(scsi_unblock_requests); 2451 2452 int __init scsi_init_queue(void) 2453 { 2454 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2455 sizeof(struct scsi_data_buffer), 2456 0, 0, NULL); 2457 if (!scsi_sdb_cache) { 2458 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2459 return -ENOMEM; 2460 } 2461 2462 return 0; 2463 } 2464 2465 void scsi_exit_queue(void) 2466 { 2467 kmem_cache_destroy(scsi_sense_cache); 2468 kmem_cache_destroy(scsi_sense_isadma_cache); 2469 kmem_cache_destroy(scsi_sdb_cache); 2470 } 2471 2472 /** 2473 * scsi_mode_select - issue a mode select 2474 * @sdev: SCSI device to be queried 2475 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2476 * @sp: Save page bit (0 == don't save, 1 == save) 2477 * @modepage: mode page being requested 2478 * @buffer: request buffer (may not be smaller than eight bytes) 2479 * @len: length of request buffer. 2480 * @timeout: command timeout 2481 * @retries: number of retries before failing 2482 * @data: returns a structure abstracting the mode header data 2483 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2484 * must be SCSI_SENSE_BUFFERSIZE big. 2485 * 2486 * Returns zero if successful; negative error number or scsi 2487 * status on error 2488 * 2489 */ 2490 int 2491 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2492 unsigned char *buffer, int len, int timeout, int retries, 2493 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2494 { 2495 unsigned char cmd[10]; 2496 unsigned char *real_buffer; 2497 int ret; 2498 2499 memset(cmd, 0, sizeof(cmd)); 2500 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2501 2502 if (sdev->use_10_for_ms) { 2503 if (len > 65535) 2504 return -EINVAL; 2505 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2506 if (!real_buffer) 2507 return -ENOMEM; 2508 memcpy(real_buffer + 8, buffer, len); 2509 len += 8; 2510 real_buffer[0] = 0; 2511 real_buffer[1] = 0; 2512 real_buffer[2] = data->medium_type; 2513 real_buffer[3] = data->device_specific; 2514 real_buffer[4] = data->longlba ? 0x01 : 0; 2515 real_buffer[5] = 0; 2516 real_buffer[6] = data->block_descriptor_length >> 8; 2517 real_buffer[7] = data->block_descriptor_length; 2518 2519 cmd[0] = MODE_SELECT_10; 2520 cmd[7] = len >> 8; 2521 cmd[8] = len; 2522 } else { 2523 if (len > 255 || data->block_descriptor_length > 255 || 2524 data->longlba) 2525 return -EINVAL; 2526 2527 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2528 if (!real_buffer) 2529 return -ENOMEM; 2530 memcpy(real_buffer + 4, buffer, len); 2531 len += 4; 2532 real_buffer[0] = 0; 2533 real_buffer[1] = data->medium_type; 2534 real_buffer[2] = data->device_specific; 2535 real_buffer[3] = data->block_descriptor_length; 2536 2537 2538 cmd[0] = MODE_SELECT; 2539 cmd[4] = len; 2540 } 2541 2542 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2543 sshdr, timeout, retries, NULL); 2544 kfree(real_buffer); 2545 return ret; 2546 } 2547 EXPORT_SYMBOL_GPL(scsi_mode_select); 2548 2549 /** 2550 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2551 * @sdev: SCSI device to be queried 2552 * @dbd: set if mode sense will allow block descriptors to be returned 2553 * @modepage: mode page being requested 2554 * @buffer: request buffer (may not be smaller than eight bytes) 2555 * @len: length of request buffer. 2556 * @timeout: command timeout 2557 * @retries: number of retries before failing 2558 * @data: returns a structure abstracting the mode header data 2559 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2560 * must be SCSI_SENSE_BUFFERSIZE big. 2561 * 2562 * Returns zero if unsuccessful, or the header offset (either 4 2563 * or 8 depending on whether a six or ten byte command was 2564 * issued) if successful. 2565 */ 2566 int 2567 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2568 unsigned char *buffer, int len, int timeout, int retries, 2569 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2570 { 2571 unsigned char cmd[12]; 2572 int use_10_for_ms; 2573 int header_length; 2574 int result, retry_count = retries; 2575 struct scsi_sense_hdr my_sshdr; 2576 2577 memset(data, 0, sizeof(*data)); 2578 memset(&cmd[0], 0, 12); 2579 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2580 cmd[2] = modepage; 2581 2582 /* caller might not be interested in sense, but we need it */ 2583 if (!sshdr) 2584 sshdr = &my_sshdr; 2585 2586 retry: 2587 use_10_for_ms = sdev->use_10_for_ms; 2588 2589 if (use_10_for_ms) { 2590 if (len < 8) 2591 len = 8; 2592 2593 cmd[0] = MODE_SENSE_10; 2594 cmd[8] = len; 2595 header_length = 8; 2596 } else { 2597 if (len < 4) 2598 len = 4; 2599 2600 cmd[0] = MODE_SENSE; 2601 cmd[4] = len; 2602 header_length = 4; 2603 } 2604 2605 memset(buffer, 0, len); 2606 2607 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2608 sshdr, timeout, retries, NULL); 2609 2610 /* This code looks awful: what it's doing is making sure an 2611 * ILLEGAL REQUEST sense return identifies the actual command 2612 * byte as the problem. MODE_SENSE commands can return 2613 * ILLEGAL REQUEST if the code page isn't supported */ 2614 2615 if (use_10_for_ms && !scsi_status_is_good(result) && 2616 driver_byte(result) == DRIVER_SENSE) { 2617 if (scsi_sense_valid(sshdr)) { 2618 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2619 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2620 /* 2621 * Invalid command operation code 2622 */ 2623 sdev->use_10_for_ms = 0; 2624 goto retry; 2625 } 2626 } 2627 } 2628 2629 if(scsi_status_is_good(result)) { 2630 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2631 (modepage == 6 || modepage == 8))) { 2632 /* Initio breakage? */ 2633 header_length = 0; 2634 data->length = 13; 2635 data->medium_type = 0; 2636 data->device_specific = 0; 2637 data->longlba = 0; 2638 data->block_descriptor_length = 0; 2639 } else if(use_10_for_ms) { 2640 data->length = buffer[0]*256 + buffer[1] + 2; 2641 data->medium_type = buffer[2]; 2642 data->device_specific = buffer[3]; 2643 data->longlba = buffer[4] & 0x01; 2644 data->block_descriptor_length = buffer[6]*256 2645 + buffer[7]; 2646 } else { 2647 data->length = buffer[0] + 1; 2648 data->medium_type = buffer[1]; 2649 data->device_specific = buffer[2]; 2650 data->block_descriptor_length = buffer[3]; 2651 } 2652 data->header_length = header_length; 2653 } else if ((status_byte(result) == CHECK_CONDITION) && 2654 scsi_sense_valid(sshdr) && 2655 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2656 retry_count--; 2657 goto retry; 2658 } 2659 2660 return result; 2661 } 2662 EXPORT_SYMBOL(scsi_mode_sense); 2663 2664 /** 2665 * scsi_test_unit_ready - test if unit is ready 2666 * @sdev: scsi device to change the state of. 2667 * @timeout: command timeout 2668 * @retries: number of retries before failing 2669 * @sshdr: outpout pointer for decoded sense information. 2670 * 2671 * Returns zero if unsuccessful or an error if TUR failed. For 2672 * removable media, UNIT_ATTENTION sets ->changed flag. 2673 **/ 2674 int 2675 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2676 struct scsi_sense_hdr *sshdr) 2677 { 2678 char cmd[] = { 2679 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2680 }; 2681 int result; 2682 2683 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2684 do { 2685 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2686 timeout, 1, NULL); 2687 if (sdev->removable && scsi_sense_valid(sshdr) && 2688 sshdr->sense_key == UNIT_ATTENTION) 2689 sdev->changed = 1; 2690 } while (scsi_sense_valid(sshdr) && 2691 sshdr->sense_key == UNIT_ATTENTION && --retries); 2692 2693 return result; 2694 } 2695 EXPORT_SYMBOL(scsi_test_unit_ready); 2696 2697 /** 2698 * scsi_device_set_state - Take the given device through the device state model. 2699 * @sdev: scsi device to change the state of. 2700 * @state: state to change to. 2701 * 2702 * Returns zero if successful or an error if the requested 2703 * transition is illegal. 2704 */ 2705 int 2706 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2707 { 2708 enum scsi_device_state oldstate = sdev->sdev_state; 2709 2710 if (state == oldstate) 2711 return 0; 2712 2713 switch (state) { 2714 case SDEV_CREATED: 2715 switch (oldstate) { 2716 case SDEV_CREATED_BLOCK: 2717 break; 2718 default: 2719 goto illegal; 2720 } 2721 break; 2722 2723 case SDEV_RUNNING: 2724 switch (oldstate) { 2725 case SDEV_CREATED: 2726 case SDEV_OFFLINE: 2727 case SDEV_TRANSPORT_OFFLINE: 2728 case SDEV_QUIESCE: 2729 case SDEV_BLOCK: 2730 break; 2731 default: 2732 goto illegal; 2733 } 2734 break; 2735 2736 case SDEV_QUIESCE: 2737 switch (oldstate) { 2738 case SDEV_RUNNING: 2739 case SDEV_OFFLINE: 2740 case SDEV_TRANSPORT_OFFLINE: 2741 break; 2742 default: 2743 goto illegal; 2744 } 2745 break; 2746 2747 case SDEV_OFFLINE: 2748 case SDEV_TRANSPORT_OFFLINE: 2749 switch (oldstate) { 2750 case SDEV_CREATED: 2751 case SDEV_RUNNING: 2752 case SDEV_QUIESCE: 2753 case SDEV_BLOCK: 2754 break; 2755 default: 2756 goto illegal; 2757 } 2758 break; 2759 2760 case SDEV_BLOCK: 2761 switch (oldstate) { 2762 case SDEV_RUNNING: 2763 case SDEV_CREATED_BLOCK: 2764 case SDEV_OFFLINE: 2765 break; 2766 default: 2767 goto illegal; 2768 } 2769 break; 2770 2771 case SDEV_CREATED_BLOCK: 2772 switch (oldstate) { 2773 case SDEV_CREATED: 2774 break; 2775 default: 2776 goto illegal; 2777 } 2778 break; 2779 2780 case SDEV_CANCEL: 2781 switch (oldstate) { 2782 case SDEV_CREATED: 2783 case SDEV_RUNNING: 2784 case SDEV_QUIESCE: 2785 case SDEV_OFFLINE: 2786 case SDEV_TRANSPORT_OFFLINE: 2787 break; 2788 default: 2789 goto illegal; 2790 } 2791 break; 2792 2793 case SDEV_DEL: 2794 switch (oldstate) { 2795 case SDEV_CREATED: 2796 case SDEV_RUNNING: 2797 case SDEV_OFFLINE: 2798 case SDEV_TRANSPORT_OFFLINE: 2799 case SDEV_CANCEL: 2800 case SDEV_BLOCK: 2801 case SDEV_CREATED_BLOCK: 2802 break; 2803 default: 2804 goto illegal; 2805 } 2806 break; 2807 2808 } 2809 sdev->sdev_state = state; 2810 return 0; 2811 2812 illegal: 2813 SCSI_LOG_ERROR_RECOVERY(1, 2814 sdev_printk(KERN_ERR, sdev, 2815 "Illegal state transition %s->%s", 2816 scsi_device_state_name(oldstate), 2817 scsi_device_state_name(state)) 2818 ); 2819 return -EINVAL; 2820 } 2821 EXPORT_SYMBOL(scsi_device_set_state); 2822 2823 /** 2824 * sdev_evt_emit - emit a single SCSI device uevent 2825 * @sdev: associated SCSI device 2826 * @evt: event to emit 2827 * 2828 * Send a single uevent (scsi_event) to the associated scsi_device. 2829 */ 2830 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2831 { 2832 int idx = 0; 2833 char *envp[3]; 2834 2835 switch (evt->evt_type) { 2836 case SDEV_EVT_MEDIA_CHANGE: 2837 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2838 break; 2839 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2840 scsi_rescan_device(&sdev->sdev_gendev); 2841 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2842 break; 2843 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2844 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2845 break; 2846 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2847 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2848 break; 2849 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2850 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2851 break; 2852 case SDEV_EVT_LUN_CHANGE_REPORTED: 2853 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2854 break; 2855 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2856 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2857 break; 2858 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2859 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2860 break; 2861 default: 2862 /* do nothing */ 2863 break; 2864 } 2865 2866 envp[idx++] = NULL; 2867 2868 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2869 } 2870 2871 /** 2872 * sdev_evt_thread - send a uevent for each scsi event 2873 * @work: work struct for scsi_device 2874 * 2875 * Dispatch queued events to their associated scsi_device kobjects 2876 * as uevents. 2877 */ 2878 void scsi_evt_thread(struct work_struct *work) 2879 { 2880 struct scsi_device *sdev; 2881 enum scsi_device_event evt_type; 2882 LIST_HEAD(event_list); 2883 2884 sdev = container_of(work, struct scsi_device, event_work); 2885 2886 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2887 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2888 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2889 2890 while (1) { 2891 struct scsi_event *evt; 2892 struct list_head *this, *tmp; 2893 unsigned long flags; 2894 2895 spin_lock_irqsave(&sdev->list_lock, flags); 2896 list_splice_init(&sdev->event_list, &event_list); 2897 spin_unlock_irqrestore(&sdev->list_lock, flags); 2898 2899 if (list_empty(&event_list)) 2900 break; 2901 2902 list_for_each_safe(this, tmp, &event_list) { 2903 evt = list_entry(this, struct scsi_event, node); 2904 list_del(&evt->node); 2905 scsi_evt_emit(sdev, evt); 2906 kfree(evt); 2907 } 2908 } 2909 } 2910 2911 /** 2912 * sdev_evt_send - send asserted event to uevent thread 2913 * @sdev: scsi_device event occurred on 2914 * @evt: event to send 2915 * 2916 * Assert scsi device event asynchronously. 2917 */ 2918 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2919 { 2920 unsigned long flags; 2921 2922 #if 0 2923 /* FIXME: currently this check eliminates all media change events 2924 * for polled devices. Need to update to discriminate between AN 2925 * and polled events */ 2926 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2927 kfree(evt); 2928 return; 2929 } 2930 #endif 2931 2932 spin_lock_irqsave(&sdev->list_lock, flags); 2933 list_add_tail(&evt->node, &sdev->event_list); 2934 schedule_work(&sdev->event_work); 2935 spin_unlock_irqrestore(&sdev->list_lock, flags); 2936 } 2937 EXPORT_SYMBOL_GPL(sdev_evt_send); 2938 2939 /** 2940 * sdev_evt_alloc - allocate a new scsi event 2941 * @evt_type: type of event to allocate 2942 * @gfpflags: GFP flags for allocation 2943 * 2944 * Allocates and returns a new scsi_event. 2945 */ 2946 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2947 gfp_t gfpflags) 2948 { 2949 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2950 if (!evt) 2951 return NULL; 2952 2953 evt->evt_type = evt_type; 2954 INIT_LIST_HEAD(&evt->node); 2955 2956 /* evt_type-specific initialization, if any */ 2957 switch (evt_type) { 2958 case SDEV_EVT_MEDIA_CHANGE: 2959 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2960 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2961 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2962 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2963 case SDEV_EVT_LUN_CHANGE_REPORTED: 2964 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2965 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2966 default: 2967 /* do nothing */ 2968 break; 2969 } 2970 2971 return evt; 2972 } 2973 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2974 2975 /** 2976 * sdev_evt_send_simple - send asserted event to uevent thread 2977 * @sdev: scsi_device event occurred on 2978 * @evt_type: type of event to send 2979 * @gfpflags: GFP flags for allocation 2980 * 2981 * Assert scsi device event asynchronously, given an event type. 2982 */ 2983 void sdev_evt_send_simple(struct scsi_device *sdev, 2984 enum scsi_device_event evt_type, gfp_t gfpflags) 2985 { 2986 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2987 if (!evt) { 2988 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2989 evt_type); 2990 return; 2991 } 2992 2993 sdev_evt_send(sdev, evt); 2994 } 2995 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2996 2997 /** 2998 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2999 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 3000 */ 3001 static int scsi_request_fn_active(struct scsi_device *sdev) 3002 { 3003 struct request_queue *q = sdev->request_queue; 3004 int request_fn_active; 3005 3006 WARN_ON_ONCE(sdev->host->use_blk_mq); 3007 3008 spin_lock_irq(q->queue_lock); 3009 request_fn_active = q->request_fn_active; 3010 spin_unlock_irq(q->queue_lock); 3011 3012 return request_fn_active; 3013 } 3014 3015 /** 3016 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 3017 * @sdev: SCSI device pointer. 3018 * 3019 * Wait until the ongoing shost->hostt->queuecommand() calls that are 3020 * invoked from scsi_request_fn() have finished. 3021 */ 3022 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 3023 { 3024 WARN_ON_ONCE(sdev->host->use_blk_mq); 3025 3026 while (scsi_request_fn_active(sdev)) 3027 msleep(20); 3028 } 3029 3030 /** 3031 * scsi_device_quiesce - Block user issued commands. 3032 * @sdev: scsi device to quiesce. 3033 * 3034 * This works by trying to transition to the SDEV_QUIESCE state 3035 * (which must be a legal transition). When the device is in this 3036 * state, only special requests will be accepted, all others will 3037 * be deferred. Since special requests may also be requeued requests, 3038 * a successful return doesn't guarantee the device will be 3039 * totally quiescent. 3040 * 3041 * Must be called with user context, may sleep. 3042 * 3043 * Returns zero if unsuccessful or an error if not. 3044 */ 3045 int 3046 scsi_device_quiesce(struct scsi_device *sdev) 3047 { 3048 struct request_queue *q = sdev->request_queue; 3049 int err; 3050 3051 /* 3052 * It is allowed to call scsi_device_quiesce() multiple times from 3053 * the same context but concurrent scsi_device_quiesce() calls are 3054 * not allowed. 3055 */ 3056 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 3057 3058 if (sdev->quiesced_by == current) 3059 return 0; 3060 3061 blk_set_pm_only(q); 3062 3063 blk_mq_freeze_queue(q); 3064 /* 3065 * Ensure that the effect of blk_set_pm_only() will be visible 3066 * for percpu_ref_tryget() callers that occur after the queue 3067 * unfreeze even if the queue was already frozen before this function 3068 * was called. See also https://lwn.net/Articles/573497/. 3069 */ 3070 synchronize_rcu(); 3071 blk_mq_unfreeze_queue(q); 3072 3073 mutex_lock(&sdev->state_mutex); 3074 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3075 if (err == 0) 3076 sdev->quiesced_by = current; 3077 else 3078 blk_clear_pm_only(q); 3079 mutex_unlock(&sdev->state_mutex); 3080 3081 return err; 3082 } 3083 EXPORT_SYMBOL(scsi_device_quiesce); 3084 3085 /** 3086 * scsi_device_resume - Restart user issued commands to a quiesced device. 3087 * @sdev: scsi device to resume. 3088 * 3089 * Moves the device from quiesced back to running and restarts the 3090 * queues. 3091 * 3092 * Must be called with user context, may sleep. 3093 */ 3094 void scsi_device_resume(struct scsi_device *sdev) 3095 { 3096 /* check if the device state was mutated prior to resume, and if 3097 * so assume the state is being managed elsewhere (for example 3098 * device deleted during suspend) 3099 */ 3100 mutex_lock(&sdev->state_mutex); 3101 WARN_ON_ONCE(!sdev->quiesced_by); 3102 sdev->quiesced_by = NULL; 3103 blk_clear_pm_only(sdev->request_queue); 3104 if (sdev->sdev_state == SDEV_QUIESCE) 3105 scsi_device_set_state(sdev, SDEV_RUNNING); 3106 mutex_unlock(&sdev->state_mutex); 3107 } 3108 EXPORT_SYMBOL(scsi_device_resume); 3109 3110 static void 3111 device_quiesce_fn(struct scsi_device *sdev, void *data) 3112 { 3113 scsi_device_quiesce(sdev); 3114 } 3115 3116 void 3117 scsi_target_quiesce(struct scsi_target *starget) 3118 { 3119 starget_for_each_device(starget, NULL, device_quiesce_fn); 3120 } 3121 EXPORT_SYMBOL(scsi_target_quiesce); 3122 3123 static void 3124 device_resume_fn(struct scsi_device *sdev, void *data) 3125 { 3126 scsi_device_resume(sdev); 3127 } 3128 3129 void 3130 scsi_target_resume(struct scsi_target *starget) 3131 { 3132 starget_for_each_device(starget, NULL, device_resume_fn); 3133 } 3134 EXPORT_SYMBOL(scsi_target_resume); 3135 3136 /** 3137 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3138 * @sdev: device to block 3139 * 3140 * Pause SCSI command processing on the specified device. Does not sleep. 3141 * 3142 * Returns zero if successful or a negative error code upon failure. 3143 * 3144 * Notes: 3145 * This routine transitions the device to the SDEV_BLOCK state (which must be 3146 * a legal transition). When the device is in this state, command processing 3147 * is paused until the device leaves the SDEV_BLOCK state. See also 3148 * scsi_internal_device_unblock_nowait(). 3149 */ 3150 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3151 { 3152 struct request_queue *q = sdev->request_queue; 3153 unsigned long flags; 3154 int err = 0; 3155 3156 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3157 if (err) { 3158 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3159 3160 if (err) 3161 return err; 3162 } 3163 3164 /* 3165 * The device has transitioned to SDEV_BLOCK. Stop the 3166 * block layer from calling the midlayer with this device's 3167 * request queue. 3168 */ 3169 if (q->mq_ops) { 3170 blk_mq_quiesce_queue_nowait(q); 3171 } else { 3172 spin_lock_irqsave(q->queue_lock, flags); 3173 blk_stop_queue(q); 3174 spin_unlock_irqrestore(q->queue_lock, flags); 3175 } 3176 3177 return 0; 3178 } 3179 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3180 3181 /** 3182 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3183 * @sdev: device to block 3184 * 3185 * Pause SCSI command processing on the specified device and wait until all 3186 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3187 * 3188 * Returns zero if successful or a negative error code upon failure. 3189 * 3190 * Note: 3191 * This routine transitions the device to the SDEV_BLOCK state (which must be 3192 * a legal transition). When the device is in this state, command processing 3193 * is paused until the device leaves the SDEV_BLOCK state. See also 3194 * scsi_internal_device_unblock(). 3195 * 3196 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3197 * scsi_internal_device_block() has blocked a SCSI device and also 3198 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3199 */ 3200 static int scsi_internal_device_block(struct scsi_device *sdev) 3201 { 3202 struct request_queue *q = sdev->request_queue; 3203 int err; 3204 3205 mutex_lock(&sdev->state_mutex); 3206 err = scsi_internal_device_block_nowait(sdev); 3207 if (err == 0) { 3208 if (q->mq_ops) 3209 blk_mq_quiesce_queue(q); 3210 else 3211 scsi_wait_for_queuecommand(sdev); 3212 } 3213 mutex_unlock(&sdev->state_mutex); 3214 3215 return err; 3216 } 3217 3218 void scsi_start_queue(struct scsi_device *sdev) 3219 { 3220 struct request_queue *q = sdev->request_queue; 3221 unsigned long flags; 3222 3223 if (q->mq_ops) { 3224 blk_mq_unquiesce_queue(q); 3225 } else { 3226 spin_lock_irqsave(q->queue_lock, flags); 3227 blk_start_queue(q); 3228 spin_unlock_irqrestore(q->queue_lock, flags); 3229 } 3230 } 3231 3232 /** 3233 * scsi_internal_device_unblock_nowait - resume a device after a block request 3234 * @sdev: device to resume 3235 * @new_state: state to set the device to after unblocking 3236 * 3237 * Restart the device queue for a previously suspended SCSI device. Does not 3238 * sleep. 3239 * 3240 * Returns zero if successful or a negative error code upon failure. 3241 * 3242 * Notes: 3243 * This routine transitions the device to the SDEV_RUNNING state or to one of 3244 * the offline states (which must be a legal transition) allowing the midlayer 3245 * to goose the queue for this device. 3246 */ 3247 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3248 enum scsi_device_state new_state) 3249 { 3250 /* 3251 * Try to transition the scsi device to SDEV_RUNNING or one of the 3252 * offlined states and goose the device queue if successful. 3253 */ 3254 switch (sdev->sdev_state) { 3255 case SDEV_BLOCK: 3256 case SDEV_TRANSPORT_OFFLINE: 3257 sdev->sdev_state = new_state; 3258 break; 3259 case SDEV_CREATED_BLOCK: 3260 if (new_state == SDEV_TRANSPORT_OFFLINE || 3261 new_state == SDEV_OFFLINE) 3262 sdev->sdev_state = new_state; 3263 else 3264 sdev->sdev_state = SDEV_CREATED; 3265 break; 3266 case SDEV_CANCEL: 3267 case SDEV_OFFLINE: 3268 break; 3269 default: 3270 return -EINVAL; 3271 } 3272 scsi_start_queue(sdev); 3273 3274 return 0; 3275 } 3276 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3277 3278 /** 3279 * scsi_internal_device_unblock - resume a device after a block request 3280 * @sdev: device to resume 3281 * @new_state: state to set the device to after unblocking 3282 * 3283 * Restart the device queue for a previously suspended SCSI device. May sleep. 3284 * 3285 * Returns zero if successful or a negative error code upon failure. 3286 * 3287 * Notes: 3288 * This routine transitions the device to the SDEV_RUNNING state or to one of 3289 * the offline states (which must be a legal transition) allowing the midlayer 3290 * to goose the queue for this device. 3291 */ 3292 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3293 enum scsi_device_state new_state) 3294 { 3295 int ret; 3296 3297 mutex_lock(&sdev->state_mutex); 3298 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3299 mutex_unlock(&sdev->state_mutex); 3300 3301 return ret; 3302 } 3303 3304 static void 3305 device_block(struct scsi_device *sdev, void *data) 3306 { 3307 scsi_internal_device_block(sdev); 3308 } 3309 3310 static int 3311 target_block(struct device *dev, void *data) 3312 { 3313 if (scsi_is_target_device(dev)) 3314 starget_for_each_device(to_scsi_target(dev), NULL, 3315 device_block); 3316 return 0; 3317 } 3318 3319 void 3320 scsi_target_block(struct device *dev) 3321 { 3322 if (scsi_is_target_device(dev)) 3323 starget_for_each_device(to_scsi_target(dev), NULL, 3324 device_block); 3325 else 3326 device_for_each_child(dev, NULL, target_block); 3327 } 3328 EXPORT_SYMBOL_GPL(scsi_target_block); 3329 3330 static void 3331 device_unblock(struct scsi_device *sdev, void *data) 3332 { 3333 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3334 } 3335 3336 static int 3337 target_unblock(struct device *dev, void *data) 3338 { 3339 if (scsi_is_target_device(dev)) 3340 starget_for_each_device(to_scsi_target(dev), data, 3341 device_unblock); 3342 return 0; 3343 } 3344 3345 void 3346 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3347 { 3348 if (scsi_is_target_device(dev)) 3349 starget_for_each_device(to_scsi_target(dev), &new_state, 3350 device_unblock); 3351 else 3352 device_for_each_child(dev, &new_state, target_unblock); 3353 } 3354 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3355 3356 /** 3357 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3358 * @sgl: scatter-gather list 3359 * @sg_count: number of segments in sg 3360 * @offset: offset in bytes into sg, on return offset into the mapped area 3361 * @len: bytes to map, on return number of bytes mapped 3362 * 3363 * Returns virtual address of the start of the mapped page 3364 */ 3365 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3366 size_t *offset, size_t *len) 3367 { 3368 int i; 3369 size_t sg_len = 0, len_complete = 0; 3370 struct scatterlist *sg; 3371 struct page *page; 3372 3373 WARN_ON(!irqs_disabled()); 3374 3375 for_each_sg(sgl, sg, sg_count, i) { 3376 len_complete = sg_len; /* Complete sg-entries */ 3377 sg_len += sg->length; 3378 if (sg_len > *offset) 3379 break; 3380 } 3381 3382 if (unlikely(i == sg_count)) { 3383 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3384 "elements %d\n", 3385 __func__, sg_len, *offset, sg_count); 3386 WARN_ON(1); 3387 return NULL; 3388 } 3389 3390 /* Offset starting from the beginning of first page in this sg-entry */ 3391 *offset = *offset - len_complete + sg->offset; 3392 3393 /* Assumption: contiguous pages can be accessed as "page + i" */ 3394 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3395 *offset &= ~PAGE_MASK; 3396 3397 /* Bytes in this sg-entry from *offset to the end of the page */ 3398 sg_len = PAGE_SIZE - *offset; 3399 if (*len > sg_len) 3400 *len = sg_len; 3401 3402 return kmap_atomic(page); 3403 } 3404 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3405 3406 /** 3407 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3408 * @virt: virtual address to be unmapped 3409 */ 3410 void scsi_kunmap_atomic_sg(void *virt) 3411 { 3412 kunmap_atomic(virt); 3413 } 3414 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3415 3416 void sdev_disable_disk_events(struct scsi_device *sdev) 3417 { 3418 atomic_inc(&sdev->disk_events_disable_depth); 3419 } 3420 EXPORT_SYMBOL(sdev_disable_disk_events); 3421 3422 void sdev_enable_disk_events(struct scsi_device *sdev) 3423 { 3424 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3425 return; 3426 atomic_dec(&sdev->disk_events_disable_depth); 3427 } 3428 EXPORT_SYMBOL(sdev_enable_disk_events); 3429 3430 /** 3431 * scsi_vpd_lun_id - return a unique device identification 3432 * @sdev: SCSI device 3433 * @id: buffer for the identification 3434 * @id_len: length of the buffer 3435 * 3436 * Copies a unique device identification into @id based 3437 * on the information in the VPD page 0x83 of the device. 3438 * The string will be formatted as a SCSI name string. 3439 * 3440 * Returns the length of the identification or error on failure. 3441 * If the identifier is longer than the supplied buffer the actual 3442 * identifier length is returned and the buffer is not zero-padded. 3443 */ 3444 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3445 { 3446 u8 cur_id_type = 0xff; 3447 u8 cur_id_size = 0; 3448 const unsigned char *d, *cur_id_str; 3449 const struct scsi_vpd *vpd_pg83; 3450 int id_size = -EINVAL; 3451 3452 rcu_read_lock(); 3453 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3454 if (!vpd_pg83) { 3455 rcu_read_unlock(); 3456 return -ENXIO; 3457 } 3458 3459 /* 3460 * Look for the correct descriptor. 3461 * Order of preference for lun descriptor: 3462 * - SCSI name string 3463 * - NAA IEEE Registered Extended 3464 * - EUI-64 based 16-byte 3465 * - EUI-64 based 12-byte 3466 * - NAA IEEE Registered 3467 * - NAA IEEE Extended 3468 * - T10 Vendor ID 3469 * as longer descriptors reduce the likelyhood 3470 * of identification clashes. 3471 */ 3472 3473 /* The id string must be at least 20 bytes + terminating NULL byte */ 3474 if (id_len < 21) { 3475 rcu_read_unlock(); 3476 return -EINVAL; 3477 } 3478 3479 memset(id, 0, id_len); 3480 d = vpd_pg83->data + 4; 3481 while (d < vpd_pg83->data + vpd_pg83->len) { 3482 /* Skip designators not referring to the LUN */ 3483 if ((d[1] & 0x30) != 0x00) 3484 goto next_desig; 3485 3486 switch (d[1] & 0xf) { 3487 case 0x1: 3488 /* T10 Vendor ID */ 3489 if (cur_id_size > d[3]) 3490 break; 3491 /* Prefer anything */ 3492 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3493 break; 3494 cur_id_size = d[3]; 3495 if (cur_id_size + 4 > id_len) 3496 cur_id_size = id_len - 4; 3497 cur_id_str = d + 4; 3498 cur_id_type = d[1] & 0xf; 3499 id_size = snprintf(id, id_len, "t10.%*pE", 3500 cur_id_size, cur_id_str); 3501 break; 3502 case 0x2: 3503 /* EUI-64 */ 3504 if (cur_id_size > d[3]) 3505 break; 3506 /* Prefer NAA IEEE Registered Extended */ 3507 if (cur_id_type == 0x3 && 3508 cur_id_size == d[3]) 3509 break; 3510 cur_id_size = d[3]; 3511 cur_id_str = d + 4; 3512 cur_id_type = d[1] & 0xf; 3513 switch (cur_id_size) { 3514 case 8: 3515 id_size = snprintf(id, id_len, 3516 "eui.%8phN", 3517 cur_id_str); 3518 break; 3519 case 12: 3520 id_size = snprintf(id, id_len, 3521 "eui.%12phN", 3522 cur_id_str); 3523 break; 3524 case 16: 3525 id_size = snprintf(id, id_len, 3526 "eui.%16phN", 3527 cur_id_str); 3528 break; 3529 default: 3530 cur_id_size = 0; 3531 break; 3532 } 3533 break; 3534 case 0x3: 3535 /* NAA */ 3536 if (cur_id_size > d[3]) 3537 break; 3538 cur_id_size = d[3]; 3539 cur_id_str = d + 4; 3540 cur_id_type = d[1] & 0xf; 3541 switch (cur_id_size) { 3542 case 8: 3543 id_size = snprintf(id, id_len, 3544 "naa.%8phN", 3545 cur_id_str); 3546 break; 3547 case 16: 3548 id_size = snprintf(id, id_len, 3549 "naa.%16phN", 3550 cur_id_str); 3551 break; 3552 default: 3553 cur_id_size = 0; 3554 break; 3555 } 3556 break; 3557 case 0x8: 3558 /* SCSI name string */ 3559 if (cur_id_size + 4 > d[3]) 3560 break; 3561 /* Prefer others for truncated descriptor */ 3562 if (cur_id_size && d[3] > id_len) 3563 break; 3564 cur_id_size = id_size = d[3]; 3565 cur_id_str = d + 4; 3566 cur_id_type = d[1] & 0xf; 3567 if (cur_id_size >= id_len) 3568 cur_id_size = id_len - 1; 3569 memcpy(id, cur_id_str, cur_id_size); 3570 /* Decrease priority for truncated descriptor */ 3571 if (cur_id_size != id_size) 3572 cur_id_size = 6; 3573 break; 3574 default: 3575 break; 3576 } 3577 next_desig: 3578 d += d[3] + 4; 3579 } 3580 rcu_read_unlock(); 3581 3582 return id_size; 3583 } 3584 EXPORT_SYMBOL(scsi_vpd_lun_id); 3585 3586 /* 3587 * scsi_vpd_tpg_id - return a target port group identifier 3588 * @sdev: SCSI device 3589 * 3590 * Returns the Target Port Group identifier from the information 3591 * froom VPD page 0x83 of the device. 3592 * 3593 * Returns the identifier or error on failure. 3594 */ 3595 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3596 { 3597 const unsigned char *d; 3598 const struct scsi_vpd *vpd_pg83; 3599 int group_id = -EAGAIN, rel_port = -1; 3600 3601 rcu_read_lock(); 3602 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3603 if (!vpd_pg83) { 3604 rcu_read_unlock(); 3605 return -ENXIO; 3606 } 3607 3608 d = vpd_pg83->data + 4; 3609 while (d < vpd_pg83->data + vpd_pg83->len) { 3610 switch (d[1] & 0xf) { 3611 case 0x4: 3612 /* Relative target port */ 3613 rel_port = get_unaligned_be16(&d[6]); 3614 break; 3615 case 0x5: 3616 /* Target port group */ 3617 group_id = get_unaligned_be16(&d[6]); 3618 break; 3619 default: 3620 break; 3621 } 3622 d += d[3] + 4; 3623 } 3624 rcu_read_unlock(); 3625 3626 if (group_id >= 0 && rel_id && rel_port != -1) 3627 *rel_id = rel_port; 3628 3629 return group_id; 3630 } 3631 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3632