xref: /linux/drivers/scsi/scsi_lib.c (revision a97673a1c43d005a3ae215f4ca8b4bbb5691aea1)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * __scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, GFP_NOIO))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(__scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	atomic_dec(&shost->host_busy);
349 	if (unlikely(scsi_host_in_recovery(shost))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		if (shost->host_failed || shost->host_eh_scheduled)
352 			scsi_eh_wakeup(shost);
353 		spin_unlock_irqrestore(shost->host_lock, flags);
354 	}
355 	rcu_read_unlock();
356 }
357 
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 	struct Scsi_Host *shost = sdev->host;
361 	struct scsi_target *starget = scsi_target(sdev);
362 
363 	scsi_dec_host_busy(shost);
364 
365 	if (starget->can_queue > 0)
366 		atomic_dec(&starget->target_busy);
367 
368 	atomic_dec(&sdev->device_busy);
369 }
370 
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 	if (q->mq_ops)
374 		blk_mq_run_hw_queues(q, false);
375 	else
376 		blk_run_queue(q);
377 }
378 
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 	struct Scsi_Host *shost = current_sdev->host;
389 	struct scsi_device *sdev, *tmp;
390 	struct scsi_target *starget = scsi_target(current_sdev);
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	starget->starget_sdev_user = NULL;
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 
397 	/*
398 	 * Call blk_run_queue for all LUNs on the target, starting with
399 	 * current_sdev. We race with others (to set starget_sdev_user),
400 	 * but in most cases, we will be first. Ideally, each LU on the
401 	 * target would get some limited time or requests on the target.
402 	 */
403 	scsi_kick_queue(current_sdev->request_queue);
404 
405 	spin_lock_irqsave(shost->host_lock, flags);
406 	if (starget->starget_sdev_user)
407 		goto out;
408 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 			same_target_siblings) {
410 		if (sdev == current_sdev)
411 			continue;
412 		if (scsi_device_get(sdev))
413 			continue;
414 
415 		spin_unlock_irqrestore(shost->host_lock, flags);
416 		scsi_kick_queue(sdev->request_queue);
417 		spin_lock_irqsave(shost->host_lock, flags);
418 
419 		scsi_device_put(sdev);
420 	}
421  out:
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 		return true;
429 	if (atomic_read(&sdev->device_blocked) > 0)
430 		return true;
431 	return false;
432 }
433 
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 	if (starget->can_queue > 0) {
437 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 			return true;
439 		if (atomic_read(&starget->target_blocked) > 0)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 	if (shost->can_queue > 0 &&
448 	    atomic_read(&shost->host_busy) >= shost->can_queue)
449 		return true;
450 	if (atomic_read(&shost->host_blocked) > 0)
451 		return true;
452 	if (shost->host_self_blocked)
453 		return true;
454 	return false;
455 }
456 
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 	LIST_HEAD(starved_list);
460 	struct scsi_device *sdev;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(shost->host_lock, flags);
464 	list_splice_init(&shost->starved_list, &starved_list);
465 
466 	while (!list_empty(&starved_list)) {
467 		struct request_queue *slq;
468 
469 		/*
470 		 * As long as shost is accepting commands and we have
471 		 * starved queues, call blk_run_queue. scsi_request_fn
472 		 * drops the queue_lock and can add us back to the
473 		 * starved_list.
474 		 *
475 		 * host_lock protects the starved_list and starved_entry.
476 		 * scsi_request_fn must get the host_lock before checking
477 		 * or modifying starved_list or starved_entry.
478 		 */
479 		if (scsi_host_is_busy(shost))
480 			break;
481 
482 		sdev = list_entry(starved_list.next,
483 				  struct scsi_device, starved_entry);
484 		list_del_init(&sdev->starved_entry);
485 		if (scsi_target_is_busy(scsi_target(sdev))) {
486 			list_move_tail(&sdev->starved_entry,
487 				       &shost->starved_list);
488 			continue;
489 		}
490 
491 		/*
492 		 * Once we drop the host lock, a racing scsi_remove_device()
493 		 * call may remove the sdev from the starved list and destroy
494 		 * it and the queue.  Mitigate by taking a reference to the
495 		 * queue and never touching the sdev again after we drop the
496 		 * host lock.  Note: if __scsi_remove_device() invokes
497 		 * blk_cleanup_queue() before the queue is run from this
498 		 * function then blk_run_queue() will return immediately since
499 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 		 */
501 		slq = sdev->request_queue;
502 		if (!blk_get_queue(slq))
503 			continue;
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 
506 		scsi_kick_queue(slq);
507 		blk_put_queue(slq);
508 
509 		spin_lock_irqsave(shost->host_lock, flags);
510 	}
511 	/* put any unprocessed entries back */
512 	list_splice(&starved_list, &shost->starved_list);
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 	if (!list_empty(&sdev->host->starved_list))
535 		scsi_starved_list_run(sdev->host);
536 
537 	if (q->mq_ops)
538 		blk_mq_run_hw_queues(q, false);
539 	else
540 		blk_run_queue(q);
541 }
542 
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 	struct scsi_device *sdev;
546 	struct request_queue *q;
547 
548 	sdev = container_of(work, struct scsi_device, requeue_work);
549 	q = sdev->request_queue;
550 	scsi_run_queue(q);
551 }
552 
553 /*
554  * Function:	scsi_requeue_command()
555  *
556  * Purpose:	Handle post-processing of completed commands.
557  *
558  * Arguments:	q	- queue to operate on
559  *		cmd	- command that may need to be requeued.
560  *
561  * Returns:	Nothing
562  *
563  * Notes:	After command completion, there may be blocks left
564  *		over which weren't finished by the previous command
565  *		this can be for a number of reasons - the main one is
566  *		I/O errors in the middle of the request, in which case
567  *		we need to request the blocks that come after the bad
568  *		sector.
569  * Notes:	Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 	struct scsi_device *sdev = cmd->device;
574 	struct request *req = cmd->request;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(q->queue_lock, flags);
578 	blk_unprep_request(req);
579 	req->special = NULL;
580 	scsi_put_command(cmd);
581 	blk_requeue_request(q, req);
582 	spin_unlock_irqrestore(q->queue_lock, flags);
583 
584 	scsi_run_queue(q);
585 
586 	put_device(&sdev->sdev_gendev);
587 }
588 
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 	struct scsi_device *sdev;
592 
593 	shost_for_each_device(sdev, shost)
594 		scsi_run_queue(sdev->request_queue);
595 }
596 
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 	if (!blk_rq_is_passthrough(cmd->request)) {
600 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601 
602 		if (drv->uninit_command)
603 			drv->uninit_command(cmd);
604 	}
605 }
606 
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_data_buffer *sdb;
610 
611 	if (cmd->sdb.table.nents)
612 		sg_free_table_chained(&cmd->sdb.table, true);
613 	if (cmd->request->next_rq) {
614 		sdb = cmd->request->next_rq->special;
615 		if (sdb)
616 			sg_free_table_chained(&sdb->table, true);
617 	}
618 	if (scsi_prot_sg_count(cmd))
619 		sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621 
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 	scsi_mq_free_sgtables(cmd);
625 	scsi_uninit_cmd(cmd);
626 	scsi_del_cmd_from_list(cmd);
627 }
628 
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd	- command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *		command, we must release resources allocated during
642  *		the __init_io() function.  Primarily this would involve
643  *		the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 	if (cmd->sdb.table.nents)
648 		sg_free_table_chained(&cmd->sdb.table, false);
649 
650 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 
652 	if (scsi_prot_sg_count(cmd))
653 		sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655 
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659 
660 	sg_free_table_chained(&bidi_sdb->table, false);
661 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 	cmd->request->next_rq->special = NULL;
663 }
664 
665 /* Returns false when no more bytes to process, true if there are more */
666 static bool scsi_end_request(struct request *req, blk_status_t error,
667 		unsigned int bytes, unsigned int bidi_bytes)
668 {
669 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
670 	struct scsi_device *sdev = cmd->device;
671 	struct request_queue *q = sdev->request_queue;
672 
673 	if (blk_update_request(req, error, bytes))
674 		return true;
675 
676 	/* Bidi request must be completed as a whole */
677 	if (unlikely(bidi_bytes) &&
678 	    blk_update_request(req->next_rq, error, bidi_bytes))
679 		return true;
680 
681 	if (blk_queue_add_random(q))
682 		add_disk_randomness(req->rq_disk);
683 
684 	if (!blk_rq_is_scsi(req)) {
685 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
686 		cmd->flags &= ~SCMD_INITIALIZED;
687 		destroy_rcu_head(&cmd->rcu);
688 	}
689 
690 	if (req->mq_ctx) {
691 		/*
692 		 * In the MQ case the command gets freed by __blk_mq_end_request,
693 		 * so we have to do all cleanup that depends on it earlier.
694 		 *
695 		 * We also can't kick the queues from irq context, so we
696 		 * will have to defer it to a workqueue.
697 		 */
698 		scsi_mq_uninit_cmd(cmd);
699 
700 		/*
701 		 * queue is still alive, so grab the ref for preventing it
702 		 * from being cleaned up during running queue.
703 		 */
704 		percpu_ref_get(&q->q_usage_counter);
705 
706 		__blk_mq_end_request(req, error);
707 
708 		if (scsi_target(sdev)->single_lun ||
709 		    !list_empty(&sdev->host->starved_list))
710 			kblockd_schedule_work(&sdev->requeue_work);
711 		else
712 			blk_mq_run_hw_queues(q, true);
713 
714 		percpu_ref_put(&q->q_usage_counter);
715 	} else {
716 		unsigned long flags;
717 
718 		if (bidi_bytes)
719 			scsi_release_bidi_buffers(cmd);
720 		scsi_release_buffers(cmd);
721 		scsi_put_command(cmd);
722 
723 		spin_lock_irqsave(q->queue_lock, flags);
724 		blk_finish_request(req, error);
725 		spin_unlock_irqrestore(q->queue_lock, flags);
726 
727 		scsi_run_queue(q);
728 	}
729 
730 	put_device(&sdev->sdev_gendev);
731 	return false;
732 }
733 
734 /**
735  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
736  * @cmd:	SCSI command
737  * @result:	scsi error code
738  *
739  * Translate a SCSI result code into a blk_status_t value. May reset the host
740  * byte of @cmd->result.
741  */
742 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
743 {
744 	switch (host_byte(result)) {
745 	case DID_OK:
746 		/*
747 		 * Also check the other bytes than the status byte in result
748 		 * to handle the case when a SCSI LLD sets result to
749 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
750 		 */
751 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
752 			return BLK_STS_OK;
753 		return BLK_STS_IOERR;
754 	case DID_TRANSPORT_FAILFAST:
755 		return BLK_STS_TRANSPORT;
756 	case DID_TARGET_FAILURE:
757 		set_host_byte(cmd, DID_OK);
758 		return BLK_STS_TARGET;
759 	case DID_NEXUS_FAILURE:
760 		return BLK_STS_NEXUS;
761 	case DID_ALLOC_FAILURE:
762 		set_host_byte(cmd, DID_OK);
763 		return BLK_STS_NOSPC;
764 	case DID_MEDIUM_ERROR:
765 		set_host_byte(cmd, DID_OK);
766 		return BLK_STS_MEDIUM;
767 	default:
768 		return BLK_STS_IOERR;
769 	}
770 }
771 
772 /* Helper for scsi_io_completion() when "reprep" action required. */
773 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
774 				      struct request_queue *q)
775 {
776 	/* A new command will be prepared and issued. */
777 	if (q->mq_ops) {
778 		scsi_mq_requeue_cmd(cmd);
779 	} else {
780 		/* Unprep request and put it back at head of the queue. */
781 		scsi_release_buffers(cmd);
782 		scsi_requeue_command(q, cmd);
783 	}
784 }
785 
786 /* Helper for scsi_io_completion() when special action required. */
787 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
788 {
789 	struct request_queue *q = cmd->device->request_queue;
790 	struct request *req = cmd->request;
791 	int level = 0;
792 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
793 	      ACTION_DELAYED_RETRY} action;
794 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
795 	struct scsi_sense_hdr sshdr;
796 	bool sense_valid;
797 	bool sense_current = true;      /* false implies "deferred sense" */
798 	blk_status_t blk_stat;
799 
800 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
801 	if (sense_valid)
802 		sense_current = !scsi_sense_is_deferred(&sshdr);
803 
804 	blk_stat = scsi_result_to_blk_status(cmd, result);
805 
806 	if (host_byte(result) == DID_RESET) {
807 		/* Third party bus reset or reset for error recovery
808 		 * reasons.  Just retry the command and see what
809 		 * happens.
810 		 */
811 		action = ACTION_RETRY;
812 	} else if (sense_valid && sense_current) {
813 		switch (sshdr.sense_key) {
814 		case UNIT_ATTENTION:
815 			if (cmd->device->removable) {
816 				/* Detected disc change.  Set a bit
817 				 * and quietly refuse further access.
818 				 */
819 				cmd->device->changed = 1;
820 				action = ACTION_FAIL;
821 			} else {
822 				/* Must have been a power glitch, or a
823 				 * bus reset.  Could not have been a
824 				 * media change, so we just retry the
825 				 * command and see what happens.
826 				 */
827 				action = ACTION_RETRY;
828 			}
829 			break;
830 		case ILLEGAL_REQUEST:
831 			/* If we had an ILLEGAL REQUEST returned, then
832 			 * we may have performed an unsupported
833 			 * command.  The only thing this should be
834 			 * would be a ten byte read where only a six
835 			 * byte read was supported.  Also, on a system
836 			 * where READ CAPACITY failed, we may have
837 			 * read past the end of the disk.
838 			 */
839 			if ((cmd->device->use_10_for_rw &&
840 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
841 			    (cmd->cmnd[0] == READ_10 ||
842 			     cmd->cmnd[0] == WRITE_10)) {
843 				/* This will issue a new 6-byte command. */
844 				cmd->device->use_10_for_rw = 0;
845 				action = ACTION_REPREP;
846 			} else if (sshdr.asc == 0x10) /* DIX */ {
847 				action = ACTION_FAIL;
848 				blk_stat = BLK_STS_PROTECTION;
849 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
850 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
851 				action = ACTION_FAIL;
852 				blk_stat = BLK_STS_TARGET;
853 			} else
854 				action = ACTION_FAIL;
855 			break;
856 		case ABORTED_COMMAND:
857 			action = ACTION_FAIL;
858 			if (sshdr.asc == 0x10) /* DIF */
859 				blk_stat = BLK_STS_PROTECTION;
860 			break;
861 		case NOT_READY:
862 			/* If the device is in the process of becoming
863 			 * ready, or has a temporary blockage, retry.
864 			 */
865 			if (sshdr.asc == 0x04) {
866 				switch (sshdr.ascq) {
867 				case 0x01: /* becoming ready */
868 				case 0x04: /* format in progress */
869 				case 0x05: /* rebuild in progress */
870 				case 0x06: /* recalculation in progress */
871 				case 0x07: /* operation in progress */
872 				case 0x08: /* Long write in progress */
873 				case 0x09: /* self test in progress */
874 				case 0x14: /* space allocation in progress */
875 				case 0x1a: /* start stop unit in progress */
876 				case 0x1b: /* sanitize in progress */
877 				case 0x1d: /* configuration in progress */
878 				case 0x24: /* depopulation in progress */
879 					action = ACTION_DELAYED_RETRY;
880 					break;
881 				default:
882 					action = ACTION_FAIL;
883 					break;
884 				}
885 			} else
886 				action = ACTION_FAIL;
887 			break;
888 		case VOLUME_OVERFLOW:
889 			/* See SSC3rXX or current. */
890 			action = ACTION_FAIL;
891 			break;
892 		default:
893 			action = ACTION_FAIL;
894 			break;
895 		}
896 	} else
897 		action = ACTION_FAIL;
898 
899 	if (action != ACTION_FAIL &&
900 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
901 		action = ACTION_FAIL;
902 
903 	switch (action) {
904 	case ACTION_FAIL:
905 		/* Give up and fail the remainder of the request */
906 		if (!(req->rq_flags & RQF_QUIET)) {
907 			static DEFINE_RATELIMIT_STATE(_rs,
908 					DEFAULT_RATELIMIT_INTERVAL,
909 					DEFAULT_RATELIMIT_BURST);
910 
911 			if (unlikely(scsi_logging_level))
912 				level =
913 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
914 						    SCSI_LOG_MLCOMPLETE_BITS);
915 
916 			/*
917 			 * if logging is enabled the failure will be printed
918 			 * in scsi_log_completion(), so avoid duplicate messages
919 			 */
920 			if (!level && __ratelimit(&_rs)) {
921 				scsi_print_result(cmd, NULL, FAILED);
922 				if (driver_byte(result) == DRIVER_SENSE)
923 					scsi_print_sense(cmd);
924 				scsi_print_command(cmd);
925 			}
926 		}
927 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
928 			return;
929 		/*FALLTHRU*/
930 	case ACTION_REPREP:
931 		scsi_io_completion_reprep(cmd, q);
932 		break;
933 	case ACTION_RETRY:
934 		/* Retry the same command immediately */
935 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
936 		break;
937 	case ACTION_DELAYED_RETRY:
938 		/* Retry the same command after a delay */
939 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
940 		break;
941 	}
942 }
943 
944 /*
945  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
946  * new result that may suppress further error checking. Also modifies
947  * *blk_statp in some cases.
948  */
949 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
950 					blk_status_t *blk_statp)
951 {
952 	bool sense_valid;
953 	bool sense_current = true;	/* false implies "deferred sense" */
954 	struct request *req = cmd->request;
955 	struct scsi_sense_hdr sshdr;
956 
957 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
958 	if (sense_valid)
959 		sense_current = !scsi_sense_is_deferred(&sshdr);
960 
961 	if (blk_rq_is_passthrough(req)) {
962 		if (sense_valid) {
963 			/*
964 			 * SG_IO wants current and deferred errors
965 			 */
966 			scsi_req(req)->sense_len =
967 				min(8 + cmd->sense_buffer[7],
968 				    SCSI_SENSE_BUFFERSIZE);
969 		}
970 		if (sense_current)
971 			*blk_statp = scsi_result_to_blk_status(cmd, result);
972 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
973 		/*
974 		 * Flush commands do not transfers any data, and thus cannot use
975 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
976 		 * This sets *blk_statp explicitly for the problem case.
977 		 */
978 		*blk_statp = scsi_result_to_blk_status(cmd, result);
979 	}
980 	/*
981 	 * Recovered errors need reporting, but they're always treated as
982 	 * success, so fiddle the result code here.  For passthrough requests
983 	 * we already took a copy of the original into sreq->result which
984 	 * is what gets returned to the user
985 	 */
986 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
987 		bool do_print = true;
988 		/*
989 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
990 		 * skip print since caller wants ATA registers. Only occurs
991 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
992 		 */
993 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
994 			do_print = false;
995 		else if (req->rq_flags & RQF_QUIET)
996 			do_print = false;
997 		if (do_print)
998 			scsi_print_sense(cmd);
999 		result = 0;
1000 		/* for passthrough, *blk_statp may be set */
1001 		*blk_statp = BLK_STS_OK;
1002 	}
1003 	/*
1004 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1005 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1006 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1007 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1008 	 * intermediate statuses (both obsolete in SAM-4) as good.
1009 	 */
1010 	if (status_byte(result) && scsi_status_is_good(result)) {
1011 		result = 0;
1012 		*blk_statp = BLK_STS_OK;
1013 	}
1014 	return result;
1015 }
1016 
1017 /*
1018  * Function:    scsi_io_completion()
1019  *
1020  * Purpose:     Completion processing for block device I/O requests.
1021  *
1022  * Arguments:   cmd   - command that is finished.
1023  *
1024  * Lock status: Assumed that no lock is held upon entry.
1025  *
1026  * Returns:     Nothing
1027  *
1028  * Notes:       We will finish off the specified number of sectors.  If we
1029  *		are done, the command block will be released and the queue
1030  *		function will be goosed.  If we are not done then we have to
1031  *		figure out what to do next:
1032  *
1033  *		a) We can call scsi_requeue_command().  The request
1034  *		   will be unprepared and put back on the queue.  Then
1035  *		   a new command will be created for it.  This should
1036  *		   be used if we made forward progress, or if we want
1037  *		   to switch from READ(10) to READ(6) for example.
1038  *
1039  *		b) We can call __scsi_queue_insert().  The request will
1040  *		   be put back on the queue and retried using the same
1041  *		   command as before, possibly after a delay.
1042  *
1043  *		c) We can call scsi_end_request() with blk_stat other than
1044  *		   BLK_STS_OK, to fail the remainder of the request.
1045  */
1046 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047 {
1048 	int result = cmd->result;
1049 	struct request_queue *q = cmd->device->request_queue;
1050 	struct request *req = cmd->request;
1051 	blk_status_t blk_stat = BLK_STS_OK;
1052 
1053 	if (unlikely(result))	/* a nz result may or may not be an error */
1054 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1055 
1056 	if (unlikely(blk_rq_is_passthrough(req))) {
1057 		/*
1058 		 * scsi_result_to_blk_status may have reset the host_byte
1059 		 */
1060 		scsi_req(req)->result = cmd->result;
1061 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
1062 
1063 		if (unlikely(scsi_bidi_cmnd(cmd))) {
1064 			/*
1065 			 * Bidi commands Must be complete as a whole,
1066 			 * both sides at once.
1067 			 */
1068 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1069 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1070 					blk_rq_bytes(req->next_rq)))
1071 				WARN_ONCE(true,
1072 					  "Bidi command with remaining bytes");
1073 			return;
1074 		}
1075 	}
1076 
1077 	/* no bidi support yet, other than in pass-through */
1078 	if (unlikely(blk_bidi_rq(req))) {
1079 		WARN_ONCE(true, "Only support bidi command in passthrough");
1080 		scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1081 		if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1082 				     blk_rq_bytes(req->next_rq)))
1083 			WARN_ONCE(true, "Bidi command with remaining bytes");
1084 		return;
1085 	}
1086 
1087 	/*
1088 	 * Next deal with any sectors which we were able to correctly
1089 	 * handle.
1090 	 */
1091 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1092 		"%u sectors total, %d bytes done.\n",
1093 		blk_rq_sectors(req), good_bytes));
1094 
1095 	/*
1096 	 * Next deal with any sectors which we were able to correctly
1097 	 * handle. Failed, zero length commands always need to drop down
1098 	 * to retry code. Fast path should return in this block.
1099 	 */
1100 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1101 		if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1102 			return; /* no bytes remaining */
1103 	}
1104 
1105 	/* Kill remainder if no retries. */
1106 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1107 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1108 			WARN_ONCE(true,
1109 			    "Bytes remaining after failed, no-retry command");
1110 		return;
1111 	}
1112 
1113 	/*
1114 	 * If there had been no error, but we have leftover bytes in the
1115 	 * requeues just queue the command up again.
1116 	 */
1117 	if (likely(result == 0))
1118 		scsi_io_completion_reprep(cmd, q);
1119 	else
1120 		scsi_io_completion_action(cmd, result);
1121 }
1122 
1123 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1124 {
1125 	int count;
1126 
1127 	/*
1128 	 * If sg table allocation fails, requeue request later.
1129 	 */
1130 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1131 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1132 		return BLKPREP_DEFER;
1133 
1134 	/*
1135 	 * Next, walk the list, and fill in the addresses and sizes of
1136 	 * each segment.
1137 	 */
1138 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1139 	BUG_ON(count > sdb->table.nents);
1140 	sdb->table.nents = count;
1141 	sdb->length = blk_rq_payload_bytes(req);
1142 	return BLKPREP_OK;
1143 }
1144 
1145 /*
1146  * Function:    scsi_init_io()
1147  *
1148  * Purpose:     SCSI I/O initialize function.
1149  *
1150  * Arguments:   cmd   - Command descriptor we wish to initialize
1151  *
1152  * Returns:     0 on success
1153  *		BLKPREP_DEFER if the failure is retryable
1154  *		BLKPREP_KILL if the failure is fatal
1155  */
1156 int scsi_init_io(struct scsi_cmnd *cmd)
1157 {
1158 	struct scsi_device *sdev = cmd->device;
1159 	struct request *rq = cmd->request;
1160 	bool is_mq = (rq->mq_ctx != NULL);
1161 	int error = BLKPREP_KILL;
1162 
1163 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1164 		goto err_exit;
1165 
1166 	error = scsi_init_sgtable(rq, &cmd->sdb);
1167 	if (error)
1168 		goto err_exit;
1169 
1170 	if (blk_bidi_rq(rq)) {
1171 		if (!rq->q->mq_ops) {
1172 			struct scsi_data_buffer *bidi_sdb =
1173 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1174 			if (!bidi_sdb) {
1175 				error = BLKPREP_DEFER;
1176 				goto err_exit;
1177 			}
1178 
1179 			rq->next_rq->special = bidi_sdb;
1180 		}
1181 
1182 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1183 		if (error)
1184 			goto err_exit;
1185 	}
1186 
1187 	if (blk_integrity_rq(rq)) {
1188 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1189 		int ivecs, count;
1190 
1191 		if (prot_sdb == NULL) {
1192 			/*
1193 			 * This can happen if someone (e.g. multipath)
1194 			 * queues a command to a device on an adapter
1195 			 * that does not support DIX.
1196 			 */
1197 			WARN_ON_ONCE(1);
1198 			error = BLKPREP_KILL;
1199 			goto err_exit;
1200 		}
1201 
1202 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1203 
1204 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1205 				prot_sdb->table.sgl)) {
1206 			error = BLKPREP_DEFER;
1207 			goto err_exit;
1208 		}
1209 
1210 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1211 						prot_sdb->table.sgl);
1212 		BUG_ON(count > ivecs);
1213 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1214 
1215 		cmd->prot_sdb = prot_sdb;
1216 		cmd->prot_sdb->table.nents = count;
1217 	}
1218 
1219 	return BLKPREP_OK;
1220 err_exit:
1221 	if (is_mq) {
1222 		scsi_mq_free_sgtables(cmd);
1223 	} else {
1224 		scsi_release_buffers(cmd);
1225 		cmd->request->special = NULL;
1226 		scsi_put_command(cmd);
1227 		put_device(&sdev->sdev_gendev);
1228 	}
1229 	return error;
1230 }
1231 EXPORT_SYMBOL(scsi_init_io);
1232 
1233 /**
1234  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1235  * @rq: Request associated with the SCSI command to be initialized.
1236  *
1237  * This function initializes the members of struct scsi_cmnd that must be
1238  * initialized before request processing starts and that won't be
1239  * reinitialized if a SCSI command is requeued.
1240  *
1241  * Called from inside blk_get_request() for pass-through requests and from
1242  * inside scsi_init_command() for filesystem requests.
1243  */
1244 static void scsi_initialize_rq(struct request *rq)
1245 {
1246 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1247 
1248 	scsi_req_init(&cmd->req);
1249 	init_rcu_head(&cmd->rcu);
1250 	cmd->jiffies_at_alloc = jiffies;
1251 	cmd->retries = 0;
1252 }
1253 
1254 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1255 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1256 {
1257 	struct scsi_device *sdev = cmd->device;
1258 	struct Scsi_Host *shost = sdev->host;
1259 	unsigned long flags;
1260 
1261 	if (shost->use_cmd_list) {
1262 		spin_lock_irqsave(&sdev->list_lock, flags);
1263 		list_add_tail(&cmd->list, &sdev->cmd_list);
1264 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1265 	}
1266 }
1267 
1268 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1269 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1270 {
1271 	struct scsi_device *sdev = cmd->device;
1272 	struct Scsi_Host *shost = sdev->host;
1273 	unsigned long flags;
1274 
1275 	if (shost->use_cmd_list) {
1276 		spin_lock_irqsave(&sdev->list_lock, flags);
1277 		BUG_ON(list_empty(&cmd->list));
1278 		list_del_init(&cmd->list);
1279 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1280 	}
1281 }
1282 
1283 /* Called after a request has been started. */
1284 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1285 {
1286 	void *buf = cmd->sense_buffer;
1287 	void *prot = cmd->prot_sdb;
1288 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1289 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1290 	unsigned long jiffies_at_alloc;
1291 	int retries;
1292 
1293 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1294 		flags |= SCMD_INITIALIZED;
1295 		scsi_initialize_rq(rq);
1296 	}
1297 
1298 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1299 	retries = cmd->retries;
1300 	/* zero out the cmd, except for the embedded scsi_request */
1301 	memset((char *)cmd + sizeof(cmd->req), 0,
1302 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1303 
1304 	cmd->device = dev;
1305 	cmd->sense_buffer = buf;
1306 	cmd->prot_sdb = prot;
1307 	cmd->flags = flags;
1308 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1309 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1310 	cmd->retries = retries;
1311 
1312 	scsi_add_cmd_to_list(cmd);
1313 }
1314 
1315 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1316 {
1317 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1318 
1319 	/*
1320 	 * Passthrough requests may transfer data, in which case they must
1321 	 * a bio attached to them.  Or they might contain a SCSI command
1322 	 * that does not transfer data, in which case they may optionally
1323 	 * submit a request without an attached bio.
1324 	 */
1325 	if (req->bio) {
1326 		int ret = scsi_init_io(cmd);
1327 		if (unlikely(ret))
1328 			return ret;
1329 	} else {
1330 		BUG_ON(blk_rq_bytes(req));
1331 
1332 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1333 	}
1334 
1335 	cmd->cmd_len = scsi_req(req)->cmd_len;
1336 	cmd->cmnd = scsi_req(req)->cmd;
1337 	cmd->transfersize = blk_rq_bytes(req);
1338 	cmd->allowed = scsi_req(req)->retries;
1339 	return BLKPREP_OK;
1340 }
1341 
1342 /*
1343  * Setup a normal block command.  These are simple request from filesystems
1344  * that still need to be translated to SCSI CDBs from the ULD.
1345  */
1346 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1347 {
1348 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1349 
1350 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1351 		int ret = sdev->handler->prep_fn(sdev, req);
1352 		if (ret != BLKPREP_OK)
1353 			return ret;
1354 	}
1355 
1356 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1357 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1358 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1359 }
1360 
1361 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1362 {
1363 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1364 
1365 	if (!blk_rq_bytes(req))
1366 		cmd->sc_data_direction = DMA_NONE;
1367 	else if (rq_data_dir(req) == WRITE)
1368 		cmd->sc_data_direction = DMA_TO_DEVICE;
1369 	else
1370 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1371 
1372 	if (blk_rq_is_scsi(req))
1373 		return scsi_setup_scsi_cmnd(sdev, req);
1374 	else
1375 		return scsi_setup_fs_cmnd(sdev, req);
1376 }
1377 
1378 static int
1379 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1380 {
1381 	int ret = BLKPREP_OK;
1382 
1383 	/*
1384 	 * If the device is not in running state we will reject some
1385 	 * or all commands.
1386 	 */
1387 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1388 		switch (sdev->sdev_state) {
1389 		case SDEV_OFFLINE:
1390 		case SDEV_TRANSPORT_OFFLINE:
1391 			/*
1392 			 * If the device is offline we refuse to process any
1393 			 * commands.  The device must be brought online
1394 			 * before trying any recovery commands.
1395 			 */
1396 			sdev_printk(KERN_ERR, sdev,
1397 				    "rejecting I/O to offline device\n");
1398 			ret = BLKPREP_KILL;
1399 			break;
1400 		case SDEV_DEL:
1401 			/*
1402 			 * If the device is fully deleted, we refuse to
1403 			 * process any commands as well.
1404 			 */
1405 			sdev_printk(KERN_ERR, sdev,
1406 				    "rejecting I/O to dead device\n");
1407 			ret = BLKPREP_KILL;
1408 			break;
1409 		case SDEV_BLOCK:
1410 		case SDEV_CREATED_BLOCK:
1411 			ret = BLKPREP_DEFER;
1412 			break;
1413 		case SDEV_QUIESCE:
1414 			/*
1415 			 * If the devices is blocked we defer normal commands.
1416 			 */
1417 			if (req && !(req->rq_flags & RQF_PREEMPT))
1418 				ret = BLKPREP_DEFER;
1419 			break;
1420 		default:
1421 			/*
1422 			 * For any other not fully online state we only allow
1423 			 * special commands.  In particular any user initiated
1424 			 * command is not allowed.
1425 			 */
1426 			if (req && !(req->rq_flags & RQF_PREEMPT))
1427 				ret = BLKPREP_KILL;
1428 			break;
1429 		}
1430 	}
1431 	return ret;
1432 }
1433 
1434 static int
1435 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1436 {
1437 	struct scsi_device *sdev = q->queuedata;
1438 
1439 	switch (ret) {
1440 	case BLKPREP_KILL:
1441 	case BLKPREP_INVALID:
1442 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1443 		/* release the command and kill it */
1444 		if (req->special) {
1445 			struct scsi_cmnd *cmd = req->special;
1446 			scsi_release_buffers(cmd);
1447 			scsi_put_command(cmd);
1448 			put_device(&sdev->sdev_gendev);
1449 			req->special = NULL;
1450 		}
1451 		break;
1452 	case BLKPREP_DEFER:
1453 		/*
1454 		 * If we defer, the blk_peek_request() returns NULL, but the
1455 		 * queue must be restarted, so we schedule a callback to happen
1456 		 * shortly.
1457 		 */
1458 		if (atomic_read(&sdev->device_busy) == 0)
1459 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1460 		break;
1461 	default:
1462 		req->rq_flags |= RQF_DONTPREP;
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1469 {
1470 	struct scsi_device *sdev = q->queuedata;
1471 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1472 	int ret;
1473 
1474 	ret = scsi_prep_state_check(sdev, req);
1475 	if (ret != BLKPREP_OK)
1476 		goto out;
1477 
1478 	if (!req->special) {
1479 		/* Bail if we can't get a reference to the device */
1480 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1481 			ret = BLKPREP_DEFER;
1482 			goto out;
1483 		}
1484 
1485 		scsi_init_command(sdev, cmd);
1486 		req->special = cmd;
1487 	}
1488 
1489 	cmd->tag = req->tag;
1490 	cmd->request = req;
1491 	cmd->prot_op = SCSI_PROT_NORMAL;
1492 
1493 	ret = scsi_setup_cmnd(sdev, req);
1494 out:
1495 	return scsi_prep_return(q, req, ret);
1496 }
1497 
1498 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1499 {
1500 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1501 }
1502 
1503 /*
1504  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1505  * return 0.
1506  *
1507  * Called with the queue_lock held.
1508  */
1509 static inline int scsi_dev_queue_ready(struct request_queue *q,
1510 				  struct scsi_device *sdev)
1511 {
1512 	unsigned int busy;
1513 
1514 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1515 	if (atomic_read(&sdev->device_blocked)) {
1516 		if (busy)
1517 			goto out_dec;
1518 
1519 		/*
1520 		 * unblock after device_blocked iterates to zero
1521 		 */
1522 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1523 			/*
1524 			 * For the MQ case we take care of this in the caller.
1525 			 */
1526 			if (!q->mq_ops)
1527 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1528 			goto out_dec;
1529 		}
1530 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1531 				   "unblocking device at zero depth\n"));
1532 	}
1533 
1534 	if (busy >= sdev->queue_depth)
1535 		goto out_dec;
1536 
1537 	return 1;
1538 out_dec:
1539 	atomic_dec(&sdev->device_busy);
1540 	return 0;
1541 }
1542 
1543 /*
1544  * scsi_target_queue_ready: checks if there we can send commands to target
1545  * @sdev: scsi device on starget to check.
1546  */
1547 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1548 					   struct scsi_device *sdev)
1549 {
1550 	struct scsi_target *starget = scsi_target(sdev);
1551 	unsigned int busy;
1552 
1553 	if (starget->single_lun) {
1554 		spin_lock_irq(shost->host_lock);
1555 		if (starget->starget_sdev_user &&
1556 		    starget->starget_sdev_user != sdev) {
1557 			spin_unlock_irq(shost->host_lock);
1558 			return 0;
1559 		}
1560 		starget->starget_sdev_user = sdev;
1561 		spin_unlock_irq(shost->host_lock);
1562 	}
1563 
1564 	if (starget->can_queue <= 0)
1565 		return 1;
1566 
1567 	busy = atomic_inc_return(&starget->target_busy) - 1;
1568 	if (atomic_read(&starget->target_blocked) > 0) {
1569 		if (busy)
1570 			goto starved;
1571 
1572 		/*
1573 		 * unblock after target_blocked iterates to zero
1574 		 */
1575 		if (atomic_dec_return(&starget->target_blocked) > 0)
1576 			goto out_dec;
1577 
1578 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1579 				 "unblocking target at zero depth\n"));
1580 	}
1581 
1582 	if (busy >= starget->can_queue)
1583 		goto starved;
1584 
1585 	return 1;
1586 
1587 starved:
1588 	spin_lock_irq(shost->host_lock);
1589 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1590 	spin_unlock_irq(shost->host_lock);
1591 out_dec:
1592 	if (starget->can_queue > 0)
1593 		atomic_dec(&starget->target_busy);
1594 	return 0;
1595 }
1596 
1597 /*
1598  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1599  * return 0. We must end up running the queue again whenever 0 is
1600  * returned, else IO can hang.
1601  */
1602 static inline int scsi_host_queue_ready(struct request_queue *q,
1603 				   struct Scsi_Host *shost,
1604 				   struct scsi_device *sdev)
1605 {
1606 	unsigned int busy;
1607 
1608 	if (scsi_host_in_recovery(shost))
1609 		return 0;
1610 
1611 	busy = atomic_inc_return(&shost->host_busy) - 1;
1612 	if (atomic_read(&shost->host_blocked) > 0) {
1613 		if (busy)
1614 			goto starved;
1615 
1616 		/*
1617 		 * unblock after host_blocked iterates to zero
1618 		 */
1619 		if (atomic_dec_return(&shost->host_blocked) > 0)
1620 			goto out_dec;
1621 
1622 		SCSI_LOG_MLQUEUE(3,
1623 			shost_printk(KERN_INFO, shost,
1624 				     "unblocking host at zero depth\n"));
1625 	}
1626 
1627 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1628 		goto starved;
1629 	if (shost->host_self_blocked)
1630 		goto starved;
1631 
1632 	/* We're OK to process the command, so we can't be starved */
1633 	if (!list_empty(&sdev->starved_entry)) {
1634 		spin_lock_irq(shost->host_lock);
1635 		if (!list_empty(&sdev->starved_entry))
1636 			list_del_init(&sdev->starved_entry);
1637 		spin_unlock_irq(shost->host_lock);
1638 	}
1639 
1640 	return 1;
1641 
1642 starved:
1643 	spin_lock_irq(shost->host_lock);
1644 	if (list_empty(&sdev->starved_entry))
1645 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1646 	spin_unlock_irq(shost->host_lock);
1647 out_dec:
1648 	scsi_dec_host_busy(shost);
1649 	return 0;
1650 }
1651 
1652 /*
1653  * Busy state exporting function for request stacking drivers.
1654  *
1655  * For efficiency, no lock is taken to check the busy state of
1656  * shost/starget/sdev, since the returned value is not guaranteed and
1657  * may be changed after request stacking drivers call the function,
1658  * regardless of taking lock or not.
1659  *
1660  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1661  * needs to return 'not busy'. Otherwise, request stacking drivers
1662  * may hold requests forever.
1663  */
1664 static int scsi_lld_busy(struct request_queue *q)
1665 {
1666 	struct scsi_device *sdev = q->queuedata;
1667 	struct Scsi_Host *shost;
1668 
1669 	if (blk_queue_dying(q))
1670 		return 0;
1671 
1672 	shost = sdev->host;
1673 
1674 	/*
1675 	 * Ignore host/starget busy state.
1676 	 * Since block layer does not have a concept of fairness across
1677 	 * multiple queues, congestion of host/starget needs to be handled
1678 	 * in SCSI layer.
1679 	 */
1680 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1681 		return 1;
1682 
1683 	return 0;
1684 }
1685 
1686 /*
1687  * Kill a request for a dead device
1688  */
1689 static void scsi_kill_request(struct request *req, struct request_queue *q)
1690 {
1691 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 	struct scsi_device *sdev;
1693 	struct scsi_target *starget;
1694 	struct Scsi_Host *shost;
1695 
1696 	blk_start_request(req);
1697 
1698 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1699 
1700 	sdev = cmd->device;
1701 	starget = scsi_target(sdev);
1702 	shost = sdev->host;
1703 	scsi_init_cmd_errh(cmd);
1704 	cmd->result = DID_NO_CONNECT << 16;
1705 	atomic_inc(&cmd->device->iorequest_cnt);
1706 
1707 	/*
1708 	 * SCSI request completion path will do scsi_device_unbusy(),
1709 	 * bump busy counts.  To bump the counters, we need to dance
1710 	 * with the locks as normal issue path does.
1711 	 */
1712 	atomic_inc(&sdev->device_busy);
1713 	atomic_inc(&shost->host_busy);
1714 	if (starget->can_queue > 0)
1715 		atomic_inc(&starget->target_busy);
1716 
1717 	blk_complete_request(req);
1718 }
1719 
1720 static void scsi_softirq_done(struct request *rq)
1721 {
1722 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1723 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1724 	int disposition;
1725 
1726 	INIT_LIST_HEAD(&cmd->eh_entry);
1727 
1728 	atomic_inc(&cmd->device->iodone_cnt);
1729 	if (cmd->result)
1730 		atomic_inc(&cmd->device->ioerr_cnt);
1731 
1732 	disposition = scsi_decide_disposition(cmd);
1733 	if (disposition != SUCCESS &&
1734 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1735 		sdev_printk(KERN_ERR, cmd->device,
1736 			    "timing out command, waited %lus\n",
1737 			    wait_for/HZ);
1738 		disposition = SUCCESS;
1739 	}
1740 
1741 	scsi_log_completion(cmd, disposition);
1742 
1743 	switch (disposition) {
1744 		case SUCCESS:
1745 			scsi_finish_command(cmd);
1746 			break;
1747 		case NEEDS_RETRY:
1748 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1749 			break;
1750 		case ADD_TO_MLQUEUE:
1751 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1752 			break;
1753 		default:
1754 			scsi_eh_scmd_add(cmd);
1755 			break;
1756 	}
1757 }
1758 
1759 /**
1760  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1761  * @cmd: command block we are dispatching.
1762  *
1763  * Return: nonzero return request was rejected and device's queue needs to be
1764  * plugged.
1765  */
1766 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1767 {
1768 	struct Scsi_Host *host = cmd->device->host;
1769 	int rtn = 0;
1770 
1771 	atomic_inc(&cmd->device->iorequest_cnt);
1772 
1773 	/* check if the device is still usable */
1774 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1775 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1776 		 * returns an immediate error upwards, and signals
1777 		 * that the device is no longer present */
1778 		cmd->result = DID_NO_CONNECT << 16;
1779 		goto done;
1780 	}
1781 
1782 	/* Check to see if the scsi lld made this device blocked. */
1783 	if (unlikely(scsi_device_blocked(cmd->device))) {
1784 		/*
1785 		 * in blocked state, the command is just put back on
1786 		 * the device queue.  The suspend state has already
1787 		 * blocked the queue so future requests should not
1788 		 * occur until the device transitions out of the
1789 		 * suspend state.
1790 		 */
1791 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1792 			"queuecommand : device blocked\n"));
1793 		return SCSI_MLQUEUE_DEVICE_BUSY;
1794 	}
1795 
1796 	/* Store the LUN value in cmnd, if needed. */
1797 	if (cmd->device->lun_in_cdb)
1798 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1799 			       (cmd->device->lun << 5 & 0xe0);
1800 
1801 	scsi_log_send(cmd);
1802 
1803 	/*
1804 	 * Before we queue this command, check if the command
1805 	 * length exceeds what the host adapter can handle.
1806 	 */
1807 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1808 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1809 			       "queuecommand : command too long. "
1810 			       "cdb_size=%d host->max_cmd_len=%d\n",
1811 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1812 		cmd->result = (DID_ABORT << 16);
1813 		goto done;
1814 	}
1815 
1816 	if (unlikely(host->shost_state == SHOST_DEL)) {
1817 		cmd->result = (DID_NO_CONNECT << 16);
1818 		goto done;
1819 
1820 	}
1821 
1822 	trace_scsi_dispatch_cmd_start(cmd);
1823 	rtn = host->hostt->queuecommand(host, cmd);
1824 	if (rtn) {
1825 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1826 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1827 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1828 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1829 
1830 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1831 			"queuecommand : request rejected\n"));
1832 	}
1833 
1834 	return rtn;
1835  done:
1836 	cmd->scsi_done(cmd);
1837 	return 0;
1838 }
1839 
1840 /**
1841  * scsi_done - Invoke completion on finished SCSI command.
1842  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1843  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1844  *
1845  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1846  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1847  * calls blk_complete_request() for further processing.
1848  *
1849  * This function is interrupt context safe.
1850  */
1851 static void scsi_done(struct scsi_cmnd *cmd)
1852 {
1853 	trace_scsi_dispatch_cmd_done(cmd);
1854 	blk_complete_request(cmd->request);
1855 }
1856 
1857 /*
1858  * Function:    scsi_request_fn()
1859  *
1860  * Purpose:     Main strategy routine for SCSI.
1861  *
1862  * Arguments:   q       - Pointer to actual queue.
1863  *
1864  * Returns:     Nothing
1865  *
1866  * Lock status: request queue lock assumed to be held when called.
1867  *
1868  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1869  * protection for ZBC disks.
1870  */
1871 static void scsi_request_fn(struct request_queue *q)
1872 	__releases(q->queue_lock)
1873 	__acquires(q->queue_lock)
1874 {
1875 	struct scsi_device *sdev = q->queuedata;
1876 	struct Scsi_Host *shost;
1877 	struct scsi_cmnd *cmd;
1878 	struct request *req;
1879 
1880 	/*
1881 	 * To start with, we keep looping until the queue is empty, or until
1882 	 * the host is no longer able to accept any more requests.
1883 	 */
1884 	shost = sdev->host;
1885 	for (;;) {
1886 		int rtn;
1887 		/*
1888 		 * get next queueable request.  We do this early to make sure
1889 		 * that the request is fully prepared even if we cannot
1890 		 * accept it.
1891 		 */
1892 		req = blk_peek_request(q);
1893 		if (!req)
1894 			break;
1895 
1896 		if (unlikely(!scsi_device_online(sdev))) {
1897 			sdev_printk(KERN_ERR, sdev,
1898 				    "rejecting I/O to offline device\n");
1899 			scsi_kill_request(req, q);
1900 			continue;
1901 		}
1902 
1903 		if (!scsi_dev_queue_ready(q, sdev))
1904 			break;
1905 
1906 		/*
1907 		 * Remove the request from the request list.
1908 		 */
1909 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1910 			blk_start_request(req);
1911 
1912 		spin_unlock_irq(q->queue_lock);
1913 		cmd = blk_mq_rq_to_pdu(req);
1914 		if (cmd != req->special) {
1915 			printk(KERN_CRIT "impossible request in %s.\n"
1916 					 "please mail a stack trace to "
1917 					 "linux-scsi@vger.kernel.org\n",
1918 					 __func__);
1919 			blk_dump_rq_flags(req, "foo");
1920 			BUG();
1921 		}
1922 
1923 		/*
1924 		 * We hit this when the driver is using a host wide
1925 		 * tag map. For device level tag maps the queue_depth check
1926 		 * in the device ready fn would prevent us from trying
1927 		 * to allocate a tag. Since the map is a shared host resource
1928 		 * we add the dev to the starved list so it eventually gets
1929 		 * a run when a tag is freed.
1930 		 */
1931 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1932 			spin_lock_irq(shost->host_lock);
1933 			if (list_empty(&sdev->starved_entry))
1934 				list_add_tail(&sdev->starved_entry,
1935 					      &shost->starved_list);
1936 			spin_unlock_irq(shost->host_lock);
1937 			goto not_ready;
1938 		}
1939 
1940 		if (!scsi_target_queue_ready(shost, sdev))
1941 			goto not_ready;
1942 
1943 		if (!scsi_host_queue_ready(q, shost, sdev))
1944 			goto host_not_ready;
1945 
1946 		if (sdev->simple_tags)
1947 			cmd->flags |= SCMD_TAGGED;
1948 		else
1949 			cmd->flags &= ~SCMD_TAGGED;
1950 
1951 		/*
1952 		 * Finally, initialize any error handling parameters, and set up
1953 		 * the timers for timeouts.
1954 		 */
1955 		scsi_init_cmd_errh(cmd);
1956 
1957 		/*
1958 		 * Dispatch the command to the low-level driver.
1959 		 */
1960 		cmd->scsi_done = scsi_done;
1961 		rtn = scsi_dispatch_cmd(cmd);
1962 		if (rtn) {
1963 			scsi_queue_insert(cmd, rtn);
1964 			spin_lock_irq(q->queue_lock);
1965 			goto out_delay;
1966 		}
1967 		spin_lock_irq(q->queue_lock);
1968 	}
1969 
1970 	return;
1971 
1972  host_not_ready:
1973 	if (scsi_target(sdev)->can_queue > 0)
1974 		atomic_dec(&scsi_target(sdev)->target_busy);
1975  not_ready:
1976 	/*
1977 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1978 	 * must return with queue_lock held.
1979 	 *
1980 	 * Decrementing device_busy without checking it is OK, as all such
1981 	 * cases (host limits or settings) should run the queue at some
1982 	 * later time.
1983 	 */
1984 	spin_lock_irq(q->queue_lock);
1985 	blk_requeue_request(q, req);
1986 	atomic_dec(&sdev->device_busy);
1987 out_delay:
1988 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1989 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1990 }
1991 
1992 static inline blk_status_t prep_to_mq(int ret)
1993 {
1994 	switch (ret) {
1995 	case BLKPREP_OK:
1996 		return BLK_STS_OK;
1997 	case BLKPREP_DEFER:
1998 		return BLK_STS_RESOURCE;
1999 	default:
2000 		return BLK_STS_IOERR;
2001 	}
2002 }
2003 
2004 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
2005 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
2006 {
2007 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2008 		sizeof(struct scatterlist);
2009 }
2010 
2011 static int scsi_mq_prep_fn(struct request *req)
2012 {
2013 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2014 	struct scsi_device *sdev = req->q->queuedata;
2015 	struct Scsi_Host *shost = sdev->host;
2016 	struct scatterlist *sg;
2017 
2018 	scsi_init_command(sdev, cmd);
2019 
2020 	req->special = cmd;
2021 
2022 	cmd->request = req;
2023 
2024 	cmd->tag = req->tag;
2025 	cmd->prot_op = SCSI_PROT_NORMAL;
2026 
2027 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2028 	cmd->sdb.table.sgl = sg;
2029 
2030 	if (scsi_host_get_prot(shost)) {
2031 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2032 
2033 		cmd->prot_sdb->table.sgl =
2034 			(struct scatterlist *)(cmd->prot_sdb + 1);
2035 	}
2036 
2037 	if (blk_bidi_rq(req)) {
2038 		struct request *next_rq = req->next_rq;
2039 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2040 
2041 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2042 		bidi_sdb->table.sgl =
2043 			(struct scatterlist *)(bidi_sdb + 1);
2044 
2045 		next_rq->special = bidi_sdb;
2046 	}
2047 
2048 	blk_mq_start_request(req);
2049 
2050 	return scsi_setup_cmnd(sdev, req);
2051 }
2052 
2053 static void scsi_mq_done(struct scsi_cmnd *cmd)
2054 {
2055 	trace_scsi_dispatch_cmd_done(cmd);
2056 	blk_mq_complete_request(cmd->request);
2057 }
2058 
2059 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2060 {
2061 	struct request_queue *q = hctx->queue;
2062 	struct scsi_device *sdev = q->queuedata;
2063 
2064 	atomic_dec(&sdev->device_busy);
2065 	put_device(&sdev->sdev_gendev);
2066 }
2067 
2068 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2069 {
2070 	struct request_queue *q = hctx->queue;
2071 	struct scsi_device *sdev = q->queuedata;
2072 
2073 	if (!get_device(&sdev->sdev_gendev))
2074 		goto out;
2075 	if (!scsi_dev_queue_ready(q, sdev))
2076 		goto out_put_device;
2077 
2078 	return true;
2079 
2080 out_put_device:
2081 	put_device(&sdev->sdev_gendev);
2082 out:
2083 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2084 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2085 	return false;
2086 }
2087 
2088 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2089 			 const struct blk_mq_queue_data *bd)
2090 {
2091 	struct request *req = bd->rq;
2092 	struct request_queue *q = req->q;
2093 	struct scsi_device *sdev = q->queuedata;
2094 	struct Scsi_Host *shost = sdev->host;
2095 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2096 	blk_status_t ret;
2097 	int reason;
2098 
2099 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2100 	if (ret != BLK_STS_OK)
2101 		goto out_put_budget;
2102 
2103 	ret = BLK_STS_RESOURCE;
2104 	if (!scsi_target_queue_ready(shost, sdev))
2105 		goto out_put_budget;
2106 	if (!scsi_host_queue_ready(q, shost, sdev))
2107 		goto out_dec_target_busy;
2108 
2109 	if (!(req->rq_flags & RQF_DONTPREP)) {
2110 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2111 		if (ret != BLK_STS_OK)
2112 			goto out_dec_host_busy;
2113 		req->rq_flags |= RQF_DONTPREP;
2114 	} else {
2115 		blk_mq_start_request(req);
2116 	}
2117 
2118 	if (sdev->simple_tags)
2119 		cmd->flags |= SCMD_TAGGED;
2120 	else
2121 		cmd->flags &= ~SCMD_TAGGED;
2122 
2123 	scsi_init_cmd_errh(cmd);
2124 	cmd->scsi_done = scsi_mq_done;
2125 
2126 	reason = scsi_dispatch_cmd(cmd);
2127 	if (reason) {
2128 		scsi_set_blocked(cmd, reason);
2129 		ret = BLK_STS_RESOURCE;
2130 		goto out_dec_host_busy;
2131 	}
2132 
2133 	return BLK_STS_OK;
2134 
2135 out_dec_host_busy:
2136 	scsi_dec_host_busy(shost);
2137 out_dec_target_busy:
2138 	if (scsi_target(sdev)->can_queue > 0)
2139 		atomic_dec(&scsi_target(sdev)->target_busy);
2140 out_put_budget:
2141 	scsi_mq_put_budget(hctx);
2142 	switch (ret) {
2143 	case BLK_STS_OK:
2144 		break;
2145 	case BLK_STS_RESOURCE:
2146 		if (atomic_read(&sdev->device_busy) ||
2147 		    scsi_device_blocked(sdev))
2148 			ret = BLK_STS_DEV_RESOURCE;
2149 		break;
2150 	default:
2151 		/*
2152 		 * Make sure to release all allocated ressources when
2153 		 * we hit an error, as we will never see this command
2154 		 * again.
2155 		 */
2156 		if (req->rq_flags & RQF_DONTPREP)
2157 			scsi_mq_uninit_cmd(cmd);
2158 		break;
2159 	}
2160 	return ret;
2161 }
2162 
2163 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2164 		bool reserved)
2165 {
2166 	if (reserved)
2167 		return BLK_EH_RESET_TIMER;
2168 	return scsi_times_out(req);
2169 }
2170 
2171 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2172 				unsigned int hctx_idx, unsigned int numa_node)
2173 {
2174 	struct Scsi_Host *shost = set->driver_data;
2175 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2176 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2177 	struct scatterlist *sg;
2178 
2179 	if (unchecked_isa_dma)
2180 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2181 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2182 						    GFP_KERNEL, numa_node);
2183 	if (!cmd->sense_buffer)
2184 		return -ENOMEM;
2185 	cmd->req.sense = cmd->sense_buffer;
2186 
2187 	if (scsi_host_get_prot(shost)) {
2188 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2189 			shost->hostt->cmd_size;
2190 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2197 				 unsigned int hctx_idx)
2198 {
2199 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2200 
2201 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2202 			       cmd->sense_buffer);
2203 }
2204 
2205 static int scsi_map_queues(struct blk_mq_tag_set *set)
2206 {
2207 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2208 
2209 	if (shost->hostt->map_queues)
2210 		return shost->hostt->map_queues(shost);
2211 	return blk_mq_map_queues(set);
2212 }
2213 
2214 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2215 {
2216 	struct device *dev = shost->dma_dev;
2217 
2218 	/*
2219 	 * this limit is imposed by hardware restrictions
2220 	 */
2221 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2222 					SG_MAX_SEGMENTS));
2223 
2224 	if (scsi_host_prot_dma(shost)) {
2225 		shost->sg_prot_tablesize =
2226 			min_not_zero(shost->sg_prot_tablesize,
2227 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2228 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2229 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2230 	}
2231 
2232 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2233 	if (shost->unchecked_isa_dma)
2234 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2235 	blk_queue_segment_boundary(q, shost->dma_boundary);
2236 	dma_set_seg_boundary(dev, shost->dma_boundary);
2237 
2238 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2239 
2240 	if (!shost->use_clustering)
2241 		q->limits.cluster = 0;
2242 
2243 	/*
2244 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2245 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2246 	 * which is set by the platform.
2247 	 *
2248 	 * Devices that require a bigger alignment can increase it later.
2249 	 */
2250 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2251 }
2252 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2253 
2254 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2255 			    gfp_t gfp)
2256 {
2257 	struct Scsi_Host *shost = q->rq_alloc_data;
2258 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2259 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2260 
2261 	memset(cmd, 0, sizeof(*cmd));
2262 
2263 	if (unchecked_isa_dma)
2264 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2265 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2266 						    NUMA_NO_NODE);
2267 	if (!cmd->sense_buffer)
2268 		goto fail;
2269 	cmd->req.sense = cmd->sense_buffer;
2270 
2271 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2272 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2273 		if (!cmd->prot_sdb)
2274 			goto fail_free_sense;
2275 	}
2276 
2277 	return 0;
2278 
2279 fail_free_sense:
2280 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2281 fail:
2282 	return -ENOMEM;
2283 }
2284 
2285 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2286 {
2287 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2288 
2289 	if (cmd->prot_sdb)
2290 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2291 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2292 			       cmd->sense_buffer);
2293 }
2294 
2295 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2296 {
2297 	struct Scsi_Host *shost = sdev->host;
2298 	struct request_queue *q;
2299 
2300 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2301 	if (!q)
2302 		return NULL;
2303 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2304 	q->rq_alloc_data = shost;
2305 	q->request_fn = scsi_request_fn;
2306 	q->init_rq_fn = scsi_old_init_rq;
2307 	q->exit_rq_fn = scsi_old_exit_rq;
2308 	q->initialize_rq_fn = scsi_initialize_rq;
2309 
2310 	if (blk_init_allocated_queue(q) < 0) {
2311 		blk_cleanup_queue(q);
2312 		return NULL;
2313 	}
2314 
2315 	__scsi_init_queue(shost, q);
2316 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2317 	blk_queue_prep_rq(q, scsi_prep_fn);
2318 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2319 	blk_queue_softirq_done(q, scsi_softirq_done);
2320 	blk_queue_rq_timed_out(q, scsi_times_out);
2321 	blk_queue_lld_busy(q, scsi_lld_busy);
2322 	return q;
2323 }
2324 
2325 static const struct blk_mq_ops scsi_mq_ops = {
2326 	.get_budget	= scsi_mq_get_budget,
2327 	.put_budget	= scsi_mq_put_budget,
2328 	.queue_rq	= scsi_queue_rq,
2329 	.complete	= scsi_softirq_done,
2330 	.timeout	= scsi_timeout,
2331 #ifdef CONFIG_BLK_DEBUG_FS
2332 	.show_rq	= scsi_show_rq,
2333 #endif
2334 	.init_request	= scsi_mq_init_request,
2335 	.exit_request	= scsi_mq_exit_request,
2336 	.initialize_rq_fn = scsi_initialize_rq,
2337 	.map_queues	= scsi_map_queues,
2338 };
2339 
2340 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2341 {
2342 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2343 	if (IS_ERR(sdev->request_queue))
2344 		return NULL;
2345 
2346 	sdev->request_queue->queuedata = sdev;
2347 	__scsi_init_queue(sdev->host, sdev->request_queue);
2348 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2349 	return sdev->request_queue;
2350 }
2351 
2352 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2353 {
2354 	unsigned int cmd_size, sgl_size;
2355 
2356 	sgl_size = scsi_mq_sgl_size(shost);
2357 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2358 	if (scsi_host_get_prot(shost))
2359 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2360 
2361 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2362 	shost->tag_set.ops = &scsi_mq_ops;
2363 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2364 	shost->tag_set.queue_depth = shost->can_queue;
2365 	shost->tag_set.cmd_size = cmd_size;
2366 	shost->tag_set.numa_node = NUMA_NO_NODE;
2367 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2368 	shost->tag_set.flags |=
2369 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2370 	shost->tag_set.driver_data = shost;
2371 
2372 	return blk_mq_alloc_tag_set(&shost->tag_set);
2373 }
2374 
2375 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2376 {
2377 	blk_mq_free_tag_set(&shost->tag_set);
2378 }
2379 
2380 /**
2381  * scsi_device_from_queue - return sdev associated with a request_queue
2382  * @q: The request queue to return the sdev from
2383  *
2384  * Return the sdev associated with a request queue or NULL if the
2385  * request_queue does not reference a SCSI device.
2386  */
2387 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2388 {
2389 	struct scsi_device *sdev = NULL;
2390 
2391 	if (q->mq_ops) {
2392 		if (q->mq_ops == &scsi_mq_ops)
2393 			sdev = q->queuedata;
2394 	} else if (q->request_fn == scsi_request_fn)
2395 		sdev = q->queuedata;
2396 	if (!sdev || !get_device(&sdev->sdev_gendev))
2397 		sdev = NULL;
2398 
2399 	return sdev;
2400 }
2401 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2402 
2403 /*
2404  * Function:    scsi_block_requests()
2405  *
2406  * Purpose:     Utility function used by low-level drivers to prevent further
2407  *		commands from being queued to the device.
2408  *
2409  * Arguments:   shost       - Host in question
2410  *
2411  * Returns:     Nothing
2412  *
2413  * Lock status: No locks are assumed held.
2414  *
2415  * Notes:       There is no timer nor any other means by which the requests
2416  *		get unblocked other than the low-level driver calling
2417  *		scsi_unblock_requests().
2418  */
2419 void scsi_block_requests(struct Scsi_Host *shost)
2420 {
2421 	shost->host_self_blocked = 1;
2422 }
2423 EXPORT_SYMBOL(scsi_block_requests);
2424 
2425 /*
2426  * Function:    scsi_unblock_requests()
2427  *
2428  * Purpose:     Utility function used by low-level drivers to allow further
2429  *		commands from being queued to the device.
2430  *
2431  * Arguments:   shost       - Host in question
2432  *
2433  * Returns:     Nothing
2434  *
2435  * Lock status: No locks are assumed held.
2436  *
2437  * Notes:       There is no timer nor any other means by which the requests
2438  *		get unblocked other than the low-level driver calling
2439  *		scsi_unblock_requests().
2440  *
2441  *		This is done as an API function so that changes to the
2442  *		internals of the scsi mid-layer won't require wholesale
2443  *		changes to drivers that use this feature.
2444  */
2445 void scsi_unblock_requests(struct Scsi_Host *shost)
2446 {
2447 	shost->host_self_blocked = 0;
2448 	scsi_run_host_queues(shost);
2449 }
2450 EXPORT_SYMBOL(scsi_unblock_requests);
2451 
2452 int __init scsi_init_queue(void)
2453 {
2454 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2455 					   sizeof(struct scsi_data_buffer),
2456 					   0, 0, NULL);
2457 	if (!scsi_sdb_cache) {
2458 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2459 		return -ENOMEM;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 void scsi_exit_queue(void)
2466 {
2467 	kmem_cache_destroy(scsi_sense_cache);
2468 	kmem_cache_destroy(scsi_sense_isadma_cache);
2469 	kmem_cache_destroy(scsi_sdb_cache);
2470 }
2471 
2472 /**
2473  *	scsi_mode_select - issue a mode select
2474  *	@sdev:	SCSI device to be queried
2475  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2476  *	@sp:	Save page bit (0 == don't save, 1 == save)
2477  *	@modepage: mode page being requested
2478  *	@buffer: request buffer (may not be smaller than eight bytes)
2479  *	@len:	length of request buffer.
2480  *	@timeout: command timeout
2481  *	@retries: number of retries before failing
2482  *	@data: returns a structure abstracting the mode header data
2483  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2484  *		must be SCSI_SENSE_BUFFERSIZE big.
2485  *
2486  *	Returns zero if successful; negative error number or scsi
2487  *	status on error
2488  *
2489  */
2490 int
2491 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2492 		 unsigned char *buffer, int len, int timeout, int retries,
2493 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2494 {
2495 	unsigned char cmd[10];
2496 	unsigned char *real_buffer;
2497 	int ret;
2498 
2499 	memset(cmd, 0, sizeof(cmd));
2500 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2501 
2502 	if (sdev->use_10_for_ms) {
2503 		if (len > 65535)
2504 			return -EINVAL;
2505 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2506 		if (!real_buffer)
2507 			return -ENOMEM;
2508 		memcpy(real_buffer + 8, buffer, len);
2509 		len += 8;
2510 		real_buffer[0] = 0;
2511 		real_buffer[1] = 0;
2512 		real_buffer[2] = data->medium_type;
2513 		real_buffer[3] = data->device_specific;
2514 		real_buffer[4] = data->longlba ? 0x01 : 0;
2515 		real_buffer[5] = 0;
2516 		real_buffer[6] = data->block_descriptor_length >> 8;
2517 		real_buffer[7] = data->block_descriptor_length;
2518 
2519 		cmd[0] = MODE_SELECT_10;
2520 		cmd[7] = len >> 8;
2521 		cmd[8] = len;
2522 	} else {
2523 		if (len > 255 || data->block_descriptor_length > 255 ||
2524 		    data->longlba)
2525 			return -EINVAL;
2526 
2527 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2528 		if (!real_buffer)
2529 			return -ENOMEM;
2530 		memcpy(real_buffer + 4, buffer, len);
2531 		len += 4;
2532 		real_buffer[0] = 0;
2533 		real_buffer[1] = data->medium_type;
2534 		real_buffer[2] = data->device_specific;
2535 		real_buffer[3] = data->block_descriptor_length;
2536 
2537 
2538 		cmd[0] = MODE_SELECT;
2539 		cmd[4] = len;
2540 	}
2541 
2542 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2543 			       sshdr, timeout, retries, NULL);
2544 	kfree(real_buffer);
2545 	return ret;
2546 }
2547 EXPORT_SYMBOL_GPL(scsi_mode_select);
2548 
2549 /**
2550  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2551  *	@sdev:	SCSI device to be queried
2552  *	@dbd:	set if mode sense will allow block descriptors to be returned
2553  *	@modepage: mode page being requested
2554  *	@buffer: request buffer (may not be smaller than eight bytes)
2555  *	@len:	length of request buffer.
2556  *	@timeout: command timeout
2557  *	@retries: number of retries before failing
2558  *	@data: returns a structure abstracting the mode header data
2559  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2560  *		must be SCSI_SENSE_BUFFERSIZE big.
2561  *
2562  *	Returns zero if unsuccessful, or the header offset (either 4
2563  *	or 8 depending on whether a six or ten byte command was
2564  *	issued) if successful.
2565  */
2566 int
2567 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2568 		  unsigned char *buffer, int len, int timeout, int retries,
2569 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2570 {
2571 	unsigned char cmd[12];
2572 	int use_10_for_ms;
2573 	int header_length;
2574 	int result, retry_count = retries;
2575 	struct scsi_sense_hdr my_sshdr;
2576 
2577 	memset(data, 0, sizeof(*data));
2578 	memset(&cmd[0], 0, 12);
2579 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2580 	cmd[2] = modepage;
2581 
2582 	/* caller might not be interested in sense, but we need it */
2583 	if (!sshdr)
2584 		sshdr = &my_sshdr;
2585 
2586  retry:
2587 	use_10_for_ms = sdev->use_10_for_ms;
2588 
2589 	if (use_10_for_ms) {
2590 		if (len < 8)
2591 			len = 8;
2592 
2593 		cmd[0] = MODE_SENSE_10;
2594 		cmd[8] = len;
2595 		header_length = 8;
2596 	} else {
2597 		if (len < 4)
2598 			len = 4;
2599 
2600 		cmd[0] = MODE_SENSE;
2601 		cmd[4] = len;
2602 		header_length = 4;
2603 	}
2604 
2605 	memset(buffer, 0, len);
2606 
2607 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2608 				  sshdr, timeout, retries, NULL);
2609 
2610 	/* This code looks awful: what it's doing is making sure an
2611 	 * ILLEGAL REQUEST sense return identifies the actual command
2612 	 * byte as the problem.  MODE_SENSE commands can return
2613 	 * ILLEGAL REQUEST if the code page isn't supported */
2614 
2615 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2616 	    driver_byte(result) == DRIVER_SENSE) {
2617 		if (scsi_sense_valid(sshdr)) {
2618 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2619 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2620 				/*
2621 				 * Invalid command operation code
2622 				 */
2623 				sdev->use_10_for_ms = 0;
2624 				goto retry;
2625 			}
2626 		}
2627 	}
2628 
2629 	if(scsi_status_is_good(result)) {
2630 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2631 			     (modepage == 6 || modepage == 8))) {
2632 			/* Initio breakage? */
2633 			header_length = 0;
2634 			data->length = 13;
2635 			data->medium_type = 0;
2636 			data->device_specific = 0;
2637 			data->longlba = 0;
2638 			data->block_descriptor_length = 0;
2639 		} else if(use_10_for_ms) {
2640 			data->length = buffer[0]*256 + buffer[1] + 2;
2641 			data->medium_type = buffer[2];
2642 			data->device_specific = buffer[3];
2643 			data->longlba = buffer[4] & 0x01;
2644 			data->block_descriptor_length = buffer[6]*256
2645 				+ buffer[7];
2646 		} else {
2647 			data->length = buffer[0] + 1;
2648 			data->medium_type = buffer[1];
2649 			data->device_specific = buffer[2];
2650 			data->block_descriptor_length = buffer[3];
2651 		}
2652 		data->header_length = header_length;
2653 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2654 		   scsi_sense_valid(sshdr) &&
2655 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2656 		retry_count--;
2657 		goto retry;
2658 	}
2659 
2660 	return result;
2661 }
2662 EXPORT_SYMBOL(scsi_mode_sense);
2663 
2664 /**
2665  *	scsi_test_unit_ready - test if unit is ready
2666  *	@sdev:	scsi device to change the state of.
2667  *	@timeout: command timeout
2668  *	@retries: number of retries before failing
2669  *	@sshdr: outpout pointer for decoded sense information.
2670  *
2671  *	Returns zero if unsuccessful or an error if TUR failed.  For
2672  *	removable media, UNIT_ATTENTION sets ->changed flag.
2673  **/
2674 int
2675 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2676 		     struct scsi_sense_hdr *sshdr)
2677 {
2678 	char cmd[] = {
2679 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2680 	};
2681 	int result;
2682 
2683 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2684 	do {
2685 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2686 					  timeout, 1, NULL);
2687 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2688 		    sshdr->sense_key == UNIT_ATTENTION)
2689 			sdev->changed = 1;
2690 	} while (scsi_sense_valid(sshdr) &&
2691 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2692 
2693 	return result;
2694 }
2695 EXPORT_SYMBOL(scsi_test_unit_ready);
2696 
2697 /**
2698  *	scsi_device_set_state - Take the given device through the device state model.
2699  *	@sdev:	scsi device to change the state of.
2700  *	@state:	state to change to.
2701  *
2702  *	Returns zero if successful or an error if the requested
2703  *	transition is illegal.
2704  */
2705 int
2706 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2707 {
2708 	enum scsi_device_state oldstate = sdev->sdev_state;
2709 
2710 	if (state == oldstate)
2711 		return 0;
2712 
2713 	switch (state) {
2714 	case SDEV_CREATED:
2715 		switch (oldstate) {
2716 		case SDEV_CREATED_BLOCK:
2717 			break;
2718 		default:
2719 			goto illegal;
2720 		}
2721 		break;
2722 
2723 	case SDEV_RUNNING:
2724 		switch (oldstate) {
2725 		case SDEV_CREATED:
2726 		case SDEV_OFFLINE:
2727 		case SDEV_TRANSPORT_OFFLINE:
2728 		case SDEV_QUIESCE:
2729 		case SDEV_BLOCK:
2730 			break;
2731 		default:
2732 			goto illegal;
2733 		}
2734 		break;
2735 
2736 	case SDEV_QUIESCE:
2737 		switch (oldstate) {
2738 		case SDEV_RUNNING:
2739 		case SDEV_OFFLINE:
2740 		case SDEV_TRANSPORT_OFFLINE:
2741 			break;
2742 		default:
2743 			goto illegal;
2744 		}
2745 		break;
2746 
2747 	case SDEV_OFFLINE:
2748 	case SDEV_TRANSPORT_OFFLINE:
2749 		switch (oldstate) {
2750 		case SDEV_CREATED:
2751 		case SDEV_RUNNING:
2752 		case SDEV_QUIESCE:
2753 		case SDEV_BLOCK:
2754 			break;
2755 		default:
2756 			goto illegal;
2757 		}
2758 		break;
2759 
2760 	case SDEV_BLOCK:
2761 		switch (oldstate) {
2762 		case SDEV_RUNNING:
2763 		case SDEV_CREATED_BLOCK:
2764 		case SDEV_OFFLINE:
2765 			break;
2766 		default:
2767 			goto illegal;
2768 		}
2769 		break;
2770 
2771 	case SDEV_CREATED_BLOCK:
2772 		switch (oldstate) {
2773 		case SDEV_CREATED:
2774 			break;
2775 		default:
2776 			goto illegal;
2777 		}
2778 		break;
2779 
2780 	case SDEV_CANCEL:
2781 		switch (oldstate) {
2782 		case SDEV_CREATED:
2783 		case SDEV_RUNNING:
2784 		case SDEV_QUIESCE:
2785 		case SDEV_OFFLINE:
2786 		case SDEV_TRANSPORT_OFFLINE:
2787 			break;
2788 		default:
2789 			goto illegal;
2790 		}
2791 		break;
2792 
2793 	case SDEV_DEL:
2794 		switch (oldstate) {
2795 		case SDEV_CREATED:
2796 		case SDEV_RUNNING:
2797 		case SDEV_OFFLINE:
2798 		case SDEV_TRANSPORT_OFFLINE:
2799 		case SDEV_CANCEL:
2800 		case SDEV_BLOCK:
2801 		case SDEV_CREATED_BLOCK:
2802 			break;
2803 		default:
2804 			goto illegal;
2805 		}
2806 		break;
2807 
2808 	}
2809 	sdev->sdev_state = state;
2810 	return 0;
2811 
2812  illegal:
2813 	SCSI_LOG_ERROR_RECOVERY(1,
2814 				sdev_printk(KERN_ERR, sdev,
2815 					    "Illegal state transition %s->%s",
2816 					    scsi_device_state_name(oldstate),
2817 					    scsi_device_state_name(state))
2818 				);
2819 	return -EINVAL;
2820 }
2821 EXPORT_SYMBOL(scsi_device_set_state);
2822 
2823 /**
2824  * 	sdev_evt_emit - emit a single SCSI device uevent
2825  *	@sdev: associated SCSI device
2826  *	@evt: event to emit
2827  *
2828  *	Send a single uevent (scsi_event) to the associated scsi_device.
2829  */
2830 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2831 {
2832 	int idx = 0;
2833 	char *envp[3];
2834 
2835 	switch (evt->evt_type) {
2836 	case SDEV_EVT_MEDIA_CHANGE:
2837 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2838 		break;
2839 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2840 		scsi_rescan_device(&sdev->sdev_gendev);
2841 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2842 		break;
2843 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2844 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2845 		break;
2846 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2847 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2848 		break;
2849 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2850 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2851 		break;
2852 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2853 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2854 		break;
2855 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2856 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2857 		break;
2858 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2859 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2860 		break;
2861 	default:
2862 		/* do nothing */
2863 		break;
2864 	}
2865 
2866 	envp[idx++] = NULL;
2867 
2868 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2869 }
2870 
2871 /**
2872  * 	sdev_evt_thread - send a uevent for each scsi event
2873  *	@work: work struct for scsi_device
2874  *
2875  *	Dispatch queued events to their associated scsi_device kobjects
2876  *	as uevents.
2877  */
2878 void scsi_evt_thread(struct work_struct *work)
2879 {
2880 	struct scsi_device *sdev;
2881 	enum scsi_device_event evt_type;
2882 	LIST_HEAD(event_list);
2883 
2884 	sdev = container_of(work, struct scsi_device, event_work);
2885 
2886 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2887 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2888 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2889 
2890 	while (1) {
2891 		struct scsi_event *evt;
2892 		struct list_head *this, *tmp;
2893 		unsigned long flags;
2894 
2895 		spin_lock_irqsave(&sdev->list_lock, flags);
2896 		list_splice_init(&sdev->event_list, &event_list);
2897 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2898 
2899 		if (list_empty(&event_list))
2900 			break;
2901 
2902 		list_for_each_safe(this, tmp, &event_list) {
2903 			evt = list_entry(this, struct scsi_event, node);
2904 			list_del(&evt->node);
2905 			scsi_evt_emit(sdev, evt);
2906 			kfree(evt);
2907 		}
2908 	}
2909 }
2910 
2911 /**
2912  * 	sdev_evt_send - send asserted event to uevent thread
2913  *	@sdev: scsi_device event occurred on
2914  *	@evt: event to send
2915  *
2916  *	Assert scsi device event asynchronously.
2917  */
2918 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2919 {
2920 	unsigned long flags;
2921 
2922 #if 0
2923 	/* FIXME: currently this check eliminates all media change events
2924 	 * for polled devices.  Need to update to discriminate between AN
2925 	 * and polled events */
2926 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2927 		kfree(evt);
2928 		return;
2929 	}
2930 #endif
2931 
2932 	spin_lock_irqsave(&sdev->list_lock, flags);
2933 	list_add_tail(&evt->node, &sdev->event_list);
2934 	schedule_work(&sdev->event_work);
2935 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2936 }
2937 EXPORT_SYMBOL_GPL(sdev_evt_send);
2938 
2939 /**
2940  * 	sdev_evt_alloc - allocate a new scsi event
2941  *	@evt_type: type of event to allocate
2942  *	@gfpflags: GFP flags for allocation
2943  *
2944  *	Allocates and returns a new scsi_event.
2945  */
2946 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2947 				  gfp_t gfpflags)
2948 {
2949 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2950 	if (!evt)
2951 		return NULL;
2952 
2953 	evt->evt_type = evt_type;
2954 	INIT_LIST_HEAD(&evt->node);
2955 
2956 	/* evt_type-specific initialization, if any */
2957 	switch (evt_type) {
2958 	case SDEV_EVT_MEDIA_CHANGE:
2959 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2960 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2961 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2962 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2963 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2964 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2965 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2966 	default:
2967 		/* do nothing */
2968 		break;
2969 	}
2970 
2971 	return evt;
2972 }
2973 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2974 
2975 /**
2976  * 	sdev_evt_send_simple - send asserted event to uevent thread
2977  *	@sdev: scsi_device event occurred on
2978  *	@evt_type: type of event to send
2979  *	@gfpflags: GFP flags for allocation
2980  *
2981  *	Assert scsi device event asynchronously, given an event type.
2982  */
2983 void sdev_evt_send_simple(struct scsi_device *sdev,
2984 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2985 {
2986 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2987 	if (!evt) {
2988 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2989 			    evt_type);
2990 		return;
2991 	}
2992 
2993 	sdev_evt_send(sdev, evt);
2994 }
2995 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2996 
2997 /**
2998  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2999  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
3000  */
3001 static int scsi_request_fn_active(struct scsi_device *sdev)
3002 {
3003 	struct request_queue *q = sdev->request_queue;
3004 	int request_fn_active;
3005 
3006 	WARN_ON_ONCE(sdev->host->use_blk_mq);
3007 
3008 	spin_lock_irq(q->queue_lock);
3009 	request_fn_active = q->request_fn_active;
3010 	spin_unlock_irq(q->queue_lock);
3011 
3012 	return request_fn_active;
3013 }
3014 
3015 /**
3016  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3017  * @sdev: SCSI device pointer.
3018  *
3019  * Wait until the ongoing shost->hostt->queuecommand() calls that are
3020  * invoked from scsi_request_fn() have finished.
3021  */
3022 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3023 {
3024 	WARN_ON_ONCE(sdev->host->use_blk_mq);
3025 
3026 	while (scsi_request_fn_active(sdev))
3027 		msleep(20);
3028 }
3029 
3030 /**
3031  *	scsi_device_quiesce - Block user issued commands.
3032  *	@sdev:	scsi device to quiesce.
3033  *
3034  *	This works by trying to transition to the SDEV_QUIESCE state
3035  *	(which must be a legal transition).  When the device is in this
3036  *	state, only special requests will be accepted, all others will
3037  *	be deferred.  Since special requests may also be requeued requests,
3038  *	a successful return doesn't guarantee the device will be
3039  *	totally quiescent.
3040  *
3041  *	Must be called with user context, may sleep.
3042  *
3043  *	Returns zero if unsuccessful or an error if not.
3044  */
3045 int
3046 scsi_device_quiesce(struct scsi_device *sdev)
3047 {
3048 	struct request_queue *q = sdev->request_queue;
3049 	int err;
3050 
3051 	/*
3052 	 * It is allowed to call scsi_device_quiesce() multiple times from
3053 	 * the same context but concurrent scsi_device_quiesce() calls are
3054 	 * not allowed.
3055 	 */
3056 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3057 
3058 	if (sdev->quiesced_by == current)
3059 		return 0;
3060 
3061 	blk_set_pm_only(q);
3062 
3063 	blk_mq_freeze_queue(q);
3064 	/*
3065 	 * Ensure that the effect of blk_set_pm_only() will be visible
3066 	 * for percpu_ref_tryget() callers that occur after the queue
3067 	 * unfreeze even if the queue was already frozen before this function
3068 	 * was called. See also https://lwn.net/Articles/573497/.
3069 	 */
3070 	synchronize_rcu();
3071 	blk_mq_unfreeze_queue(q);
3072 
3073 	mutex_lock(&sdev->state_mutex);
3074 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3075 	if (err == 0)
3076 		sdev->quiesced_by = current;
3077 	else
3078 		blk_clear_pm_only(q);
3079 	mutex_unlock(&sdev->state_mutex);
3080 
3081 	return err;
3082 }
3083 EXPORT_SYMBOL(scsi_device_quiesce);
3084 
3085 /**
3086  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3087  *	@sdev:	scsi device to resume.
3088  *
3089  *	Moves the device from quiesced back to running and restarts the
3090  *	queues.
3091  *
3092  *	Must be called with user context, may sleep.
3093  */
3094 void scsi_device_resume(struct scsi_device *sdev)
3095 {
3096 	/* check if the device state was mutated prior to resume, and if
3097 	 * so assume the state is being managed elsewhere (for example
3098 	 * device deleted during suspend)
3099 	 */
3100 	mutex_lock(&sdev->state_mutex);
3101 	WARN_ON_ONCE(!sdev->quiesced_by);
3102 	sdev->quiesced_by = NULL;
3103 	blk_clear_pm_only(sdev->request_queue);
3104 	if (sdev->sdev_state == SDEV_QUIESCE)
3105 		scsi_device_set_state(sdev, SDEV_RUNNING);
3106 	mutex_unlock(&sdev->state_mutex);
3107 }
3108 EXPORT_SYMBOL(scsi_device_resume);
3109 
3110 static void
3111 device_quiesce_fn(struct scsi_device *sdev, void *data)
3112 {
3113 	scsi_device_quiesce(sdev);
3114 }
3115 
3116 void
3117 scsi_target_quiesce(struct scsi_target *starget)
3118 {
3119 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3120 }
3121 EXPORT_SYMBOL(scsi_target_quiesce);
3122 
3123 static void
3124 device_resume_fn(struct scsi_device *sdev, void *data)
3125 {
3126 	scsi_device_resume(sdev);
3127 }
3128 
3129 void
3130 scsi_target_resume(struct scsi_target *starget)
3131 {
3132 	starget_for_each_device(starget, NULL, device_resume_fn);
3133 }
3134 EXPORT_SYMBOL(scsi_target_resume);
3135 
3136 /**
3137  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3138  * @sdev: device to block
3139  *
3140  * Pause SCSI command processing on the specified device. Does not sleep.
3141  *
3142  * Returns zero if successful or a negative error code upon failure.
3143  *
3144  * Notes:
3145  * This routine transitions the device to the SDEV_BLOCK state (which must be
3146  * a legal transition). When the device is in this state, command processing
3147  * is paused until the device leaves the SDEV_BLOCK state. See also
3148  * scsi_internal_device_unblock_nowait().
3149  */
3150 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3151 {
3152 	struct request_queue *q = sdev->request_queue;
3153 	unsigned long flags;
3154 	int err = 0;
3155 
3156 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3157 	if (err) {
3158 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3159 
3160 		if (err)
3161 			return err;
3162 	}
3163 
3164 	/*
3165 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3166 	 * block layer from calling the midlayer with this device's
3167 	 * request queue.
3168 	 */
3169 	if (q->mq_ops) {
3170 		blk_mq_quiesce_queue_nowait(q);
3171 	} else {
3172 		spin_lock_irqsave(q->queue_lock, flags);
3173 		blk_stop_queue(q);
3174 		spin_unlock_irqrestore(q->queue_lock, flags);
3175 	}
3176 
3177 	return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3180 
3181 /**
3182  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3183  * @sdev: device to block
3184  *
3185  * Pause SCSI command processing on the specified device and wait until all
3186  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3187  *
3188  * Returns zero if successful or a negative error code upon failure.
3189  *
3190  * Note:
3191  * This routine transitions the device to the SDEV_BLOCK state (which must be
3192  * a legal transition). When the device is in this state, command processing
3193  * is paused until the device leaves the SDEV_BLOCK state. See also
3194  * scsi_internal_device_unblock().
3195  *
3196  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3197  * scsi_internal_device_block() has blocked a SCSI device and also
3198  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3199  */
3200 static int scsi_internal_device_block(struct scsi_device *sdev)
3201 {
3202 	struct request_queue *q = sdev->request_queue;
3203 	int err;
3204 
3205 	mutex_lock(&sdev->state_mutex);
3206 	err = scsi_internal_device_block_nowait(sdev);
3207 	if (err == 0) {
3208 		if (q->mq_ops)
3209 			blk_mq_quiesce_queue(q);
3210 		else
3211 			scsi_wait_for_queuecommand(sdev);
3212 	}
3213 	mutex_unlock(&sdev->state_mutex);
3214 
3215 	return err;
3216 }
3217 
3218 void scsi_start_queue(struct scsi_device *sdev)
3219 {
3220 	struct request_queue *q = sdev->request_queue;
3221 	unsigned long flags;
3222 
3223 	if (q->mq_ops) {
3224 		blk_mq_unquiesce_queue(q);
3225 	} else {
3226 		spin_lock_irqsave(q->queue_lock, flags);
3227 		blk_start_queue(q);
3228 		spin_unlock_irqrestore(q->queue_lock, flags);
3229 	}
3230 }
3231 
3232 /**
3233  * scsi_internal_device_unblock_nowait - resume a device after a block request
3234  * @sdev:	device to resume
3235  * @new_state:	state to set the device to after unblocking
3236  *
3237  * Restart the device queue for a previously suspended SCSI device. Does not
3238  * sleep.
3239  *
3240  * Returns zero if successful or a negative error code upon failure.
3241  *
3242  * Notes:
3243  * This routine transitions the device to the SDEV_RUNNING state or to one of
3244  * the offline states (which must be a legal transition) allowing the midlayer
3245  * to goose the queue for this device.
3246  */
3247 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3248 					enum scsi_device_state new_state)
3249 {
3250 	/*
3251 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3252 	 * offlined states and goose the device queue if successful.
3253 	 */
3254 	switch (sdev->sdev_state) {
3255 	case SDEV_BLOCK:
3256 	case SDEV_TRANSPORT_OFFLINE:
3257 		sdev->sdev_state = new_state;
3258 		break;
3259 	case SDEV_CREATED_BLOCK:
3260 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3261 		    new_state == SDEV_OFFLINE)
3262 			sdev->sdev_state = new_state;
3263 		else
3264 			sdev->sdev_state = SDEV_CREATED;
3265 		break;
3266 	case SDEV_CANCEL:
3267 	case SDEV_OFFLINE:
3268 		break;
3269 	default:
3270 		return -EINVAL;
3271 	}
3272 	scsi_start_queue(sdev);
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3277 
3278 /**
3279  * scsi_internal_device_unblock - resume a device after a block request
3280  * @sdev:	device to resume
3281  * @new_state:	state to set the device to after unblocking
3282  *
3283  * Restart the device queue for a previously suspended SCSI device. May sleep.
3284  *
3285  * Returns zero if successful or a negative error code upon failure.
3286  *
3287  * Notes:
3288  * This routine transitions the device to the SDEV_RUNNING state or to one of
3289  * the offline states (which must be a legal transition) allowing the midlayer
3290  * to goose the queue for this device.
3291  */
3292 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3293 					enum scsi_device_state new_state)
3294 {
3295 	int ret;
3296 
3297 	mutex_lock(&sdev->state_mutex);
3298 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3299 	mutex_unlock(&sdev->state_mutex);
3300 
3301 	return ret;
3302 }
3303 
3304 static void
3305 device_block(struct scsi_device *sdev, void *data)
3306 {
3307 	scsi_internal_device_block(sdev);
3308 }
3309 
3310 static int
3311 target_block(struct device *dev, void *data)
3312 {
3313 	if (scsi_is_target_device(dev))
3314 		starget_for_each_device(to_scsi_target(dev), NULL,
3315 					device_block);
3316 	return 0;
3317 }
3318 
3319 void
3320 scsi_target_block(struct device *dev)
3321 {
3322 	if (scsi_is_target_device(dev))
3323 		starget_for_each_device(to_scsi_target(dev), NULL,
3324 					device_block);
3325 	else
3326 		device_for_each_child(dev, NULL, target_block);
3327 }
3328 EXPORT_SYMBOL_GPL(scsi_target_block);
3329 
3330 static void
3331 device_unblock(struct scsi_device *sdev, void *data)
3332 {
3333 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3334 }
3335 
3336 static int
3337 target_unblock(struct device *dev, void *data)
3338 {
3339 	if (scsi_is_target_device(dev))
3340 		starget_for_each_device(to_scsi_target(dev), data,
3341 					device_unblock);
3342 	return 0;
3343 }
3344 
3345 void
3346 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3347 {
3348 	if (scsi_is_target_device(dev))
3349 		starget_for_each_device(to_scsi_target(dev), &new_state,
3350 					device_unblock);
3351 	else
3352 		device_for_each_child(dev, &new_state, target_unblock);
3353 }
3354 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3355 
3356 /**
3357  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3358  * @sgl:	scatter-gather list
3359  * @sg_count:	number of segments in sg
3360  * @offset:	offset in bytes into sg, on return offset into the mapped area
3361  * @len:	bytes to map, on return number of bytes mapped
3362  *
3363  * Returns virtual address of the start of the mapped page
3364  */
3365 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3366 			  size_t *offset, size_t *len)
3367 {
3368 	int i;
3369 	size_t sg_len = 0, len_complete = 0;
3370 	struct scatterlist *sg;
3371 	struct page *page;
3372 
3373 	WARN_ON(!irqs_disabled());
3374 
3375 	for_each_sg(sgl, sg, sg_count, i) {
3376 		len_complete = sg_len; /* Complete sg-entries */
3377 		sg_len += sg->length;
3378 		if (sg_len > *offset)
3379 			break;
3380 	}
3381 
3382 	if (unlikely(i == sg_count)) {
3383 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3384 			"elements %d\n",
3385 		       __func__, sg_len, *offset, sg_count);
3386 		WARN_ON(1);
3387 		return NULL;
3388 	}
3389 
3390 	/* Offset starting from the beginning of first page in this sg-entry */
3391 	*offset = *offset - len_complete + sg->offset;
3392 
3393 	/* Assumption: contiguous pages can be accessed as "page + i" */
3394 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3395 	*offset &= ~PAGE_MASK;
3396 
3397 	/* Bytes in this sg-entry from *offset to the end of the page */
3398 	sg_len = PAGE_SIZE - *offset;
3399 	if (*len > sg_len)
3400 		*len = sg_len;
3401 
3402 	return kmap_atomic(page);
3403 }
3404 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3405 
3406 /**
3407  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3408  * @virt:	virtual address to be unmapped
3409  */
3410 void scsi_kunmap_atomic_sg(void *virt)
3411 {
3412 	kunmap_atomic(virt);
3413 }
3414 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3415 
3416 void sdev_disable_disk_events(struct scsi_device *sdev)
3417 {
3418 	atomic_inc(&sdev->disk_events_disable_depth);
3419 }
3420 EXPORT_SYMBOL(sdev_disable_disk_events);
3421 
3422 void sdev_enable_disk_events(struct scsi_device *sdev)
3423 {
3424 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3425 		return;
3426 	atomic_dec(&sdev->disk_events_disable_depth);
3427 }
3428 EXPORT_SYMBOL(sdev_enable_disk_events);
3429 
3430 /**
3431  * scsi_vpd_lun_id - return a unique device identification
3432  * @sdev: SCSI device
3433  * @id:   buffer for the identification
3434  * @id_len:  length of the buffer
3435  *
3436  * Copies a unique device identification into @id based
3437  * on the information in the VPD page 0x83 of the device.
3438  * The string will be formatted as a SCSI name string.
3439  *
3440  * Returns the length of the identification or error on failure.
3441  * If the identifier is longer than the supplied buffer the actual
3442  * identifier length is returned and the buffer is not zero-padded.
3443  */
3444 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3445 {
3446 	u8 cur_id_type = 0xff;
3447 	u8 cur_id_size = 0;
3448 	const unsigned char *d, *cur_id_str;
3449 	const struct scsi_vpd *vpd_pg83;
3450 	int id_size = -EINVAL;
3451 
3452 	rcu_read_lock();
3453 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3454 	if (!vpd_pg83) {
3455 		rcu_read_unlock();
3456 		return -ENXIO;
3457 	}
3458 
3459 	/*
3460 	 * Look for the correct descriptor.
3461 	 * Order of preference for lun descriptor:
3462 	 * - SCSI name string
3463 	 * - NAA IEEE Registered Extended
3464 	 * - EUI-64 based 16-byte
3465 	 * - EUI-64 based 12-byte
3466 	 * - NAA IEEE Registered
3467 	 * - NAA IEEE Extended
3468 	 * - T10 Vendor ID
3469 	 * as longer descriptors reduce the likelyhood
3470 	 * of identification clashes.
3471 	 */
3472 
3473 	/* The id string must be at least 20 bytes + terminating NULL byte */
3474 	if (id_len < 21) {
3475 		rcu_read_unlock();
3476 		return -EINVAL;
3477 	}
3478 
3479 	memset(id, 0, id_len);
3480 	d = vpd_pg83->data + 4;
3481 	while (d < vpd_pg83->data + vpd_pg83->len) {
3482 		/* Skip designators not referring to the LUN */
3483 		if ((d[1] & 0x30) != 0x00)
3484 			goto next_desig;
3485 
3486 		switch (d[1] & 0xf) {
3487 		case 0x1:
3488 			/* T10 Vendor ID */
3489 			if (cur_id_size > d[3])
3490 				break;
3491 			/* Prefer anything */
3492 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3493 				break;
3494 			cur_id_size = d[3];
3495 			if (cur_id_size + 4 > id_len)
3496 				cur_id_size = id_len - 4;
3497 			cur_id_str = d + 4;
3498 			cur_id_type = d[1] & 0xf;
3499 			id_size = snprintf(id, id_len, "t10.%*pE",
3500 					   cur_id_size, cur_id_str);
3501 			break;
3502 		case 0x2:
3503 			/* EUI-64 */
3504 			if (cur_id_size > d[3])
3505 				break;
3506 			/* Prefer NAA IEEE Registered Extended */
3507 			if (cur_id_type == 0x3 &&
3508 			    cur_id_size == d[3])
3509 				break;
3510 			cur_id_size = d[3];
3511 			cur_id_str = d + 4;
3512 			cur_id_type = d[1] & 0xf;
3513 			switch (cur_id_size) {
3514 			case 8:
3515 				id_size = snprintf(id, id_len,
3516 						   "eui.%8phN",
3517 						   cur_id_str);
3518 				break;
3519 			case 12:
3520 				id_size = snprintf(id, id_len,
3521 						   "eui.%12phN",
3522 						   cur_id_str);
3523 				break;
3524 			case 16:
3525 				id_size = snprintf(id, id_len,
3526 						   "eui.%16phN",
3527 						   cur_id_str);
3528 				break;
3529 			default:
3530 				cur_id_size = 0;
3531 				break;
3532 			}
3533 			break;
3534 		case 0x3:
3535 			/* NAA */
3536 			if (cur_id_size > d[3])
3537 				break;
3538 			cur_id_size = d[3];
3539 			cur_id_str = d + 4;
3540 			cur_id_type = d[1] & 0xf;
3541 			switch (cur_id_size) {
3542 			case 8:
3543 				id_size = snprintf(id, id_len,
3544 						   "naa.%8phN",
3545 						   cur_id_str);
3546 				break;
3547 			case 16:
3548 				id_size = snprintf(id, id_len,
3549 						   "naa.%16phN",
3550 						   cur_id_str);
3551 				break;
3552 			default:
3553 				cur_id_size = 0;
3554 				break;
3555 			}
3556 			break;
3557 		case 0x8:
3558 			/* SCSI name string */
3559 			if (cur_id_size + 4 > d[3])
3560 				break;
3561 			/* Prefer others for truncated descriptor */
3562 			if (cur_id_size && d[3] > id_len)
3563 				break;
3564 			cur_id_size = id_size = d[3];
3565 			cur_id_str = d + 4;
3566 			cur_id_type = d[1] & 0xf;
3567 			if (cur_id_size >= id_len)
3568 				cur_id_size = id_len - 1;
3569 			memcpy(id, cur_id_str, cur_id_size);
3570 			/* Decrease priority for truncated descriptor */
3571 			if (cur_id_size != id_size)
3572 				cur_id_size = 6;
3573 			break;
3574 		default:
3575 			break;
3576 		}
3577 next_desig:
3578 		d += d[3] + 4;
3579 	}
3580 	rcu_read_unlock();
3581 
3582 	return id_size;
3583 }
3584 EXPORT_SYMBOL(scsi_vpd_lun_id);
3585 
3586 /*
3587  * scsi_vpd_tpg_id - return a target port group identifier
3588  * @sdev: SCSI device
3589  *
3590  * Returns the Target Port Group identifier from the information
3591  * froom VPD page 0x83 of the device.
3592  *
3593  * Returns the identifier or error on failure.
3594  */
3595 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3596 {
3597 	const unsigned char *d;
3598 	const struct scsi_vpd *vpd_pg83;
3599 	int group_id = -EAGAIN, rel_port = -1;
3600 
3601 	rcu_read_lock();
3602 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3603 	if (!vpd_pg83) {
3604 		rcu_read_unlock();
3605 		return -ENXIO;
3606 	}
3607 
3608 	d = vpd_pg83->data + 4;
3609 	while (d < vpd_pg83->data + vpd_pg83->len) {
3610 		switch (d[1] & 0xf) {
3611 		case 0x4:
3612 			/* Relative target port */
3613 			rel_port = get_unaligned_be16(&d[6]);
3614 			break;
3615 		case 0x5:
3616 			/* Target port group */
3617 			group_id = get_unaligned_be16(&d[6]);
3618 			break;
3619 		default:
3620 			break;
3621 		}
3622 		d += d[3] + 4;
3623 	}
3624 	rcu_read_unlock();
3625 
3626 	if (group_id >= 0 && rel_id && rel_port != -1)
3627 		*rel_id = rel_port;
3628 
3629 	return group_id;
3630 }
3631 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3632