1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 scsi_mq_requeue_cmd(cmd); 195 return; 196 } 197 spin_lock_irqsave(q->queue_lock, flags); 198 blk_requeue_request(q, cmd->request); 199 kblockd_schedule_work(&device->requeue_work); 200 spin_unlock_irqrestore(q->queue_lock, flags); 201 } 202 203 /* 204 * Function: scsi_queue_insert() 205 * 206 * Purpose: Insert a command in the midlevel queue. 207 * 208 * Arguments: cmd - command that we are adding to queue. 209 * reason - why we are inserting command to queue. 210 * 211 * Lock status: Assumed that lock is not held upon entry. 212 * 213 * Returns: Nothing. 214 * 215 * Notes: We do this for one of two cases. Either the host is busy 216 * and it cannot accept any more commands for the time being, 217 * or the device returned QUEUE_FULL and can accept no more 218 * commands. 219 * Notes: This could be called either from an interrupt context or a 220 * normal process context. 221 */ 222 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 223 { 224 __scsi_queue_insert(cmd, reason, true); 225 } 226 227 228 /** 229 * scsi_execute - insert request and wait for the result 230 * @sdev: scsi device 231 * @cmd: scsi command 232 * @data_direction: data direction 233 * @buffer: data buffer 234 * @bufflen: len of buffer 235 * @sense: optional sense buffer 236 * @sshdr: optional decoded sense header 237 * @timeout: request timeout in seconds 238 * @retries: number of times to retry request 239 * @flags: flags for ->cmd_flags 240 * @rq_flags: flags for ->rq_flags 241 * @resid: optional residual length 242 * 243 * Returns the scsi_cmnd result field if a command was executed, or a negative 244 * Linux error code if we didn't get that far. 245 */ 246 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 247 int data_direction, void *buffer, unsigned bufflen, 248 unsigned char *sense, struct scsi_sense_hdr *sshdr, 249 int timeout, int retries, u64 flags, req_flags_t rq_flags, 250 int *resid) 251 { 252 struct request *req; 253 struct scsi_request *rq; 254 int ret = DRIVER_ERROR << 24; 255 256 req = blk_get_request_flags(sdev->request_queue, 257 data_direction == DMA_TO_DEVICE ? 258 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 259 if (IS_ERR(req)) 260 return ret; 261 rq = scsi_req(req); 262 263 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 264 buffer, bufflen, __GFP_RECLAIM)) 265 goto out; 266 267 rq->cmd_len = COMMAND_SIZE(cmd[0]); 268 memcpy(rq->cmd, cmd, rq->cmd_len); 269 rq->retries = retries; 270 req->timeout = timeout; 271 req->cmd_flags |= flags; 272 req->rq_flags |= rq_flags | RQF_QUIET; 273 274 /* 275 * head injection *required* here otherwise quiesce won't work 276 */ 277 blk_execute_rq(req->q, NULL, req, 1); 278 279 /* 280 * Some devices (USB mass-storage in particular) may transfer 281 * garbage data together with a residue indicating that the data 282 * is invalid. Prevent the garbage from being misinterpreted 283 * and prevent security leaks by zeroing out the excess data. 284 */ 285 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 286 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 287 288 if (resid) 289 *resid = rq->resid_len; 290 if (sense && rq->sense_len) 291 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 292 if (sshdr) 293 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 294 ret = rq->result; 295 out: 296 blk_put_request(req); 297 298 return ret; 299 } 300 EXPORT_SYMBOL(scsi_execute); 301 302 /* 303 * Function: scsi_init_cmd_errh() 304 * 305 * Purpose: Initialize cmd fields related to error handling. 306 * 307 * Arguments: cmd - command that is ready to be queued. 308 * 309 * Notes: This function has the job of initializing a number of 310 * fields related to error handling. Typically this will 311 * be called once for each command, as required. 312 */ 313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 314 { 315 cmd->serial_number = 0; 316 scsi_set_resid(cmd, 0); 317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 318 if (cmd->cmd_len == 0) 319 cmd->cmd_len = scsi_command_size(cmd->cmnd); 320 } 321 322 /* 323 * Decrement the host_busy counter and wake up the error handler if necessary. 324 * Avoid as follows that the error handler is not woken up if shost->host_busy 325 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 326 * with an RCU read lock in this function to ensure that this function in its 327 * entirety either finishes before scsi_eh_scmd_add() increases the 328 * host_failed counter or that it notices the shost state change made by 329 * scsi_eh_scmd_add(). 330 */ 331 static void scsi_dec_host_busy(struct Scsi_Host *shost) 332 { 333 unsigned long flags; 334 335 rcu_read_lock(); 336 atomic_dec(&shost->host_busy); 337 if (unlikely(scsi_host_in_recovery(shost))) { 338 spin_lock_irqsave(shost->host_lock, flags); 339 if (shost->host_failed || shost->host_eh_scheduled) 340 scsi_eh_wakeup(shost); 341 spin_unlock_irqrestore(shost->host_lock, flags); 342 } 343 rcu_read_unlock(); 344 } 345 346 void scsi_device_unbusy(struct scsi_device *sdev) 347 { 348 struct Scsi_Host *shost = sdev->host; 349 struct scsi_target *starget = scsi_target(sdev); 350 351 scsi_dec_host_busy(shost); 352 353 if (starget->can_queue > 0) 354 atomic_dec(&starget->target_busy); 355 356 atomic_dec(&sdev->device_busy); 357 } 358 359 static void scsi_kick_queue(struct request_queue *q) 360 { 361 if (q->mq_ops) 362 blk_mq_start_hw_queues(q); 363 else 364 blk_run_queue(q); 365 } 366 367 /* 368 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 369 * and call blk_run_queue for all the scsi_devices on the target - 370 * including current_sdev first. 371 * 372 * Called with *no* scsi locks held. 373 */ 374 static void scsi_single_lun_run(struct scsi_device *current_sdev) 375 { 376 struct Scsi_Host *shost = current_sdev->host; 377 struct scsi_device *sdev, *tmp; 378 struct scsi_target *starget = scsi_target(current_sdev); 379 unsigned long flags; 380 381 spin_lock_irqsave(shost->host_lock, flags); 382 starget->starget_sdev_user = NULL; 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 385 /* 386 * Call blk_run_queue for all LUNs on the target, starting with 387 * current_sdev. We race with others (to set starget_sdev_user), 388 * but in most cases, we will be first. Ideally, each LU on the 389 * target would get some limited time or requests on the target. 390 */ 391 scsi_kick_queue(current_sdev->request_queue); 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 if (starget->starget_sdev_user) 395 goto out; 396 list_for_each_entry_safe(sdev, tmp, &starget->devices, 397 same_target_siblings) { 398 if (sdev == current_sdev) 399 continue; 400 if (scsi_device_get(sdev)) 401 continue; 402 403 spin_unlock_irqrestore(shost->host_lock, flags); 404 scsi_kick_queue(sdev->request_queue); 405 spin_lock_irqsave(shost->host_lock, flags); 406 407 scsi_device_put(sdev); 408 } 409 out: 410 spin_unlock_irqrestore(shost->host_lock, flags); 411 } 412 413 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 414 { 415 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 416 return true; 417 if (atomic_read(&sdev->device_blocked) > 0) 418 return true; 419 return false; 420 } 421 422 static inline bool scsi_target_is_busy(struct scsi_target *starget) 423 { 424 if (starget->can_queue > 0) { 425 if (atomic_read(&starget->target_busy) >= starget->can_queue) 426 return true; 427 if (atomic_read(&starget->target_blocked) > 0) 428 return true; 429 } 430 return false; 431 } 432 433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 434 { 435 if (shost->can_queue > 0 && 436 atomic_read(&shost->host_busy) >= shost->can_queue) 437 return true; 438 if (atomic_read(&shost->host_blocked) > 0) 439 return true; 440 if (shost->host_self_blocked) 441 return true; 442 return false; 443 } 444 445 static void scsi_starved_list_run(struct Scsi_Host *shost) 446 { 447 LIST_HEAD(starved_list); 448 struct scsi_device *sdev; 449 unsigned long flags; 450 451 spin_lock_irqsave(shost->host_lock, flags); 452 list_splice_init(&shost->starved_list, &starved_list); 453 454 while (!list_empty(&starved_list)) { 455 struct request_queue *slq; 456 457 /* 458 * As long as shost is accepting commands and we have 459 * starved queues, call blk_run_queue. scsi_request_fn 460 * drops the queue_lock and can add us back to the 461 * starved_list. 462 * 463 * host_lock protects the starved_list and starved_entry. 464 * scsi_request_fn must get the host_lock before checking 465 * or modifying starved_list or starved_entry. 466 */ 467 if (scsi_host_is_busy(shost)) 468 break; 469 470 sdev = list_entry(starved_list.next, 471 struct scsi_device, starved_entry); 472 list_del_init(&sdev->starved_entry); 473 if (scsi_target_is_busy(scsi_target(sdev))) { 474 list_move_tail(&sdev->starved_entry, 475 &shost->starved_list); 476 continue; 477 } 478 479 /* 480 * Once we drop the host lock, a racing scsi_remove_device() 481 * call may remove the sdev from the starved list and destroy 482 * it and the queue. Mitigate by taking a reference to the 483 * queue and never touching the sdev again after we drop the 484 * host lock. Note: if __scsi_remove_device() invokes 485 * blk_cleanup_queue() before the queue is run from this 486 * function then blk_run_queue() will return immediately since 487 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 488 */ 489 slq = sdev->request_queue; 490 if (!blk_get_queue(slq)) 491 continue; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 scsi_kick_queue(slq); 495 blk_put_queue(slq); 496 497 spin_lock_irqsave(shost->host_lock, flags); 498 } 499 /* put any unprocessed entries back */ 500 list_splice(&starved_list, &shost->starved_list); 501 spin_unlock_irqrestore(shost->host_lock, flags); 502 } 503 504 /* 505 * Function: scsi_run_queue() 506 * 507 * Purpose: Select a proper request queue to serve next 508 * 509 * Arguments: q - last request's queue 510 * 511 * Returns: Nothing 512 * 513 * Notes: The previous command was completely finished, start 514 * a new one if possible. 515 */ 516 static void scsi_run_queue(struct request_queue *q) 517 { 518 struct scsi_device *sdev = q->queuedata; 519 520 if (scsi_target(sdev)->single_lun) 521 scsi_single_lun_run(sdev); 522 if (!list_empty(&sdev->host->starved_list)) 523 scsi_starved_list_run(sdev->host); 524 525 if (q->mq_ops) 526 blk_mq_run_hw_queues(q, false); 527 else 528 blk_run_queue(q); 529 } 530 531 void scsi_requeue_run_queue(struct work_struct *work) 532 { 533 struct scsi_device *sdev; 534 struct request_queue *q; 535 536 sdev = container_of(work, struct scsi_device, requeue_work); 537 q = sdev->request_queue; 538 scsi_run_queue(q); 539 } 540 541 /* 542 * Function: scsi_requeue_command() 543 * 544 * Purpose: Handle post-processing of completed commands. 545 * 546 * Arguments: q - queue to operate on 547 * cmd - command that may need to be requeued. 548 * 549 * Returns: Nothing 550 * 551 * Notes: After command completion, there may be blocks left 552 * over which weren't finished by the previous command 553 * this can be for a number of reasons - the main one is 554 * I/O errors in the middle of the request, in which case 555 * we need to request the blocks that come after the bad 556 * sector. 557 * Notes: Upon return, cmd is a stale pointer. 558 */ 559 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 560 { 561 struct scsi_device *sdev = cmd->device; 562 struct request *req = cmd->request; 563 unsigned long flags; 564 565 spin_lock_irqsave(q->queue_lock, flags); 566 blk_unprep_request(req); 567 req->special = NULL; 568 scsi_put_command(cmd); 569 blk_requeue_request(q, req); 570 spin_unlock_irqrestore(q->queue_lock, flags); 571 572 scsi_run_queue(q); 573 574 put_device(&sdev->sdev_gendev); 575 } 576 577 void scsi_run_host_queues(struct Scsi_Host *shost) 578 { 579 struct scsi_device *sdev; 580 581 shost_for_each_device(sdev, shost) 582 scsi_run_queue(sdev->request_queue); 583 } 584 585 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 586 { 587 if (!blk_rq_is_passthrough(cmd->request)) { 588 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 589 590 if (drv->uninit_command) 591 drv->uninit_command(cmd); 592 } 593 } 594 595 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 596 { 597 struct scsi_data_buffer *sdb; 598 599 if (cmd->sdb.table.nents) 600 sg_free_table_chained(&cmd->sdb.table, true); 601 if (cmd->request->next_rq) { 602 sdb = cmd->request->next_rq->special; 603 if (sdb) 604 sg_free_table_chained(&sdb->table, true); 605 } 606 if (scsi_prot_sg_count(cmd)) 607 sg_free_table_chained(&cmd->prot_sdb->table, true); 608 } 609 610 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 611 { 612 scsi_mq_free_sgtables(cmd); 613 scsi_uninit_cmd(cmd); 614 scsi_del_cmd_from_list(cmd); 615 } 616 617 /* 618 * Function: scsi_release_buffers() 619 * 620 * Purpose: Free resources allocate for a scsi_command. 621 * 622 * Arguments: cmd - command that we are bailing. 623 * 624 * Lock status: Assumed that no lock is held upon entry. 625 * 626 * Returns: Nothing 627 * 628 * Notes: In the event that an upper level driver rejects a 629 * command, we must release resources allocated during 630 * the __init_io() function. Primarily this would involve 631 * the scatter-gather table. 632 */ 633 static void scsi_release_buffers(struct scsi_cmnd *cmd) 634 { 635 if (cmd->sdb.table.nents) 636 sg_free_table_chained(&cmd->sdb.table, false); 637 638 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 639 640 if (scsi_prot_sg_count(cmd)) 641 sg_free_table_chained(&cmd->prot_sdb->table, false); 642 } 643 644 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 645 { 646 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 647 648 sg_free_table_chained(&bidi_sdb->table, false); 649 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 650 cmd->request->next_rq->special = NULL; 651 } 652 653 static bool scsi_end_request(struct request *req, blk_status_t error, 654 unsigned int bytes, unsigned int bidi_bytes) 655 { 656 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 657 struct scsi_device *sdev = cmd->device; 658 struct request_queue *q = sdev->request_queue; 659 660 if (blk_update_request(req, error, bytes)) 661 return true; 662 663 /* Bidi request must be completed as a whole */ 664 if (unlikely(bidi_bytes) && 665 blk_update_request(req->next_rq, error, bidi_bytes)) 666 return true; 667 668 if (blk_queue_add_random(q)) 669 add_disk_randomness(req->rq_disk); 670 671 if (!blk_rq_is_scsi(req)) { 672 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 673 cmd->flags &= ~SCMD_INITIALIZED; 674 } 675 676 if (req->mq_ctx) { 677 /* 678 * In the MQ case the command gets freed by __blk_mq_end_request, 679 * so we have to do all cleanup that depends on it earlier. 680 * 681 * We also can't kick the queues from irq context, so we 682 * will have to defer it to a workqueue. 683 */ 684 scsi_mq_uninit_cmd(cmd); 685 686 __blk_mq_end_request(req, error); 687 688 if (scsi_target(sdev)->single_lun || 689 !list_empty(&sdev->host->starved_list)) 690 kblockd_schedule_work(&sdev->requeue_work); 691 else 692 blk_mq_run_hw_queues(q, true); 693 } else { 694 unsigned long flags; 695 696 if (bidi_bytes) 697 scsi_release_bidi_buffers(cmd); 698 scsi_release_buffers(cmd); 699 scsi_put_command(cmd); 700 701 spin_lock_irqsave(q->queue_lock, flags); 702 blk_finish_request(req, error); 703 spin_unlock_irqrestore(q->queue_lock, flags); 704 705 scsi_run_queue(q); 706 } 707 708 put_device(&sdev->sdev_gendev); 709 return false; 710 } 711 712 /** 713 * __scsi_error_from_host_byte - translate SCSI error code into errno 714 * @cmd: SCSI command (unused) 715 * @result: scsi error code 716 * 717 * Translate SCSI error code into block errors. 718 */ 719 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 720 int result) 721 { 722 switch (host_byte(result)) { 723 case DID_TRANSPORT_FAILFAST: 724 return BLK_STS_TRANSPORT; 725 case DID_TARGET_FAILURE: 726 set_host_byte(cmd, DID_OK); 727 return BLK_STS_TARGET; 728 case DID_NEXUS_FAILURE: 729 return BLK_STS_NEXUS; 730 case DID_ALLOC_FAILURE: 731 set_host_byte(cmd, DID_OK); 732 return BLK_STS_NOSPC; 733 case DID_MEDIUM_ERROR: 734 set_host_byte(cmd, DID_OK); 735 return BLK_STS_MEDIUM; 736 default: 737 return BLK_STS_IOERR; 738 } 739 } 740 741 /* 742 * Function: scsi_io_completion() 743 * 744 * Purpose: Completion processing for block device I/O requests. 745 * 746 * Arguments: cmd - command that is finished. 747 * 748 * Lock status: Assumed that no lock is held upon entry. 749 * 750 * Returns: Nothing 751 * 752 * Notes: We will finish off the specified number of sectors. If we 753 * are done, the command block will be released and the queue 754 * function will be goosed. If we are not done then we have to 755 * figure out what to do next: 756 * 757 * a) We can call scsi_requeue_command(). The request 758 * will be unprepared and put back on the queue. Then 759 * a new command will be created for it. This should 760 * be used if we made forward progress, or if we want 761 * to switch from READ(10) to READ(6) for example. 762 * 763 * b) We can call __scsi_queue_insert(). The request will 764 * be put back on the queue and retried using the same 765 * command as before, possibly after a delay. 766 * 767 * c) We can call scsi_end_request() with -EIO to fail 768 * the remainder of the request. 769 */ 770 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 771 { 772 int result = cmd->result; 773 struct request_queue *q = cmd->device->request_queue; 774 struct request *req = cmd->request; 775 blk_status_t error = BLK_STS_OK; 776 struct scsi_sense_hdr sshdr; 777 bool sense_valid = false; 778 int sense_deferred = 0, level = 0; 779 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 780 ACTION_DELAYED_RETRY} action; 781 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 782 783 if (result) { 784 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 785 if (sense_valid) 786 sense_deferred = scsi_sense_is_deferred(&sshdr); 787 } 788 789 if (blk_rq_is_passthrough(req)) { 790 if (result) { 791 if (sense_valid) { 792 /* 793 * SG_IO wants current and deferred errors 794 */ 795 scsi_req(req)->sense_len = 796 min(8 + cmd->sense_buffer[7], 797 SCSI_SENSE_BUFFERSIZE); 798 } 799 if (!sense_deferred) 800 error = __scsi_error_from_host_byte(cmd, result); 801 } 802 /* 803 * __scsi_error_from_host_byte may have reset the host_byte 804 */ 805 scsi_req(req)->result = cmd->result; 806 scsi_req(req)->resid_len = scsi_get_resid(cmd); 807 808 if (scsi_bidi_cmnd(cmd)) { 809 /* 810 * Bidi commands Must be complete as a whole, 811 * both sides at once. 812 */ 813 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 814 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 815 blk_rq_bytes(req->next_rq))) 816 BUG(); 817 return; 818 } 819 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 820 /* 821 * Flush commands do not transfers any data, and thus cannot use 822 * good_bytes != blk_rq_bytes(req) as the signal for an error. 823 * This sets the error explicitly for the problem case. 824 */ 825 error = __scsi_error_from_host_byte(cmd, result); 826 } 827 828 /* no bidi support for !blk_rq_is_passthrough yet */ 829 BUG_ON(blk_bidi_rq(req)); 830 831 /* 832 * Next deal with any sectors which we were able to correctly 833 * handle. 834 */ 835 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 836 "%u sectors total, %d bytes done.\n", 837 blk_rq_sectors(req), good_bytes)); 838 839 /* 840 * Recovered errors need reporting, but they're always treated as 841 * success, so fiddle the result code here. For passthrough requests 842 * we already took a copy of the original into sreq->result which 843 * is what gets returned to the user 844 */ 845 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 846 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 847 * print since caller wants ATA registers. Only occurs on 848 * SCSI ATA PASS_THROUGH commands when CK_COND=1 849 */ 850 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 851 ; 852 else if (!(req->rq_flags & RQF_QUIET)) 853 scsi_print_sense(cmd); 854 result = 0; 855 /* for passthrough error may be set */ 856 error = BLK_STS_OK; 857 } 858 859 /* 860 * special case: failed zero length commands always need to 861 * drop down into the retry code. Otherwise, if we finished 862 * all bytes in the request we are done now. 863 */ 864 if (!(blk_rq_bytes(req) == 0 && error) && 865 !scsi_end_request(req, error, good_bytes, 0)) 866 return; 867 868 /* 869 * Kill remainder if no retrys. 870 */ 871 if (error && scsi_noretry_cmd(cmd)) { 872 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 873 BUG(); 874 return; 875 } 876 877 /* 878 * If there had been no error, but we have leftover bytes in the 879 * requeues just queue the command up again. 880 */ 881 if (result == 0) 882 goto requeue; 883 884 error = __scsi_error_from_host_byte(cmd, result); 885 886 if (host_byte(result) == DID_RESET) { 887 /* Third party bus reset or reset for error recovery 888 * reasons. Just retry the command and see what 889 * happens. 890 */ 891 action = ACTION_RETRY; 892 } else if (sense_valid && !sense_deferred) { 893 switch (sshdr.sense_key) { 894 case UNIT_ATTENTION: 895 if (cmd->device->removable) { 896 /* Detected disc change. Set a bit 897 * and quietly refuse further access. 898 */ 899 cmd->device->changed = 1; 900 action = ACTION_FAIL; 901 } else { 902 /* Must have been a power glitch, or a 903 * bus reset. Could not have been a 904 * media change, so we just retry the 905 * command and see what happens. 906 */ 907 action = ACTION_RETRY; 908 } 909 break; 910 case ILLEGAL_REQUEST: 911 /* If we had an ILLEGAL REQUEST returned, then 912 * we may have performed an unsupported 913 * command. The only thing this should be 914 * would be a ten byte read where only a six 915 * byte read was supported. Also, on a system 916 * where READ CAPACITY failed, we may have 917 * read past the end of the disk. 918 */ 919 if ((cmd->device->use_10_for_rw && 920 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 921 (cmd->cmnd[0] == READ_10 || 922 cmd->cmnd[0] == WRITE_10)) { 923 /* This will issue a new 6-byte command. */ 924 cmd->device->use_10_for_rw = 0; 925 action = ACTION_REPREP; 926 } else if (sshdr.asc == 0x10) /* DIX */ { 927 action = ACTION_FAIL; 928 error = BLK_STS_PROTECTION; 929 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 930 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 931 action = ACTION_FAIL; 932 error = BLK_STS_TARGET; 933 } else 934 action = ACTION_FAIL; 935 break; 936 case ABORTED_COMMAND: 937 action = ACTION_FAIL; 938 if (sshdr.asc == 0x10) /* DIF */ 939 error = BLK_STS_PROTECTION; 940 break; 941 case NOT_READY: 942 /* If the device is in the process of becoming 943 * ready, or has a temporary blockage, retry. 944 */ 945 if (sshdr.asc == 0x04) { 946 switch (sshdr.ascq) { 947 case 0x01: /* becoming ready */ 948 case 0x04: /* format in progress */ 949 case 0x05: /* rebuild in progress */ 950 case 0x06: /* recalculation in progress */ 951 case 0x07: /* operation in progress */ 952 case 0x08: /* Long write in progress */ 953 case 0x09: /* self test in progress */ 954 case 0x14: /* space allocation in progress */ 955 action = ACTION_DELAYED_RETRY; 956 break; 957 default: 958 action = ACTION_FAIL; 959 break; 960 } 961 } else 962 action = ACTION_FAIL; 963 break; 964 case VOLUME_OVERFLOW: 965 /* See SSC3rXX or current. */ 966 action = ACTION_FAIL; 967 break; 968 default: 969 action = ACTION_FAIL; 970 break; 971 } 972 } else 973 action = ACTION_FAIL; 974 975 if (action != ACTION_FAIL && 976 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 977 action = ACTION_FAIL; 978 979 switch (action) { 980 case ACTION_FAIL: 981 /* Give up and fail the remainder of the request */ 982 if (!(req->rq_flags & RQF_QUIET)) { 983 static DEFINE_RATELIMIT_STATE(_rs, 984 DEFAULT_RATELIMIT_INTERVAL, 985 DEFAULT_RATELIMIT_BURST); 986 987 if (unlikely(scsi_logging_level)) 988 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 989 SCSI_LOG_MLCOMPLETE_BITS); 990 991 /* 992 * if logging is enabled the failure will be printed 993 * in scsi_log_completion(), so avoid duplicate messages 994 */ 995 if (!level && __ratelimit(&_rs)) { 996 scsi_print_result(cmd, NULL, FAILED); 997 if (driver_byte(result) & DRIVER_SENSE) 998 scsi_print_sense(cmd); 999 scsi_print_command(cmd); 1000 } 1001 } 1002 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1003 return; 1004 /*FALLTHRU*/ 1005 case ACTION_REPREP: 1006 requeue: 1007 /* Unprep the request and put it back at the head of the queue. 1008 * A new command will be prepared and issued. 1009 */ 1010 if (q->mq_ops) { 1011 scsi_mq_requeue_cmd(cmd); 1012 } else { 1013 scsi_release_buffers(cmd); 1014 scsi_requeue_command(q, cmd); 1015 } 1016 break; 1017 case ACTION_RETRY: 1018 /* Retry the same command immediately */ 1019 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 1020 break; 1021 case ACTION_DELAYED_RETRY: 1022 /* Retry the same command after a delay */ 1023 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 1024 break; 1025 } 1026 } 1027 1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1029 { 1030 int count; 1031 1032 /* 1033 * If sg table allocation fails, requeue request later. 1034 */ 1035 if (unlikely(sg_alloc_table_chained(&sdb->table, 1036 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1037 return BLKPREP_DEFER; 1038 1039 /* 1040 * Next, walk the list, and fill in the addresses and sizes of 1041 * each segment. 1042 */ 1043 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1044 BUG_ON(count > sdb->table.nents); 1045 sdb->table.nents = count; 1046 sdb->length = blk_rq_payload_bytes(req); 1047 return BLKPREP_OK; 1048 } 1049 1050 /* 1051 * Function: scsi_init_io() 1052 * 1053 * Purpose: SCSI I/O initialize function. 1054 * 1055 * Arguments: cmd - Command descriptor we wish to initialize 1056 * 1057 * Returns: 0 on success 1058 * BLKPREP_DEFER if the failure is retryable 1059 * BLKPREP_KILL if the failure is fatal 1060 */ 1061 int scsi_init_io(struct scsi_cmnd *cmd) 1062 { 1063 struct scsi_device *sdev = cmd->device; 1064 struct request *rq = cmd->request; 1065 bool is_mq = (rq->mq_ctx != NULL); 1066 int error = BLKPREP_KILL; 1067 1068 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1069 goto err_exit; 1070 1071 error = scsi_init_sgtable(rq, &cmd->sdb); 1072 if (error) 1073 goto err_exit; 1074 1075 if (blk_bidi_rq(rq)) { 1076 if (!rq->q->mq_ops) { 1077 struct scsi_data_buffer *bidi_sdb = 1078 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1079 if (!bidi_sdb) { 1080 error = BLKPREP_DEFER; 1081 goto err_exit; 1082 } 1083 1084 rq->next_rq->special = bidi_sdb; 1085 } 1086 1087 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1088 if (error) 1089 goto err_exit; 1090 } 1091 1092 if (blk_integrity_rq(rq)) { 1093 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1094 int ivecs, count; 1095 1096 if (prot_sdb == NULL) { 1097 /* 1098 * This can happen if someone (e.g. multipath) 1099 * queues a command to a device on an adapter 1100 * that does not support DIX. 1101 */ 1102 WARN_ON_ONCE(1); 1103 error = BLKPREP_KILL; 1104 goto err_exit; 1105 } 1106 1107 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1108 1109 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1110 prot_sdb->table.sgl)) { 1111 error = BLKPREP_DEFER; 1112 goto err_exit; 1113 } 1114 1115 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1116 prot_sdb->table.sgl); 1117 BUG_ON(unlikely(count > ivecs)); 1118 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1119 1120 cmd->prot_sdb = prot_sdb; 1121 cmd->prot_sdb->table.nents = count; 1122 } 1123 1124 return BLKPREP_OK; 1125 err_exit: 1126 if (is_mq) { 1127 scsi_mq_free_sgtables(cmd); 1128 } else { 1129 scsi_release_buffers(cmd); 1130 cmd->request->special = NULL; 1131 scsi_put_command(cmd); 1132 put_device(&sdev->sdev_gendev); 1133 } 1134 return error; 1135 } 1136 EXPORT_SYMBOL(scsi_init_io); 1137 1138 /** 1139 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1140 * @rq: Request associated with the SCSI command to be initialized. 1141 * 1142 * This function initializes the members of struct scsi_cmnd that must be 1143 * initialized before request processing starts and that won't be 1144 * reinitialized if a SCSI command is requeued. 1145 * 1146 * Called from inside blk_get_request() for pass-through requests and from 1147 * inside scsi_init_command() for filesystem requests. 1148 */ 1149 static void scsi_initialize_rq(struct request *rq) 1150 { 1151 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1152 1153 scsi_req_init(&cmd->req); 1154 cmd->jiffies_at_alloc = jiffies; 1155 cmd->retries = 0; 1156 } 1157 1158 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1159 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1160 { 1161 struct scsi_device *sdev = cmd->device; 1162 struct Scsi_Host *shost = sdev->host; 1163 unsigned long flags; 1164 1165 if (shost->use_cmd_list) { 1166 spin_lock_irqsave(&sdev->list_lock, flags); 1167 list_add_tail(&cmd->list, &sdev->cmd_list); 1168 spin_unlock_irqrestore(&sdev->list_lock, flags); 1169 } 1170 } 1171 1172 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1173 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1174 { 1175 struct scsi_device *sdev = cmd->device; 1176 struct Scsi_Host *shost = sdev->host; 1177 unsigned long flags; 1178 1179 if (shost->use_cmd_list) { 1180 spin_lock_irqsave(&sdev->list_lock, flags); 1181 BUG_ON(list_empty(&cmd->list)); 1182 list_del_init(&cmd->list); 1183 spin_unlock_irqrestore(&sdev->list_lock, flags); 1184 } 1185 } 1186 1187 /* Called after a request has been started. */ 1188 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1189 { 1190 void *buf = cmd->sense_buffer; 1191 void *prot = cmd->prot_sdb; 1192 struct request *rq = blk_mq_rq_from_pdu(cmd); 1193 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1194 unsigned long jiffies_at_alloc; 1195 int retries; 1196 1197 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1198 flags |= SCMD_INITIALIZED; 1199 scsi_initialize_rq(rq); 1200 } 1201 1202 jiffies_at_alloc = cmd->jiffies_at_alloc; 1203 retries = cmd->retries; 1204 /* zero out the cmd, except for the embedded scsi_request */ 1205 memset((char *)cmd + sizeof(cmd->req), 0, 1206 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1207 1208 cmd->device = dev; 1209 cmd->sense_buffer = buf; 1210 cmd->prot_sdb = prot; 1211 cmd->flags = flags; 1212 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1213 cmd->jiffies_at_alloc = jiffies_at_alloc; 1214 cmd->retries = retries; 1215 1216 scsi_add_cmd_to_list(cmd); 1217 } 1218 1219 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1220 { 1221 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1222 1223 /* 1224 * Passthrough requests may transfer data, in which case they must 1225 * a bio attached to them. Or they might contain a SCSI command 1226 * that does not transfer data, in which case they may optionally 1227 * submit a request without an attached bio. 1228 */ 1229 if (req->bio) { 1230 int ret = scsi_init_io(cmd); 1231 if (unlikely(ret)) 1232 return ret; 1233 } else { 1234 BUG_ON(blk_rq_bytes(req)); 1235 1236 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1237 } 1238 1239 cmd->cmd_len = scsi_req(req)->cmd_len; 1240 cmd->cmnd = scsi_req(req)->cmd; 1241 cmd->transfersize = blk_rq_bytes(req); 1242 cmd->allowed = scsi_req(req)->retries; 1243 return BLKPREP_OK; 1244 } 1245 1246 /* 1247 * Setup a normal block command. These are simple request from filesystems 1248 * that still need to be translated to SCSI CDBs from the ULD. 1249 */ 1250 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1251 { 1252 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1253 1254 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1255 int ret = sdev->handler->prep_fn(sdev, req); 1256 if (ret != BLKPREP_OK) 1257 return ret; 1258 } 1259 1260 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1261 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1262 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1263 } 1264 1265 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1266 { 1267 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1268 1269 if (!blk_rq_bytes(req)) 1270 cmd->sc_data_direction = DMA_NONE; 1271 else if (rq_data_dir(req) == WRITE) 1272 cmd->sc_data_direction = DMA_TO_DEVICE; 1273 else 1274 cmd->sc_data_direction = DMA_FROM_DEVICE; 1275 1276 if (blk_rq_is_scsi(req)) 1277 return scsi_setup_scsi_cmnd(sdev, req); 1278 else 1279 return scsi_setup_fs_cmnd(sdev, req); 1280 } 1281 1282 static int 1283 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1284 { 1285 int ret = BLKPREP_OK; 1286 1287 /* 1288 * If the device is not in running state we will reject some 1289 * or all commands. 1290 */ 1291 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1292 switch (sdev->sdev_state) { 1293 case SDEV_OFFLINE: 1294 case SDEV_TRANSPORT_OFFLINE: 1295 /* 1296 * If the device is offline we refuse to process any 1297 * commands. The device must be brought online 1298 * before trying any recovery commands. 1299 */ 1300 sdev_printk(KERN_ERR, sdev, 1301 "rejecting I/O to offline device\n"); 1302 ret = BLKPREP_KILL; 1303 break; 1304 case SDEV_DEL: 1305 /* 1306 * If the device is fully deleted, we refuse to 1307 * process any commands as well. 1308 */ 1309 sdev_printk(KERN_ERR, sdev, 1310 "rejecting I/O to dead device\n"); 1311 ret = BLKPREP_KILL; 1312 break; 1313 case SDEV_BLOCK: 1314 case SDEV_CREATED_BLOCK: 1315 ret = BLKPREP_DEFER; 1316 break; 1317 case SDEV_QUIESCE: 1318 /* 1319 * If the devices is blocked we defer normal commands. 1320 */ 1321 if (req && !(req->rq_flags & RQF_PREEMPT)) 1322 ret = BLKPREP_DEFER; 1323 break; 1324 default: 1325 /* 1326 * For any other not fully online state we only allow 1327 * special commands. In particular any user initiated 1328 * command is not allowed. 1329 */ 1330 if (req && !(req->rq_flags & RQF_PREEMPT)) 1331 ret = BLKPREP_KILL; 1332 break; 1333 } 1334 } 1335 return ret; 1336 } 1337 1338 static int 1339 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1340 { 1341 struct scsi_device *sdev = q->queuedata; 1342 1343 switch (ret) { 1344 case BLKPREP_KILL: 1345 case BLKPREP_INVALID: 1346 scsi_req(req)->result = DID_NO_CONNECT << 16; 1347 /* release the command and kill it */ 1348 if (req->special) { 1349 struct scsi_cmnd *cmd = req->special; 1350 scsi_release_buffers(cmd); 1351 scsi_put_command(cmd); 1352 put_device(&sdev->sdev_gendev); 1353 req->special = NULL; 1354 } 1355 break; 1356 case BLKPREP_DEFER: 1357 /* 1358 * If we defer, the blk_peek_request() returns NULL, but the 1359 * queue must be restarted, so we schedule a callback to happen 1360 * shortly. 1361 */ 1362 if (atomic_read(&sdev->device_busy) == 0) 1363 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1364 break; 1365 default: 1366 req->rq_flags |= RQF_DONTPREP; 1367 } 1368 1369 return ret; 1370 } 1371 1372 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1373 { 1374 struct scsi_device *sdev = q->queuedata; 1375 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1376 int ret; 1377 1378 ret = scsi_prep_state_check(sdev, req); 1379 if (ret != BLKPREP_OK) 1380 goto out; 1381 1382 if (!req->special) { 1383 /* Bail if we can't get a reference to the device */ 1384 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1385 ret = BLKPREP_DEFER; 1386 goto out; 1387 } 1388 1389 scsi_init_command(sdev, cmd); 1390 req->special = cmd; 1391 } 1392 1393 cmd->tag = req->tag; 1394 cmd->request = req; 1395 cmd->prot_op = SCSI_PROT_NORMAL; 1396 1397 ret = scsi_setup_cmnd(sdev, req); 1398 out: 1399 return scsi_prep_return(q, req, ret); 1400 } 1401 1402 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1403 { 1404 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1405 } 1406 1407 /* 1408 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1409 * return 0. 1410 * 1411 * Called with the queue_lock held. 1412 */ 1413 static inline int scsi_dev_queue_ready(struct request_queue *q, 1414 struct scsi_device *sdev) 1415 { 1416 unsigned int busy; 1417 1418 busy = atomic_inc_return(&sdev->device_busy) - 1; 1419 if (atomic_read(&sdev->device_blocked)) { 1420 if (busy) 1421 goto out_dec; 1422 1423 /* 1424 * unblock after device_blocked iterates to zero 1425 */ 1426 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1427 /* 1428 * For the MQ case we take care of this in the caller. 1429 */ 1430 if (!q->mq_ops) 1431 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1432 goto out_dec; 1433 } 1434 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1435 "unblocking device at zero depth\n")); 1436 } 1437 1438 if (busy >= sdev->queue_depth) 1439 goto out_dec; 1440 1441 return 1; 1442 out_dec: 1443 atomic_dec(&sdev->device_busy); 1444 return 0; 1445 } 1446 1447 /* 1448 * scsi_target_queue_ready: checks if there we can send commands to target 1449 * @sdev: scsi device on starget to check. 1450 */ 1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1452 struct scsi_device *sdev) 1453 { 1454 struct scsi_target *starget = scsi_target(sdev); 1455 unsigned int busy; 1456 1457 if (starget->single_lun) { 1458 spin_lock_irq(shost->host_lock); 1459 if (starget->starget_sdev_user && 1460 starget->starget_sdev_user != sdev) { 1461 spin_unlock_irq(shost->host_lock); 1462 return 0; 1463 } 1464 starget->starget_sdev_user = sdev; 1465 spin_unlock_irq(shost->host_lock); 1466 } 1467 1468 if (starget->can_queue <= 0) 1469 return 1; 1470 1471 busy = atomic_inc_return(&starget->target_busy) - 1; 1472 if (atomic_read(&starget->target_blocked) > 0) { 1473 if (busy) 1474 goto starved; 1475 1476 /* 1477 * unblock after target_blocked iterates to zero 1478 */ 1479 if (atomic_dec_return(&starget->target_blocked) > 0) 1480 goto out_dec; 1481 1482 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1483 "unblocking target at zero depth\n")); 1484 } 1485 1486 if (busy >= starget->can_queue) 1487 goto starved; 1488 1489 return 1; 1490 1491 starved: 1492 spin_lock_irq(shost->host_lock); 1493 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1494 spin_unlock_irq(shost->host_lock); 1495 out_dec: 1496 if (starget->can_queue > 0) 1497 atomic_dec(&starget->target_busy); 1498 return 0; 1499 } 1500 1501 /* 1502 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1503 * return 0. We must end up running the queue again whenever 0 is 1504 * returned, else IO can hang. 1505 */ 1506 static inline int scsi_host_queue_ready(struct request_queue *q, 1507 struct Scsi_Host *shost, 1508 struct scsi_device *sdev) 1509 { 1510 unsigned int busy; 1511 1512 if (scsi_host_in_recovery(shost)) 1513 return 0; 1514 1515 busy = atomic_inc_return(&shost->host_busy) - 1; 1516 if (atomic_read(&shost->host_blocked) > 0) { 1517 if (busy) 1518 goto starved; 1519 1520 /* 1521 * unblock after host_blocked iterates to zero 1522 */ 1523 if (atomic_dec_return(&shost->host_blocked) > 0) 1524 goto out_dec; 1525 1526 SCSI_LOG_MLQUEUE(3, 1527 shost_printk(KERN_INFO, shost, 1528 "unblocking host at zero depth\n")); 1529 } 1530 1531 if (shost->can_queue > 0 && busy >= shost->can_queue) 1532 goto starved; 1533 if (shost->host_self_blocked) 1534 goto starved; 1535 1536 /* We're OK to process the command, so we can't be starved */ 1537 if (!list_empty(&sdev->starved_entry)) { 1538 spin_lock_irq(shost->host_lock); 1539 if (!list_empty(&sdev->starved_entry)) 1540 list_del_init(&sdev->starved_entry); 1541 spin_unlock_irq(shost->host_lock); 1542 } 1543 1544 return 1; 1545 1546 starved: 1547 spin_lock_irq(shost->host_lock); 1548 if (list_empty(&sdev->starved_entry)) 1549 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1550 spin_unlock_irq(shost->host_lock); 1551 out_dec: 1552 scsi_dec_host_busy(shost); 1553 return 0; 1554 } 1555 1556 /* 1557 * Busy state exporting function for request stacking drivers. 1558 * 1559 * For efficiency, no lock is taken to check the busy state of 1560 * shost/starget/sdev, since the returned value is not guaranteed and 1561 * may be changed after request stacking drivers call the function, 1562 * regardless of taking lock or not. 1563 * 1564 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1565 * needs to return 'not busy'. Otherwise, request stacking drivers 1566 * may hold requests forever. 1567 */ 1568 static int scsi_lld_busy(struct request_queue *q) 1569 { 1570 struct scsi_device *sdev = q->queuedata; 1571 struct Scsi_Host *shost; 1572 1573 if (blk_queue_dying(q)) 1574 return 0; 1575 1576 shost = sdev->host; 1577 1578 /* 1579 * Ignore host/starget busy state. 1580 * Since block layer does not have a concept of fairness across 1581 * multiple queues, congestion of host/starget needs to be handled 1582 * in SCSI layer. 1583 */ 1584 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1585 return 1; 1586 1587 return 0; 1588 } 1589 1590 /* 1591 * Kill a request for a dead device 1592 */ 1593 static void scsi_kill_request(struct request *req, struct request_queue *q) 1594 { 1595 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1596 struct scsi_device *sdev; 1597 struct scsi_target *starget; 1598 struct Scsi_Host *shost; 1599 1600 blk_start_request(req); 1601 1602 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1603 1604 sdev = cmd->device; 1605 starget = scsi_target(sdev); 1606 shost = sdev->host; 1607 scsi_init_cmd_errh(cmd); 1608 cmd->result = DID_NO_CONNECT << 16; 1609 atomic_inc(&cmd->device->iorequest_cnt); 1610 1611 /* 1612 * SCSI request completion path will do scsi_device_unbusy(), 1613 * bump busy counts. To bump the counters, we need to dance 1614 * with the locks as normal issue path does. 1615 */ 1616 atomic_inc(&sdev->device_busy); 1617 atomic_inc(&shost->host_busy); 1618 if (starget->can_queue > 0) 1619 atomic_inc(&starget->target_busy); 1620 1621 blk_complete_request(req); 1622 } 1623 1624 static void scsi_softirq_done(struct request *rq) 1625 { 1626 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1627 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1628 int disposition; 1629 1630 INIT_LIST_HEAD(&cmd->eh_entry); 1631 1632 atomic_inc(&cmd->device->iodone_cnt); 1633 if (cmd->result) 1634 atomic_inc(&cmd->device->ioerr_cnt); 1635 1636 disposition = scsi_decide_disposition(cmd); 1637 if (disposition != SUCCESS && 1638 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1639 sdev_printk(KERN_ERR, cmd->device, 1640 "timing out command, waited %lus\n", 1641 wait_for/HZ); 1642 disposition = SUCCESS; 1643 } 1644 1645 scsi_log_completion(cmd, disposition); 1646 1647 switch (disposition) { 1648 case SUCCESS: 1649 scsi_finish_command(cmd); 1650 break; 1651 case NEEDS_RETRY: 1652 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1653 break; 1654 case ADD_TO_MLQUEUE: 1655 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1656 break; 1657 default: 1658 scsi_eh_scmd_add(cmd); 1659 break; 1660 } 1661 } 1662 1663 /** 1664 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1665 * @cmd: command block we are dispatching. 1666 * 1667 * Return: nonzero return request was rejected and device's queue needs to be 1668 * plugged. 1669 */ 1670 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1671 { 1672 struct Scsi_Host *host = cmd->device->host; 1673 int rtn = 0; 1674 1675 atomic_inc(&cmd->device->iorequest_cnt); 1676 1677 /* check if the device is still usable */ 1678 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1679 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1680 * returns an immediate error upwards, and signals 1681 * that the device is no longer present */ 1682 cmd->result = DID_NO_CONNECT << 16; 1683 goto done; 1684 } 1685 1686 /* Check to see if the scsi lld made this device blocked. */ 1687 if (unlikely(scsi_device_blocked(cmd->device))) { 1688 /* 1689 * in blocked state, the command is just put back on 1690 * the device queue. The suspend state has already 1691 * blocked the queue so future requests should not 1692 * occur until the device transitions out of the 1693 * suspend state. 1694 */ 1695 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1696 "queuecommand : device blocked\n")); 1697 return SCSI_MLQUEUE_DEVICE_BUSY; 1698 } 1699 1700 /* Store the LUN value in cmnd, if needed. */ 1701 if (cmd->device->lun_in_cdb) 1702 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1703 (cmd->device->lun << 5 & 0xe0); 1704 1705 scsi_log_send(cmd); 1706 1707 /* 1708 * Before we queue this command, check if the command 1709 * length exceeds what the host adapter can handle. 1710 */ 1711 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1712 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1713 "queuecommand : command too long. " 1714 "cdb_size=%d host->max_cmd_len=%d\n", 1715 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1716 cmd->result = (DID_ABORT << 16); 1717 goto done; 1718 } 1719 1720 if (unlikely(host->shost_state == SHOST_DEL)) { 1721 cmd->result = (DID_NO_CONNECT << 16); 1722 goto done; 1723 1724 } 1725 1726 trace_scsi_dispatch_cmd_start(cmd); 1727 rtn = host->hostt->queuecommand(host, cmd); 1728 if (rtn) { 1729 trace_scsi_dispatch_cmd_error(cmd, rtn); 1730 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1731 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1732 rtn = SCSI_MLQUEUE_HOST_BUSY; 1733 1734 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1735 "queuecommand : request rejected\n")); 1736 } 1737 1738 return rtn; 1739 done: 1740 cmd->scsi_done(cmd); 1741 return 0; 1742 } 1743 1744 /** 1745 * scsi_done - Invoke completion on finished SCSI command. 1746 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1747 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1748 * 1749 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1750 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1751 * calls blk_complete_request() for further processing. 1752 * 1753 * This function is interrupt context safe. 1754 */ 1755 static void scsi_done(struct scsi_cmnd *cmd) 1756 { 1757 trace_scsi_dispatch_cmd_done(cmd); 1758 blk_complete_request(cmd->request); 1759 } 1760 1761 /* 1762 * Function: scsi_request_fn() 1763 * 1764 * Purpose: Main strategy routine for SCSI. 1765 * 1766 * Arguments: q - Pointer to actual queue. 1767 * 1768 * Returns: Nothing 1769 * 1770 * Lock status: request queue lock assumed to be held when called. 1771 * 1772 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1773 * protection for ZBC disks. 1774 */ 1775 static void scsi_request_fn(struct request_queue *q) 1776 __releases(q->queue_lock) 1777 __acquires(q->queue_lock) 1778 { 1779 struct scsi_device *sdev = q->queuedata; 1780 struct Scsi_Host *shost; 1781 struct scsi_cmnd *cmd; 1782 struct request *req; 1783 1784 /* 1785 * To start with, we keep looping until the queue is empty, or until 1786 * the host is no longer able to accept any more requests. 1787 */ 1788 shost = sdev->host; 1789 for (;;) { 1790 int rtn; 1791 /* 1792 * get next queueable request. We do this early to make sure 1793 * that the request is fully prepared even if we cannot 1794 * accept it. 1795 */ 1796 req = blk_peek_request(q); 1797 if (!req) 1798 break; 1799 1800 if (unlikely(!scsi_device_online(sdev))) { 1801 sdev_printk(KERN_ERR, sdev, 1802 "rejecting I/O to offline device\n"); 1803 scsi_kill_request(req, q); 1804 continue; 1805 } 1806 1807 if (!scsi_dev_queue_ready(q, sdev)) 1808 break; 1809 1810 /* 1811 * Remove the request from the request list. 1812 */ 1813 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1814 blk_start_request(req); 1815 1816 spin_unlock_irq(q->queue_lock); 1817 cmd = blk_mq_rq_to_pdu(req); 1818 if (cmd != req->special) { 1819 printk(KERN_CRIT "impossible request in %s.\n" 1820 "please mail a stack trace to " 1821 "linux-scsi@vger.kernel.org\n", 1822 __func__); 1823 blk_dump_rq_flags(req, "foo"); 1824 BUG(); 1825 } 1826 1827 /* 1828 * We hit this when the driver is using a host wide 1829 * tag map. For device level tag maps the queue_depth check 1830 * in the device ready fn would prevent us from trying 1831 * to allocate a tag. Since the map is a shared host resource 1832 * we add the dev to the starved list so it eventually gets 1833 * a run when a tag is freed. 1834 */ 1835 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1836 spin_lock_irq(shost->host_lock); 1837 if (list_empty(&sdev->starved_entry)) 1838 list_add_tail(&sdev->starved_entry, 1839 &shost->starved_list); 1840 spin_unlock_irq(shost->host_lock); 1841 goto not_ready; 1842 } 1843 1844 if (!scsi_target_queue_ready(shost, sdev)) 1845 goto not_ready; 1846 1847 if (!scsi_host_queue_ready(q, shost, sdev)) 1848 goto host_not_ready; 1849 1850 if (sdev->simple_tags) 1851 cmd->flags |= SCMD_TAGGED; 1852 else 1853 cmd->flags &= ~SCMD_TAGGED; 1854 1855 /* 1856 * Finally, initialize any error handling parameters, and set up 1857 * the timers for timeouts. 1858 */ 1859 scsi_init_cmd_errh(cmd); 1860 1861 /* 1862 * Dispatch the command to the low-level driver. 1863 */ 1864 cmd->scsi_done = scsi_done; 1865 rtn = scsi_dispatch_cmd(cmd); 1866 if (rtn) { 1867 scsi_queue_insert(cmd, rtn); 1868 spin_lock_irq(q->queue_lock); 1869 goto out_delay; 1870 } 1871 spin_lock_irq(q->queue_lock); 1872 } 1873 1874 return; 1875 1876 host_not_ready: 1877 if (scsi_target(sdev)->can_queue > 0) 1878 atomic_dec(&scsi_target(sdev)->target_busy); 1879 not_ready: 1880 /* 1881 * lock q, handle tag, requeue req, and decrement device_busy. We 1882 * must return with queue_lock held. 1883 * 1884 * Decrementing device_busy without checking it is OK, as all such 1885 * cases (host limits or settings) should run the queue at some 1886 * later time. 1887 */ 1888 spin_lock_irq(q->queue_lock); 1889 blk_requeue_request(q, req); 1890 atomic_dec(&sdev->device_busy); 1891 out_delay: 1892 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1893 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1894 } 1895 1896 static inline blk_status_t prep_to_mq(int ret) 1897 { 1898 switch (ret) { 1899 case BLKPREP_OK: 1900 return BLK_STS_OK; 1901 case BLKPREP_DEFER: 1902 return BLK_STS_RESOURCE; 1903 default: 1904 return BLK_STS_IOERR; 1905 } 1906 } 1907 1908 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1909 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1910 { 1911 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1912 sizeof(struct scatterlist); 1913 } 1914 1915 static int scsi_mq_prep_fn(struct request *req) 1916 { 1917 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1918 struct scsi_device *sdev = req->q->queuedata; 1919 struct Scsi_Host *shost = sdev->host; 1920 struct scatterlist *sg; 1921 1922 scsi_init_command(sdev, cmd); 1923 1924 req->special = cmd; 1925 1926 cmd->request = req; 1927 1928 cmd->tag = req->tag; 1929 cmd->prot_op = SCSI_PROT_NORMAL; 1930 1931 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1932 cmd->sdb.table.sgl = sg; 1933 1934 if (scsi_host_get_prot(shost)) { 1935 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1936 1937 cmd->prot_sdb->table.sgl = 1938 (struct scatterlist *)(cmd->prot_sdb + 1); 1939 } 1940 1941 if (blk_bidi_rq(req)) { 1942 struct request *next_rq = req->next_rq; 1943 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1944 1945 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1946 bidi_sdb->table.sgl = 1947 (struct scatterlist *)(bidi_sdb + 1); 1948 1949 next_rq->special = bidi_sdb; 1950 } 1951 1952 blk_mq_start_request(req); 1953 1954 return scsi_setup_cmnd(sdev, req); 1955 } 1956 1957 static void scsi_mq_done(struct scsi_cmnd *cmd) 1958 { 1959 trace_scsi_dispatch_cmd_done(cmd); 1960 blk_mq_complete_request(cmd->request); 1961 } 1962 1963 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1964 { 1965 struct request_queue *q = hctx->queue; 1966 struct scsi_device *sdev = q->queuedata; 1967 1968 atomic_dec(&sdev->device_busy); 1969 put_device(&sdev->sdev_gendev); 1970 } 1971 1972 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1973 { 1974 struct request_queue *q = hctx->queue; 1975 struct scsi_device *sdev = q->queuedata; 1976 1977 if (!get_device(&sdev->sdev_gendev)) 1978 goto out; 1979 if (!scsi_dev_queue_ready(q, sdev)) 1980 goto out_put_device; 1981 1982 return true; 1983 1984 out_put_device: 1985 put_device(&sdev->sdev_gendev); 1986 out: 1987 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1988 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1989 return false; 1990 } 1991 1992 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1993 const struct blk_mq_queue_data *bd) 1994 { 1995 struct request *req = bd->rq; 1996 struct request_queue *q = req->q; 1997 struct scsi_device *sdev = q->queuedata; 1998 struct Scsi_Host *shost = sdev->host; 1999 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2000 blk_status_t ret; 2001 int reason; 2002 2003 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2004 if (ret != BLK_STS_OK) 2005 goto out_put_budget; 2006 2007 ret = BLK_STS_RESOURCE; 2008 if (!scsi_target_queue_ready(shost, sdev)) 2009 goto out_put_budget; 2010 if (!scsi_host_queue_ready(q, shost, sdev)) 2011 goto out_dec_target_busy; 2012 2013 if (!(req->rq_flags & RQF_DONTPREP)) { 2014 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2015 if (ret != BLK_STS_OK) 2016 goto out_dec_host_busy; 2017 req->rq_flags |= RQF_DONTPREP; 2018 } else { 2019 blk_mq_start_request(req); 2020 } 2021 2022 if (sdev->simple_tags) 2023 cmd->flags |= SCMD_TAGGED; 2024 else 2025 cmd->flags &= ~SCMD_TAGGED; 2026 2027 scsi_init_cmd_errh(cmd); 2028 cmd->scsi_done = scsi_mq_done; 2029 2030 reason = scsi_dispatch_cmd(cmd); 2031 if (reason) { 2032 scsi_set_blocked(cmd, reason); 2033 ret = BLK_STS_RESOURCE; 2034 goto out_dec_host_busy; 2035 } 2036 2037 return BLK_STS_OK; 2038 2039 out_dec_host_busy: 2040 scsi_dec_host_busy(shost); 2041 out_dec_target_busy: 2042 if (scsi_target(sdev)->can_queue > 0) 2043 atomic_dec(&scsi_target(sdev)->target_busy); 2044 out_put_budget: 2045 scsi_mq_put_budget(hctx); 2046 switch (ret) { 2047 case BLK_STS_OK: 2048 break; 2049 case BLK_STS_RESOURCE: 2050 if (atomic_read(&sdev->device_busy) || 2051 scsi_device_blocked(sdev)) 2052 ret = BLK_STS_DEV_RESOURCE; 2053 break; 2054 default: 2055 /* 2056 * Make sure to release all allocated ressources when 2057 * we hit an error, as we will never see this command 2058 * again. 2059 */ 2060 if (req->rq_flags & RQF_DONTPREP) 2061 scsi_mq_uninit_cmd(cmd); 2062 break; 2063 } 2064 return ret; 2065 } 2066 2067 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2068 bool reserved) 2069 { 2070 if (reserved) 2071 return BLK_EH_RESET_TIMER; 2072 return scsi_times_out(req); 2073 } 2074 2075 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2076 unsigned int hctx_idx, unsigned int numa_node) 2077 { 2078 struct Scsi_Host *shost = set->driver_data; 2079 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2080 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2081 struct scatterlist *sg; 2082 2083 if (unchecked_isa_dma) 2084 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2085 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2086 GFP_KERNEL, numa_node); 2087 if (!cmd->sense_buffer) 2088 return -ENOMEM; 2089 cmd->req.sense = cmd->sense_buffer; 2090 2091 if (scsi_host_get_prot(shost)) { 2092 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2093 shost->hostt->cmd_size; 2094 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2095 } 2096 2097 return 0; 2098 } 2099 2100 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2101 unsigned int hctx_idx) 2102 { 2103 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2104 2105 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2106 cmd->sense_buffer); 2107 } 2108 2109 static int scsi_map_queues(struct blk_mq_tag_set *set) 2110 { 2111 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2112 2113 if (shost->hostt->map_queues) 2114 return shost->hostt->map_queues(shost); 2115 return blk_mq_map_queues(set); 2116 } 2117 2118 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2119 { 2120 struct device *host_dev; 2121 u64 bounce_limit = 0xffffffff; 2122 2123 if (shost->unchecked_isa_dma) 2124 return BLK_BOUNCE_ISA; 2125 /* 2126 * Platforms with virtual-DMA translation 2127 * hardware have no practical limit. 2128 */ 2129 if (!PCI_DMA_BUS_IS_PHYS) 2130 return BLK_BOUNCE_ANY; 2131 2132 host_dev = scsi_get_device(shost); 2133 if (host_dev && host_dev->dma_mask) 2134 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2135 2136 return bounce_limit; 2137 } 2138 2139 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2140 { 2141 struct device *dev = shost->dma_dev; 2142 2143 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2144 2145 /* 2146 * this limit is imposed by hardware restrictions 2147 */ 2148 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2149 SG_MAX_SEGMENTS)); 2150 2151 if (scsi_host_prot_dma(shost)) { 2152 shost->sg_prot_tablesize = 2153 min_not_zero(shost->sg_prot_tablesize, 2154 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2155 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2156 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2157 } 2158 2159 blk_queue_max_hw_sectors(q, shost->max_sectors); 2160 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2161 blk_queue_segment_boundary(q, shost->dma_boundary); 2162 dma_set_seg_boundary(dev, shost->dma_boundary); 2163 2164 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2165 2166 if (!shost->use_clustering) 2167 q->limits.cluster = 0; 2168 2169 /* 2170 * Set a reasonable default alignment: The larger of 32-byte (dword), 2171 * which is a common minimum for HBAs, and the minimum DMA alignment, 2172 * which is set by the platform. 2173 * 2174 * Devices that require a bigger alignment can increase it later. 2175 */ 2176 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2177 } 2178 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2179 2180 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2181 gfp_t gfp) 2182 { 2183 struct Scsi_Host *shost = q->rq_alloc_data; 2184 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2185 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2186 2187 memset(cmd, 0, sizeof(*cmd)); 2188 2189 if (unchecked_isa_dma) 2190 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2191 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2192 NUMA_NO_NODE); 2193 if (!cmd->sense_buffer) 2194 goto fail; 2195 cmd->req.sense = cmd->sense_buffer; 2196 2197 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2198 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2199 if (!cmd->prot_sdb) 2200 goto fail_free_sense; 2201 } 2202 2203 return 0; 2204 2205 fail_free_sense: 2206 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2207 fail: 2208 return -ENOMEM; 2209 } 2210 2211 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2212 { 2213 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2214 2215 if (cmd->prot_sdb) 2216 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2217 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2218 cmd->sense_buffer); 2219 } 2220 2221 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2222 { 2223 struct Scsi_Host *shost = sdev->host; 2224 struct request_queue *q; 2225 2226 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2227 if (!q) 2228 return NULL; 2229 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2230 q->rq_alloc_data = shost; 2231 q->request_fn = scsi_request_fn; 2232 q->init_rq_fn = scsi_old_init_rq; 2233 q->exit_rq_fn = scsi_old_exit_rq; 2234 q->initialize_rq_fn = scsi_initialize_rq; 2235 2236 if (blk_init_allocated_queue(q) < 0) { 2237 blk_cleanup_queue(q); 2238 return NULL; 2239 } 2240 2241 __scsi_init_queue(shost, q); 2242 blk_queue_prep_rq(q, scsi_prep_fn); 2243 blk_queue_unprep_rq(q, scsi_unprep_fn); 2244 blk_queue_softirq_done(q, scsi_softirq_done); 2245 blk_queue_rq_timed_out(q, scsi_times_out); 2246 blk_queue_lld_busy(q, scsi_lld_busy); 2247 return q; 2248 } 2249 2250 static const struct blk_mq_ops scsi_mq_ops = { 2251 .get_budget = scsi_mq_get_budget, 2252 .put_budget = scsi_mq_put_budget, 2253 .queue_rq = scsi_queue_rq, 2254 .complete = scsi_softirq_done, 2255 .timeout = scsi_timeout, 2256 #ifdef CONFIG_BLK_DEBUG_FS 2257 .show_rq = scsi_show_rq, 2258 #endif 2259 .init_request = scsi_mq_init_request, 2260 .exit_request = scsi_mq_exit_request, 2261 .initialize_rq_fn = scsi_initialize_rq, 2262 .map_queues = scsi_map_queues, 2263 }; 2264 2265 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2266 { 2267 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2268 if (IS_ERR(sdev->request_queue)) 2269 return NULL; 2270 2271 sdev->request_queue->queuedata = sdev; 2272 __scsi_init_queue(sdev->host, sdev->request_queue); 2273 return sdev->request_queue; 2274 } 2275 2276 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2277 { 2278 unsigned int cmd_size, sgl_size; 2279 2280 sgl_size = scsi_mq_sgl_size(shost); 2281 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2282 if (scsi_host_get_prot(shost)) 2283 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2284 2285 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2286 shost->tag_set.ops = &scsi_mq_ops; 2287 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2288 shost->tag_set.queue_depth = shost->can_queue; 2289 shost->tag_set.cmd_size = cmd_size; 2290 shost->tag_set.numa_node = NUMA_NO_NODE; 2291 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2292 shost->tag_set.flags |= 2293 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2294 shost->tag_set.driver_data = shost; 2295 2296 return blk_mq_alloc_tag_set(&shost->tag_set); 2297 } 2298 2299 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2300 { 2301 blk_mq_free_tag_set(&shost->tag_set); 2302 } 2303 2304 /** 2305 * scsi_device_from_queue - return sdev associated with a request_queue 2306 * @q: The request queue to return the sdev from 2307 * 2308 * Return the sdev associated with a request queue or NULL if the 2309 * request_queue does not reference a SCSI device. 2310 */ 2311 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2312 { 2313 struct scsi_device *sdev = NULL; 2314 2315 if (q->mq_ops) { 2316 if (q->mq_ops == &scsi_mq_ops) 2317 sdev = q->queuedata; 2318 } else if (q->request_fn == scsi_request_fn) 2319 sdev = q->queuedata; 2320 if (!sdev || !get_device(&sdev->sdev_gendev)) 2321 sdev = NULL; 2322 2323 return sdev; 2324 } 2325 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2326 2327 /* 2328 * Function: scsi_block_requests() 2329 * 2330 * Purpose: Utility function used by low-level drivers to prevent further 2331 * commands from being queued to the device. 2332 * 2333 * Arguments: shost - Host in question 2334 * 2335 * Returns: Nothing 2336 * 2337 * Lock status: No locks are assumed held. 2338 * 2339 * Notes: There is no timer nor any other means by which the requests 2340 * get unblocked other than the low-level driver calling 2341 * scsi_unblock_requests(). 2342 */ 2343 void scsi_block_requests(struct Scsi_Host *shost) 2344 { 2345 shost->host_self_blocked = 1; 2346 } 2347 EXPORT_SYMBOL(scsi_block_requests); 2348 2349 /* 2350 * Function: scsi_unblock_requests() 2351 * 2352 * Purpose: Utility function used by low-level drivers to allow further 2353 * commands from being queued to the device. 2354 * 2355 * Arguments: shost - Host in question 2356 * 2357 * Returns: Nothing 2358 * 2359 * Lock status: No locks are assumed held. 2360 * 2361 * Notes: There is no timer nor any other means by which the requests 2362 * get unblocked other than the low-level driver calling 2363 * scsi_unblock_requests(). 2364 * 2365 * This is done as an API function so that changes to the 2366 * internals of the scsi mid-layer won't require wholesale 2367 * changes to drivers that use this feature. 2368 */ 2369 void scsi_unblock_requests(struct Scsi_Host *shost) 2370 { 2371 shost->host_self_blocked = 0; 2372 scsi_run_host_queues(shost); 2373 } 2374 EXPORT_SYMBOL(scsi_unblock_requests); 2375 2376 int __init scsi_init_queue(void) 2377 { 2378 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2379 sizeof(struct scsi_data_buffer), 2380 0, 0, NULL); 2381 if (!scsi_sdb_cache) { 2382 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2383 return -ENOMEM; 2384 } 2385 2386 return 0; 2387 } 2388 2389 void scsi_exit_queue(void) 2390 { 2391 kmem_cache_destroy(scsi_sense_cache); 2392 kmem_cache_destroy(scsi_sense_isadma_cache); 2393 kmem_cache_destroy(scsi_sdb_cache); 2394 } 2395 2396 /** 2397 * scsi_mode_select - issue a mode select 2398 * @sdev: SCSI device to be queried 2399 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2400 * @sp: Save page bit (0 == don't save, 1 == save) 2401 * @modepage: mode page being requested 2402 * @buffer: request buffer (may not be smaller than eight bytes) 2403 * @len: length of request buffer. 2404 * @timeout: command timeout 2405 * @retries: number of retries before failing 2406 * @data: returns a structure abstracting the mode header data 2407 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2408 * must be SCSI_SENSE_BUFFERSIZE big. 2409 * 2410 * Returns zero if successful; negative error number or scsi 2411 * status on error 2412 * 2413 */ 2414 int 2415 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2416 unsigned char *buffer, int len, int timeout, int retries, 2417 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2418 { 2419 unsigned char cmd[10]; 2420 unsigned char *real_buffer; 2421 int ret; 2422 2423 memset(cmd, 0, sizeof(cmd)); 2424 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2425 2426 if (sdev->use_10_for_ms) { 2427 if (len > 65535) 2428 return -EINVAL; 2429 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2430 if (!real_buffer) 2431 return -ENOMEM; 2432 memcpy(real_buffer + 8, buffer, len); 2433 len += 8; 2434 real_buffer[0] = 0; 2435 real_buffer[1] = 0; 2436 real_buffer[2] = data->medium_type; 2437 real_buffer[3] = data->device_specific; 2438 real_buffer[4] = data->longlba ? 0x01 : 0; 2439 real_buffer[5] = 0; 2440 real_buffer[6] = data->block_descriptor_length >> 8; 2441 real_buffer[7] = data->block_descriptor_length; 2442 2443 cmd[0] = MODE_SELECT_10; 2444 cmd[7] = len >> 8; 2445 cmd[8] = len; 2446 } else { 2447 if (len > 255 || data->block_descriptor_length > 255 || 2448 data->longlba) 2449 return -EINVAL; 2450 2451 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2452 if (!real_buffer) 2453 return -ENOMEM; 2454 memcpy(real_buffer + 4, buffer, len); 2455 len += 4; 2456 real_buffer[0] = 0; 2457 real_buffer[1] = data->medium_type; 2458 real_buffer[2] = data->device_specific; 2459 real_buffer[3] = data->block_descriptor_length; 2460 2461 2462 cmd[0] = MODE_SELECT; 2463 cmd[4] = len; 2464 } 2465 2466 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2467 sshdr, timeout, retries, NULL); 2468 kfree(real_buffer); 2469 return ret; 2470 } 2471 EXPORT_SYMBOL_GPL(scsi_mode_select); 2472 2473 /** 2474 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2475 * @sdev: SCSI device to be queried 2476 * @dbd: set if mode sense will allow block descriptors to be returned 2477 * @modepage: mode page being requested 2478 * @buffer: request buffer (may not be smaller than eight bytes) 2479 * @len: length of request buffer. 2480 * @timeout: command timeout 2481 * @retries: number of retries before failing 2482 * @data: returns a structure abstracting the mode header data 2483 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2484 * must be SCSI_SENSE_BUFFERSIZE big. 2485 * 2486 * Returns zero if unsuccessful, or the header offset (either 4 2487 * or 8 depending on whether a six or ten byte command was 2488 * issued) if successful. 2489 */ 2490 int 2491 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2492 unsigned char *buffer, int len, int timeout, int retries, 2493 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2494 { 2495 unsigned char cmd[12]; 2496 int use_10_for_ms; 2497 int header_length; 2498 int result, retry_count = retries; 2499 struct scsi_sense_hdr my_sshdr; 2500 2501 memset(data, 0, sizeof(*data)); 2502 memset(&cmd[0], 0, 12); 2503 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2504 cmd[2] = modepage; 2505 2506 /* caller might not be interested in sense, but we need it */ 2507 if (!sshdr) 2508 sshdr = &my_sshdr; 2509 2510 retry: 2511 use_10_for_ms = sdev->use_10_for_ms; 2512 2513 if (use_10_for_ms) { 2514 if (len < 8) 2515 len = 8; 2516 2517 cmd[0] = MODE_SENSE_10; 2518 cmd[8] = len; 2519 header_length = 8; 2520 } else { 2521 if (len < 4) 2522 len = 4; 2523 2524 cmd[0] = MODE_SENSE; 2525 cmd[4] = len; 2526 header_length = 4; 2527 } 2528 2529 memset(buffer, 0, len); 2530 2531 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2532 sshdr, timeout, retries, NULL); 2533 2534 /* This code looks awful: what it's doing is making sure an 2535 * ILLEGAL REQUEST sense return identifies the actual command 2536 * byte as the problem. MODE_SENSE commands can return 2537 * ILLEGAL REQUEST if the code page isn't supported */ 2538 2539 if (use_10_for_ms && !scsi_status_is_good(result) && 2540 (driver_byte(result) & DRIVER_SENSE)) { 2541 if (scsi_sense_valid(sshdr)) { 2542 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2543 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2544 /* 2545 * Invalid command operation code 2546 */ 2547 sdev->use_10_for_ms = 0; 2548 goto retry; 2549 } 2550 } 2551 } 2552 2553 if(scsi_status_is_good(result)) { 2554 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2555 (modepage == 6 || modepage == 8))) { 2556 /* Initio breakage? */ 2557 header_length = 0; 2558 data->length = 13; 2559 data->medium_type = 0; 2560 data->device_specific = 0; 2561 data->longlba = 0; 2562 data->block_descriptor_length = 0; 2563 } else if(use_10_for_ms) { 2564 data->length = buffer[0]*256 + buffer[1] + 2; 2565 data->medium_type = buffer[2]; 2566 data->device_specific = buffer[3]; 2567 data->longlba = buffer[4] & 0x01; 2568 data->block_descriptor_length = buffer[6]*256 2569 + buffer[7]; 2570 } else { 2571 data->length = buffer[0] + 1; 2572 data->medium_type = buffer[1]; 2573 data->device_specific = buffer[2]; 2574 data->block_descriptor_length = buffer[3]; 2575 } 2576 data->header_length = header_length; 2577 } else if ((status_byte(result) == CHECK_CONDITION) && 2578 scsi_sense_valid(sshdr) && 2579 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2580 retry_count--; 2581 goto retry; 2582 } 2583 2584 return result; 2585 } 2586 EXPORT_SYMBOL(scsi_mode_sense); 2587 2588 /** 2589 * scsi_test_unit_ready - test if unit is ready 2590 * @sdev: scsi device to change the state of. 2591 * @timeout: command timeout 2592 * @retries: number of retries before failing 2593 * @sshdr: outpout pointer for decoded sense information. 2594 * 2595 * Returns zero if unsuccessful or an error if TUR failed. For 2596 * removable media, UNIT_ATTENTION sets ->changed flag. 2597 **/ 2598 int 2599 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2600 struct scsi_sense_hdr *sshdr) 2601 { 2602 char cmd[] = { 2603 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2604 }; 2605 int result; 2606 2607 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2608 do { 2609 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2610 timeout, retries, NULL); 2611 if (sdev->removable && scsi_sense_valid(sshdr) && 2612 sshdr->sense_key == UNIT_ATTENTION) 2613 sdev->changed = 1; 2614 } while (scsi_sense_valid(sshdr) && 2615 sshdr->sense_key == UNIT_ATTENTION && --retries); 2616 2617 return result; 2618 } 2619 EXPORT_SYMBOL(scsi_test_unit_ready); 2620 2621 /** 2622 * scsi_device_set_state - Take the given device through the device state model. 2623 * @sdev: scsi device to change the state of. 2624 * @state: state to change to. 2625 * 2626 * Returns zero if successful or an error if the requested 2627 * transition is illegal. 2628 */ 2629 int 2630 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2631 { 2632 enum scsi_device_state oldstate = sdev->sdev_state; 2633 2634 if (state == oldstate) 2635 return 0; 2636 2637 switch (state) { 2638 case SDEV_CREATED: 2639 switch (oldstate) { 2640 case SDEV_CREATED_BLOCK: 2641 break; 2642 default: 2643 goto illegal; 2644 } 2645 break; 2646 2647 case SDEV_RUNNING: 2648 switch (oldstate) { 2649 case SDEV_CREATED: 2650 case SDEV_OFFLINE: 2651 case SDEV_TRANSPORT_OFFLINE: 2652 case SDEV_QUIESCE: 2653 case SDEV_BLOCK: 2654 break; 2655 default: 2656 goto illegal; 2657 } 2658 break; 2659 2660 case SDEV_QUIESCE: 2661 switch (oldstate) { 2662 case SDEV_RUNNING: 2663 case SDEV_OFFLINE: 2664 case SDEV_TRANSPORT_OFFLINE: 2665 break; 2666 default: 2667 goto illegal; 2668 } 2669 break; 2670 2671 case SDEV_OFFLINE: 2672 case SDEV_TRANSPORT_OFFLINE: 2673 switch (oldstate) { 2674 case SDEV_CREATED: 2675 case SDEV_RUNNING: 2676 case SDEV_QUIESCE: 2677 case SDEV_BLOCK: 2678 break; 2679 default: 2680 goto illegal; 2681 } 2682 break; 2683 2684 case SDEV_BLOCK: 2685 switch (oldstate) { 2686 case SDEV_RUNNING: 2687 case SDEV_CREATED_BLOCK: 2688 break; 2689 default: 2690 goto illegal; 2691 } 2692 break; 2693 2694 case SDEV_CREATED_BLOCK: 2695 switch (oldstate) { 2696 case SDEV_CREATED: 2697 break; 2698 default: 2699 goto illegal; 2700 } 2701 break; 2702 2703 case SDEV_CANCEL: 2704 switch (oldstate) { 2705 case SDEV_CREATED: 2706 case SDEV_RUNNING: 2707 case SDEV_QUIESCE: 2708 case SDEV_OFFLINE: 2709 case SDEV_TRANSPORT_OFFLINE: 2710 break; 2711 default: 2712 goto illegal; 2713 } 2714 break; 2715 2716 case SDEV_DEL: 2717 switch (oldstate) { 2718 case SDEV_CREATED: 2719 case SDEV_RUNNING: 2720 case SDEV_OFFLINE: 2721 case SDEV_TRANSPORT_OFFLINE: 2722 case SDEV_CANCEL: 2723 case SDEV_BLOCK: 2724 case SDEV_CREATED_BLOCK: 2725 break; 2726 default: 2727 goto illegal; 2728 } 2729 break; 2730 2731 } 2732 sdev->sdev_state = state; 2733 return 0; 2734 2735 illegal: 2736 SCSI_LOG_ERROR_RECOVERY(1, 2737 sdev_printk(KERN_ERR, sdev, 2738 "Illegal state transition %s->%s", 2739 scsi_device_state_name(oldstate), 2740 scsi_device_state_name(state)) 2741 ); 2742 return -EINVAL; 2743 } 2744 EXPORT_SYMBOL(scsi_device_set_state); 2745 2746 /** 2747 * sdev_evt_emit - emit a single SCSI device uevent 2748 * @sdev: associated SCSI device 2749 * @evt: event to emit 2750 * 2751 * Send a single uevent (scsi_event) to the associated scsi_device. 2752 */ 2753 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2754 { 2755 int idx = 0; 2756 char *envp[3]; 2757 2758 switch (evt->evt_type) { 2759 case SDEV_EVT_MEDIA_CHANGE: 2760 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2761 break; 2762 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2763 scsi_rescan_device(&sdev->sdev_gendev); 2764 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2765 break; 2766 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2767 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2768 break; 2769 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2770 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2771 break; 2772 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2773 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2774 break; 2775 case SDEV_EVT_LUN_CHANGE_REPORTED: 2776 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2777 break; 2778 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2779 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2780 break; 2781 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2782 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2783 break; 2784 default: 2785 /* do nothing */ 2786 break; 2787 } 2788 2789 envp[idx++] = NULL; 2790 2791 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2792 } 2793 2794 /** 2795 * sdev_evt_thread - send a uevent for each scsi event 2796 * @work: work struct for scsi_device 2797 * 2798 * Dispatch queued events to their associated scsi_device kobjects 2799 * as uevents. 2800 */ 2801 void scsi_evt_thread(struct work_struct *work) 2802 { 2803 struct scsi_device *sdev; 2804 enum scsi_device_event evt_type; 2805 LIST_HEAD(event_list); 2806 2807 sdev = container_of(work, struct scsi_device, event_work); 2808 2809 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2810 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2811 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2812 2813 while (1) { 2814 struct scsi_event *evt; 2815 struct list_head *this, *tmp; 2816 unsigned long flags; 2817 2818 spin_lock_irqsave(&sdev->list_lock, flags); 2819 list_splice_init(&sdev->event_list, &event_list); 2820 spin_unlock_irqrestore(&sdev->list_lock, flags); 2821 2822 if (list_empty(&event_list)) 2823 break; 2824 2825 list_for_each_safe(this, tmp, &event_list) { 2826 evt = list_entry(this, struct scsi_event, node); 2827 list_del(&evt->node); 2828 scsi_evt_emit(sdev, evt); 2829 kfree(evt); 2830 } 2831 } 2832 } 2833 2834 /** 2835 * sdev_evt_send - send asserted event to uevent thread 2836 * @sdev: scsi_device event occurred on 2837 * @evt: event to send 2838 * 2839 * Assert scsi device event asynchronously. 2840 */ 2841 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2842 { 2843 unsigned long flags; 2844 2845 #if 0 2846 /* FIXME: currently this check eliminates all media change events 2847 * for polled devices. Need to update to discriminate between AN 2848 * and polled events */ 2849 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2850 kfree(evt); 2851 return; 2852 } 2853 #endif 2854 2855 spin_lock_irqsave(&sdev->list_lock, flags); 2856 list_add_tail(&evt->node, &sdev->event_list); 2857 schedule_work(&sdev->event_work); 2858 spin_unlock_irqrestore(&sdev->list_lock, flags); 2859 } 2860 EXPORT_SYMBOL_GPL(sdev_evt_send); 2861 2862 /** 2863 * sdev_evt_alloc - allocate a new scsi event 2864 * @evt_type: type of event to allocate 2865 * @gfpflags: GFP flags for allocation 2866 * 2867 * Allocates and returns a new scsi_event. 2868 */ 2869 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2870 gfp_t gfpflags) 2871 { 2872 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2873 if (!evt) 2874 return NULL; 2875 2876 evt->evt_type = evt_type; 2877 INIT_LIST_HEAD(&evt->node); 2878 2879 /* evt_type-specific initialization, if any */ 2880 switch (evt_type) { 2881 case SDEV_EVT_MEDIA_CHANGE: 2882 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2883 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2884 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2885 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2886 case SDEV_EVT_LUN_CHANGE_REPORTED: 2887 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2888 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2889 default: 2890 /* do nothing */ 2891 break; 2892 } 2893 2894 return evt; 2895 } 2896 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2897 2898 /** 2899 * sdev_evt_send_simple - send asserted event to uevent thread 2900 * @sdev: scsi_device event occurred on 2901 * @evt_type: type of event to send 2902 * @gfpflags: GFP flags for allocation 2903 * 2904 * Assert scsi device event asynchronously, given an event type. 2905 */ 2906 void sdev_evt_send_simple(struct scsi_device *sdev, 2907 enum scsi_device_event evt_type, gfp_t gfpflags) 2908 { 2909 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2910 if (!evt) { 2911 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2912 evt_type); 2913 return; 2914 } 2915 2916 sdev_evt_send(sdev, evt); 2917 } 2918 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2919 2920 /** 2921 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2922 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2923 */ 2924 static int scsi_request_fn_active(struct scsi_device *sdev) 2925 { 2926 struct request_queue *q = sdev->request_queue; 2927 int request_fn_active; 2928 2929 WARN_ON_ONCE(sdev->host->use_blk_mq); 2930 2931 spin_lock_irq(q->queue_lock); 2932 request_fn_active = q->request_fn_active; 2933 spin_unlock_irq(q->queue_lock); 2934 2935 return request_fn_active; 2936 } 2937 2938 /** 2939 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2940 * @sdev: SCSI device pointer. 2941 * 2942 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2943 * invoked from scsi_request_fn() have finished. 2944 */ 2945 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2946 { 2947 WARN_ON_ONCE(sdev->host->use_blk_mq); 2948 2949 while (scsi_request_fn_active(sdev)) 2950 msleep(20); 2951 } 2952 2953 /** 2954 * scsi_device_quiesce - Block user issued commands. 2955 * @sdev: scsi device to quiesce. 2956 * 2957 * This works by trying to transition to the SDEV_QUIESCE state 2958 * (which must be a legal transition). When the device is in this 2959 * state, only special requests will be accepted, all others will 2960 * be deferred. Since special requests may also be requeued requests, 2961 * a successful return doesn't guarantee the device will be 2962 * totally quiescent. 2963 * 2964 * Must be called with user context, may sleep. 2965 * 2966 * Returns zero if unsuccessful or an error if not. 2967 */ 2968 int 2969 scsi_device_quiesce(struct scsi_device *sdev) 2970 { 2971 struct request_queue *q = sdev->request_queue; 2972 int err; 2973 2974 /* 2975 * It is allowed to call scsi_device_quiesce() multiple times from 2976 * the same context but concurrent scsi_device_quiesce() calls are 2977 * not allowed. 2978 */ 2979 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2980 2981 blk_set_preempt_only(q); 2982 2983 blk_mq_freeze_queue(q); 2984 /* 2985 * Ensure that the effect of blk_set_preempt_only() will be visible 2986 * for percpu_ref_tryget() callers that occur after the queue 2987 * unfreeze even if the queue was already frozen before this function 2988 * was called. See also https://lwn.net/Articles/573497/. 2989 */ 2990 synchronize_rcu(); 2991 blk_mq_unfreeze_queue(q); 2992 2993 mutex_lock(&sdev->state_mutex); 2994 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2995 if (err == 0) 2996 sdev->quiesced_by = current; 2997 else 2998 blk_clear_preempt_only(q); 2999 mutex_unlock(&sdev->state_mutex); 3000 3001 return err; 3002 } 3003 EXPORT_SYMBOL(scsi_device_quiesce); 3004 3005 /** 3006 * scsi_device_resume - Restart user issued commands to a quiesced device. 3007 * @sdev: scsi device to resume. 3008 * 3009 * Moves the device from quiesced back to running and restarts the 3010 * queues. 3011 * 3012 * Must be called with user context, may sleep. 3013 */ 3014 void scsi_device_resume(struct scsi_device *sdev) 3015 { 3016 /* check if the device state was mutated prior to resume, and if 3017 * so assume the state is being managed elsewhere (for example 3018 * device deleted during suspend) 3019 */ 3020 mutex_lock(&sdev->state_mutex); 3021 WARN_ON_ONCE(!sdev->quiesced_by); 3022 sdev->quiesced_by = NULL; 3023 blk_clear_preempt_only(sdev->request_queue); 3024 if (sdev->sdev_state == SDEV_QUIESCE) 3025 scsi_device_set_state(sdev, SDEV_RUNNING); 3026 mutex_unlock(&sdev->state_mutex); 3027 } 3028 EXPORT_SYMBOL(scsi_device_resume); 3029 3030 static void 3031 device_quiesce_fn(struct scsi_device *sdev, void *data) 3032 { 3033 scsi_device_quiesce(sdev); 3034 } 3035 3036 void 3037 scsi_target_quiesce(struct scsi_target *starget) 3038 { 3039 starget_for_each_device(starget, NULL, device_quiesce_fn); 3040 } 3041 EXPORT_SYMBOL(scsi_target_quiesce); 3042 3043 static void 3044 device_resume_fn(struct scsi_device *sdev, void *data) 3045 { 3046 scsi_device_resume(sdev); 3047 } 3048 3049 void 3050 scsi_target_resume(struct scsi_target *starget) 3051 { 3052 starget_for_each_device(starget, NULL, device_resume_fn); 3053 } 3054 EXPORT_SYMBOL(scsi_target_resume); 3055 3056 /** 3057 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3058 * @sdev: device to block 3059 * 3060 * Pause SCSI command processing on the specified device. Does not sleep. 3061 * 3062 * Returns zero if successful or a negative error code upon failure. 3063 * 3064 * Notes: 3065 * This routine transitions the device to the SDEV_BLOCK state (which must be 3066 * a legal transition). When the device is in this state, command processing 3067 * is paused until the device leaves the SDEV_BLOCK state. See also 3068 * scsi_internal_device_unblock_nowait(). 3069 */ 3070 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3071 { 3072 struct request_queue *q = sdev->request_queue; 3073 unsigned long flags; 3074 int err = 0; 3075 3076 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3077 if (err) { 3078 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3079 3080 if (err) 3081 return err; 3082 } 3083 3084 /* 3085 * The device has transitioned to SDEV_BLOCK. Stop the 3086 * block layer from calling the midlayer with this device's 3087 * request queue. 3088 */ 3089 if (q->mq_ops) { 3090 blk_mq_quiesce_queue_nowait(q); 3091 } else { 3092 spin_lock_irqsave(q->queue_lock, flags); 3093 blk_stop_queue(q); 3094 spin_unlock_irqrestore(q->queue_lock, flags); 3095 } 3096 3097 return 0; 3098 } 3099 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3100 3101 /** 3102 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3103 * @sdev: device to block 3104 * 3105 * Pause SCSI command processing on the specified device and wait until all 3106 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3107 * 3108 * Returns zero if successful or a negative error code upon failure. 3109 * 3110 * Note: 3111 * This routine transitions the device to the SDEV_BLOCK state (which must be 3112 * a legal transition). When the device is in this state, command processing 3113 * is paused until the device leaves the SDEV_BLOCK state. See also 3114 * scsi_internal_device_unblock(). 3115 * 3116 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3117 * scsi_internal_device_block() has blocked a SCSI device and also 3118 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3119 */ 3120 static int scsi_internal_device_block(struct scsi_device *sdev) 3121 { 3122 struct request_queue *q = sdev->request_queue; 3123 int err; 3124 3125 mutex_lock(&sdev->state_mutex); 3126 err = scsi_internal_device_block_nowait(sdev); 3127 if (err == 0) { 3128 if (q->mq_ops) 3129 blk_mq_quiesce_queue(q); 3130 else 3131 scsi_wait_for_queuecommand(sdev); 3132 } 3133 mutex_unlock(&sdev->state_mutex); 3134 3135 return err; 3136 } 3137 3138 void scsi_start_queue(struct scsi_device *sdev) 3139 { 3140 struct request_queue *q = sdev->request_queue; 3141 unsigned long flags; 3142 3143 if (q->mq_ops) { 3144 blk_mq_unquiesce_queue(q); 3145 } else { 3146 spin_lock_irqsave(q->queue_lock, flags); 3147 blk_start_queue(q); 3148 spin_unlock_irqrestore(q->queue_lock, flags); 3149 } 3150 } 3151 3152 /** 3153 * scsi_internal_device_unblock_nowait - resume a device after a block request 3154 * @sdev: device to resume 3155 * @new_state: state to set the device to after unblocking 3156 * 3157 * Restart the device queue for a previously suspended SCSI device. Does not 3158 * sleep. 3159 * 3160 * Returns zero if successful or a negative error code upon failure. 3161 * 3162 * Notes: 3163 * This routine transitions the device to the SDEV_RUNNING state or to one of 3164 * the offline states (which must be a legal transition) allowing the midlayer 3165 * to goose the queue for this device. 3166 */ 3167 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3168 enum scsi_device_state new_state) 3169 { 3170 /* 3171 * Try to transition the scsi device to SDEV_RUNNING or one of the 3172 * offlined states and goose the device queue if successful. 3173 */ 3174 switch (sdev->sdev_state) { 3175 case SDEV_BLOCK: 3176 case SDEV_TRANSPORT_OFFLINE: 3177 sdev->sdev_state = new_state; 3178 break; 3179 case SDEV_CREATED_BLOCK: 3180 if (new_state == SDEV_TRANSPORT_OFFLINE || 3181 new_state == SDEV_OFFLINE) 3182 sdev->sdev_state = new_state; 3183 else 3184 sdev->sdev_state = SDEV_CREATED; 3185 break; 3186 case SDEV_CANCEL: 3187 case SDEV_OFFLINE: 3188 break; 3189 default: 3190 return -EINVAL; 3191 } 3192 scsi_start_queue(sdev); 3193 3194 return 0; 3195 } 3196 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3197 3198 /** 3199 * scsi_internal_device_unblock - resume a device after a block request 3200 * @sdev: device to resume 3201 * @new_state: state to set the device to after unblocking 3202 * 3203 * Restart the device queue for a previously suspended SCSI device. May sleep. 3204 * 3205 * Returns zero if successful or a negative error code upon failure. 3206 * 3207 * Notes: 3208 * This routine transitions the device to the SDEV_RUNNING state or to one of 3209 * the offline states (which must be a legal transition) allowing the midlayer 3210 * to goose the queue for this device. 3211 */ 3212 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3213 enum scsi_device_state new_state) 3214 { 3215 int ret; 3216 3217 mutex_lock(&sdev->state_mutex); 3218 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3219 mutex_unlock(&sdev->state_mutex); 3220 3221 return ret; 3222 } 3223 3224 static void 3225 device_block(struct scsi_device *sdev, void *data) 3226 { 3227 scsi_internal_device_block(sdev); 3228 } 3229 3230 static int 3231 target_block(struct device *dev, void *data) 3232 { 3233 if (scsi_is_target_device(dev)) 3234 starget_for_each_device(to_scsi_target(dev), NULL, 3235 device_block); 3236 return 0; 3237 } 3238 3239 void 3240 scsi_target_block(struct device *dev) 3241 { 3242 if (scsi_is_target_device(dev)) 3243 starget_for_each_device(to_scsi_target(dev), NULL, 3244 device_block); 3245 else 3246 device_for_each_child(dev, NULL, target_block); 3247 } 3248 EXPORT_SYMBOL_GPL(scsi_target_block); 3249 3250 static void 3251 device_unblock(struct scsi_device *sdev, void *data) 3252 { 3253 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3254 } 3255 3256 static int 3257 target_unblock(struct device *dev, void *data) 3258 { 3259 if (scsi_is_target_device(dev)) 3260 starget_for_each_device(to_scsi_target(dev), data, 3261 device_unblock); 3262 return 0; 3263 } 3264 3265 void 3266 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3267 { 3268 if (scsi_is_target_device(dev)) 3269 starget_for_each_device(to_scsi_target(dev), &new_state, 3270 device_unblock); 3271 else 3272 device_for_each_child(dev, &new_state, target_unblock); 3273 } 3274 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3275 3276 /** 3277 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3278 * @sgl: scatter-gather list 3279 * @sg_count: number of segments in sg 3280 * @offset: offset in bytes into sg, on return offset into the mapped area 3281 * @len: bytes to map, on return number of bytes mapped 3282 * 3283 * Returns virtual address of the start of the mapped page 3284 */ 3285 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3286 size_t *offset, size_t *len) 3287 { 3288 int i; 3289 size_t sg_len = 0, len_complete = 0; 3290 struct scatterlist *sg; 3291 struct page *page; 3292 3293 WARN_ON(!irqs_disabled()); 3294 3295 for_each_sg(sgl, sg, sg_count, i) { 3296 len_complete = sg_len; /* Complete sg-entries */ 3297 sg_len += sg->length; 3298 if (sg_len > *offset) 3299 break; 3300 } 3301 3302 if (unlikely(i == sg_count)) { 3303 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3304 "elements %d\n", 3305 __func__, sg_len, *offset, sg_count); 3306 WARN_ON(1); 3307 return NULL; 3308 } 3309 3310 /* Offset starting from the beginning of first page in this sg-entry */ 3311 *offset = *offset - len_complete + sg->offset; 3312 3313 /* Assumption: contiguous pages can be accessed as "page + i" */ 3314 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3315 *offset &= ~PAGE_MASK; 3316 3317 /* Bytes in this sg-entry from *offset to the end of the page */ 3318 sg_len = PAGE_SIZE - *offset; 3319 if (*len > sg_len) 3320 *len = sg_len; 3321 3322 return kmap_atomic(page); 3323 } 3324 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3325 3326 /** 3327 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3328 * @virt: virtual address to be unmapped 3329 */ 3330 void scsi_kunmap_atomic_sg(void *virt) 3331 { 3332 kunmap_atomic(virt); 3333 } 3334 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3335 3336 void sdev_disable_disk_events(struct scsi_device *sdev) 3337 { 3338 atomic_inc(&sdev->disk_events_disable_depth); 3339 } 3340 EXPORT_SYMBOL(sdev_disable_disk_events); 3341 3342 void sdev_enable_disk_events(struct scsi_device *sdev) 3343 { 3344 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3345 return; 3346 atomic_dec(&sdev->disk_events_disable_depth); 3347 } 3348 EXPORT_SYMBOL(sdev_enable_disk_events); 3349 3350 /** 3351 * scsi_vpd_lun_id - return a unique device identification 3352 * @sdev: SCSI device 3353 * @id: buffer for the identification 3354 * @id_len: length of the buffer 3355 * 3356 * Copies a unique device identification into @id based 3357 * on the information in the VPD page 0x83 of the device. 3358 * The string will be formatted as a SCSI name string. 3359 * 3360 * Returns the length of the identification or error on failure. 3361 * If the identifier is longer than the supplied buffer the actual 3362 * identifier length is returned and the buffer is not zero-padded. 3363 */ 3364 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3365 { 3366 u8 cur_id_type = 0xff; 3367 u8 cur_id_size = 0; 3368 const unsigned char *d, *cur_id_str; 3369 const struct scsi_vpd *vpd_pg83; 3370 int id_size = -EINVAL; 3371 3372 rcu_read_lock(); 3373 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3374 if (!vpd_pg83) { 3375 rcu_read_unlock(); 3376 return -ENXIO; 3377 } 3378 3379 /* 3380 * Look for the correct descriptor. 3381 * Order of preference for lun descriptor: 3382 * - SCSI name string 3383 * - NAA IEEE Registered Extended 3384 * - EUI-64 based 16-byte 3385 * - EUI-64 based 12-byte 3386 * - NAA IEEE Registered 3387 * - NAA IEEE Extended 3388 * - T10 Vendor ID 3389 * as longer descriptors reduce the likelyhood 3390 * of identification clashes. 3391 */ 3392 3393 /* The id string must be at least 20 bytes + terminating NULL byte */ 3394 if (id_len < 21) { 3395 rcu_read_unlock(); 3396 return -EINVAL; 3397 } 3398 3399 memset(id, 0, id_len); 3400 d = vpd_pg83->data + 4; 3401 while (d < vpd_pg83->data + vpd_pg83->len) { 3402 /* Skip designators not referring to the LUN */ 3403 if ((d[1] & 0x30) != 0x00) 3404 goto next_desig; 3405 3406 switch (d[1] & 0xf) { 3407 case 0x1: 3408 /* T10 Vendor ID */ 3409 if (cur_id_size > d[3]) 3410 break; 3411 /* Prefer anything */ 3412 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3413 break; 3414 cur_id_size = d[3]; 3415 if (cur_id_size + 4 > id_len) 3416 cur_id_size = id_len - 4; 3417 cur_id_str = d + 4; 3418 cur_id_type = d[1] & 0xf; 3419 id_size = snprintf(id, id_len, "t10.%*pE", 3420 cur_id_size, cur_id_str); 3421 break; 3422 case 0x2: 3423 /* EUI-64 */ 3424 if (cur_id_size > d[3]) 3425 break; 3426 /* Prefer NAA IEEE Registered Extended */ 3427 if (cur_id_type == 0x3 && 3428 cur_id_size == d[3]) 3429 break; 3430 cur_id_size = d[3]; 3431 cur_id_str = d + 4; 3432 cur_id_type = d[1] & 0xf; 3433 switch (cur_id_size) { 3434 case 8: 3435 id_size = snprintf(id, id_len, 3436 "eui.%8phN", 3437 cur_id_str); 3438 break; 3439 case 12: 3440 id_size = snprintf(id, id_len, 3441 "eui.%12phN", 3442 cur_id_str); 3443 break; 3444 case 16: 3445 id_size = snprintf(id, id_len, 3446 "eui.%16phN", 3447 cur_id_str); 3448 break; 3449 default: 3450 cur_id_size = 0; 3451 break; 3452 } 3453 break; 3454 case 0x3: 3455 /* NAA */ 3456 if (cur_id_size > d[3]) 3457 break; 3458 cur_id_size = d[3]; 3459 cur_id_str = d + 4; 3460 cur_id_type = d[1] & 0xf; 3461 switch (cur_id_size) { 3462 case 8: 3463 id_size = snprintf(id, id_len, 3464 "naa.%8phN", 3465 cur_id_str); 3466 break; 3467 case 16: 3468 id_size = snprintf(id, id_len, 3469 "naa.%16phN", 3470 cur_id_str); 3471 break; 3472 default: 3473 cur_id_size = 0; 3474 break; 3475 } 3476 break; 3477 case 0x8: 3478 /* SCSI name string */ 3479 if (cur_id_size + 4 > d[3]) 3480 break; 3481 /* Prefer others for truncated descriptor */ 3482 if (cur_id_size && d[3] > id_len) 3483 break; 3484 cur_id_size = id_size = d[3]; 3485 cur_id_str = d + 4; 3486 cur_id_type = d[1] & 0xf; 3487 if (cur_id_size >= id_len) 3488 cur_id_size = id_len - 1; 3489 memcpy(id, cur_id_str, cur_id_size); 3490 /* Decrease priority for truncated descriptor */ 3491 if (cur_id_size != id_size) 3492 cur_id_size = 6; 3493 break; 3494 default: 3495 break; 3496 } 3497 next_desig: 3498 d += d[3] + 4; 3499 } 3500 rcu_read_unlock(); 3501 3502 return id_size; 3503 } 3504 EXPORT_SYMBOL(scsi_vpd_lun_id); 3505 3506 /* 3507 * scsi_vpd_tpg_id - return a target port group identifier 3508 * @sdev: SCSI device 3509 * 3510 * Returns the Target Port Group identifier from the information 3511 * froom VPD page 0x83 of the device. 3512 * 3513 * Returns the identifier or error on failure. 3514 */ 3515 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3516 { 3517 const unsigned char *d; 3518 const struct scsi_vpd *vpd_pg83; 3519 int group_id = -EAGAIN, rel_port = -1; 3520 3521 rcu_read_lock(); 3522 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3523 if (!vpd_pg83) { 3524 rcu_read_unlock(); 3525 return -ENXIO; 3526 } 3527 3528 d = vpd_pg83->data + 4; 3529 while (d < vpd_pg83->data + vpd_pg83->len) { 3530 switch (d[1] & 0xf) { 3531 case 0x4: 3532 /* Relative target port */ 3533 rel_port = get_unaligned_be16(&d[6]); 3534 break; 3535 case 0x5: 3536 /* Target port group */ 3537 group_id = get_unaligned_be16(&d[6]); 3538 break; 3539 default: 3540 break; 3541 } 3542 d += d[3] + 4; 3543 } 3544 rcu_read_unlock(); 3545 3546 if (group_id >= 0 && rel_id && rel_port != -1) 3547 *rel_id = rel_port; 3548 3549 return group_id; 3550 } 3551 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3552