xref: /linux/drivers/scsi/scsi_lib.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 	struct Scsi_Host *host = cmd->device->host;
93 	struct scsi_device *device = cmd->device;
94 	struct scsi_target *starget = scsi_target(device);
95 	struct request_queue *q = device->request_queue;
96 	unsigned long flags;
97 
98 	SCSI_LOG_MLQUEUE(1,
99 		 printk("Inserting command %p into mlqueue\n", cmd));
100 
101 	/*
102 	 * Set the appropriate busy bit for the device/host.
103 	 *
104 	 * If the host/device isn't busy, assume that something actually
105 	 * completed, and that we should be able to queue a command now.
106 	 *
107 	 * Note that the prior mid-layer assumption that any host could
108 	 * always queue at least one command is now broken.  The mid-layer
109 	 * will implement a user specifiable stall (see
110 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 	 * if a command is requeued with no other commands outstanding
112 	 * either for the device or for the host.
113 	 */
114 	switch (reason) {
115 	case SCSI_MLQUEUE_HOST_BUSY:
116 		host->host_blocked = host->max_host_blocked;
117 		break;
118 	case SCSI_MLQUEUE_DEVICE_BUSY:
119 	case SCSI_MLQUEUE_EH_RETRY:
120 		device->device_blocked = device->max_device_blocked;
121 		break;
122 	case SCSI_MLQUEUE_TARGET_BUSY:
123 		starget->target_blocked = starget->max_target_blocked;
124 		break;
125 	}
126 
127 	/*
128 	 * Decrement the counters, since these commands are no longer
129 	 * active on the host/device.
130 	 */
131 	if (unbusy)
132 		scsi_device_unbusy(device);
133 
134 	/*
135 	 * Requeue this command.  It will go before all other commands
136 	 * that are already in the queue. Schedule requeue work under
137 	 * lock such that the kblockd_schedule_work() call happens
138 	 * before blk_cleanup_queue() finishes.
139 	 */
140 	cmd->result = 0;
141 	spin_lock_irqsave(q->queue_lock, flags);
142 	blk_requeue_request(q, cmd->request);
143 	kblockd_schedule_work(&device->requeue_work);
144 	spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146 
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168 	__scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:	scsi device
173  * @cmd:	scsi command
174  * @data_direction: data direction
175  * @buffer:	data buffer
176  * @bufflen:	len of buffer
177  * @sense:	optional sense buffer
178  * @timeout:	request timeout in seconds
179  * @retries:	number of times to retry request
180  * @flags:	or into request flags;
181  * @resid:	optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187 		 int data_direction, void *buffer, unsigned bufflen,
188 		 unsigned char *sense, int timeout, int retries, u64 flags,
189 		 int *resid)
190 {
191 	struct request *req;
192 	int write = (data_direction == DMA_TO_DEVICE);
193 	int ret = DRIVER_ERROR << 24;
194 
195 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196 	if (!req)
197 		return ret;
198 	blk_rq_set_block_pc(req);
199 
200 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
201 					buffer, bufflen, __GFP_WAIT))
202 		goto out;
203 
204 	req->cmd_len = COMMAND_SIZE(cmd[0]);
205 	memcpy(req->cmd, cmd, req->cmd_len);
206 	req->sense = sense;
207 	req->sense_len = 0;
208 	req->retries = retries;
209 	req->timeout = timeout;
210 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211 
212 	/*
213 	 * head injection *required* here otherwise quiesce won't work
214 	 */
215 	blk_execute_rq(req->q, NULL, req, 1);
216 
217 	/*
218 	 * Some devices (USB mass-storage in particular) may transfer
219 	 * garbage data together with a residue indicating that the data
220 	 * is invalid.  Prevent the garbage from being misinterpreted
221 	 * and prevent security leaks by zeroing out the excess data.
222 	 */
223 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225 
226 	if (resid)
227 		*resid = req->resid_len;
228 	ret = req->errors;
229  out:
230 	blk_put_request(req);
231 
232 	return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235 
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237 		     int data_direction, void *buffer, unsigned bufflen,
238 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
239 		     int *resid, u64 flags)
240 {
241 	char *sense = NULL;
242 	int result;
243 
244 	if (sshdr) {
245 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 		if (!sense)
247 			return DRIVER_ERROR << 24;
248 	}
249 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250 			      sense, timeout, retries, flags, resid);
251 	if (sshdr)
252 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253 
254 	kfree(sense);
255 	return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258 
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd	- command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272 	cmd->serial_number = 0;
273 	scsi_set_resid(cmd, 0);
274 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275 	if (cmd->cmd_len == 0)
276 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278 
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281 	struct Scsi_Host *shost = sdev->host;
282 	struct scsi_target *starget = scsi_target(sdev);
283 	unsigned long flags;
284 
285 	spin_lock_irqsave(shost->host_lock, flags);
286 	shost->host_busy--;
287 	starget->target_busy--;
288 	if (unlikely(scsi_host_in_recovery(shost) &&
289 		     (shost->host_failed || shost->host_eh_scheduled)))
290 		scsi_eh_wakeup(shost);
291 	spin_unlock(shost->host_lock);
292 	spin_lock(sdev->request_queue->queue_lock);
293 	sdev->device_busy--;
294 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296 
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306 	struct Scsi_Host *shost = current_sdev->host;
307 	struct scsi_device *sdev, *tmp;
308 	struct scsi_target *starget = scsi_target(current_sdev);
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(shost->host_lock, flags);
312 	starget->starget_sdev_user = NULL;
313 	spin_unlock_irqrestore(shost->host_lock, flags);
314 
315 	/*
316 	 * Call blk_run_queue for all LUNs on the target, starting with
317 	 * current_sdev. We race with others (to set starget_sdev_user),
318 	 * but in most cases, we will be first. Ideally, each LU on the
319 	 * target would get some limited time or requests on the target.
320 	 */
321 	blk_run_queue(current_sdev->request_queue);
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	if (starget->starget_sdev_user)
325 		goto out;
326 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
327 			same_target_siblings) {
328 		if (sdev == current_sdev)
329 			continue;
330 		if (scsi_device_get(sdev))
331 			continue;
332 
333 		spin_unlock_irqrestore(shost->host_lock, flags);
334 		blk_run_queue(sdev->request_queue);
335 		spin_lock_irqsave(shost->host_lock, flags);
336 
337 		scsi_device_put(sdev);
338 	}
339  out:
340 	spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342 
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346 		return 1;
347 
348 	return 0;
349 }
350 
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353 	return ((starget->can_queue > 0 &&
354 		 starget->target_busy >= starget->can_queue) ||
355 		 starget->target_blocked);
356 }
357 
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361 	    shost->host_blocked || shost->host_self_blocked)
362 		return 1;
363 
364 	return 0;
365 }
366 
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369 	LIST_HEAD(starved_list);
370 	struct scsi_device *sdev;
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(shost->host_lock, flags);
374 	list_splice_init(&shost->starved_list, &starved_list);
375 
376 	while (!list_empty(&starved_list)) {
377 		struct request_queue *slq;
378 
379 		/*
380 		 * As long as shost is accepting commands and we have
381 		 * starved queues, call blk_run_queue. scsi_request_fn
382 		 * drops the queue_lock and can add us back to the
383 		 * starved_list.
384 		 *
385 		 * host_lock protects the starved_list and starved_entry.
386 		 * scsi_request_fn must get the host_lock before checking
387 		 * or modifying starved_list or starved_entry.
388 		 */
389 		if (scsi_host_is_busy(shost))
390 			break;
391 
392 		sdev = list_entry(starved_list.next,
393 				  struct scsi_device, starved_entry);
394 		list_del_init(&sdev->starved_entry);
395 		if (scsi_target_is_busy(scsi_target(sdev))) {
396 			list_move_tail(&sdev->starved_entry,
397 				       &shost->starved_list);
398 			continue;
399 		}
400 
401 		/*
402 		 * Once we drop the host lock, a racing scsi_remove_device()
403 		 * call may remove the sdev from the starved list and destroy
404 		 * it and the queue.  Mitigate by taking a reference to the
405 		 * queue and never touching the sdev again after we drop the
406 		 * host lock.  Note: if __scsi_remove_device() invokes
407 		 * blk_cleanup_queue() before the queue is run from this
408 		 * function then blk_run_queue() will return immediately since
409 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410 		 */
411 		slq = sdev->request_queue;
412 		if (!blk_get_queue(slq))
413 			continue;
414 		spin_unlock_irqrestore(shost->host_lock, flags);
415 
416 		blk_run_queue(slq);
417 		blk_put_queue(slq);
418 
419 		spin_lock_irqsave(shost->host_lock, flags);
420 	}
421 	/* put any unprocessed entries back */
422 	list_splice(&starved_list, &shost->starved_list);
423 	spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425 
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440 	struct scsi_device *sdev = q->queuedata;
441 
442 	if (scsi_target(sdev)->single_lun)
443 		scsi_single_lun_run(sdev);
444 	if (!list_empty(&sdev->host->starved_list))
445 		scsi_starved_list_run(sdev->host);
446 
447 	blk_run_queue(q);
448 }
449 
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452 	struct scsi_device *sdev;
453 	struct request_queue *q;
454 
455 	sdev = container_of(work, struct scsi_device, requeue_work);
456 	q = sdev->request_queue;
457 	scsi_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct scsi_device *sdev = cmd->device;
481 	struct request *req = cmd->request;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(q->queue_lock, flags);
485 	blk_unprep_request(req);
486 	req->special = NULL;
487 	scsi_put_command(cmd);
488 	blk_requeue_request(q, req);
489 	spin_unlock_irqrestore(q->queue_lock, flags);
490 
491 	scsi_run_queue(q);
492 
493 	put_device(&sdev->sdev_gendev);
494 }
495 
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498 	struct scsi_device *sdev = cmd->device;
499 	struct request_queue *q = sdev->request_queue;
500 
501 	scsi_put_command(cmd);
502 	scsi_run_queue(q);
503 
504 	put_device(&sdev->sdev_gendev);
505 }
506 
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509 	struct scsi_device *sdev;
510 
511 	shost_for_each_device(sdev, shost)
512 		scsi_run_queue(sdev->request_queue);
513 }
514 
515 static inline unsigned int scsi_sgtable_index(unsigned short nents)
516 {
517 	unsigned int index;
518 
519 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
520 
521 	if (nents <= 8)
522 		index = 0;
523 	else
524 		index = get_count_order(nents) - 3;
525 
526 	return index;
527 }
528 
529 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
530 {
531 	struct scsi_host_sg_pool *sgp;
532 
533 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
534 	mempool_free(sgl, sgp->pool);
535 }
536 
537 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
538 {
539 	struct scsi_host_sg_pool *sgp;
540 
541 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
542 	return mempool_alloc(sgp->pool, gfp_mask);
543 }
544 
545 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
546 			      gfp_t gfp_mask)
547 {
548 	int ret;
549 
550 	BUG_ON(!nents);
551 
552 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
553 			       gfp_mask, scsi_sg_alloc);
554 	if (unlikely(ret))
555 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
556 				scsi_sg_free);
557 
558 	return ret;
559 }
560 
561 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
562 {
563 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
564 }
565 
566 /*
567  * Function:    scsi_release_buffers()
568  *
569  * Purpose:     Free resources allocate for a scsi_command.
570  *
571  * Arguments:   cmd	- command that we are bailing.
572  *
573  * Lock status: Assumed that no lock is held upon entry.
574  *
575  * Returns:     Nothing
576  *
577  * Notes:       In the event that an upper level driver rejects a
578  *		command, we must release resources allocated during
579  *		the __init_io() function.  Primarily this would involve
580  *		the scatter-gather table.
581  */
582 void scsi_release_buffers(struct scsi_cmnd *cmd)
583 {
584 	if (cmd->sdb.table.nents)
585 		scsi_free_sgtable(&cmd->sdb);
586 
587 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
588 
589 	if (scsi_prot_sg_count(cmd))
590 		scsi_free_sgtable(cmd->prot_sdb);
591 }
592 EXPORT_SYMBOL(scsi_release_buffers);
593 
594 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
595 {
596 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
597 
598 	scsi_free_sgtable(bidi_sdb);
599 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
600 	cmd->request->next_rq->special = NULL;
601 }
602 
603 /**
604  * __scsi_error_from_host_byte - translate SCSI error code into errno
605  * @cmd:	SCSI command (unused)
606  * @result:	scsi error code
607  *
608  * Translate SCSI error code into standard UNIX errno.
609  * Return values:
610  * -ENOLINK	temporary transport failure
611  * -EREMOTEIO	permanent target failure, do not retry
612  * -EBADE	permanent nexus failure, retry on other path
613  * -ENOSPC	No write space available
614  * -ENODATA	Medium error
615  * -EIO		unspecified I/O error
616  */
617 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
618 {
619 	int error = 0;
620 
621 	switch(host_byte(result)) {
622 	case DID_TRANSPORT_FAILFAST:
623 		error = -ENOLINK;
624 		break;
625 	case DID_TARGET_FAILURE:
626 		set_host_byte(cmd, DID_OK);
627 		error = -EREMOTEIO;
628 		break;
629 	case DID_NEXUS_FAILURE:
630 		set_host_byte(cmd, DID_OK);
631 		error = -EBADE;
632 		break;
633 	case DID_ALLOC_FAILURE:
634 		set_host_byte(cmd, DID_OK);
635 		error = -ENOSPC;
636 		break;
637 	case DID_MEDIUM_ERROR:
638 		set_host_byte(cmd, DID_OK);
639 		error = -ENODATA;
640 		break;
641 	default:
642 		error = -EIO;
643 		break;
644 	}
645 
646 	return error;
647 }
648 
649 /*
650  * Function:    scsi_io_completion()
651  *
652  * Purpose:     Completion processing for block device I/O requests.
653  *
654  * Arguments:   cmd   - command that is finished.
655  *
656  * Lock status: Assumed that no lock is held upon entry.
657  *
658  * Returns:     Nothing
659  *
660  * Notes:       We will finish off the specified number of sectors.  If we
661  *		are done, the command block will be released and the queue
662  *		function will be goosed.  If we are not done then we have to
663  *		figure out what to do next:
664  *
665  *		a) We can call scsi_requeue_command().  The request
666  *		   will be unprepared and put back on the queue.  Then
667  *		   a new command will be created for it.  This should
668  *		   be used if we made forward progress, or if we want
669  *		   to switch from READ(10) to READ(6) for example.
670  *
671  *		b) We can call __scsi_queue_insert().  The request will
672  *		   be put back on the queue and retried using the same
673  *		   command as before, possibly after a delay.
674  *
675  *		c) We can call blk_end_request() with -EIO to fail
676  *		   the remainder of the request.
677  */
678 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
679 {
680 	int result = cmd->result;
681 	struct request_queue *q = cmd->device->request_queue;
682 	struct request *req = cmd->request;
683 	int error = 0;
684 	struct scsi_sense_hdr sshdr;
685 	int sense_valid = 0;
686 	int sense_deferred = 0;
687 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
688 	      ACTION_DELAYED_RETRY} action;
689 	char *description = NULL;
690 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
691 
692 	if (result) {
693 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
694 		if (sense_valid)
695 			sense_deferred = scsi_sense_is_deferred(&sshdr);
696 	}
697 
698 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
699 		if (result) {
700 			if (sense_valid && req->sense) {
701 				/*
702 				 * SG_IO wants current and deferred errors
703 				 */
704 				int len = 8 + cmd->sense_buffer[7];
705 
706 				if (len > SCSI_SENSE_BUFFERSIZE)
707 					len = SCSI_SENSE_BUFFERSIZE;
708 				memcpy(req->sense, cmd->sense_buffer,  len);
709 				req->sense_len = len;
710 			}
711 			if (!sense_deferred)
712 				error = __scsi_error_from_host_byte(cmd, result);
713 		}
714 		/*
715 		 * __scsi_error_from_host_byte may have reset the host_byte
716 		 */
717 		req->errors = cmd->result;
718 
719 		req->resid_len = scsi_get_resid(cmd);
720 
721 		if (scsi_bidi_cmnd(cmd)) {
722 			/*
723 			 * Bidi commands Must be complete as a whole,
724 			 * both sides at once.
725 			 */
726 			req->next_rq->resid_len = scsi_in(cmd)->resid;
727 
728 			scsi_release_buffers(cmd);
729 			scsi_release_bidi_buffers(cmd);
730 
731 			blk_end_request_all(req, 0);
732 
733 			scsi_next_command(cmd);
734 			return;
735 		}
736 	}
737 
738 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
739 	BUG_ON(blk_bidi_rq(req));
740 
741 	/*
742 	 * Next deal with any sectors which we were able to correctly
743 	 * handle.
744 	 */
745 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
746 				      "%d bytes done.\n",
747 				      blk_rq_sectors(req), good_bytes));
748 
749 	/*
750 	 * Recovered errors need reporting, but they're always treated
751 	 * as success, so fiddle the result code here.  For BLOCK_PC
752 	 * we already took a copy of the original into rq->errors which
753 	 * is what gets returned to the user
754 	 */
755 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
756 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
757 		 * print since caller wants ATA registers. Only occurs on
758 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
759 		 */
760 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
761 			;
762 		else if (!(req->cmd_flags & REQ_QUIET))
763 			scsi_print_sense("", cmd);
764 		result = 0;
765 		/* BLOCK_PC may have set error */
766 		error = 0;
767 	}
768 
769 	/*
770 	 * If we finished all bytes in the request we are done now.
771 	 */
772 	if (!blk_end_request(req, error, good_bytes))
773 		goto next_command;
774 
775 	/*
776 	 * Kill remainder if no retrys.
777 	 */
778 	if (error && scsi_noretry_cmd(cmd)) {
779 		blk_end_request_all(req, error);
780 		goto next_command;
781 	}
782 
783 	/*
784 	 * If there had been no error, but we have leftover bytes in the
785 	 * requeues just queue the command up again.
786 	 */
787 	if (result == 0)
788 		goto requeue;
789 
790 	error = __scsi_error_from_host_byte(cmd, result);
791 
792 	if (host_byte(result) == DID_RESET) {
793 		/* Third party bus reset or reset for error recovery
794 		 * reasons.  Just retry the command and see what
795 		 * happens.
796 		 */
797 		action = ACTION_RETRY;
798 	} else if (sense_valid && !sense_deferred) {
799 		switch (sshdr.sense_key) {
800 		case UNIT_ATTENTION:
801 			if (cmd->device->removable) {
802 				/* Detected disc change.  Set a bit
803 				 * and quietly refuse further access.
804 				 */
805 				cmd->device->changed = 1;
806 				description = "Media Changed";
807 				action = ACTION_FAIL;
808 			} else {
809 				/* Must have been a power glitch, or a
810 				 * bus reset.  Could not have been a
811 				 * media change, so we just retry the
812 				 * command and see what happens.
813 				 */
814 				action = ACTION_RETRY;
815 			}
816 			break;
817 		case ILLEGAL_REQUEST:
818 			/* If we had an ILLEGAL REQUEST returned, then
819 			 * we may have performed an unsupported
820 			 * command.  The only thing this should be
821 			 * would be a ten byte read where only a six
822 			 * byte read was supported.  Also, on a system
823 			 * where READ CAPACITY failed, we may have
824 			 * read past the end of the disk.
825 			 */
826 			if ((cmd->device->use_10_for_rw &&
827 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
828 			    (cmd->cmnd[0] == READ_10 ||
829 			     cmd->cmnd[0] == WRITE_10)) {
830 				/* This will issue a new 6-byte command. */
831 				cmd->device->use_10_for_rw = 0;
832 				action = ACTION_REPREP;
833 			} else if (sshdr.asc == 0x10) /* DIX */ {
834 				description = "Host Data Integrity Failure";
835 				action = ACTION_FAIL;
836 				error = -EILSEQ;
837 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
838 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
839 				switch (cmd->cmnd[0]) {
840 				case UNMAP:
841 					description = "Discard failure";
842 					break;
843 				case WRITE_SAME:
844 				case WRITE_SAME_16:
845 					if (cmd->cmnd[1] & 0x8)
846 						description = "Discard failure";
847 					else
848 						description =
849 							"Write same failure";
850 					break;
851 				default:
852 					description = "Invalid command failure";
853 					break;
854 				}
855 				action = ACTION_FAIL;
856 				error = -EREMOTEIO;
857 			} else
858 				action = ACTION_FAIL;
859 			break;
860 		case ABORTED_COMMAND:
861 			action = ACTION_FAIL;
862 			if (sshdr.asc == 0x10) { /* DIF */
863 				description = "Target Data Integrity Failure";
864 				error = -EILSEQ;
865 			}
866 			break;
867 		case NOT_READY:
868 			/* If the device is in the process of becoming
869 			 * ready, or has a temporary blockage, retry.
870 			 */
871 			if (sshdr.asc == 0x04) {
872 				switch (sshdr.ascq) {
873 				case 0x01: /* becoming ready */
874 				case 0x04: /* format in progress */
875 				case 0x05: /* rebuild in progress */
876 				case 0x06: /* recalculation in progress */
877 				case 0x07: /* operation in progress */
878 				case 0x08: /* Long write in progress */
879 				case 0x09: /* self test in progress */
880 				case 0x14: /* space allocation in progress */
881 					action = ACTION_DELAYED_RETRY;
882 					break;
883 				default:
884 					description = "Device not ready";
885 					action = ACTION_FAIL;
886 					break;
887 				}
888 			} else {
889 				description = "Device not ready";
890 				action = ACTION_FAIL;
891 			}
892 			break;
893 		case VOLUME_OVERFLOW:
894 			/* See SSC3rXX or current. */
895 			action = ACTION_FAIL;
896 			break;
897 		default:
898 			description = "Unhandled sense code";
899 			action = ACTION_FAIL;
900 			break;
901 		}
902 	} else {
903 		description = "Unhandled error code";
904 		action = ACTION_FAIL;
905 	}
906 
907 	if (action != ACTION_FAIL &&
908 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
909 		action = ACTION_FAIL;
910 		description = "Command timed out";
911 	}
912 
913 	switch (action) {
914 	case ACTION_FAIL:
915 		/* Give up and fail the remainder of the request */
916 		if (!(req->cmd_flags & REQ_QUIET)) {
917 			if (description)
918 				scmd_printk(KERN_INFO, cmd, "%s\n",
919 					    description);
920 			scsi_print_result(cmd);
921 			if (driver_byte(result) & DRIVER_SENSE)
922 				scsi_print_sense("", cmd);
923 			scsi_print_command(cmd);
924 		}
925 		if (!blk_end_request_err(req, error))
926 			goto next_command;
927 		/*FALLTHRU*/
928 	case ACTION_REPREP:
929 	requeue:
930 		/* Unprep the request and put it back at the head of the queue.
931 		 * A new command will be prepared and issued.
932 		 */
933 		scsi_release_buffers(cmd);
934 		scsi_requeue_command(q, cmd);
935 		break;
936 	case ACTION_RETRY:
937 		/* Retry the same command immediately */
938 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
939 		break;
940 	case ACTION_DELAYED_RETRY:
941 		/* Retry the same command after a delay */
942 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
943 		break;
944 	}
945 	return;
946 
947 next_command:
948 	scsi_release_buffers(cmd);
949 	scsi_next_command(cmd);
950 }
951 
952 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
953 			     gfp_t gfp_mask)
954 {
955 	int count;
956 
957 	/*
958 	 * If sg table allocation fails, requeue request later.
959 	 */
960 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
961 					gfp_mask))) {
962 		return BLKPREP_DEFER;
963 	}
964 
965 	/*
966 	 * Next, walk the list, and fill in the addresses and sizes of
967 	 * each segment.
968 	 */
969 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
970 	BUG_ON(count > sdb->table.nents);
971 	sdb->table.nents = count;
972 	sdb->length = blk_rq_bytes(req);
973 	return BLKPREP_OK;
974 }
975 
976 /*
977  * Function:    scsi_init_io()
978  *
979  * Purpose:     SCSI I/O initialize function.
980  *
981  * Arguments:   cmd   - Command descriptor we wish to initialize
982  *
983  * Returns:     0 on success
984  *		BLKPREP_DEFER if the failure is retryable
985  *		BLKPREP_KILL if the failure is fatal
986  */
987 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
988 {
989 	struct scsi_device *sdev = cmd->device;
990 	struct request *rq = cmd->request;
991 
992 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
993 	if (error)
994 		goto err_exit;
995 
996 	if (blk_bidi_rq(rq)) {
997 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
998 			scsi_sdb_cache, GFP_ATOMIC);
999 		if (!bidi_sdb) {
1000 			error = BLKPREP_DEFER;
1001 			goto err_exit;
1002 		}
1003 
1004 		rq->next_rq->special = bidi_sdb;
1005 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1006 		if (error)
1007 			goto err_exit;
1008 	}
1009 
1010 	if (blk_integrity_rq(rq)) {
1011 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1012 		int ivecs, count;
1013 
1014 		BUG_ON(prot_sdb == NULL);
1015 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1016 
1017 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1018 			error = BLKPREP_DEFER;
1019 			goto err_exit;
1020 		}
1021 
1022 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1023 						prot_sdb->table.sgl);
1024 		BUG_ON(unlikely(count > ivecs));
1025 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1026 
1027 		cmd->prot_sdb = prot_sdb;
1028 		cmd->prot_sdb->table.nents = count;
1029 	}
1030 
1031 	return BLKPREP_OK ;
1032 
1033 err_exit:
1034 	scsi_release_buffers(cmd);
1035 	cmd->request->special = NULL;
1036 	scsi_put_command(cmd);
1037 	put_device(&sdev->sdev_gendev);
1038 	return error;
1039 }
1040 EXPORT_SYMBOL(scsi_init_io);
1041 
1042 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1043 		struct request *req)
1044 {
1045 	struct scsi_cmnd *cmd;
1046 
1047 	if (!req->special) {
1048 		/* Bail if we can't get a reference to the device */
1049 		if (!get_device(&sdev->sdev_gendev))
1050 			return NULL;
1051 
1052 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1053 		if (unlikely(!cmd)) {
1054 			put_device(&sdev->sdev_gendev);
1055 			return NULL;
1056 		}
1057 		req->special = cmd;
1058 	} else {
1059 		cmd = req->special;
1060 	}
1061 
1062 	/* pull a tag out of the request if we have one */
1063 	cmd->tag = req->tag;
1064 	cmd->request = req;
1065 
1066 	cmd->cmnd = req->cmd;
1067 	cmd->prot_op = SCSI_PROT_NORMAL;
1068 
1069 	return cmd;
1070 }
1071 
1072 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1073 {
1074 	struct scsi_cmnd *cmd = req->special;
1075 
1076 	/*
1077 	 * BLOCK_PC requests may transfer data, in which case they must
1078 	 * a bio attached to them.  Or they might contain a SCSI command
1079 	 * that does not transfer data, in which case they may optionally
1080 	 * submit a request without an attached bio.
1081 	 */
1082 	if (req->bio) {
1083 		int ret;
1084 
1085 		BUG_ON(!req->nr_phys_segments);
1086 
1087 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1088 		if (unlikely(ret))
1089 			return ret;
1090 	} else {
1091 		BUG_ON(blk_rq_bytes(req));
1092 
1093 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1094 	}
1095 
1096 	cmd->cmd_len = req->cmd_len;
1097 	if (!blk_rq_bytes(req))
1098 		cmd->sc_data_direction = DMA_NONE;
1099 	else if (rq_data_dir(req) == WRITE)
1100 		cmd->sc_data_direction = DMA_TO_DEVICE;
1101 	else
1102 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1103 
1104 	cmd->transfersize = blk_rq_bytes(req);
1105 	cmd->allowed = req->retries;
1106 	return BLKPREP_OK;
1107 }
1108 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1109 
1110 /*
1111  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1112  * from filesystems that still need to be translated to SCSI CDBs from
1113  * the ULD.
1114  */
1115 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1116 {
1117 	struct scsi_cmnd *cmd = req->special;
1118 
1119 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1120 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1121 		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1122 		if (ret != BLKPREP_OK)
1123 			return ret;
1124 	}
1125 
1126 	/*
1127 	 * Filesystem requests must transfer data.
1128 	 */
1129 	BUG_ON(!req->nr_phys_segments);
1130 
1131 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1132 	return scsi_init_io(cmd, GFP_ATOMIC);
1133 }
1134 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1135 
1136 static int
1137 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1138 {
1139 	int ret = BLKPREP_OK;
1140 
1141 	/*
1142 	 * If the device is not in running state we will reject some
1143 	 * or all commands.
1144 	 */
1145 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1146 		switch (sdev->sdev_state) {
1147 		case SDEV_OFFLINE:
1148 		case SDEV_TRANSPORT_OFFLINE:
1149 			/*
1150 			 * If the device is offline we refuse to process any
1151 			 * commands.  The device must be brought online
1152 			 * before trying any recovery commands.
1153 			 */
1154 			sdev_printk(KERN_ERR, sdev,
1155 				    "rejecting I/O to offline device\n");
1156 			ret = BLKPREP_KILL;
1157 			break;
1158 		case SDEV_DEL:
1159 			/*
1160 			 * If the device is fully deleted, we refuse to
1161 			 * process any commands as well.
1162 			 */
1163 			sdev_printk(KERN_ERR, sdev,
1164 				    "rejecting I/O to dead device\n");
1165 			ret = BLKPREP_KILL;
1166 			break;
1167 		case SDEV_QUIESCE:
1168 		case SDEV_BLOCK:
1169 		case SDEV_CREATED_BLOCK:
1170 			/*
1171 			 * If the devices is blocked we defer normal commands.
1172 			 */
1173 			if (!(req->cmd_flags & REQ_PREEMPT))
1174 				ret = BLKPREP_DEFER;
1175 			break;
1176 		default:
1177 			/*
1178 			 * For any other not fully online state we only allow
1179 			 * special commands.  In particular any user initiated
1180 			 * command is not allowed.
1181 			 */
1182 			if (!(req->cmd_flags & REQ_PREEMPT))
1183 				ret = BLKPREP_KILL;
1184 			break;
1185 		}
1186 	}
1187 	return ret;
1188 }
1189 
1190 static int
1191 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1192 {
1193 	struct scsi_device *sdev = q->queuedata;
1194 
1195 	switch (ret) {
1196 	case BLKPREP_KILL:
1197 		req->errors = DID_NO_CONNECT << 16;
1198 		/* release the command and kill it */
1199 		if (req->special) {
1200 			struct scsi_cmnd *cmd = req->special;
1201 			scsi_release_buffers(cmd);
1202 			scsi_put_command(cmd);
1203 			put_device(&sdev->sdev_gendev);
1204 			req->special = NULL;
1205 		}
1206 		break;
1207 	case BLKPREP_DEFER:
1208 		/*
1209 		 * If we defer, the blk_peek_request() returns NULL, but the
1210 		 * queue must be restarted, so we schedule a callback to happen
1211 		 * shortly.
1212 		 */
1213 		if (sdev->device_busy == 0)
1214 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1215 		break;
1216 	default:
1217 		req->cmd_flags |= REQ_DONTPREP;
1218 	}
1219 
1220 	return ret;
1221 }
1222 
1223 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1224 {
1225 	struct scsi_device *sdev = q->queuedata;
1226 	struct scsi_cmnd *cmd;
1227 	int ret;
1228 
1229 	ret = scsi_prep_state_check(sdev, req);
1230 	if (ret != BLKPREP_OK)
1231 		goto out;
1232 
1233 	cmd = scsi_get_cmd_from_req(sdev, req);
1234 	if (unlikely(!cmd)) {
1235 		ret = BLKPREP_DEFER;
1236 		goto out;
1237 	}
1238 
1239 	if (req->cmd_type == REQ_TYPE_FS)
1240 		ret = scsi_cmd_to_driver(cmd)->init_command(cmd);
1241 	else if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1242 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1243 	else
1244 		ret = BLKPREP_KILL;
1245 
1246 out:
1247 	return scsi_prep_return(q, req, ret);
1248 }
1249 
1250 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1251 {
1252 	if (req->cmd_type == REQ_TYPE_FS) {
1253 		struct scsi_cmnd *cmd = req->special;
1254 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1255 
1256 		if (drv->uninit_command)
1257 			drv->uninit_command(cmd);
1258 	}
1259 }
1260 
1261 /*
1262  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1263  * return 0.
1264  *
1265  * Called with the queue_lock held.
1266  */
1267 static inline int scsi_dev_queue_ready(struct request_queue *q,
1268 				  struct scsi_device *sdev)
1269 {
1270 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1271 		/*
1272 		 * unblock after device_blocked iterates to zero
1273 		 */
1274 		if (--sdev->device_blocked == 0) {
1275 			SCSI_LOG_MLQUEUE(3,
1276 				   sdev_printk(KERN_INFO, sdev,
1277 				   "unblocking device at zero depth\n"));
1278 		} else {
1279 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280 			return 0;
1281 		}
1282 	}
1283 	if (scsi_device_is_busy(sdev))
1284 		return 0;
1285 
1286 	return 1;
1287 }
1288 
1289 
1290 /*
1291  * scsi_target_queue_ready: checks if there we can send commands to target
1292  * @sdev: scsi device on starget to check.
1293  *
1294  * Called with the host lock held.
1295  */
1296 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1297 					   struct scsi_device *sdev)
1298 {
1299 	struct scsi_target *starget = scsi_target(sdev);
1300 
1301 	if (starget->single_lun) {
1302 		if (starget->starget_sdev_user &&
1303 		    starget->starget_sdev_user != sdev)
1304 			return 0;
1305 		starget->starget_sdev_user = sdev;
1306 	}
1307 
1308 	if (starget->target_busy == 0 && starget->target_blocked) {
1309 		/*
1310 		 * unblock after target_blocked iterates to zero
1311 		 */
1312 		if (--starget->target_blocked == 0) {
1313 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314 					 "unblocking target at zero depth\n"));
1315 		} else
1316 			return 0;
1317 	}
1318 
1319 	if (scsi_target_is_busy(starget)) {
1320 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321 		return 0;
1322 	}
1323 
1324 	return 1;
1325 }
1326 
1327 /*
1328  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329  * return 0. We must end up running the queue again whenever 0 is
1330  * returned, else IO can hang.
1331  *
1332  * Called with host_lock held.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 				   struct Scsi_Host *shost,
1336 				   struct scsi_device *sdev)
1337 {
1338 	if (scsi_host_in_recovery(shost))
1339 		return 0;
1340 	if (shost->host_busy == 0 && shost->host_blocked) {
1341 		/*
1342 		 * unblock after host_blocked iterates to zero
1343 		 */
1344 		if (--shost->host_blocked == 0) {
1345 			SCSI_LOG_MLQUEUE(3,
1346 				printk("scsi%d unblocking host at zero depth\n",
1347 					shost->host_no));
1348 		} else {
1349 			return 0;
1350 		}
1351 	}
1352 	if (scsi_host_is_busy(shost)) {
1353 		if (list_empty(&sdev->starved_entry))
1354 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355 		return 0;
1356 	}
1357 
1358 	/* We're OK to process the command, so we can't be starved */
1359 	if (!list_empty(&sdev->starved_entry))
1360 		list_del_init(&sdev->starved_entry);
1361 
1362 	return 1;
1363 }
1364 
1365 /*
1366  * Busy state exporting function for request stacking drivers.
1367  *
1368  * For efficiency, no lock is taken to check the busy state of
1369  * shost/starget/sdev, since the returned value is not guaranteed and
1370  * may be changed after request stacking drivers call the function,
1371  * regardless of taking lock or not.
1372  *
1373  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1374  * needs to return 'not busy'. Otherwise, request stacking drivers
1375  * may hold requests forever.
1376  */
1377 static int scsi_lld_busy(struct request_queue *q)
1378 {
1379 	struct scsi_device *sdev = q->queuedata;
1380 	struct Scsi_Host *shost;
1381 
1382 	if (blk_queue_dying(q))
1383 		return 0;
1384 
1385 	shost = sdev->host;
1386 
1387 	/*
1388 	 * Ignore host/starget busy state.
1389 	 * Since block layer does not have a concept of fairness across
1390 	 * multiple queues, congestion of host/starget needs to be handled
1391 	 * in SCSI layer.
1392 	 */
1393 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1394 		return 1;
1395 
1396 	return 0;
1397 }
1398 
1399 /*
1400  * Kill a request for a dead device
1401  */
1402 static void scsi_kill_request(struct request *req, struct request_queue *q)
1403 {
1404 	struct scsi_cmnd *cmd = req->special;
1405 	struct scsi_device *sdev;
1406 	struct scsi_target *starget;
1407 	struct Scsi_Host *shost;
1408 
1409 	blk_start_request(req);
1410 
1411 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1412 
1413 	sdev = cmd->device;
1414 	starget = scsi_target(sdev);
1415 	shost = sdev->host;
1416 	scsi_init_cmd_errh(cmd);
1417 	cmd->result = DID_NO_CONNECT << 16;
1418 	atomic_inc(&cmd->device->iorequest_cnt);
1419 
1420 	/*
1421 	 * SCSI request completion path will do scsi_device_unbusy(),
1422 	 * bump busy counts.  To bump the counters, we need to dance
1423 	 * with the locks as normal issue path does.
1424 	 */
1425 	sdev->device_busy++;
1426 	spin_unlock(sdev->request_queue->queue_lock);
1427 	spin_lock(shost->host_lock);
1428 	shost->host_busy++;
1429 	starget->target_busy++;
1430 	spin_unlock(shost->host_lock);
1431 	spin_lock(sdev->request_queue->queue_lock);
1432 
1433 	blk_complete_request(req);
1434 }
1435 
1436 static void scsi_softirq_done(struct request *rq)
1437 {
1438 	struct scsi_cmnd *cmd = rq->special;
1439 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1440 	int disposition;
1441 
1442 	INIT_LIST_HEAD(&cmd->eh_entry);
1443 
1444 	atomic_inc(&cmd->device->iodone_cnt);
1445 	if (cmd->result)
1446 		atomic_inc(&cmd->device->ioerr_cnt);
1447 
1448 	disposition = scsi_decide_disposition(cmd);
1449 	if (disposition != SUCCESS &&
1450 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1451 		sdev_printk(KERN_ERR, cmd->device,
1452 			    "timing out command, waited %lus\n",
1453 			    wait_for/HZ);
1454 		disposition = SUCCESS;
1455 	}
1456 
1457 	scsi_log_completion(cmd, disposition);
1458 
1459 	switch (disposition) {
1460 		case SUCCESS:
1461 			scsi_finish_command(cmd);
1462 			break;
1463 		case NEEDS_RETRY:
1464 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1465 			break;
1466 		case ADD_TO_MLQUEUE:
1467 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1468 			break;
1469 		default:
1470 			if (!scsi_eh_scmd_add(cmd, 0))
1471 				scsi_finish_command(cmd);
1472 	}
1473 }
1474 
1475 /*
1476  * Function:    scsi_request_fn()
1477  *
1478  * Purpose:     Main strategy routine for SCSI.
1479  *
1480  * Arguments:   q       - Pointer to actual queue.
1481  *
1482  * Returns:     Nothing
1483  *
1484  * Lock status: IO request lock assumed to be held when called.
1485  */
1486 static void scsi_request_fn(struct request_queue *q)
1487 	__releases(q->queue_lock)
1488 	__acquires(q->queue_lock)
1489 {
1490 	struct scsi_device *sdev = q->queuedata;
1491 	struct Scsi_Host *shost;
1492 	struct scsi_cmnd *cmd;
1493 	struct request *req;
1494 
1495 	/*
1496 	 * To start with, we keep looping until the queue is empty, or until
1497 	 * the host is no longer able to accept any more requests.
1498 	 */
1499 	shost = sdev->host;
1500 	for (;;) {
1501 		int rtn;
1502 		/*
1503 		 * get next queueable request.  We do this early to make sure
1504 		 * that the request is fully prepared even if we cannot
1505 		 * accept it.
1506 		 */
1507 		req = blk_peek_request(q);
1508 		if (!req || !scsi_dev_queue_ready(q, sdev))
1509 			break;
1510 
1511 		if (unlikely(!scsi_device_online(sdev))) {
1512 			sdev_printk(KERN_ERR, sdev,
1513 				    "rejecting I/O to offline device\n");
1514 			scsi_kill_request(req, q);
1515 			continue;
1516 		}
1517 
1518 
1519 		/*
1520 		 * Remove the request from the request list.
1521 		 */
1522 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1523 			blk_start_request(req);
1524 		sdev->device_busy++;
1525 
1526 		spin_unlock(q->queue_lock);
1527 		cmd = req->special;
1528 		if (unlikely(cmd == NULL)) {
1529 			printk(KERN_CRIT "impossible request in %s.\n"
1530 					 "please mail a stack trace to "
1531 					 "linux-scsi@vger.kernel.org\n",
1532 					 __func__);
1533 			blk_dump_rq_flags(req, "foo");
1534 			BUG();
1535 		}
1536 		spin_lock(shost->host_lock);
1537 
1538 		/*
1539 		 * We hit this when the driver is using a host wide
1540 		 * tag map. For device level tag maps the queue_depth check
1541 		 * in the device ready fn would prevent us from trying
1542 		 * to allocate a tag. Since the map is a shared host resource
1543 		 * we add the dev to the starved list so it eventually gets
1544 		 * a run when a tag is freed.
1545 		 */
1546 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1547 			if (list_empty(&sdev->starved_entry))
1548 				list_add_tail(&sdev->starved_entry,
1549 					      &shost->starved_list);
1550 			goto not_ready;
1551 		}
1552 
1553 		if (!scsi_target_queue_ready(shost, sdev))
1554 			goto not_ready;
1555 
1556 		if (!scsi_host_queue_ready(q, shost, sdev))
1557 			goto not_ready;
1558 
1559 		scsi_target(sdev)->target_busy++;
1560 		shost->host_busy++;
1561 
1562 		/*
1563 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1564 		 *		take the lock again.
1565 		 */
1566 		spin_unlock_irq(shost->host_lock);
1567 
1568 		/*
1569 		 * Finally, initialize any error handling parameters, and set up
1570 		 * the timers for timeouts.
1571 		 */
1572 		scsi_init_cmd_errh(cmd);
1573 
1574 		/*
1575 		 * Dispatch the command to the low-level driver.
1576 		 */
1577 		rtn = scsi_dispatch_cmd(cmd);
1578 		spin_lock_irq(q->queue_lock);
1579 		if (rtn)
1580 			goto out_delay;
1581 	}
1582 
1583 	return;
1584 
1585  not_ready:
1586 	spin_unlock_irq(shost->host_lock);
1587 
1588 	/*
1589 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1590 	 * must return with queue_lock held.
1591 	 *
1592 	 * Decrementing device_busy without checking it is OK, as all such
1593 	 * cases (host limits or settings) should run the queue at some
1594 	 * later time.
1595 	 */
1596 	spin_lock_irq(q->queue_lock);
1597 	blk_requeue_request(q, req);
1598 	sdev->device_busy--;
1599 out_delay:
1600 	if (sdev->device_busy == 0)
1601 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1602 }
1603 
1604 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1605 {
1606 	struct device *host_dev;
1607 	u64 bounce_limit = 0xffffffff;
1608 
1609 	if (shost->unchecked_isa_dma)
1610 		return BLK_BOUNCE_ISA;
1611 	/*
1612 	 * Platforms with virtual-DMA translation
1613 	 * hardware have no practical limit.
1614 	 */
1615 	if (!PCI_DMA_BUS_IS_PHYS)
1616 		return BLK_BOUNCE_ANY;
1617 
1618 	host_dev = scsi_get_device(shost);
1619 	if (host_dev && host_dev->dma_mask)
1620 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1621 
1622 	return bounce_limit;
1623 }
1624 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1625 
1626 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1627 					 request_fn_proc *request_fn)
1628 {
1629 	struct request_queue *q;
1630 	struct device *dev = shost->dma_dev;
1631 
1632 	q = blk_init_queue(request_fn, NULL);
1633 	if (!q)
1634 		return NULL;
1635 
1636 	/*
1637 	 * this limit is imposed by hardware restrictions
1638 	 */
1639 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1640 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1641 
1642 	if (scsi_host_prot_dma(shost)) {
1643 		shost->sg_prot_tablesize =
1644 			min_not_zero(shost->sg_prot_tablesize,
1645 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1646 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1647 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1648 	}
1649 
1650 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1651 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1652 	blk_queue_segment_boundary(q, shost->dma_boundary);
1653 	dma_set_seg_boundary(dev, shost->dma_boundary);
1654 
1655 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1656 
1657 	if (!shost->use_clustering)
1658 		q->limits.cluster = 0;
1659 
1660 	/*
1661 	 * set a reasonable default alignment on word boundaries: the
1662 	 * host and device may alter it using
1663 	 * blk_queue_update_dma_alignment() later.
1664 	 */
1665 	blk_queue_dma_alignment(q, 0x03);
1666 
1667 	return q;
1668 }
1669 EXPORT_SYMBOL(__scsi_alloc_queue);
1670 
1671 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1672 {
1673 	struct request_queue *q;
1674 
1675 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1676 	if (!q)
1677 		return NULL;
1678 
1679 	blk_queue_prep_rq(q, scsi_prep_fn);
1680 	blk_queue_unprep_rq(q, scsi_unprep_fn);
1681 	blk_queue_softirq_done(q, scsi_softirq_done);
1682 	blk_queue_rq_timed_out(q, scsi_times_out);
1683 	blk_queue_lld_busy(q, scsi_lld_busy);
1684 	return q;
1685 }
1686 
1687 /*
1688  * Function:    scsi_block_requests()
1689  *
1690  * Purpose:     Utility function used by low-level drivers to prevent further
1691  *		commands from being queued to the device.
1692  *
1693  * Arguments:   shost       - Host in question
1694  *
1695  * Returns:     Nothing
1696  *
1697  * Lock status: No locks are assumed held.
1698  *
1699  * Notes:       There is no timer nor any other means by which the requests
1700  *		get unblocked other than the low-level driver calling
1701  *		scsi_unblock_requests().
1702  */
1703 void scsi_block_requests(struct Scsi_Host *shost)
1704 {
1705 	shost->host_self_blocked = 1;
1706 }
1707 EXPORT_SYMBOL(scsi_block_requests);
1708 
1709 /*
1710  * Function:    scsi_unblock_requests()
1711  *
1712  * Purpose:     Utility function used by low-level drivers to allow further
1713  *		commands from being queued to the device.
1714  *
1715  * Arguments:   shost       - Host in question
1716  *
1717  * Returns:     Nothing
1718  *
1719  * Lock status: No locks are assumed held.
1720  *
1721  * Notes:       There is no timer nor any other means by which the requests
1722  *		get unblocked other than the low-level driver calling
1723  *		scsi_unblock_requests().
1724  *
1725  *		This is done as an API function so that changes to the
1726  *		internals of the scsi mid-layer won't require wholesale
1727  *		changes to drivers that use this feature.
1728  */
1729 void scsi_unblock_requests(struct Scsi_Host *shost)
1730 {
1731 	shost->host_self_blocked = 0;
1732 	scsi_run_host_queues(shost);
1733 }
1734 EXPORT_SYMBOL(scsi_unblock_requests);
1735 
1736 int __init scsi_init_queue(void)
1737 {
1738 	int i;
1739 
1740 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1741 					   sizeof(struct scsi_data_buffer),
1742 					   0, 0, NULL);
1743 	if (!scsi_sdb_cache) {
1744 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1745 		return -ENOMEM;
1746 	}
1747 
1748 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1749 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1750 		int size = sgp->size * sizeof(struct scatterlist);
1751 
1752 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1753 				SLAB_HWCACHE_ALIGN, NULL);
1754 		if (!sgp->slab) {
1755 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1756 					sgp->name);
1757 			goto cleanup_sdb;
1758 		}
1759 
1760 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1761 						     sgp->slab);
1762 		if (!sgp->pool) {
1763 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1764 					sgp->name);
1765 			goto cleanup_sdb;
1766 		}
1767 	}
1768 
1769 	return 0;
1770 
1771 cleanup_sdb:
1772 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1773 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1774 		if (sgp->pool)
1775 			mempool_destroy(sgp->pool);
1776 		if (sgp->slab)
1777 			kmem_cache_destroy(sgp->slab);
1778 	}
1779 	kmem_cache_destroy(scsi_sdb_cache);
1780 
1781 	return -ENOMEM;
1782 }
1783 
1784 void scsi_exit_queue(void)
1785 {
1786 	int i;
1787 
1788 	kmem_cache_destroy(scsi_sdb_cache);
1789 
1790 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792 		mempool_destroy(sgp->pool);
1793 		kmem_cache_destroy(sgp->slab);
1794 	}
1795 }
1796 
1797 /**
1798  *	scsi_mode_select - issue a mode select
1799  *	@sdev:	SCSI device to be queried
1800  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1801  *	@sp:	Save page bit (0 == don't save, 1 == save)
1802  *	@modepage: mode page being requested
1803  *	@buffer: request buffer (may not be smaller than eight bytes)
1804  *	@len:	length of request buffer.
1805  *	@timeout: command timeout
1806  *	@retries: number of retries before failing
1807  *	@data: returns a structure abstracting the mode header data
1808  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1809  *		must be SCSI_SENSE_BUFFERSIZE big.
1810  *
1811  *	Returns zero if successful; negative error number or scsi
1812  *	status on error
1813  *
1814  */
1815 int
1816 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1817 		 unsigned char *buffer, int len, int timeout, int retries,
1818 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1819 {
1820 	unsigned char cmd[10];
1821 	unsigned char *real_buffer;
1822 	int ret;
1823 
1824 	memset(cmd, 0, sizeof(cmd));
1825 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1826 
1827 	if (sdev->use_10_for_ms) {
1828 		if (len > 65535)
1829 			return -EINVAL;
1830 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1831 		if (!real_buffer)
1832 			return -ENOMEM;
1833 		memcpy(real_buffer + 8, buffer, len);
1834 		len += 8;
1835 		real_buffer[0] = 0;
1836 		real_buffer[1] = 0;
1837 		real_buffer[2] = data->medium_type;
1838 		real_buffer[3] = data->device_specific;
1839 		real_buffer[4] = data->longlba ? 0x01 : 0;
1840 		real_buffer[5] = 0;
1841 		real_buffer[6] = data->block_descriptor_length >> 8;
1842 		real_buffer[7] = data->block_descriptor_length;
1843 
1844 		cmd[0] = MODE_SELECT_10;
1845 		cmd[7] = len >> 8;
1846 		cmd[8] = len;
1847 	} else {
1848 		if (len > 255 || data->block_descriptor_length > 255 ||
1849 		    data->longlba)
1850 			return -EINVAL;
1851 
1852 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1853 		if (!real_buffer)
1854 			return -ENOMEM;
1855 		memcpy(real_buffer + 4, buffer, len);
1856 		len += 4;
1857 		real_buffer[0] = 0;
1858 		real_buffer[1] = data->medium_type;
1859 		real_buffer[2] = data->device_specific;
1860 		real_buffer[3] = data->block_descriptor_length;
1861 
1862 
1863 		cmd[0] = MODE_SELECT;
1864 		cmd[4] = len;
1865 	}
1866 
1867 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1868 			       sshdr, timeout, retries, NULL);
1869 	kfree(real_buffer);
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(scsi_mode_select);
1873 
1874 /**
1875  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1876  *	@sdev:	SCSI device to be queried
1877  *	@dbd:	set if mode sense will allow block descriptors to be returned
1878  *	@modepage: mode page being requested
1879  *	@buffer: request buffer (may not be smaller than eight bytes)
1880  *	@len:	length of request buffer.
1881  *	@timeout: command timeout
1882  *	@retries: number of retries before failing
1883  *	@data: returns a structure abstracting the mode header data
1884  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1885  *		must be SCSI_SENSE_BUFFERSIZE big.
1886  *
1887  *	Returns zero if unsuccessful, or the header offset (either 4
1888  *	or 8 depending on whether a six or ten byte command was
1889  *	issued) if successful.
1890  */
1891 int
1892 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1893 		  unsigned char *buffer, int len, int timeout, int retries,
1894 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1895 {
1896 	unsigned char cmd[12];
1897 	int use_10_for_ms;
1898 	int header_length;
1899 	int result;
1900 	struct scsi_sense_hdr my_sshdr;
1901 
1902 	memset(data, 0, sizeof(*data));
1903 	memset(&cmd[0], 0, 12);
1904 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1905 	cmd[2] = modepage;
1906 
1907 	/* caller might not be interested in sense, but we need it */
1908 	if (!sshdr)
1909 		sshdr = &my_sshdr;
1910 
1911  retry:
1912 	use_10_for_ms = sdev->use_10_for_ms;
1913 
1914 	if (use_10_for_ms) {
1915 		if (len < 8)
1916 			len = 8;
1917 
1918 		cmd[0] = MODE_SENSE_10;
1919 		cmd[8] = len;
1920 		header_length = 8;
1921 	} else {
1922 		if (len < 4)
1923 			len = 4;
1924 
1925 		cmd[0] = MODE_SENSE;
1926 		cmd[4] = len;
1927 		header_length = 4;
1928 	}
1929 
1930 	memset(buffer, 0, len);
1931 
1932 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1933 				  sshdr, timeout, retries, NULL);
1934 
1935 	/* This code looks awful: what it's doing is making sure an
1936 	 * ILLEGAL REQUEST sense return identifies the actual command
1937 	 * byte as the problem.  MODE_SENSE commands can return
1938 	 * ILLEGAL REQUEST if the code page isn't supported */
1939 
1940 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1941 	    (driver_byte(result) & DRIVER_SENSE)) {
1942 		if (scsi_sense_valid(sshdr)) {
1943 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1944 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1945 				/*
1946 				 * Invalid command operation code
1947 				 */
1948 				sdev->use_10_for_ms = 0;
1949 				goto retry;
1950 			}
1951 		}
1952 	}
1953 
1954 	if(scsi_status_is_good(result)) {
1955 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1956 			     (modepage == 6 || modepage == 8))) {
1957 			/* Initio breakage? */
1958 			header_length = 0;
1959 			data->length = 13;
1960 			data->medium_type = 0;
1961 			data->device_specific = 0;
1962 			data->longlba = 0;
1963 			data->block_descriptor_length = 0;
1964 		} else if(use_10_for_ms) {
1965 			data->length = buffer[0]*256 + buffer[1] + 2;
1966 			data->medium_type = buffer[2];
1967 			data->device_specific = buffer[3];
1968 			data->longlba = buffer[4] & 0x01;
1969 			data->block_descriptor_length = buffer[6]*256
1970 				+ buffer[7];
1971 		} else {
1972 			data->length = buffer[0] + 1;
1973 			data->medium_type = buffer[1];
1974 			data->device_specific = buffer[2];
1975 			data->block_descriptor_length = buffer[3];
1976 		}
1977 		data->header_length = header_length;
1978 	}
1979 
1980 	return result;
1981 }
1982 EXPORT_SYMBOL(scsi_mode_sense);
1983 
1984 /**
1985  *	scsi_test_unit_ready - test if unit is ready
1986  *	@sdev:	scsi device to change the state of.
1987  *	@timeout: command timeout
1988  *	@retries: number of retries before failing
1989  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1990  *		returning sense. Make sure that this is cleared before passing
1991  *		in.
1992  *
1993  *	Returns zero if unsuccessful or an error if TUR failed.  For
1994  *	removable media, UNIT_ATTENTION sets ->changed flag.
1995  **/
1996 int
1997 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1998 		     struct scsi_sense_hdr *sshdr_external)
1999 {
2000 	char cmd[] = {
2001 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2002 	};
2003 	struct scsi_sense_hdr *sshdr;
2004 	int result;
2005 
2006 	if (!sshdr_external)
2007 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2008 	else
2009 		sshdr = sshdr_external;
2010 
2011 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2012 	do {
2013 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2014 					  timeout, retries, NULL);
2015 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2016 		    sshdr->sense_key == UNIT_ATTENTION)
2017 			sdev->changed = 1;
2018 	} while (scsi_sense_valid(sshdr) &&
2019 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2020 
2021 	if (!sshdr_external)
2022 		kfree(sshdr);
2023 	return result;
2024 }
2025 EXPORT_SYMBOL(scsi_test_unit_ready);
2026 
2027 /**
2028  *	scsi_device_set_state - Take the given device through the device state model.
2029  *	@sdev:	scsi device to change the state of.
2030  *	@state:	state to change to.
2031  *
2032  *	Returns zero if unsuccessful or an error if the requested
2033  *	transition is illegal.
2034  */
2035 int
2036 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2037 {
2038 	enum scsi_device_state oldstate = sdev->sdev_state;
2039 
2040 	if (state == oldstate)
2041 		return 0;
2042 
2043 	switch (state) {
2044 	case SDEV_CREATED:
2045 		switch (oldstate) {
2046 		case SDEV_CREATED_BLOCK:
2047 			break;
2048 		default:
2049 			goto illegal;
2050 		}
2051 		break;
2052 
2053 	case SDEV_RUNNING:
2054 		switch (oldstate) {
2055 		case SDEV_CREATED:
2056 		case SDEV_OFFLINE:
2057 		case SDEV_TRANSPORT_OFFLINE:
2058 		case SDEV_QUIESCE:
2059 		case SDEV_BLOCK:
2060 			break;
2061 		default:
2062 			goto illegal;
2063 		}
2064 		break;
2065 
2066 	case SDEV_QUIESCE:
2067 		switch (oldstate) {
2068 		case SDEV_RUNNING:
2069 		case SDEV_OFFLINE:
2070 		case SDEV_TRANSPORT_OFFLINE:
2071 			break;
2072 		default:
2073 			goto illegal;
2074 		}
2075 		break;
2076 
2077 	case SDEV_OFFLINE:
2078 	case SDEV_TRANSPORT_OFFLINE:
2079 		switch (oldstate) {
2080 		case SDEV_CREATED:
2081 		case SDEV_RUNNING:
2082 		case SDEV_QUIESCE:
2083 		case SDEV_BLOCK:
2084 			break;
2085 		default:
2086 			goto illegal;
2087 		}
2088 		break;
2089 
2090 	case SDEV_BLOCK:
2091 		switch (oldstate) {
2092 		case SDEV_RUNNING:
2093 		case SDEV_CREATED_BLOCK:
2094 			break;
2095 		default:
2096 			goto illegal;
2097 		}
2098 		break;
2099 
2100 	case SDEV_CREATED_BLOCK:
2101 		switch (oldstate) {
2102 		case SDEV_CREATED:
2103 			break;
2104 		default:
2105 			goto illegal;
2106 		}
2107 		break;
2108 
2109 	case SDEV_CANCEL:
2110 		switch (oldstate) {
2111 		case SDEV_CREATED:
2112 		case SDEV_RUNNING:
2113 		case SDEV_QUIESCE:
2114 		case SDEV_OFFLINE:
2115 		case SDEV_TRANSPORT_OFFLINE:
2116 		case SDEV_BLOCK:
2117 			break;
2118 		default:
2119 			goto illegal;
2120 		}
2121 		break;
2122 
2123 	case SDEV_DEL:
2124 		switch (oldstate) {
2125 		case SDEV_CREATED:
2126 		case SDEV_RUNNING:
2127 		case SDEV_OFFLINE:
2128 		case SDEV_TRANSPORT_OFFLINE:
2129 		case SDEV_CANCEL:
2130 		case SDEV_CREATED_BLOCK:
2131 			break;
2132 		default:
2133 			goto illegal;
2134 		}
2135 		break;
2136 
2137 	}
2138 	sdev->sdev_state = state;
2139 	return 0;
2140 
2141  illegal:
2142 	SCSI_LOG_ERROR_RECOVERY(1,
2143 				sdev_printk(KERN_ERR, sdev,
2144 					    "Illegal state transition %s->%s\n",
2145 					    scsi_device_state_name(oldstate),
2146 					    scsi_device_state_name(state))
2147 				);
2148 	return -EINVAL;
2149 }
2150 EXPORT_SYMBOL(scsi_device_set_state);
2151 
2152 /**
2153  * 	sdev_evt_emit - emit a single SCSI device uevent
2154  *	@sdev: associated SCSI device
2155  *	@evt: event to emit
2156  *
2157  *	Send a single uevent (scsi_event) to the associated scsi_device.
2158  */
2159 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2160 {
2161 	int idx = 0;
2162 	char *envp[3];
2163 
2164 	switch (evt->evt_type) {
2165 	case SDEV_EVT_MEDIA_CHANGE:
2166 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2167 		break;
2168 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2169 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2170 		break;
2171 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2172 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2173 		break;
2174 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2175 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2176 		break;
2177 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2178 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2179 		break;
2180 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2181 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2182 		break;
2183 	default:
2184 		/* do nothing */
2185 		break;
2186 	}
2187 
2188 	envp[idx++] = NULL;
2189 
2190 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2191 }
2192 
2193 /**
2194  * 	sdev_evt_thread - send a uevent for each scsi event
2195  *	@work: work struct for scsi_device
2196  *
2197  *	Dispatch queued events to their associated scsi_device kobjects
2198  *	as uevents.
2199  */
2200 void scsi_evt_thread(struct work_struct *work)
2201 {
2202 	struct scsi_device *sdev;
2203 	enum scsi_device_event evt_type;
2204 	LIST_HEAD(event_list);
2205 
2206 	sdev = container_of(work, struct scsi_device, event_work);
2207 
2208 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2209 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2210 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2211 
2212 	while (1) {
2213 		struct scsi_event *evt;
2214 		struct list_head *this, *tmp;
2215 		unsigned long flags;
2216 
2217 		spin_lock_irqsave(&sdev->list_lock, flags);
2218 		list_splice_init(&sdev->event_list, &event_list);
2219 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2220 
2221 		if (list_empty(&event_list))
2222 			break;
2223 
2224 		list_for_each_safe(this, tmp, &event_list) {
2225 			evt = list_entry(this, struct scsi_event, node);
2226 			list_del(&evt->node);
2227 			scsi_evt_emit(sdev, evt);
2228 			kfree(evt);
2229 		}
2230 	}
2231 }
2232 
2233 /**
2234  * 	sdev_evt_send - send asserted event to uevent thread
2235  *	@sdev: scsi_device event occurred on
2236  *	@evt: event to send
2237  *
2238  *	Assert scsi device event asynchronously.
2239  */
2240 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2241 {
2242 	unsigned long flags;
2243 
2244 #if 0
2245 	/* FIXME: currently this check eliminates all media change events
2246 	 * for polled devices.  Need to update to discriminate between AN
2247 	 * and polled events */
2248 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2249 		kfree(evt);
2250 		return;
2251 	}
2252 #endif
2253 
2254 	spin_lock_irqsave(&sdev->list_lock, flags);
2255 	list_add_tail(&evt->node, &sdev->event_list);
2256 	schedule_work(&sdev->event_work);
2257 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2258 }
2259 EXPORT_SYMBOL_GPL(sdev_evt_send);
2260 
2261 /**
2262  * 	sdev_evt_alloc - allocate a new scsi event
2263  *	@evt_type: type of event to allocate
2264  *	@gfpflags: GFP flags for allocation
2265  *
2266  *	Allocates and returns a new scsi_event.
2267  */
2268 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2269 				  gfp_t gfpflags)
2270 {
2271 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2272 	if (!evt)
2273 		return NULL;
2274 
2275 	evt->evt_type = evt_type;
2276 	INIT_LIST_HEAD(&evt->node);
2277 
2278 	/* evt_type-specific initialization, if any */
2279 	switch (evt_type) {
2280 	case SDEV_EVT_MEDIA_CHANGE:
2281 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2282 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2283 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2284 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2285 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2286 	default:
2287 		/* do nothing */
2288 		break;
2289 	}
2290 
2291 	return evt;
2292 }
2293 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2294 
2295 /**
2296  * 	sdev_evt_send_simple - send asserted event to uevent thread
2297  *	@sdev: scsi_device event occurred on
2298  *	@evt_type: type of event to send
2299  *	@gfpflags: GFP flags for allocation
2300  *
2301  *	Assert scsi device event asynchronously, given an event type.
2302  */
2303 void sdev_evt_send_simple(struct scsi_device *sdev,
2304 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2305 {
2306 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2307 	if (!evt) {
2308 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2309 			    evt_type);
2310 		return;
2311 	}
2312 
2313 	sdev_evt_send(sdev, evt);
2314 }
2315 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2316 
2317 /**
2318  *	scsi_device_quiesce - Block user issued commands.
2319  *	@sdev:	scsi device to quiesce.
2320  *
2321  *	This works by trying to transition to the SDEV_QUIESCE state
2322  *	(which must be a legal transition).  When the device is in this
2323  *	state, only special requests will be accepted, all others will
2324  *	be deferred.  Since special requests may also be requeued requests,
2325  *	a successful return doesn't guarantee the device will be
2326  *	totally quiescent.
2327  *
2328  *	Must be called with user context, may sleep.
2329  *
2330  *	Returns zero if unsuccessful or an error if not.
2331  */
2332 int
2333 scsi_device_quiesce(struct scsi_device *sdev)
2334 {
2335 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2336 	if (err)
2337 		return err;
2338 
2339 	scsi_run_queue(sdev->request_queue);
2340 	while (sdev->device_busy) {
2341 		msleep_interruptible(200);
2342 		scsi_run_queue(sdev->request_queue);
2343 	}
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL(scsi_device_quiesce);
2347 
2348 /**
2349  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2350  *	@sdev:	scsi device to resume.
2351  *
2352  *	Moves the device from quiesced back to running and restarts the
2353  *	queues.
2354  *
2355  *	Must be called with user context, may sleep.
2356  */
2357 void scsi_device_resume(struct scsi_device *sdev)
2358 {
2359 	/* check if the device state was mutated prior to resume, and if
2360 	 * so assume the state is being managed elsewhere (for example
2361 	 * device deleted during suspend)
2362 	 */
2363 	if (sdev->sdev_state != SDEV_QUIESCE ||
2364 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2365 		return;
2366 	scsi_run_queue(sdev->request_queue);
2367 }
2368 EXPORT_SYMBOL(scsi_device_resume);
2369 
2370 static void
2371 device_quiesce_fn(struct scsi_device *sdev, void *data)
2372 {
2373 	scsi_device_quiesce(sdev);
2374 }
2375 
2376 void
2377 scsi_target_quiesce(struct scsi_target *starget)
2378 {
2379 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2380 }
2381 EXPORT_SYMBOL(scsi_target_quiesce);
2382 
2383 static void
2384 device_resume_fn(struct scsi_device *sdev, void *data)
2385 {
2386 	scsi_device_resume(sdev);
2387 }
2388 
2389 void
2390 scsi_target_resume(struct scsi_target *starget)
2391 {
2392 	starget_for_each_device(starget, NULL, device_resume_fn);
2393 }
2394 EXPORT_SYMBOL(scsi_target_resume);
2395 
2396 /**
2397  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2398  * @sdev:	device to block
2399  *
2400  * Block request made by scsi lld's to temporarily stop all
2401  * scsi commands on the specified device.  Called from interrupt
2402  * or normal process context.
2403  *
2404  * Returns zero if successful or error if not
2405  *
2406  * Notes:
2407  *	This routine transitions the device to the SDEV_BLOCK state
2408  *	(which must be a legal transition).  When the device is in this
2409  *	state, all commands are deferred until the scsi lld reenables
2410  *	the device with scsi_device_unblock or device_block_tmo fires.
2411  */
2412 int
2413 scsi_internal_device_block(struct scsi_device *sdev)
2414 {
2415 	struct request_queue *q = sdev->request_queue;
2416 	unsigned long flags;
2417 	int err = 0;
2418 
2419 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2420 	if (err) {
2421 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2422 
2423 		if (err)
2424 			return err;
2425 	}
2426 
2427 	/*
2428 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2429 	 * block layer from calling the midlayer with this device's
2430 	 * request queue.
2431 	 */
2432 	spin_lock_irqsave(q->queue_lock, flags);
2433 	blk_stop_queue(q);
2434 	spin_unlock_irqrestore(q->queue_lock, flags);
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2439 
2440 /**
2441  * scsi_internal_device_unblock - resume a device after a block request
2442  * @sdev:	device to resume
2443  * @new_state:	state to set devices to after unblocking
2444  *
2445  * Called by scsi lld's or the midlayer to restart the device queue
2446  * for the previously suspended scsi device.  Called from interrupt or
2447  * normal process context.
2448  *
2449  * Returns zero if successful or error if not.
2450  *
2451  * Notes:
2452  *	This routine transitions the device to the SDEV_RUNNING state
2453  *	or to one of the offline states (which must be a legal transition)
2454  *	allowing the midlayer to goose the queue for this device.
2455  */
2456 int
2457 scsi_internal_device_unblock(struct scsi_device *sdev,
2458 			     enum scsi_device_state new_state)
2459 {
2460 	struct request_queue *q = sdev->request_queue;
2461 	unsigned long flags;
2462 
2463 	/*
2464 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2465 	 * offlined states and goose the device queue if successful.
2466 	 */
2467 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2468 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2469 		sdev->sdev_state = new_state;
2470 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2471 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2472 		    new_state == SDEV_OFFLINE)
2473 			sdev->sdev_state = new_state;
2474 		else
2475 			sdev->sdev_state = SDEV_CREATED;
2476 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2477 		 sdev->sdev_state != SDEV_OFFLINE)
2478 		return -EINVAL;
2479 
2480 	spin_lock_irqsave(q->queue_lock, flags);
2481 	blk_start_queue(q);
2482 	spin_unlock_irqrestore(q->queue_lock, flags);
2483 
2484 	return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2487 
2488 static void
2489 device_block(struct scsi_device *sdev, void *data)
2490 {
2491 	scsi_internal_device_block(sdev);
2492 }
2493 
2494 static int
2495 target_block(struct device *dev, void *data)
2496 {
2497 	if (scsi_is_target_device(dev))
2498 		starget_for_each_device(to_scsi_target(dev), NULL,
2499 					device_block);
2500 	return 0;
2501 }
2502 
2503 void
2504 scsi_target_block(struct device *dev)
2505 {
2506 	if (scsi_is_target_device(dev))
2507 		starget_for_each_device(to_scsi_target(dev), NULL,
2508 					device_block);
2509 	else
2510 		device_for_each_child(dev, NULL, target_block);
2511 }
2512 EXPORT_SYMBOL_GPL(scsi_target_block);
2513 
2514 static void
2515 device_unblock(struct scsi_device *sdev, void *data)
2516 {
2517 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2518 }
2519 
2520 static int
2521 target_unblock(struct device *dev, void *data)
2522 {
2523 	if (scsi_is_target_device(dev))
2524 		starget_for_each_device(to_scsi_target(dev), data,
2525 					device_unblock);
2526 	return 0;
2527 }
2528 
2529 void
2530 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2531 {
2532 	if (scsi_is_target_device(dev))
2533 		starget_for_each_device(to_scsi_target(dev), &new_state,
2534 					device_unblock);
2535 	else
2536 		device_for_each_child(dev, &new_state, target_unblock);
2537 }
2538 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2539 
2540 /**
2541  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2542  * @sgl:	scatter-gather list
2543  * @sg_count:	number of segments in sg
2544  * @offset:	offset in bytes into sg, on return offset into the mapped area
2545  * @len:	bytes to map, on return number of bytes mapped
2546  *
2547  * Returns virtual address of the start of the mapped page
2548  */
2549 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2550 			  size_t *offset, size_t *len)
2551 {
2552 	int i;
2553 	size_t sg_len = 0, len_complete = 0;
2554 	struct scatterlist *sg;
2555 	struct page *page;
2556 
2557 	WARN_ON(!irqs_disabled());
2558 
2559 	for_each_sg(sgl, sg, sg_count, i) {
2560 		len_complete = sg_len; /* Complete sg-entries */
2561 		sg_len += sg->length;
2562 		if (sg_len > *offset)
2563 			break;
2564 	}
2565 
2566 	if (unlikely(i == sg_count)) {
2567 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2568 			"elements %d\n",
2569 		       __func__, sg_len, *offset, sg_count);
2570 		WARN_ON(1);
2571 		return NULL;
2572 	}
2573 
2574 	/* Offset starting from the beginning of first page in this sg-entry */
2575 	*offset = *offset - len_complete + sg->offset;
2576 
2577 	/* Assumption: contiguous pages can be accessed as "page + i" */
2578 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2579 	*offset &= ~PAGE_MASK;
2580 
2581 	/* Bytes in this sg-entry from *offset to the end of the page */
2582 	sg_len = PAGE_SIZE - *offset;
2583 	if (*len > sg_len)
2584 		*len = sg_len;
2585 
2586 	return kmap_atomic(page);
2587 }
2588 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2589 
2590 /**
2591  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2592  * @virt:	virtual address to be unmapped
2593  */
2594 void scsi_kunmap_atomic_sg(void *virt)
2595 {
2596 	kunmap_atomic(virt);
2597 }
2598 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2599 
2600 void sdev_disable_disk_events(struct scsi_device *sdev)
2601 {
2602 	atomic_inc(&sdev->disk_events_disable_depth);
2603 }
2604 EXPORT_SYMBOL(sdev_disable_disk_events);
2605 
2606 void sdev_enable_disk_events(struct scsi_device *sdev)
2607 {
2608 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2609 		return;
2610 	atomic_dec(&sdev->disk_events_disable_depth);
2611 }
2612 EXPORT_SYMBOL(sdev_enable_disk_events);
2613