xref: /linux/drivers/scsi/scsi_lib.c (revision 8f7e001e0325de63a42f23342ac3b8139150c5cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 	blk_mq_requeue_request(rq, true);
125 }
126 
127 /**
128  * __scsi_queue_insert - private queue insertion
129  * @cmd: The SCSI command being requeued
130  * @reason:  The reason for the requeue
131  * @unbusy: Whether the queue should be unbusied
132  *
133  * This is a private queue insertion.  The public interface
134  * scsi_queue_insert() always assumes the queue should be unbusied
135  * because it's always called before the completion.  This function is
136  * for a requeue after completion, which should only occur in this
137  * file.
138  */
139 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
140 {
141 	struct scsi_device *device = cmd->device;
142 
143 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
144 		"Inserting command %p into mlqueue\n", cmd));
145 
146 	scsi_set_blocked(cmd, reason);
147 
148 	/*
149 	 * Decrement the counters, since these commands are no longer
150 	 * active on the host/device.
151 	 */
152 	if (unbusy)
153 		scsi_device_unbusy(device, cmd);
154 
155 	/*
156 	 * Requeue this command.  It will go before all other commands
157 	 * that are already in the queue. Schedule requeue work under
158 	 * lock such that the kblockd_schedule_work() call happens
159 	 * before blk_mq_destroy_queue() finishes.
160 	 */
161 	cmd->result = 0;
162 
163 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
164 }
165 
166 /**
167  * scsi_queue_insert - Reinsert a command in the queue.
168  * @cmd:    command that we are adding to queue.
169  * @reason: why we are inserting command to queue.
170  *
171  * We do this for one of two cases. Either the host is busy and it cannot accept
172  * any more commands for the time being, or the device returned QUEUE_FULL and
173  * can accept no more commands.
174  *
175  * Context: This could be called either from an interrupt context or a normal
176  * process context.
177  */
178 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
179 {
180 	__scsi_queue_insert(cmd, reason, true);
181 }
182 
183 
184 /**
185  * __scsi_execute - insert request and wait for the result
186  * @sdev:	scsi device
187  * @cmd:	scsi command
188  * @data_direction: data direction
189  * @buffer:	data buffer
190  * @bufflen:	len of buffer
191  * @sense:	optional sense buffer
192  * @sshdr:	optional decoded sense header
193  * @timeout:	request timeout in HZ
194  * @retries:	number of times to retry request
195  * @flags:	flags for ->cmd_flags
196  * @rq_flags:	flags for ->rq_flags
197  * @resid:	optional residual length
198  *
199  * Returns the scsi_cmnd result field if a command was executed, or a negative
200  * Linux error code if we didn't get that far.
201  */
202 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
203 		 int data_direction, void *buffer, unsigned bufflen,
204 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
205 		 int timeout, int retries, blk_opf_t flags,
206 		 req_flags_t rq_flags, int *resid)
207 {
208 	struct request *req;
209 	struct scsi_cmnd *scmd;
210 	int ret;
211 
212 	req = scsi_alloc_request(sdev->request_queue,
213 			data_direction == DMA_TO_DEVICE ?
214 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
215 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
216 	if (IS_ERR(req))
217 		return PTR_ERR(req);
218 
219 	if (bufflen) {
220 		ret = blk_rq_map_kern(sdev->request_queue, req,
221 				      buffer, bufflen, GFP_NOIO);
222 		if (ret)
223 			goto out;
224 	}
225 	scmd = blk_mq_rq_to_pdu(req);
226 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
227 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
228 	scmd->allowed = retries;
229 	req->timeout = timeout;
230 	req->cmd_flags |= flags;
231 	req->rq_flags |= rq_flags | RQF_QUIET;
232 
233 	/*
234 	 * head injection *required* here otherwise quiesce won't work
235 	 */
236 	blk_execute_rq(req, true);
237 
238 	/*
239 	 * Some devices (USB mass-storage in particular) may transfer
240 	 * garbage data together with a residue indicating that the data
241 	 * is invalid.  Prevent the garbage from being misinterpreted
242 	 * and prevent security leaks by zeroing out the excess data.
243 	 */
244 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
245 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
246 
247 	if (resid)
248 		*resid = scmd->resid_len;
249 	if (sense && scmd->sense_len)
250 		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
251 	if (sshdr)
252 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
253 				     sshdr);
254 	ret = scmd->result;
255  out:
256 	blk_mq_free_request(req);
257 
258 	return ret;
259 }
260 EXPORT_SYMBOL(__scsi_execute);
261 
262 /*
263  * Wake up the error handler if necessary. Avoid as follows that the error
264  * handler is not woken up if host in-flight requests number ==
265  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
266  * with an RCU read lock in this function to ensure that this function in
267  * its entirety either finishes before scsi_eh_scmd_add() increases the
268  * host_failed counter or that it notices the shost state change made by
269  * scsi_eh_scmd_add().
270  */
271 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
272 {
273 	unsigned long flags;
274 
275 	rcu_read_lock();
276 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
277 	if (unlikely(scsi_host_in_recovery(shost))) {
278 		spin_lock_irqsave(shost->host_lock, flags);
279 		if (shost->host_failed || shost->host_eh_scheduled)
280 			scsi_eh_wakeup(shost);
281 		spin_unlock_irqrestore(shost->host_lock, flags);
282 	}
283 	rcu_read_unlock();
284 }
285 
286 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
287 {
288 	struct Scsi_Host *shost = sdev->host;
289 	struct scsi_target *starget = scsi_target(sdev);
290 
291 	scsi_dec_host_busy(shost, cmd);
292 
293 	if (starget->can_queue > 0)
294 		atomic_dec(&starget->target_busy);
295 
296 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
297 	cmd->budget_token = -1;
298 }
299 
300 static void scsi_kick_queue(struct request_queue *q)
301 {
302 	blk_mq_run_hw_queues(q, false);
303 }
304 
305 /*
306  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
307  * and call blk_run_queue for all the scsi_devices on the target -
308  * including current_sdev first.
309  *
310  * Called with *no* scsi locks held.
311  */
312 static void scsi_single_lun_run(struct scsi_device *current_sdev)
313 {
314 	struct Scsi_Host *shost = current_sdev->host;
315 	struct scsi_device *sdev, *tmp;
316 	struct scsi_target *starget = scsi_target(current_sdev);
317 	unsigned long flags;
318 
319 	spin_lock_irqsave(shost->host_lock, flags);
320 	starget->starget_sdev_user = NULL;
321 	spin_unlock_irqrestore(shost->host_lock, flags);
322 
323 	/*
324 	 * Call blk_run_queue for all LUNs on the target, starting with
325 	 * current_sdev. We race with others (to set starget_sdev_user),
326 	 * but in most cases, we will be first. Ideally, each LU on the
327 	 * target would get some limited time or requests on the target.
328 	 */
329 	scsi_kick_queue(current_sdev->request_queue);
330 
331 	spin_lock_irqsave(shost->host_lock, flags);
332 	if (starget->starget_sdev_user)
333 		goto out;
334 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
335 			same_target_siblings) {
336 		if (sdev == current_sdev)
337 			continue;
338 		if (scsi_device_get(sdev))
339 			continue;
340 
341 		spin_unlock_irqrestore(shost->host_lock, flags);
342 		scsi_kick_queue(sdev->request_queue);
343 		spin_lock_irqsave(shost->host_lock, flags);
344 
345 		scsi_device_put(sdev);
346 	}
347  out:
348 	spin_unlock_irqrestore(shost->host_lock, flags);
349 }
350 
351 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
352 {
353 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
354 		return true;
355 	if (atomic_read(&sdev->device_blocked) > 0)
356 		return true;
357 	return false;
358 }
359 
360 static inline bool scsi_target_is_busy(struct scsi_target *starget)
361 {
362 	if (starget->can_queue > 0) {
363 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
364 			return true;
365 		if (atomic_read(&starget->target_blocked) > 0)
366 			return true;
367 	}
368 	return false;
369 }
370 
371 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
372 {
373 	if (atomic_read(&shost->host_blocked) > 0)
374 		return true;
375 	if (shost->host_self_blocked)
376 		return true;
377 	return false;
378 }
379 
380 static void scsi_starved_list_run(struct Scsi_Host *shost)
381 {
382 	LIST_HEAD(starved_list);
383 	struct scsi_device *sdev;
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(shost->host_lock, flags);
387 	list_splice_init(&shost->starved_list, &starved_list);
388 
389 	while (!list_empty(&starved_list)) {
390 		struct request_queue *slq;
391 
392 		/*
393 		 * As long as shost is accepting commands and we have
394 		 * starved queues, call blk_run_queue. scsi_request_fn
395 		 * drops the queue_lock and can add us back to the
396 		 * starved_list.
397 		 *
398 		 * host_lock protects the starved_list and starved_entry.
399 		 * scsi_request_fn must get the host_lock before checking
400 		 * or modifying starved_list or starved_entry.
401 		 */
402 		if (scsi_host_is_busy(shost))
403 			break;
404 
405 		sdev = list_entry(starved_list.next,
406 				  struct scsi_device, starved_entry);
407 		list_del_init(&sdev->starved_entry);
408 		if (scsi_target_is_busy(scsi_target(sdev))) {
409 			list_move_tail(&sdev->starved_entry,
410 				       &shost->starved_list);
411 			continue;
412 		}
413 
414 		/*
415 		 * Once we drop the host lock, a racing scsi_remove_device()
416 		 * call may remove the sdev from the starved list and destroy
417 		 * it and the queue.  Mitigate by taking a reference to the
418 		 * queue and never touching the sdev again after we drop the
419 		 * host lock.  Note: if __scsi_remove_device() invokes
420 		 * blk_mq_destroy_queue() before the queue is run from this
421 		 * function then blk_run_queue() will return immediately since
422 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
423 		 */
424 		slq = sdev->request_queue;
425 		if (!blk_get_queue(slq))
426 			continue;
427 		spin_unlock_irqrestore(shost->host_lock, flags);
428 
429 		scsi_kick_queue(slq);
430 		blk_put_queue(slq);
431 
432 		spin_lock_irqsave(shost->host_lock, flags);
433 	}
434 	/* put any unprocessed entries back */
435 	list_splice(&starved_list, &shost->starved_list);
436 	spin_unlock_irqrestore(shost->host_lock, flags);
437 }
438 
439 /**
440  * scsi_run_queue - Select a proper request queue to serve next.
441  * @q:  last request's queue
442  *
443  * The previous command was completely finished, start a new one if possible.
444  */
445 static void scsi_run_queue(struct request_queue *q)
446 {
447 	struct scsi_device *sdev = q->queuedata;
448 
449 	if (scsi_target(sdev)->single_lun)
450 		scsi_single_lun_run(sdev);
451 	if (!list_empty(&sdev->host->starved_list))
452 		scsi_starved_list_run(sdev->host);
453 
454 	blk_mq_run_hw_queues(q, false);
455 }
456 
457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459 	struct scsi_device *sdev;
460 	struct request_queue *q;
461 
462 	sdev = container_of(work, struct scsi_device, requeue_work);
463 	q = sdev->request_queue;
464 	scsi_run_queue(q);
465 }
466 
467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469 	struct scsi_device *sdev;
470 
471 	shost_for_each_device(sdev, shost)
472 		scsi_run_queue(sdev->request_queue);
473 }
474 
475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479 
480 		if (drv->uninit_command)
481 			drv->uninit_command(cmd);
482 	}
483 }
484 
485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487 	if (cmd->sdb.table.nents)
488 		sg_free_table_chained(&cmd->sdb.table,
489 				SCSI_INLINE_SG_CNT);
490 	if (scsi_prot_sg_count(cmd))
491 		sg_free_table_chained(&cmd->prot_sdb->table,
492 				SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495 
496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498 	scsi_free_sgtables(cmd);
499 	scsi_uninit_cmd(cmd);
500 }
501 
502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504 	if (scsi_target(sdev)->single_lun ||
505 	    !list_empty(&sdev->host->starved_list)) {
506 		kblockd_schedule_work(&sdev->requeue_work);
507 	} else {
508 		/*
509 		 * smp_mb() present in sbitmap_queue_clear() or implied in
510 		 * .end_io is for ordering writing .device_busy in
511 		 * scsi_device_unbusy() and reading sdev->restarts.
512 		 */
513 		int old = atomic_read(&sdev->restarts);
514 
515 		/*
516 		 * ->restarts has to be kept as non-zero if new budget
517 		 *  contention occurs.
518 		 *
519 		 *  No need to run queue when either another re-run
520 		 *  queue wins in updating ->restarts or a new budget
521 		 *  contention occurs.
522 		 */
523 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
524 			blk_mq_run_hw_queues(sdev->request_queue, true);
525 	}
526 }
527 
528 /* Returns false when no more bytes to process, true if there are more */
529 static bool scsi_end_request(struct request *req, blk_status_t error,
530 		unsigned int bytes)
531 {
532 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
533 	struct scsi_device *sdev = cmd->device;
534 	struct request_queue *q = sdev->request_queue;
535 
536 	if (blk_update_request(req, error, bytes))
537 		return true;
538 
539 	// XXX:
540 	if (blk_queue_add_random(q))
541 		add_disk_randomness(req->q->disk);
542 
543 	if (!blk_rq_is_passthrough(req)) {
544 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
545 		cmd->flags &= ~SCMD_INITIALIZED;
546 	}
547 
548 	/*
549 	 * Calling rcu_barrier() is not necessary here because the
550 	 * SCSI error handler guarantees that the function called by
551 	 * call_rcu() has been called before scsi_end_request() is
552 	 * called.
553 	 */
554 	destroy_rcu_head(&cmd->rcu);
555 
556 	/*
557 	 * In the MQ case the command gets freed by __blk_mq_end_request,
558 	 * so we have to do all cleanup that depends on it earlier.
559 	 *
560 	 * We also can't kick the queues from irq context, so we
561 	 * will have to defer it to a workqueue.
562 	 */
563 	scsi_mq_uninit_cmd(cmd);
564 
565 	/*
566 	 * queue is still alive, so grab the ref for preventing it
567 	 * from being cleaned up during running queue.
568 	 */
569 	percpu_ref_get(&q->q_usage_counter);
570 
571 	__blk_mq_end_request(req, error);
572 
573 	scsi_run_queue_async(sdev);
574 
575 	percpu_ref_put(&q->q_usage_counter);
576 	return false;
577 }
578 
579 /**
580  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
581  * @cmd:	SCSI command
582  * @result:	scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value. May reset the host
585  * byte of @cmd->result.
586  */
587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
588 {
589 	switch (host_byte(result)) {
590 	case DID_OK:
591 		if (scsi_status_is_good(result))
592 			return BLK_STS_OK;
593 		return BLK_STS_IOERR;
594 	case DID_TRANSPORT_FAILFAST:
595 	case DID_TRANSPORT_MARGINAL:
596 		return BLK_STS_TRANSPORT;
597 	case DID_TARGET_FAILURE:
598 		set_host_byte(cmd, DID_OK);
599 		return BLK_STS_TARGET;
600 	case DID_NEXUS_FAILURE:
601 		set_host_byte(cmd, DID_OK);
602 		return BLK_STS_NEXUS;
603 	case DID_ALLOC_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_NOSPC;
606 	case DID_MEDIUM_ERROR:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_MEDIUM;
609 	default:
610 		return BLK_STS_IOERR;
611 	}
612 }
613 
614 /**
615  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
616  * @rq: request to examine
617  *
618  * Description:
619  *     A request could be merge of IOs which require different failure
620  *     handling.  This function determines the number of bytes which
621  *     can be failed from the beginning of the request without
622  *     crossing into area which need to be retried further.
623  *
624  * Return:
625  *     The number of bytes to fail.
626  */
627 static unsigned int scsi_rq_err_bytes(const struct request *rq)
628 {
629 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
630 	unsigned int bytes = 0;
631 	struct bio *bio;
632 
633 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
634 		return blk_rq_bytes(rq);
635 
636 	/*
637 	 * Currently the only 'mixing' which can happen is between
638 	 * different fastfail types.  We can safely fail portions
639 	 * which have all the failfast bits that the first one has -
640 	 * the ones which are at least as eager to fail as the first
641 	 * one.
642 	 */
643 	for (bio = rq->bio; bio; bio = bio->bi_next) {
644 		if ((bio->bi_opf & ff) != ff)
645 			break;
646 		bytes += bio->bi_iter.bi_size;
647 	}
648 
649 	/* this could lead to infinite loop */
650 	BUG_ON(blk_rq_bytes(rq) && !bytes);
651 	return bytes;
652 }
653 
654 /* Helper for scsi_io_completion() when "reprep" action required. */
655 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
656 				      struct request_queue *q)
657 {
658 	/* A new command will be prepared and issued. */
659 	scsi_mq_requeue_cmd(cmd);
660 }
661 
662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
663 {
664 	struct request *req = scsi_cmd_to_rq(cmd);
665 	unsigned long wait_for;
666 
667 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
668 		return false;
669 
670 	wait_for = (cmd->allowed + 1) * req->timeout;
671 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
672 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
673 			    wait_for/HZ);
674 		return true;
675 	}
676 	return false;
677 }
678 
679 /* Helper for scsi_io_completion() when special action required. */
680 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
681 {
682 	struct request_queue *q = cmd->device->request_queue;
683 	struct request *req = scsi_cmd_to_rq(cmd);
684 	int level = 0;
685 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
686 	      ACTION_DELAYED_RETRY} action;
687 	struct scsi_sense_hdr sshdr;
688 	bool sense_valid;
689 	bool sense_current = true;      /* false implies "deferred sense" */
690 	blk_status_t blk_stat;
691 
692 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
693 	if (sense_valid)
694 		sense_current = !scsi_sense_is_deferred(&sshdr);
695 
696 	blk_stat = scsi_result_to_blk_status(cmd, result);
697 
698 	if (host_byte(result) == DID_RESET) {
699 		/* Third party bus reset or reset for error recovery
700 		 * reasons.  Just retry the command and see what
701 		 * happens.
702 		 */
703 		action = ACTION_RETRY;
704 	} else if (sense_valid && sense_current) {
705 		switch (sshdr.sense_key) {
706 		case UNIT_ATTENTION:
707 			if (cmd->device->removable) {
708 				/* Detected disc change.  Set a bit
709 				 * and quietly refuse further access.
710 				 */
711 				cmd->device->changed = 1;
712 				action = ACTION_FAIL;
713 			} else {
714 				/* Must have been a power glitch, or a
715 				 * bus reset.  Could not have been a
716 				 * media change, so we just retry the
717 				 * command and see what happens.
718 				 */
719 				action = ACTION_RETRY;
720 			}
721 			break;
722 		case ILLEGAL_REQUEST:
723 			/* If we had an ILLEGAL REQUEST returned, then
724 			 * we may have performed an unsupported
725 			 * command.  The only thing this should be
726 			 * would be a ten byte read where only a six
727 			 * byte read was supported.  Also, on a system
728 			 * where READ CAPACITY failed, we may have
729 			 * read past the end of the disk.
730 			 */
731 			if ((cmd->device->use_10_for_rw &&
732 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
733 			    (cmd->cmnd[0] == READ_10 ||
734 			     cmd->cmnd[0] == WRITE_10)) {
735 				/* This will issue a new 6-byte command. */
736 				cmd->device->use_10_for_rw = 0;
737 				action = ACTION_REPREP;
738 			} else if (sshdr.asc == 0x10) /* DIX */ {
739 				action = ACTION_FAIL;
740 				blk_stat = BLK_STS_PROTECTION;
741 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
742 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
743 				action = ACTION_FAIL;
744 				blk_stat = BLK_STS_TARGET;
745 			} else
746 				action = ACTION_FAIL;
747 			break;
748 		case ABORTED_COMMAND:
749 			action = ACTION_FAIL;
750 			if (sshdr.asc == 0x10) /* DIF */
751 				blk_stat = BLK_STS_PROTECTION;
752 			break;
753 		case NOT_READY:
754 			/* If the device is in the process of becoming
755 			 * ready, or has a temporary blockage, retry.
756 			 */
757 			if (sshdr.asc == 0x04) {
758 				switch (sshdr.ascq) {
759 				case 0x01: /* becoming ready */
760 				case 0x04: /* format in progress */
761 				case 0x05: /* rebuild in progress */
762 				case 0x06: /* recalculation in progress */
763 				case 0x07: /* operation in progress */
764 				case 0x08: /* Long write in progress */
765 				case 0x09: /* self test in progress */
766 				case 0x11: /* notify (enable spinup) required */
767 				case 0x14: /* space allocation in progress */
768 				case 0x1a: /* start stop unit in progress */
769 				case 0x1b: /* sanitize in progress */
770 				case 0x1d: /* configuration in progress */
771 				case 0x24: /* depopulation in progress */
772 					action = ACTION_DELAYED_RETRY;
773 					break;
774 				case 0x0a: /* ALUA state transition */
775 					blk_stat = BLK_STS_TRANSPORT;
776 					fallthrough;
777 				default:
778 					action = ACTION_FAIL;
779 					break;
780 				}
781 			} else
782 				action = ACTION_FAIL;
783 			break;
784 		case VOLUME_OVERFLOW:
785 			/* See SSC3rXX or current. */
786 			action = ACTION_FAIL;
787 			break;
788 		case DATA_PROTECT:
789 			action = ACTION_FAIL;
790 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
791 			    (sshdr.asc == 0x55 &&
792 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
793 				/* Insufficient zone resources */
794 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
795 			}
796 			break;
797 		default:
798 			action = ACTION_FAIL;
799 			break;
800 		}
801 	} else
802 		action = ACTION_FAIL;
803 
804 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
805 		action = ACTION_FAIL;
806 
807 	switch (action) {
808 	case ACTION_FAIL:
809 		/* Give up and fail the remainder of the request */
810 		if (!(req->rq_flags & RQF_QUIET)) {
811 			static DEFINE_RATELIMIT_STATE(_rs,
812 					DEFAULT_RATELIMIT_INTERVAL,
813 					DEFAULT_RATELIMIT_BURST);
814 
815 			if (unlikely(scsi_logging_level))
816 				level =
817 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
818 						    SCSI_LOG_MLCOMPLETE_BITS);
819 
820 			/*
821 			 * if logging is enabled the failure will be printed
822 			 * in scsi_log_completion(), so avoid duplicate messages
823 			 */
824 			if (!level && __ratelimit(&_rs)) {
825 				scsi_print_result(cmd, NULL, FAILED);
826 				if (sense_valid)
827 					scsi_print_sense(cmd);
828 				scsi_print_command(cmd);
829 			}
830 		}
831 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
832 			return;
833 		fallthrough;
834 	case ACTION_REPREP:
835 		scsi_io_completion_reprep(cmd, q);
836 		break;
837 	case ACTION_RETRY:
838 		/* Retry the same command immediately */
839 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
840 		break;
841 	case ACTION_DELAYED_RETRY:
842 		/* Retry the same command after a delay */
843 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
844 		break;
845 	}
846 }
847 
848 /*
849  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
850  * new result that may suppress further error checking. Also modifies
851  * *blk_statp in some cases.
852  */
853 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
854 					blk_status_t *blk_statp)
855 {
856 	bool sense_valid;
857 	bool sense_current = true;	/* false implies "deferred sense" */
858 	struct request *req = scsi_cmd_to_rq(cmd);
859 	struct scsi_sense_hdr sshdr;
860 
861 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
862 	if (sense_valid)
863 		sense_current = !scsi_sense_is_deferred(&sshdr);
864 
865 	if (blk_rq_is_passthrough(req)) {
866 		if (sense_valid) {
867 			/*
868 			 * SG_IO wants current and deferred errors
869 			 */
870 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
871 					     SCSI_SENSE_BUFFERSIZE);
872 		}
873 		if (sense_current)
874 			*blk_statp = scsi_result_to_blk_status(cmd, result);
875 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
876 		/*
877 		 * Flush commands do not transfers any data, and thus cannot use
878 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
879 		 * This sets *blk_statp explicitly for the problem case.
880 		 */
881 		*blk_statp = scsi_result_to_blk_status(cmd, result);
882 	}
883 	/*
884 	 * Recovered errors need reporting, but they're always treated as
885 	 * success, so fiddle the result code here.  For passthrough requests
886 	 * we already took a copy of the original into sreq->result which
887 	 * is what gets returned to the user
888 	 */
889 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
890 		bool do_print = true;
891 		/*
892 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
893 		 * skip print since caller wants ATA registers. Only occurs
894 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
895 		 */
896 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
897 			do_print = false;
898 		else if (req->rq_flags & RQF_QUIET)
899 			do_print = false;
900 		if (do_print)
901 			scsi_print_sense(cmd);
902 		result = 0;
903 		/* for passthrough, *blk_statp may be set */
904 		*blk_statp = BLK_STS_OK;
905 	}
906 	/*
907 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
908 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
909 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
910 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
911 	 * intermediate statuses (both obsolete in SAM-4) as good.
912 	 */
913 	if ((result & 0xff) && scsi_status_is_good(result)) {
914 		result = 0;
915 		*blk_statp = BLK_STS_OK;
916 	}
917 	return result;
918 }
919 
920 /**
921  * scsi_io_completion - Completion processing for SCSI commands.
922  * @cmd:	command that is finished.
923  * @good_bytes:	number of processed bytes.
924  *
925  * We will finish off the specified number of sectors. If we are done, the
926  * command block will be released and the queue function will be goosed. If we
927  * are not done then we have to figure out what to do next:
928  *
929  *   a) We can call scsi_io_completion_reprep().  The request will be
930  *	unprepared and put back on the queue.  Then a new command will
931  *	be created for it.  This should be used if we made forward
932  *	progress, or if we want to switch from READ(10) to READ(6) for
933  *	example.
934  *
935  *   b) We can call scsi_io_completion_action().  The request will be
936  *	put back on the queue and retried using the same command as
937  *	before, possibly after a delay.
938  *
939  *   c) We can call scsi_end_request() with blk_stat other than
940  *	BLK_STS_OK, to fail the remainder of the request.
941  */
942 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
943 {
944 	int result = cmd->result;
945 	struct request_queue *q = cmd->device->request_queue;
946 	struct request *req = scsi_cmd_to_rq(cmd);
947 	blk_status_t blk_stat = BLK_STS_OK;
948 
949 	if (unlikely(result))	/* a nz result may or may not be an error */
950 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
951 
952 	/*
953 	 * Next deal with any sectors which we were able to correctly
954 	 * handle.
955 	 */
956 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
957 		"%u sectors total, %d bytes done.\n",
958 		blk_rq_sectors(req), good_bytes));
959 
960 	/*
961 	 * Failed, zero length commands always need to drop down
962 	 * to retry code. Fast path should return in this block.
963 	 */
964 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
965 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
966 			return; /* no bytes remaining */
967 	}
968 
969 	/* Kill remainder if no retries. */
970 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
971 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
972 			WARN_ONCE(true,
973 			    "Bytes remaining after failed, no-retry command");
974 		return;
975 	}
976 
977 	/*
978 	 * If there had been no error, but we have leftover bytes in the
979 	 * request just queue the command up again.
980 	 */
981 	if (likely(result == 0))
982 		scsi_io_completion_reprep(cmd, q);
983 	else
984 		scsi_io_completion_action(cmd, result);
985 }
986 
987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
988 		struct request *rq)
989 {
990 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
991 	       !op_is_write(req_op(rq)) &&
992 	       sdev->host->hostt->dma_need_drain(rq);
993 }
994 
995 /**
996  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
997  * @cmd: SCSI command data structure to initialize.
998  *
999  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1000  * for @cmd.
1001  *
1002  * Returns:
1003  * * BLK_STS_OK       - on success
1004  * * BLK_STS_RESOURCE - if the failure is retryable
1005  * * BLK_STS_IOERR    - if the failure is fatal
1006  */
1007 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1008 {
1009 	struct scsi_device *sdev = cmd->device;
1010 	struct request *rq = scsi_cmd_to_rq(cmd);
1011 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1012 	struct scatterlist *last_sg = NULL;
1013 	blk_status_t ret;
1014 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1015 	int count;
1016 
1017 	if (WARN_ON_ONCE(!nr_segs))
1018 		return BLK_STS_IOERR;
1019 
1020 	/*
1021 	 * Make sure there is space for the drain.  The driver must adjust
1022 	 * max_hw_segments to be prepared for this.
1023 	 */
1024 	if (need_drain)
1025 		nr_segs++;
1026 
1027 	/*
1028 	 * If sg table allocation fails, requeue request later.
1029 	 */
1030 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1031 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1032 		return BLK_STS_RESOURCE;
1033 
1034 	/*
1035 	 * Next, walk the list, and fill in the addresses and sizes of
1036 	 * each segment.
1037 	 */
1038 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1039 
1040 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1041 		unsigned int pad_len =
1042 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1043 
1044 		last_sg->length += pad_len;
1045 		cmd->extra_len += pad_len;
1046 	}
1047 
1048 	if (need_drain) {
1049 		sg_unmark_end(last_sg);
1050 		last_sg = sg_next(last_sg);
1051 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1052 		sg_mark_end(last_sg);
1053 
1054 		cmd->extra_len += sdev->dma_drain_len;
1055 		count++;
1056 	}
1057 
1058 	BUG_ON(count > cmd->sdb.table.nents);
1059 	cmd->sdb.table.nents = count;
1060 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1061 
1062 	if (blk_integrity_rq(rq)) {
1063 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1064 		int ivecs;
1065 
1066 		if (WARN_ON_ONCE(!prot_sdb)) {
1067 			/*
1068 			 * This can happen if someone (e.g. multipath)
1069 			 * queues a command to a device on an adapter
1070 			 * that does not support DIX.
1071 			 */
1072 			ret = BLK_STS_IOERR;
1073 			goto out_free_sgtables;
1074 		}
1075 
1076 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077 
1078 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1079 				prot_sdb->table.sgl,
1080 				SCSI_INLINE_PROT_SG_CNT)) {
1081 			ret = BLK_STS_RESOURCE;
1082 			goto out_free_sgtables;
1083 		}
1084 
1085 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1086 						prot_sdb->table.sgl);
1087 		BUG_ON(count > ivecs);
1088 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1089 
1090 		cmd->prot_sdb = prot_sdb;
1091 		cmd->prot_sdb->table.nents = count;
1092 	}
1093 
1094 	return BLK_STS_OK;
1095 out_free_sgtables:
1096 	scsi_free_sgtables(cmd);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(scsi_alloc_sgtables);
1100 
1101 /**
1102  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1103  * @rq: Request associated with the SCSI command to be initialized.
1104  *
1105  * This function initializes the members of struct scsi_cmnd that must be
1106  * initialized before request processing starts and that won't be
1107  * reinitialized if a SCSI command is requeued.
1108  */
1109 static void scsi_initialize_rq(struct request *rq)
1110 {
1111 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1112 
1113 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1114 	cmd->cmd_len = MAX_COMMAND_SIZE;
1115 	cmd->sense_len = 0;
1116 	init_rcu_head(&cmd->rcu);
1117 	cmd->jiffies_at_alloc = jiffies;
1118 	cmd->retries = 0;
1119 }
1120 
1121 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1122 				   blk_mq_req_flags_t flags)
1123 {
1124 	struct request *rq;
1125 
1126 	rq = blk_mq_alloc_request(q, opf, flags);
1127 	if (!IS_ERR(rq))
1128 		scsi_initialize_rq(rq);
1129 	return rq;
1130 }
1131 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1132 
1133 /*
1134  * Only called when the request isn't completed by SCSI, and not freed by
1135  * SCSI
1136  */
1137 static void scsi_cleanup_rq(struct request *rq)
1138 {
1139 	if (rq->rq_flags & RQF_DONTPREP) {
1140 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1141 		rq->rq_flags &= ~RQF_DONTPREP;
1142 	}
1143 }
1144 
1145 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1146 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1147 {
1148 	struct request *rq = scsi_cmd_to_rq(cmd);
1149 
1150 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1151 		cmd->flags |= SCMD_INITIALIZED;
1152 		scsi_initialize_rq(rq);
1153 	}
1154 
1155 	cmd->device = dev;
1156 	INIT_LIST_HEAD(&cmd->eh_entry);
1157 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1158 }
1159 
1160 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1161 		struct request *req)
1162 {
1163 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1164 
1165 	/*
1166 	 * Passthrough requests may transfer data, in which case they must
1167 	 * a bio attached to them.  Or they might contain a SCSI command
1168 	 * that does not transfer data, in which case they may optionally
1169 	 * submit a request without an attached bio.
1170 	 */
1171 	if (req->bio) {
1172 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1173 		if (unlikely(ret != BLK_STS_OK))
1174 			return ret;
1175 	} else {
1176 		BUG_ON(blk_rq_bytes(req));
1177 
1178 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1179 	}
1180 
1181 	cmd->transfersize = blk_rq_bytes(req);
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t
1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188 	switch (sdev->sdev_state) {
1189 	case SDEV_CREATED:
1190 		return BLK_STS_OK;
1191 	case SDEV_OFFLINE:
1192 	case SDEV_TRANSPORT_OFFLINE:
1193 		/*
1194 		 * If the device is offline we refuse to process any
1195 		 * commands.  The device must be brought online
1196 		 * before trying any recovery commands.
1197 		 */
1198 		if (!sdev->offline_already) {
1199 			sdev->offline_already = true;
1200 			sdev_printk(KERN_ERR, sdev,
1201 				    "rejecting I/O to offline device\n");
1202 		}
1203 		return BLK_STS_IOERR;
1204 	case SDEV_DEL:
1205 		/*
1206 		 * If the device is fully deleted, we refuse to
1207 		 * process any commands as well.
1208 		 */
1209 		sdev_printk(KERN_ERR, sdev,
1210 			    "rejecting I/O to dead device\n");
1211 		return BLK_STS_IOERR;
1212 	case SDEV_BLOCK:
1213 	case SDEV_CREATED_BLOCK:
1214 		return BLK_STS_RESOURCE;
1215 	case SDEV_QUIESCE:
1216 		/*
1217 		 * If the device is blocked we only accept power management
1218 		 * commands.
1219 		 */
1220 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221 			return BLK_STS_RESOURCE;
1222 		return BLK_STS_OK;
1223 	default:
1224 		/*
1225 		 * For any other not fully online state we only allow
1226 		 * power management commands.
1227 		 */
1228 		if (req && !(req->rq_flags & RQF_PM))
1229 			return BLK_STS_OFFLINE;
1230 		return BLK_STS_OK;
1231 	}
1232 }
1233 
1234 /*
1235  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236  * and return the token else return -1.
1237  */
1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239 				  struct scsi_device *sdev)
1240 {
1241 	int token;
1242 
1243 	token = sbitmap_get(&sdev->budget_map);
1244 	if (atomic_read(&sdev->device_blocked)) {
1245 		if (token < 0)
1246 			goto out;
1247 
1248 		if (scsi_device_busy(sdev) > 1)
1249 			goto out_dec;
1250 
1251 		/*
1252 		 * unblock after device_blocked iterates to zero
1253 		 */
1254 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1255 			goto out_dec;
1256 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257 				   "unblocking device at zero depth\n"));
1258 	}
1259 
1260 	return token;
1261 out_dec:
1262 	if (token >= 0)
1263 		sbitmap_put(&sdev->budget_map, token);
1264 out:
1265 	return -1;
1266 }
1267 
1268 /*
1269  * scsi_target_queue_ready: checks if there we can send commands to target
1270  * @sdev: scsi device on starget to check.
1271  */
1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 					   struct scsi_device *sdev)
1274 {
1275 	struct scsi_target *starget = scsi_target(sdev);
1276 	unsigned int busy;
1277 
1278 	if (starget->single_lun) {
1279 		spin_lock_irq(shost->host_lock);
1280 		if (starget->starget_sdev_user &&
1281 		    starget->starget_sdev_user != sdev) {
1282 			spin_unlock_irq(shost->host_lock);
1283 			return 0;
1284 		}
1285 		starget->starget_sdev_user = sdev;
1286 		spin_unlock_irq(shost->host_lock);
1287 	}
1288 
1289 	if (starget->can_queue <= 0)
1290 		return 1;
1291 
1292 	busy = atomic_inc_return(&starget->target_busy) - 1;
1293 	if (atomic_read(&starget->target_blocked) > 0) {
1294 		if (busy)
1295 			goto starved;
1296 
1297 		/*
1298 		 * unblock after target_blocked iterates to zero
1299 		 */
1300 		if (atomic_dec_return(&starget->target_blocked) > 0)
1301 			goto out_dec;
1302 
1303 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304 				 "unblocking target at zero depth\n"));
1305 	}
1306 
1307 	if (busy >= starget->can_queue)
1308 		goto starved;
1309 
1310 	return 1;
1311 
1312 starved:
1313 	spin_lock_irq(shost->host_lock);
1314 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315 	spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317 	if (starget->can_queue > 0)
1318 		atomic_dec(&starget->target_busy);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324  * return 0. We must end up running the queue again whenever 0 is
1325  * returned, else IO can hang.
1326  */
1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328 				   struct Scsi_Host *shost,
1329 				   struct scsi_device *sdev,
1330 				   struct scsi_cmnd *cmd)
1331 {
1332 	if (scsi_host_in_recovery(shost))
1333 		return 0;
1334 
1335 	if (atomic_read(&shost->host_blocked) > 0) {
1336 		if (scsi_host_busy(shost) > 0)
1337 			goto starved;
1338 
1339 		/*
1340 		 * unblock after host_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&shost->host_blocked) > 0)
1343 			goto out_dec;
1344 
1345 		SCSI_LOG_MLQUEUE(3,
1346 			shost_printk(KERN_INFO, shost,
1347 				     "unblocking host at zero depth\n"));
1348 	}
1349 
1350 	if (shost->host_self_blocked)
1351 		goto starved;
1352 
1353 	/* We're OK to process the command, so we can't be starved */
1354 	if (!list_empty(&sdev->starved_entry)) {
1355 		spin_lock_irq(shost->host_lock);
1356 		if (!list_empty(&sdev->starved_entry))
1357 			list_del_init(&sdev->starved_entry);
1358 		spin_unlock_irq(shost->host_lock);
1359 	}
1360 
1361 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362 
1363 	return 1;
1364 
1365 starved:
1366 	spin_lock_irq(shost->host_lock);
1367 	if (list_empty(&sdev->starved_entry))
1368 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369 	spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371 	scsi_dec_host_busy(shost, cmd);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Busy state exporting function for request stacking drivers.
1377  *
1378  * For efficiency, no lock is taken to check the busy state of
1379  * shost/starget/sdev, since the returned value is not guaranteed and
1380  * may be changed after request stacking drivers call the function,
1381  * regardless of taking lock or not.
1382  *
1383  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384  * needs to return 'not busy'. Otherwise, request stacking drivers
1385  * may hold requests forever.
1386  */
1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389 	struct scsi_device *sdev = q->queuedata;
1390 	struct Scsi_Host *shost;
1391 
1392 	if (blk_queue_dying(q))
1393 		return false;
1394 
1395 	shost = sdev->host;
1396 
1397 	/*
1398 	 * Ignore host/starget busy state.
1399 	 * Since block layer does not have a concept of fairness across
1400 	 * multiple queues, congestion of host/starget needs to be handled
1401 	 * in SCSI layer.
1402 	 */
1403 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 /*
1410  * Block layer request completion callback. May be called from interrupt
1411  * context.
1412  */
1413 static void scsi_complete(struct request *rq)
1414 {
1415 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416 	enum scsi_disposition disposition;
1417 
1418 	INIT_LIST_HEAD(&cmd->eh_entry);
1419 
1420 	atomic_inc(&cmd->device->iodone_cnt);
1421 	if (cmd->result)
1422 		atomic_inc(&cmd->device->ioerr_cnt);
1423 
1424 	disposition = scsi_decide_disposition(cmd);
1425 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426 		disposition = SUCCESS;
1427 
1428 	scsi_log_completion(cmd, disposition);
1429 
1430 	switch (disposition) {
1431 	case SUCCESS:
1432 		scsi_finish_command(cmd);
1433 		break;
1434 	case NEEDS_RETRY:
1435 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 		break;
1437 	case ADD_TO_MLQUEUE:
1438 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 		break;
1440 	default:
1441 		scsi_eh_scmd_add(cmd);
1442 		break;
1443 	}
1444 }
1445 
1446 /**
1447  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448  * @cmd: command block we are dispatching.
1449  *
1450  * Return: nonzero return request was rejected and device's queue needs to be
1451  * plugged.
1452  */
1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 	struct Scsi_Host *host = cmd->device->host;
1456 	int rtn = 0;
1457 
1458 	atomic_inc(&cmd->device->iorequest_cnt);
1459 
1460 	/* check if the device is still usable */
1461 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 		 * returns an immediate error upwards, and signals
1464 		 * that the device is no longer present */
1465 		cmd->result = DID_NO_CONNECT << 16;
1466 		goto done;
1467 	}
1468 
1469 	/* Check to see if the scsi lld made this device blocked. */
1470 	if (unlikely(scsi_device_blocked(cmd->device))) {
1471 		/*
1472 		 * in blocked state, the command is just put back on
1473 		 * the device queue.  The suspend state has already
1474 		 * blocked the queue so future requests should not
1475 		 * occur until the device transitions out of the
1476 		 * suspend state.
1477 		 */
1478 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 			"queuecommand : device blocked\n"));
1480 		return SCSI_MLQUEUE_DEVICE_BUSY;
1481 	}
1482 
1483 	/* Store the LUN value in cmnd, if needed. */
1484 	if (cmd->device->lun_in_cdb)
1485 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486 			       (cmd->device->lun << 5 & 0xe0);
1487 
1488 	scsi_log_send(cmd);
1489 
1490 	/*
1491 	 * Before we queue this command, check if the command
1492 	 * length exceeds what the host adapter can handle.
1493 	 */
1494 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 			       "queuecommand : command too long. "
1497 			       "cdb_size=%d host->max_cmd_len=%d\n",
1498 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1499 		cmd->result = (DID_ABORT << 16);
1500 		goto done;
1501 	}
1502 
1503 	if (unlikely(host->shost_state == SHOST_DEL)) {
1504 		cmd->result = (DID_NO_CONNECT << 16);
1505 		goto done;
1506 
1507 	}
1508 
1509 	trace_scsi_dispatch_cmd_start(cmd);
1510 	rtn = host->hostt->queuecommand(host, cmd);
1511 	if (rtn) {
1512 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1513 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1516 
1517 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 			"queuecommand : request rejected\n"));
1519 	}
1520 
1521 	return rtn;
1522  done:
1523 	scsi_done(cmd);
1524 	return 0;
1525 }
1526 
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531 		sizeof(struct scatterlist);
1532 }
1533 
1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537 	struct scsi_device *sdev = req->q->queuedata;
1538 	struct Scsi_Host *shost = sdev->host;
1539 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1540 	struct scatterlist *sg;
1541 
1542 	scsi_init_command(sdev, cmd);
1543 
1544 	cmd->eh_eflags = 0;
1545 	cmd->allowed = 0;
1546 	cmd->prot_type = 0;
1547 	cmd->prot_flags = 0;
1548 	cmd->submitter = 0;
1549 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1550 	cmd->underflow = 0;
1551 	cmd->transfersize = 0;
1552 	cmd->host_scribble = NULL;
1553 	cmd->result = 0;
1554 	cmd->extra_len = 0;
1555 	cmd->state = 0;
1556 	if (in_flight)
1557 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1558 
1559 	/*
1560 	 * Only clear the driver-private command data if the LLD does not supply
1561 	 * a function to initialize that data.
1562 	 */
1563 	if (!shost->hostt->init_cmd_priv)
1564 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1565 
1566 	cmd->prot_op = SCSI_PROT_NORMAL;
1567 	if (blk_rq_bytes(req))
1568 		cmd->sc_data_direction = rq_dma_dir(req);
1569 	else
1570 		cmd->sc_data_direction = DMA_NONE;
1571 
1572 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1573 	cmd->sdb.table.sgl = sg;
1574 
1575 	if (scsi_host_get_prot(shost)) {
1576 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1577 
1578 		cmd->prot_sdb->table.sgl =
1579 			(struct scatterlist *)(cmd->prot_sdb + 1);
1580 	}
1581 
1582 	/*
1583 	 * Special handling for passthrough commands, which don't go to the ULP
1584 	 * at all:
1585 	 */
1586 	if (blk_rq_is_passthrough(req))
1587 		return scsi_setup_scsi_cmnd(sdev, req);
1588 
1589 	if (sdev->handler && sdev->handler->prep_fn) {
1590 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1591 
1592 		if (ret != BLK_STS_OK)
1593 			return ret;
1594 	}
1595 
1596 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1597 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1598 }
1599 
1600 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1601 {
1602 	struct request *req = scsi_cmd_to_rq(cmd);
1603 
1604 	switch (cmd->submitter) {
1605 	case SUBMITTED_BY_BLOCK_LAYER:
1606 		break;
1607 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1608 		return scsi_eh_done(cmd);
1609 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1610 		return;
1611 	}
1612 
1613 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1614 		return;
1615 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1616 		return;
1617 	trace_scsi_dispatch_cmd_done(cmd);
1618 
1619 	if (complete_directly)
1620 		blk_mq_complete_request_direct(req, scsi_complete);
1621 	else
1622 		blk_mq_complete_request(req);
1623 }
1624 
1625 void scsi_done(struct scsi_cmnd *cmd)
1626 {
1627 	scsi_done_internal(cmd, false);
1628 }
1629 EXPORT_SYMBOL(scsi_done);
1630 
1631 void scsi_done_direct(struct scsi_cmnd *cmd)
1632 {
1633 	scsi_done_internal(cmd, true);
1634 }
1635 EXPORT_SYMBOL(scsi_done_direct);
1636 
1637 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1638 {
1639 	struct scsi_device *sdev = q->queuedata;
1640 
1641 	sbitmap_put(&sdev->budget_map, budget_token);
1642 }
1643 
1644 /*
1645  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1646  * not change behaviour from the previous unplug mechanism, experimentation
1647  * may prove this needs changing.
1648  */
1649 #define SCSI_QUEUE_DELAY 3
1650 
1651 static int scsi_mq_get_budget(struct request_queue *q)
1652 {
1653 	struct scsi_device *sdev = q->queuedata;
1654 	int token = scsi_dev_queue_ready(q, sdev);
1655 
1656 	if (token >= 0)
1657 		return token;
1658 
1659 	atomic_inc(&sdev->restarts);
1660 
1661 	/*
1662 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1663 	 * .restarts must be incremented before .device_busy is read because the
1664 	 * code in scsi_run_queue_async() depends on the order of these operations.
1665 	 */
1666 	smp_mb__after_atomic();
1667 
1668 	/*
1669 	 * If all in-flight requests originated from this LUN are completed
1670 	 * before reading .device_busy, sdev->device_busy will be observed as
1671 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1672 	 * soon. Otherwise, completion of one of these requests will observe
1673 	 * the .restarts flag, and the request queue will be run for handling
1674 	 * this request, see scsi_end_request().
1675 	 */
1676 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1677 				!scsi_device_blocked(sdev)))
1678 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1679 	return -1;
1680 }
1681 
1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1683 {
1684 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1685 
1686 	cmd->budget_token = token;
1687 }
1688 
1689 static int scsi_mq_get_rq_budget_token(struct request *req)
1690 {
1691 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692 
1693 	return cmd->budget_token;
1694 }
1695 
1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1697 			 const struct blk_mq_queue_data *bd)
1698 {
1699 	struct request *req = bd->rq;
1700 	struct request_queue *q = req->q;
1701 	struct scsi_device *sdev = q->queuedata;
1702 	struct Scsi_Host *shost = sdev->host;
1703 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1704 	blk_status_t ret;
1705 	int reason;
1706 
1707 	WARN_ON_ONCE(cmd->budget_token < 0);
1708 
1709 	/*
1710 	 * If the device is not in running state we will reject some or all
1711 	 * commands.
1712 	 */
1713 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1714 		ret = scsi_device_state_check(sdev, req);
1715 		if (ret != BLK_STS_OK)
1716 			goto out_put_budget;
1717 	}
1718 
1719 	ret = BLK_STS_RESOURCE;
1720 	if (!scsi_target_queue_ready(shost, sdev))
1721 		goto out_put_budget;
1722 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1723 		goto out_dec_target_busy;
1724 
1725 	if (!(req->rq_flags & RQF_DONTPREP)) {
1726 		ret = scsi_prepare_cmd(req);
1727 		if (ret != BLK_STS_OK)
1728 			goto out_dec_host_busy;
1729 		req->rq_flags |= RQF_DONTPREP;
1730 	} else {
1731 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1732 	}
1733 
1734 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1735 	if (sdev->simple_tags)
1736 		cmd->flags |= SCMD_TAGGED;
1737 	if (bd->last)
1738 		cmd->flags |= SCMD_LAST;
1739 
1740 	scsi_set_resid(cmd, 0);
1741 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1742 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1743 
1744 	blk_mq_start_request(req);
1745 	reason = scsi_dispatch_cmd(cmd);
1746 	if (reason) {
1747 		scsi_set_blocked(cmd, reason);
1748 		ret = BLK_STS_RESOURCE;
1749 		goto out_dec_host_busy;
1750 	}
1751 
1752 	return BLK_STS_OK;
1753 
1754 out_dec_host_busy:
1755 	scsi_dec_host_busy(shost, cmd);
1756 out_dec_target_busy:
1757 	if (scsi_target(sdev)->can_queue > 0)
1758 		atomic_dec(&scsi_target(sdev)->target_busy);
1759 out_put_budget:
1760 	scsi_mq_put_budget(q, cmd->budget_token);
1761 	cmd->budget_token = -1;
1762 	switch (ret) {
1763 	case BLK_STS_OK:
1764 		break;
1765 	case BLK_STS_RESOURCE:
1766 	case BLK_STS_ZONE_RESOURCE:
1767 		if (scsi_device_blocked(sdev))
1768 			ret = BLK_STS_DEV_RESOURCE;
1769 		break;
1770 	case BLK_STS_AGAIN:
1771 		cmd->result = DID_BUS_BUSY << 16;
1772 		if (req->rq_flags & RQF_DONTPREP)
1773 			scsi_mq_uninit_cmd(cmd);
1774 		break;
1775 	default:
1776 		if (unlikely(!scsi_device_online(sdev)))
1777 			cmd->result = DID_NO_CONNECT << 16;
1778 		else
1779 			cmd->result = DID_ERROR << 16;
1780 		/*
1781 		 * Make sure to release all allocated resources when
1782 		 * we hit an error, as we will never see this command
1783 		 * again.
1784 		 */
1785 		if (req->rq_flags & RQF_DONTPREP)
1786 			scsi_mq_uninit_cmd(cmd);
1787 		scsi_run_queue_async(sdev);
1788 		break;
1789 	}
1790 	return ret;
1791 }
1792 
1793 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1794 				unsigned int hctx_idx, unsigned int numa_node)
1795 {
1796 	struct Scsi_Host *shost = set->driver_data;
1797 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1798 	struct scatterlist *sg;
1799 	int ret = 0;
1800 
1801 	cmd->sense_buffer =
1802 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1803 	if (!cmd->sense_buffer)
1804 		return -ENOMEM;
1805 
1806 	if (scsi_host_get_prot(shost)) {
1807 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1808 			shost->hostt->cmd_size;
1809 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1810 	}
1811 
1812 	if (shost->hostt->init_cmd_priv) {
1813 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1814 		if (ret < 0)
1815 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1816 	}
1817 
1818 	return ret;
1819 }
1820 
1821 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1822 				 unsigned int hctx_idx)
1823 {
1824 	struct Scsi_Host *shost = set->driver_data;
1825 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1826 
1827 	if (shost->hostt->exit_cmd_priv)
1828 		shost->hostt->exit_cmd_priv(shost, cmd);
1829 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830 }
1831 
1832 
1833 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1834 {
1835 	struct Scsi_Host *shost = hctx->driver_data;
1836 
1837 	if (shost->hostt->mq_poll)
1838 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1839 
1840 	return 0;
1841 }
1842 
1843 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1844 			  unsigned int hctx_idx)
1845 {
1846 	struct Scsi_Host *shost = data;
1847 
1848 	hctx->driver_data = shost;
1849 	return 0;
1850 }
1851 
1852 static int scsi_map_queues(struct blk_mq_tag_set *set)
1853 {
1854 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1855 
1856 	if (shost->hostt->map_queues)
1857 		return shost->hostt->map_queues(shost);
1858 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1859 }
1860 
1861 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1862 {
1863 	struct device *dev = shost->dma_dev;
1864 
1865 	/*
1866 	 * this limit is imposed by hardware restrictions
1867 	 */
1868 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1869 					SG_MAX_SEGMENTS));
1870 
1871 	if (scsi_host_prot_dma(shost)) {
1872 		shost->sg_prot_tablesize =
1873 			min_not_zero(shost->sg_prot_tablesize,
1874 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1875 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1876 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1877 	}
1878 
1879 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1880 	blk_queue_segment_boundary(q, shost->dma_boundary);
1881 	dma_set_seg_boundary(dev, shost->dma_boundary);
1882 
1883 	blk_queue_max_segment_size(q, shost->max_segment_size);
1884 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1885 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1886 
1887 	/*
1888 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1889 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1890 	 * which is set by the platform.
1891 	 *
1892 	 * Devices that require a bigger alignment can increase it later.
1893 	 */
1894 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1895 }
1896 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1897 
1898 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1899 	.get_budget	= scsi_mq_get_budget,
1900 	.put_budget	= scsi_mq_put_budget,
1901 	.queue_rq	= scsi_queue_rq,
1902 	.complete	= scsi_complete,
1903 	.timeout	= scsi_timeout,
1904 #ifdef CONFIG_BLK_DEBUG_FS
1905 	.show_rq	= scsi_show_rq,
1906 #endif
1907 	.init_request	= scsi_mq_init_request,
1908 	.exit_request	= scsi_mq_exit_request,
1909 	.cleanup_rq	= scsi_cleanup_rq,
1910 	.busy		= scsi_mq_lld_busy,
1911 	.map_queues	= scsi_map_queues,
1912 	.init_hctx	= scsi_init_hctx,
1913 	.poll		= scsi_mq_poll,
1914 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1915 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1916 };
1917 
1918 
1919 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1920 {
1921 	struct Scsi_Host *shost = hctx->driver_data;
1922 
1923 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1924 }
1925 
1926 static const struct blk_mq_ops scsi_mq_ops = {
1927 	.get_budget	= scsi_mq_get_budget,
1928 	.put_budget	= scsi_mq_put_budget,
1929 	.queue_rq	= scsi_queue_rq,
1930 	.commit_rqs	= scsi_commit_rqs,
1931 	.complete	= scsi_complete,
1932 	.timeout	= scsi_timeout,
1933 #ifdef CONFIG_BLK_DEBUG_FS
1934 	.show_rq	= scsi_show_rq,
1935 #endif
1936 	.init_request	= scsi_mq_init_request,
1937 	.exit_request	= scsi_mq_exit_request,
1938 	.cleanup_rq	= scsi_cleanup_rq,
1939 	.busy		= scsi_mq_lld_busy,
1940 	.map_queues	= scsi_map_queues,
1941 	.init_hctx	= scsi_init_hctx,
1942 	.poll		= scsi_mq_poll,
1943 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1944 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1945 };
1946 
1947 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1948 {
1949 	unsigned int cmd_size, sgl_size;
1950 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1951 
1952 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1953 				scsi_mq_inline_sgl_size(shost));
1954 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1955 	if (scsi_host_get_prot(shost))
1956 		cmd_size += sizeof(struct scsi_data_buffer) +
1957 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1958 
1959 	memset(tag_set, 0, sizeof(*tag_set));
1960 	if (shost->hostt->commit_rqs)
1961 		tag_set->ops = &scsi_mq_ops;
1962 	else
1963 		tag_set->ops = &scsi_mq_ops_no_commit;
1964 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1965 	tag_set->nr_maps = shost->nr_maps ? : 1;
1966 	tag_set->queue_depth = shost->can_queue;
1967 	tag_set->cmd_size = cmd_size;
1968 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1969 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1970 	tag_set->flags |=
1971 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1972 	tag_set->driver_data = shost;
1973 	if (shost->host_tagset)
1974 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1975 
1976 	return blk_mq_alloc_tag_set(tag_set);
1977 }
1978 
1979 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1980 {
1981 	blk_mq_free_tag_set(&shost->tag_set);
1982 }
1983 
1984 /**
1985  * scsi_device_from_queue - return sdev associated with a request_queue
1986  * @q: The request queue to return the sdev from
1987  *
1988  * Return the sdev associated with a request queue or NULL if the
1989  * request_queue does not reference a SCSI device.
1990  */
1991 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1992 {
1993 	struct scsi_device *sdev = NULL;
1994 
1995 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1996 	    q->mq_ops == &scsi_mq_ops)
1997 		sdev = q->queuedata;
1998 	if (!sdev || !get_device(&sdev->sdev_gendev))
1999 		sdev = NULL;
2000 
2001 	return sdev;
2002 }
2003 /*
2004  * pktcdvd should have been integrated into the SCSI layers, but for historical
2005  * reasons like the old IDE driver it isn't.  This export allows it to safely
2006  * probe if a given device is a SCSI one and only attach to that.
2007  */
2008 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2009 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2010 #endif
2011 
2012 /**
2013  * scsi_block_requests - Utility function used by low-level drivers to prevent
2014  * further commands from being queued to the device.
2015  * @shost:  host in question
2016  *
2017  * There is no timer nor any other means by which the requests get unblocked
2018  * other than the low-level driver calling scsi_unblock_requests().
2019  */
2020 void scsi_block_requests(struct Scsi_Host *shost)
2021 {
2022 	shost->host_self_blocked = 1;
2023 }
2024 EXPORT_SYMBOL(scsi_block_requests);
2025 
2026 /**
2027  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2028  * further commands to be queued to the device.
2029  * @shost:  host in question
2030  *
2031  * There is no timer nor any other means by which the requests get unblocked
2032  * other than the low-level driver calling scsi_unblock_requests(). This is done
2033  * as an API function so that changes to the internals of the scsi mid-layer
2034  * won't require wholesale changes to drivers that use this feature.
2035  */
2036 void scsi_unblock_requests(struct Scsi_Host *shost)
2037 {
2038 	shost->host_self_blocked = 0;
2039 	scsi_run_host_queues(shost);
2040 }
2041 EXPORT_SYMBOL(scsi_unblock_requests);
2042 
2043 void scsi_exit_queue(void)
2044 {
2045 	kmem_cache_destroy(scsi_sense_cache);
2046 }
2047 
2048 /**
2049  *	scsi_mode_select - issue a mode select
2050  *	@sdev:	SCSI device to be queried
2051  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2052  *	@sp:	Save page bit (0 == don't save, 1 == save)
2053  *	@buffer: request buffer (may not be smaller than eight bytes)
2054  *	@len:	length of request buffer.
2055  *	@timeout: command timeout
2056  *	@retries: number of retries before failing
2057  *	@data: returns a structure abstracting the mode header data
2058  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2059  *		must be SCSI_SENSE_BUFFERSIZE big.
2060  *
2061  *	Returns zero if successful; negative error number or scsi
2062  *	status on error
2063  *
2064  */
2065 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2066 		     unsigned char *buffer, int len, int timeout, int retries,
2067 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2068 {
2069 	unsigned char cmd[10];
2070 	unsigned char *real_buffer;
2071 	int ret;
2072 
2073 	memset(cmd, 0, sizeof(cmd));
2074 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2075 
2076 	/*
2077 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2078 	 * and the mode select header cannot fit within the maximumm 255 bytes
2079 	 * of the MODE SELECT(6) command.
2080 	 */
2081 	if (sdev->use_10_for_ms ||
2082 	    len + 4 > 255 ||
2083 	    data->block_descriptor_length > 255) {
2084 		if (len > 65535 - 8)
2085 			return -EINVAL;
2086 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2087 		if (!real_buffer)
2088 			return -ENOMEM;
2089 		memcpy(real_buffer + 8, buffer, len);
2090 		len += 8;
2091 		real_buffer[0] = 0;
2092 		real_buffer[1] = 0;
2093 		real_buffer[2] = data->medium_type;
2094 		real_buffer[3] = data->device_specific;
2095 		real_buffer[4] = data->longlba ? 0x01 : 0;
2096 		real_buffer[5] = 0;
2097 		put_unaligned_be16(data->block_descriptor_length,
2098 				   &real_buffer[6]);
2099 
2100 		cmd[0] = MODE_SELECT_10;
2101 		put_unaligned_be16(len, &cmd[7]);
2102 	} else {
2103 		if (data->longlba)
2104 			return -EINVAL;
2105 
2106 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2107 		if (!real_buffer)
2108 			return -ENOMEM;
2109 		memcpy(real_buffer + 4, buffer, len);
2110 		len += 4;
2111 		real_buffer[0] = 0;
2112 		real_buffer[1] = data->medium_type;
2113 		real_buffer[2] = data->device_specific;
2114 		real_buffer[3] = data->block_descriptor_length;
2115 
2116 		cmd[0] = MODE_SELECT;
2117 		cmd[4] = len;
2118 	}
2119 
2120 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2121 			       sshdr, timeout, retries, NULL);
2122 	kfree(real_buffer);
2123 	return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(scsi_mode_select);
2126 
2127 /**
2128  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2129  *	@sdev:	SCSI device to be queried
2130  *	@dbd:	set to prevent mode sense from returning block descriptors
2131  *	@modepage: mode page being requested
2132  *	@buffer: request buffer (may not be smaller than eight bytes)
2133  *	@len:	length of request buffer.
2134  *	@timeout: command timeout
2135  *	@retries: number of retries before failing
2136  *	@data: returns a structure abstracting the mode header data
2137  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2138  *		must be SCSI_SENSE_BUFFERSIZE big.
2139  *
2140  *	Returns zero if successful, or a negative error number on failure
2141  */
2142 int
2143 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2144 		  unsigned char *buffer, int len, int timeout, int retries,
2145 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2146 {
2147 	unsigned char cmd[12];
2148 	int use_10_for_ms;
2149 	int header_length;
2150 	int result, retry_count = retries;
2151 	struct scsi_sense_hdr my_sshdr;
2152 
2153 	memset(data, 0, sizeof(*data));
2154 	memset(&cmd[0], 0, 12);
2155 
2156 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2157 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2158 	cmd[2] = modepage;
2159 
2160 	/* caller might not be interested in sense, but we need it */
2161 	if (!sshdr)
2162 		sshdr = &my_sshdr;
2163 
2164  retry:
2165 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2166 
2167 	if (use_10_for_ms) {
2168 		if (len < 8 || len > 65535)
2169 			return -EINVAL;
2170 
2171 		cmd[0] = MODE_SENSE_10;
2172 		put_unaligned_be16(len, &cmd[7]);
2173 		header_length = 8;
2174 	} else {
2175 		if (len < 4)
2176 			return -EINVAL;
2177 
2178 		cmd[0] = MODE_SENSE;
2179 		cmd[4] = len;
2180 		header_length = 4;
2181 	}
2182 
2183 	memset(buffer, 0, len);
2184 
2185 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2186 				  sshdr, timeout, retries, NULL);
2187 	if (result < 0)
2188 		return result;
2189 
2190 	/* This code looks awful: what it's doing is making sure an
2191 	 * ILLEGAL REQUEST sense return identifies the actual command
2192 	 * byte as the problem.  MODE_SENSE commands can return
2193 	 * ILLEGAL REQUEST if the code page isn't supported */
2194 
2195 	if (!scsi_status_is_good(result)) {
2196 		if (scsi_sense_valid(sshdr)) {
2197 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2198 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2199 				/*
2200 				 * Invalid command operation code: retry using
2201 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2202 				 * request, except if the request mode page is
2203 				 * too large for MODE SENSE single byte
2204 				 * allocation length field.
2205 				 */
2206 				if (use_10_for_ms) {
2207 					if (len > 255)
2208 						return -EIO;
2209 					sdev->use_10_for_ms = 0;
2210 					goto retry;
2211 				}
2212 			}
2213 			if (scsi_status_is_check_condition(result) &&
2214 			    sshdr->sense_key == UNIT_ATTENTION &&
2215 			    retry_count) {
2216 				retry_count--;
2217 				goto retry;
2218 			}
2219 		}
2220 		return -EIO;
2221 	}
2222 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2223 		     (modepage == 6 || modepage == 8))) {
2224 		/* Initio breakage? */
2225 		header_length = 0;
2226 		data->length = 13;
2227 		data->medium_type = 0;
2228 		data->device_specific = 0;
2229 		data->longlba = 0;
2230 		data->block_descriptor_length = 0;
2231 	} else if (use_10_for_ms) {
2232 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2233 		data->medium_type = buffer[2];
2234 		data->device_specific = buffer[3];
2235 		data->longlba = buffer[4] & 0x01;
2236 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2237 	} else {
2238 		data->length = buffer[0] + 1;
2239 		data->medium_type = buffer[1];
2240 		data->device_specific = buffer[2];
2241 		data->block_descriptor_length = buffer[3];
2242 	}
2243 	data->header_length = header_length;
2244 
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL(scsi_mode_sense);
2248 
2249 /**
2250  *	scsi_test_unit_ready - test if unit is ready
2251  *	@sdev:	scsi device to change the state of.
2252  *	@timeout: command timeout
2253  *	@retries: number of retries before failing
2254  *	@sshdr: outpout pointer for decoded sense information.
2255  *
2256  *	Returns zero if unsuccessful or an error if TUR failed.  For
2257  *	removable media, UNIT_ATTENTION sets ->changed flag.
2258  **/
2259 int
2260 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2261 		     struct scsi_sense_hdr *sshdr)
2262 {
2263 	char cmd[] = {
2264 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2265 	};
2266 	int result;
2267 
2268 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2269 	do {
2270 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2271 					  timeout, 1, NULL);
2272 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2273 		    sshdr->sense_key == UNIT_ATTENTION)
2274 			sdev->changed = 1;
2275 	} while (scsi_sense_valid(sshdr) &&
2276 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2277 
2278 	return result;
2279 }
2280 EXPORT_SYMBOL(scsi_test_unit_ready);
2281 
2282 /**
2283  *	scsi_device_set_state - Take the given device through the device state model.
2284  *	@sdev:	scsi device to change the state of.
2285  *	@state:	state to change to.
2286  *
2287  *	Returns zero if successful or an error if the requested
2288  *	transition is illegal.
2289  */
2290 int
2291 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2292 {
2293 	enum scsi_device_state oldstate = sdev->sdev_state;
2294 
2295 	if (state == oldstate)
2296 		return 0;
2297 
2298 	switch (state) {
2299 	case SDEV_CREATED:
2300 		switch (oldstate) {
2301 		case SDEV_CREATED_BLOCK:
2302 			break;
2303 		default:
2304 			goto illegal;
2305 		}
2306 		break;
2307 
2308 	case SDEV_RUNNING:
2309 		switch (oldstate) {
2310 		case SDEV_CREATED:
2311 		case SDEV_OFFLINE:
2312 		case SDEV_TRANSPORT_OFFLINE:
2313 		case SDEV_QUIESCE:
2314 		case SDEV_BLOCK:
2315 			break;
2316 		default:
2317 			goto illegal;
2318 		}
2319 		break;
2320 
2321 	case SDEV_QUIESCE:
2322 		switch (oldstate) {
2323 		case SDEV_RUNNING:
2324 		case SDEV_OFFLINE:
2325 		case SDEV_TRANSPORT_OFFLINE:
2326 			break;
2327 		default:
2328 			goto illegal;
2329 		}
2330 		break;
2331 
2332 	case SDEV_OFFLINE:
2333 	case SDEV_TRANSPORT_OFFLINE:
2334 		switch (oldstate) {
2335 		case SDEV_CREATED:
2336 		case SDEV_RUNNING:
2337 		case SDEV_QUIESCE:
2338 		case SDEV_BLOCK:
2339 			break;
2340 		default:
2341 			goto illegal;
2342 		}
2343 		break;
2344 
2345 	case SDEV_BLOCK:
2346 		switch (oldstate) {
2347 		case SDEV_RUNNING:
2348 		case SDEV_CREATED_BLOCK:
2349 		case SDEV_QUIESCE:
2350 		case SDEV_OFFLINE:
2351 			break;
2352 		default:
2353 			goto illegal;
2354 		}
2355 		break;
2356 
2357 	case SDEV_CREATED_BLOCK:
2358 		switch (oldstate) {
2359 		case SDEV_CREATED:
2360 			break;
2361 		default:
2362 			goto illegal;
2363 		}
2364 		break;
2365 
2366 	case SDEV_CANCEL:
2367 		switch (oldstate) {
2368 		case SDEV_CREATED:
2369 		case SDEV_RUNNING:
2370 		case SDEV_QUIESCE:
2371 		case SDEV_OFFLINE:
2372 		case SDEV_TRANSPORT_OFFLINE:
2373 			break;
2374 		default:
2375 			goto illegal;
2376 		}
2377 		break;
2378 
2379 	case SDEV_DEL:
2380 		switch (oldstate) {
2381 		case SDEV_CREATED:
2382 		case SDEV_RUNNING:
2383 		case SDEV_OFFLINE:
2384 		case SDEV_TRANSPORT_OFFLINE:
2385 		case SDEV_CANCEL:
2386 		case SDEV_BLOCK:
2387 		case SDEV_CREATED_BLOCK:
2388 			break;
2389 		default:
2390 			goto illegal;
2391 		}
2392 		break;
2393 
2394 	}
2395 	sdev->offline_already = false;
2396 	sdev->sdev_state = state;
2397 	return 0;
2398 
2399  illegal:
2400 	SCSI_LOG_ERROR_RECOVERY(1,
2401 				sdev_printk(KERN_ERR, sdev,
2402 					    "Illegal state transition %s->%s",
2403 					    scsi_device_state_name(oldstate),
2404 					    scsi_device_state_name(state))
2405 				);
2406 	return -EINVAL;
2407 }
2408 EXPORT_SYMBOL(scsi_device_set_state);
2409 
2410 /**
2411  *	scsi_evt_emit - emit a single SCSI device uevent
2412  *	@sdev: associated SCSI device
2413  *	@evt: event to emit
2414  *
2415  *	Send a single uevent (scsi_event) to the associated scsi_device.
2416  */
2417 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2418 {
2419 	int idx = 0;
2420 	char *envp[3];
2421 
2422 	switch (evt->evt_type) {
2423 	case SDEV_EVT_MEDIA_CHANGE:
2424 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2425 		break;
2426 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2427 		scsi_rescan_device(&sdev->sdev_gendev);
2428 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2429 		break;
2430 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2431 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2432 		break;
2433 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2434 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2435 		break;
2436 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2437 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2438 		break;
2439 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2440 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2441 		break;
2442 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2443 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2444 		break;
2445 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2446 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2447 		break;
2448 	default:
2449 		/* do nothing */
2450 		break;
2451 	}
2452 
2453 	envp[idx++] = NULL;
2454 
2455 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2456 }
2457 
2458 /**
2459  *	scsi_evt_thread - send a uevent for each scsi event
2460  *	@work: work struct for scsi_device
2461  *
2462  *	Dispatch queued events to their associated scsi_device kobjects
2463  *	as uevents.
2464  */
2465 void scsi_evt_thread(struct work_struct *work)
2466 {
2467 	struct scsi_device *sdev;
2468 	enum scsi_device_event evt_type;
2469 	LIST_HEAD(event_list);
2470 
2471 	sdev = container_of(work, struct scsi_device, event_work);
2472 
2473 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2474 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2475 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2476 
2477 	while (1) {
2478 		struct scsi_event *evt;
2479 		struct list_head *this, *tmp;
2480 		unsigned long flags;
2481 
2482 		spin_lock_irqsave(&sdev->list_lock, flags);
2483 		list_splice_init(&sdev->event_list, &event_list);
2484 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2485 
2486 		if (list_empty(&event_list))
2487 			break;
2488 
2489 		list_for_each_safe(this, tmp, &event_list) {
2490 			evt = list_entry(this, struct scsi_event, node);
2491 			list_del(&evt->node);
2492 			scsi_evt_emit(sdev, evt);
2493 			kfree(evt);
2494 		}
2495 	}
2496 }
2497 
2498 /**
2499  * 	sdev_evt_send - send asserted event to uevent thread
2500  *	@sdev: scsi_device event occurred on
2501  *	@evt: event to send
2502  *
2503  *	Assert scsi device event asynchronously.
2504  */
2505 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2506 {
2507 	unsigned long flags;
2508 
2509 #if 0
2510 	/* FIXME: currently this check eliminates all media change events
2511 	 * for polled devices.  Need to update to discriminate between AN
2512 	 * and polled events */
2513 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2514 		kfree(evt);
2515 		return;
2516 	}
2517 #endif
2518 
2519 	spin_lock_irqsave(&sdev->list_lock, flags);
2520 	list_add_tail(&evt->node, &sdev->event_list);
2521 	schedule_work(&sdev->event_work);
2522 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2523 }
2524 EXPORT_SYMBOL_GPL(sdev_evt_send);
2525 
2526 /**
2527  * 	sdev_evt_alloc - allocate a new scsi event
2528  *	@evt_type: type of event to allocate
2529  *	@gfpflags: GFP flags for allocation
2530  *
2531  *	Allocates and returns a new scsi_event.
2532  */
2533 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2534 				  gfp_t gfpflags)
2535 {
2536 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2537 	if (!evt)
2538 		return NULL;
2539 
2540 	evt->evt_type = evt_type;
2541 	INIT_LIST_HEAD(&evt->node);
2542 
2543 	/* evt_type-specific initialization, if any */
2544 	switch (evt_type) {
2545 	case SDEV_EVT_MEDIA_CHANGE:
2546 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2547 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2548 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2549 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2550 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2551 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2552 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2553 	default:
2554 		/* do nothing */
2555 		break;
2556 	}
2557 
2558 	return evt;
2559 }
2560 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2561 
2562 /**
2563  * 	sdev_evt_send_simple - send asserted event to uevent thread
2564  *	@sdev: scsi_device event occurred on
2565  *	@evt_type: type of event to send
2566  *	@gfpflags: GFP flags for allocation
2567  *
2568  *	Assert scsi device event asynchronously, given an event type.
2569  */
2570 void sdev_evt_send_simple(struct scsi_device *sdev,
2571 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2572 {
2573 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2574 	if (!evt) {
2575 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2576 			    evt_type);
2577 		return;
2578 	}
2579 
2580 	sdev_evt_send(sdev, evt);
2581 }
2582 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2583 
2584 /**
2585  *	scsi_device_quiesce - Block all commands except power management.
2586  *	@sdev:	scsi device to quiesce.
2587  *
2588  *	This works by trying to transition to the SDEV_QUIESCE state
2589  *	(which must be a legal transition).  When the device is in this
2590  *	state, only power management requests will be accepted, all others will
2591  *	be deferred.
2592  *
2593  *	Must be called with user context, may sleep.
2594  *
2595  *	Returns zero if unsuccessful or an error if not.
2596  */
2597 int
2598 scsi_device_quiesce(struct scsi_device *sdev)
2599 {
2600 	struct request_queue *q = sdev->request_queue;
2601 	int err;
2602 
2603 	/*
2604 	 * It is allowed to call scsi_device_quiesce() multiple times from
2605 	 * the same context but concurrent scsi_device_quiesce() calls are
2606 	 * not allowed.
2607 	 */
2608 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2609 
2610 	if (sdev->quiesced_by == current)
2611 		return 0;
2612 
2613 	blk_set_pm_only(q);
2614 
2615 	blk_mq_freeze_queue(q);
2616 	/*
2617 	 * Ensure that the effect of blk_set_pm_only() will be visible
2618 	 * for percpu_ref_tryget() callers that occur after the queue
2619 	 * unfreeze even if the queue was already frozen before this function
2620 	 * was called. See also https://lwn.net/Articles/573497/.
2621 	 */
2622 	synchronize_rcu();
2623 	blk_mq_unfreeze_queue(q);
2624 
2625 	mutex_lock(&sdev->state_mutex);
2626 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2627 	if (err == 0)
2628 		sdev->quiesced_by = current;
2629 	else
2630 		blk_clear_pm_only(q);
2631 	mutex_unlock(&sdev->state_mutex);
2632 
2633 	return err;
2634 }
2635 EXPORT_SYMBOL(scsi_device_quiesce);
2636 
2637 /**
2638  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2639  *	@sdev:	scsi device to resume.
2640  *
2641  *	Moves the device from quiesced back to running and restarts the
2642  *	queues.
2643  *
2644  *	Must be called with user context, may sleep.
2645  */
2646 void scsi_device_resume(struct scsi_device *sdev)
2647 {
2648 	/* check if the device state was mutated prior to resume, and if
2649 	 * so assume the state is being managed elsewhere (for example
2650 	 * device deleted during suspend)
2651 	 */
2652 	mutex_lock(&sdev->state_mutex);
2653 	if (sdev->sdev_state == SDEV_QUIESCE)
2654 		scsi_device_set_state(sdev, SDEV_RUNNING);
2655 	if (sdev->quiesced_by) {
2656 		sdev->quiesced_by = NULL;
2657 		blk_clear_pm_only(sdev->request_queue);
2658 	}
2659 	mutex_unlock(&sdev->state_mutex);
2660 }
2661 EXPORT_SYMBOL(scsi_device_resume);
2662 
2663 static void
2664 device_quiesce_fn(struct scsi_device *sdev, void *data)
2665 {
2666 	scsi_device_quiesce(sdev);
2667 }
2668 
2669 void
2670 scsi_target_quiesce(struct scsi_target *starget)
2671 {
2672 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2673 }
2674 EXPORT_SYMBOL(scsi_target_quiesce);
2675 
2676 static void
2677 device_resume_fn(struct scsi_device *sdev, void *data)
2678 {
2679 	scsi_device_resume(sdev);
2680 }
2681 
2682 void
2683 scsi_target_resume(struct scsi_target *starget)
2684 {
2685 	starget_for_each_device(starget, NULL, device_resume_fn);
2686 }
2687 EXPORT_SYMBOL(scsi_target_resume);
2688 
2689 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2690 {
2691 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2692 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2693 
2694 	return 0;
2695 }
2696 
2697 void scsi_start_queue(struct scsi_device *sdev)
2698 {
2699 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2700 		blk_mq_unquiesce_queue(sdev->request_queue);
2701 }
2702 
2703 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2704 {
2705 	/*
2706 	 * The atomic variable of ->queue_stopped covers that
2707 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2708 	 *
2709 	 * However, we still need to wait until quiesce is done
2710 	 * in case that queue has been stopped.
2711 	 */
2712 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2713 		if (nowait)
2714 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2715 		else
2716 			blk_mq_quiesce_queue(sdev->request_queue);
2717 	} else {
2718 		if (!nowait)
2719 			blk_mq_wait_quiesce_done(sdev->request_queue);
2720 	}
2721 }
2722 
2723 /**
2724  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2725  * @sdev: device to block
2726  *
2727  * Pause SCSI command processing on the specified device. Does not sleep.
2728  *
2729  * Returns zero if successful or a negative error code upon failure.
2730  *
2731  * Notes:
2732  * This routine transitions the device to the SDEV_BLOCK state (which must be
2733  * a legal transition). When the device is in this state, command processing
2734  * is paused until the device leaves the SDEV_BLOCK state. See also
2735  * scsi_internal_device_unblock_nowait().
2736  */
2737 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2738 {
2739 	int ret = __scsi_internal_device_block_nowait(sdev);
2740 
2741 	/*
2742 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2743 	 * block layer from calling the midlayer with this device's
2744 	 * request queue.
2745 	 */
2746 	if (!ret)
2747 		scsi_stop_queue(sdev, true);
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2751 
2752 /**
2753  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2754  * @sdev: device to block
2755  *
2756  * Pause SCSI command processing on the specified device and wait until all
2757  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2758  *
2759  * Returns zero if successful or a negative error code upon failure.
2760  *
2761  * Note:
2762  * This routine transitions the device to the SDEV_BLOCK state (which must be
2763  * a legal transition). When the device is in this state, command processing
2764  * is paused until the device leaves the SDEV_BLOCK state. See also
2765  * scsi_internal_device_unblock().
2766  */
2767 static int scsi_internal_device_block(struct scsi_device *sdev)
2768 {
2769 	int err;
2770 
2771 	mutex_lock(&sdev->state_mutex);
2772 	err = __scsi_internal_device_block_nowait(sdev);
2773 	if (err == 0)
2774 		scsi_stop_queue(sdev, false);
2775 	mutex_unlock(&sdev->state_mutex);
2776 
2777 	return err;
2778 }
2779 
2780 /**
2781  * scsi_internal_device_unblock_nowait - resume a device after a block request
2782  * @sdev:	device to resume
2783  * @new_state:	state to set the device to after unblocking
2784  *
2785  * Restart the device queue for a previously suspended SCSI device. Does not
2786  * sleep.
2787  *
2788  * Returns zero if successful or a negative error code upon failure.
2789  *
2790  * Notes:
2791  * This routine transitions the device to the SDEV_RUNNING state or to one of
2792  * the offline states (which must be a legal transition) allowing the midlayer
2793  * to goose the queue for this device.
2794  */
2795 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2796 					enum scsi_device_state new_state)
2797 {
2798 	switch (new_state) {
2799 	case SDEV_RUNNING:
2800 	case SDEV_TRANSPORT_OFFLINE:
2801 		break;
2802 	default:
2803 		return -EINVAL;
2804 	}
2805 
2806 	/*
2807 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2808 	 * offlined states and goose the device queue if successful.
2809 	 */
2810 	switch (sdev->sdev_state) {
2811 	case SDEV_BLOCK:
2812 	case SDEV_TRANSPORT_OFFLINE:
2813 		sdev->sdev_state = new_state;
2814 		break;
2815 	case SDEV_CREATED_BLOCK:
2816 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2817 		    new_state == SDEV_OFFLINE)
2818 			sdev->sdev_state = new_state;
2819 		else
2820 			sdev->sdev_state = SDEV_CREATED;
2821 		break;
2822 	case SDEV_CANCEL:
2823 	case SDEV_OFFLINE:
2824 		break;
2825 	default:
2826 		return -EINVAL;
2827 	}
2828 	scsi_start_queue(sdev);
2829 
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2833 
2834 /**
2835  * scsi_internal_device_unblock - resume a device after a block request
2836  * @sdev:	device to resume
2837  * @new_state:	state to set the device to after unblocking
2838  *
2839  * Restart the device queue for a previously suspended SCSI device. May sleep.
2840  *
2841  * Returns zero if successful or a negative error code upon failure.
2842  *
2843  * Notes:
2844  * This routine transitions the device to the SDEV_RUNNING state or to one of
2845  * the offline states (which must be a legal transition) allowing the midlayer
2846  * to goose the queue for this device.
2847  */
2848 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2849 					enum scsi_device_state new_state)
2850 {
2851 	int ret;
2852 
2853 	mutex_lock(&sdev->state_mutex);
2854 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2855 	mutex_unlock(&sdev->state_mutex);
2856 
2857 	return ret;
2858 }
2859 
2860 static void
2861 device_block(struct scsi_device *sdev, void *data)
2862 {
2863 	int ret;
2864 
2865 	ret = scsi_internal_device_block(sdev);
2866 
2867 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2868 		  dev_name(&sdev->sdev_gendev), ret);
2869 }
2870 
2871 static int
2872 target_block(struct device *dev, void *data)
2873 {
2874 	if (scsi_is_target_device(dev))
2875 		starget_for_each_device(to_scsi_target(dev), NULL,
2876 					device_block);
2877 	return 0;
2878 }
2879 
2880 void
2881 scsi_target_block(struct device *dev)
2882 {
2883 	if (scsi_is_target_device(dev))
2884 		starget_for_each_device(to_scsi_target(dev), NULL,
2885 					device_block);
2886 	else
2887 		device_for_each_child(dev, NULL, target_block);
2888 }
2889 EXPORT_SYMBOL_GPL(scsi_target_block);
2890 
2891 static void
2892 device_unblock(struct scsi_device *sdev, void *data)
2893 {
2894 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2895 }
2896 
2897 static int
2898 target_unblock(struct device *dev, void *data)
2899 {
2900 	if (scsi_is_target_device(dev))
2901 		starget_for_each_device(to_scsi_target(dev), data,
2902 					device_unblock);
2903 	return 0;
2904 }
2905 
2906 void
2907 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2908 {
2909 	if (scsi_is_target_device(dev))
2910 		starget_for_each_device(to_scsi_target(dev), &new_state,
2911 					device_unblock);
2912 	else
2913 		device_for_each_child(dev, &new_state, target_unblock);
2914 }
2915 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2916 
2917 int
2918 scsi_host_block(struct Scsi_Host *shost)
2919 {
2920 	struct scsi_device *sdev;
2921 	int ret = 0;
2922 
2923 	/*
2924 	 * Call scsi_internal_device_block_nowait so we can avoid
2925 	 * calling synchronize_rcu() for each LUN.
2926 	 */
2927 	shost_for_each_device(sdev, shost) {
2928 		mutex_lock(&sdev->state_mutex);
2929 		ret = scsi_internal_device_block_nowait(sdev);
2930 		mutex_unlock(&sdev->state_mutex);
2931 		if (ret) {
2932 			scsi_device_put(sdev);
2933 			break;
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2939 	 * calling synchronize_rcu() once is enough.
2940 	 */
2941 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2942 
2943 	if (!ret)
2944 		synchronize_rcu();
2945 
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(scsi_host_block);
2949 
2950 int
2951 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2952 {
2953 	struct scsi_device *sdev;
2954 	int ret = 0;
2955 
2956 	shost_for_each_device(sdev, shost) {
2957 		ret = scsi_internal_device_unblock(sdev, new_state);
2958 		if (ret) {
2959 			scsi_device_put(sdev);
2960 			break;
2961 		}
2962 	}
2963 	return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2966 
2967 /**
2968  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2969  * @sgl:	scatter-gather list
2970  * @sg_count:	number of segments in sg
2971  * @offset:	offset in bytes into sg, on return offset into the mapped area
2972  * @len:	bytes to map, on return number of bytes mapped
2973  *
2974  * Returns virtual address of the start of the mapped page
2975  */
2976 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2977 			  size_t *offset, size_t *len)
2978 {
2979 	int i;
2980 	size_t sg_len = 0, len_complete = 0;
2981 	struct scatterlist *sg;
2982 	struct page *page;
2983 
2984 	WARN_ON(!irqs_disabled());
2985 
2986 	for_each_sg(sgl, sg, sg_count, i) {
2987 		len_complete = sg_len; /* Complete sg-entries */
2988 		sg_len += sg->length;
2989 		if (sg_len > *offset)
2990 			break;
2991 	}
2992 
2993 	if (unlikely(i == sg_count)) {
2994 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2995 			"elements %d\n",
2996 		       __func__, sg_len, *offset, sg_count);
2997 		WARN_ON(1);
2998 		return NULL;
2999 	}
3000 
3001 	/* Offset starting from the beginning of first page in this sg-entry */
3002 	*offset = *offset - len_complete + sg->offset;
3003 
3004 	/* Assumption: contiguous pages can be accessed as "page + i" */
3005 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3006 	*offset &= ~PAGE_MASK;
3007 
3008 	/* Bytes in this sg-entry from *offset to the end of the page */
3009 	sg_len = PAGE_SIZE - *offset;
3010 	if (*len > sg_len)
3011 		*len = sg_len;
3012 
3013 	return kmap_atomic(page);
3014 }
3015 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3016 
3017 /**
3018  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3019  * @virt:	virtual address to be unmapped
3020  */
3021 void scsi_kunmap_atomic_sg(void *virt)
3022 {
3023 	kunmap_atomic(virt);
3024 }
3025 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3026 
3027 void sdev_disable_disk_events(struct scsi_device *sdev)
3028 {
3029 	atomic_inc(&sdev->disk_events_disable_depth);
3030 }
3031 EXPORT_SYMBOL(sdev_disable_disk_events);
3032 
3033 void sdev_enable_disk_events(struct scsi_device *sdev)
3034 {
3035 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3036 		return;
3037 	atomic_dec(&sdev->disk_events_disable_depth);
3038 }
3039 EXPORT_SYMBOL(sdev_enable_disk_events);
3040 
3041 static unsigned char designator_prio(const unsigned char *d)
3042 {
3043 	if (d[1] & 0x30)
3044 		/* not associated with LUN */
3045 		return 0;
3046 
3047 	if (d[3] == 0)
3048 		/* invalid length */
3049 		return 0;
3050 
3051 	/*
3052 	 * Order of preference for lun descriptor:
3053 	 * - SCSI name string
3054 	 * - NAA IEEE Registered Extended
3055 	 * - EUI-64 based 16-byte
3056 	 * - EUI-64 based 12-byte
3057 	 * - NAA IEEE Registered
3058 	 * - NAA IEEE Extended
3059 	 * - EUI-64 based 8-byte
3060 	 * - SCSI name string (truncated)
3061 	 * - T10 Vendor ID
3062 	 * as longer descriptors reduce the likelyhood
3063 	 * of identification clashes.
3064 	 */
3065 
3066 	switch (d[1] & 0xf) {
3067 	case 8:
3068 		/* SCSI name string, variable-length UTF-8 */
3069 		return 9;
3070 	case 3:
3071 		switch (d[4] >> 4) {
3072 		case 6:
3073 			/* NAA registered extended */
3074 			return 8;
3075 		case 5:
3076 			/* NAA registered */
3077 			return 5;
3078 		case 4:
3079 			/* NAA extended */
3080 			return 4;
3081 		case 3:
3082 			/* NAA locally assigned */
3083 			return 1;
3084 		default:
3085 			break;
3086 		}
3087 		break;
3088 	case 2:
3089 		switch (d[3]) {
3090 		case 16:
3091 			/* EUI64-based, 16 byte */
3092 			return 7;
3093 		case 12:
3094 			/* EUI64-based, 12 byte */
3095 			return 6;
3096 		case 8:
3097 			/* EUI64-based, 8 byte */
3098 			return 3;
3099 		default:
3100 			break;
3101 		}
3102 		break;
3103 	case 1:
3104 		/* T10 vendor ID */
3105 		return 1;
3106 	default:
3107 		break;
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 /**
3114  * scsi_vpd_lun_id - return a unique device identification
3115  * @sdev: SCSI device
3116  * @id:   buffer for the identification
3117  * @id_len:  length of the buffer
3118  *
3119  * Copies a unique device identification into @id based
3120  * on the information in the VPD page 0x83 of the device.
3121  * The string will be formatted as a SCSI name string.
3122  *
3123  * Returns the length of the identification or error on failure.
3124  * If the identifier is longer than the supplied buffer the actual
3125  * identifier length is returned and the buffer is not zero-padded.
3126  */
3127 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3128 {
3129 	u8 cur_id_prio = 0;
3130 	u8 cur_id_size = 0;
3131 	const unsigned char *d, *cur_id_str;
3132 	const struct scsi_vpd *vpd_pg83;
3133 	int id_size = -EINVAL;
3134 
3135 	rcu_read_lock();
3136 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3137 	if (!vpd_pg83) {
3138 		rcu_read_unlock();
3139 		return -ENXIO;
3140 	}
3141 
3142 	/* The id string must be at least 20 bytes + terminating NULL byte */
3143 	if (id_len < 21) {
3144 		rcu_read_unlock();
3145 		return -EINVAL;
3146 	}
3147 
3148 	memset(id, 0, id_len);
3149 	for (d = vpd_pg83->data + 4;
3150 	     d < vpd_pg83->data + vpd_pg83->len;
3151 	     d += d[3] + 4) {
3152 		u8 prio = designator_prio(d);
3153 
3154 		if (prio == 0 || cur_id_prio > prio)
3155 			continue;
3156 
3157 		switch (d[1] & 0xf) {
3158 		case 0x1:
3159 			/* T10 Vendor ID */
3160 			if (cur_id_size > d[3])
3161 				break;
3162 			cur_id_prio = prio;
3163 			cur_id_size = d[3];
3164 			if (cur_id_size + 4 > id_len)
3165 				cur_id_size = id_len - 4;
3166 			cur_id_str = d + 4;
3167 			id_size = snprintf(id, id_len, "t10.%*pE",
3168 					   cur_id_size, cur_id_str);
3169 			break;
3170 		case 0x2:
3171 			/* EUI-64 */
3172 			cur_id_prio = prio;
3173 			cur_id_size = d[3];
3174 			cur_id_str = d + 4;
3175 			switch (cur_id_size) {
3176 			case 8:
3177 				id_size = snprintf(id, id_len,
3178 						   "eui.%8phN",
3179 						   cur_id_str);
3180 				break;
3181 			case 12:
3182 				id_size = snprintf(id, id_len,
3183 						   "eui.%12phN",
3184 						   cur_id_str);
3185 				break;
3186 			case 16:
3187 				id_size = snprintf(id, id_len,
3188 						   "eui.%16phN",
3189 						   cur_id_str);
3190 				break;
3191 			default:
3192 				break;
3193 			}
3194 			break;
3195 		case 0x3:
3196 			/* NAA */
3197 			cur_id_prio = prio;
3198 			cur_id_size = d[3];
3199 			cur_id_str = d + 4;
3200 			switch (cur_id_size) {
3201 			case 8:
3202 				id_size = snprintf(id, id_len,
3203 						   "naa.%8phN",
3204 						   cur_id_str);
3205 				break;
3206 			case 16:
3207 				id_size = snprintf(id, id_len,
3208 						   "naa.%16phN",
3209 						   cur_id_str);
3210 				break;
3211 			default:
3212 				break;
3213 			}
3214 			break;
3215 		case 0x8:
3216 			/* SCSI name string */
3217 			if (cur_id_size > d[3])
3218 				break;
3219 			/* Prefer others for truncated descriptor */
3220 			if (d[3] > id_len) {
3221 				prio = 2;
3222 				if (cur_id_prio > prio)
3223 					break;
3224 			}
3225 			cur_id_prio = prio;
3226 			cur_id_size = id_size = d[3];
3227 			cur_id_str = d + 4;
3228 			if (cur_id_size >= id_len)
3229 				cur_id_size = id_len - 1;
3230 			memcpy(id, cur_id_str, cur_id_size);
3231 			break;
3232 		default:
3233 			break;
3234 		}
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	return id_size;
3239 }
3240 EXPORT_SYMBOL(scsi_vpd_lun_id);
3241 
3242 /*
3243  * scsi_vpd_tpg_id - return a target port group identifier
3244  * @sdev: SCSI device
3245  *
3246  * Returns the Target Port Group identifier from the information
3247  * froom VPD page 0x83 of the device.
3248  *
3249  * Returns the identifier or error on failure.
3250  */
3251 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3252 {
3253 	const unsigned char *d;
3254 	const struct scsi_vpd *vpd_pg83;
3255 	int group_id = -EAGAIN, rel_port = -1;
3256 
3257 	rcu_read_lock();
3258 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3259 	if (!vpd_pg83) {
3260 		rcu_read_unlock();
3261 		return -ENXIO;
3262 	}
3263 
3264 	d = vpd_pg83->data + 4;
3265 	while (d < vpd_pg83->data + vpd_pg83->len) {
3266 		switch (d[1] & 0xf) {
3267 		case 0x4:
3268 			/* Relative target port */
3269 			rel_port = get_unaligned_be16(&d[6]);
3270 			break;
3271 		case 0x5:
3272 			/* Target port group */
3273 			group_id = get_unaligned_be16(&d[6]);
3274 			break;
3275 		default:
3276 			break;
3277 		}
3278 		d += d[3] + 4;
3279 	}
3280 	rcu_read_unlock();
3281 
3282 	if (group_id >= 0 && rel_id && rel_port != -1)
3283 		*rel_id = rel_port;
3284 
3285 	return group_id;
3286 }
3287 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3288 
3289 /**
3290  * scsi_build_sense - build sense data for a command
3291  * @scmd:	scsi command for which the sense should be formatted
3292  * @desc:	Sense format (non-zero == descriptor format,
3293  *              0 == fixed format)
3294  * @key:	Sense key
3295  * @asc:	Additional sense code
3296  * @ascq:	Additional sense code qualifier
3297  *
3298  **/
3299 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3300 {
3301 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3302 	scmd->result = SAM_STAT_CHECK_CONDITION;
3303 }
3304 EXPORT_SYMBOL_GPL(scsi_build_sense);
3305