xref: /linux/drivers/scsi/scsi_lib.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27 
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30 
31 
32 #define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE		32
34 
35 struct scsi_host_sg_pool {
36 	size_t		size;
37 	char		*name;
38 	kmem_cache_t	*slab;
39 	mempool_t	*pool;
40 };
41 
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45 
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48 	SP(8),
49 	SP(16),
50 	SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 	SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 	SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 	SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65 
66 
67 /*
68  * Function:    scsi_insert_special_req()
69  *
70  * Purpose:     Insert pre-formed request into request queue.
71  *
72  * Arguments:   sreq	- request that is ready to be queued.
73  *              at_head	- boolean.  True if we should insert at head
74  *                        of queue, false if we should insert at tail.
75  *
76  * Lock status: Assumed that lock is not held upon entry.
77  *
78  * Returns:     Nothing
79  *
80  * Notes:       This function is called from character device and from
81  *              ioctl types of functions where the caller knows exactly
82  *              what SCSI command needs to be issued.   The idea is that
83  *              we merely inject the command into the queue (at the head
84  *              for now), and then call the queue request function to actually
85  *              process it.
86  */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89 	/*
90 	 * Because users of this function are apt to reuse requests with no
91 	 * modification, we have to sanitise the request flags here
92 	 */
93 	sreq->sr_request->flags &= ~REQ_DONTPREP;
94 	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95 		       	   at_head, sreq);
96 	return 0;
97 }
98 
99 static void scsi_run_queue(struct request_queue *q);
100 
101 /*
102  * Function:	scsi_unprep_request()
103  *
104  * Purpose:	Remove all preparation done for a request, including its
105  *		associated scsi_cmnd, so that it can be requeued.
106  *
107  * Arguments:	req	- request to unprepare
108  *
109  * Lock status:	Assumed that no locks are held upon entry.
110  *
111  * Returns:	Nothing.
112  */
113 static void scsi_unprep_request(struct request *req)
114 {
115 	struct scsi_cmnd *cmd = req->special;
116 
117 	req->flags &= ~REQ_DONTPREP;
118 	req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
119 
120 	scsi_put_command(cmd);
121 }
122 
123 /*
124  * Function:    scsi_queue_insert()
125  *
126  * Purpose:     Insert a command in the midlevel queue.
127  *
128  * Arguments:   cmd    - command that we are adding to queue.
129  *              reason - why we are inserting command to queue.
130  *
131  * Lock status: Assumed that lock is not held upon entry.
132  *
133  * Returns:     Nothing.
134  *
135  * Notes:       We do this for one of two cases.  Either the host is busy
136  *              and it cannot accept any more commands for the time being,
137  *              or the device returned QUEUE_FULL and can accept no more
138  *              commands.
139  * Notes:       This could be called either from an interrupt context or a
140  *              normal process context.
141  */
142 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
143 {
144 	struct Scsi_Host *host = cmd->device->host;
145 	struct scsi_device *device = cmd->device;
146 	struct request_queue *q = device->request_queue;
147 	unsigned long flags;
148 
149 	SCSI_LOG_MLQUEUE(1,
150 		 printk("Inserting command %p into mlqueue\n", cmd));
151 
152 	/*
153 	 * Set the appropriate busy bit for the device/host.
154 	 *
155 	 * If the host/device isn't busy, assume that something actually
156 	 * completed, and that we should be able to queue a command now.
157 	 *
158 	 * Note that the prior mid-layer assumption that any host could
159 	 * always queue at least one command is now broken.  The mid-layer
160 	 * will implement a user specifiable stall (see
161 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
162 	 * if a command is requeued with no other commands outstanding
163 	 * either for the device or for the host.
164 	 */
165 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
166 		host->host_blocked = host->max_host_blocked;
167 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
168 		device->device_blocked = device->max_device_blocked;
169 
170 	/*
171 	 * Decrement the counters, since these commands are no longer
172 	 * active on the host/device.
173 	 */
174 	scsi_device_unbusy(device);
175 
176 	/*
177 	 * Requeue this command.  It will go before all other commands
178 	 * that are already in the queue.
179 	 *
180 	 * NOTE: there is magic here about the way the queue is plugged if
181 	 * we have no outstanding commands.
182 	 *
183 	 * Although we *don't* plug the queue, we call the request
184 	 * function.  The SCSI request function detects the blocked condition
185 	 * and plugs the queue appropriately.
186          */
187 	spin_lock_irqsave(q->queue_lock, flags);
188 	blk_requeue_request(q, cmd->request);
189 	spin_unlock_irqrestore(q->queue_lock, flags);
190 
191 	scsi_run_queue(q);
192 
193 	return 0;
194 }
195 
196 /*
197  * Function:    scsi_do_req
198  *
199  * Purpose:     Queue a SCSI request
200  *
201  * Arguments:   sreq	  - command descriptor.
202  *              cmnd      - actual SCSI command to be performed.
203  *              buffer    - data buffer.
204  *              bufflen   - size of data buffer.
205  *              done      - completion function to be run.
206  *              timeout   - how long to let it run before timeout.
207  *              retries   - number of retries we allow.
208  *
209  * Lock status: No locks held upon entry.
210  *
211  * Returns:     Nothing.
212  *
213  * Notes:	This function is only used for queueing requests for things
214  *		like ioctls and character device requests - this is because
215  *		we essentially just inject a request into the queue for the
216  *		device.
217  *
218  *		In order to support the scsi_device_quiesce function, we
219  *		now inject requests on the *head* of the device queue
220  *		rather than the tail.
221  */
222 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
223 		 void *buffer, unsigned bufflen,
224 		 void (*done)(struct scsi_cmnd *),
225 		 int timeout, int retries)
226 {
227 	/*
228 	 * If the upper level driver is reusing these things, then
229 	 * we should release the low-level block now.  Another one will
230 	 * be allocated later when this request is getting queued.
231 	 */
232 	__scsi_release_request(sreq);
233 
234 	/*
235 	 * Our own function scsi_done (which marks the host as not busy,
236 	 * disables the timeout counter, etc) will be called by us or by the
237 	 * scsi_hosts[host].queuecommand() function needs to also call
238 	 * the completion function for the high level driver.
239 	 */
240 	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
241 	sreq->sr_bufflen = bufflen;
242 	sreq->sr_buffer = buffer;
243 	sreq->sr_allowed = retries;
244 	sreq->sr_done = done;
245 	sreq->sr_timeout_per_command = timeout;
246 
247 	if (sreq->sr_cmd_len == 0)
248 		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
249 
250 	/*
251 	 * head injection *required* here otherwise quiesce won't work
252 	 */
253 	scsi_insert_special_req(sreq, 1);
254 }
255 EXPORT_SYMBOL(scsi_do_req);
256 
257 /* This is the end routine we get to if a command was never attached
258  * to the request.  Simply complete the request without changing
259  * rq_status; this will cause a DRIVER_ERROR. */
260 static void scsi_wait_req_end_io(struct request *req)
261 {
262 	BUG_ON(!req->waiting);
263 
264 	complete(req->waiting);
265 }
266 
267 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
268 		   unsigned bufflen, int timeout, int retries)
269 {
270 	DECLARE_COMPLETION(wait);
271 	int write = (sreq->sr_data_direction == DMA_TO_DEVICE);
272 	struct request *req;
273 
274 	req = blk_get_request(sreq->sr_device->request_queue, write,
275 			      __GFP_WAIT);
276 	if (bufflen && blk_rq_map_kern(sreq->sr_device->request_queue, req,
277 				       buffer, bufflen, __GFP_WAIT)) {
278 		sreq->sr_result = DRIVER_ERROR << 24;
279 		blk_put_request(req);
280 		return;
281 	}
282 
283 	req->flags |= REQ_NOMERGE;
284 	req->waiting = &wait;
285 	req->end_io = scsi_wait_req_end_io;
286 	req->cmd_len = COMMAND_SIZE(((u8 *)cmnd)[0]);
287 	req->sense = sreq->sr_sense_buffer;
288 	req->sense_len = 0;
289 	memcpy(req->cmd, cmnd, req->cmd_len);
290 	req->timeout = timeout;
291 	req->flags |= REQ_BLOCK_PC;
292 	req->rq_disk = NULL;
293 	blk_insert_request(sreq->sr_device->request_queue, req,
294 			   sreq->sr_data_direction == DMA_TO_DEVICE, NULL);
295 	wait_for_completion(&wait);
296 	sreq->sr_request->waiting = NULL;
297 	sreq->sr_result = req->errors;
298 	if (req->errors)
299 		sreq->sr_result |= (DRIVER_ERROR << 24);
300 
301 	blk_put_request(req);
302 }
303 
304 EXPORT_SYMBOL(scsi_wait_req);
305 
306 /**
307  * scsi_execute - insert request and wait for the result
308  * @sdev:	scsi device
309  * @cmd:	scsi command
310  * @data_direction: data direction
311  * @buffer:	data buffer
312  * @bufflen:	len of buffer
313  * @sense:	optional sense buffer
314  * @timeout:	request timeout in seconds
315  * @retries:	number of times to retry request
316  * @flags:	or into request flags;
317  *
318  * returns the req->errors value which is the the scsi_cmnd result
319  * field.
320  **/
321 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
322 		 int data_direction, void *buffer, unsigned bufflen,
323 		 unsigned char *sense, int timeout, int retries, int flags)
324 {
325 	struct request *req;
326 	int write = (data_direction == DMA_TO_DEVICE);
327 	int ret = DRIVER_ERROR << 24;
328 
329 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
330 
331 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
332 					buffer, bufflen, __GFP_WAIT))
333 		goto out;
334 
335 	req->cmd_len = COMMAND_SIZE(cmd[0]);
336 	memcpy(req->cmd, cmd, req->cmd_len);
337 	req->sense = sense;
338 	req->sense_len = 0;
339 	req->timeout = timeout;
340 	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
341 
342 	/*
343 	 * head injection *required* here otherwise quiesce won't work
344 	 */
345 	blk_execute_rq(req->q, NULL, req, 1);
346 
347 	ret = req->errors;
348  out:
349 	blk_put_request(req);
350 
351 	return ret;
352 }
353 EXPORT_SYMBOL(scsi_execute);
354 
355 
356 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
357 		     int data_direction, void *buffer, unsigned bufflen,
358 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
359 {
360 	char *sense = NULL;
361 	int result;
362 
363 	if (sshdr) {
364 		sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
365 		if (!sense)
366 			return DRIVER_ERROR << 24;
367 		memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
368 	}
369 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
370 				  sense, timeout, retries, 0);
371 	if (sshdr)
372 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
373 
374 	kfree(sense);
375 	return result;
376 }
377 EXPORT_SYMBOL(scsi_execute_req);
378 
379 /*
380  * Function:    scsi_init_cmd_errh()
381  *
382  * Purpose:     Initialize cmd fields related to error handling.
383  *
384  * Arguments:   cmd	- command that is ready to be queued.
385  *
386  * Returns:     Nothing
387  *
388  * Notes:       This function has the job of initializing a number of
389  *              fields related to error handling.   Typically this will
390  *              be called once for each command, as required.
391  */
392 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
393 {
394 	cmd->serial_number = 0;
395 
396 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
397 
398 	if (cmd->cmd_len == 0)
399 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
400 
401 	/*
402 	 * We need saved copies of a number of fields - this is because
403 	 * error handling may need to overwrite these with different values
404 	 * to run different commands, and once error handling is complete,
405 	 * we will need to restore these values prior to running the actual
406 	 * command.
407 	 */
408 	cmd->old_use_sg = cmd->use_sg;
409 	cmd->old_cmd_len = cmd->cmd_len;
410 	cmd->sc_old_data_direction = cmd->sc_data_direction;
411 	cmd->old_underflow = cmd->underflow;
412 	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
413 	cmd->buffer = cmd->request_buffer;
414 	cmd->bufflen = cmd->request_bufflen;
415 
416 	return 1;
417 }
418 
419 /*
420  * Function:   scsi_setup_cmd_retry()
421  *
422  * Purpose:    Restore the command state for a retry
423  *
424  * Arguments:  cmd	- command to be restored
425  *
426  * Returns:    Nothing
427  *
428  * Notes:      Immediately prior to retrying a command, we need
429  *             to restore certain fields that we saved above.
430  */
431 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
432 {
433 	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
434 	cmd->request_buffer = cmd->buffer;
435 	cmd->request_bufflen = cmd->bufflen;
436 	cmd->use_sg = cmd->old_use_sg;
437 	cmd->cmd_len = cmd->old_cmd_len;
438 	cmd->sc_data_direction = cmd->sc_old_data_direction;
439 	cmd->underflow = cmd->old_underflow;
440 }
441 
442 void scsi_device_unbusy(struct scsi_device *sdev)
443 {
444 	struct Scsi_Host *shost = sdev->host;
445 	unsigned long flags;
446 
447 	spin_lock_irqsave(shost->host_lock, flags);
448 	shost->host_busy--;
449 	if (unlikely(scsi_host_in_recovery(shost) &&
450 		     shost->host_failed))
451 		scsi_eh_wakeup(shost);
452 	spin_unlock(shost->host_lock);
453 	spin_lock(sdev->request_queue->queue_lock);
454 	sdev->device_busy--;
455 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
456 }
457 
458 /*
459  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
460  * and call blk_run_queue for all the scsi_devices on the target -
461  * including current_sdev first.
462  *
463  * Called with *no* scsi locks held.
464  */
465 static void scsi_single_lun_run(struct scsi_device *current_sdev)
466 {
467 	struct Scsi_Host *shost = current_sdev->host;
468 	struct scsi_device *sdev, *tmp;
469 	struct scsi_target *starget = scsi_target(current_sdev);
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(shost->host_lock, flags);
473 	starget->starget_sdev_user = NULL;
474 	spin_unlock_irqrestore(shost->host_lock, flags);
475 
476 	/*
477 	 * Call blk_run_queue for all LUNs on the target, starting with
478 	 * current_sdev. We race with others (to set starget_sdev_user),
479 	 * but in most cases, we will be first. Ideally, each LU on the
480 	 * target would get some limited time or requests on the target.
481 	 */
482 	blk_run_queue(current_sdev->request_queue);
483 
484 	spin_lock_irqsave(shost->host_lock, flags);
485 	if (starget->starget_sdev_user)
486 		goto out;
487 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
488 			same_target_siblings) {
489 		if (sdev == current_sdev)
490 			continue;
491 		if (scsi_device_get(sdev))
492 			continue;
493 
494 		spin_unlock_irqrestore(shost->host_lock, flags);
495 		blk_run_queue(sdev->request_queue);
496 		spin_lock_irqsave(shost->host_lock, flags);
497 
498 		scsi_device_put(sdev);
499 	}
500  out:
501 	spin_unlock_irqrestore(shost->host_lock, flags);
502 }
503 
504 /*
505  * Function:	scsi_run_queue()
506  *
507  * Purpose:	Select a proper request queue to serve next
508  *
509  * Arguments:	q	- last request's queue
510  *
511  * Returns:     Nothing
512  *
513  * Notes:	The previous command was completely finished, start
514  *		a new one if possible.
515  */
516 static void scsi_run_queue(struct request_queue *q)
517 {
518 	struct scsi_device *sdev = q->queuedata;
519 	struct Scsi_Host *shost = sdev->host;
520 	unsigned long flags;
521 
522 	if (sdev->single_lun)
523 		scsi_single_lun_run(sdev);
524 
525 	spin_lock_irqsave(shost->host_lock, flags);
526 	while (!list_empty(&shost->starved_list) &&
527 	       !shost->host_blocked && !shost->host_self_blocked &&
528 		!((shost->can_queue > 0) &&
529 		  (shost->host_busy >= shost->can_queue))) {
530 		/*
531 		 * As long as shost is accepting commands and we have
532 		 * starved queues, call blk_run_queue. scsi_request_fn
533 		 * drops the queue_lock and can add us back to the
534 		 * starved_list.
535 		 *
536 		 * host_lock protects the starved_list and starved_entry.
537 		 * scsi_request_fn must get the host_lock before checking
538 		 * or modifying starved_list or starved_entry.
539 		 */
540 		sdev = list_entry(shost->starved_list.next,
541 					  struct scsi_device, starved_entry);
542 		list_del_init(&sdev->starved_entry);
543 		spin_unlock_irqrestore(shost->host_lock, flags);
544 
545 		blk_run_queue(sdev->request_queue);
546 
547 		spin_lock_irqsave(shost->host_lock, flags);
548 		if (unlikely(!list_empty(&sdev->starved_entry)))
549 			/*
550 			 * sdev lost a race, and was put back on the
551 			 * starved list. This is unlikely but without this
552 			 * in theory we could loop forever.
553 			 */
554 			break;
555 	}
556 	spin_unlock_irqrestore(shost->host_lock, flags);
557 
558 	blk_run_queue(q);
559 }
560 
561 /*
562  * Function:	scsi_requeue_command()
563  *
564  * Purpose:	Handle post-processing of completed commands.
565  *
566  * Arguments:	q	- queue to operate on
567  *		cmd	- command that may need to be requeued.
568  *
569  * Returns:	Nothing
570  *
571  * Notes:	After command completion, there may be blocks left
572  *		over which weren't finished by the previous command
573  *		this can be for a number of reasons - the main one is
574  *		I/O errors in the middle of the request, in which case
575  *		we need to request the blocks that come after the bad
576  *		sector.
577  * Notes:	Upon return, cmd is a stale pointer.
578  */
579 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
580 {
581 	struct request *req = cmd->request;
582 	unsigned long flags;
583 
584 	scsi_unprep_request(req);
585 	spin_lock_irqsave(q->queue_lock, flags);
586 	blk_requeue_request(q, req);
587 	spin_unlock_irqrestore(q->queue_lock, flags);
588 
589 	scsi_run_queue(q);
590 }
591 
592 void scsi_next_command(struct scsi_cmnd *cmd)
593 {
594 	struct request_queue *q = cmd->device->request_queue;
595 
596 	scsi_put_command(cmd);
597 	scsi_run_queue(q);
598 }
599 
600 void scsi_run_host_queues(struct Scsi_Host *shost)
601 {
602 	struct scsi_device *sdev;
603 
604 	shost_for_each_device(sdev, shost)
605 		scsi_run_queue(sdev->request_queue);
606 }
607 
608 /*
609  * Function:    scsi_end_request()
610  *
611  * Purpose:     Post-processing of completed commands (usually invoked at end
612  *		of upper level post-processing and scsi_io_completion).
613  *
614  * Arguments:   cmd	 - command that is complete.
615  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
616  *              bytes    - number of bytes of completed I/O
617  *		requeue  - indicates whether we should requeue leftovers.
618  *
619  * Lock status: Assumed that lock is not held upon entry.
620  *
621  * Returns:     cmd if requeue required, NULL otherwise.
622  *
623  * Notes:       This is called for block device requests in order to
624  *              mark some number of sectors as complete.
625  *
626  *		We are guaranteeing that the request queue will be goosed
627  *		at some point during this call.
628  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
629  */
630 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
631 					  int bytes, int requeue)
632 {
633 	request_queue_t *q = cmd->device->request_queue;
634 	struct request *req = cmd->request;
635 	unsigned long flags;
636 
637 	/*
638 	 * If there are blocks left over at the end, set up the command
639 	 * to queue the remainder of them.
640 	 */
641 	if (end_that_request_chunk(req, uptodate, bytes)) {
642 		int leftover = (req->hard_nr_sectors << 9);
643 
644 		if (blk_pc_request(req))
645 			leftover = req->data_len;
646 
647 		/* kill remainder if no retrys */
648 		if (!uptodate && blk_noretry_request(req))
649 			end_that_request_chunk(req, 0, leftover);
650 		else {
651 			if (requeue) {
652 				/*
653 				 * Bleah.  Leftovers again.  Stick the
654 				 * leftovers in the front of the
655 				 * queue, and goose the queue again.
656 				 */
657 				scsi_requeue_command(q, cmd);
658 				cmd = NULL;
659 			}
660 			return cmd;
661 		}
662 	}
663 
664 	add_disk_randomness(req->rq_disk);
665 
666 	spin_lock_irqsave(q->queue_lock, flags);
667 	if (blk_rq_tagged(req))
668 		blk_queue_end_tag(q, req);
669 	end_that_request_last(req);
670 	spin_unlock_irqrestore(q->queue_lock, flags);
671 
672 	/*
673 	 * This will goose the queue request function at the end, so we don't
674 	 * need to worry about launching another command.
675 	 */
676 	scsi_next_command(cmd);
677 	return NULL;
678 }
679 
680 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
681 {
682 	struct scsi_host_sg_pool *sgp;
683 	struct scatterlist *sgl;
684 
685 	BUG_ON(!cmd->use_sg);
686 
687 	switch (cmd->use_sg) {
688 	case 1 ... 8:
689 		cmd->sglist_len = 0;
690 		break;
691 	case 9 ... 16:
692 		cmd->sglist_len = 1;
693 		break;
694 	case 17 ... 32:
695 		cmd->sglist_len = 2;
696 		break;
697 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
698 	case 33 ... 64:
699 		cmd->sglist_len = 3;
700 		break;
701 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
702 	case 65 ... 128:
703 		cmd->sglist_len = 4;
704 		break;
705 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
706 	case 129 ... 256:
707 		cmd->sglist_len = 5;
708 		break;
709 #endif
710 #endif
711 #endif
712 	default:
713 		return NULL;
714 	}
715 
716 	sgp = scsi_sg_pools + cmd->sglist_len;
717 	sgl = mempool_alloc(sgp->pool, gfp_mask);
718 	return sgl;
719 }
720 
721 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
722 {
723 	struct scsi_host_sg_pool *sgp;
724 
725 	BUG_ON(index >= SG_MEMPOOL_NR);
726 
727 	sgp = scsi_sg_pools + index;
728 	mempool_free(sgl, sgp->pool);
729 }
730 
731 /*
732  * Function:    scsi_release_buffers()
733  *
734  * Purpose:     Completion processing for block device I/O requests.
735  *
736  * Arguments:   cmd	- command that we are bailing.
737  *
738  * Lock status: Assumed that no lock is held upon entry.
739  *
740  * Returns:     Nothing
741  *
742  * Notes:       In the event that an upper level driver rejects a
743  *		command, we must release resources allocated during
744  *		the __init_io() function.  Primarily this would involve
745  *		the scatter-gather table, and potentially any bounce
746  *		buffers.
747  */
748 static void scsi_release_buffers(struct scsi_cmnd *cmd)
749 {
750 	struct request *req = cmd->request;
751 
752 	/*
753 	 * Free up any indirection buffers we allocated for DMA purposes.
754 	 */
755 	if (cmd->use_sg)
756 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
757 	else if (cmd->request_buffer != req->buffer)
758 		kfree(cmd->request_buffer);
759 
760 	/*
761 	 * Zero these out.  They now point to freed memory, and it is
762 	 * dangerous to hang onto the pointers.
763 	 */
764 	cmd->buffer  = NULL;
765 	cmd->bufflen = 0;
766 	cmd->request_buffer = NULL;
767 	cmd->request_bufflen = 0;
768 }
769 
770 /*
771  * Function:    scsi_io_completion()
772  *
773  * Purpose:     Completion processing for block device I/O requests.
774  *
775  * Arguments:   cmd   - command that is finished.
776  *
777  * Lock status: Assumed that no lock is held upon entry.
778  *
779  * Returns:     Nothing
780  *
781  * Notes:       This function is matched in terms of capabilities to
782  *              the function that created the scatter-gather list.
783  *              In other words, if there are no bounce buffers
784  *              (the normal case for most drivers), we don't need
785  *              the logic to deal with cleaning up afterwards.
786  *
787  *		We must do one of several things here:
788  *
789  *		a) Call scsi_end_request.  This will finish off the
790  *		   specified number of sectors.  If we are done, the
791  *		   command block will be released, and the queue
792  *		   function will be goosed.  If we are not done, then
793  *		   scsi_end_request will directly goose the queue.
794  *
795  *		b) We can just use scsi_requeue_command() here.  This would
796  *		   be used if we just wanted to retry, for example.
797  */
798 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
799 			unsigned int block_bytes)
800 {
801 	int result = cmd->result;
802 	int this_count = cmd->bufflen;
803 	request_queue_t *q = cmd->device->request_queue;
804 	struct request *req = cmd->request;
805 	int clear_errors = 1;
806 	struct scsi_sense_hdr sshdr;
807 	int sense_valid = 0;
808 	int sense_deferred = 0;
809 
810 	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
811 		return;
812 
813 	/*
814 	 * Free up any indirection buffers we allocated for DMA purposes.
815 	 * For the case of a READ, we need to copy the data out of the
816 	 * bounce buffer and into the real buffer.
817 	 */
818 	if (cmd->use_sg)
819 		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
820 	else if (cmd->buffer != req->buffer) {
821 		if (rq_data_dir(req) == READ) {
822 			unsigned long flags;
823 			char *to = bio_kmap_irq(req->bio, &flags);
824 			memcpy(to, cmd->buffer, cmd->bufflen);
825 			bio_kunmap_irq(to, &flags);
826 		}
827 		kfree(cmd->buffer);
828 	}
829 
830 	if (result) {
831 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832 		if (sense_valid)
833 			sense_deferred = scsi_sense_is_deferred(&sshdr);
834 	}
835 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
836 		req->errors = result;
837 		if (result) {
838 			clear_errors = 0;
839 			if (sense_valid && req->sense) {
840 				/*
841 				 * SG_IO wants current and deferred errors
842 				 */
843 				int len = 8 + cmd->sense_buffer[7];
844 
845 				if (len > SCSI_SENSE_BUFFERSIZE)
846 					len = SCSI_SENSE_BUFFERSIZE;
847 				memcpy(req->sense, cmd->sense_buffer,  len);
848 				req->sense_len = len;
849 			}
850 		} else
851 			req->data_len = cmd->resid;
852 	}
853 
854 	/*
855 	 * Zero these out.  They now point to freed memory, and it is
856 	 * dangerous to hang onto the pointers.
857 	 */
858 	cmd->buffer  = NULL;
859 	cmd->bufflen = 0;
860 	cmd->request_buffer = NULL;
861 	cmd->request_bufflen = 0;
862 
863 	/*
864 	 * Next deal with any sectors which we were able to correctly
865 	 * handle.
866 	 */
867 	if (good_bytes >= 0) {
868 		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
869 					      req->nr_sectors, good_bytes));
870 		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
871 
872 		if (clear_errors)
873 			req->errors = 0;
874 		/*
875 		 * If multiple sectors are requested in one buffer, then
876 		 * they will have been finished off by the first command.
877 		 * If not, then we have a multi-buffer command.
878 		 *
879 		 * If block_bytes != 0, it means we had a medium error
880 		 * of some sort, and that we want to mark some number of
881 		 * sectors as not uptodate.  Thus we want to inhibit
882 		 * requeueing right here - we will requeue down below
883 		 * when we handle the bad sectors.
884 		 */
885 
886 		/*
887 		 * If the command completed without error, then either
888 		 * finish off the rest of the command, or start a new one.
889 		 */
890 		if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
891 			return;
892 	}
893 	/*
894 	 * Now, if we were good little boys and girls, Santa left us a request
895 	 * sense buffer.  We can extract information from this, so we
896 	 * can choose a block to remap, etc.
897 	 */
898 	if (sense_valid && !sense_deferred) {
899 		switch (sshdr.sense_key) {
900 		case UNIT_ATTENTION:
901 			if (cmd->device->removable) {
902 				/* detected disc change.  set a bit
903 				 * and quietly refuse further access.
904 				 */
905 				cmd->device->changed = 1;
906 				scsi_end_request(cmd, 0,
907 						this_count, 1);
908 				return;
909 			} else {
910 				/*
911 				* Must have been a power glitch, or a
912 				* bus reset.  Could not have been a
913 				* media change, so we just retry the
914 				* request and see what happens.
915 				*/
916 				scsi_requeue_command(q, cmd);
917 				return;
918 			}
919 			break;
920 		case ILLEGAL_REQUEST:
921 			/*
922 		 	* If we had an ILLEGAL REQUEST returned, then we may
923 		 	* have performed an unsupported command.  The only
924 		 	* thing this should be would be a ten byte read where
925 			* only a six byte read was supported.  Also, on a
926 			* system where READ CAPACITY failed, we may have read
927 			* past the end of the disk.
928 		 	*/
929 			if (cmd->device->use_10_for_rw &&
930 			    (cmd->cmnd[0] == READ_10 ||
931 			     cmd->cmnd[0] == WRITE_10)) {
932 				cmd->device->use_10_for_rw = 0;
933 				/*
934 				 * This will cause a retry with a 6-byte
935 				 * command.
936 				 */
937 				scsi_requeue_command(q, cmd);
938 				result = 0;
939 			} else {
940 				scsi_end_request(cmd, 0, this_count, 1);
941 				return;
942 			}
943 			break;
944 		case NOT_READY:
945 			/*
946 			 * If the device is in the process of becoming ready,
947 			 * retry.
948 			 */
949 			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
950 				scsi_requeue_command(q, cmd);
951 				return;
952 			}
953 			if (!(req->flags & REQ_QUIET))
954 				scmd_printk(KERN_INFO, cmd,
955 					   "Device not ready.\n");
956 			scsi_end_request(cmd, 0, this_count, 1);
957 			return;
958 		case VOLUME_OVERFLOW:
959 			if (!(req->flags & REQ_QUIET)) {
960 				scmd_printk(KERN_INFO, cmd,
961 					   "Volume overflow, CDB: ");
962 				__scsi_print_command(cmd->data_cmnd);
963 				scsi_print_sense("", cmd);
964 			}
965 			scsi_end_request(cmd, 0, block_bytes, 1);
966 			return;
967 		default:
968 			break;
969 		}
970 	}			/* driver byte != 0 */
971 	if (host_byte(result) == DID_RESET) {
972 		/*
973 		 * Third party bus reset or reset for error
974 		 * recovery reasons.  Just retry the request
975 		 * and see what happens.
976 		 */
977 		scsi_requeue_command(q, cmd);
978 		return;
979 	}
980 	if (result) {
981 		if (!(req->flags & REQ_QUIET)) {
982 			scmd_printk(KERN_INFO, cmd,
983 				   "SCSI error: return code = 0x%x\n", result);
984 
985 			if (driver_byte(result) & DRIVER_SENSE)
986 				scsi_print_sense("", cmd);
987 		}
988 		/*
989 		 * Mark a single buffer as not uptodate.  Queue the remainder.
990 		 * We sometimes get this cruft in the event that a medium error
991 		 * isn't properly reported.
992 		 */
993 		block_bytes = req->hard_cur_sectors << 9;
994 		if (!block_bytes)
995 			block_bytes = req->data_len;
996 		scsi_end_request(cmd, 0, block_bytes, 1);
997 	}
998 }
999 EXPORT_SYMBOL(scsi_io_completion);
1000 
1001 /*
1002  * Function:    scsi_init_io()
1003  *
1004  * Purpose:     SCSI I/O initialize function.
1005  *
1006  * Arguments:   cmd   - Command descriptor we wish to initialize
1007  *
1008  * Returns:     0 on success
1009  *		BLKPREP_DEFER if the failure is retryable
1010  *		BLKPREP_KILL if the failure is fatal
1011  */
1012 static int scsi_init_io(struct scsi_cmnd *cmd)
1013 {
1014 	struct request     *req = cmd->request;
1015 	struct scatterlist *sgpnt;
1016 	int		   count;
1017 
1018 	/*
1019 	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1020 	 */
1021 	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1022 		cmd->request_bufflen = req->data_len;
1023 		cmd->request_buffer = req->data;
1024 		req->buffer = req->data;
1025 		cmd->use_sg = 0;
1026 		return 0;
1027 	}
1028 
1029 	/*
1030 	 * we used to not use scatter-gather for single segment request,
1031 	 * but now we do (it makes highmem I/O easier to support without
1032 	 * kmapping pages)
1033 	 */
1034 	cmd->use_sg = req->nr_phys_segments;
1035 
1036 	/*
1037 	 * if sg table allocation fails, requeue request later.
1038 	 */
1039 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1040 	if (unlikely(!sgpnt)) {
1041 		scsi_unprep_request(req);
1042 		return BLKPREP_DEFER;
1043 	}
1044 
1045 	cmd->request_buffer = (char *) sgpnt;
1046 	cmd->request_bufflen = req->nr_sectors << 9;
1047 	if (blk_pc_request(req))
1048 		cmd->request_bufflen = req->data_len;
1049 	req->buffer = NULL;
1050 
1051 	/*
1052 	 * Next, walk the list, and fill in the addresses and sizes of
1053 	 * each segment.
1054 	 */
1055 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1056 
1057 	/*
1058 	 * mapped well, send it off
1059 	 */
1060 	if (likely(count <= cmd->use_sg)) {
1061 		cmd->use_sg = count;
1062 		return 0;
1063 	}
1064 
1065 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1066 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1067 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1068 			req->current_nr_sectors);
1069 
1070 	/* release the command and kill it */
1071 	scsi_release_buffers(cmd);
1072 	scsi_put_command(cmd);
1073 	return BLKPREP_KILL;
1074 }
1075 
1076 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1077 {
1078 	struct scsi_device *sdev = q->queuedata;
1079 	struct scsi_driver *drv;
1080 
1081 	if (sdev->sdev_state == SDEV_RUNNING) {
1082 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1083 
1084 		if (drv->prepare_flush)
1085 			return drv->prepare_flush(q, rq);
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1092 {
1093 	struct scsi_device *sdev = q->queuedata;
1094 	struct request *flush_rq = rq->end_io_data;
1095 	struct scsi_driver *drv;
1096 
1097 	if (flush_rq->errors) {
1098 		printk("scsi: barrier error, disabling flush support\n");
1099 		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1100 	}
1101 
1102 	if (sdev->sdev_state == SDEV_RUNNING) {
1103 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1104 		drv->end_flush(q, rq);
1105 	}
1106 }
1107 
1108 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1109 			       sector_t *error_sector)
1110 {
1111 	struct scsi_device *sdev = q->queuedata;
1112 	struct scsi_driver *drv;
1113 
1114 	if (sdev->sdev_state != SDEV_RUNNING)
1115 		return -ENXIO;
1116 
1117 	drv = *(struct scsi_driver **) disk->private_data;
1118 	if (drv->issue_flush)
1119 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1120 
1121 	return -EOPNOTSUPP;
1122 }
1123 
1124 static void scsi_generic_done(struct scsi_cmnd *cmd)
1125 {
1126 	BUG_ON(!blk_pc_request(cmd->request));
1127 	scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1128 }
1129 
1130 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1131 {
1132 	struct scsi_device *sdev = q->queuedata;
1133 	struct scsi_cmnd *cmd;
1134 	int specials_only = 0;
1135 
1136 	/*
1137 	 * Just check to see if the device is online.  If it isn't, we
1138 	 * refuse to process any commands.  The device must be brought
1139 	 * online before trying any recovery commands
1140 	 */
1141 	if (unlikely(!scsi_device_online(sdev))) {
1142 		sdev_printk(KERN_ERR, sdev,
1143 			    "rejecting I/O to offline device\n");
1144 		goto kill;
1145 	}
1146 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1147 		/* OK, we're not in a running state don't prep
1148 		 * user commands */
1149 		if (sdev->sdev_state == SDEV_DEL) {
1150 			/* Device is fully deleted, no commands
1151 			 * at all allowed down */
1152 			sdev_printk(KERN_ERR, sdev,
1153 				    "rejecting I/O to dead device\n");
1154 			goto kill;
1155 		}
1156 		/* OK, we only allow special commands (i.e. not
1157 		 * user initiated ones */
1158 		specials_only = sdev->sdev_state;
1159 	}
1160 
1161 	/*
1162 	 * Find the actual device driver associated with this command.
1163 	 * The SPECIAL requests are things like character device or
1164 	 * ioctls, which did not originate from ll_rw_blk.  Note that
1165 	 * the special field is also used to indicate the cmd for
1166 	 * the remainder of a partially fulfilled request that can
1167 	 * come up when there is a medium error.  We have to treat
1168 	 * these two cases differently.  We differentiate by looking
1169 	 * at request->cmd, as this tells us the real story.
1170 	 */
1171 	if (req->flags & REQ_SPECIAL && req->special) {
1172 		struct scsi_request *sreq = req->special;
1173 
1174 		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1175 			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1176 			if (unlikely(!cmd))
1177 				goto defer;
1178 			scsi_init_cmd_from_req(cmd, sreq);
1179 		} else
1180 			cmd = req->special;
1181 	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1182 
1183 		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1184 			if(specials_only == SDEV_QUIESCE ||
1185 					specials_only == SDEV_BLOCK)
1186 				goto defer;
1187 
1188 			sdev_printk(KERN_ERR, sdev,
1189 				    "rejecting I/O to device being removed\n");
1190 			goto kill;
1191 		}
1192 
1193 
1194 		/*
1195 		 * Now try and find a command block that we can use.
1196 		 */
1197 		if (!req->special) {
1198 			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1199 			if (unlikely(!cmd))
1200 				goto defer;
1201 		} else
1202 			cmd = req->special;
1203 
1204 		/* pull a tag out of the request if we have one */
1205 		cmd->tag = req->tag;
1206 	} else {
1207 		blk_dump_rq_flags(req, "SCSI bad req");
1208 		goto kill;
1209 	}
1210 
1211 	/* note the overloading of req->special.  When the tag
1212 	 * is active it always means cmd.  If the tag goes
1213 	 * back for re-queueing, it may be reset */
1214 	req->special = cmd;
1215 	cmd->request = req;
1216 
1217 	/*
1218 	 * FIXME: drop the lock here because the functions below
1219 	 * expect to be called without the queue lock held.  Also,
1220 	 * previously, we dequeued the request before dropping the
1221 	 * lock.  We hope REQ_STARTED prevents anything untoward from
1222 	 * happening now.
1223 	 */
1224 	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1225 		struct scsi_driver *drv;
1226 		int ret;
1227 
1228 		/*
1229 		 * This will do a couple of things:
1230 		 *  1) Fill in the actual SCSI command.
1231 		 *  2) Fill in any other upper-level specific fields
1232 		 * (timeout).
1233 		 *
1234 		 * If this returns 0, it means that the request failed
1235 		 * (reading past end of disk, reading offline device,
1236 		 * etc).   This won't actually talk to the device, but
1237 		 * some kinds of consistency checking may cause the
1238 		 * request to be rejected immediately.
1239 		 */
1240 
1241 		/*
1242 		 * This sets up the scatter-gather table (allocating if
1243 		 * required).
1244 		 */
1245 		ret = scsi_init_io(cmd);
1246 		switch(ret) {
1247 			/* For BLKPREP_KILL/DEFER the cmd was released */
1248 		case BLKPREP_KILL:
1249 			goto kill;
1250 		case BLKPREP_DEFER:
1251 			goto defer;
1252 		}
1253 
1254 		/*
1255 		 * Initialize the actual SCSI command for this request.
1256 		 */
1257 		if (req->rq_disk) {
1258 			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1259 			if (unlikely(!drv->init_command(cmd))) {
1260 				scsi_release_buffers(cmd);
1261 				scsi_put_command(cmd);
1262 				goto kill;
1263 			}
1264 		} else {
1265 			memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1266 			cmd->cmd_len = req->cmd_len;
1267 			if (rq_data_dir(req) == WRITE)
1268 				cmd->sc_data_direction = DMA_TO_DEVICE;
1269 			else if (req->data_len)
1270 				cmd->sc_data_direction = DMA_FROM_DEVICE;
1271 			else
1272 				cmd->sc_data_direction = DMA_NONE;
1273 
1274 			cmd->transfersize = req->data_len;
1275 			cmd->allowed = 3;
1276 			cmd->timeout_per_command = req->timeout;
1277 			cmd->done = scsi_generic_done;
1278 		}
1279 	}
1280 
1281 	/*
1282 	 * The request is now prepped, no need to come back here
1283 	 */
1284 	req->flags |= REQ_DONTPREP;
1285 	return BLKPREP_OK;
1286 
1287  defer:
1288 	/* If we defer, the elv_next_request() returns NULL, but the
1289 	 * queue must be restarted, so we plug here if no returning
1290 	 * command will automatically do that. */
1291 	if (sdev->device_busy == 0)
1292 		blk_plug_device(q);
1293 	return BLKPREP_DEFER;
1294  kill:
1295 	req->errors = DID_NO_CONNECT << 16;
1296 	return BLKPREP_KILL;
1297 }
1298 
1299 /*
1300  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1301  * return 0.
1302  *
1303  * Called with the queue_lock held.
1304  */
1305 static inline int scsi_dev_queue_ready(struct request_queue *q,
1306 				  struct scsi_device *sdev)
1307 {
1308 	if (sdev->device_busy >= sdev->queue_depth)
1309 		return 0;
1310 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1311 		/*
1312 		 * unblock after device_blocked iterates to zero
1313 		 */
1314 		if (--sdev->device_blocked == 0) {
1315 			SCSI_LOG_MLQUEUE(3,
1316 				   sdev_printk(KERN_INFO, sdev,
1317 				   "unblocking device at zero depth\n"));
1318 		} else {
1319 			blk_plug_device(q);
1320 			return 0;
1321 		}
1322 	}
1323 	if (sdev->device_blocked)
1324 		return 0;
1325 
1326 	return 1;
1327 }
1328 
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  *
1334  * Called with host_lock held.
1335  */
1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337 				   struct Scsi_Host *shost,
1338 				   struct scsi_device *sdev)
1339 {
1340 	if (scsi_host_in_recovery(shost))
1341 		return 0;
1342 	if (shost->host_busy == 0 && shost->host_blocked) {
1343 		/*
1344 		 * unblock after host_blocked iterates to zero
1345 		 */
1346 		if (--shost->host_blocked == 0) {
1347 			SCSI_LOG_MLQUEUE(3,
1348 				printk("scsi%d unblocking host at zero depth\n",
1349 					shost->host_no));
1350 		} else {
1351 			blk_plug_device(q);
1352 			return 0;
1353 		}
1354 	}
1355 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1356 	    shost->host_blocked || shost->host_self_blocked) {
1357 		if (list_empty(&sdev->starved_entry))
1358 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1359 		return 0;
1360 	}
1361 
1362 	/* We're OK to process the command, so we can't be starved */
1363 	if (!list_empty(&sdev->starved_entry))
1364 		list_del_init(&sdev->starved_entry);
1365 
1366 	return 1;
1367 }
1368 
1369 /*
1370  * Kill a request for a dead device
1371  */
1372 static void scsi_kill_request(struct request *req, request_queue_t *q)
1373 {
1374 	struct scsi_cmnd *cmd = req->special;
1375 
1376 	blkdev_dequeue_request(req);
1377 
1378 	if (unlikely(cmd == NULL)) {
1379 		printk(KERN_CRIT "impossible request in %s.\n",
1380 				 __FUNCTION__);
1381 		BUG();
1382 	}
1383 
1384 	scsi_init_cmd_errh(cmd);
1385 	cmd->result = DID_NO_CONNECT << 16;
1386 	atomic_inc(&cmd->device->iorequest_cnt);
1387 	__scsi_done(cmd);
1388 }
1389 
1390 /*
1391  * Function:    scsi_request_fn()
1392  *
1393  * Purpose:     Main strategy routine for SCSI.
1394  *
1395  * Arguments:   q       - Pointer to actual queue.
1396  *
1397  * Returns:     Nothing
1398  *
1399  * Lock status: IO request lock assumed to be held when called.
1400  */
1401 static void scsi_request_fn(struct request_queue *q)
1402 {
1403 	struct scsi_device *sdev = q->queuedata;
1404 	struct Scsi_Host *shost;
1405 	struct scsi_cmnd *cmd;
1406 	struct request *req;
1407 
1408 	if (!sdev) {
1409 		printk("scsi: killing requests for dead queue\n");
1410 		while ((req = elv_next_request(q)) != NULL)
1411 			scsi_kill_request(req, q);
1412 		return;
1413 	}
1414 
1415 	if(!get_device(&sdev->sdev_gendev))
1416 		/* We must be tearing the block queue down already */
1417 		return;
1418 
1419 	/*
1420 	 * To start with, we keep looping until the queue is empty, or until
1421 	 * the host is no longer able to accept any more requests.
1422 	 */
1423 	shost = sdev->host;
1424 	while (!blk_queue_plugged(q)) {
1425 		int rtn;
1426 		/*
1427 		 * get next queueable request.  We do this early to make sure
1428 		 * that the request is fully prepared even if we cannot
1429 		 * accept it.
1430 		 */
1431 		req = elv_next_request(q);
1432 		if (!req || !scsi_dev_queue_ready(q, sdev))
1433 			break;
1434 
1435 		if (unlikely(!scsi_device_online(sdev))) {
1436 			sdev_printk(KERN_ERR, sdev,
1437 				    "rejecting I/O to offline device\n");
1438 			scsi_kill_request(req, q);
1439 			continue;
1440 		}
1441 
1442 
1443 		/*
1444 		 * Remove the request from the request list.
1445 		 */
1446 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1447 			blkdev_dequeue_request(req);
1448 		sdev->device_busy++;
1449 
1450 		spin_unlock(q->queue_lock);
1451 		cmd = req->special;
1452 		if (unlikely(cmd == NULL)) {
1453 			printk(KERN_CRIT "impossible request in %s.\n"
1454 					 "please mail a stack trace to "
1455 					 "linux-scsi@vger.kernel.org",
1456 					 __FUNCTION__);
1457 			BUG();
1458 		}
1459 		spin_lock(shost->host_lock);
1460 
1461 		if (!scsi_host_queue_ready(q, shost, sdev))
1462 			goto not_ready;
1463 		if (sdev->single_lun) {
1464 			if (scsi_target(sdev)->starget_sdev_user &&
1465 			    scsi_target(sdev)->starget_sdev_user != sdev)
1466 				goto not_ready;
1467 			scsi_target(sdev)->starget_sdev_user = sdev;
1468 		}
1469 		shost->host_busy++;
1470 
1471 		/*
1472 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1473 		 *		take the lock again.
1474 		 */
1475 		spin_unlock_irq(shost->host_lock);
1476 
1477 		/*
1478 		 * Finally, initialize any error handling parameters, and set up
1479 		 * the timers for timeouts.
1480 		 */
1481 		scsi_init_cmd_errh(cmd);
1482 
1483 		/*
1484 		 * Dispatch the command to the low-level driver.
1485 		 */
1486 		rtn = scsi_dispatch_cmd(cmd);
1487 		spin_lock_irq(q->queue_lock);
1488 		if(rtn) {
1489 			/* we're refusing the command; because of
1490 			 * the way locks get dropped, we need to
1491 			 * check here if plugging is required */
1492 			if(sdev->device_busy == 0)
1493 				blk_plug_device(q);
1494 
1495 			break;
1496 		}
1497 	}
1498 
1499 	goto out;
1500 
1501  not_ready:
1502 	spin_unlock_irq(shost->host_lock);
1503 
1504 	/*
1505 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1506 	 * must return with queue_lock held.
1507 	 *
1508 	 * Decrementing device_busy without checking it is OK, as all such
1509 	 * cases (host limits or settings) should run the queue at some
1510 	 * later time.
1511 	 */
1512 	spin_lock_irq(q->queue_lock);
1513 	blk_requeue_request(q, req);
1514 	sdev->device_busy--;
1515 	if(sdev->device_busy == 0)
1516 		blk_plug_device(q);
1517  out:
1518 	/* must be careful here...if we trigger the ->remove() function
1519 	 * we cannot be holding the q lock */
1520 	spin_unlock_irq(q->queue_lock);
1521 	put_device(&sdev->sdev_gendev);
1522 	spin_lock_irq(q->queue_lock);
1523 }
1524 
1525 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1526 {
1527 	struct device *host_dev;
1528 	u64 bounce_limit = 0xffffffff;
1529 
1530 	if (shost->unchecked_isa_dma)
1531 		return BLK_BOUNCE_ISA;
1532 	/*
1533 	 * Platforms with virtual-DMA translation
1534 	 * hardware have no practical limit.
1535 	 */
1536 	if (!PCI_DMA_BUS_IS_PHYS)
1537 		return BLK_BOUNCE_ANY;
1538 
1539 	host_dev = scsi_get_device(shost);
1540 	if (host_dev && host_dev->dma_mask)
1541 		bounce_limit = *host_dev->dma_mask;
1542 
1543 	return bounce_limit;
1544 }
1545 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1546 
1547 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1548 {
1549 	struct Scsi_Host *shost = sdev->host;
1550 	struct request_queue *q;
1551 
1552 	q = blk_init_queue(scsi_request_fn, NULL);
1553 	if (!q)
1554 		return NULL;
1555 
1556 	blk_queue_prep_rq(q, scsi_prep_fn);
1557 
1558 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1559 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1560 	blk_queue_max_sectors(q, shost->max_sectors);
1561 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1562 	blk_queue_segment_boundary(q, shost->dma_boundary);
1563 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1564 
1565 	/*
1566 	 * ordered tags are superior to flush ordering
1567 	 */
1568 	if (shost->ordered_tag)
1569 		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1570 	else if (shost->ordered_flush) {
1571 		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1572 		q->prepare_flush_fn = scsi_prepare_flush_fn;
1573 		q->end_flush_fn = scsi_end_flush_fn;
1574 	}
1575 
1576 	if (!shost->use_clustering)
1577 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1578 	return q;
1579 }
1580 
1581 void scsi_free_queue(struct request_queue *q)
1582 {
1583 	blk_cleanup_queue(q);
1584 }
1585 
1586 /*
1587  * Function:    scsi_block_requests()
1588  *
1589  * Purpose:     Utility function used by low-level drivers to prevent further
1590  *		commands from being queued to the device.
1591  *
1592  * Arguments:   shost       - Host in question
1593  *
1594  * Returns:     Nothing
1595  *
1596  * Lock status: No locks are assumed held.
1597  *
1598  * Notes:       There is no timer nor any other means by which the requests
1599  *		get unblocked other than the low-level driver calling
1600  *		scsi_unblock_requests().
1601  */
1602 void scsi_block_requests(struct Scsi_Host *shost)
1603 {
1604 	shost->host_self_blocked = 1;
1605 }
1606 EXPORT_SYMBOL(scsi_block_requests);
1607 
1608 /*
1609  * Function:    scsi_unblock_requests()
1610  *
1611  * Purpose:     Utility function used by low-level drivers to allow further
1612  *		commands from being queued to the device.
1613  *
1614  * Arguments:   shost       - Host in question
1615  *
1616  * Returns:     Nothing
1617  *
1618  * Lock status: No locks are assumed held.
1619  *
1620  * Notes:       There is no timer nor any other means by which the requests
1621  *		get unblocked other than the low-level driver calling
1622  *		scsi_unblock_requests().
1623  *
1624  *		This is done as an API function so that changes to the
1625  *		internals of the scsi mid-layer won't require wholesale
1626  *		changes to drivers that use this feature.
1627  */
1628 void scsi_unblock_requests(struct Scsi_Host *shost)
1629 {
1630 	shost->host_self_blocked = 0;
1631 	scsi_run_host_queues(shost);
1632 }
1633 EXPORT_SYMBOL(scsi_unblock_requests);
1634 
1635 int __init scsi_init_queue(void)
1636 {
1637 	int i;
1638 
1639 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1640 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1641 		int size = sgp->size * sizeof(struct scatterlist);
1642 
1643 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1644 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1645 		if (!sgp->slab) {
1646 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1647 					sgp->name);
1648 		}
1649 
1650 		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1651 				mempool_alloc_slab, mempool_free_slab,
1652 				sgp->slab);
1653 		if (!sgp->pool) {
1654 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1655 					sgp->name);
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 void scsi_exit_queue(void)
1663 {
1664 	int i;
1665 
1666 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1667 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1668 		mempool_destroy(sgp->pool);
1669 		kmem_cache_destroy(sgp->slab);
1670 	}
1671 }
1672 /**
1673  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1674  *		six bytes if necessary.
1675  *	@sdev:	SCSI device to be queried
1676  *	@dbd:	set if mode sense will allow block descriptors to be returned
1677  *	@modepage: mode page being requested
1678  *	@buffer: request buffer (may not be smaller than eight bytes)
1679  *	@len:	length of request buffer.
1680  *	@timeout: command timeout
1681  *	@retries: number of retries before failing
1682  *	@data: returns a structure abstracting the mode header data
1683  *	@sense: place to put sense data (or NULL if no sense to be collected).
1684  *		must be SCSI_SENSE_BUFFERSIZE big.
1685  *
1686  *	Returns zero if unsuccessful, or the header offset (either 4
1687  *	or 8 depending on whether a six or ten byte command was
1688  *	issued) if successful.
1689  **/
1690 int
1691 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1692 		  unsigned char *buffer, int len, int timeout, int retries,
1693 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1694 	unsigned char cmd[12];
1695 	int use_10_for_ms;
1696 	int header_length;
1697 	int result;
1698 	struct scsi_sense_hdr my_sshdr;
1699 
1700 	memset(data, 0, sizeof(*data));
1701 	memset(&cmd[0], 0, 12);
1702 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1703 	cmd[2] = modepage;
1704 
1705 	/* caller might not be interested in sense, but we need it */
1706 	if (!sshdr)
1707 		sshdr = &my_sshdr;
1708 
1709  retry:
1710 	use_10_for_ms = sdev->use_10_for_ms;
1711 
1712 	if (use_10_for_ms) {
1713 		if (len < 8)
1714 			len = 8;
1715 
1716 		cmd[0] = MODE_SENSE_10;
1717 		cmd[8] = len;
1718 		header_length = 8;
1719 	} else {
1720 		if (len < 4)
1721 			len = 4;
1722 
1723 		cmd[0] = MODE_SENSE;
1724 		cmd[4] = len;
1725 		header_length = 4;
1726 	}
1727 
1728 	memset(buffer, 0, len);
1729 
1730 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1731 				  sshdr, timeout, retries);
1732 
1733 	/* This code looks awful: what it's doing is making sure an
1734 	 * ILLEGAL REQUEST sense return identifies the actual command
1735 	 * byte as the problem.  MODE_SENSE commands can return
1736 	 * ILLEGAL REQUEST if the code page isn't supported */
1737 
1738 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1739 	    (driver_byte(result) & DRIVER_SENSE)) {
1740 		if (scsi_sense_valid(sshdr)) {
1741 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1742 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1743 				/*
1744 				 * Invalid command operation code
1745 				 */
1746 				sdev->use_10_for_ms = 0;
1747 				goto retry;
1748 			}
1749 		}
1750 	}
1751 
1752 	if(scsi_status_is_good(result)) {
1753 		data->header_length = header_length;
1754 		if(use_10_for_ms) {
1755 			data->length = buffer[0]*256 + buffer[1] + 2;
1756 			data->medium_type = buffer[2];
1757 			data->device_specific = buffer[3];
1758 			data->longlba = buffer[4] & 0x01;
1759 			data->block_descriptor_length = buffer[6]*256
1760 				+ buffer[7];
1761 		} else {
1762 			data->length = buffer[0] + 1;
1763 			data->medium_type = buffer[1];
1764 			data->device_specific = buffer[2];
1765 			data->block_descriptor_length = buffer[3];
1766 		}
1767 	}
1768 
1769 	return result;
1770 }
1771 EXPORT_SYMBOL(scsi_mode_sense);
1772 
1773 int
1774 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1775 {
1776 	char cmd[] = {
1777 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1778 	};
1779 	struct scsi_sense_hdr sshdr;
1780 	int result;
1781 
1782 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1783 				  timeout, retries);
1784 
1785 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1786 
1787 		if ((scsi_sense_valid(&sshdr)) &&
1788 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1789 		     (sshdr.sense_key == NOT_READY))) {
1790 			sdev->changed = 1;
1791 			result = 0;
1792 		}
1793 	}
1794 	return result;
1795 }
1796 EXPORT_SYMBOL(scsi_test_unit_ready);
1797 
1798 /**
1799  *	scsi_device_set_state - Take the given device through the device
1800  *		state model.
1801  *	@sdev:	scsi device to change the state of.
1802  *	@state:	state to change to.
1803  *
1804  *	Returns zero if unsuccessful or an error if the requested
1805  *	transition is illegal.
1806  **/
1807 int
1808 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1809 {
1810 	enum scsi_device_state oldstate = sdev->sdev_state;
1811 
1812 	if (state == oldstate)
1813 		return 0;
1814 
1815 	switch (state) {
1816 	case SDEV_CREATED:
1817 		/* There are no legal states that come back to
1818 		 * created.  This is the manually initialised start
1819 		 * state */
1820 		goto illegal;
1821 
1822 	case SDEV_RUNNING:
1823 		switch (oldstate) {
1824 		case SDEV_CREATED:
1825 		case SDEV_OFFLINE:
1826 		case SDEV_QUIESCE:
1827 		case SDEV_BLOCK:
1828 			break;
1829 		default:
1830 			goto illegal;
1831 		}
1832 		break;
1833 
1834 	case SDEV_QUIESCE:
1835 		switch (oldstate) {
1836 		case SDEV_RUNNING:
1837 		case SDEV_OFFLINE:
1838 			break;
1839 		default:
1840 			goto illegal;
1841 		}
1842 		break;
1843 
1844 	case SDEV_OFFLINE:
1845 		switch (oldstate) {
1846 		case SDEV_CREATED:
1847 		case SDEV_RUNNING:
1848 		case SDEV_QUIESCE:
1849 		case SDEV_BLOCK:
1850 			break;
1851 		default:
1852 			goto illegal;
1853 		}
1854 		break;
1855 
1856 	case SDEV_BLOCK:
1857 		switch (oldstate) {
1858 		case SDEV_CREATED:
1859 		case SDEV_RUNNING:
1860 			break;
1861 		default:
1862 			goto illegal;
1863 		}
1864 		break;
1865 
1866 	case SDEV_CANCEL:
1867 		switch (oldstate) {
1868 		case SDEV_CREATED:
1869 		case SDEV_RUNNING:
1870 		case SDEV_OFFLINE:
1871 		case SDEV_BLOCK:
1872 			break;
1873 		default:
1874 			goto illegal;
1875 		}
1876 		break;
1877 
1878 	case SDEV_DEL:
1879 		switch (oldstate) {
1880 		case SDEV_CANCEL:
1881 			break;
1882 		default:
1883 			goto illegal;
1884 		}
1885 		break;
1886 
1887 	}
1888 	sdev->sdev_state = state;
1889 	return 0;
1890 
1891  illegal:
1892 	SCSI_LOG_ERROR_RECOVERY(1,
1893 				sdev_printk(KERN_ERR, sdev,
1894 					    "Illegal state transition %s->%s\n",
1895 					    scsi_device_state_name(oldstate),
1896 					    scsi_device_state_name(state))
1897 				);
1898 	return -EINVAL;
1899 }
1900 EXPORT_SYMBOL(scsi_device_set_state);
1901 
1902 /**
1903  *	scsi_device_quiesce - Block user issued commands.
1904  *	@sdev:	scsi device to quiesce.
1905  *
1906  *	This works by trying to transition to the SDEV_QUIESCE state
1907  *	(which must be a legal transition).  When the device is in this
1908  *	state, only special requests will be accepted, all others will
1909  *	be deferred.  Since special requests may also be requeued requests,
1910  *	a successful return doesn't guarantee the device will be
1911  *	totally quiescent.
1912  *
1913  *	Must be called with user context, may sleep.
1914  *
1915  *	Returns zero if unsuccessful or an error if not.
1916  **/
1917 int
1918 scsi_device_quiesce(struct scsi_device *sdev)
1919 {
1920 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1921 	if (err)
1922 		return err;
1923 
1924 	scsi_run_queue(sdev->request_queue);
1925 	while (sdev->device_busy) {
1926 		msleep_interruptible(200);
1927 		scsi_run_queue(sdev->request_queue);
1928 	}
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL(scsi_device_quiesce);
1932 
1933 /**
1934  *	scsi_device_resume - Restart user issued commands to a quiesced device.
1935  *	@sdev:	scsi device to resume.
1936  *
1937  *	Moves the device from quiesced back to running and restarts the
1938  *	queues.
1939  *
1940  *	Must be called with user context, may sleep.
1941  **/
1942 void
1943 scsi_device_resume(struct scsi_device *sdev)
1944 {
1945 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1946 		return;
1947 	scsi_run_queue(sdev->request_queue);
1948 }
1949 EXPORT_SYMBOL(scsi_device_resume);
1950 
1951 static void
1952 device_quiesce_fn(struct scsi_device *sdev, void *data)
1953 {
1954 	scsi_device_quiesce(sdev);
1955 }
1956 
1957 void
1958 scsi_target_quiesce(struct scsi_target *starget)
1959 {
1960 	starget_for_each_device(starget, NULL, device_quiesce_fn);
1961 }
1962 EXPORT_SYMBOL(scsi_target_quiesce);
1963 
1964 static void
1965 device_resume_fn(struct scsi_device *sdev, void *data)
1966 {
1967 	scsi_device_resume(sdev);
1968 }
1969 
1970 void
1971 scsi_target_resume(struct scsi_target *starget)
1972 {
1973 	starget_for_each_device(starget, NULL, device_resume_fn);
1974 }
1975 EXPORT_SYMBOL(scsi_target_resume);
1976 
1977 /**
1978  * scsi_internal_device_block - internal function to put a device
1979  *				temporarily into the SDEV_BLOCK state
1980  * @sdev:	device to block
1981  *
1982  * Block request made by scsi lld's to temporarily stop all
1983  * scsi commands on the specified device.  Called from interrupt
1984  * or normal process context.
1985  *
1986  * Returns zero if successful or error if not
1987  *
1988  * Notes:
1989  *	This routine transitions the device to the SDEV_BLOCK state
1990  *	(which must be a legal transition).  When the device is in this
1991  *	state, all commands are deferred until the scsi lld reenables
1992  *	the device with scsi_device_unblock or device_block_tmo fires.
1993  *	This routine assumes the host_lock is held on entry.
1994  **/
1995 int
1996 scsi_internal_device_block(struct scsi_device *sdev)
1997 {
1998 	request_queue_t *q = sdev->request_queue;
1999 	unsigned long flags;
2000 	int err = 0;
2001 
2002 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2003 	if (err)
2004 		return err;
2005 
2006 	/*
2007 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2008 	 * block layer from calling the midlayer with this device's
2009 	 * request queue.
2010 	 */
2011 	spin_lock_irqsave(q->queue_lock, flags);
2012 	blk_stop_queue(q);
2013 	spin_unlock_irqrestore(q->queue_lock, flags);
2014 
2015 	return 0;
2016 }
2017 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2018 
2019 /**
2020  * scsi_internal_device_unblock - resume a device after a block request
2021  * @sdev:	device to resume
2022  *
2023  * Called by scsi lld's or the midlayer to restart the device queue
2024  * for the previously suspended scsi device.  Called from interrupt or
2025  * normal process context.
2026  *
2027  * Returns zero if successful or error if not.
2028  *
2029  * Notes:
2030  *	This routine transitions the device to the SDEV_RUNNING state
2031  *	(which must be a legal transition) allowing the midlayer to
2032  *	goose the queue for this device.  This routine assumes the
2033  *	host_lock is held upon entry.
2034  **/
2035 int
2036 scsi_internal_device_unblock(struct scsi_device *sdev)
2037 {
2038 	request_queue_t *q = sdev->request_queue;
2039 	int err;
2040 	unsigned long flags;
2041 
2042 	/*
2043 	 * Try to transition the scsi device to SDEV_RUNNING
2044 	 * and goose the device queue if successful.
2045 	 */
2046 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2047 	if (err)
2048 		return err;
2049 
2050 	spin_lock_irqsave(q->queue_lock, flags);
2051 	blk_start_queue(q);
2052 	spin_unlock_irqrestore(q->queue_lock, flags);
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2057 
2058 static void
2059 device_block(struct scsi_device *sdev, void *data)
2060 {
2061 	scsi_internal_device_block(sdev);
2062 }
2063 
2064 static int
2065 target_block(struct device *dev, void *data)
2066 {
2067 	if (scsi_is_target_device(dev))
2068 		starget_for_each_device(to_scsi_target(dev), NULL,
2069 					device_block);
2070 	return 0;
2071 }
2072 
2073 void
2074 scsi_target_block(struct device *dev)
2075 {
2076 	if (scsi_is_target_device(dev))
2077 		starget_for_each_device(to_scsi_target(dev), NULL,
2078 					device_block);
2079 	else
2080 		device_for_each_child(dev, NULL, target_block);
2081 }
2082 EXPORT_SYMBOL_GPL(scsi_target_block);
2083 
2084 static void
2085 device_unblock(struct scsi_device *sdev, void *data)
2086 {
2087 	scsi_internal_device_unblock(sdev);
2088 }
2089 
2090 static int
2091 target_unblock(struct device *dev, void *data)
2092 {
2093 	if (scsi_is_target_device(dev))
2094 		starget_for_each_device(to_scsi_target(dev), NULL,
2095 					device_unblock);
2096 	return 0;
2097 }
2098 
2099 void
2100 scsi_target_unblock(struct device *dev)
2101 {
2102 	if (scsi_is_target_device(dev))
2103 		starget_for_each_device(to_scsi_target(dev), NULL,
2104 					device_unblock);
2105 	else
2106 		device_for_each_child(dev, NULL, target_unblock);
2107 }
2108 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2109