1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static DEFINE_MUTEX(scsi_sense_cache_mutex); 57 58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 59 60 int scsi_init_sense_cache(struct Scsi_Host *shost) 61 { 62 int ret = 0; 63 64 mutex_lock(&scsi_sense_cache_mutex); 65 if (!scsi_sense_cache) { 66 scsi_sense_cache = 67 kmem_cache_create_usercopy("scsi_sense_cache", 68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 69 0, SCSI_SENSE_BUFFERSIZE, NULL); 70 if (!scsi_sense_cache) 71 ret = -ENOMEM; 72 } 73 mutex_unlock(&scsi_sense_cache_mutex); 74 return ret; 75 } 76 77 /* 78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 79 * not change behaviour from the previous unplug mechanism, experimentation 80 * may prove this needs changing. 81 */ 82 #define SCSI_QUEUE_DELAY 3 83 84 static void 85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 86 { 87 struct Scsi_Host *host = cmd->device->host; 88 struct scsi_device *device = cmd->device; 89 struct scsi_target *starget = scsi_target(device); 90 91 /* 92 * Set the appropriate busy bit for the device/host. 93 * 94 * If the host/device isn't busy, assume that something actually 95 * completed, and that we should be able to queue a command now. 96 * 97 * Note that the prior mid-layer assumption that any host could 98 * always queue at least one command is now broken. The mid-layer 99 * will implement a user specifiable stall (see 100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 101 * if a command is requeued with no other commands outstanding 102 * either for the device or for the host. 103 */ 104 switch (reason) { 105 case SCSI_MLQUEUE_HOST_BUSY: 106 atomic_set(&host->host_blocked, host->max_host_blocked); 107 break; 108 case SCSI_MLQUEUE_DEVICE_BUSY: 109 case SCSI_MLQUEUE_EH_RETRY: 110 atomic_set(&device->device_blocked, 111 device->max_device_blocked); 112 break; 113 case SCSI_MLQUEUE_TARGET_BUSY: 114 atomic_set(&starget->target_blocked, 115 starget->max_target_blocked); 116 break; 117 } 118 } 119 120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 121 { 122 if (cmd->request->rq_flags & RQF_DONTPREP) { 123 cmd->request->rq_flags &= ~RQF_DONTPREP; 124 scsi_mq_uninit_cmd(cmd); 125 } else { 126 WARN_ON_ONCE(true); 127 } 128 blk_mq_requeue_request(cmd->request, true); 129 } 130 131 /** 132 * __scsi_queue_insert - private queue insertion 133 * @cmd: The SCSI command being requeued 134 * @reason: The reason for the requeue 135 * @unbusy: Whether the queue should be unbusied 136 * 137 * This is a private queue insertion. The public interface 138 * scsi_queue_insert() always assumes the queue should be unbusied 139 * because it's always called before the completion. This function is 140 * for a requeue after completion, which should only occur in this 141 * file. 142 */ 143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 144 { 145 struct scsi_device *device = cmd->device; 146 147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 148 "Inserting command %p into mlqueue\n", cmd)); 149 150 scsi_set_blocked(cmd, reason); 151 152 /* 153 * Decrement the counters, since these commands are no longer 154 * active on the host/device. 155 */ 156 if (unbusy) 157 scsi_device_unbusy(device, cmd); 158 159 /* 160 * Requeue this command. It will go before all other commands 161 * that are already in the queue. Schedule requeue work under 162 * lock such that the kblockd_schedule_work() call happens 163 * before blk_cleanup_queue() finishes. 164 */ 165 cmd->result = 0; 166 167 blk_mq_requeue_request(cmd->request, true); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 188 /** 189 * __scsi_execute - insert request and wait for the result 190 * @sdev: scsi device 191 * @cmd: scsi command 192 * @data_direction: data direction 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @sense: optional sense buffer 196 * @sshdr: optional decoded sense header 197 * @timeout: request timeout in seconds 198 * @retries: number of times to retry request 199 * @flags: flags for ->cmd_flags 200 * @rq_flags: flags for ->rq_flags 201 * @resid: optional residual length 202 * 203 * Returns the scsi_cmnd result field if a command was executed, or a negative 204 * Linux error code if we didn't get that far. 205 */ 206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 207 int data_direction, void *buffer, unsigned bufflen, 208 unsigned char *sense, struct scsi_sense_hdr *sshdr, 209 int timeout, int retries, u64 flags, req_flags_t rq_flags, 210 int *resid) 211 { 212 struct request *req; 213 struct scsi_request *rq; 214 int ret; 215 216 req = blk_get_request(sdev->request_queue, 217 data_direction == DMA_TO_DEVICE ? 218 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 219 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 220 if (IS_ERR(req)) 221 return PTR_ERR(req); 222 223 rq = scsi_req(req); 224 225 if (bufflen) { 226 ret = blk_rq_map_kern(sdev->request_queue, req, 227 buffer, bufflen, GFP_NOIO); 228 if (ret) 229 goto out; 230 } 231 rq->cmd_len = COMMAND_SIZE(cmd[0]); 232 memcpy(rq->cmd, cmd, rq->cmd_len); 233 rq->retries = retries; 234 req->timeout = timeout; 235 req->cmd_flags |= flags; 236 req->rq_flags |= rq_flags | RQF_QUIET; 237 238 /* 239 * head injection *required* here otherwise quiesce won't work 240 */ 241 blk_execute_rq(NULL, req, 1); 242 243 /* 244 * Some devices (USB mass-storage in particular) may transfer 245 * garbage data together with a residue indicating that the data 246 * is invalid. Prevent the garbage from being misinterpreted 247 * and prevent security leaks by zeroing out the excess data. 248 */ 249 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 250 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 251 252 if (resid) 253 *resid = rq->resid_len; 254 if (sense && rq->sense_len) 255 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 256 if (sshdr) 257 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 258 ret = rq->result; 259 out: 260 blk_put_request(req); 261 262 return ret; 263 } 264 EXPORT_SYMBOL(__scsi_execute); 265 266 /* 267 * Wake up the error handler if necessary. Avoid as follows that the error 268 * handler is not woken up if host in-flight requests number == 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 270 * with an RCU read lock in this function to ensure that this function in 271 * its entirety either finishes before scsi_eh_scmd_add() increases the 272 * host_failed counter or that it notices the shost state change made by 273 * scsi_eh_scmd_add(). 274 */ 275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 276 { 277 unsigned long flags; 278 279 rcu_read_lock(); 280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 281 if (unlikely(scsi_host_in_recovery(shost))) { 282 spin_lock_irqsave(shost->host_lock, flags); 283 if (shost->host_failed || shost->host_eh_scheduled) 284 scsi_eh_wakeup(shost); 285 spin_unlock_irqrestore(shost->host_lock, flags); 286 } 287 rcu_read_unlock(); 288 } 289 290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 291 { 292 struct Scsi_Host *shost = sdev->host; 293 struct scsi_target *starget = scsi_target(sdev); 294 295 scsi_dec_host_busy(shost, cmd); 296 297 if (starget->can_queue > 0) 298 atomic_dec(&starget->target_busy); 299 300 sbitmap_put(&sdev->budget_map, cmd->budget_token); 301 cmd->budget_token = -1; 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 blk_mq_run_hw_queues(q, false); 307 } 308 309 /* 310 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 311 * and call blk_run_queue for all the scsi_devices on the target - 312 * including current_sdev first. 313 * 314 * Called with *no* scsi locks held. 315 */ 316 static void scsi_single_lun_run(struct scsi_device *current_sdev) 317 { 318 struct Scsi_Host *shost = current_sdev->host; 319 struct scsi_device *sdev, *tmp; 320 struct scsi_target *starget = scsi_target(current_sdev); 321 unsigned long flags; 322 323 spin_lock_irqsave(shost->host_lock, flags); 324 starget->starget_sdev_user = NULL; 325 spin_unlock_irqrestore(shost->host_lock, flags); 326 327 /* 328 * Call blk_run_queue for all LUNs on the target, starting with 329 * current_sdev. We race with others (to set starget_sdev_user), 330 * but in most cases, we will be first. Ideally, each LU on the 331 * target would get some limited time or requests on the target. 332 */ 333 scsi_kick_queue(current_sdev->request_queue); 334 335 spin_lock_irqsave(shost->host_lock, flags); 336 if (starget->starget_sdev_user) 337 goto out; 338 list_for_each_entry_safe(sdev, tmp, &starget->devices, 339 same_target_siblings) { 340 if (sdev == current_sdev) 341 continue; 342 if (scsi_device_get(sdev)) 343 continue; 344 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 scsi_kick_queue(sdev->request_queue); 347 spin_lock_irqsave(shost->host_lock, flags); 348 349 scsi_device_put(sdev); 350 } 351 out: 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 } 354 355 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 356 { 357 if (scsi_device_busy(sdev) >= sdev->queue_depth) 358 return true; 359 if (atomic_read(&sdev->device_blocked) > 0) 360 return true; 361 return false; 362 } 363 364 static inline bool scsi_target_is_busy(struct scsi_target *starget) 365 { 366 if (starget->can_queue > 0) { 367 if (atomic_read(&starget->target_busy) >= starget->can_queue) 368 return true; 369 if (atomic_read(&starget->target_blocked) > 0) 370 return true; 371 } 372 return false; 373 } 374 375 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 376 { 377 if (atomic_read(&shost->host_blocked) > 0) 378 return true; 379 if (shost->host_self_blocked) 380 return true; 381 return false; 382 } 383 384 static void scsi_starved_list_run(struct Scsi_Host *shost) 385 { 386 LIST_HEAD(starved_list); 387 struct scsi_device *sdev; 388 unsigned long flags; 389 390 spin_lock_irqsave(shost->host_lock, flags); 391 list_splice_init(&shost->starved_list, &starved_list); 392 393 while (!list_empty(&starved_list)) { 394 struct request_queue *slq; 395 396 /* 397 * As long as shost is accepting commands and we have 398 * starved queues, call blk_run_queue. scsi_request_fn 399 * drops the queue_lock and can add us back to the 400 * starved_list. 401 * 402 * host_lock protects the starved_list and starved_entry. 403 * scsi_request_fn must get the host_lock before checking 404 * or modifying starved_list or starved_entry. 405 */ 406 if (scsi_host_is_busy(shost)) 407 break; 408 409 sdev = list_entry(starved_list.next, 410 struct scsi_device, starved_entry); 411 list_del_init(&sdev->starved_entry); 412 if (scsi_target_is_busy(scsi_target(sdev))) { 413 list_move_tail(&sdev->starved_entry, 414 &shost->starved_list); 415 continue; 416 } 417 418 /* 419 * Once we drop the host lock, a racing scsi_remove_device() 420 * call may remove the sdev from the starved list and destroy 421 * it and the queue. Mitigate by taking a reference to the 422 * queue and never touching the sdev again after we drop the 423 * host lock. Note: if __scsi_remove_device() invokes 424 * blk_cleanup_queue() before the queue is run from this 425 * function then blk_run_queue() will return immediately since 426 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 427 */ 428 slq = sdev->request_queue; 429 if (!blk_get_queue(slq)) 430 continue; 431 spin_unlock_irqrestore(shost->host_lock, flags); 432 433 scsi_kick_queue(slq); 434 blk_put_queue(slq); 435 436 spin_lock_irqsave(shost->host_lock, flags); 437 } 438 /* put any unprocessed entries back */ 439 list_splice(&starved_list, &shost->starved_list); 440 spin_unlock_irqrestore(shost->host_lock, flags); 441 } 442 443 /** 444 * scsi_run_queue - Select a proper request queue to serve next. 445 * @q: last request's queue 446 * 447 * The previous command was completely finished, start a new one if possible. 448 */ 449 static void scsi_run_queue(struct request_queue *q) 450 { 451 struct scsi_device *sdev = q->queuedata; 452 453 if (scsi_target(sdev)->single_lun) 454 scsi_single_lun_run(sdev); 455 if (!list_empty(&sdev->host->starved_list)) 456 scsi_starved_list_run(sdev->host); 457 458 blk_mq_run_hw_queues(q, false); 459 } 460 461 void scsi_requeue_run_queue(struct work_struct *work) 462 { 463 struct scsi_device *sdev; 464 struct request_queue *q; 465 466 sdev = container_of(work, struct scsi_device, requeue_work); 467 q = sdev->request_queue; 468 scsi_run_queue(q); 469 } 470 471 void scsi_run_host_queues(struct Scsi_Host *shost) 472 { 473 struct scsi_device *sdev; 474 475 shost_for_each_device(sdev, shost) 476 scsi_run_queue(sdev->request_queue); 477 } 478 479 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 480 { 481 if (!blk_rq_is_passthrough(cmd->request)) { 482 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 483 484 if (drv->uninit_command) 485 drv->uninit_command(cmd); 486 } 487 } 488 489 void scsi_free_sgtables(struct scsi_cmnd *cmd) 490 { 491 if (cmd->sdb.table.nents) 492 sg_free_table_chained(&cmd->sdb.table, 493 SCSI_INLINE_SG_CNT); 494 if (scsi_prot_sg_count(cmd)) 495 sg_free_table_chained(&cmd->prot_sdb->table, 496 SCSI_INLINE_PROT_SG_CNT); 497 } 498 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 499 500 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 501 { 502 scsi_free_sgtables(cmd); 503 scsi_uninit_cmd(cmd); 504 } 505 506 static void scsi_run_queue_async(struct scsi_device *sdev) 507 { 508 if (scsi_target(sdev)->single_lun || 509 !list_empty(&sdev->host->starved_list)) { 510 kblockd_schedule_work(&sdev->requeue_work); 511 } else { 512 /* 513 * smp_mb() present in sbitmap_queue_clear() or implied in 514 * .end_io is for ordering writing .device_busy in 515 * scsi_device_unbusy() and reading sdev->restarts. 516 */ 517 int old = atomic_read(&sdev->restarts); 518 519 /* 520 * ->restarts has to be kept as non-zero if new budget 521 * contention occurs. 522 * 523 * No need to run queue when either another re-run 524 * queue wins in updating ->restarts or a new budget 525 * contention occurs. 526 */ 527 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 528 blk_mq_run_hw_queues(sdev->request_queue, true); 529 } 530 } 531 532 /* Returns false when no more bytes to process, true if there are more */ 533 static bool scsi_end_request(struct request *req, blk_status_t error, 534 unsigned int bytes) 535 { 536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 537 struct scsi_device *sdev = cmd->device; 538 struct request_queue *q = sdev->request_queue; 539 540 if (blk_update_request(req, error, bytes)) 541 return true; 542 543 if (blk_queue_add_random(q)) 544 add_disk_randomness(req->rq_disk); 545 546 if (!blk_rq_is_passthrough(req)) { 547 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 548 cmd->flags &= ~SCMD_INITIALIZED; 549 } 550 551 /* 552 * Calling rcu_barrier() is not necessary here because the 553 * SCSI error handler guarantees that the function called by 554 * call_rcu() has been called before scsi_end_request() is 555 * called. 556 */ 557 destroy_rcu_head(&cmd->rcu); 558 559 /* 560 * In the MQ case the command gets freed by __blk_mq_end_request, 561 * so we have to do all cleanup that depends on it earlier. 562 * 563 * We also can't kick the queues from irq context, so we 564 * will have to defer it to a workqueue. 565 */ 566 scsi_mq_uninit_cmd(cmd); 567 568 /* 569 * queue is still alive, so grab the ref for preventing it 570 * from being cleaned up during running queue. 571 */ 572 percpu_ref_get(&q->q_usage_counter); 573 574 __blk_mq_end_request(req, error); 575 576 scsi_run_queue_async(sdev); 577 578 percpu_ref_put(&q->q_usage_counter); 579 return false; 580 } 581 582 /** 583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 584 * @cmd: SCSI command 585 * @result: scsi error code 586 * 587 * Translate a SCSI result code into a blk_status_t value. May reset the host 588 * byte of @cmd->result. 589 */ 590 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 591 { 592 switch (host_byte(result)) { 593 case DID_OK: 594 if (scsi_status_is_good(result)) 595 return BLK_STS_OK; 596 return BLK_STS_IOERR; 597 case DID_TRANSPORT_FAILFAST: 598 case DID_TRANSPORT_MARGINAL: 599 return BLK_STS_TRANSPORT; 600 case DID_TARGET_FAILURE: 601 set_host_byte(cmd, DID_OK); 602 return BLK_STS_TARGET; 603 case DID_NEXUS_FAILURE: 604 set_host_byte(cmd, DID_OK); 605 return BLK_STS_NEXUS; 606 case DID_ALLOC_FAILURE: 607 set_host_byte(cmd, DID_OK); 608 return BLK_STS_NOSPC; 609 case DID_MEDIUM_ERROR: 610 set_host_byte(cmd, DID_OK); 611 return BLK_STS_MEDIUM; 612 default: 613 return BLK_STS_IOERR; 614 } 615 } 616 617 /* Helper for scsi_io_completion() when "reprep" action required. */ 618 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 619 struct request_queue *q) 620 { 621 /* A new command will be prepared and issued. */ 622 scsi_mq_requeue_cmd(cmd); 623 } 624 625 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 626 { 627 struct request *req = cmd->request; 628 unsigned long wait_for; 629 630 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 631 return false; 632 633 wait_for = (cmd->allowed + 1) * req->timeout; 634 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 635 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 636 wait_for/HZ); 637 return true; 638 } 639 return false; 640 } 641 642 /* Helper for scsi_io_completion() when special action required. */ 643 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 644 { 645 struct request_queue *q = cmd->device->request_queue; 646 struct request *req = cmd->request; 647 int level = 0; 648 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 649 ACTION_DELAYED_RETRY} action; 650 struct scsi_sense_hdr sshdr; 651 bool sense_valid; 652 bool sense_current = true; /* false implies "deferred sense" */ 653 blk_status_t blk_stat; 654 655 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 656 if (sense_valid) 657 sense_current = !scsi_sense_is_deferred(&sshdr); 658 659 blk_stat = scsi_result_to_blk_status(cmd, result); 660 661 if (host_byte(result) == DID_RESET) { 662 /* Third party bus reset or reset for error recovery 663 * reasons. Just retry the command and see what 664 * happens. 665 */ 666 action = ACTION_RETRY; 667 } else if (sense_valid && sense_current) { 668 switch (sshdr.sense_key) { 669 case UNIT_ATTENTION: 670 if (cmd->device->removable) { 671 /* Detected disc change. Set a bit 672 * and quietly refuse further access. 673 */ 674 cmd->device->changed = 1; 675 action = ACTION_FAIL; 676 } else { 677 /* Must have been a power glitch, or a 678 * bus reset. Could not have been a 679 * media change, so we just retry the 680 * command and see what happens. 681 */ 682 action = ACTION_RETRY; 683 } 684 break; 685 case ILLEGAL_REQUEST: 686 /* If we had an ILLEGAL REQUEST returned, then 687 * we may have performed an unsupported 688 * command. The only thing this should be 689 * would be a ten byte read where only a six 690 * byte read was supported. Also, on a system 691 * where READ CAPACITY failed, we may have 692 * read past the end of the disk. 693 */ 694 if ((cmd->device->use_10_for_rw && 695 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 696 (cmd->cmnd[0] == READ_10 || 697 cmd->cmnd[0] == WRITE_10)) { 698 /* This will issue a new 6-byte command. */ 699 cmd->device->use_10_for_rw = 0; 700 action = ACTION_REPREP; 701 } else if (sshdr.asc == 0x10) /* DIX */ { 702 action = ACTION_FAIL; 703 blk_stat = BLK_STS_PROTECTION; 704 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 705 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 706 action = ACTION_FAIL; 707 blk_stat = BLK_STS_TARGET; 708 } else 709 action = ACTION_FAIL; 710 break; 711 case ABORTED_COMMAND: 712 action = ACTION_FAIL; 713 if (sshdr.asc == 0x10) /* DIF */ 714 blk_stat = BLK_STS_PROTECTION; 715 break; 716 case NOT_READY: 717 /* If the device is in the process of becoming 718 * ready, or has a temporary blockage, retry. 719 */ 720 if (sshdr.asc == 0x04) { 721 switch (sshdr.ascq) { 722 case 0x01: /* becoming ready */ 723 case 0x04: /* format in progress */ 724 case 0x05: /* rebuild in progress */ 725 case 0x06: /* recalculation in progress */ 726 case 0x07: /* operation in progress */ 727 case 0x08: /* Long write in progress */ 728 case 0x09: /* self test in progress */ 729 case 0x11: /* notify (enable spinup) required */ 730 case 0x14: /* space allocation in progress */ 731 case 0x1a: /* start stop unit in progress */ 732 case 0x1b: /* sanitize in progress */ 733 case 0x1d: /* configuration in progress */ 734 case 0x24: /* depopulation in progress */ 735 action = ACTION_DELAYED_RETRY; 736 break; 737 case 0x0a: /* ALUA state transition */ 738 blk_stat = BLK_STS_AGAIN; 739 fallthrough; 740 default: 741 action = ACTION_FAIL; 742 break; 743 } 744 } else 745 action = ACTION_FAIL; 746 break; 747 case VOLUME_OVERFLOW: 748 /* See SSC3rXX or current. */ 749 action = ACTION_FAIL; 750 break; 751 case DATA_PROTECT: 752 action = ACTION_FAIL; 753 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 754 (sshdr.asc == 0x55 && 755 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 756 /* Insufficient zone resources */ 757 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 758 } 759 break; 760 default: 761 action = ACTION_FAIL; 762 break; 763 } 764 } else 765 action = ACTION_FAIL; 766 767 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 768 action = ACTION_FAIL; 769 770 switch (action) { 771 case ACTION_FAIL: 772 /* Give up and fail the remainder of the request */ 773 if (!(req->rq_flags & RQF_QUIET)) { 774 static DEFINE_RATELIMIT_STATE(_rs, 775 DEFAULT_RATELIMIT_INTERVAL, 776 DEFAULT_RATELIMIT_BURST); 777 778 if (unlikely(scsi_logging_level)) 779 level = 780 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 781 SCSI_LOG_MLCOMPLETE_BITS); 782 783 /* 784 * if logging is enabled the failure will be printed 785 * in scsi_log_completion(), so avoid duplicate messages 786 */ 787 if (!level && __ratelimit(&_rs)) { 788 scsi_print_result(cmd, NULL, FAILED); 789 if (sense_valid) 790 scsi_print_sense(cmd); 791 scsi_print_command(cmd); 792 } 793 } 794 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 795 return; 796 fallthrough; 797 case ACTION_REPREP: 798 scsi_io_completion_reprep(cmd, q); 799 break; 800 case ACTION_RETRY: 801 /* Retry the same command immediately */ 802 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 803 break; 804 case ACTION_DELAYED_RETRY: 805 /* Retry the same command after a delay */ 806 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 807 break; 808 } 809 } 810 811 /* 812 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 813 * new result that may suppress further error checking. Also modifies 814 * *blk_statp in some cases. 815 */ 816 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 817 blk_status_t *blk_statp) 818 { 819 bool sense_valid; 820 bool sense_current = true; /* false implies "deferred sense" */ 821 struct request *req = cmd->request; 822 struct scsi_sense_hdr sshdr; 823 824 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 825 if (sense_valid) 826 sense_current = !scsi_sense_is_deferred(&sshdr); 827 828 if (blk_rq_is_passthrough(req)) { 829 if (sense_valid) { 830 /* 831 * SG_IO wants current and deferred errors 832 */ 833 scsi_req(req)->sense_len = 834 min(8 + cmd->sense_buffer[7], 835 SCSI_SENSE_BUFFERSIZE); 836 } 837 if (sense_current) 838 *blk_statp = scsi_result_to_blk_status(cmd, result); 839 } else if (blk_rq_bytes(req) == 0 && sense_current) { 840 /* 841 * Flush commands do not transfers any data, and thus cannot use 842 * good_bytes != blk_rq_bytes(req) as the signal for an error. 843 * This sets *blk_statp explicitly for the problem case. 844 */ 845 *blk_statp = scsi_result_to_blk_status(cmd, result); 846 } 847 /* 848 * Recovered errors need reporting, but they're always treated as 849 * success, so fiddle the result code here. For passthrough requests 850 * we already took a copy of the original into sreq->result which 851 * is what gets returned to the user 852 */ 853 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 854 bool do_print = true; 855 /* 856 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 857 * skip print since caller wants ATA registers. Only occurs 858 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 859 */ 860 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 861 do_print = false; 862 else if (req->rq_flags & RQF_QUIET) 863 do_print = false; 864 if (do_print) 865 scsi_print_sense(cmd); 866 result = 0; 867 /* for passthrough, *blk_statp may be set */ 868 *blk_statp = BLK_STS_OK; 869 } 870 /* 871 * Another corner case: the SCSI status byte is non-zero but 'good'. 872 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 873 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 874 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 875 * intermediate statuses (both obsolete in SAM-4) as good. 876 */ 877 if ((result & 0xff) && scsi_status_is_good(result)) { 878 result = 0; 879 *blk_statp = BLK_STS_OK; 880 } 881 return result; 882 } 883 884 /** 885 * scsi_io_completion - Completion processing for SCSI commands. 886 * @cmd: command that is finished. 887 * @good_bytes: number of processed bytes. 888 * 889 * We will finish off the specified number of sectors. If we are done, the 890 * command block will be released and the queue function will be goosed. If we 891 * are not done then we have to figure out what to do next: 892 * 893 * a) We can call scsi_io_completion_reprep(). The request will be 894 * unprepared and put back on the queue. Then a new command will 895 * be created for it. This should be used if we made forward 896 * progress, or if we want to switch from READ(10) to READ(6) for 897 * example. 898 * 899 * b) We can call scsi_io_completion_action(). The request will be 900 * put back on the queue and retried using the same command as 901 * before, possibly after a delay. 902 * 903 * c) We can call scsi_end_request() with blk_stat other than 904 * BLK_STS_OK, to fail the remainder of the request. 905 */ 906 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 907 { 908 int result = cmd->result; 909 struct request_queue *q = cmd->device->request_queue; 910 struct request *req = cmd->request; 911 blk_status_t blk_stat = BLK_STS_OK; 912 913 if (unlikely(result)) /* a nz result may or may not be an error */ 914 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 915 916 if (unlikely(blk_rq_is_passthrough(req))) { 917 /* 918 * scsi_result_to_blk_status may have reset the host_byte 919 */ 920 scsi_req(req)->result = cmd->result; 921 } 922 923 /* 924 * Next deal with any sectors which we were able to correctly 925 * handle. 926 */ 927 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 928 "%u sectors total, %d bytes done.\n", 929 blk_rq_sectors(req), good_bytes)); 930 931 /* 932 * Failed, zero length commands always need to drop down 933 * to retry code. Fast path should return in this block. 934 */ 935 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 936 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 937 return; /* no bytes remaining */ 938 } 939 940 /* Kill remainder if no retries. */ 941 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 942 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 943 WARN_ONCE(true, 944 "Bytes remaining after failed, no-retry command"); 945 return; 946 } 947 948 /* 949 * If there had been no error, but we have leftover bytes in the 950 * requeues just queue the command up again. 951 */ 952 if (likely(result == 0)) 953 scsi_io_completion_reprep(cmd, q); 954 else 955 scsi_io_completion_action(cmd, result); 956 } 957 958 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 959 struct request *rq) 960 { 961 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 962 !op_is_write(req_op(rq)) && 963 sdev->host->hostt->dma_need_drain(rq); 964 } 965 966 /** 967 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 968 * @cmd: SCSI command data structure to initialize. 969 * 970 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 971 * for @cmd. 972 * 973 * Returns: 974 * * BLK_STS_OK - on success 975 * * BLK_STS_RESOURCE - if the failure is retryable 976 * * BLK_STS_IOERR - if the failure is fatal 977 */ 978 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 979 { 980 struct scsi_device *sdev = cmd->device; 981 struct request *rq = cmd->request; 982 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 983 struct scatterlist *last_sg = NULL; 984 blk_status_t ret; 985 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 986 int count; 987 988 if (WARN_ON_ONCE(!nr_segs)) 989 return BLK_STS_IOERR; 990 991 /* 992 * Make sure there is space for the drain. The driver must adjust 993 * max_hw_segments to be prepared for this. 994 */ 995 if (need_drain) 996 nr_segs++; 997 998 /* 999 * If sg table allocation fails, requeue request later. 1000 */ 1001 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1002 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1003 return BLK_STS_RESOURCE; 1004 1005 /* 1006 * Next, walk the list, and fill in the addresses and sizes of 1007 * each segment. 1008 */ 1009 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1010 1011 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1012 unsigned int pad_len = 1013 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1014 1015 last_sg->length += pad_len; 1016 cmd->extra_len += pad_len; 1017 } 1018 1019 if (need_drain) { 1020 sg_unmark_end(last_sg); 1021 last_sg = sg_next(last_sg); 1022 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1023 sg_mark_end(last_sg); 1024 1025 cmd->extra_len += sdev->dma_drain_len; 1026 count++; 1027 } 1028 1029 BUG_ON(count > cmd->sdb.table.nents); 1030 cmd->sdb.table.nents = count; 1031 cmd->sdb.length = blk_rq_payload_bytes(rq); 1032 1033 if (blk_integrity_rq(rq)) { 1034 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1035 int ivecs; 1036 1037 if (WARN_ON_ONCE(!prot_sdb)) { 1038 /* 1039 * This can happen if someone (e.g. multipath) 1040 * queues a command to a device on an adapter 1041 * that does not support DIX. 1042 */ 1043 ret = BLK_STS_IOERR; 1044 goto out_free_sgtables; 1045 } 1046 1047 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1048 1049 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1050 prot_sdb->table.sgl, 1051 SCSI_INLINE_PROT_SG_CNT)) { 1052 ret = BLK_STS_RESOURCE; 1053 goto out_free_sgtables; 1054 } 1055 1056 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1057 prot_sdb->table.sgl); 1058 BUG_ON(count > ivecs); 1059 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1060 1061 cmd->prot_sdb = prot_sdb; 1062 cmd->prot_sdb->table.nents = count; 1063 } 1064 1065 return BLK_STS_OK; 1066 out_free_sgtables: 1067 scsi_free_sgtables(cmd); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL(scsi_alloc_sgtables); 1071 1072 /** 1073 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1074 * @rq: Request associated with the SCSI command to be initialized. 1075 * 1076 * This function initializes the members of struct scsi_cmnd that must be 1077 * initialized before request processing starts and that won't be 1078 * reinitialized if a SCSI command is requeued. 1079 * 1080 * Called from inside blk_get_request() for pass-through requests and from 1081 * inside scsi_init_command() for filesystem requests. 1082 */ 1083 static void scsi_initialize_rq(struct request *rq) 1084 { 1085 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1086 1087 scsi_req_init(&cmd->req); 1088 init_rcu_head(&cmd->rcu); 1089 cmd->jiffies_at_alloc = jiffies; 1090 cmd->retries = 0; 1091 } 1092 1093 /* 1094 * Only called when the request isn't completed by SCSI, and not freed by 1095 * SCSI 1096 */ 1097 static void scsi_cleanup_rq(struct request *rq) 1098 { 1099 if (rq->rq_flags & RQF_DONTPREP) { 1100 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1101 rq->rq_flags &= ~RQF_DONTPREP; 1102 } 1103 } 1104 1105 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1106 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1107 { 1108 void *buf = cmd->sense_buffer; 1109 void *prot = cmd->prot_sdb; 1110 struct request *rq = blk_mq_rq_from_pdu(cmd); 1111 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1112 unsigned long jiffies_at_alloc; 1113 int retries, to_clear; 1114 bool in_flight; 1115 int budget_token = cmd->budget_token; 1116 1117 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) { 1118 flags |= SCMD_INITIALIZED; 1119 scsi_initialize_rq(rq); 1120 } 1121 1122 jiffies_at_alloc = cmd->jiffies_at_alloc; 1123 retries = cmd->retries; 1124 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1125 /* 1126 * Zero out the cmd, except for the embedded scsi_request. Only clear 1127 * the driver-private command data if the LLD does not supply a 1128 * function to initialize that data. 1129 */ 1130 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1131 if (!dev->host->hostt->init_cmd_priv) 1132 to_clear += dev->host->hostt->cmd_size; 1133 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1134 1135 cmd->device = dev; 1136 cmd->sense_buffer = buf; 1137 cmd->prot_sdb = prot; 1138 cmd->flags = flags; 1139 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1140 cmd->jiffies_at_alloc = jiffies_at_alloc; 1141 cmd->retries = retries; 1142 if (in_flight) 1143 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1144 cmd->budget_token = budget_token; 1145 1146 } 1147 1148 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1149 struct request *req) 1150 { 1151 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1152 1153 /* 1154 * Passthrough requests may transfer data, in which case they must 1155 * a bio attached to them. Or they might contain a SCSI command 1156 * that does not transfer data, in which case they may optionally 1157 * submit a request without an attached bio. 1158 */ 1159 if (req->bio) { 1160 blk_status_t ret = scsi_alloc_sgtables(cmd); 1161 if (unlikely(ret != BLK_STS_OK)) 1162 return ret; 1163 } else { 1164 BUG_ON(blk_rq_bytes(req)); 1165 1166 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1167 } 1168 1169 cmd->cmd_len = scsi_req(req)->cmd_len; 1170 if (cmd->cmd_len == 0) 1171 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1172 cmd->cmnd = scsi_req(req)->cmd; 1173 cmd->transfersize = blk_rq_bytes(req); 1174 cmd->allowed = scsi_req(req)->retries; 1175 return BLK_STS_OK; 1176 } 1177 1178 static blk_status_t 1179 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1180 { 1181 switch (sdev->sdev_state) { 1182 case SDEV_CREATED: 1183 return BLK_STS_OK; 1184 case SDEV_OFFLINE: 1185 case SDEV_TRANSPORT_OFFLINE: 1186 /* 1187 * If the device is offline we refuse to process any 1188 * commands. The device must be brought online 1189 * before trying any recovery commands. 1190 */ 1191 if (!sdev->offline_already) { 1192 sdev->offline_already = true; 1193 sdev_printk(KERN_ERR, sdev, 1194 "rejecting I/O to offline device\n"); 1195 } 1196 return BLK_STS_IOERR; 1197 case SDEV_DEL: 1198 /* 1199 * If the device is fully deleted, we refuse to 1200 * process any commands as well. 1201 */ 1202 sdev_printk(KERN_ERR, sdev, 1203 "rejecting I/O to dead device\n"); 1204 return BLK_STS_IOERR; 1205 case SDEV_BLOCK: 1206 case SDEV_CREATED_BLOCK: 1207 return BLK_STS_RESOURCE; 1208 case SDEV_QUIESCE: 1209 /* 1210 * If the device is blocked we only accept power management 1211 * commands. 1212 */ 1213 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1214 return BLK_STS_RESOURCE; 1215 return BLK_STS_OK; 1216 default: 1217 /* 1218 * For any other not fully online state we only allow 1219 * power management commands. 1220 */ 1221 if (req && !(req->rq_flags & RQF_PM)) 1222 return BLK_STS_IOERR; 1223 return BLK_STS_OK; 1224 } 1225 } 1226 1227 /* 1228 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1229 * and return the token else return -1. 1230 */ 1231 static inline int scsi_dev_queue_ready(struct request_queue *q, 1232 struct scsi_device *sdev) 1233 { 1234 int token; 1235 1236 token = sbitmap_get(&sdev->budget_map); 1237 if (atomic_read(&sdev->device_blocked)) { 1238 if (token < 0) 1239 goto out; 1240 1241 if (scsi_device_busy(sdev) > 1) 1242 goto out_dec; 1243 1244 /* 1245 * unblock after device_blocked iterates to zero 1246 */ 1247 if (atomic_dec_return(&sdev->device_blocked) > 0) 1248 goto out_dec; 1249 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1250 "unblocking device at zero depth\n")); 1251 } 1252 1253 return token; 1254 out_dec: 1255 if (token >= 0) 1256 sbitmap_put(&sdev->budget_map, token); 1257 out: 1258 return -1; 1259 } 1260 1261 /* 1262 * scsi_target_queue_ready: checks if there we can send commands to target 1263 * @sdev: scsi device on starget to check. 1264 */ 1265 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1266 struct scsi_device *sdev) 1267 { 1268 struct scsi_target *starget = scsi_target(sdev); 1269 unsigned int busy; 1270 1271 if (starget->single_lun) { 1272 spin_lock_irq(shost->host_lock); 1273 if (starget->starget_sdev_user && 1274 starget->starget_sdev_user != sdev) { 1275 spin_unlock_irq(shost->host_lock); 1276 return 0; 1277 } 1278 starget->starget_sdev_user = sdev; 1279 spin_unlock_irq(shost->host_lock); 1280 } 1281 1282 if (starget->can_queue <= 0) 1283 return 1; 1284 1285 busy = atomic_inc_return(&starget->target_busy) - 1; 1286 if (atomic_read(&starget->target_blocked) > 0) { 1287 if (busy) 1288 goto starved; 1289 1290 /* 1291 * unblock after target_blocked iterates to zero 1292 */ 1293 if (atomic_dec_return(&starget->target_blocked) > 0) 1294 goto out_dec; 1295 1296 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1297 "unblocking target at zero depth\n")); 1298 } 1299 1300 if (busy >= starget->can_queue) 1301 goto starved; 1302 1303 return 1; 1304 1305 starved: 1306 spin_lock_irq(shost->host_lock); 1307 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1308 spin_unlock_irq(shost->host_lock); 1309 out_dec: 1310 if (starget->can_queue > 0) 1311 atomic_dec(&starget->target_busy); 1312 return 0; 1313 } 1314 1315 /* 1316 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1317 * return 0. We must end up running the queue again whenever 0 is 1318 * returned, else IO can hang. 1319 */ 1320 static inline int scsi_host_queue_ready(struct request_queue *q, 1321 struct Scsi_Host *shost, 1322 struct scsi_device *sdev, 1323 struct scsi_cmnd *cmd) 1324 { 1325 if (scsi_host_in_recovery(shost)) 1326 return 0; 1327 1328 if (atomic_read(&shost->host_blocked) > 0) { 1329 if (scsi_host_busy(shost) > 0) 1330 goto starved; 1331 1332 /* 1333 * unblock after host_blocked iterates to zero 1334 */ 1335 if (atomic_dec_return(&shost->host_blocked) > 0) 1336 goto out_dec; 1337 1338 SCSI_LOG_MLQUEUE(3, 1339 shost_printk(KERN_INFO, shost, 1340 "unblocking host at zero depth\n")); 1341 } 1342 1343 if (shost->host_self_blocked) 1344 goto starved; 1345 1346 /* We're OK to process the command, so we can't be starved */ 1347 if (!list_empty(&sdev->starved_entry)) { 1348 spin_lock_irq(shost->host_lock); 1349 if (!list_empty(&sdev->starved_entry)) 1350 list_del_init(&sdev->starved_entry); 1351 spin_unlock_irq(shost->host_lock); 1352 } 1353 1354 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1355 1356 return 1; 1357 1358 starved: 1359 spin_lock_irq(shost->host_lock); 1360 if (list_empty(&sdev->starved_entry)) 1361 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1362 spin_unlock_irq(shost->host_lock); 1363 out_dec: 1364 scsi_dec_host_busy(shost, cmd); 1365 return 0; 1366 } 1367 1368 /* 1369 * Busy state exporting function for request stacking drivers. 1370 * 1371 * For efficiency, no lock is taken to check the busy state of 1372 * shost/starget/sdev, since the returned value is not guaranteed and 1373 * may be changed after request stacking drivers call the function, 1374 * regardless of taking lock or not. 1375 * 1376 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1377 * needs to return 'not busy'. Otherwise, request stacking drivers 1378 * may hold requests forever. 1379 */ 1380 static bool scsi_mq_lld_busy(struct request_queue *q) 1381 { 1382 struct scsi_device *sdev = q->queuedata; 1383 struct Scsi_Host *shost; 1384 1385 if (blk_queue_dying(q)) 1386 return false; 1387 1388 shost = sdev->host; 1389 1390 /* 1391 * Ignore host/starget busy state. 1392 * Since block layer does not have a concept of fairness across 1393 * multiple queues, congestion of host/starget needs to be handled 1394 * in SCSI layer. 1395 */ 1396 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 /* 1403 * Block layer request completion callback. May be called from interrupt 1404 * context. 1405 */ 1406 static void scsi_complete(struct request *rq) 1407 { 1408 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1409 enum scsi_disposition disposition; 1410 1411 INIT_LIST_HEAD(&cmd->eh_entry); 1412 1413 atomic_inc(&cmd->device->iodone_cnt); 1414 if (cmd->result) 1415 atomic_inc(&cmd->device->ioerr_cnt); 1416 1417 disposition = scsi_decide_disposition(cmd); 1418 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1419 disposition = SUCCESS; 1420 1421 scsi_log_completion(cmd, disposition); 1422 1423 switch (disposition) { 1424 case SUCCESS: 1425 scsi_finish_command(cmd); 1426 break; 1427 case NEEDS_RETRY: 1428 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1429 break; 1430 case ADD_TO_MLQUEUE: 1431 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1432 break; 1433 default: 1434 scsi_eh_scmd_add(cmd); 1435 break; 1436 } 1437 } 1438 1439 /** 1440 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1441 * @cmd: command block we are dispatching. 1442 * 1443 * Return: nonzero return request was rejected and device's queue needs to be 1444 * plugged. 1445 */ 1446 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1447 { 1448 struct Scsi_Host *host = cmd->device->host; 1449 int rtn = 0; 1450 1451 atomic_inc(&cmd->device->iorequest_cnt); 1452 1453 /* check if the device is still usable */ 1454 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1455 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1456 * returns an immediate error upwards, and signals 1457 * that the device is no longer present */ 1458 cmd->result = DID_NO_CONNECT << 16; 1459 goto done; 1460 } 1461 1462 /* Check to see if the scsi lld made this device blocked. */ 1463 if (unlikely(scsi_device_blocked(cmd->device))) { 1464 /* 1465 * in blocked state, the command is just put back on 1466 * the device queue. The suspend state has already 1467 * blocked the queue so future requests should not 1468 * occur until the device transitions out of the 1469 * suspend state. 1470 */ 1471 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1472 "queuecommand : device blocked\n")); 1473 return SCSI_MLQUEUE_DEVICE_BUSY; 1474 } 1475 1476 /* Store the LUN value in cmnd, if needed. */ 1477 if (cmd->device->lun_in_cdb) 1478 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1479 (cmd->device->lun << 5 & 0xe0); 1480 1481 scsi_log_send(cmd); 1482 1483 /* 1484 * Before we queue this command, check if the command 1485 * length exceeds what the host adapter can handle. 1486 */ 1487 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1488 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1489 "queuecommand : command too long. " 1490 "cdb_size=%d host->max_cmd_len=%d\n", 1491 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1492 cmd->result = (DID_ABORT << 16); 1493 goto done; 1494 } 1495 1496 if (unlikely(host->shost_state == SHOST_DEL)) { 1497 cmd->result = (DID_NO_CONNECT << 16); 1498 goto done; 1499 1500 } 1501 1502 trace_scsi_dispatch_cmd_start(cmd); 1503 rtn = host->hostt->queuecommand(host, cmd); 1504 if (rtn) { 1505 trace_scsi_dispatch_cmd_error(cmd, rtn); 1506 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1507 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1508 rtn = SCSI_MLQUEUE_HOST_BUSY; 1509 1510 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1511 "queuecommand : request rejected\n")); 1512 } 1513 1514 return rtn; 1515 done: 1516 cmd->scsi_done(cmd); 1517 return 0; 1518 } 1519 1520 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1521 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1522 { 1523 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1524 sizeof(struct scatterlist); 1525 } 1526 1527 static blk_status_t scsi_prepare_cmd(struct request *req) 1528 { 1529 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1530 struct scsi_device *sdev = req->q->queuedata; 1531 struct Scsi_Host *shost = sdev->host; 1532 struct scatterlist *sg; 1533 1534 scsi_init_command(sdev, cmd); 1535 1536 cmd->request = req; 1537 cmd->tag = req->tag; 1538 cmd->prot_op = SCSI_PROT_NORMAL; 1539 if (blk_rq_bytes(req)) 1540 cmd->sc_data_direction = rq_dma_dir(req); 1541 else 1542 cmd->sc_data_direction = DMA_NONE; 1543 1544 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1545 cmd->sdb.table.sgl = sg; 1546 1547 if (scsi_host_get_prot(shost)) { 1548 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1549 1550 cmd->prot_sdb->table.sgl = 1551 (struct scatterlist *)(cmd->prot_sdb + 1); 1552 } 1553 1554 /* 1555 * Special handling for passthrough commands, which don't go to the ULP 1556 * at all: 1557 */ 1558 if (blk_rq_is_passthrough(req)) 1559 return scsi_setup_scsi_cmnd(sdev, req); 1560 1561 if (sdev->handler && sdev->handler->prep_fn) { 1562 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1563 1564 if (ret != BLK_STS_OK) 1565 return ret; 1566 } 1567 1568 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1569 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1570 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1571 } 1572 1573 static void scsi_mq_done(struct scsi_cmnd *cmd) 1574 { 1575 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1576 return; 1577 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1578 return; 1579 trace_scsi_dispatch_cmd_done(cmd); 1580 blk_mq_complete_request(cmd->request); 1581 } 1582 1583 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1584 { 1585 struct scsi_device *sdev = q->queuedata; 1586 1587 sbitmap_put(&sdev->budget_map, budget_token); 1588 } 1589 1590 static int scsi_mq_get_budget(struct request_queue *q) 1591 { 1592 struct scsi_device *sdev = q->queuedata; 1593 int token = scsi_dev_queue_ready(q, sdev); 1594 1595 if (token >= 0) 1596 return token; 1597 1598 atomic_inc(&sdev->restarts); 1599 1600 /* 1601 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1602 * .restarts must be incremented before .device_busy is read because the 1603 * code in scsi_run_queue_async() depends on the order of these operations. 1604 */ 1605 smp_mb__after_atomic(); 1606 1607 /* 1608 * If all in-flight requests originated from this LUN are completed 1609 * before reading .device_busy, sdev->device_busy will be observed as 1610 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1611 * soon. Otherwise, completion of one of these requests will observe 1612 * the .restarts flag, and the request queue will be run for handling 1613 * this request, see scsi_end_request(). 1614 */ 1615 if (unlikely(scsi_device_busy(sdev) == 0 && 1616 !scsi_device_blocked(sdev))) 1617 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1618 return -1; 1619 } 1620 1621 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1622 { 1623 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1624 1625 cmd->budget_token = token; 1626 } 1627 1628 static int scsi_mq_get_rq_budget_token(struct request *req) 1629 { 1630 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1631 1632 return cmd->budget_token; 1633 } 1634 1635 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1636 const struct blk_mq_queue_data *bd) 1637 { 1638 struct request *req = bd->rq; 1639 struct request_queue *q = req->q; 1640 struct scsi_device *sdev = q->queuedata; 1641 struct Scsi_Host *shost = sdev->host; 1642 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1643 blk_status_t ret; 1644 int reason; 1645 1646 WARN_ON_ONCE(cmd->budget_token < 0); 1647 1648 /* 1649 * If the device is not in running state we will reject some or all 1650 * commands. 1651 */ 1652 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1653 ret = scsi_device_state_check(sdev, req); 1654 if (ret != BLK_STS_OK) 1655 goto out_put_budget; 1656 } 1657 1658 ret = BLK_STS_RESOURCE; 1659 if (!scsi_target_queue_ready(shost, sdev)) 1660 goto out_put_budget; 1661 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1662 goto out_dec_target_busy; 1663 1664 if (!(req->rq_flags & RQF_DONTPREP)) { 1665 ret = scsi_prepare_cmd(req); 1666 if (ret != BLK_STS_OK) 1667 goto out_dec_host_busy; 1668 req->rq_flags |= RQF_DONTPREP; 1669 } else { 1670 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1671 } 1672 1673 cmd->flags &= SCMD_PRESERVED_FLAGS; 1674 if (sdev->simple_tags) 1675 cmd->flags |= SCMD_TAGGED; 1676 if (bd->last) 1677 cmd->flags |= SCMD_LAST; 1678 1679 scsi_set_resid(cmd, 0); 1680 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1681 cmd->scsi_done = scsi_mq_done; 1682 1683 blk_mq_start_request(req); 1684 reason = scsi_dispatch_cmd(cmd); 1685 if (reason) { 1686 scsi_set_blocked(cmd, reason); 1687 ret = BLK_STS_RESOURCE; 1688 goto out_dec_host_busy; 1689 } 1690 1691 return BLK_STS_OK; 1692 1693 out_dec_host_busy: 1694 scsi_dec_host_busy(shost, cmd); 1695 out_dec_target_busy: 1696 if (scsi_target(sdev)->can_queue > 0) 1697 atomic_dec(&scsi_target(sdev)->target_busy); 1698 out_put_budget: 1699 scsi_mq_put_budget(q, cmd->budget_token); 1700 cmd->budget_token = -1; 1701 switch (ret) { 1702 case BLK_STS_OK: 1703 break; 1704 case BLK_STS_RESOURCE: 1705 case BLK_STS_ZONE_RESOURCE: 1706 if (scsi_device_blocked(sdev)) 1707 ret = BLK_STS_DEV_RESOURCE; 1708 break; 1709 case BLK_STS_AGAIN: 1710 scsi_req(req)->result = DID_BUS_BUSY << 16; 1711 if (req->rq_flags & RQF_DONTPREP) 1712 scsi_mq_uninit_cmd(cmd); 1713 break; 1714 default: 1715 if (unlikely(!scsi_device_online(sdev))) 1716 scsi_req(req)->result = DID_NO_CONNECT << 16; 1717 else 1718 scsi_req(req)->result = DID_ERROR << 16; 1719 /* 1720 * Make sure to release all allocated resources when 1721 * we hit an error, as we will never see this command 1722 * again. 1723 */ 1724 if (req->rq_flags & RQF_DONTPREP) 1725 scsi_mq_uninit_cmd(cmd); 1726 scsi_run_queue_async(sdev); 1727 break; 1728 } 1729 return ret; 1730 } 1731 1732 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1733 bool reserved) 1734 { 1735 if (reserved) 1736 return BLK_EH_RESET_TIMER; 1737 return scsi_times_out(req); 1738 } 1739 1740 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1741 unsigned int hctx_idx, unsigned int numa_node) 1742 { 1743 struct Scsi_Host *shost = set->driver_data; 1744 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1745 struct scatterlist *sg; 1746 int ret = 0; 1747 1748 cmd->sense_buffer = 1749 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1750 if (!cmd->sense_buffer) 1751 return -ENOMEM; 1752 cmd->req.sense = cmd->sense_buffer; 1753 1754 if (scsi_host_get_prot(shost)) { 1755 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1756 shost->hostt->cmd_size; 1757 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1758 } 1759 1760 if (shost->hostt->init_cmd_priv) { 1761 ret = shost->hostt->init_cmd_priv(shost, cmd); 1762 if (ret < 0) 1763 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1764 } 1765 1766 return ret; 1767 } 1768 1769 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1770 unsigned int hctx_idx) 1771 { 1772 struct Scsi_Host *shost = set->driver_data; 1773 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1774 1775 if (shost->hostt->exit_cmd_priv) 1776 shost->hostt->exit_cmd_priv(shost, cmd); 1777 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1778 } 1779 1780 1781 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx) 1782 { 1783 struct Scsi_Host *shost = hctx->driver_data; 1784 1785 if (shost->hostt->mq_poll) 1786 return shost->hostt->mq_poll(shost, hctx->queue_num); 1787 1788 return 0; 1789 } 1790 1791 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1792 unsigned int hctx_idx) 1793 { 1794 struct Scsi_Host *shost = data; 1795 1796 hctx->driver_data = shost; 1797 return 0; 1798 } 1799 1800 static int scsi_map_queues(struct blk_mq_tag_set *set) 1801 { 1802 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1803 1804 if (shost->hostt->map_queues) 1805 return shost->hostt->map_queues(shost); 1806 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1807 } 1808 1809 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1810 { 1811 struct device *dev = shost->dma_dev; 1812 1813 /* 1814 * this limit is imposed by hardware restrictions 1815 */ 1816 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1817 SG_MAX_SEGMENTS)); 1818 1819 if (scsi_host_prot_dma(shost)) { 1820 shost->sg_prot_tablesize = 1821 min_not_zero(shost->sg_prot_tablesize, 1822 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1823 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1824 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1825 } 1826 1827 if (dev->dma_mask) { 1828 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1829 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1830 } 1831 blk_queue_max_hw_sectors(q, shost->max_sectors); 1832 blk_queue_segment_boundary(q, shost->dma_boundary); 1833 dma_set_seg_boundary(dev, shost->dma_boundary); 1834 1835 blk_queue_max_segment_size(q, shost->max_segment_size); 1836 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1837 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1838 1839 /* 1840 * Set a reasonable default alignment: The larger of 32-byte (dword), 1841 * which is a common minimum for HBAs, and the minimum DMA alignment, 1842 * which is set by the platform. 1843 * 1844 * Devices that require a bigger alignment can increase it later. 1845 */ 1846 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1847 } 1848 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1849 1850 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1851 .get_budget = scsi_mq_get_budget, 1852 .put_budget = scsi_mq_put_budget, 1853 .queue_rq = scsi_queue_rq, 1854 .complete = scsi_complete, 1855 .timeout = scsi_timeout, 1856 #ifdef CONFIG_BLK_DEBUG_FS 1857 .show_rq = scsi_show_rq, 1858 #endif 1859 .init_request = scsi_mq_init_request, 1860 .exit_request = scsi_mq_exit_request, 1861 .initialize_rq_fn = scsi_initialize_rq, 1862 .cleanup_rq = scsi_cleanup_rq, 1863 .busy = scsi_mq_lld_busy, 1864 .map_queues = scsi_map_queues, 1865 .init_hctx = scsi_init_hctx, 1866 .poll = scsi_mq_poll, 1867 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1868 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1869 }; 1870 1871 1872 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1873 { 1874 struct Scsi_Host *shost = hctx->driver_data; 1875 1876 shost->hostt->commit_rqs(shost, hctx->queue_num); 1877 } 1878 1879 static const struct blk_mq_ops scsi_mq_ops = { 1880 .get_budget = scsi_mq_get_budget, 1881 .put_budget = scsi_mq_put_budget, 1882 .queue_rq = scsi_queue_rq, 1883 .commit_rqs = scsi_commit_rqs, 1884 .complete = scsi_complete, 1885 .timeout = scsi_timeout, 1886 #ifdef CONFIG_BLK_DEBUG_FS 1887 .show_rq = scsi_show_rq, 1888 #endif 1889 .init_request = scsi_mq_init_request, 1890 .exit_request = scsi_mq_exit_request, 1891 .initialize_rq_fn = scsi_initialize_rq, 1892 .cleanup_rq = scsi_cleanup_rq, 1893 .busy = scsi_mq_lld_busy, 1894 .map_queues = scsi_map_queues, 1895 .init_hctx = scsi_init_hctx, 1896 .poll = scsi_mq_poll, 1897 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1898 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1899 }; 1900 1901 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1902 { 1903 unsigned int cmd_size, sgl_size; 1904 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1905 1906 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1907 scsi_mq_inline_sgl_size(shost)); 1908 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1909 if (scsi_host_get_prot(shost)) 1910 cmd_size += sizeof(struct scsi_data_buffer) + 1911 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1912 1913 memset(tag_set, 0, sizeof(*tag_set)); 1914 if (shost->hostt->commit_rqs) 1915 tag_set->ops = &scsi_mq_ops; 1916 else 1917 tag_set->ops = &scsi_mq_ops_no_commit; 1918 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1919 tag_set->nr_maps = shost->nr_maps ? : 1; 1920 tag_set->queue_depth = shost->can_queue; 1921 tag_set->cmd_size = cmd_size; 1922 tag_set->numa_node = NUMA_NO_NODE; 1923 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1924 tag_set->flags |= 1925 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1926 tag_set->driver_data = shost; 1927 if (shost->host_tagset) 1928 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1929 1930 return blk_mq_alloc_tag_set(tag_set); 1931 } 1932 1933 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1934 { 1935 blk_mq_free_tag_set(&shost->tag_set); 1936 } 1937 1938 /** 1939 * scsi_device_from_queue - return sdev associated with a request_queue 1940 * @q: The request queue to return the sdev from 1941 * 1942 * Return the sdev associated with a request queue or NULL if the 1943 * request_queue does not reference a SCSI device. 1944 */ 1945 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1946 { 1947 struct scsi_device *sdev = NULL; 1948 1949 if (q->mq_ops == &scsi_mq_ops_no_commit || 1950 q->mq_ops == &scsi_mq_ops) 1951 sdev = q->queuedata; 1952 if (!sdev || !get_device(&sdev->sdev_gendev)) 1953 sdev = NULL; 1954 1955 return sdev; 1956 } 1957 1958 /** 1959 * scsi_block_requests - Utility function used by low-level drivers to prevent 1960 * further commands from being queued to the device. 1961 * @shost: host in question 1962 * 1963 * There is no timer nor any other means by which the requests get unblocked 1964 * other than the low-level driver calling scsi_unblock_requests(). 1965 */ 1966 void scsi_block_requests(struct Scsi_Host *shost) 1967 { 1968 shost->host_self_blocked = 1; 1969 } 1970 EXPORT_SYMBOL(scsi_block_requests); 1971 1972 /** 1973 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1974 * further commands to be queued to the device. 1975 * @shost: host in question 1976 * 1977 * There is no timer nor any other means by which the requests get unblocked 1978 * other than the low-level driver calling scsi_unblock_requests(). This is done 1979 * as an API function so that changes to the internals of the scsi mid-layer 1980 * won't require wholesale changes to drivers that use this feature. 1981 */ 1982 void scsi_unblock_requests(struct Scsi_Host *shost) 1983 { 1984 shost->host_self_blocked = 0; 1985 scsi_run_host_queues(shost); 1986 } 1987 EXPORT_SYMBOL(scsi_unblock_requests); 1988 1989 void scsi_exit_queue(void) 1990 { 1991 kmem_cache_destroy(scsi_sense_cache); 1992 } 1993 1994 /** 1995 * scsi_mode_select - issue a mode select 1996 * @sdev: SCSI device to be queried 1997 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1998 * @sp: Save page bit (0 == don't save, 1 == save) 1999 * @modepage: mode page being requested 2000 * @buffer: request buffer (may not be smaller than eight bytes) 2001 * @len: length of request buffer. 2002 * @timeout: command timeout 2003 * @retries: number of retries before failing 2004 * @data: returns a structure abstracting the mode header data 2005 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2006 * must be SCSI_SENSE_BUFFERSIZE big. 2007 * 2008 * Returns zero if successful; negative error number or scsi 2009 * status on error 2010 * 2011 */ 2012 int 2013 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2014 unsigned char *buffer, int len, int timeout, int retries, 2015 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2016 { 2017 unsigned char cmd[10]; 2018 unsigned char *real_buffer; 2019 int ret; 2020 2021 memset(cmd, 0, sizeof(cmd)); 2022 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2023 2024 if (sdev->use_10_for_ms) { 2025 if (len > 65535) 2026 return -EINVAL; 2027 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2028 if (!real_buffer) 2029 return -ENOMEM; 2030 memcpy(real_buffer + 8, buffer, len); 2031 len += 8; 2032 real_buffer[0] = 0; 2033 real_buffer[1] = 0; 2034 real_buffer[2] = data->medium_type; 2035 real_buffer[3] = data->device_specific; 2036 real_buffer[4] = data->longlba ? 0x01 : 0; 2037 real_buffer[5] = 0; 2038 real_buffer[6] = data->block_descriptor_length >> 8; 2039 real_buffer[7] = data->block_descriptor_length; 2040 2041 cmd[0] = MODE_SELECT_10; 2042 cmd[7] = len >> 8; 2043 cmd[8] = len; 2044 } else { 2045 if (len > 255 || data->block_descriptor_length > 255 || 2046 data->longlba) 2047 return -EINVAL; 2048 2049 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2050 if (!real_buffer) 2051 return -ENOMEM; 2052 memcpy(real_buffer + 4, buffer, len); 2053 len += 4; 2054 real_buffer[0] = 0; 2055 real_buffer[1] = data->medium_type; 2056 real_buffer[2] = data->device_specific; 2057 real_buffer[3] = data->block_descriptor_length; 2058 2059 cmd[0] = MODE_SELECT; 2060 cmd[4] = len; 2061 } 2062 2063 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2064 sshdr, timeout, retries, NULL); 2065 kfree(real_buffer); 2066 return ret; 2067 } 2068 EXPORT_SYMBOL_GPL(scsi_mode_select); 2069 2070 /** 2071 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2072 * @sdev: SCSI device to be queried 2073 * @dbd: set if mode sense will allow block descriptors to be returned 2074 * @modepage: mode page being requested 2075 * @buffer: request buffer (may not be smaller than eight bytes) 2076 * @len: length of request buffer. 2077 * @timeout: command timeout 2078 * @retries: number of retries before failing 2079 * @data: returns a structure abstracting the mode header data 2080 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2081 * must be SCSI_SENSE_BUFFERSIZE big. 2082 * 2083 * Returns zero if successful, or a negative error number on failure 2084 */ 2085 int 2086 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2087 unsigned char *buffer, int len, int timeout, int retries, 2088 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2089 { 2090 unsigned char cmd[12]; 2091 int use_10_for_ms; 2092 int header_length; 2093 int result, retry_count = retries; 2094 struct scsi_sense_hdr my_sshdr; 2095 2096 memset(data, 0, sizeof(*data)); 2097 memset(&cmd[0], 0, 12); 2098 2099 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2100 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2101 cmd[2] = modepage; 2102 2103 /* caller might not be interested in sense, but we need it */ 2104 if (!sshdr) 2105 sshdr = &my_sshdr; 2106 2107 retry: 2108 use_10_for_ms = sdev->use_10_for_ms; 2109 2110 if (use_10_for_ms) { 2111 if (len < 8) 2112 len = 8; 2113 2114 cmd[0] = MODE_SENSE_10; 2115 cmd[8] = len; 2116 header_length = 8; 2117 } else { 2118 if (len < 4) 2119 len = 4; 2120 2121 cmd[0] = MODE_SENSE; 2122 cmd[4] = len; 2123 header_length = 4; 2124 } 2125 2126 memset(buffer, 0, len); 2127 2128 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2129 sshdr, timeout, retries, NULL); 2130 if (result < 0) 2131 return result; 2132 2133 /* This code looks awful: what it's doing is making sure an 2134 * ILLEGAL REQUEST sense return identifies the actual command 2135 * byte as the problem. MODE_SENSE commands can return 2136 * ILLEGAL REQUEST if the code page isn't supported */ 2137 2138 if (!scsi_status_is_good(result)) { 2139 if (scsi_sense_valid(sshdr)) { 2140 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2141 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2142 /* 2143 * Invalid command operation code 2144 */ 2145 if (use_10_for_ms) { 2146 sdev->use_10_for_ms = 0; 2147 goto retry; 2148 } 2149 } 2150 if (scsi_status_is_check_condition(result) && 2151 sshdr->sense_key == UNIT_ATTENTION && 2152 retry_count) { 2153 retry_count--; 2154 goto retry; 2155 } 2156 } 2157 return -EIO; 2158 } 2159 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2160 (modepage == 6 || modepage == 8))) { 2161 /* Initio breakage? */ 2162 header_length = 0; 2163 data->length = 13; 2164 data->medium_type = 0; 2165 data->device_specific = 0; 2166 data->longlba = 0; 2167 data->block_descriptor_length = 0; 2168 } else if (use_10_for_ms) { 2169 data->length = buffer[0]*256 + buffer[1] + 2; 2170 data->medium_type = buffer[2]; 2171 data->device_specific = buffer[3]; 2172 data->longlba = buffer[4] & 0x01; 2173 data->block_descriptor_length = buffer[6]*256 2174 + buffer[7]; 2175 } else { 2176 data->length = buffer[0] + 1; 2177 data->medium_type = buffer[1]; 2178 data->device_specific = buffer[2]; 2179 data->block_descriptor_length = buffer[3]; 2180 } 2181 data->header_length = header_length; 2182 2183 return 0; 2184 } 2185 EXPORT_SYMBOL(scsi_mode_sense); 2186 2187 /** 2188 * scsi_test_unit_ready - test if unit is ready 2189 * @sdev: scsi device to change the state of. 2190 * @timeout: command timeout 2191 * @retries: number of retries before failing 2192 * @sshdr: outpout pointer for decoded sense information. 2193 * 2194 * Returns zero if unsuccessful or an error if TUR failed. For 2195 * removable media, UNIT_ATTENTION sets ->changed flag. 2196 **/ 2197 int 2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2199 struct scsi_sense_hdr *sshdr) 2200 { 2201 char cmd[] = { 2202 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2203 }; 2204 int result; 2205 2206 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2207 do { 2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2209 timeout, 1, NULL); 2210 if (sdev->removable && scsi_sense_valid(sshdr) && 2211 sshdr->sense_key == UNIT_ATTENTION) 2212 sdev->changed = 1; 2213 } while (scsi_sense_valid(sshdr) && 2214 sshdr->sense_key == UNIT_ATTENTION && --retries); 2215 2216 return result; 2217 } 2218 EXPORT_SYMBOL(scsi_test_unit_ready); 2219 2220 /** 2221 * scsi_device_set_state - Take the given device through the device state model. 2222 * @sdev: scsi device to change the state of. 2223 * @state: state to change to. 2224 * 2225 * Returns zero if successful or an error if the requested 2226 * transition is illegal. 2227 */ 2228 int 2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2230 { 2231 enum scsi_device_state oldstate = sdev->sdev_state; 2232 2233 if (state == oldstate) 2234 return 0; 2235 2236 switch (state) { 2237 case SDEV_CREATED: 2238 switch (oldstate) { 2239 case SDEV_CREATED_BLOCK: 2240 break; 2241 default: 2242 goto illegal; 2243 } 2244 break; 2245 2246 case SDEV_RUNNING: 2247 switch (oldstate) { 2248 case SDEV_CREATED: 2249 case SDEV_OFFLINE: 2250 case SDEV_TRANSPORT_OFFLINE: 2251 case SDEV_QUIESCE: 2252 case SDEV_BLOCK: 2253 break; 2254 default: 2255 goto illegal; 2256 } 2257 break; 2258 2259 case SDEV_QUIESCE: 2260 switch (oldstate) { 2261 case SDEV_RUNNING: 2262 case SDEV_OFFLINE: 2263 case SDEV_TRANSPORT_OFFLINE: 2264 break; 2265 default: 2266 goto illegal; 2267 } 2268 break; 2269 2270 case SDEV_OFFLINE: 2271 case SDEV_TRANSPORT_OFFLINE: 2272 switch (oldstate) { 2273 case SDEV_CREATED: 2274 case SDEV_RUNNING: 2275 case SDEV_QUIESCE: 2276 case SDEV_BLOCK: 2277 break; 2278 default: 2279 goto illegal; 2280 } 2281 break; 2282 2283 case SDEV_BLOCK: 2284 switch (oldstate) { 2285 case SDEV_RUNNING: 2286 case SDEV_CREATED_BLOCK: 2287 case SDEV_QUIESCE: 2288 case SDEV_OFFLINE: 2289 break; 2290 default: 2291 goto illegal; 2292 } 2293 break; 2294 2295 case SDEV_CREATED_BLOCK: 2296 switch (oldstate) { 2297 case SDEV_CREATED: 2298 break; 2299 default: 2300 goto illegal; 2301 } 2302 break; 2303 2304 case SDEV_CANCEL: 2305 switch (oldstate) { 2306 case SDEV_CREATED: 2307 case SDEV_RUNNING: 2308 case SDEV_QUIESCE: 2309 case SDEV_OFFLINE: 2310 case SDEV_TRANSPORT_OFFLINE: 2311 break; 2312 default: 2313 goto illegal; 2314 } 2315 break; 2316 2317 case SDEV_DEL: 2318 switch (oldstate) { 2319 case SDEV_CREATED: 2320 case SDEV_RUNNING: 2321 case SDEV_OFFLINE: 2322 case SDEV_TRANSPORT_OFFLINE: 2323 case SDEV_CANCEL: 2324 case SDEV_BLOCK: 2325 case SDEV_CREATED_BLOCK: 2326 break; 2327 default: 2328 goto illegal; 2329 } 2330 break; 2331 2332 } 2333 sdev->offline_already = false; 2334 sdev->sdev_state = state; 2335 return 0; 2336 2337 illegal: 2338 SCSI_LOG_ERROR_RECOVERY(1, 2339 sdev_printk(KERN_ERR, sdev, 2340 "Illegal state transition %s->%s", 2341 scsi_device_state_name(oldstate), 2342 scsi_device_state_name(state)) 2343 ); 2344 return -EINVAL; 2345 } 2346 EXPORT_SYMBOL(scsi_device_set_state); 2347 2348 /** 2349 * scsi_evt_emit - emit a single SCSI device uevent 2350 * @sdev: associated SCSI device 2351 * @evt: event to emit 2352 * 2353 * Send a single uevent (scsi_event) to the associated scsi_device. 2354 */ 2355 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2356 { 2357 int idx = 0; 2358 char *envp[3]; 2359 2360 switch (evt->evt_type) { 2361 case SDEV_EVT_MEDIA_CHANGE: 2362 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2363 break; 2364 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2365 scsi_rescan_device(&sdev->sdev_gendev); 2366 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2367 break; 2368 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2369 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2370 break; 2371 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2372 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2373 break; 2374 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2375 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2376 break; 2377 case SDEV_EVT_LUN_CHANGE_REPORTED: 2378 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2379 break; 2380 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2381 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2382 break; 2383 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2384 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2385 break; 2386 default: 2387 /* do nothing */ 2388 break; 2389 } 2390 2391 envp[idx++] = NULL; 2392 2393 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2394 } 2395 2396 /** 2397 * scsi_evt_thread - send a uevent for each scsi event 2398 * @work: work struct for scsi_device 2399 * 2400 * Dispatch queued events to their associated scsi_device kobjects 2401 * as uevents. 2402 */ 2403 void scsi_evt_thread(struct work_struct *work) 2404 { 2405 struct scsi_device *sdev; 2406 enum scsi_device_event evt_type; 2407 LIST_HEAD(event_list); 2408 2409 sdev = container_of(work, struct scsi_device, event_work); 2410 2411 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2412 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2413 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2414 2415 while (1) { 2416 struct scsi_event *evt; 2417 struct list_head *this, *tmp; 2418 unsigned long flags; 2419 2420 spin_lock_irqsave(&sdev->list_lock, flags); 2421 list_splice_init(&sdev->event_list, &event_list); 2422 spin_unlock_irqrestore(&sdev->list_lock, flags); 2423 2424 if (list_empty(&event_list)) 2425 break; 2426 2427 list_for_each_safe(this, tmp, &event_list) { 2428 evt = list_entry(this, struct scsi_event, node); 2429 list_del(&evt->node); 2430 scsi_evt_emit(sdev, evt); 2431 kfree(evt); 2432 } 2433 } 2434 } 2435 2436 /** 2437 * sdev_evt_send - send asserted event to uevent thread 2438 * @sdev: scsi_device event occurred on 2439 * @evt: event to send 2440 * 2441 * Assert scsi device event asynchronously. 2442 */ 2443 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2444 { 2445 unsigned long flags; 2446 2447 #if 0 2448 /* FIXME: currently this check eliminates all media change events 2449 * for polled devices. Need to update to discriminate between AN 2450 * and polled events */ 2451 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2452 kfree(evt); 2453 return; 2454 } 2455 #endif 2456 2457 spin_lock_irqsave(&sdev->list_lock, flags); 2458 list_add_tail(&evt->node, &sdev->event_list); 2459 schedule_work(&sdev->event_work); 2460 spin_unlock_irqrestore(&sdev->list_lock, flags); 2461 } 2462 EXPORT_SYMBOL_GPL(sdev_evt_send); 2463 2464 /** 2465 * sdev_evt_alloc - allocate a new scsi event 2466 * @evt_type: type of event to allocate 2467 * @gfpflags: GFP flags for allocation 2468 * 2469 * Allocates and returns a new scsi_event. 2470 */ 2471 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2472 gfp_t gfpflags) 2473 { 2474 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2475 if (!evt) 2476 return NULL; 2477 2478 evt->evt_type = evt_type; 2479 INIT_LIST_HEAD(&evt->node); 2480 2481 /* evt_type-specific initialization, if any */ 2482 switch (evt_type) { 2483 case SDEV_EVT_MEDIA_CHANGE: 2484 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2485 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2486 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2487 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2488 case SDEV_EVT_LUN_CHANGE_REPORTED: 2489 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2490 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2491 default: 2492 /* do nothing */ 2493 break; 2494 } 2495 2496 return evt; 2497 } 2498 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2499 2500 /** 2501 * sdev_evt_send_simple - send asserted event to uevent thread 2502 * @sdev: scsi_device event occurred on 2503 * @evt_type: type of event to send 2504 * @gfpflags: GFP flags for allocation 2505 * 2506 * Assert scsi device event asynchronously, given an event type. 2507 */ 2508 void sdev_evt_send_simple(struct scsi_device *sdev, 2509 enum scsi_device_event evt_type, gfp_t gfpflags) 2510 { 2511 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2512 if (!evt) { 2513 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2514 evt_type); 2515 return; 2516 } 2517 2518 sdev_evt_send(sdev, evt); 2519 } 2520 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2521 2522 /** 2523 * scsi_device_quiesce - Block all commands except power management. 2524 * @sdev: scsi device to quiesce. 2525 * 2526 * This works by trying to transition to the SDEV_QUIESCE state 2527 * (which must be a legal transition). When the device is in this 2528 * state, only power management requests will be accepted, all others will 2529 * be deferred. 2530 * 2531 * Must be called with user context, may sleep. 2532 * 2533 * Returns zero if unsuccessful or an error if not. 2534 */ 2535 int 2536 scsi_device_quiesce(struct scsi_device *sdev) 2537 { 2538 struct request_queue *q = sdev->request_queue; 2539 int err; 2540 2541 /* 2542 * It is allowed to call scsi_device_quiesce() multiple times from 2543 * the same context but concurrent scsi_device_quiesce() calls are 2544 * not allowed. 2545 */ 2546 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2547 2548 if (sdev->quiesced_by == current) 2549 return 0; 2550 2551 blk_set_pm_only(q); 2552 2553 blk_mq_freeze_queue(q); 2554 /* 2555 * Ensure that the effect of blk_set_pm_only() will be visible 2556 * for percpu_ref_tryget() callers that occur after the queue 2557 * unfreeze even if the queue was already frozen before this function 2558 * was called. See also https://lwn.net/Articles/573497/. 2559 */ 2560 synchronize_rcu(); 2561 blk_mq_unfreeze_queue(q); 2562 2563 mutex_lock(&sdev->state_mutex); 2564 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2565 if (err == 0) 2566 sdev->quiesced_by = current; 2567 else 2568 blk_clear_pm_only(q); 2569 mutex_unlock(&sdev->state_mutex); 2570 2571 return err; 2572 } 2573 EXPORT_SYMBOL(scsi_device_quiesce); 2574 2575 /** 2576 * scsi_device_resume - Restart user issued commands to a quiesced device. 2577 * @sdev: scsi device to resume. 2578 * 2579 * Moves the device from quiesced back to running and restarts the 2580 * queues. 2581 * 2582 * Must be called with user context, may sleep. 2583 */ 2584 void scsi_device_resume(struct scsi_device *sdev) 2585 { 2586 /* check if the device state was mutated prior to resume, and if 2587 * so assume the state is being managed elsewhere (for example 2588 * device deleted during suspend) 2589 */ 2590 mutex_lock(&sdev->state_mutex); 2591 if (sdev->sdev_state == SDEV_QUIESCE) 2592 scsi_device_set_state(sdev, SDEV_RUNNING); 2593 if (sdev->quiesced_by) { 2594 sdev->quiesced_by = NULL; 2595 blk_clear_pm_only(sdev->request_queue); 2596 } 2597 mutex_unlock(&sdev->state_mutex); 2598 } 2599 EXPORT_SYMBOL(scsi_device_resume); 2600 2601 static void 2602 device_quiesce_fn(struct scsi_device *sdev, void *data) 2603 { 2604 scsi_device_quiesce(sdev); 2605 } 2606 2607 void 2608 scsi_target_quiesce(struct scsi_target *starget) 2609 { 2610 starget_for_each_device(starget, NULL, device_quiesce_fn); 2611 } 2612 EXPORT_SYMBOL(scsi_target_quiesce); 2613 2614 static void 2615 device_resume_fn(struct scsi_device *sdev, void *data) 2616 { 2617 scsi_device_resume(sdev); 2618 } 2619 2620 void 2621 scsi_target_resume(struct scsi_target *starget) 2622 { 2623 starget_for_each_device(starget, NULL, device_resume_fn); 2624 } 2625 EXPORT_SYMBOL(scsi_target_resume); 2626 2627 /** 2628 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2629 * @sdev: device to block 2630 * 2631 * Pause SCSI command processing on the specified device. Does not sleep. 2632 * 2633 * Returns zero if successful or a negative error code upon failure. 2634 * 2635 * Notes: 2636 * This routine transitions the device to the SDEV_BLOCK state (which must be 2637 * a legal transition). When the device is in this state, command processing 2638 * is paused until the device leaves the SDEV_BLOCK state. See also 2639 * scsi_internal_device_unblock_nowait(). 2640 */ 2641 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2642 { 2643 struct request_queue *q = sdev->request_queue; 2644 int err = 0; 2645 2646 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2647 if (err) { 2648 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2649 2650 if (err) 2651 return err; 2652 } 2653 2654 /* 2655 * The device has transitioned to SDEV_BLOCK. Stop the 2656 * block layer from calling the midlayer with this device's 2657 * request queue. 2658 */ 2659 blk_mq_quiesce_queue_nowait(q); 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2663 2664 /** 2665 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2666 * @sdev: device to block 2667 * 2668 * Pause SCSI command processing on the specified device and wait until all 2669 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2670 * 2671 * Returns zero if successful or a negative error code upon failure. 2672 * 2673 * Note: 2674 * This routine transitions the device to the SDEV_BLOCK state (which must be 2675 * a legal transition). When the device is in this state, command processing 2676 * is paused until the device leaves the SDEV_BLOCK state. See also 2677 * scsi_internal_device_unblock(). 2678 */ 2679 static int scsi_internal_device_block(struct scsi_device *sdev) 2680 { 2681 struct request_queue *q = sdev->request_queue; 2682 int err; 2683 2684 mutex_lock(&sdev->state_mutex); 2685 err = scsi_internal_device_block_nowait(sdev); 2686 if (err == 0) 2687 blk_mq_quiesce_queue(q); 2688 mutex_unlock(&sdev->state_mutex); 2689 2690 return err; 2691 } 2692 2693 void scsi_start_queue(struct scsi_device *sdev) 2694 { 2695 struct request_queue *q = sdev->request_queue; 2696 2697 blk_mq_unquiesce_queue(q); 2698 } 2699 2700 /** 2701 * scsi_internal_device_unblock_nowait - resume a device after a block request 2702 * @sdev: device to resume 2703 * @new_state: state to set the device to after unblocking 2704 * 2705 * Restart the device queue for a previously suspended SCSI device. Does not 2706 * sleep. 2707 * 2708 * Returns zero if successful or a negative error code upon failure. 2709 * 2710 * Notes: 2711 * This routine transitions the device to the SDEV_RUNNING state or to one of 2712 * the offline states (which must be a legal transition) allowing the midlayer 2713 * to goose the queue for this device. 2714 */ 2715 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2716 enum scsi_device_state new_state) 2717 { 2718 switch (new_state) { 2719 case SDEV_RUNNING: 2720 case SDEV_TRANSPORT_OFFLINE: 2721 break; 2722 default: 2723 return -EINVAL; 2724 } 2725 2726 /* 2727 * Try to transition the scsi device to SDEV_RUNNING or one of the 2728 * offlined states and goose the device queue if successful. 2729 */ 2730 switch (sdev->sdev_state) { 2731 case SDEV_BLOCK: 2732 case SDEV_TRANSPORT_OFFLINE: 2733 sdev->sdev_state = new_state; 2734 break; 2735 case SDEV_CREATED_BLOCK: 2736 if (new_state == SDEV_TRANSPORT_OFFLINE || 2737 new_state == SDEV_OFFLINE) 2738 sdev->sdev_state = new_state; 2739 else 2740 sdev->sdev_state = SDEV_CREATED; 2741 break; 2742 case SDEV_CANCEL: 2743 case SDEV_OFFLINE: 2744 break; 2745 default: 2746 return -EINVAL; 2747 } 2748 scsi_start_queue(sdev); 2749 2750 return 0; 2751 } 2752 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2753 2754 /** 2755 * scsi_internal_device_unblock - resume a device after a block request 2756 * @sdev: device to resume 2757 * @new_state: state to set the device to after unblocking 2758 * 2759 * Restart the device queue for a previously suspended SCSI device. May sleep. 2760 * 2761 * Returns zero if successful or a negative error code upon failure. 2762 * 2763 * Notes: 2764 * This routine transitions the device to the SDEV_RUNNING state or to one of 2765 * the offline states (which must be a legal transition) allowing the midlayer 2766 * to goose the queue for this device. 2767 */ 2768 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2769 enum scsi_device_state new_state) 2770 { 2771 int ret; 2772 2773 mutex_lock(&sdev->state_mutex); 2774 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2775 mutex_unlock(&sdev->state_mutex); 2776 2777 return ret; 2778 } 2779 2780 static void 2781 device_block(struct scsi_device *sdev, void *data) 2782 { 2783 int ret; 2784 2785 ret = scsi_internal_device_block(sdev); 2786 2787 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2788 dev_name(&sdev->sdev_gendev), ret); 2789 } 2790 2791 static int 2792 target_block(struct device *dev, void *data) 2793 { 2794 if (scsi_is_target_device(dev)) 2795 starget_for_each_device(to_scsi_target(dev), NULL, 2796 device_block); 2797 return 0; 2798 } 2799 2800 void 2801 scsi_target_block(struct device *dev) 2802 { 2803 if (scsi_is_target_device(dev)) 2804 starget_for_each_device(to_scsi_target(dev), NULL, 2805 device_block); 2806 else 2807 device_for_each_child(dev, NULL, target_block); 2808 } 2809 EXPORT_SYMBOL_GPL(scsi_target_block); 2810 2811 static void 2812 device_unblock(struct scsi_device *sdev, void *data) 2813 { 2814 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2815 } 2816 2817 static int 2818 target_unblock(struct device *dev, void *data) 2819 { 2820 if (scsi_is_target_device(dev)) 2821 starget_for_each_device(to_scsi_target(dev), data, 2822 device_unblock); 2823 return 0; 2824 } 2825 2826 void 2827 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2828 { 2829 if (scsi_is_target_device(dev)) 2830 starget_for_each_device(to_scsi_target(dev), &new_state, 2831 device_unblock); 2832 else 2833 device_for_each_child(dev, &new_state, target_unblock); 2834 } 2835 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2836 2837 int 2838 scsi_host_block(struct Scsi_Host *shost) 2839 { 2840 struct scsi_device *sdev; 2841 int ret = 0; 2842 2843 /* 2844 * Call scsi_internal_device_block_nowait so we can avoid 2845 * calling synchronize_rcu() for each LUN. 2846 */ 2847 shost_for_each_device(sdev, shost) { 2848 mutex_lock(&sdev->state_mutex); 2849 ret = scsi_internal_device_block_nowait(sdev); 2850 mutex_unlock(&sdev->state_mutex); 2851 if (ret) { 2852 scsi_device_put(sdev); 2853 break; 2854 } 2855 } 2856 2857 /* 2858 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2859 * calling synchronize_rcu() once is enough. 2860 */ 2861 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2862 2863 if (!ret) 2864 synchronize_rcu(); 2865 2866 return ret; 2867 } 2868 EXPORT_SYMBOL_GPL(scsi_host_block); 2869 2870 int 2871 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2872 { 2873 struct scsi_device *sdev; 2874 int ret = 0; 2875 2876 shost_for_each_device(sdev, shost) { 2877 ret = scsi_internal_device_unblock(sdev, new_state); 2878 if (ret) { 2879 scsi_device_put(sdev); 2880 break; 2881 } 2882 } 2883 return ret; 2884 } 2885 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2886 2887 /** 2888 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2889 * @sgl: scatter-gather list 2890 * @sg_count: number of segments in sg 2891 * @offset: offset in bytes into sg, on return offset into the mapped area 2892 * @len: bytes to map, on return number of bytes mapped 2893 * 2894 * Returns virtual address of the start of the mapped page 2895 */ 2896 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2897 size_t *offset, size_t *len) 2898 { 2899 int i; 2900 size_t sg_len = 0, len_complete = 0; 2901 struct scatterlist *sg; 2902 struct page *page; 2903 2904 WARN_ON(!irqs_disabled()); 2905 2906 for_each_sg(sgl, sg, sg_count, i) { 2907 len_complete = sg_len; /* Complete sg-entries */ 2908 sg_len += sg->length; 2909 if (sg_len > *offset) 2910 break; 2911 } 2912 2913 if (unlikely(i == sg_count)) { 2914 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2915 "elements %d\n", 2916 __func__, sg_len, *offset, sg_count); 2917 WARN_ON(1); 2918 return NULL; 2919 } 2920 2921 /* Offset starting from the beginning of first page in this sg-entry */ 2922 *offset = *offset - len_complete + sg->offset; 2923 2924 /* Assumption: contiguous pages can be accessed as "page + i" */ 2925 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2926 *offset &= ~PAGE_MASK; 2927 2928 /* Bytes in this sg-entry from *offset to the end of the page */ 2929 sg_len = PAGE_SIZE - *offset; 2930 if (*len > sg_len) 2931 *len = sg_len; 2932 2933 return kmap_atomic(page); 2934 } 2935 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2936 2937 /** 2938 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2939 * @virt: virtual address to be unmapped 2940 */ 2941 void scsi_kunmap_atomic_sg(void *virt) 2942 { 2943 kunmap_atomic(virt); 2944 } 2945 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2946 2947 void sdev_disable_disk_events(struct scsi_device *sdev) 2948 { 2949 atomic_inc(&sdev->disk_events_disable_depth); 2950 } 2951 EXPORT_SYMBOL(sdev_disable_disk_events); 2952 2953 void sdev_enable_disk_events(struct scsi_device *sdev) 2954 { 2955 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2956 return; 2957 atomic_dec(&sdev->disk_events_disable_depth); 2958 } 2959 EXPORT_SYMBOL(sdev_enable_disk_events); 2960 2961 static unsigned char designator_prio(const unsigned char *d) 2962 { 2963 if (d[1] & 0x30) 2964 /* not associated with LUN */ 2965 return 0; 2966 2967 if (d[3] == 0) 2968 /* invalid length */ 2969 return 0; 2970 2971 /* 2972 * Order of preference for lun descriptor: 2973 * - SCSI name string 2974 * - NAA IEEE Registered Extended 2975 * - EUI-64 based 16-byte 2976 * - EUI-64 based 12-byte 2977 * - NAA IEEE Registered 2978 * - NAA IEEE Extended 2979 * - EUI-64 based 8-byte 2980 * - SCSI name string (truncated) 2981 * - T10 Vendor ID 2982 * as longer descriptors reduce the likelyhood 2983 * of identification clashes. 2984 */ 2985 2986 switch (d[1] & 0xf) { 2987 case 8: 2988 /* SCSI name string, variable-length UTF-8 */ 2989 return 9; 2990 case 3: 2991 switch (d[4] >> 4) { 2992 case 6: 2993 /* NAA registered extended */ 2994 return 8; 2995 case 5: 2996 /* NAA registered */ 2997 return 5; 2998 case 4: 2999 /* NAA extended */ 3000 return 4; 3001 case 3: 3002 /* NAA locally assigned */ 3003 return 1; 3004 default: 3005 break; 3006 } 3007 break; 3008 case 2: 3009 switch (d[3]) { 3010 case 16: 3011 /* EUI64-based, 16 byte */ 3012 return 7; 3013 case 12: 3014 /* EUI64-based, 12 byte */ 3015 return 6; 3016 case 8: 3017 /* EUI64-based, 8 byte */ 3018 return 3; 3019 default: 3020 break; 3021 } 3022 break; 3023 case 1: 3024 /* T10 vendor ID */ 3025 return 1; 3026 default: 3027 break; 3028 } 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * scsi_vpd_lun_id - return a unique device identification 3035 * @sdev: SCSI device 3036 * @id: buffer for the identification 3037 * @id_len: length of the buffer 3038 * 3039 * Copies a unique device identification into @id based 3040 * on the information in the VPD page 0x83 of the device. 3041 * The string will be formatted as a SCSI name string. 3042 * 3043 * Returns the length of the identification or error on failure. 3044 * If the identifier is longer than the supplied buffer the actual 3045 * identifier length is returned and the buffer is not zero-padded. 3046 */ 3047 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3048 { 3049 u8 cur_id_prio = 0; 3050 u8 cur_id_size = 0; 3051 const unsigned char *d, *cur_id_str; 3052 const struct scsi_vpd *vpd_pg83; 3053 int id_size = -EINVAL; 3054 3055 rcu_read_lock(); 3056 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3057 if (!vpd_pg83) { 3058 rcu_read_unlock(); 3059 return -ENXIO; 3060 } 3061 3062 /* The id string must be at least 20 bytes + terminating NULL byte */ 3063 if (id_len < 21) { 3064 rcu_read_unlock(); 3065 return -EINVAL; 3066 } 3067 3068 memset(id, 0, id_len); 3069 for (d = vpd_pg83->data + 4; 3070 d < vpd_pg83->data + vpd_pg83->len; 3071 d += d[3] + 4) { 3072 u8 prio = designator_prio(d); 3073 3074 if (prio == 0 || cur_id_prio > prio) 3075 continue; 3076 3077 switch (d[1] & 0xf) { 3078 case 0x1: 3079 /* T10 Vendor ID */ 3080 if (cur_id_size > d[3]) 3081 break; 3082 cur_id_prio = prio; 3083 cur_id_size = d[3]; 3084 if (cur_id_size + 4 > id_len) 3085 cur_id_size = id_len - 4; 3086 cur_id_str = d + 4; 3087 id_size = snprintf(id, id_len, "t10.%*pE", 3088 cur_id_size, cur_id_str); 3089 break; 3090 case 0x2: 3091 /* EUI-64 */ 3092 cur_id_prio = prio; 3093 cur_id_size = d[3]; 3094 cur_id_str = d + 4; 3095 switch (cur_id_size) { 3096 case 8: 3097 id_size = snprintf(id, id_len, 3098 "eui.%8phN", 3099 cur_id_str); 3100 break; 3101 case 12: 3102 id_size = snprintf(id, id_len, 3103 "eui.%12phN", 3104 cur_id_str); 3105 break; 3106 case 16: 3107 id_size = snprintf(id, id_len, 3108 "eui.%16phN", 3109 cur_id_str); 3110 break; 3111 default: 3112 break; 3113 } 3114 break; 3115 case 0x3: 3116 /* NAA */ 3117 cur_id_prio = prio; 3118 cur_id_size = d[3]; 3119 cur_id_str = d + 4; 3120 switch (cur_id_size) { 3121 case 8: 3122 id_size = snprintf(id, id_len, 3123 "naa.%8phN", 3124 cur_id_str); 3125 break; 3126 case 16: 3127 id_size = snprintf(id, id_len, 3128 "naa.%16phN", 3129 cur_id_str); 3130 break; 3131 default: 3132 break; 3133 } 3134 break; 3135 case 0x8: 3136 /* SCSI name string */ 3137 if (cur_id_size > d[3]) 3138 break; 3139 /* Prefer others for truncated descriptor */ 3140 if (d[3] > id_len) { 3141 prio = 2; 3142 if (cur_id_prio > prio) 3143 break; 3144 } 3145 cur_id_prio = prio; 3146 cur_id_size = id_size = d[3]; 3147 cur_id_str = d + 4; 3148 if (cur_id_size >= id_len) 3149 cur_id_size = id_len - 1; 3150 memcpy(id, cur_id_str, cur_id_size); 3151 break; 3152 default: 3153 break; 3154 } 3155 } 3156 rcu_read_unlock(); 3157 3158 return id_size; 3159 } 3160 EXPORT_SYMBOL(scsi_vpd_lun_id); 3161 3162 /* 3163 * scsi_vpd_tpg_id - return a target port group identifier 3164 * @sdev: SCSI device 3165 * 3166 * Returns the Target Port Group identifier from the information 3167 * froom VPD page 0x83 of the device. 3168 * 3169 * Returns the identifier or error on failure. 3170 */ 3171 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3172 { 3173 const unsigned char *d; 3174 const struct scsi_vpd *vpd_pg83; 3175 int group_id = -EAGAIN, rel_port = -1; 3176 3177 rcu_read_lock(); 3178 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3179 if (!vpd_pg83) { 3180 rcu_read_unlock(); 3181 return -ENXIO; 3182 } 3183 3184 d = vpd_pg83->data + 4; 3185 while (d < vpd_pg83->data + vpd_pg83->len) { 3186 switch (d[1] & 0xf) { 3187 case 0x4: 3188 /* Relative target port */ 3189 rel_port = get_unaligned_be16(&d[6]); 3190 break; 3191 case 0x5: 3192 /* Target port group */ 3193 group_id = get_unaligned_be16(&d[6]); 3194 break; 3195 default: 3196 break; 3197 } 3198 d += d[3] + 4; 3199 } 3200 rcu_read_unlock(); 3201 3202 if (group_id >= 0 && rel_id && rel_port != -1) 3203 *rel_id = rel_port; 3204 3205 return group_id; 3206 } 3207 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3208 3209 /** 3210 * scsi_build_sense - build sense data for a command 3211 * @scmd: scsi command for which the sense should be formatted 3212 * @desc: Sense format (non-zero == descriptor format, 3213 * 0 == fixed format) 3214 * @key: Sense key 3215 * @asc: Additional sense code 3216 * @ascq: Additional sense code qualifier 3217 * 3218 **/ 3219 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3220 { 3221 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3222 scmd->result = SAM_STAT_CHECK_CONDITION; 3223 } 3224 EXPORT_SYMBOL_GPL(scsi_build_sense); 3225