xref: /linux/drivers/scsi/scsi_lib.c (revision 7fe03f8ff55d33fe6398637f78a8620dd2a78b38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 /**
188  * scsi_failures_reset_retries - reset all failures to zero
189  * @failures: &struct scsi_failures with specific failure modes set
190  */
191 void scsi_failures_reset_retries(struct scsi_failures *failures)
192 {
193 	struct scsi_failure *failure;
194 
195 	failures->total_retries = 0;
196 
197 	for (failure = failures->failure_definitions; failure->result;
198 	     failure++)
199 		failure->retries = 0;
200 }
201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
202 
203 /**
204  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
205  * @scmd: scsi_cmnd to check.
206  * @failures: scsi_failures struct that lists failures to check for.
207  *
208  * Returns -EAGAIN if the caller should retry else 0.
209  */
210 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
211 				  struct scsi_failures *failures)
212 {
213 	struct scsi_failure *failure;
214 	struct scsi_sense_hdr sshdr;
215 	enum sam_status status;
216 
217 	if (!scmd->result)
218 		return 0;
219 
220 	if (!failures)
221 		return 0;
222 
223 	for (failure = failures->failure_definitions; failure->result;
224 	     failure++) {
225 		if (failure->result == SCMD_FAILURE_RESULT_ANY)
226 			goto maybe_retry;
227 
228 		if (host_byte(scmd->result) &&
229 		    host_byte(scmd->result) == host_byte(failure->result))
230 			goto maybe_retry;
231 
232 		status = status_byte(scmd->result);
233 		if (!status)
234 			continue;
235 
236 		if (failure->result == SCMD_FAILURE_STAT_ANY &&
237 		    !scsi_status_is_good(scmd->result))
238 			goto maybe_retry;
239 
240 		if (status != status_byte(failure->result))
241 			continue;
242 
243 		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
244 		    failure->sense == SCMD_FAILURE_SENSE_ANY)
245 			goto maybe_retry;
246 
247 		if (!scsi_command_normalize_sense(scmd, &sshdr))
248 			return 0;
249 
250 		if (failure->sense != sshdr.sense_key)
251 			continue;
252 
253 		if (failure->asc == SCMD_FAILURE_ASC_ANY)
254 			goto maybe_retry;
255 
256 		if (failure->asc != sshdr.asc)
257 			continue;
258 
259 		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
260 		    failure->ascq == sshdr.ascq)
261 			goto maybe_retry;
262 	}
263 
264 	return 0;
265 
266 maybe_retry:
267 	if (failure->allowed) {
268 		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
269 		    ++failure->retries <= failure->allowed)
270 			return -EAGAIN;
271 	} else {
272 		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
273 		    ++failures->total_retries <= failures->total_allowed)
274 			return -EAGAIN;
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * scsi_execute_cmd - insert request and wait for the result
282  * @sdev:	scsi_device
283  * @cmd:	scsi command
284  * @opf:	block layer request cmd_flags
285  * @buffer:	data buffer
286  * @bufflen:	len of buffer
287  * @timeout:	request timeout in HZ
288  * @ml_retries:	number of times SCSI midlayer will retry request
289  * @args:	Optional args. See struct definition for field descriptions
290  *
291  * Returns the scsi_cmnd result field if a command was executed, or a negative
292  * Linux error code if we didn't get that far.
293  */
294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
295 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
296 		     int timeout, int ml_retries,
297 		     const struct scsi_exec_args *args)
298 {
299 	static const struct scsi_exec_args default_args;
300 	struct request *req;
301 	struct scsi_cmnd *scmd;
302 	int ret;
303 
304 	if (!args)
305 		args = &default_args;
306 	else if (WARN_ON_ONCE(args->sense &&
307 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
308 		return -EINVAL;
309 
310 retry:
311 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
312 	if (IS_ERR(req))
313 		return PTR_ERR(req);
314 
315 	if (bufflen) {
316 		ret = blk_rq_map_kern(sdev->request_queue, req,
317 				      buffer, bufflen, GFP_NOIO);
318 		if (ret)
319 			goto out;
320 	}
321 	scmd = blk_mq_rq_to_pdu(req);
322 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
323 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
324 	scmd->allowed = ml_retries;
325 	scmd->flags |= args->scmd_flags;
326 	req->timeout = timeout;
327 	req->rq_flags |= RQF_QUIET;
328 
329 	/*
330 	 * head injection *required* here otherwise quiesce won't work
331 	 */
332 	blk_execute_rq(req, true);
333 
334 	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
335 		blk_mq_free_request(req);
336 		goto retry;
337 	}
338 
339 	/*
340 	 * Some devices (USB mass-storage in particular) may transfer
341 	 * garbage data together with a residue indicating that the data
342 	 * is invalid.  Prevent the garbage from being misinterpreted
343 	 * and prevent security leaks by zeroing out the excess data.
344 	 */
345 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
346 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
347 
348 	if (args->resid)
349 		*args->resid = scmd->resid_len;
350 	if (args->sense)
351 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
352 	if (args->sshdr)
353 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
354 				     args->sshdr);
355 
356 	ret = scmd->result;
357  out:
358 	blk_mq_free_request(req);
359 
360 	return ret;
361 }
362 EXPORT_SYMBOL(scsi_execute_cmd);
363 
364 /*
365  * Wake up the error handler if necessary. Avoid as follows that the error
366  * handler is not woken up if host in-flight requests number ==
367  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
368  * with an RCU read lock in this function to ensure that this function in
369  * its entirety either finishes before scsi_eh_scmd_add() increases the
370  * host_failed counter or that it notices the shost state change made by
371  * scsi_eh_scmd_add().
372  */
373 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
374 {
375 	unsigned long flags;
376 
377 	rcu_read_lock();
378 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
379 	if (unlikely(scsi_host_in_recovery(shost))) {
380 		unsigned int busy = scsi_host_busy(shost);
381 
382 		spin_lock_irqsave(shost->host_lock, flags);
383 		if (shost->host_failed || shost->host_eh_scheduled)
384 			scsi_eh_wakeup(shost, busy);
385 		spin_unlock_irqrestore(shost->host_lock, flags);
386 	}
387 	rcu_read_unlock();
388 }
389 
390 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
391 {
392 	struct Scsi_Host *shost = sdev->host;
393 	struct scsi_target *starget = scsi_target(sdev);
394 
395 	scsi_dec_host_busy(shost, cmd);
396 
397 	if (starget->can_queue > 0)
398 		atomic_dec(&starget->target_busy);
399 
400 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
401 	cmd->budget_token = -1;
402 }
403 
404 /*
405  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
406  * interrupts disabled.
407  */
408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
409 {
410 	struct scsi_device *current_sdev = data;
411 
412 	if (sdev != current_sdev)
413 		blk_mq_run_hw_queues(sdev->request_queue, true);
414 }
415 
416 /*
417  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
418  * and call blk_run_queue for all the scsi_devices on the target -
419  * including current_sdev first.
420  *
421  * Called with *no* scsi locks held.
422  */
423 static void scsi_single_lun_run(struct scsi_device *current_sdev)
424 {
425 	struct Scsi_Host *shost = current_sdev->host;
426 	struct scsi_target *starget = scsi_target(current_sdev);
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(shost->host_lock, flags);
430 	starget->starget_sdev_user = NULL;
431 	spin_unlock_irqrestore(shost->host_lock, flags);
432 
433 	/*
434 	 * Call blk_run_queue for all LUNs on the target, starting with
435 	 * current_sdev. We race with others (to set starget_sdev_user),
436 	 * but in most cases, we will be first. Ideally, each LU on the
437 	 * target would get some limited time or requests on the target.
438 	 */
439 	blk_mq_run_hw_queues(current_sdev->request_queue,
440 			     shost->queuecommand_may_block);
441 
442 	spin_lock_irqsave(shost->host_lock, flags);
443 	if (!starget->starget_sdev_user)
444 		__starget_for_each_device(starget, current_sdev,
445 					  scsi_kick_sdev_queue);
446 	spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448 
449 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
450 {
451 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
452 		return true;
453 	if (atomic_read(&sdev->device_blocked) > 0)
454 		return true;
455 	return false;
456 }
457 
458 static inline bool scsi_target_is_busy(struct scsi_target *starget)
459 {
460 	if (starget->can_queue > 0) {
461 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
462 			return true;
463 		if (atomic_read(&starget->target_blocked) > 0)
464 			return true;
465 	}
466 	return false;
467 }
468 
469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
470 {
471 	if (atomic_read(&shost->host_blocked) > 0)
472 		return true;
473 	if (shost->host_self_blocked)
474 		return true;
475 	return false;
476 }
477 
478 static void scsi_starved_list_run(struct Scsi_Host *shost)
479 {
480 	LIST_HEAD(starved_list);
481 	struct scsi_device *sdev;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(shost->host_lock, flags);
485 	list_splice_init(&shost->starved_list, &starved_list);
486 
487 	while (!list_empty(&starved_list)) {
488 		struct request_queue *slq;
489 
490 		/*
491 		 * As long as shost is accepting commands and we have
492 		 * starved queues, call blk_run_queue. scsi_request_fn
493 		 * drops the queue_lock and can add us back to the
494 		 * starved_list.
495 		 *
496 		 * host_lock protects the starved_list and starved_entry.
497 		 * scsi_request_fn must get the host_lock before checking
498 		 * or modifying starved_list or starved_entry.
499 		 */
500 		if (scsi_host_is_busy(shost))
501 			break;
502 
503 		sdev = list_entry(starved_list.next,
504 				  struct scsi_device, starved_entry);
505 		list_del_init(&sdev->starved_entry);
506 		if (scsi_target_is_busy(scsi_target(sdev))) {
507 			list_move_tail(&sdev->starved_entry,
508 				       &shost->starved_list);
509 			continue;
510 		}
511 
512 		/*
513 		 * Once we drop the host lock, a racing scsi_remove_device()
514 		 * call may remove the sdev from the starved list and destroy
515 		 * it and the queue.  Mitigate by taking a reference to the
516 		 * queue and never touching the sdev again after we drop the
517 		 * host lock.  Note: if __scsi_remove_device() invokes
518 		 * blk_mq_destroy_queue() before the queue is run from this
519 		 * function then blk_run_queue() will return immediately since
520 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
521 		 */
522 		slq = sdev->request_queue;
523 		if (!blk_get_queue(slq))
524 			continue;
525 		spin_unlock_irqrestore(shost->host_lock, flags);
526 
527 		blk_mq_run_hw_queues(slq, false);
528 		blk_put_queue(slq);
529 
530 		spin_lock_irqsave(shost->host_lock, flags);
531 	}
532 	/* put any unprocessed entries back */
533 	list_splice(&starved_list, &shost->starved_list);
534 	spin_unlock_irqrestore(shost->host_lock, flags);
535 }
536 
537 /**
538  * scsi_run_queue - Select a proper request queue to serve next.
539  * @q:  last request's queue
540  *
541  * The previous command was completely finished, start a new one if possible.
542  */
543 static void scsi_run_queue(struct request_queue *q)
544 {
545 	struct scsi_device *sdev = q->queuedata;
546 
547 	if (scsi_target(sdev)->single_lun)
548 		scsi_single_lun_run(sdev);
549 	if (!list_empty(&sdev->host->starved_list))
550 		scsi_starved_list_run(sdev->host);
551 
552 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
553 	blk_mq_kick_requeue_list(q);
554 }
555 
556 void scsi_requeue_run_queue(struct work_struct *work)
557 {
558 	struct scsi_device *sdev;
559 	struct request_queue *q;
560 
561 	sdev = container_of(work, struct scsi_device, requeue_work);
562 	q = sdev->request_queue;
563 	scsi_run_queue(q);
564 }
565 
566 void scsi_run_host_queues(struct Scsi_Host *shost)
567 {
568 	struct scsi_device *sdev;
569 
570 	shost_for_each_device(sdev, shost)
571 		scsi_run_queue(sdev->request_queue);
572 }
573 
574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
575 {
576 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
577 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
578 
579 		if (drv->uninit_command)
580 			drv->uninit_command(cmd);
581 	}
582 }
583 
584 void scsi_free_sgtables(struct scsi_cmnd *cmd)
585 {
586 	if (cmd->sdb.table.nents)
587 		sg_free_table_chained(&cmd->sdb.table,
588 				SCSI_INLINE_SG_CNT);
589 	if (scsi_prot_sg_count(cmd))
590 		sg_free_table_chained(&cmd->prot_sdb->table,
591 				SCSI_INLINE_PROT_SG_CNT);
592 }
593 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
594 
595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
596 {
597 	scsi_free_sgtables(cmd);
598 	scsi_uninit_cmd(cmd);
599 }
600 
601 static void scsi_run_queue_async(struct scsi_device *sdev)
602 {
603 	if (scsi_host_in_recovery(sdev->host))
604 		return;
605 
606 	if (scsi_target(sdev)->single_lun ||
607 	    !list_empty(&sdev->host->starved_list)) {
608 		kblockd_schedule_work(&sdev->requeue_work);
609 	} else {
610 		/*
611 		 * smp_mb() present in sbitmap_queue_clear() or implied in
612 		 * .end_io is for ordering writing .device_busy in
613 		 * scsi_device_unbusy() and reading sdev->restarts.
614 		 */
615 		int old = atomic_read(&sdev->restarts);
616 
617 		/*
618 		 * ->restarts has to be kept as non-zero if new budget
619 		 *  contention occurs.
620 		 *
621 		 *  No need to run queue when either another re-run
622 		 *  queue wins in updating ->restarts or a new budget
623 		 *  contention occurs.
624 		 */
625 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
626 			blk_mq_run_hw_queues(sdev->request_queue, true);
627 	}
628 }
629 
630 /* Returns false when no more bytes to process, true if there are more */
631 static bool scsi_end_request(struct request *req, blk_status_t error,
632 		unsigned int bytes)
633 {
634 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
635 	struct scsi_device *sdev = cmd->device;
636 	struct request_queue *q = sdev->request_queue;
637 
638 	if (blk_update_request(req, error, bytes))
639 		return true;
640 
641 	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
642 		add_disk_randomness(req->q->disk);
643 
644 	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
645 		     !(cmd->flags & SCMD_INITIALIZED));
646 	cmd->flags = 0;
647 
648 	/*
649 	 * Calling rcu_barrier() is not necessary here because the
650 	 * SCSI error handler guarantees that the function called by
651 	 * call_rcu() has been called before scsi_end_request() is
652 	 * called.
653 	 */
654 	destroy_rcu_head(&cmd->rcu);
655 
656 	/*
657 	 * In the MQ case the command gets freed by __blk_mq_end_request,
658 	 * so we have to do all cleanup that depends on it earlier.
659 	 *
660 	 * We also can't kick the queues from irq context, so we
661 	 * will have to defer it to a workqueue.
662 	 */
663 	scsi_mq_uninit_cmd(cmd);
664 
665 	/*
666 	 * queue is still alive, so grab the ref for preventing it
667 	 * from being cleaned up during running queue.
668 	 */
669 	percpu_ref_get(&q->q_usage_counter);
670 
671 	__blk_mq_end_request(req, error);
672 
673 	scsi_run_queue_async(sdev);
674 
675 	percpu_ref_put(&q->q_usage_counter);
676 	return false;
677 }
678 
679 /**
680  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
681  * @result:	scsi error code
682  *
683  * Translate a SCSI result code into a blk_status_t value.
684  */
685 static blk_status_t scsi_result_to_blk_status(int result)
686 {
687 	/*
688 	 * Check the scsi-ml byte first in case we converted a host or status
689 	 * byte.
690 	 */
691 	switch (scsi_ml_byte(result)) {
692 	case SCSIML_STAT_OK:
693 		break;
694 	case SCSIML_STAT_RESV_CONFLICT:
695 		return BLK_STS_RESV_CONFLICT;
696 	case SCSIML_STAT_NOSPC:
697 		return BLK_STS_NOSPC;
698 	case SCSIML_STAT_MED_ERROR:
699 		return BLK_STS_MEDIUM;
700 	case SCSIML_STAT_TGT_FAILURE:
701 		return BLK_STS_TARGET;
702 	case SCSIML_STAT_DL_TIMEOUT:
703 		return BLK_STS_DURATION_LIMIT;
704 	}
705 
706 	switch (host_byte(result)) {
707 	case DID_OK:
708 		if (scsi_status_is_good(result))
709 			return BLK_STS_OK;
710 		return BLK_STS_IOERR;
711 	case DID_TRANSPORT_FAILFAST:
712 	case DID_TRANSPORT_MARGINAL:
713 		return BLK_STS_TRANSPORT;
714 	default:
715 		return BLK_STS_IOERR;
716 	}
717 }
718 
719 /**
720  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
721  * @rq: request to examine
722  *
723  * Description:
724  *     A request could be merge of IOs which require different failure
725  *     handling.  This function determines the number of bytes which
726  *     can be failed from the beginning of the request without
727  *     crossing into area which need to be retried further.
728  *
729  * Return:
730  *     The number of bytes to fail.
731  */
732 static unsigned int scsi_rq_err_bytes(const struct request *rq)
733 {
734 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
735 	unsigned int bytes = 0;
736 	struct bio *bio;
737 
738 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
739 		return blk_rq_bytes(rq);
740 
741 	/*
742 	 * Currently the only 'mixing' which can happen is between
743 	 * different fastfail types.  We can safely fail portions
744 	 * which have all the failfast bits that the first one has -
745 	 * the ones which are at least as eager to fail as the first
746 	 * one.
747 	 */
748 	for (bio = rq->bio; bio; bio = bio->bi_next) {
749 		if ((bio->bi_opf & ff) != ff)
750 			break;
751 		bytes += bio->bi_iter.bi_size;
752 	}
753 
754 	/* this could lead to infinite loop */
755 	BUG_ON(blk_rq_bytes(rq) && !bytes);
756 	return bytes;
757 }
758 
759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
760 {
761 	struct request *req = scsi_cmd_to_rq(cmd);
762 	unsigned long wait_for;
763 
764 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
765 		return false;
766 
767 	wait_for = (cmd->allowed + 1) * req->timeout;
768 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
769 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
770 			    wait_for/HZ);
771 		return true;
772 	}
773 	return false;
774 }
775 
776 /*
777  * When ALUA transition state is returned, reprep the cmd to
778  * use the ALUA handler's transition timeout. Delay the reprep
779  * 1 sec to avoid aggressive retries of the target in that
780  * state.
781  */
782 #define ALUA_TRANSITION_REPREP_DELAY	1000
783 
784 /* Helper for scsi_io_completion() when special action required. */
785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
786 {
787 	struct request *req = scsi_cmd_to_rq(cmd);
788 	int level = 0;
789 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
790 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
791 	struct scsi_sense_hdr sshdr;
792 	bool sense_valid;
793 	bool sense_current = true;      /* false implies "deferred sense" */
794 	blk_status_t blk_stat;
795 
796 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
797 	if (sense_valid)
798 		sense_current = !scsi_sense_is_deferred(&sshdr);
799 
800 	blk_stat = scsi_result_to_blk_status(result);
801 
802 	if (host_byte(result) == DID_RESET) {
803 		/* Third party bus reset or reset for error recovery
804 		 * reasons.  Just retry the command and see what
805 		 * happens.
806 		 */
807 		action = ACTION_RETRY;
808 	} else if (sense_valid && sense_current) {
809 		switch (sshdr.sense_key) {
810 		case UNIT_ATTENTION:
811 			if (cmd->device->removable) {
812 				/* Detected disc change.  Set a bit
813 				 * and quietly refuse further access.
814 				 */
815 				cmd->device->changed = 1;
816 				action = ACTION_FAIL;
817 			} else {
818 				/* Must have been a power glitch, or a
819 				 * bus reset.  Could not have been a
820 				 * media change, so we just retry the
821 				 * command and see what happens.
822 				 */
823 				action = ACTION_RETRY;
824 			}
825 			break;
826 		case ILLEGAL_REQUEST:
827 			/* If we had an ILLEGAL REQUEST returned, then
828 			 * we may have performed an unsupported
829 			 * command.  The only thing this should be
830 			 * would be a ten byte read where only a six
831 			 * byte read was supported.  Also, on a system
832 			 * where READ CAPACITY failed, we may have
833 			 * read past the end of the disk.
834 			 */
835 			if ((cmd->device->use_10_for_rw &&
836 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 			    (cmd->cmnd[0] == READ_10 ||
838 			     cmd->cmnd[0] == WRITE_10)) {
839 				/* This will issue a new 6-byte command. */
840 				cmd->device->use_10_for_rw = 0;
841 				action = ACTION_REPREP;
842 			} else if (sshdr.asc == 0x10) /* DIX */ {
843 				action = ACTION_FAIL;
844 				blk_stat = BLK_STS_PROTECTION;
845 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847 				action = ACTION_FAIL;
848 				blk_stat = BLK_STS_TARGET;
849 			} else
850 				action = ACTION_FAIL;
851 			break;
852 		case ABORTED_COMMAND:
853 			action = ACTION_FAIL;
854 			if (sshdr.asc == 0x10) /* DIF */
855 				blk_stat = BLK_STS_PROTECTION;
856 			break;
857 		case NOT_READY:
858 			/* If the device is in the process of becoming
859 			 * ready, or has a temporary blockage, retry.
860 			 */
861 			if (sshdr.asc == 0x04) {
862 				switch (sshdr.ascq) {
863 				case 0x01: /* becoming ready */
864 				case 0x04: /* format in progress */
865 				case 0x05: /* rebuild in progress */
866 				case 0x06: /* recalculation in progress */
867 				case 0x07: /* operation in progress */
868 				case 0x08: /* Long write in progress */
869 				case 0x09: /* self test in progress */
870 				case 0x11: /* notify (enable spinup) required */
871 				case 0x14: /* space allocation in progress */
872 				case 0x1a: /* start stop unit in progress */
873 				case 0x1b: /* sanitize in progress */
874 				case 0x1d: /* configuration in progress */
875 				case 0x24: /* depopulation in progress */
876 				case 0x25: /* depopulation restore in progress */
877 					action = ACTION_DELAYED_RETRY;
878 					break;
879 				case 0x0a: /* ALUA state transition */
880 					action = ACTION_DELAYED_REPREP;
881 					break;
882 				default:
883 					action = ACTION_FAIL;
884 					break;
885 				}
886 			} else
887 				action = ACTION_FAIL;
888 			break;
889 		case VOLUME_OVERFLOW:
890 			/* See SSC3rXX or current. */
891 			action = ACTION_FAIL;
892 			break;
893 		case DATA_PROTECT:
894 			action = ACTION_FAIL;
895 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
896 			    (sshdr.asc == 0x55 &&
897 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
898 				/* Insufficient zone resources */
899 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
900 			}
901 			break;
902 		case COMPLETED:
903 			fallthrough;
904 		default:
905 			action = ACTION_FAIL;
906 			break;
907 		}
908 	} else
909 		action = ACTION_FAIL;
910 
911 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
912 		action = ACTION_FAIL;
913 
914 	switch (action) {
915 	case ACTION_FAIL:
916 		/* Give up and fail the remainder of the request */
917 		if (!(req->rq_flags & RQF_QUIET)) {
918 			static DEFINE_RATELIMIT_STATE(_rs,
919 					DEFAULT_RATELIMIT_INTERVAL,
920 					DEFAULT_RATELIMIT_BURST);
921 
922 			if (unlikely(scsi_logging_level))
923 				level =
924 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
925 						    SCSI_LOG_MLCOMPLETE_BITS);
926 
927 			/*
928 			 * if logging is enabled the failure will be printed
929 			 * in scsi_log_completion(), so avoid duplicate messages
930 			 */
931 			if (!level && __ratelimit(&_rs)) {
932 				scsi_print_result(cmd, NULL, FAILED);
933 				if (sense_valid)
934 					scsi_print_sense(cmd);
935 				scsi_print_command(cmd);
936 			}
937 		}
938 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
939 			return;
940 		fallthrough;
941 	case ACTION_REPREP:
942 		scsi_mq_requeue_cmd(cmd, 0);
943 		break;
944 	case ACTION_DELAYED_REPREP:
945 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
946 		break;
947 	case ACTION_RETRY:
948 		/* Retry the same command immediately */
949 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
950 		break;
951 	case ACTION_DELAYED_RETRY:
952 		/* Retry the same command after a delay */
953 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
954 		break;
955 	}
956 }
957 
958 /*
959  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
960  * new result that may suppress further error checking. Also modifies
961  * *blk_statp in some cases.
962  */
963 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
964 					blk_status_t *blk_statp)
965 {
966 	bool sense_valid;
967 	bool sense_current = true;	/* false implies "deferred sense" */
968 	struct request *req = scsi_cmd_to_rq(cmd);
969 	struct scsi_sense_hdr sshdr;
970 
971 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
972 	if (sense_valid)
973 		sense_current = !scsi_sense_is_deferred(&sshdr);
974 
975 	if (blk_rq_is_passthrough(req)) {
976 		if (sense_valid) {
977 			/*
978 			 * SG_IO wants current and deferred errors
979 			 */
980 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
981 					     SCSI_SENSE_BUFFERSIZE);
982 		}
983 		if (sense_current)
984 			*blk_statp = scsi_result_to_blk_status(result);
985 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
986 		/*
987 		 * Flush commands do not transfers any data, and thus cannot use
988 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
989 		 * This sets *blk_statp explicitly for the problem case.
990 		 */
991 		*blk_statp = scsi_result_to_blk_status(result);
992 	}
993 	/*
994 	 * Recovered errors need reporting, but they're always treated as
995 	 * success, so fiddle the result code here.  For passthrough requests
996 	 * we already took a copy of the original into sreq->result which
997 	 * is what gets returned to the user
998 	 */
999 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1000 		bool do_print = true;
1001 		/*
1002 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1003 		 * skip print since caller wants ATA registers. Only occurs
1004 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1005 		 */
1006 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1007 			do_print = false;
1008 		else if (req->rq_flags & RQF_QUIET)
1009 			do_print = false;
1010 		if (do_print)
1011 			scsi_print_sense(cmd);
1012 		result = 0;
1013 		/* for passthrough, *blk_statp may be set */
1014 		*blk_statp = BLK_STS_OK;
1015 	}
1016 	/*
1017 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1018 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1019 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1020 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1021 	 * intermediate statuses (both obsolete in SAM-4) as good.
1022 	 */
1023 	if ((result & 0xff) && scsi_status_is_good(result)) {
1024 		result = 0;
1025 		*blk_statp = BLK_STS_OK;
1026 	}
1027 	return result;
1028 }
1029 
1030 /**
1031  * scsi_io_completion - Completion processing for SCSI commands.
1032  * @cmd:	command that is finished.
1033  * @good_bytes:	number of processed bytes.
1034  *
1035  * We will finish off the specified number of sectors. If we are done, the
1036  * command block will be released and the queue function will be goosed. If we
1037  * are not done then we have to figure out what to do next:
1038  *
1039  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1040  *	unprepared and put back on the queue.  Then a new command will
1041  *	be created for it.  This should be used if we made forward
1042  *	progress, or if we want to switch from READ(10) to READ(6) for
1043  *	example.
1044  *
1045  *   b) We can call scsi_io_completion_action().  The request will be
1046  *	put back on the queue and retried using the same command as
1047  *	before, possibly after a delay.
1048  *
1049  *   c) We can call scsi_end_request() with blk_stat other than
1050  *	BLK_STS_OK, to fail the remainder of the request.
1051  */
1052 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1053 {
1054 	int result = cmd->result;
1055 	struct request *req = scsi_cmd_to_rq(cmd);
1056 	blk_status_t blk_stat = BLK_STS_OK;
1057 
1058 	if (unlikely(result))	/* a nz result may or may not be an error */
1059 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1060 
1061 	/*
1062 	 * Next deal with any sectors which we were able to correctly
1063 	 * handle.
1064 	 */
1065 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1066 		"%u sectors total, %d bytes done.\n",
1067 		blk_rq_sectors(req), good_bytes));
1068 
1069 	/*
1070 	 * Failed, zero length commands always need to drop down
1071 	 * to retry code. Fast path should return in this block.
1072 	 */
1073 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1074 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1075 			return; /* no bytes remaining */
1076 	}
1077 
1078 	/* Kill remainder if no retries. */
1079 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1080 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1081 			WARN_ONCE(true,
1082 			    "Bytes remaining after failed, no-retry command");
1083 		return;
1084 	}
1085 
1086 	/*
1087 	 * If there had been no error, but we have leftover bytes in the
1088 	 * request just queue the command up again.
1089 	 */
1090 	if (likely(result == 0))
1091 		scsi_mq_requeue_cmd(cmd, 0);
1092 	else
1093 		scsi_io_completion_action(cmd, result);
1094 }
1095 
1096 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1097 		struct request *rq)
1098 {
1099 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1100 	       !op_is_write(req_op(rq)) &&
1101 	       sdev->host->hostt->dma_need_drain(rq);
1102 }
1103 
1104 /**
1105  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1106  * @cmd: SCSI command data structure to initialize.
1107  *
1108  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1109  * for @cmd.
1110  *
1111  * Returns:
1112  * * BLK_STS_OK       - on success
1113  * * BLK_STS_RESOURCE - if the failure is retryable
1114  * * BLK_STS_IOERR    - if the failure is fatal
1115  */
1116 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1117 {
1118 	struct scsi_device *sdev = cmd->device;
1119 	struct request *rq = scsi_cmd_to_rq(cmd);
1120 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1121 	struct scatterlist *last_sg = NULL;
1122 	blk_status_t ret;
1123 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1124 	int count;
1125 
1126 	if (WARN_ON_ONCE(!nr_segs))
1127 		return BLK_STS_IOERR;
1128 
1129 	/*
1130 	 * Make sure there is space for the drain.  The driver must adjust
1131 	 * max_hw_segments to be prepared for this.
1132 	 */
1133 	if (need_drain)
1134 		nr_segs++;
1135 
1136 	/*
1137 	 * If sg table allocation fails, requeue request later.
1138 	 */
1139 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1140 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1141 		return BLK_STS_RESOURCE;
1142 
1143 	/*
1144 	 * Next, walk the list, and fill in the addresses and sizes of
1145 	 * each segment.
1146 	 */
1147 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1148 
1149 	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1150 		unsigned int pad_len =
1151 			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1152 
1153 		last_sg->length += pad_len;
1154 		cmd->extra_len += pad_len;
1155 	}
1156 
1157 	if (need_drain) {
1158 		sg_unmark_end(last_sg);
1159 		last_sg = sg_next(last_sg);
1160 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1161 		sg_mark_end(last_sg);
1162 
1163 		cmd->extra_len += sdev->dma_drain_len;
1164 		count++;
1165 	}
1166 
1167 	BUG_ON(count > cmd->sdb.table.nents);
1168 	cmd->sdb.table.nents = count;
1169 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1170 
1171 	if (blk_integrity_rq(rq)) {
1172 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1173 
1174 		if (WARN_ON_ONCE(!prot_sdb)) {
1175 			/*
1176 			 * This can happen if someone (e.g. multipath)
1177 			 * queues a command to a device on an adapter
1178 			 * that does not support DIX.
1179 			 */
1180 			ret = BLK_STS_IOERR;
1181 			goto out_free_sgtables;
1182 		}
1183 
1184 		if (sg_alloc_table_chained(&prot_sdb->table,
1185 				rq->nr_integrity_segments,
1186 				prot_sdb->table.sgl,
1187 				SCSI_INLINE_PROT_SG_CNT)) {
1188 			ret = BLK_STS_RESOURCE;
1189 			goto out_free_sgtables;
1190 		}
1191 
1192 		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1193 		cmd->prot_sdb = prot_sdb;
1194 		cmd->prot_sdb->table.nents = count;
1195 	}
1196 
1197 	return BLK_STS_OK;
1198 out_free_sgtables:
1199 	scsi_free_sgtables(cmd);
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL(scsi_alloc_sgtables);
1203 
1204 /**
1205  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206  * @rq: Request associated with the SCSI command to be initialized.
1207  *
1208  * This function initializes the members of struct scsi_cmnd that must be
1209  * initialized before request processing starts and that won't be
1210  * reinitialized if a SCSI command is requeued.
1211  */
1212 static void scsi_initialize_rq(struct request *rq)
1213 {
1214 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215 
1216 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217 	cmd->cmd_len = MAX_COMMAND_SIZE;
1218 	cmd->sense_len = 0;
1219 	init_rcu_head(&cmd->rcu);
1220 	cmd->jiffies_at_alloc = jiffies;
1221 	cmd->retries = 0;
1222 }
1223 
1224 /**
1225  * scsi_alloc_request - allocate a block request and partially
1226  *                      initialize its &scsi_cmnd
1227  * @q: the device's request queue
1228  * @opf: the request operation code
1229  * @flags: block layer allocation flags
1230  *
1231  * Return: &struct request pointer on success or %NULL on failure
1232  */
1233 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1234 				   blk_mq_req_flags_t flags)
1235 {
1236 	struct request *rq;
1237 
1238 	rq = blk_mq_alloc_request(q, opf, flags);
1239 	if (!IS_ERR(rq))
1240 		scsi_initialize_rq(rq);
1241 	return rq;
1242 }
1243 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1244 
1245 /*
1246  * Only called when the request isn't completed by SCSI, and not freed by
1247  * SCSI
1248  */
1249 static void scsi_cleanup_rq(struct request *rq)
1250 {
1251 	if (rq->rq_flags & RQF_DONTPREP) {
1252 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1253 		rq->rq_flags &= ~RQF_DONTPREP;
1254 	}
1255 }
1256 
1257 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1258 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1259 {
1260 	struct request *rq = scsi_cmd_to_rq(cmd);
1261 
1262 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1263 		cmd->flags |= SCMD_INITIALIZED;
1264 		scsi_initialize_rq(rq);
1265 	}
1266 
1267 	cmd->device = dev;
1268 	INIT_LIST_HEAD(&cmd->eh_entry);
1269 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1270 }
1271 
1272 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1273 		struct request *req)
1274 {
1275 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1276 
1277 	/*
1278 	 * Passthrough requests may transfer data, in which case they must
1279 	 * a bio attached to them.  Or they might contain a SCSI command
1280 	 * that does not transfer data, in which case they may optionally
1281 	 * submit a request without an attached bio.
1282 	 */
1283 	if (req->bio) {
1284 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1285 		if (unlikely(ret != BLK_STS_OK))
1286 			return ret;
1287 	} else {
1288 		BUG_ON(blk_rq_bytes(req));
1289 
1290 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1291 	}
1292 
1293 	cmd->transfersize = blk_rq_bytes(req);
1294 	return BLK_STS_OK;
1295 }
1296 
1297 static blk_status_t
1298 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1299 {
1300 	switch (sdev->sdev_state) {
1301 	case SDEV_CREATED:
1302 		return BLK_STS_OK;
1303 	case SDEV_OFFLINE:
1304 	case SDEV_TRANSPORT_OFFLINE:
1305 		/*
1306 		 * If the device is offline we refuse to process any
1307 		 * commands.  The device must be brought online
1308 		 * before trying any recovery commands.
1309 		 */
1310 		if (!sdev->offline_already) {
1311 			sdev->offline_already = true;
1312 			sdev_printk(KERN_ERR, sdev,
1313 				    "rejecting I/O to offline device\n");
1314 		}
1315 		return BLK_STS_IOERR;
1316 	case SDEV_DEL:
1317 		/*
1318 		 * If the device is fully deleted, we refuse to
1319 		 * process any commands as well.
1320 		 */
1321 		sdev_printk(KERN_ERR, sdev,
1322 			    "rejecting I/O to dead device\n");
1323 		return BLK_STS_IOERR;
1324 	case SDEV_BLOCK:
1325 	case SDEV_CREATED_BLOCK:
1326 		return BLK_STS_RESOURCE;
1327 	case SDEV_QUIESCE:
1328 		/*
1329 		 * If the device is blocked we only accept power management
1330 		 * commands.
1331 		 */
1332 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1333 			return BLK_STS_RESOURCE;
1334 		return BLK_STS_OK;
1335 	default:
1336 		/*
1337 		 * For any other not fully online state we only allow
1338 		 * power management commands.
1339 		 */
1340 		if (req && !(req->rq_flags & RQF_PM))
1341 			return BLK_STS_OFFLINE;
1342 		return BLK_STS_OK;
1343 	}
1344 }
1345 
1346 /*
1347  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1348  * and return the token else return -1.
1349  */
1350 static inline int scsi_dev_queue_ready(struct request_queue *q,
1351 				  struct scsi_device *sdev)
1352 {
1353 	int token;
1354 
1355 	token = sbitmap_get(&sdev->budget_map);
1356 	if (token < 0)
1357 		return -1;
1358 
1359 	if (!atomic_read(&sdev->device_blocked))
1360 		return token;
1361 
1362 	/*
1363 	 * Only unblock if no other commands are pending and
1364 	 * if device_blocked has decreased to zero
1365 	 */
1366 	if (scsi_device_busy(sdev) > 1 ||
1367 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1368 		sbitmap_put(&sdev->budget_map, token);
1369 		return -1;
1370 	}
1371 
1372 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1373 			 "unblocking device at zero depth\n"));
1374 
1375 	return token;
1376 }
1377 
1378 /*
1379  * scsi_target_queue_ready: checks if there we can send commands to target
1380  * @sdev: scsi device on starget to check.
1381  */
1382 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1383 					   struct scsi_device *sdev)
1384 {
1385 	struct scsi_target *starget = scsi_target(sdev);
1386 	unsigned int busy;
1387 
1388 	if (starget->single_lun) {
1389 		spin_lock_irq(shost->host_lock);
1390 		if (starget->starget_sdev_user &&
1391 		    starget->starget_sdev_user != sdev) {
1392 			spin_unlock_irq(shost->host_lock);
1393 			return 0;
1394 		}
1395 		starget->starget_sdev_user = sdev;
1396 		spin_unlock_irq(shost->host_lock);
1397 	}
1398 
1399 	if (starget->can_queue <= 0)
1400 		return 1;
1401 
1402 	busy = atomic_inc_return(&starget->target_busy) - 1;
1403 	if (atomic_read(&starget->target_blocked) > 0) {
1404 		if (busy)
1405 			goto starved;
1406 
1407 		/*
1408 		 * unblock after target_blocked iterates to zero
1409 		 */
1410 		if (atomic_dec_return(&starget->target_blocked) > 0)
1411 			goto out_dec;
1412 
1413 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1414 				 "unblocking target at zero depth\n"));
1415 	}
1416 
1417 	if (busy >= starget->can_queue)
1418 		goto starved;
1419 
1420 	return 1;
1421 
1422 starved:
1423 	spin_lock_irq(shost->host_lock);
1424 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1425 	spin_unlock_irq(shost->host_lock);
1426 out_dec:
1427 	if (starget->can_queue > 0)
1428 		atomic_dec(&starget->target_busy);
1429 	return 0;
1430 }
1431 
1432 /*
1433  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1434  * return 0. We must end up running the queue again whenever 0 is
1435  * returned, else IO can hang.
1436  */
1437 static inline int scsi_host_queue_ready(struct request_queue *q,
1438 				   struct Scsi_Host *shost,
1439 				   struct scsi_device *sdev,
1440 				   struct scsi_cmnd *cmd)
1441 {
1442 	if (atomic_read(&shost->host_blocked) > 0) {
1443 		if (scsi_host_busy(shost) > 0)
1444 			goto starved;
1445 
1446 		/*
1447 		 * unblock after host_blocked iterates to zero
1448 		 */
1449 		if (atomic_dec_return(&shost->host_blocked) > 0)
1450 			goto out_dec;
1451 
1452 		SCSI_LOG_MLQUEUE(3,
1453 			shost_printk(KERN_INFO, shost,
1454 				     "unblocking host at zero depth\n"));
1455 	}
1456 
1457 	if (shost->host_self_blocked)
1458 		goto starved;
1459 
1460 	/* We're OK to process the command, so we can't be starved */
1461 	if (!list_empty(&sdev->starved_entry)) {
1462 		spin_lock_irq(shost->host_lock);
1463 		if (!list_empty(&sdev->starved_entry))
1464 			list_del_init(&sdev->starved_entry);
1465 		spin_unlock_irq(shost->host_lock);
1466 	}
1467 
1468 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1469 
1470 	return 1;
1471 
1472 starved:
1473 	spin_lock_irq(shost->host_lock);
1474 	if (list_empty(&sdev->starved_entry))
1475 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1476 	spin_unlock_irq(shost->host_lock);
1477 out_dec:
1478 	scsi_dec_host_busy(shost, cmd);
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Busy state exporting function for request stacking drivers.
1484  *
1485  * For efficiency, no lock is taken to check the busy state of
1486  * shost/starget/sdev, since the returned value is not guaranteed and
1487  * may be changed after request stacking drivers call the function,
1488  * regardless of taking lock or not.
1489  *
1490  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1491  * needs to return 'not busy'. Otherwise, request stacking drivers
1492  * may hold requests forever.
1493  */
1494 static bool scsi_mq_lld_busy(struct request_queue *q)
1495 {
1496 	struct scsi_device *sdev = q->queuedata;
1497 	struct Scsi_Host *shost;
1498 
1499 	if (blk_queue_dying(q))
1500 		return false;
1501 
1502 	shost = sdev->host;
1503 
1504 	/*
1505 	 * Ignore host/starget busy state.
1506 	 * Since block layer does not have a concept of fairness across
1507 	 * multiple queues, congestion of host/starget needs to be handled
1508 	 * in SCSI layer.
1509 	 */
1510 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1511 		return true;
1512 
1513 	return false;
1514 }
1515 
1516 /*
1517  * Block layer request completion callback. May be called from interrupt
1518  * context.
1519  */
1520 static void scsi_complete(struct request *rq)
1521 {
1522 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1523 	enum scsi_disposition disposition;
1524 
1525 	INIT_LIST_HEAD(&cmd->eh_entry);
1526 
1527 	atomic_inc(&cmd->device->iodone_cnt);
1528 	if (cmd->result)
1529 		atomic_inc(&cmd->device->ioerr_cnt);
1530 
1531 	disposition = scsi_decide_disposition(cmd);
1532 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1533 		disposition = SUCCESS;
1534 
1535 	scsi_log_completion(cmd, disposition);
1536 
1537 	switch (disposition) {
1538 	case SUCCESS:
1539 		scsi_finish_command(cmd);
1540 		break;
1541 	case NEEDS_RETRY:
1542 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1543 		break;
1544 	case ADD_TO_MLQUEUE:
1545 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1546 		break;
1547 	default:
1548 		scsi_eh_scmd_add(cmd);
1549 		break;
1550 	}
1551 }
1552 
1553 /**
1554  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1555  * @cmd: command block we are dispatching.
1556  *
1557  * Return: nonzero return request was rejected and device's queue needs to be
1558  * plugged.
1559  */
1560 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1561 {
1562 	struct Scsi_Host *host = cmd->device->host;
1563 	int rtn = 0;
1564 
1565 	atomic_inc(&cmd->device->iorequest_cnt);
1566 
1567 	/* check if the device is still usable */
1568 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1569 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1570 		 * returns an immediate error upwards, and signals
1571 		 * that the device is no longer present */
1572 		cmd->result = DID_NO_CONNECT << 16;
1573 		goto done;
1574 	}
1575 
1576 	/* Check to see if the scsi lld made this device blocked. */
1577 	if (unlikely(scsi_device_blocked(cmd->device))) {
1578 		/*
1579 		 * in blocked state, the command is just put back on
1580 		 * the device queue.  The suspend state has already
1581 		 * blocked the queue so future requests should not
1582 		 * occur until the device transitions out of the
1583 		 * suspend state.
1584 		 */
1585 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1586 			"queuecommand : device blocked\n"));
1587 		atomic_dec(&cmd->device->iorequest_cnt);
1588 		return SCSI_MLQUEUE_DEVICE_BUSY;
1589 	}
1590 
1591 	/* Store the LUN value in cmnd, if needed. */
1592 	if (cmd->device->lun_in_cdb)
1593 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1594 			       (cmd->device->lun << 5 & 0xe0);
1595 
1596 	scsi_log_send(cmd);
1597 
1598 	/*
1599 	 * Before we queue this command, check if the command
1600 	 * length exceeds what the host adapter can handle.
1601 	 */
1602 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1603 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1604 			       "queuecommand : command too long. "
1605 			       "cdb_size=%d host->max_cmd_len=%d\n",
1606 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1607 		cmd->result = (DID_ABORT << 16);
1608 		goto done;
1609 	}
1610 
1611 	if (unlikely(host->shost_state == SHOST_DEL)) {
1612 		cmd->result = (DID_NO_CONNECT << 16);
1613 		goto done;
1614 
1615 	}
1616 
1617 	trace_scsi_dispatch_cmd_start(cmd);
1618 	rtn = host->hostt->queuecommand(host, cmd);
1619 	if (rtn) {
1620 		atomic_dec(&cmd->device->iorequest_cnt);
1621 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1622 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1623 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1624 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1625 
1626 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1627 			"queuecommand : request rejected\n"));
1628 	}
1629 
1630 	return rtn;
1631  done:
1632 	scsi_done(cmd);
1633 	return 0;
1634 }
1635 
1636 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1637 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1638 {
1639 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1640 		sizeof(struct scatterlist);
1641 }
1642 
1643 static blk_status_t scsi_prepare_cmd(struct request *req)
1644 {
1645 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1646 	struct scsi_device *sdev = req->q->queuedata;
1647 	struct Scsi_Host *shost = sdev->host;
1648 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1649 	struct scatterlist *sg;
1650 
1651 	scsi_init_command(sdev, cmd);
1652 
1653 	cmd->eh_eflags = 0;
1654 	cmd->prot_type = 0;
1655 	cmd->prot_flags = 0;
1656 	cmd->submitter = 0;
1657 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1658 	cmd->underflow = 0;
1659 	cmd->transfersize = 0;
1660 	cmd->host_scribble = NULL;
1661 	cmd->result = 0;
1662 	cmd->extra_len = 0;
1663 	cmd->state = 0;
1664 	if (in_flight)
1665 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1666 
1667 	/*
1668 	 * Only clear the driver-private command data if the LLD does not supply
1669 	 * a function to initialize that data.
1670 	 */
1671 	if (!shost->hostt->init_cmd_priv)
1672 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1673 
1674 	cmd->prot_op = SCSI_PROT_NORMAL;
1675 	if (blk_rq_bytes(req))
1676 		cmd->sc_data_direction = rq_dma_dir(req);
1677 	else
1678 		cmd->sc_data_direction = DMA_NONE;
1679 
1680 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1681 	cmd->sdb.table.sgl = sg;
1682 
1683 	if (scsi_host_get_prot(shost)) {
1684 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1685 
1686 		cmd->prot_sdb->table.sgl =
1687 			(struct scatterlist *)(cmd->prot_sdb + 1);
1688 	}
1689 
1690 	/*
1691 	 * Special handling for passthrough commands, which don't go to the ULP
1692 	 * at all:
1693 	 */
1694 	if (blk_rq_is_passthrough(req))
1695 		return scsi_setup_scsi_cmnd(sdev, req);
1696 
1697 	if (sdev->handler && sdev->handler->prep_fn) {
1698 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1699 
1700 		if (ret != BLK_STS_OK)
1701 			return ret;
1702 	}
1703 
1704 	/* Usually overridden by the ULP */
1705 	cmd->allowed = 0;
1706 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1707 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1708 }
1709 
1710 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1711 {
1712 	struct request *req = scsi_cmd_to_rq(cmd);
1713 
1714 	switch (cmd->submitter) {
1715 	case SUBMITTED_BY_BLOCK_LAYER:
1716 		break;
1717 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1718 		return scsi_eh_done(cmd);
1719 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1720 		return;
1721 	}
1722 
1723 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1724 		return;
1725 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1726 		return;
1727 	trace_scsi_dispatch_cmd_done(cmd);
1728 
1729 	if (complete_directly)
1730 		blk_mq_complete_request_direct(req, scsi_complete);
1731 	else
1732 		blk_mq_complete_request(req);
1733 }
1734 
1735 void scsi_done(struct scsi_cmnd *cmd)
1736 {
1737 	scsi_done_internal(cmd, false);
1738 }
1739 EXPORT_SYMBOL(scsi_done);
1740 
1741 void scsi_done_direct(struct scsi_cmnd *cmd)
1742 {
1743 	scsi_done_internal(cmd, true);
1744 }
1745 EXPORT_SYMBOL(scsi_done_direct);
1746 
1747 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1748 {
1749 	struct scsi_device *sdev = q->queuedata;
1750 
1751 	sbitmap_put(&sdev->budget_map, budget_token);
1752 }
1753 
1754 /*
1755  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1756  * not change behaviour from the previous unplug mechanism, experimentation
1757  * may prove this needs changing.
1758  */
1759 #define SCSI_QUEUE_DELAY 3
1760 
1761 static int scsi_mq_get_budget(struct request_queue *q)
1762 {
1763 	struct scsi_device *sdev = q->queuedata;
1764 	int token = scsi_dev_queue_ready(q, sdev);
1765 
1766 	if (token >= 0)
1767 		return token;
1768 
1769 	atomic_inc(&sdev->restarts);
1770 
1771 	/*
1772 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1773 	 * .restarts must be incremented before .device_busy is read because the
1774 	 * code in scsi_run_queue_async() depends on the order of these operations.
1775 	 */
1776 	smp_mb__after_atomic();
1777 
1778 	/*
1779 	 * If all in-flight requests originated from this LUN are completed
1780 	 * before reading .device_busy, sdev->device_busy will be observed as
1781 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1782 	 * soon. Otherwise, completion of one of these requests will observe
1783 	 * the .restarts flag, and the request queue will be run for handling
1784 	 * this request, see scsi_end_request().
1785 	 */
1786 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1787 				!scsi_device_blocked(sdev)))
1788 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1789 	return -1;
1790 }
1791 
1792 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1793 {
1794 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1795 
1796 	cmd->budget_token = token;
1797 }
1798 
1799 static int scsi_mq_get_rq_budget_token(struct request *req)
1800 {
1801 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1802 
1803 	return cmd->budget_token;
1804 }
1805 
1806 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1807 			 const struct blk_mq_queue_data *bd)
1808 {
1809 	struct request *req = bd->rq;
1810 	struct request_queue *q = req->q;
1811 	struct scsi_device *sdev = q->queuedata;
1812 	struct Scsi_Host *shost = sdev->host;
1813 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1814 	blk_status_t ret;
1815 	int reason;
1816 
1817 	WARN_ON_ONCE(cmd->budget_token < 0);
1818 
1819 	/*
1820 	 * If the device is not in running state we will reject some or all
1821 	 * commands.
1822 	 */
1823 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1824 		ret = scsi_device_state_check(sdev, req);
1825 		if (ret != BLK_STS_OK)
1826 			goto out_put_budget;
1827 	}
1828 
1829 	ret = BLK_STS_RESOURCE;
1830 	if (!scsi_target_queue_ready(shost, sdev))
1831 		goto out_put_budget;
1832 	if (unlikely(scsi_host_in_recovery(shost))) {
1833 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1834 			ret = BLK_STS_OFFLINE;
1835 		goto out_dec_target_busy;
1836 	}
1837 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1838 		goto out_dec_target_busy;
1839 
1840 	if (!(req->rq_flags & RQF_DONTPREP)) {
1841 		ret = scsi_prepare_cmd(req);
1842 		if (ret != BLK_STS_OK)
1843 			goto out_dec_host_busy;
1844 		req->rq_flags |= RQF_DONTPREP;
1845 	} else {
1846 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1847 	}
1848 
1849 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1850 	if (sdev->simple_tags)
1851 		cmd->flags |= SCMD_TAGGED;
1852 	if (bd->last)
1853 		cmd->flags |= SCMD_LAST;
1854 
1855 	scsi_set_resid(cmd, 0);
1856 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1857 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1858 
1859 	blk_mq_start_request(req);
1860 	reason = scsi_dispatch_cmd(cmd);
1861 	if (reason) {
1862 		scsi_set_blocked(cmd, reason);
1863 		ret = BLK_STS_RESOURCE;
1864 		goto out_dec_host_busy;
1865 	}
1866 
1867 	return BLK_STS_OK;
1868 
1869 out_dec_host_busy:
1870 	scsi_dec_host_busy(shost, cmd);
1871 out_dec_target_busy:
1872 	if (scsi_target(sdev)->can_queue > 0)
1873 		atomic_dec(&scsi_target(sdev)->target_busy);
1874 out_put_budget:
1875 	scsi_mq_put_budget(q, cmd->budget_token);
1876 	cmd->budget_token = -1;
1877 	switch (ret) {
1878 	case BLK_STS_OK:
1879 		break;
1880 	case BLK_STS_RESOURCE:
1881 		if (scsi_device_blocked(sdev))
1882 			ret = BLK_STS_DEV_RESOURCE;
1883 		break;
1884 	case BLK_STS_AGAIN:
1885 		cmd->result = DID_BUS_BUSY << 16;
1886 		if (req->rq_flags & RQF_DONTPREP)
1887 			scsi_mq_uninit_cmd(cmd);
1888 		break;
1889 	default:
1890 		if (unlikely(!scsi_device_online(sdev)))
1891 			cmd->result = DID_NO_CONNECT << 16;
1892 		else
1893 			cmd->result = DID_ERROR << 16;
1894 		/*
1895 		 * Make sure to release all allocated resources when
1896 		 * we hit an error, as we will never see this command
1897 		 * again.
1898 		 */
1899 		if (req->rq_flags & RQF_DONTPREP)
1900 			scsi_mq_uninit_cmd(cmd);
1901 		scsi_run_queue_async(sdev);
1902 		break;
1903 	}
1904 	return ret;
1905 }
1906 
1907 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1908 				unsigned int hctx_idx, unsigned int numa_node)
1909 {
1910 	struct Scsi_Host *shost = set->driver_data;
1911 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1912 	struct scatterlist *sg;
1913 	int ret = 0;
1914 
1915 	cmd->sense_buffer =
1916 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1917 	if (!cmd->sense_buffer)
1918 		return -ENOMEM;
1919 
1920 	if (scsi_host_get_prot(shost)) {
1921 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1922 			shost->hostt->cmd_size;
1923 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1924 	}
1925 
1926 	if (shost->hostt->init_cmd_priv) {
1927 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1928 		if (ret < 0)
1929 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1930 	}
1931 
1932 	return ret;
1933 }
1934 
1935 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1936 				 unsigned int hctx_idx)
1937 {
1938 	struct Scsi_Host *shost = set->driver_data;
1939 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1940 
1941 	if (shost->hostt->exit_cmd_priv)
1942 		shost->hostt->exit_cmd_priv(shost, cmd);
1943 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1944 }
1945 
1946 
1947 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1948 {
1949 	struct Scsi_Host *shost = hctx->driver_data;
1950 
1951 	if (shost->hostt->mq_poll)
1952 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1953 
1954 	return 0;
1955 }
1956 
1957 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1958 			  unsigned int hctx_idx)
1959 {
1960 	struct Scsi_Host *shost = data;
1961 
1962 	hctx->driver_data = shost;
1963 	return 0;
1964 }
1965 
1966 static void scsi_map_queues(struct blk_mq_tag_set *set)
1967 {
1968 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1969 
1970 	if (shost->hostt->map_queues)
1971 		return shost->hostt->map_queues(shost);
1972 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1973 }
1974 
1975 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1976 {
1977 	struct device *dev = shost->dma_dev;
1978 
1979 	memset(lim, 0, sizeof(*lim));
1980 	lim->max_segments =
1981 		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1982 
1983 	if (scsi_host_prot_dma(shost)) {
1984 		shost->sg_prot_tablesize =
1985 			min_not_zero(shost->sg_prot_tablesize,
1986 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1987 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1988 		lim->max_integrity_segments = shost->sg_prot_tablesize;
1989 	}
1990 
1991 	lim->max_hw_sectors = shost->max_sectors;
1992 	lim->seg_boundary_mask = shost->dma_boundary;
1993 	lim->max_segment_size = shost->max_segment_size;
1994 	lim->virt_boundary_mask = shost->virt_boundary_mask;
1995 	lim->dma_alignment = max_t(unsigned int,
1996 		shost->dma_alignment, dma_get_cache_alignment() - 1);
1997 
1998 	if (shost->no_highmem)
1999 		lim->features |= BLK_FEAT_BOUNCE_HIGH;
2000 
2001 	/*
2002 	 * Propagate the DMA formation properties to the dma-mapping layer as
2003 	 * a courtesy service to the LLDDs.  This needs to check that the buses
2004 	 * actually support the DMA API first, though.
2005 	 */
2006 	if (dev->dma_parms) {
2007 		dma_set_seg_boundary(dev, shost->dma_boundary);
2008 		dma_set_max_seg_size(dev, shost->max_segment_size);
2009 	}
2010 }
2011 EXPORT_SYMBOL_GPL(scsi_init_limits);
2012 
2013 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2014 	.get_budget	= scsi_mq_get_budget,
2015 	.put_budget	= scsi_mq_put_budget,
2016 	.queue_rq	= scsi_queue_rq,
2017 	.complete	= scsi_complete,
2018 	.timeout	= scsi_timeout,
2019 #ifdef CONFIG_BLK_DEBUG_FS
2020 	.show_rq	= scsi_show_rq,
2021 #endif
2022 	.init_request	= scsi_mq_init_request,
2023 	.exit_request	= scsi_mq_exit_request,
2024 	.cleanup_rq	= scsi_cleanup_rq,
2025 	.busy		= scsi_mq_lld_busy,
2026 	.map_queues	= scsi_map_queues,
2027 	.init_hctx	= scsi_init_hctx,
2028 	.poll		= scsi_mq_poll,
2029 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2030 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2031 };
2032 
2033 
2034 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2035 {
2036 	struct Scsi_Host *shost = hctx->driver_data;
2037 
2038 	shost->hostt->commit_rqs(shost, hctx->queue_num);
2039 }
2040 
2041 static const struct blk_mq_ops scsi_mq_ops = {
2042 	.get_budget	= scsi_mq_get_budget,
2043 	.put_budget	= scsi_mq_put_budget,
2044 	.queue_rq	= scsi_queue_rq,
2045 	.commit_rqs	= scsi_commit_rqs,
2046 	.complete	= scsi_complete,
2047 	.timeout	= scsi_timeout,
2048 #ifdef CONFIG_BLK_DEBUG_FS
2049 	.show_rq	= scsi_show_rq,
2050 #endif
2051 	.init_request	= scsi_mq_init_request,
2052 	.exit_request	= scsi_mq_exit_request,
2053 	.cleanup_rq	= scsi_cleanup_rq,
2054 	.busy		= scsi_mq_lld_busy,
2055 	.map_queues	= scsi_map_queues,
2056 	.init_hctx	= scsi_init_hctx,
2057 	.poll		= scsi_mq_poll,
2058 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2059 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2060 };
2061 
2062 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2063 {
2064 	unsigned int cmd_size, sgl_size;
2065 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2066 
2067 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2068 				scsi_mq_inline_sgl_size(shost));
2069 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2070 	if (scsi_host_get_prot(shost))
2071 		cmd_size += sizeof(struct scsi_data_buffer) +
2072 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2073 
2074 	memset(tag_set, 0, sizeof(*tag_set));
2075 	if (shost->hostt->commit_rqs)
2076 		tag_set->ops = &scsi_mq_ops;
2077 	else
2078 		tag_set->ops = &scsi_mq_ops_no_commit;
2079 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2080 	tag_set->nr_maps = shost->nr_maps ? : 1;
2081 	tag_set->queue_depth = shost->can_queue;
2082 	tag_set->cmd_size = cmd_size;
2083 	tag_set->numa_node = dev_to_node(shost->dma_dev);
2084 	if (shost->hostt->tag_alloc_policy_rr)
2085 		tag_set->flags |= BLK_MQ_F_TAG_RR;
2086 	if (shost->queuecommand_may_block)
2087 		tag_set->flags |= BLK_MQ_F_BLOCKING;
2088 	tag_set->driver_data = shost;
2089 	if (shost->host_tagset)
2090 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2091 
2092 	return blk_mq_alloc_tag_set(tag_set);
2093 }
2094 
2095 void scsi_mq_free_tags(struct kref *kref)
2096 {
2097 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2098 					       tagset_refcnt);
2099 
2100 	blk_mq_free_tag_set(&shost->tag_set);
2101 	complete(&shost->tagset_freed);
2102 }
2103 
2104 /**
2105  * scsi_device_from_queue - return sdev associated with a request_queue
2106  * @q: The request queue to return the sdev from
2107  *
2108  * Return the sdev associated with a request queue or NULL if the
2109  * request_queue does not reference a SCSI device.
2110  */
2111 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2112 {
2113 	struct scsi_device *sdev = NULL;
2114 
2115 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2116 	    q->mq_ops == &scsi_mq_ops)
2117 		sdev = q->queuedata;
2118 	if (!sdev || !get_device(&sdev->sdev_gendev))
2119 		sdev = NULL;
2120 
2121 	return sdev;
2122 }
2123 /*
2124  * pktcdvd should have been integrated into the SCSI layers, but for historical
2125  * reasons like the old IDE driver it isn't.  This export allows it to safely
2126  * probe if a given device is a SCSI one and only attach to that.
2127  */
2128 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2129 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2130 #endif
2131 
2132 /**
2133  * scsi_block_requests - Utility function used by low-level drivers to prevent
2134  * further commands from being queued to the device.
2135  * @shost:  host in question
2136  *
2137  * There is no timer nor any other means by which the requests get unblocked
2138  * other than the low-level driver calling scsi_unblock_requests().
2139  */
2140 void scsi_block_requests(struct Scsi_Host *shost)
2141 {
2142 	shost->host_self_blocked = 1;
2143 }
2144 EXPORT_SYMBOL(scsi_block_requests);
2145 
2146 /**
2147  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2148  * further commands to be queued to the device.
2149  * @shost:  host in question
2150  *
2151  * There is no timer nor any other means by which the requests get unblocked
2152  * other than the low-level driver calling scsi_unblock_requests(). This is done
2153  * as an API function so that changes to the internals of the scsi mid-layer
2154  * won't require wholesale changes to drivers that use this feature.
2155  */
2156 void scsi_unblock_requests(struct Scsi_Host *shost)
2157 {
2158 	shost->host_self_blocked = 0;
2159 	scsi_run_host_queues(shost);
2160 }
2161 EXPORT_SYMBOL(scsi_unblock_requests);
2162 
2163 void scsi_exit_queue(void)
2164 {
2165 	kmem_cache_destroy(scsi_sense_cache);
2166 }
2167 
2168 /**
2169  *	scsi_mode_select - issue a mode select
2170  *	@sdev:	SCSI device to be queried
2171  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2172  *	@sp:	Save page bit (0 == don't save, 1 == save)
2173  *	@buffer: request buffer (may not be smaller than eight bytes)
2174  *	@len:	length of request buffer.
2175  *	@timeout: command timeout
2176  *	@retries: number of retries before failing
2177  *	@data: returns a structure abstracting the mode header data
2178  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2179  *		must be SCSI_SENSE_BUFFERSIZE big.
2180  *
2181  *	Returns zero if successful; negative error number or scsi
2182  *	status on error
2183  *
2184  */
2185 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2186 		     unsigned char *buffer, int len, int timeout, int retries,
2187 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2188 {
2189 	unsigned char cmd[10];
2190 	unsigned char *real_buffer;
2191 	const struct scsi_exec_args exec_args = {
2192 		.sshdr = sshdr,
2193 	};
2194 	int ret;
2195 
2196 	memset(cmd, 0, sizeof(cmd));
2197 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2198 
2199 	/*
2200 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2201 	 * and the mode select header cannot fit within the maximumm 255 bytes
2202 	 * of the MODE SELECT(6) command.
2203 	 */
2204 	if (sdev->use_10_for_ms ||
2205 	    len + 4 > 255 ||
2206 	    data->block_descriptor_length > 255) {
2207 		if (len > 65535 - 8)
2208 			return -EINVAL;
2209 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2210 		if (!real_buffer)
2211 			return -ENOMEM;
2212 		memcpy(real_buffer + 8, buffer, len);
2213 		len += 8;
2214 		real_buffer[0] = 0;
2215 		real_buffer[1] = 0;
2216 		real_buffer[2] = data->medium_type;
2217 		real_buffer[3] = data->device_specific;
2218 		real_buffer[4] = data->longlba ? 0x01 : 0;
2219 		real_buffer[5] = 0;
2220 		put_unaligned_be16(data->block_descriptor_length,
2221 				   &real_buffer[6]);
2222 
2223 		cmd[0] = MODE_SELECT_10;
2224 		put_unaligned_be16(len, &cmd[7]);
2225 	} else {
2226 		if (data->longlba)
2227 			return -EINVAL;
2228 
2229 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2230 		if (!real_buffer)
2231 			return -ENOMEM;
2232 		memcpy(real_buffer + 4, buffer, len);
2233 		len += 4;
2234 		real_buffer[0] = 0;
2235 		real_buffer[1] = data->medium_type;
2236 		real_buffer[2] = data->device_specific;
2237 		real_buffer[3] = data->block_descriptor_length;
2238 
2239 		cmd[0] = MODE_SELECT;
2240 		cmd[4] = len;
2241 	}
2242 
2243 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2244 			       timeout, retries, &exec_args);
2245 	kfree(real_buffer);
2246 	return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(scsi_mode_select);
2249 
2250 /**
2251  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2252  *	@sdev:	SCSI device to be queried
2253  *	@dbd:	set to prevent mode sense from returning block descriptors
2254  *	@modepage: mode page being requested
2255  *	@subpage: sub-page of the mode page being requested
2256  *	@buffer: request buffer (may not be smaller than eight bytes)
2257  *	@len:	length of request buffer.
2258  *	@timeout: command timeout
2259  *	@retries: number of retries before failing
2260  *	@data: returns a structure abstracting the mode header data
2261  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2262  *		must be SCSI_SENSE_BUFFERSIZE big.
2263  *
2264  *	Returns zero if successful, or a negative error number on failure
2265  */
2266 int
2267 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2268 		  unsigned char *buffer, int len, int timeout, int retries,
2269 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2270 {
2271 	unsigned char cmd[12];
2272 	int use_10_for_ms;
2273 	int header_length;
2274 	int result;
2275 	struct scsi_sense_hdr my_sshdr;
2276 	struct scsi_failure failure_defs[] = {
2277 		{
2278 			.sense = UNIT_ATTENTION,
2279 			.asc = SCMD_FAILURE_ASC_ANY,
2280 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2281 			.allowed = retries,
2282 			.result = SAM_STAT_CHECK_CONDITION,
2283 		},
2284 		{}
2285 	};
2286 	struct scsi_failures failures = {
2287 		.failure_definitions = failure_defs,
2288 	};
2289 	const struct scsi_exec_args exec_args = {
2290 		/* caller might not be interested in sense, but we need it */
2291 		.sshdr = sshdr ? : &my_sshdr,
2292 		.failures = &failures,
2293 	};
2294 
2295 	memset(data, 0, sizeof(*data));
2296 	memset(&cmd[0], 0, 12);
2297 
2298 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2299 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2300 	cmd[2] = modepage;
2301 	cmd[3] = subpage;
2302 
2303 	sshdr = exec_args.sshdr;
2304 
2305  retry:
2306 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2307 
2308 	if (use_10_for_ms) {
2309 		if (len < 8 || len > 65535)
2310 			return -EINVAL;
2311 
2312 		cmd[0] = MODE_SENSE_10;
2313 		put_unaligned_be16(len, &cmd[7]);
2314 		header_length = 8;
2315 	} else {
2316 		if (len < 4)
2317 			return -EINVAL;
2318 
2319 		cmd[0] = MODE_SENSE;
2320 		cmd[4] = len;
2321 		header_length = 4;
2322 	}
2323 
2324 	memset(buffer, 0, len);
2325 
2326 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2327 				  timeout, retries, &exec_args);
2328 	if (result < 0)
2329 		return result;
2330 
2331 	/* This code looks awful: what it's doing is making sure an
2332 	 * ILLEGAL REQUEST sense return identifies the actual command
2333 	 * byte as the problem.  MODE_SENSE commands can return
2334 	 * ILLEGAL REQUEST if the code page isn't supported */
2335 
2336 	if (!scsi_status_is_good(result)) {
2337 		if (scsi_sense_valid(sshdr)) {
2338 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2339 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2340 				/*
2341 				 * Invalid command operation code: retry using
2342 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2343 				 * request, except if the request mode page is
2344 				 * too large for MODE SENSE single byte
2345 				 * allocation length field.
2346 				 */
2347 				if (use_10_for_ms) {
2348 					if (len > 255)
2349 						return -EIO;
2350 					sdev->use_10_for_ms = 0;
2351 					goto retry;
2352 				}
2353 			}
2354 		}
2355 		return -EIO;
2356 	}
2357 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2358 		     (modepage == 6 || modepage == 8))) {
2359 		/* Initio breakage? */
2360 		header_length = 0;
2361 		data->length = 13;
2362 		data->medium_type = 0;
2363 		data->device_specific = 0;
2364 		data->longlba = 0;
2365 		data->block_descriptor_length = 0;
2366 	} else if (use_10_for_ms) {
2367 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2368 		data->medium_type = buffer[2];
2369 		data->device_specific = buffer[3];
2370 		data->longlba = buffer[4] & 0x01;
2371 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2372 	} else {
2373 		data->length = buffer[0] + 1;
2374 		data->medium_type = buffer[1];
2375 		data->device_specific = buffer[2];
2376 		data->block_descriptor_length = buffer[3];
2377 	}
2378 	data->header_length = header_length;
2379 
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(scsi_mode_sense);
2383 
2384 /**
2385  *	scsi_test_unit_ready - test if unit is ready
2386  *	@sdev:	scsi device to change the state of.
2387  *	@timeout: command timeout
2388  *	@retries: number of retries before failing
2389  *	@sshdr: outpout pointer for decoded sense information.
2390  *
2391  *	Returns zero if unsuccessful or an error if TUR failed.  For
2392  *	removable media, UNIT_ATTENTION sets ->changed flag.
2393  **/
2394 int
2395 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2396 		     struct scsi_sense_hdr *sshdr)
2397 {
2398 	char cmd[] = {
2399 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2400 	};
2401 	const struct scsi_exec_args exec_args = {
2402 		.sshdr = sshdr,
2403 	};
2404 	int result;
2405 
2406 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2407 	do {
2408 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2409 					  timeout, 1, &exec_args);
2410 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2411 		    sshdr->sense_key == UNIT_ATTENTION)
2412 			sdev->changed = 1;
2413 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2414 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2415 
2416 	return result;
2417 }
2418 EXPORT_SYMBOL(scsi_test_unit_ready);
2419 
2420 /**
2421  *	scsi_device_set_state - Take the given device through the device state model.
2422  *	@sdev:	scsi device to change the state of.
2423  *	@state:	state to change to.
2424  *
2425  *	Returns zero if successful or an error if the requested
2426  *	transition is illegal.
2427  */
2428 int
2429 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2430 {
2431 	enum scsi_device_state oldstate = sdev->sdev_state;
2432 
2433 	if (state == oldstate)
2434 		return 0;
2435 
2436 	switch (state) {
2437 	case SDEV_CREATED:
2438 		switch (oldstate) {
2439 		case SDEV_CREATED_BLOCK:
2440 			break;
2441 		default:
2442 			goto illegal;
2443 		}
2444 		break;
2445 
2446 	case SDEV_RUNNING:
2447 		switch (oldstate) {
2448 		case SDEV_CREATED:
2449 		case SDEV_OFFLINE:
2450 		case SDEV_TRANSPORT_OFFLINE:
2451 		case SDEV_QUIESCE:
2452 		case SDEV_BLOCK:
2453 			break;
2454 		default:
2455 			goto illegal;
2456 		}
2457 		break;
2458 
2459 	case SDEV_QUIESCE:
2460 		switch (oldstate) {
2461 		case SDEV_RUNNING:
2462 		case SDEV_OFFLINE:
2463 		case SDEV_TRANSPORT_OFFLINE:
2464 			break;
2465 		default:
2466 			goto illegal;
2467 		}
2468 		break;
2469 
2470 	case SDEV_OFFLINE:
2471 	case SDEV_TRANSPORT_OFFLINE:
2472 		switch (oldstate) {
2473 		case SDEV_CREATED:
2474 		case SDEV_RUNNING:
2475 		case SDEV_QUIESCE:
2476 		case SDEV_BLOCK:
2477 			break;
2478 		default:
2479 			goto illegal;
2480 		}
2481 		break;
2482 
2483 	case SDEV_BLOCK:
2484 		switch (oldstate) {
2485 		case SDEV_RUNNING:
2486 		case SDEV_CREATED_BLOCK:
2487 		case SDEV_QUIESCE:
2488 		case SDEV_OFFLINE:
2489 			break;
2490 		default:
2491 			goto illegal;
2492 		}
2493 		break;
2494 
2495 	case SDEV_CREATED_BLOCK:
2496 		switch (oldstate) {
2497 		case SDEV_CREATED:
2498 			break;
2499 		default:
2500 			goto illegal;
2501 		}
2502 		break;
2503 
2504 	case SDEV_CANCEL:
2505 		switch (oldstate) {
2506 		case SDEV_CREATED:
2507 		case SDEV_RUNNING:
2508 		case SDEV_QUIESCE:
2509 		case SDEV_OFFLINE:
2510 		case SDEV_TRANSPORT_OFFLINE:
2511 			break;
2512 		default:
2513 			goto illegal;
2514 		}
2515 		break;
2516 
2517 	case SDEV_DEL:
2518 		switch (oldstate) {
2519 		case SDEV_CREATED:
2520 		case SDEV_RUNNING:
2521 		case SDEV_OFFLINE:
2522 		case SDEV_TRANSPORT_OFFLINE:
2523 		case SDEV_CANCEL:
2524 		case SDEV_BLOCK:
2525 		case SDEV_CREATED_BLOCK:
2526 			break;
2527 		default:
2528 			goto illegal;
2529 		}
2530 		break;
2531 
2532 	}
2533 	sdev->offline_already = false;
2534 	sdev->sdev_state = state;
2535 	return 0;
2536 
2537  illegal:
2538 	SCSI_LOG_ERROR_RECOVERY(1,
2539 				sdev_printk(KERN_ERR, sdev,
2540 					    "Illegal state transition %s->%s",
2541 					    scsi_device_state_name(oldstate),
2542 					    scsi_device_state_name(state))
2543 				);
2544 	return -EINVAL;
2545 }
2546 EXPORT_SYMBOL(scsi_device_set_state);
2547 
2548 /**
2549  *	scsi_evt_emit - emit a single SCSI device uevent
2550  *	@sdev: associated SCSI device
2551  *	@evt: event to emit
2552  *
2553  *	Send a single uevent (scsi_event) to the associated scsi_device.
2554  */
2555 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2556 {
2557 	int idx = 0;
2558 	char *envp[3];
2559 
2560 	switch (evt->evt_type) {
2561 	case SDEV_EVT_MEDIA_CHANGE:
2562 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2563 		break;
2564 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2565 		scsi_rescan_device(sdev);
2566 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2567 		break;
2568 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2569 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2570 		break;
2571 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2572 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2573 		break;
2574 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2575 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2576 		break;
2577 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2578 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2579 		break;
2580 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2581 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2582 		break;
2583 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2584 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2585 		break;
2586 	default:
2587 		/* do nothing */
2588 		break;
2589 	}
2590 
2591 	envp[idx++] = NULL;
2592 
2593 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2594 }
2595 
2596 /**
2597  *	scsi_evt_thread - send a uevent for each scsi event
2598  *	@work: work struct for scsi_device
2599  *
2600  *	Dispatch queued events to their associated scsi_device kobjects
2601  *	as uevents.
2602  */
2603 void scsi_evt_thread(struct work_struct *work)
2604 {
2605 	struct scsi_device *sdev;
2606 	enum scsi_device_event evt_type;
2607 	LIST_HEAD(event_list);
2608 
2609 	sdev = container_of(work, struct scsi_device, event_work);
2610 
2611 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2612 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2613 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2614 
2615 	while (1) {
2616 		struct scsi_event *evt;
2617 		struct list_head *this, *tmp;
2618 		unsigned long flags;
2619 
2620 		spin_lock_irqsave(&sdev->list_lock, flags);
2621 		list_splice_init(&sdev->event_list, &event_list);
2622 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2623 
2624 		if (list_empty(&event_list))
2625 			break;
2626 
2627 		list_for_each_safe(this, tmp, &event_list) {
2628 			evt = list_entry(this, struct scsi_event, node);
2629 			list_del(&evt->node);
2630 			scsi_evt_emit(sdev, evt);
2631 			kfree(evt);
2632 		}
2633 	}
2634 }
2635 
2636 /**
2637  * 	sdev_evt_send - send asserted event to uevent thread
2638  *	@sdev: scsi_device event occurred on
2639  *	@evt: event to send
2640  *
2641  *	Assert scsi device event asynchronously.
2642  */
2643 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2644 {
2645 	unsigned long flags;
2646 
2647 #if 0
2648 	/* FIXME: currently this check eliminates all media change events
2649 	 * for polled devices.  Need to update to discriminate between AN
2650 	 * and polled events */
2651 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2652 		kfree(evt);
2653 		return;
2654 	}
2655 #endif
2656 
2657 	spin_lock_irqsave(&sdev->list_lock, flags);
2658 	list_add_tail(&evt->node, &sdev->event_list);
2659 	schedule_work(&sdev->event_work);
2660 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2661 }
2662 EXPORT_SYMBOL_GPL(sdev_evt_send);
2663 
2664 /**
2665  * 	sdev_evt_alloc - allocate a new scsi event
2666  *	@evt_type: type of event to allocate
2667  *	@gfpflags: GFP flags for allocation
2668  *
2669  *	Allocates and returns a new scsi_event.
2670  */
2671 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2672 				  gfp_t gfpflags)
2673 {
2674 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2675 	if (!evt)
2676 		return NULL;
2677 
2678 	evt->evt_type = evt_type;
2679 	INIT_LIST_HEAD(&evt->node);
2680 
2681 	/* evt_type-specific initialization, if any */
2682 	switch (evt_type) {
2683 	case SDEV_EVT_MEDIA_CHANGE:
2684 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2685 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2686 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2687 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2688 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2689 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2690 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2691 	default:
2692 		/* do nothing */
2693 		break;
2694 	}
2695 
2696 	return evt;
2697 }
2698 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2699 
2700 /**
2701  * 	sdev_evt_send_simple - send asserted event to uevent thread
2702  *	@sdev: scsi_device event occurred on
2703  *	@evt_type: type of event to send
2704  *	@gfpflags: GFP flags for allocation
2705  *
2706  *	Assert scsi device event asynchronously, given an event type.
2707  */
2708 void sdev_evt_send_simple(struct scsi_device *sdev,
2709 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2710 {
2711 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2712 	if (!evt) {
2713 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2714 			    evt_type);
2715 		return;
2716 	}
2717 
2718 	sdev_evt_send(sdev, evt);
2719 }
2720 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2721 
2722 /**
2723  *	scsi_device_quiesce - Block all commands except power management.
2724  *	@sdev:	scsi device to quiesce.
2725  *
2726  *	This works by trying to transition to the SDEV_QUIESCE state
2727  *	(which must be a legal transition).  When the device is in this
2728  *	state, only power management requests will be accepted, all others will
2729  *	be deferred.
2730  *
2731  *	Must be called with user context, may sleep.
2732  *
2733  *	Returns zero if unsuccessful or an error if not.
2734  */
2735 int
2736 scsi_device_quiesce(struct scsi_device *sdev)
2737 {
2738 	struct request_queue *q = sdev->request_queue;
2739 	unsigned int memflags;
2740 	int err;
2741 
2742 	/*
2743 	 * It is allowed to call scsi_device_quiesce() multiple times from
2744 	 * the same context but concurrent scsi_device_quiesce() calls are
2745 	 * not allowed.
2746 	 */
2747 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2748 
2749 	if (sdev->quiesced_by == current)
2750 		return 0;
2751 
2752 	blk_set_pm_only(q);
2753 
2754 	memflags = blk_mq_freeze_queue(q);
2755 	/*
2756 	 * Ensure that the effect of blk_set_pm_only() will be visible
2757 	 * for percpu_ref_tryget() callers that occur after the queue
2758 	 * unfreeze even if the queue was already frozen before this function
2759 	 * was called. See also https://lwn.net/Articles/573497/.
2760 	 */
2761 	synchronize_rcu();
2762 	blk_mq_unfreeze_queue(q, memflags);
2763 
2764 	mutex_lock(&sdev->state_mutex);
2765 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2766 	if (err == 0)
2767 		sdev->quiesced_by = current;
2768 	else
2769 		blk_clear_pm_only(q);
2770 	mutex_unlock(&sdev->state_mutex);
2771 
2772 	return err;
2773 }
2774 EXPORT_SYMBOL(scsi_device_quiesce);
2775 
2776 /**
2777  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2778  *	@sdev:	scsi device to resume.
2779  *
2780  *	Moves the device from quiesced back to running and restarts the
2781  *	queues.
2782  *
2783  *	Must be called with user context, may sleep.
2784  */
2785 void scsi_device_resume(struct scsi_device *sdev)
2786 {
2787 	/* check if the device state was mutated prior to resume, and if
2788 	 * so assume the state is being managed elsewhere (for example
2789 	 * device deleted during suspend)
2790 	 */
2791 	mutex_lock(&sdev->state_mutex);
2792 	if (sdev->sdev_state == SDEV_QUIESCE)
2793 		scsi_device_set_state(sdev, SDEV_RUNNING);
2794 	if (sdev->quiesced_by) {
2795 		sdev->quiesced_by = NULL;
2796 		blk_clear_pm_only(sdev->request_queue);
2797 	}
2798 	mutex_unlock(&sdev->state_mutex);
2799 }
2800 EXPORT_SYMBOL(scsi_device_resume);
2801 
2802 static void
2803 device_quiesce_fn(struct scsi_device *sdev, void *data)
2804 {
2805 	scsi_device_quiesce(sdev);
2806 }
2807 
2808 void
2809 scsi_target_quiesce(struct scsi_target *starget)
2810 {
2811 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2812 }
2813 EXPORT_SYMBOL(scsi_target_quiesce);
2814 
2815 static void
2816 device_resume_fn(struct scsi_device *sdev, void *data)
2817 {
2818 	scsi_device_resume(sdev);
2819 }
2820 
2821 void
2822 scsi_target_resume(struct scsi_target *starget)
2823 {
2824 	starget_for_each_device(starget, NULL, device_resume_fn);
2825 }
2826 EXPORT_SYMBOL(scsi_target_resume);
2827 
2828 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2829 {
2830 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2831 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2832 
2833 	return 0;
2834 }
2835 
2836 void scsi_start_queue(struct scsi_device *sdev)
2837 {
2838 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2839 		blk_mq_unquiesce_queue(sdev->request_queue);
2840 }
2841 
2842 static void scsi_stop_queue(struct scsi_device *sdev)
2843 {
2844 	/*
2845 	 * The atomic variable of ->queue_stopped covers that
2846 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2847 	 *
2848 	 * The caller needs to wait until quiesce is done.
2849 	 */
2850 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2851 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2852 }
2853 
2854 /**
2855  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2856  * @sdev: device to block
2857  *
2858  * Pause SCSI command processing on the specified device. Does not sleep.
2859  *
2860  * Returns zero if successful or a negative error code upon failure.
2861  *
2862  * Notes:
2863  * This routine transitions the device to the SDEV_BLOCK state (which must be
2864  * a legal transition). When the device is in this state, command processing
2865  * is paused until the device leaves the SDEV_BLOCK state. See also
2866  * scsi_internal_device_unblock_nowait().
2867  */
2868 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2869 {
2870 	int ret = __scsi_internal_device_block_nowait(sdev);
2871 
2872 	/*
2873 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2874 	 * block layer from calling the midlayer with this device's
2875 	 * request queue.
2876 	 */
2877 	if (!ret)
2878 		scsi_stop_queue(sdev);
2879 	return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2882 
2883 /**
2884  * scsi_device_block - try to transition to the SDEV_BLOCK state
2885  * @sdev: device to block
2886  * @data: dummy argument, ignored
2887  *
2888  * Pause SCSI command processing on the specified device. Callers must wait
2889  * until all ongoing scsi_queue_rq() calls have finished after this function
2890  * returns.
2891  *
2892  * Note:
2893  * This routine transitions the device to the SDEV_BLOCK state (which must be
2894  * a legal transition). When the device is in this state, command processing
2895  * is paused until the device leaves the SDEV_BLOCK state. See also
2896  * scsi_internal_device_unblock().
2897  */
2898 static void scsi_device_block(struct scsi_device *sdev, void *data)
2899 {
2900 	int err;
2901 	enum scsi_device_state state;
2902 
2903 	mutex_lock(&sdev->state_mutex);
2904 	err = __scsi_internal_device_block_nowait(sdev);
2905 	state = sdev->sdev_state;
2906 	if (err == 0)
2907 		/*
2908 		 * scsi_stop_queue() must be called with the state_mutex
2909 		 * held. Otherwise a simultaneous scsi_start_queue() call
2910 		 * might unquiesce the queue before we quiesce it.
2911 		 */
2912 		scsi_stop_queue(sdev);
2913 
2914 	mutex_unlock(&sdev->state_mutex);
2915 
2916 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2917 		  __func__, dev_name(&sdev->sdev_gendev), state);
2918 }
2919 
2920 /**
2921  * scsi_internal_device_unblock_nowait - resume a device after a block request
2922  * @sdev:	device to resume
2923  * @new_state:	state to set the device to after unblocking
2924  *
2925  * Restart the device queue for a previously suspended SCSI device. Does not
2926  * sleep.
2927  *
2928  * Returns zero if successful or a negative error code upon failure.
2929  *
2930  * Notes:
2931  * This routine transitions the device to the SDEV_RUNNING state or to one of
2932  * the offline states (which must be a legal transition) allowing the midlayer
2933  * to goose the queue for this device.
2934  */
2935 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2936 					enum scsi_device_state new_state)
2937 {
2938 	switch (new_state) {
2939 	case SDEV_RUNNING:
2940 	case SDEV_TRANSPORT_OFFLINE:
2941 		break;
2942 	default:
2943 		return -EINVAL;
2944 	}
2945 
2946 	/*
2947 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2948 	 * offlined states and goose the device queue if successful.
2949 	 */
2950 	switch (sdev->sdev_state) {
2951 	case SDEV_BLOCK:
2952 	case SDEV_TRANSPORT_OFFLINE:
2953 		sdev->sdev_state = new_state;
2954 		break;
2955 	case SDEV_CREATED_BLOCK:
2956 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2957 		    new_state == SDEV_OFFLINE)
2958 			sdev->sdev_state = new_state;
2959 		else
2960 			sdev->sdev_state = SDEV_CREATED;
2961 		break;
2962 	case SDEV_CANCEL:
2963 	case SDEV_OFFLINE:
2964 		break;
2965 	default:
2966 		return -EINVAL;
2967 	}
2968 	scsi_start_queue(sdev);
2969 
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2973 
2974 /**
2975  * scsi_internal_device_unblock - resume a device after a block request
2976  * @sdev:	device to resume
2977  * @new_state:	state to set the device to after unblocking
2978  *
2979  * Restart the device queue for a previously suspended SCSI device. May sleep.
2980  *
2981  * Returns zero if successful or a negative error code upon failure.
2982  *
2983  * Notes:
2984  * This routine transitions the device to the SDEV_RUNNING state or to one of
2985  * the offline states (which must be a legal transition) allowing the midlayer
2986  * to goose the queue for this device.
2987  */
2988 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2989 					enum scsi_device_state new_state)
2990 {
2991 	int ret;
2992 
2993 	mutex_lock(&sdev->state_mutex);
2994 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2995 	mutex_unlock(&sdev->state_mutex);
2996 
2997 	return ret;
2998 }
2999 
3000 static int
3001 target_block(struct device *dev, void *data)
3002 {
3003 	if (scsi_is_target_device(dev))
3004 		starget_for_each_device(to_scsi_target(dev), NULL,
3005 					scsi_device_block);
3006 	return 0;
3007 }
3008 
3009 /**
3010  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3011  * @dev: a parent device of one or more scsi_target devices
3012  * @shost: the Scsi_Host to which this device belongs
3013  *
3014  * Iterate over all children of @dev, which should be scsi_target devices,
3015  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3016  * ongoing scsi_queue_rq() calls to finish. May sleep.
3017  *
3018  * Note:
3019  * @dev must not itself be a scsi_target device.
3020  */
3021 void
3022 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3023 {
3024 	WARN_ON_ONCE(scsi_is_target_device(dev));
3025 	device_for_each_child(dev, NULL, target_block);
3026 	blk_mq_wait_quiesce_done(&shost->tag_set);
3027 }
3028 EXPORT_SYMBOL_GPL(scsi_block_targets);
3029 
3030 static void
3031 device_unblock(struct scsi_device *sdev, void *data)
3032 {
3033 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3034 }
3035 
3036 static int
3037 target_unblock(struct device *dev, void *data)
3038 {
3039 	if (scsi_is_target_device(dev))
3040 		starget_for_each_device(to_scsi_target(dev), data,
3041 					device_unblock);
3042 	return 0;
3043 }
3044 
3045 void
3046 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3047 {
3048 	if (scsi_is_target_device(dev))
3049 		starget_for_each_device(to_scsi_target(dev), &new_state,
3050 					device_unblock);
3051 	else
3052 		device_for_each_child(dev, &new_state, target_unblock);
3053 }
3054 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3055 
3056 /**
3057  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3058  * @shost: device to block
3059  *
3060  * Pause SCSI command processing for all logical units associated with the SCSI
3061  * host and wait until pending scsi_queue_rq() calls have finished.
3062  *
3063  * Returns zero if successful or a negative error code upon failure.
3064  */
3065 int
3066 scsi_host_block(struct Scsi_Host *shost)
3067 {
3068 	struct scsi_device *sdev;
3069 	int ret;
3070 
3071 	/*
3072 	 * Call scsi_internal_device_block_nowait so we can avoid
3073 	 * calling synchronize_rcu() for each LUN.
3074 	 */
3075 	shost_for_each_device(sdev, shost) {
3076 		mutex_lock(&sdev->state_mutex);
3077 		ret = scsi_internal_device_block_nowait(sdev);
3078 		mutex_unlock(&sdev->state_mutex);
3079 		if (ret) {
3080 			scsi_device_put(sdev);
3081 			return ret;
3082 		}
3083 	}
3084 
3085 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3086 	blk_mq_wait_quiesce_done(&shost->tag_set);
3087 
3088 	return 0;
3089 }
3090 EXPORT_SYMBOL_GPL(scsi_host_block);
3091 
3092 int
3093 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3094 {
3095 	struct scsi_device *sdev;
3096 	int ret = 0;
3097 
3098 	shost_for_each_device(sdev, shost) {
3099 		ret = scsi_internal_device_unblock(sdev, new_state);
3100 		if (ret) {
3101 			scsi_device_put(sdev);
3102 			break;
3103 		}
3104 	}
3105 	return ret;
3106 }
3107 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3108 
3109 /**
3110  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3111  * @sgl:	scatter-gather list
3112  * @sg_count:	number of segments in sg
3113  * @offset:	offset in bytes into sg, on return offset into the mapped area
3114  * @len:	bytes to map, on return number of bytes mapped
3115  *
3116  * Returns virtual address of the start of the mapped page
3117  */
3118 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3119 			  size_t *offset, size_t *len)
3120 {
3121 	int i;
3122 	size_t sg_len = 0, len_complete = 0;
3123 	struct scatterlist *sg;
3124 	struct page *page;
3125 
3126 	WARN_ON(!irqs_disabled());
3127 
3128 	for_each_sg(sgl, sg, sg_count, i) {
3129 		len_complete = sg_len; /* Complete sg-entries */
3130 		sg_len += sg->length;
3131 		if (sg_len > *offset)
3132 			break;
3133 	}
3134 
3135 	if (unlikely(i == sg_count)) {
3136 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3137 			"elements %d\n",
3138 		       __func__, sg_len, *offset, sg_count);
3139 		WARN_ON(1);
3140 		return NULL;
3141 	}
3142 
3143 	/* Offset starting from the beginning of first page in this sg-entry */
3144 	*offset = *offset - len_complete + sg->offset;
3145 
3146 	/* Assumption: contiguous pages can be accessed as "page + i" */
3147 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3148 	*offset &= ~PAGE_MASK;
3149 
3150 	/* Bytes in this sg-entry from *offset to the end of the page */
3151 	sg_len = PAGE_SIZE - *offset;
3152 	if (*len > sg_len)
3153 		*len = sg_len;
3154 
3155 	return kmap_atomic(page);
3156 }
3157 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3158 
3159 /**
3160  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3161  * @virt:	virtual address to be unmapped
3162  */
3163 void scsi_kunmap_atomic_sg(void *virt)
3164 {
3165 	kunmap_atomic(virt);
3166 }
3167 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3168 
3169 void sdev_disable_disk_events(struct scsi_device *sdev)
3170 {
3171 	atomic_inc(&sdev->disk_events_disable_depth);
3172 }
3173 EXPORT_SYMBOL(sdev_disable_disk_events);
3174 
3175 void sdev_enable_disk_events(struct scsi_device *sdev)
3176 {
3177 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3178 		return;
3179 	atomic_dec(&sdev->disk_events_disable_depth);
3180 }
3181 EXPORT_SYMBOL(sdev_enable_disk_events);
3182 
3183 static unsigned char designator_prio(const unsigned char *d)
3184 {
3185 	if (d[1] & 0x30)
3186 		/* not associated with LUN */
3187 		return 0;
3188 
3189 	if (d[3] == 0)
3190 		/* invalid length */
3191 		return 0;
3192 
3193 	/*
3194 	 * Order of preference for lun descriptor:
3195 	 * - SCSI name string
3196 	 * - NAA IEEE Registered Extended
3197 	 * - EUI-64 based 16-byte
3198 	 * - EUI-64 based 12-byte
3199 	 * - NAA IEEE Registered
3200 	 * - NAA IEEE Extended
3201 	 * - EUI-64 based 8-byte
3202 	 * - SCSI name string (truncated)
3203 	 * - T10 Vendor ID
3204 	 * as longer descriptors reduce the likelyhood
3205 	 * of identification clashes.
3206 	 */
3207 
3208 	switch (d[1] & 0xf) {
3209 	case 8:
3210 		/* SCSI name string, variable-length UTF-8 */
3211 		return 9;
3212 	case 3:
3213 		switch (d[4] >> 4) {
3214 		case 6:
3215 			/* NAA registered extended */
3216 			return 8;
3217 		case 5:
3218 			/* NAA registered */
3219 			return 5;
3220 		case 4:
3221 			/* NAA extended */
3222 			return 4;
3223 		case 3:
3224 			/* NAA locally assigned */
3225 			return 1;
3226 		default:
3227 			break;
3228 		}
3229 		break;
3230 	case 2:
3231 		switch (d[3]) {
3232 		case 16:
3233 			/* EUI64-based, 16 byte */
3234 			return 7;
3235 		case 12:
3236 			/* EUI64-based, 12 byte */
3237 			return 6;
3238 		case 8:
3239 			/* EUI64-based, 8 byte */
3240 			return 3;
3241 		default:
3242 			break;
3243 		}
3244 		break;
3245 	case 1:
3246 		/* T10 vendor ID */
3247 		return 1;
3248 	default:
3249 		break;
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 /**
3256  * scsi_vpd_lun_id - return a unique device identification
3257  * @sdev: SCSI device
3258  * @id:   buffer for the identification
3259  * @id_len:  length of the buffer
3260  *
3261  * Copies a unique device identification into @id based
3262  * on the information in the VPD page 0x83 of the device.
3263  * The string will be formatted as a SCSI name string.
3264  *
3265  * Returns the length of the identification or error on failure.
3266  * If the identifier is longer than the supplied buffer the actual
3267  * identifier length is returned and the buffer is not zero-padded.
3268  */
3269 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3270 {
3271 	u8 cur_id_prio = 0;
3272 	u8 cur_id_size = 0;
3273 	const unsigned char *d, *cur_id_str;
3274 	const struct scsi_vpd *vpd_pg83;
3275 	int id_size = -EINVAL;
3276 
3277 	rcu_read_lock();
3278 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3279 	if (!vpd_pg83) {
3280 		rcu_read_unlock();
3281 		return -ENXIO;
3282 	}
3283 
3284 	/* The id string must be at least 20 bytes + terminating NULL byte */
3285 	if (id_len < 21) {
3286 		rcu_read_unlock();
3287 		return -EINVAL;
3288 	}
3289 
3290 	memset(id, 0, id_len);
3291 	for (d = vpd_pg83->data + 4;
3292 	     d < vpd_pg83->data + vpd_pg83->len;
3293 	     d += d[3] + 4) {
3294 		u8 prio = designator_prio(d);
3295 
3296 		if (prio == 0 || cur_id_prio > prio)
3297 			continue;
3298 
3299 		switch (d[1] & 0xf) {
3300 		case 0x1:
3301 			/* T10 Vendor ID */
3302 			if (cur_id_size > d[3])
3303 				break;
3304 			cur_id_prio = prio;
3305 			cur_id_size = d[3];
3306 			if (cur_id_size + 4 > id_len)
3307 				cur_id_size = id_len - 4;
3308 			cur_id_str = d + 4;
3309 			id_size = snprintf(id, id_len, "t10.%*pE",
3310 					   cur_id_size, cur_id_str);
3311 			break;
3312 		case 0x2:
3313 			/* EUI-64 */
3314 			cur_id_prio = prio;
3315 			cur_id_size = d[3];
3316 			cur_id_str = d + 4;
3317 			switch (cur_id_size) {
3318 			case 8:
3319 				id_size = snprintf(id, id_len,
3320 						   "eui.%8phN",
3321 						   cur_id_str);
3322 				break;
3323 			case 12:
3324 				id_size = snprintf(id, id_len,
3325 						   "eui.%12phN",
3326 						   cur_id_str);
3327 				break;
3328 			case 16:
3329 				id_size = snprintf(id, id_len,
3330 						   "eui.%16phN",
3331 						   cur_id_str);
3332 				break;
3333 			default:
3334 				break;
3335 			}
3336 			break;
3337 		case 0x3:
3338 			/* NAA */
3339 			cur_id_prio = prio;
3340 			cur_id_size = d[3];
3341 			cur_id_str = d + 4;
3342 			switch (cur_id_size) {
3343 			case 8:
3344 				id_size = snprintf(id, id_len,
3345 						   "naa.%8phN",
3346 						   cur_id_str);
3347 				break;
3348 			case 16:
3349 				id_size = snprintf(id, id_len,
3350 						   "naa.%16phN",
3351 						   cur_id_str);
3352 				break;
3353 			default:
3354 				break;
3355 			}
3356 			break;
3357 		case 0x8:
3358 			/* SCSI name string */
3359 			if (cur_id_size > d[3])
3360 				break;
3361 			/* Prefer others for truncated descriptor */
3362 			if (d[3] > id_len) {
3363 				prio = 2;
3364 				if (cur_id_prio > prio)
3365 					break;
3366 			}
3367 			cur_id_prio = prio;
3368 			cur_id_size = id_size = d[3];
3369 			cur_id_str = d + 4;
3370 			if (cur_id_size >= id_len)
3371 				cur_id_size = id_len - 1;
3372 			memcpy(id, cur_id_str, cur_id_size);
3373 			break;
3374 		default:
3375 			break;
3376 		}
3377 	}
3378 	rcu_read_unlock();
3379 
3380 	return id_size;
3381 }
3382 EXPORT_SYMBOL(scsi_vpd_lun_id);
3383 
3384 /**
3385  * scsi_vpd_tpg_id - return a target port group identifier
3386  * @sdev: SCSI device
3387  * @rel_id: pointer to return relative target port in if not %NULL
3388  *
3389  * Returns the Target Port Group identifier from the information
3390  * from VPD page 0x83 of the device.
3391  * Optionally sets @rel_id to the relative target port on success.
3392  *
3393  * Return: the identifier or error on failure.
3394  */
3395 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3396 {
3397 	const unsigned char *d;
3398 	const struct scsi_vpd *vpd_pg83;
3399 	int group_id = -EAGAIN, rel_port = -1;
3400 
3401 	rcu_read_lock();
3402 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3403 	if (!vpd_pg83) {
3404 		rcu_read_unlock();
3405 		return -ENXIO;
3406 	}
3407 
3408 	d = vpd_pg83->data + 4;
3409 	while (d < vpd_pg83->data + vpd_pg83->len) {
3410 		switch (d[1] & 0xf) {
3411 		case 0x4:
3412 			/* Relative target port */
3413 			rel_port = get_unaligned_be16(&d[6]);
3414 			break;
3415 		case 0x5:
3416 			/* Target port group */
3417 			group_id = get_unaligned_be16(&d[6]);
3418 			break;
3419 		default:
3420 			break;
3421 		}
3422 		d += d[3] + 4;
3423 	}
3424 	rcu_read_unlock();
3425 
3426 	if (group_id >= 0 && rel_id && rel_port != -1)
3427 		*rel_id = rel_port;
3428 
3429 	return group_id;
3430 }
3431 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3432 
3433 /**
3434  * scsi_build_sense - build sense data for a command
3435  * @scmd:	scsi command for which the sense should be formatted
3436  * @desc:	Sense format (non-zero == descriptor format,
3437  *              0 == fixed format)
3438  * @key:	Sense key
3439  * @asc:	Additional sense code
3440  * @ascq:	Additional sense code qualifier
3441  *
3442  **/
3443 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3444 {
3445 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3446 	scmd->result = SAM_STAT_CHECK_CONDITION;
3447 }
3448 EXPORT_SYMBOL_GPL(scsi_build_sense);
3449 
3450 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3451 #include "scsi_lib_test.c"
3452 #endif
3453