1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <linux/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 /** 188 * scsi_failures_reset_retries - reset all failures to zero 189 * @failures: &struct scsi_failures with specific failure modes set 190 */ 191 void scsi_failures_reset_retries(struct scsi_failures *failures) 192 { 193 struct scsi_failure *failure; 194 195 failures->total_retries = 0; 196 197 for (failure = failures->failure_definitions; failure->result; 198 failure++) 199 failure->retries = 0; 200 } 201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries); 202 203 /** 204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry. 205 * @scmd: scsi_cmnd to check. 206 * @failures: scsi_failures struct that lists failures to check for. 207 * 208 * Returns -EAGAIN if the caller should retry else 0. 209 */ 210 static int scsi_check_passthrough(struct scsi_cmnd *scmd, 211 struct scsi_failures *failures) 212 { 213 struct scsi_failure *failure; 214 struct scsi_sense_hdr sshdr; 215 enum sam_status status; 216 217 if (!scmd->result) 218 return 0; 219 220 if (!failures) 221 return 0; 222 223 for (failure = failures->failure_definitions; failure->result; 224 failure++) { 225 if (failure->result == SCMD_FAILURE_RESULT_ANY) 226 goto maybe_retry; 227 228 if (host_byte(scmd->result) && 229 host_byte(scmd->result) == host_byte(failure->result)) 230 goto maybe_retry; 231 232 status = status_byte(scmd->result); 233 if (!status) 234 continue; 235 236 if (failure->result == SCMD_FAILURE_STAT_ANY && 237 !scsi_status_is_good(scmd->result)) 238 goto maybe_retry; 239 240 if (status != status_byte(failure->result)) 241 continue; 242 243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION || 244 failure->sense == SCMD_FAILURE_SENSE_ANY) 245 goto maybe_retry; 246 247 if (!scsi_command_normalize_sense(scmd, &sshdr)) 248 return 0; 249 250 if (failure->sense != sshdr.sense_key) 251 continue; 252 253 if (failure->asc == SCMD_FAILURE_ASC_ANY) 254 goto maybe_retry; 255 256 if (failure->asc != sshdr.asc) 257 continue; 258 259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY || 260 failure->ascq == sshdr.ascq) 261 goto maybe_retry; 262 } 263 264 return 0; 265 266 maybe_retry: 267 if (failure->allowed) { 268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT || 269 ++failure->retries <= failure->allowed) 270 return -EAGAIN; 271 } else { 272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT || 273 ++failures->total_retries <= failures->total_allowed) 274 return -EAGAIN; 275 } 276 277 return 0; 278 } 279 280 /** 281 * scsi_execute_cmd - insert request and wait for the result 282 * @sdev: scsi_device 283 * @cmd: scsi command 284 * @opf: block layer request cmd_flags 285 * @buffer: data buffer 286 * @bufflen: len of buffer 287 * @timeout: request timeout in HZ 288 * @ml_retries: number of times SCSI midlayer will retry request 289 * @args: Optional args. See struct definition for field descriptions 290 * 291 * Returns the scsi_cmnd result field if a command was executed, or a negative 292 * Linux error code if we didn't get that far. 293 */ 294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 295 blk_opf_t opf, void *buffer, unsigned int bufflen, 296 int timeout, int ml_retries, 297 const struct scsi_exec_args *args) 298 { 299 static const struct scsi_exec_args default_args; 300 struct request *req; 301 struct scsi_cmnd *scmd; 302 int ret; 303 304 if (!args) 305 args = &default_args; 306 else if (WARN_ON_ONCE(args->sense && 307 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 308 return -EINVAL; 309 310 retry: 311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 312 if (IS_ERR(req)) 313 return PTR_ERR(req); 314 315 if (bufflen) { 316 ret = blk_rq_map_kern(sdev->request_queue, req, 317 buffer, bufflen, GFP_NOIO); 318 if (ret) 319 goto out; 320 } 321 scmd = blk_mq_rq_to_pdu(req); 322 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 323 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 324 scmd->allowed = ml_retries; 325 scmd->flags |= args->scmd_flags; 326 req->timeout = timeout; 327 req->rq_flags |= RQF_QUIET; 328 329 /* 330 * head injection *required* here otherwise quiesce won't work 331 */ 332 blk_execute_rq(req, true); 333 334 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) { 335 blk_mq_free_request(req); 336 goto retry; 337 } 338 339 /* 340 * Some devices (USB mass-storage in particular) may transfer 341 * garbage data together with a residue indicating that the data 342 * is invalid. Prevent the garbage from being misinterpreted 343 * and prevent security leaks by zeroing out the excess data. 344 */ 345 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 346 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 347 348 if (args->resid) 349 *args->resid = scmd->resid_len; 350 if (args->sense) 351 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 352 if (args->sshdr) 353 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 354 args->sshdr); 355 356 ret = scmd->result; 357 out: 358 blk_mq_free_request(req); 359 360 return ret; 361 } 362 EXPORT_SYMBOL(scsi_execute_cmd); 363 364 /* 365 * Wake up the error handler if necessary. Avoid as follows that the error 366 * handler is not woken up if host in-flight requests number == 367 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 368 * with an RCU read lock in this function to ensure that this function in 369 * its entirety either finishes before scsi_eh_scmd_add() increases the 370 * host_failed counter or that it notices the shost state change made by 371 * scsi_eh_scmd_add(). 372 */ 373 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 374 { 375 unsigned long flags; 376 377 rcu_read_lock(); 378 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 379 if (unlikely(scsi_host_in_recovery(shost))) { 380 unsigned int busy = scsi_host_busy(shost); 381 382 spin_lock_irqsave(shost->host_lock, flags); 383 if (shost->host_failed || shost->host_eh_scheduled) 384 scsi_eh_wakeup(shost, busy); 385 spin_unlock_irqrestore(shost->host_lock, flags); 386 } 387 rcu_read_unlock(); 388 } 389 390 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 391 { 392 struct Scsi_Host *shost = sdev->host; 393 struct scsi_target *starget = scsi_target(sdev); 394 395 scsi_dec_host_busy(shost, cmd); 396 397 if (starget->can_queue > 0) 398 atomic_dec(&starget->target_busy); 399 400 sbitmap_put(&sdev->budget_map, cmd->budget_token); 401 cmd->budget_token = -1; 402 } 403 404 /* 405 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 406 * interrupts disabled. 407 */ 408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 409 { 410 struct scsi_device *current_sdev = data; 411 412 if (sdev != current_sdev) 413 blk_mq_run_hw_queues(sdev->request_queue, true); 414 } 415 416 /* 417 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 418 * and call blk_run_queue for all the scsi_devices on the target - 419 * including current_sdev first. 420 * 421 * Called with *no* scsi locks held. 422 */ 423 static void scsi_single_lun_run(struct scsi_device *current_sdev) 424 { 425 struct Scsi_Host *shost = current_sdev->host; 426 struct scsi_target *starget = scsi_target(current_sdev); 427 unsigned long flags; 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 starget->starget_sdev_user = NULL; 431 spin_unlock_irqrestore(shost->host_lock, flags); 432 433 /* 434 * Call blk_run_queue for all LUNs on the target, starting with 435 * current_sdev. We race with others (to set starget_sdev_user), 436 * but in most cases, we will be first. Ideally, each LU on the 437 * target would get some limited time or requests on the target. 438 */ 439 blk_mq_run_hw_queues(current_sdev->request_queue, 440 shost->queuecommand_may_block); 441 442 spin_lock_irqsave(shost->host_lock, flags); 443 if (!starget->starget_sdev_user) 444 __starget_for_each_device(starget, current_sdev, 445 scsi_kick_sdev_queue); 446 spin_unlock_irqrestore(shost->host_lock, flags); 447 } 448 449 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 450 { 451 if (scsi_device_busy(sdev) >= sdev->queue_depth) 452 return true; 453 if (atomic_read(&sdev->device_blocked) > 0) 454 return true; 455 return false; 456 } 457 458 static inline bool scsi_target_is_busy(struct scsi_target *starget) 459 { 460 if (starget->can_queue > 0) { 461 if (atomic_read(&starget->target_busy) >= starget->can_queue) 462 return true; 463 if (atomic_read(&starget->target_blocked) > 0) 464 return true; 465 } 466 return false; 467 } 468 469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 470 { 471 if (atomic_read(&shost->host_blocked) > 0) 472 return true; 473 if (shost->host_self_blocked) 474 return true; 475 return false; 476 } 477 478 static void scsi_starved_list_run(struct Scsi_Host *shost) 479 { 480 LIST_HEAD(starved_list); 481 struct scsi_device *sdev; 482 unsigned long flags; 483 484 spin_lock_irqsave(shost->host_lock, flags); 485 list_splice_init(&shost->starved_list, &starved_list); 486 487 while (!list_empty(&starved_list)) { 488 struct request_queue *slq; 489 490 /* 491 * As long as shost is accepting commands and we have 492 * starved queues, call blk_run_queue. scsi_request_fn 493 * drops the queue_lock and can add us back to the 494 * starved_list. 495 * 496 * host_lock protects the starved_list and starved_entry. 497 * scsi_request_fn must get the host_lock before checking 498 * or modifying starved_list or starved_entry. 499 */ 500 if (scsi_host_is_busy(shost)) 501 break; 502 503 sdev = list_entry(starved_list.next, 504 struct scsi_device, starved_entry); 505 list_del_init(&sdev->starved_entry); 506 if (scsi_target_is_busy(scsi_target(sdev))) { 507 list_move_tail(&sdev->starved_entry, 508 &shost->starved_list); 509 continue; 510 } 511 512 /* 513 * Once we drop the host lock, a racing scsi_remove_device() 514 * call may remove the sdev from the starved list and destroy 515 * it and the queue. Mitigate by taking a reference to the 516 * queue and never touching the sdev again after we drop the 517 * host lock. Note: if __scsi_remove_device() invokes 518 * blk_mq_destroy_queue() before the queue is run from this 519 * function then blk_run_queue() will return immediately since 520 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 521 */ 522 slq = sdev->request_queue; 523 if (!blk_get_queue(slq)) 524 continue; 525 spin_unlock_irqrestore(shost->host_lock, flags); 526 527 blk_mq_run_hw_queues(slq, false); 528 blk_put_queue(slq); 529 530 spin_lock_irqsave(shost->host_lock, flags); 531 } 532 /* put any unprocessed entries back */ 533 list_splice(&starved_list, &shost->starved_list); 534 spin_unlock_irqrestore(shost->host_lock, flags); 535 } 536 537 /** 538 * scsi_run_queue - Select a proper request queue to serve next. 539 * @q: last request's queue 540 * 541 * The previous command was completely finished, start a new one if possible. 542 */ 543 static void scsi_run_queue(struct request_queue *q) 544 { 545 struct scsi_device *sdev = q->queuedata; 546 547 if (scsi_target(sdev)->single_lun) 548 scsi_single_lun_run(sdev); 549 if (!list_empty(&sdev->host->starved_list)) 550 scsi_starved_list_run(sdev->host); 551 552 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 553 blk_mq_kick_requeue_list(q); 554 } 555 556 void scsi_requeue_run_queue(struct work_struct *work) 557 { 558 struct scsi_device *sdev; 559 struct request_queue *q; 560 561 sdev = container_of(work, struct scsi_device, requeue_work); 562 q = sdev->request_queue; 563 scsi_run_queue(q); 564 } 565 566 void scsi_run_host_queues(struct Scsi_Host *shost) 567 { 568 struct scsi_device *sdev; 569 570 shost_for_each_device(sdev, shost) 571 scsi_run_queue(sdev->request_queue); 572 } 573 574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 575 { 576 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 577 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 578 579 if (drv->uninit_command) 580 drv->uninit_command(cmd); 581 } 582 } 583 584 void scsi_free_sgtables(struct scsi_cmnd *cmd) 585 { 586 if (cmd->sdb.table.nents) 587 sg_free_table_chained(&cmd->sdb.table, 588 SCSI_INLINE_SG_CNT); 589 if (scsi_prot_sg_count(cmd)) 590 sg_free_table_chained(&cmd->prot_sdb->table, 591 SCSI_INLINE_PROT_SG_CNT); 592 } 593 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 594 595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 596 { 597 scsi_free_sgtables(cmd); 598 scsi_uninit_cmd(cmd); 599 } 600 601 static void scsi_run_queue_async(struct scsi_device *sdev) 602 { 603 if (scsi_host_in_recovery(sdev->host)) 604 return; 605 606 if (scsi_target(sdev)->single_lun || 607 !list_empty(&sdev->host->starved_list)) { 608 kblockd_schedule_work(&sdev->requeue_work); 609 } else { 610 /* 611 * smp_mb() present in sbitmap_queue_clear() or implied in 612 * .end_io is for ordering writing .device_busy in 613 * scsi_device_unbusy() and reading sdev->restarts. 614 */ 615 int old = atomic_read(&sdev->restarts); 616 617 /* 618 * ->restarts has to be kept as non-zero if new budget 619 * contention occurs. 620 * 621 * No need to run queue when either another re-run 622 * queue wins in updating ->restarts or a new budget 623 * contention occurs. 624 */ 625 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 626 blk_mq_run_hw_queues(sdev->request_queue, true); 627 } 628 } 629 630 /* Returns false when no more bytes to process, true if there are more */ 631 static bool scsi_end_request(struct request *req, blk_status_t error, 632 unsigned int bytes) 633 { 634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 635 struct scsi_device *sdev = cmd->device; 636 struct request_queue *q = sdev->request_queue; 637 638 if (blk_update_request(req, error, bytes)) 639 return true; 640 641 if (q->limits.features & BLK_FEAT_ADD_RANDOM) 642 add_disk_randomness(req->q->disk); 643 644 WARN_ON_ONCE(!blk_rq_is_passthrough(req) && 645 !(cmd->flags & SCMD_INITIALIZED)); 646 cmd->flags = 0; 647 648 /* 649 * Calling rcu_barrier() is not necessary here because the 650 * SCSI error handler guarantees that the function called by 651 * call_rcu() has been called before scsi_end_request() is 652 * called. 653 */ 654 destroy_rcu_head(&cmd->rcu); 655 656 /* 657 * In the MQ case the command gets freed by __blk_mq_end_request, 658 * so we have to do all cleanup that depends on it earlier. 659 * 660 * We also can't kick the queues from irq context, so we 661 * will have to defer it to a workqueue. 662 */ 663 scsi_mq_uninit_cmd(cmd); 664 665 /* 666 * queue is still alive, so grab the ref for preventing it 667 * from being cleaned up during running queue. 668 */ 669 percpu_ref_get(&q->q_usage_counter); 670 671 __blk_mq_end_request(req, error); 672 673 scsi_run_queue_async(sdev); 674 675 percpu_ref_put(&q->q_usage_counter); 676 return false; 677 } 678 679 /** 680 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 681 * @result: scsi error code 682 * 683 * Translate a SCSI result code into a blk_status_t value. 684 */ 685 static blk_status_t scsi_result_to_blk_status(int result) 686 { 687 /* 688 * Check the scsi-ml byte first in case we converted a host or status 689 * byte. 690 */ 691 switch (scsi_ml_byte(result)) { 692 case SCSIML_STAT_OK: 693 break; 694 case SCSIML_STAT_RESV_CONFLICT: 695 return BLK_STS_RESV_CONFLICT; 696 case SCSIML_STAT_NOSPC: 697 return BLK_STS_NOSPC; 698 case SCSIML_STAT_MED_ERROR: 699 return BLK_STS_MEDIUM; 700 case SCSIML_STAT_TGT_FAILURE: 701 return BLK_STS_TARGET; 702 case SCSIML_STAT_DL_TIMEOUT: 703 return BLK_STS_DURATION_LIMIT; 704 } 705 706 switch (host_byte(result)) { 707 case DID_OK: 708 if (scsi_status_is_good(result)) 709 return BLK_STS_OK; 710 return BLK_STS_IOERR; 711 case DID_TRANSPORT_FAILFAST: 712 case DID_TRANSPORT_MARGINAL: 713 return BLK_STS_TRANSPORT; 714 default: 715 return BLK_STS_IOERR; 716 } 717 } 718 719 /** 720 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 721 * @rq: request to examine 722 * 723 * Description: 724 * A request could be merge of IOs which require different failure 725 * handling. This function determines the number of bytes which 726 * can be failed from the beginning of the request without 727 * crossing into area which need to be retried further. 728 * 729 * Return: 730 * The number of bytes to fail. 731 */ 732 static unsigned int scsi_rq_err_bytes(const struct request *rq) 733 { 734 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 735 unsigned int bytes = 0; 736 struct bio *bio; 737 738 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 739 return blk_rq_bytes(rq); 740 741 /* 742 * Currently the only 'mixing' which can happen is between 743 * different fastfail types. We can safely fail portions 744 * which have all the failfast bits that the first one has - 745 * the ones which are at least as eager to fail as the first 746 * one. 747 */ 748 for (bio = rq->bio; bio; bio = bio->bi_next) { 749 if ((bio->bi_opf & ff) != ff) 750 break; 751 bytes += bio->bi_iter.bi_size; 752 } 753 754 /* this could lead to infinite loop */ 755 BUG_ON(blk_rq_bytes(rq) && !bytes); 756 return bytes; 757 } 758 759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 760 { 761 struct request *req = scsi_cmd_to_rq(cmd); 762 unsigned long wait_for; 763 764 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 765 return false; 766 767 wait_for = (cmd->allowed + 1) * req->timeout; 768 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 769 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 770 wait_for/HZ); 771 return true; 772 } 773 return false; 774 } 775 776 /* 777 * When ALUA transition state is returned, reprep the cmd to 778 * use the ALUA handler's transition timeout. Delay the reprep 779 * 1 sec to avoid aggressive retries of the target in that 780 * state. 781 */ 782 #define ALUA_TRANSITION_REPREP_DELAY 1000 783 784 /* Helper for scsi_io_completion() when special action required. */ 785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 786 { 787 struct request *req = scsi_cmd_to_rq(cmd); 788 int level = 0; 789 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 790 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 791 struct scsi_sense_hdr sshdr; 792 bool sense_valid; 793 bool sense_current = true; /* false implies "deferred sense" */ 794 blk_status_t blk_stat; 795 796 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 797 if (sense_valid) 798 sense_current = !scsi_sense_is_deferred(&sshdr); 799 800 blk_stat = scsi_result_to_blk_status(result); 801 802 if (host_byte(result) == DID_RESET) { 803 /* Third party bus reset or reset for error recovery 804 * reasons. Just retry the command and see what 805 * happens. 806 */ 807 action = ACTION_RETRY; 808 } else if (sense_valid && sense_current) { 809 switch (sshdr.sense_key) { 810 case UNIT_ATTENTION: 811 if (cmd->device->removable) { 812 /* Detected disc change. Set a bit 813 * and quietly refuse further access. 814 */ 815 cmd->device->changed = 1; 816 action = ACTION_FAIL; 817 } else { 818 /* Must have been a power glitch, or a 819 * bus reset. Could not have been a 820 * media change, so we just retry the 821 * command and see what happens. 822 */ 823 action = ACTION_RETRY; 824 } 825 break; 826 case ILLEGAL_REQUEST: 827 /* If we had an ILLEGAL REQUEST returned, then 828 * we may have performed an unsupported 829 * command. The only thing this should be 830 * would be a ten byte read where only a six 831 * byte read was supported. Also, on a system 832 * where READ CAPACITY failed, we may have 833 * read past the end of the disk. 834 */ 835 if ((cmd->device->use_10_for_rw && 836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 837 (cmd->cmnd[0] == READ_10 || 838 cmd->cmnd[0] == WRITE_10)) { 839 /* This will issue a new 6-byte command. */ 840 cmd->device->use_10_for_rw = 0; 841 action = ACTION_REPREP; 842 } else if (sshdr.asc == 0x10) /* DIX */ { 843 action = ACTION_FAIL; 844 blk_stat = BLK_STS_PROTECTION; 845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 847 action = ACTION_FAIL; 848 blk_stat = BLK_STS_TARGET; 849 } else 850 action = ACTION_FAIL; 851 break; 852 case ABORTED_COMMAND: 853 action = ACTION_FAIL; 854 if (sshdr.asc == 0x10) /* DIF */ 855 blk_stat = BLK_STS_PROTECTION; 856 break; 857 case NOT_READY: 858 /* If the device is in the process of becoming 859 * ready, or has a temporary blockage, retry. 860 */ 861 if (sshdr.asc == 0x04) { 862 switch (sshdr.ascq) { 863 case 0x01: /* becoming ready */ 864 case 0x04: /* format in progress */ 865 case 0x05: /* rebuild in progress */ 866 case 0x06: /* recalculation in progress */ 867 case 0x07: /* operation in progress */ 868 case 0x08: /* Long write in progress */ 869 case 0x09: /* self test in progress */ 870 case 0x11: /* notify (enable spinup) required */ 871 case 0x14: /* space allocation in progress */ 872 case 0x1a: /* start stop unit in progress */ 873 case 0x1b: /* sanitize in progress */ 874 case 0x1d: /* configuration in progress */ 875 case 0x24: /* depopulation in progress */ 876 case 0x25: /* depopulation restore in progress */ 877 action = ACTION_DELAYED_RETRY; 878 break; 879 case 0x0a: /* ALUA state transition */ 880 action = ACTION_DELAYED_REPREP; 881 break; 882 default: 883 action = ACTION_FAIL; 884 break; 885 } 886 } else 887 action = ACTION_FAIL; 888 break; 889 case VOLUME_OVERFLOW: 890 /* See SSC3rXX or current. */ 891 action = ACTION_FAIL; 892 break; 893 case DATA_PROTECT: 894 action = ACTION_FAIL; 895 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 896 (sshdr.asc == 0x55 && 897 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 898 /* Insufficient zone resources */ 899 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 900 } 901 break; 902 case COMPLETED: 903 fallthrough; 904 default: 905 action = ACTION_FAIL; 906 break; 907 } 908 } else 909 action = ACTION_FAIL; 910 911 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 912 action = ACTION_FAIL; 913 914 switch (action) { 915 case ACTION_FAIL: 916 /* Give up and fail the remainder of the request */ 917 if (!(req->rq_flags & RQF_QUIET)) { 918 static DEFINE_RATELIMIT_STATE(_rs, 919 DEFAULT_RATELIMIT_INTERVAL, 920 DEFAULT_RATELIMIT_BURST); 921 922 if (unlikely(scsi_logging_level)) 923 level = 924 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 925 SCSI_LOG_MLCOMPLETE_BITS); 926 927 /* 928 * if logging is enabled the failure will be printed 929 * in scsi_log_completion(), so avoid duplicate messages 930 */ 931 if (!level && __ratelimit(&_rs)) { 932 scsi_print_result(cmd, NULL, FAILED); 933 if (sense_valid) 934 scsi_print_sense(cmd); 935 scsi_print_command(cmd); 936 } 937 } 938 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 939 return; 940 fallthrough; 941 case ACTION_REPREP: 942 scsi_mq_requeue_cmd(cmd, 0); 943 break; 944 case ACTION_DELAYED_REPREP: 945 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 946 break; 947 case ACTION_RETRY: 948 /* Retry the same command immediately */ 949 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 950 break; 951 case ACTION_DELAYED_RETRY: 952 /* Retry the same command after a delay */ 953 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 954 break; 955 } 956 } 957 958 /* 959 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 960 * new result that may suppress further error checking. Also modifies 961 * *blk_statp in some cases. 962 */ 963 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 964 blk_status_t *blk_statp) 965 { 966 bool sense_valid; 967 bool sense_current = true; /* false implies "deferred sense" */ 968 struct request *req = scsi_cmd_to_rq(cmd); 969 struct scsi_sense_hdr sshdr; 970 971 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 972 if (sense_valid) 973 sense_current = !scsi_sense_is_deferred(&sshdr); 974 975 if (blk_rq_is_passthrough(req)) { 976 if (sense_valid) { 977 /* 978 * SG_IO wants current and deferred errors 979 */ 980 cmd->sense_len = min(8 + cmd->sense_buffer[7], 981 SCSI_SENSE_BUFFERSIZE); 982 } 983 if (sense_current) 984 *blk_statp = scsi_result_to_blk_status(result); 985 } else if (blk_rq_bytes(req) == 0 && sense_current) { 986 /* 987 * Flush commands do not transfers any data, and thus cannot use 988 * good_bytes != blk_rq_bytes(req) as the signal for an error. 989 * This sets *blk_statp explicitly for the problem case. 990 */ 991 *blk_statp = scsi_result_to_blk_status(result); 992 } 993 /* 994 * Recovered errors need reporting, but they're always treated as 995 * success, so fiddle the result code here. For passthrough requests 996 * we already took a copy of the original into sreq->result which 997 * is what gets returned to the user 998 */ 999 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 1000 bool do_print = true; 1001 /* 1002 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 1003 * skip print since caller wants ATA registers. Only occurs 1004 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 1005 */ 1006 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 1007 do_print = false; 1008 else if (req->rq_flags & RQF_QUIET) 1009 do_print = false; 1010 if (do_print) 1011 scsi_print_sense(cmd); 1012 result = 0; 1013 /* for passthrough, *blk_statp may be set */ 1014 *blk_statp = BLK_STS_OK; 1015 } 1016 /* 1017 * Another corner case: the SCSI status byte is non-zero but 'good'. 1018 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1019 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1020 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1021 * intermediate statuses (both obsolete in SAM-4) as good. 1022 */ 1023 if ((result & 0xff) && scsi_status_is_good(result)) { 1024 result = 0; 1025 *blk_statp = BLK_STS_OK; 1026 } 1027 return result; 1028 } 1029 1030 /** 1031 * scsi_io_completion - Completion processing for SCSI commands. 1032 * @cmd: command that is finished. 1033 * @good_bytes: number of processed bytes. 1034 * 1035 * We will finish off the specified number of sectors. If we are done, the 1036 * command block will be released and the queue function will be goosed. If we 1037 * are not done then we have to figure out what to do next: 1038 * 1039 * a) We can call scsi_mq_requeue_cmd(). The request will be 1040 * unprepared and put back on the queue. Then a new command will 1041 * be created for it. This should be used if we made forward 1042 * progress, or if we want to switch from READ(10) to READ(6) for 1043 * example. 1044 * 1045 * b) We can call scsi_io_completion_action(). The request will be 1046 * put back on the queue and retried using the same command as 1047 * before, possibly after a delay. 1048 * 1049 * c) We can call scsi_end_request() with blk_stat other than 1050 * BLK_STS_OK, to fail the remainder of the request. 1051 */ 1052 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1053 { 1054 int result = cmd->result; 1055 struct request *req = scsi_cmd_to_rq(cmd); 1056 blk_status_t blk_stat = BLK_STS_OK; 1057 1058 if (unlikely(result)) /* a nz result may or may not be an error */ 1059 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1060 1061 /* 1062 * Next deal with any sectors which we were able to correctly 1063 * handle. 1064 */ 1065 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1066 "%u sectors total, %d bytes done.\n", 1067 blk_rq_sectors(req), good_bytes)); 1068 1069 /* 1070 * Failed, zero length commands always need to drop down 1071 * to retry code. Fast path should return in this block. 1072 */ 1073 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1074 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 1075 return; /* no bytes remaining */ 1076 } 1077 1078 /* Kill remainder if no retries. */ 1079 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1080 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 1081 WARN_ONCE(true, 1082 "Bytes remaining after failed, no-retry command"); 1083 return; 1084 } 1085 1086 /* 1087 * If there had been no error, but we have leftover bytes in the 1088 * request just queue the command up again. 1089 */ 1090 if (likely(result == 0)) 1091 scsi_mq_requeue_cmd(cmd, 0); 1092 else 1093 scsi_io_completion_action(cmd, result); 1094 } 1095 1096 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1097 struct request *rq) 1098 { 1099 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1100 !op_is_write(req_op(rq)) && 1101 sdev->host->hostt->dma_need_drain(rq); 1102 } 1103 1104 /** 1105 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1106 * @cmd: SCSI command data structure to initialize. 1107 * 1108 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1109 * for @cmd. 1110 * 1111 * Returns: 1112 * * BLK_STS_OK - on success 1113 * * BLK_STS_RESOURCE - if the failure is retryable 1114 * * BLK_STS_IOERR - if the failure is fatal 1115 */ 1116 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1117 { 1118 struct scsi_device *sdev = cmd->device; 1119 struct request *rq = scsi_cmd_to_rq(cmd); 1120 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1121 struct scatterlist *last_sg = NULL; 1122 blk_status_t ret; 1123 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1124 int count; 1125 1126 if (WARN_ON_ONCE(!nr_segs)) 1127 return BLK_STS_IOERR; 1128 1129 /* 1130 * Make sure there is space for the drain. The driver must adjust 1131 * max_hw_segments to be prepared for this. 1132 */ 1133 if (need_drain) 1134 nr_segs++; 1135 1136 /* 1137 * If sg table allocation fails, requeue request later. 1138 */ 1139 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1140 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1141 return BLK_STS_RESOURCE; 1142 1143 /* 1144 * Next, walk the list, and fill in the addresses and sizes of 1145 * each segment. 1146 */ 1147 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1148 1149 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) { 1150 unsigned int pad_len = 1151 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1152 1153 last_sg->length += pad_len; 1154 cmd->extra_len += pad_len; 1155 } 1156 1157 if (need_drain) { 1158 sg_unmark_end(last_sg); 1159 last_sg = sg_next(last_sg); 1160 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1161 sg_mark_end(last_sg); 1162 1163 cmd->extra_len += sdev->dma_drain_len; 1164 count++; 1165 } 1166 1167 BUG_ON(count > cmd->sdb.table.nents); 1168 cmd->sdb.table.nents = count; 1169 cmd->sdb.length = blk_rq_payload_bytes(rq); 1170 1171 if (blk_integrity_rq(rq)) { 1172 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1173 1174 if (WARN_ON_ONCE(!prot_sdb)) { 1175 /* 1176 * This can happen if someone (e.g. multipath) 1177 * queues a command to a device on an adapter 1178 * that does not support DIX. 1179 */ 1180 ret = BLK_STS_IOERR; 1181 goto out_free_sgtables; 1182 } 1183 1184 if (sg_alloc_table_chained(&prot_sdb->table, 1185 rq->nr_integrity_segments, 1186 prot_sdb->table.sgl, 1187 SCSI_INLINE_PROT_SG_CNT)) { 1188 ret = BLK_STS_RESOURCE; 1189 goto out_free_sgtables; 1190 } 1191 1192 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl); 1193 cmd->prot_sdb = prot_sdb; 1194 cmd->prot_sdb->table.nents = count; 1195 } 1196 1197 return BLK_STS_OK; 1198 out_free_sgtables: 1199 scsi_free_sgtables(cmd); 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(scsi_alloc_sgtables); 1203 1204 /** 1205 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1206 * @rq: Request associated with the SCSI command to be initialized. 1207 * 1208 * This function initializes the members of struct scsi_cmnd that must be 1209 * initialized before request processing starts and that won't be 1210 * reinitialized if a SCSI command is requeued. 1211 */ 1212 static void scsi_initialize_rq(struct request *rq) 1213 { 1214 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1215 1216 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1217 cmd->cmd_len = MAX_COMMAND_SIZE; 1218 cmd->sense_len = 0; 1219 init_rcu_head(&cmd->rcu); 1220 cmd->jiffies_at_alloc = jiffies; 1221 cmd->retries = 0; 1222 } 1223 1224 /** 1225 * scsi_alloc_request - allocate a block request and partially 1226 * initialize its &scsi_cmnd 1227 * @q: the device's request queue 1228 * @opf: the request operation code 1229 * @flags: block layer allocation flags 1230 * 1231 * Return: &struct request pointer on success or %NULL on failure 1232 */ 1233 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1234 blk_mq_req_flags_t flags) 1235 { 1236 struct request *rq; 1237 1238 rq = blk_mq_alloc_request(q, opf, flags); 1239 if (!IS_ERR(rq)) 1240 scsi_initialize_rq(rq); 1241 return rq; 1242 } 1243 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1244 1245 /* 1246 * Only called when the request isn't completed by SCSI, and not freed by 1247 * SCSI 1248 */ 1249 static void scsi_cleanup_rq(struct request *rq) 1250 { 1251 if (rq->rq_flags & RQF_DONTPREP) { 1252 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1253 rq->rq_flags &= ~RQF_DONTPREP; 1254 } 1255 } 1256 1257 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1258 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1259 { 1260 struct request *rq = scsi_cmd_to_rq(cmd); 1261 1262 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1263 cmd->flags |= SCMD_INITIALIZED; 1264 scsi_initialize_rq(rq); 1265 } 1266 1267 cmd->device = dev; 1268 INIT_LIST_HEAD(&cmd->eh_entry); 1269 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1270 } 1271 1272 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1273 struct request *req) 1274 { 1275 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1276 1277 /* 1278 * Passthrough requests may transfer data, in which case they must 1279 * a bio attached to them. Or they might contain a SCSI command 1280 * that does not transfer data, in which case they may optionally 1281 * submit a request without an attached bio. 1282 */ 1283 if (req->bio) { 1284 blk_status_t ret = scsi_alloc_sgtables(cmd); 1285 if (unlikely(ret != BLK_STS_OK)) 1286 return ret; 1287 } else { 1288 BUG_ON(blk_rq_bytes(req)); 1289 1290 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1291 } 1292 1293 cmd->transfersize = blk_rq_bytes(req); 1294 return BLK_STS_OK; 1295 } 1296 1297 static blk_status_t 1298 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1299 { 1300 switch (sdev->sdev_state) { 1301 case SDEV_CREATED: 1302 return BLK_STS_OK; 1303 case SDEV_OFFLINE: 1304 case SDEV_TRANSPORT_OFFLINE: 1305 /* 1306 * If the device is offline we refuse to process any 1307 * commands. The device must be brought online 1308 * before trying any recovery commands. 1309 */ 1310 if (!sdev->offline_already) { 1311 sdev->offline_already = true; 1312 sdev_printk(KERN_ERR, sdev, 1313 "rejecting I/O to offline device\n"); 1314 } 1315 return BLK_STS_IOERR; 1316 case SDEV_DEL: 1317 /* 1318 * If the device is fully deleted, we refuse to 1319 * process any commands as well. 1320 */ 1321 sdev_printk(KERN_ERR, sdev, 1322 "rejecting I/O to dead device\n"); 1323 return BLK_STS_IOERR; 1324 case SDEV_BLOCK: 1325 case SDEV_CREATED_BLOCK: 1326 return BLK_STS_RESOURCE; 1327 case SDEV_QUIESCE: 1328 /* 1329 * If the device is blocked we only accept power management 1330 * commands. 1331 */ 1332 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1333 return BLK_STS_RESOURCE; 1334 return BLK_STS_OK; 1335 default: 1336 /* 1337 * For any other not fully online state we only allow 1338 * power management commands. 1339 */ 1340 if (req && !(req->rq_flags & RQF_PM)) 1341 return BLK_STS_OFFLINE; 1342 return BLK_STS_OK; 1343 } 1344 } 1345 1346 /* 1347 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1348 * and return the token else return -1. 1349 */ 1350 static inline int scsi_dev_queue_ready(struct request_queue *q, 1351 struct scsi_device *sdev) 1352 { 1353 int token; 1354 1355 token = sbitmap_get(&sdev->budget_map); 1356 if (token < 0) 1357 return -1; 1358 1359 if (!atomic_read(&sdev->device_blocked)) 1360 return token; 1361 1362 /* 1363 * Only unblock if no other commands are pending and 1364 * if device_blocked has decreased to zero 1365 */ 1366 if (scsi_device_busy(sdev) > 1 || 1367 atomic_dec_return(&sdev->device_blocked) > 0) { 1368 sbitmap_put(&sdev->budget_map, token); 1369 return -1; 1370 } 1371 1372 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1373 "unblocking device at zero depth\n")); 1374 1375 return token; 1376 } 1377 1378 /* 1379 * scsi_target_queue_ready: checks if there we can send commands to target 1380 * @sdev: scsi device on starget to check. 1381 */ 1382 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1383 struct scsi_device *sdev) 1384 { 1385 struct scsi_target *starget = scsi_target(sdev); 1386 unsigned int busy; 1387 1388 if (starget->single_lun) { 1389 spin_lock_irq(shost->host_lock); 1390 if (starget->starget_sdev_user && 1391 starget->starget_sdev_user != sdev) { 1392 spin_unlock_irq(shost->host_lock); 1393 return 0; 1394 } 1395 starget->starget_sdev_user = sdev; 1396 spin_unlock_irq(shost->host_lock); 1397 } 1398 1399 if (starget->can_queue <= 0) 1400 return 1; 1401 1402 busy = atomic_inc_return(&starget->target_busy) - 1; 1403 if (atomic_read(&starget->target_blocked) > 0) { 1404 if (busy) 1405 goto starved; 1406 1407 /* 1408 * unblock after target_blocked iterates to zero 1409 */ 1410 if (atomic_dec_return(&starget->target_blocked) > 0) 1411 goto out_dec; 1412 1413 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1414 "unblocking target at zero depth\n")); 1415 } 1416 1417 if (busy >= starget->can_queue) 1418 goto starved; 1419 1420 return 1; 1421 1422 starved: 1423 spin_lock_irq(shost->host_lock); 1424 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1425 spin_unlock_irq(shost->host_lock); 1426 out_dec: 1427 if (starget->can_queue > 0) 1428 atomic_dec(&starget->target_busy); 1429 return 0; 1430 } 1431 1432 /* 1433 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1434 * return 0. We must end up running the queue again whenever 0 is 1435 * returned, else IO can hang. 1436 */ 1437 static inline int scsi_host_queue_ready(struct request_queue *q, 1438 struct Scsi_Host *shost, 1439 struct scsi_device *sdev, 1440 struct scsi_cmnd *cmd) 1441 { 1442 if (atomic_read(&shost->host_blocked) > 0) { 1443 if (scsi_host_busy(shost) > 0) 1444 goto starved; 1445 1446 /* 1447 * unblock after host_blocked iterates to zero 1448 */ 1449 if (atomic_dec_return(&shost->host_blocked) > 0) 1450 goto out_dec; 1451 1452 SCSI_LOG_MLQUEUE(3, 1453 shost_printk(KERN_INFO, shost, 1454 "unblocking host at zero depth\n")); 1455 } 1456 1457 if (shost->host_self_blocked) 1458 goto starved; 1459 1460 /* We're OK to process the command, so we can't be starved */ 1461 if (!list_empty(&sdev->starved_entry)) { 1462 spin_lock_irq(shost->host_lock); 1463 if (!list_empty(&sdev->starved_entry)) 1464 list_del_init(&sdev->starved_entry); 1465 spin_unlock_irq(shost->host_lock); 1466 } 1467 1468 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1469 1470 return 1; 1471 1472 starved: 1473 spin_lock_irq(shost->host_lock); 1474 if (list_empty(&sdev->starved_entry)) 1475 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1476 spin_unlock_irq(shost->host_lock); 1477 out_dec: 1478 scsi_dec_host_busy(shost, cmd); 1479 return 0; 1480 } 1481 1482 /* 1483 * Busy state exporting function for request stacking drivers. 1484 * 1485 * For efficiency, no lock is taken to check the busy state of 1486 * shost/starget/sdev, since the returned value is not guaranteed and 1487 * may be changed after request stacking drivers call the function, 1488 * regardless of taking lock or not. 1489 * 1490 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1491 * needs to return 'not busy'. Otherwise, request stacking drivers 1492 * may hold requests forever. 1493 */ 1494 static bool scsi_mq_lld_busy(struct request_queue *q) 1495 { 1496 struct scsi_device *sdev = q->queuedata; 1497 struct Scsi_Host *shost; 1498 1499 if (blk_queue_dying(q)) 1500 return false; 1501 1502 shost = sdev->host; 1503 1504 /* 1505 * Ignore host/starget busy state. 1506 * Since block layer does not have a concept of fairness across 1507 * multiple queues, congestion of host/starget needs to be handled 1508 * in SCSI layer. 1509 */ 1510 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1511 return true; 1512 1513 return false; 1514 } 1515 1516 /* 1517 * Block layer request completion callback. May be called from interrupt 1518 * context. 1519 */ 1520 static void scsi_complete(struct request *rq) 1521 { 1522 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1523 enum scsi_disposition disposition; 1524 1525 INIT_LIST_HEAD(&cmd->eh_entry); 1526 1527 atomic_inc(&cmd->device->iodone_cnt); 1528 if (cmd->result) 1529 atomic_inc(&cmd->device->ioerr_cnt); 1530 1531 disposition = scsi_decide_disposition(cmd); 1532 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1533 disposition = SUCCESS; 1534 1535 scsi_log_completion(cmd, disposition); 1536 1537 switch (disposition) { 1538 case SUCCESS: 1539 scsi_finish_command(cmd); 1540 break; 1541 case NEEDS_RETRY: 1542 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1543 break; 1544 case ADD_TO_MLQUEUE: 1545 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1546 break; 1547 default: 1548 scsi_eh_scmd_add(cmd); 1549 break; 1550 } 1551 } 1552 1553 /** 1554 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1555 * @cmd: command block we are dispatching. 1556 * 1557 * Return: nonzero return request was rejected and device's queue needs to be 1558 * plugged. 1559 */ 1560 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1561 { 1562 struct Scsi_Host *host = cmd->device->host; 1563 int rtn = 0; 1564 1565 atomic_inc(&cmd->device->iorequest_cnt); 1566 1567 /* check if the device is still usable */ 1568 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1569 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1570 * returns an immediate error upwards, and signals 1571 * that the device is no longer present */ 1572 cmd->result = DID_NO_CONNECT << 16; 1573 goto done; 1574 } 1575 1576 /* Check to see if the scsi lld made this device blocked. */ 1577 if (unlikely(scsi_device_blocked(cmd->device))) { 1578 /* 1579 * in blocked state, the command is just put back on 1580 * the device queue. The suspend state has already 1581 * blocked the queue so future requests should not 1582 * occur until the device transitions out of the 1583 * suspend state. 1584 */ 1585 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1586 "queuecommand : device blocked\n")); 1587 atomic_dec(&cmd->device->iorequest_cnt); 1588 return SCSI_MLQUEUE_DEVICE_BUSY; 1589 } 1590 1591 /* Store the LUN value in cmnd, if needed. */ 1592 if (cmd->device->lun_in_cdb) 1593 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1594 (cmd->device->lun << 5 & 0xe0); 1595 1596 scsi_log_send(cmd); 1597 1598 /* 1599 * Before we queue this command, check if the command 1600 * length exceeds what the host adapter can handle. 1601 */ 1602 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1603 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1604 "queuecommand : command too long. " 1605 "cdb_size=%d host->max_cmd_len=%d\n", 1606 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1607 cmd->result = (DID_ABORT << 16); 1608 goto done; 1609 } 1610 1611 if (unlikely(host->shost_state == SHOST_DEL)) { 1612 cmd->result = (DID_NO_CONNECT << 16); 1613 goto done; 1614 1615 } 1616 1617 trace_scsi_dispatch_cmd_start(cmd); 1618 rtn = host->hostt->queuecommand(host, cmd); 1619 if (rtn) { 1620 atomic_dec(&cmd->device->iorequest_cnt); 1621 trace_scsi_dispatch_cmd_error(cmd, rtn); 1622 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1623 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1624 rtn = SCSI_MLQUEUE_HOST_BUSY; 1625 1626 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1627 "queuecommand : request rejected\n")); 1628 } 1629 1630 return rtn; 1631 done: 1632 scsi_done(cmd); 1633 return 0; 1634 } 1635 1636 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1637 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1638 { 1639 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1640 sizeof(struct scatterlist); 1641 } 1642 1643 static blk_status_t scsi_prepare_cmd(struct request *req) 1644 { 1645 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1646 struct scsi_device *sdev = req->q->queuedata; 1647 struct Scsi_Host *shost = sdev->host; 1648 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1649 struct scatterlist *sg; 1650 1651 scsi_init_command(sdev, cmd); 1652 1653 cmd->eh_eflags = 0; 1654 cmd->prot_type = 0; 1655 cmd->prot_flags = 0; 1656 cmd->submitter = 0; 1657 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1658 cmd->underflow = 0; 1659 cmd->transfersize = 0; 1660 cmd->host_scribble = NULL; 1661 cmd->result = 0; 1662 cmd->extra_len = 0; 1663 cmd->state = 0; 1664 if (in_flight) 1665 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1666 1667 /* 1668 * Only clear the driver-private command data if the LLD does not supply 1669 * a function to initialize that data. 1670 */ 1671 if (!shost->hostt->init_cmd_priv) 1672 memset(cmd + 1, 0, shost->hostt->cmd_size); 1673 1674 cmd->prot_op = SCSI_PROT_NORMAL; 1675 if (blk_rq_bytes(req)) 1676 cmd->sc_data_direction = rq_dma_dir(req); 1677 else 1678 cmd->sc_data_direction = DMA_NONE; 1679 1680 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1681 cmd->sdb.table.sgl = sg; 1682 1683 if (scsi_host_get_prot(shost)) { 1684 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1685 1686 cmd->prot_sdb->table.sgl = 1687 (struct scatterlist *)(cmd->prot_sdb + 1); 1688 } 1689 1690 /* 1691 * Special handling for passthrough commands, which don't go to the ULP 1692 * at all: 1693 */ 1694 if (blk_rq_is_passthrough(req)) 1695 return scsi_setup_scsi_cmnd(sdev, req); 1696 1697 if (sdev->handler && sdev->handler->prep_fn) { 1698 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1699 1700 if (ret != BLK_STS_OK) 1701 return ret; 1702 } 1703 1704 /* Usually overridden by the ULP */ 1705 cmd->allowed = 0; 1706 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1707 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1708 } 1709 1710 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1711 { 1712 struct request *req = scsi_cmd_to_rq(cmd); 1713 1714 switch (cmd->submitter) { 1715 case SUBMITTED_BY_BLOCK_LAYER: 1716 break; 1717 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1718 return scsi_eh_done(cmd); 1719 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1720 return; 1721 } 1722 1723 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1724 return; 1725 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1726 return; 1727 trace_scsi_dispatch_cmd_done(cmd); 1728 1729 if (complete_directly) 1730 blk_mq_complete_request_direct(req, scsi_complete); 1731 else 1732 blk_mq_complete_request(req); 1733 } 1734 1735 void scsi_done(struct scsi_cmnd *cmd) 1736 { 1737 scsi_done_internal(cmd, false); 1738 } 1739 EXPORT_SYMBOL(scsi_done); 1740 1741 void scsi_done_direct(struct scsi_cmnd *cmd) 1742 { 1743 scsi_done_internal(cmd, true); 1744 } 1745 EXPORT_SYMBOL(scsi_done_direct); 1746 1747 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1748 { 1749 struct scsi_device *sdev = q->queuedata; 1750 1751 sbitmap_put(&sdev->budget_map, budget_token); 1752 } 1753 1754 /* 1755 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1756 * not change behaviour from the previous unplug mechanism, experimentation 1757 * may prove this needs changing. 1758 */ 1759 #define SCSI_QUEUE_DELAY 3 1760 1761 static int scsi_mq_get_budget(struct request_queue *q) 1762 { 1763 struct scsi_device *sdev = q->queuedata; 1764 int token = scsi_dev_queue_ready(q, sdev); 1765 1766 if (token >= 0) 1767 return token; 1768 1769 atomic_inc(&sdev->restarts); 1770 1771 /* 1772 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1773 * .restarts must be incremented before .device_busy is read because the 1774 * code in scsi_run_queue_async() depends on the order of these operations. 1775 */ 1776 smp_mb__after_atomic(); 1777 1778 /* 1779 * If all in-flight requests originated from this LUN are completed 1780 * before reading .device_busy, sdev->device_busy will be observed as 1781 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1782 * soon. Otherwise, completion of one of these requests will observe 1783 * the .restarts flag, and the request queue will be run for handling 1784 * this request, see scsi_end_request(). 1785 */ 1786 if (unlikely(scsi_device_busy(sdev) == 0 && 1787 !scsi_device_blocked(sdev))) 1788 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1789 return -1; 1790 } 1791 1792 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1793 { 1794 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1795 1796 cmd->budget_token = token; 1797 } 1798 1799 static int scsi_mq_get_rq_budget_token(struct request *req) 1800 { 1801 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1802 1803 return cmd->budget_token; 1804 } 1805 1806 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1807 const struct blk_mq_queue_data *bd) 1808 { 1809 struct request *req = bd->rq; 1810 struct request_queue *q = req->q; 1811 struct scsi_device *sdev = q->queuedata; 1812 struct Scsi_Host *shost = sdev->host; 1813 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1814 blk_status_t ret; 1815 int reason; 1816 1817 WARN_ON_ONCE(cmd->budget_token < 0); 1818 1819 /* 1820 * If the device is not in running state we will reject some or all 1821 * commands. 1822 */ 1823 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1824 ret = scsi_device_state_check(sdev, req); 1825 if (ret != BLK_STS_OK) 1826 goto out_put_budget; 1827 } 1828 1829 ret = BLK_STS_RESOURCE; 1830 if (!scsi_target_queue_ready(shost, sdev)) 1831 goto out_put_budget; 1832 if (unlikely(scsi_host_in_recovery(shost))) { 1833 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1834 ret = BLK_STS_OFFLINE; 1835 goto out_dec_target_busy; 1836 } 1837 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1838 goto out_dec_target_busy; 1839 1840 if (!(req->rq_flags & RQF_DONTPREP)) { 1841 ret = scsi_prepare_cmd(req); 1842 if (ret != BLK_STS_OK) 1843 goto out_dec_host_busy; 1844 req->rq_flags |= RQF_DONTPREP; 1845 } else { 1846 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1847 } 1848 1849 cmd->flags &= SCMD_PRESERVED_FLAGS; 1850 if (sdev->simple_tags) 1851 cmd->flags |= SCMD_TAGGED; 1852 if (bd->last) 1853 cmd->flags |= SCMD_LAST; 1854 1855 scsi_set_resid(cmd, 0); 1856 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1857 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1858 1859 blk_mq_start_request(req); 1860 reason = scsi_dispatch_cmd(cmd); 1861 if (reason) { 1862 scsi_set_blocked(cmd, reason); 1863 ret = BLK_STS_RESOURCE; 1864 goto out_dec_host_busy; 1865 } 1866 1867 return BLK_STS_OK; 1868 1869 out_dec_host_busy: 1870 scsi_dec_host_busy(shost, cmd); 1871 out_dec_target_busy: 1872 if (scsi_target(sdev)->can_queue > 0) 1873 atomic_dec(&scsi_target(sdev)->target_busy); 1874 out_put_budget: 1875 scsi_mq_put_budget(q, cmd->budget_token); 1876 cmd->budget_token = -1; 1877 switch (ret) { 1878 case BLK_STS_OK: 1879 break; 1880 case BLK_STS_RESOURCE: 1881 if (scsi_device_blocked(sdev)) 1882 ret = BLK_STS_DEV_RESOURCE; 1883 break; 1884 case BLK_STS_AGAIN: 1885 cmd->result = DID_BUS_BUSY << 16; 1886 if (req->rq_flags & RQF_DONTPREP) 1887 scsi_mq_uninit_cmd(cmd); 1888 break; 1889 default: 1890 if (unlikely(!scsi_device_online(sdev))) 1891 cmd->result = DID_NO_CONNECT << 16; 1892 else 1893 cmd->result = DID_ERROR << 16; 1894 /* 1895 * Make sure to release all allocated resources when 1896 * we hit an error, as we will never see this command 1897 * again. 1898 */ 1899 if (req->rq_flags & RQF_DONTPREP) 1900 scsi_mq_uninit_cmd(cmd); 1901 scsi_run_queue_async(sdev); 1902 break; 1903 } 1904 return ret; 1905 } 1906 1907 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1908 unsigned int hctx_idx, unsigned int numa_node) 1909 { 1910 struct Scsi_Host *shost = set->driver_data; 1911 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1912 struct scatterlist *sg; 1913 int ret = 0; 1914 1915 cmd->sense_buffer = 1916 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1917 if (!cmd->sense_buffer) 1918 return -ENOMEM; 1919 1920 if (scsi_host_get_prot(shost)) { 1921 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1922 shost->hostt->cmd_size; 1923 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1924 } 1925 1926 if (shost->hostt->init_cmd_priv) { 1927 ret = shost->hostt->init_cmd_priv(shost, cmd); 1928 if (ret < 0) 1929 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1930 } 1931 1932 return ret; 1933 } 1934 1935 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1936 unsigned int hctx_idx) 1937 { 1938 struct Scsi_Host *shost = set->driver_data; 1939 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1940 1941 if (shost->hostt->exit_cmd_priv) 1942 shost->hostt->exit_cmd_priv(shost, cmd); 1943 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1944 } 1945 1946 1947 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1948 { 1949 struct Scsi_Host *shost = hctx->driver_data; 1950 1951 if (shost->hostt->mq_poll) 1952 return shost->hostt->mq_poll(shost, hctx->queue_num); 1953 1954 return 0; 1955 } 1956 1957 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1958 unsigned int hctx_idx) 1959 { 1960 struct Scsi_Host *shost = data; 1961 1962 hctx->driver_data = shost; 1963 return 0; 1964 } 1965 1966 static void scsi_map_queues(struct blk_mq_tag_set *set) 1967 { 1968 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1969 1970 if (shost->hostt->map_queues) 1971 return shost->hostt->map_queues(shost); 1972 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1973 } 1974 1975 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim) 1976 { 1977 struct device *dev = shost->dma_dev; 1978 1979 memset(lim, 0, sizeof(*lim)); 1980 lim->max_segments = 1981 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS); 1982 1983 if (scsi_host_prot_dma(shost)) { 1984 shost->sg_prot_tablesize = 1985 min_not_zero(shost->sg_prot_tablesize, 1986 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1987 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1988 lim->max_integrity_segments = shost->sg_prot_tablesize; 1989 } 1990 1991 lim->max_hw_sectors = shost->max_sectors; 1992 lim->seg_boundary_mask = shost->dma_boundary; 1993 lim->max_segment_size = shost->max_segment_size; 1994 lim->virt_boundary_mask = shost->virt_boundary_mask; 1995 lim->dma_alignment = max_t(unsigned int, 1996 shost->dma_alignment, dma_get_cache_alignment() - 1); 1997 1998 if (shost->no_highmem) 1999 lim->features |= BLK_FEAT_BOUNCE_HIGH; 2000 2001 /* 2002 * Propagate the DMA formation properties to the dma-mapping layer as 2003 * a courtesy service to the LLDDs. This needs to check that the buses 2004 * actually support the DMA API first, though. 2005 */ 2006 if (dev->dma_parms) { 2007 dma_set_seg_boundary(dev, shost->dma_boundary); 2008 dma_set_max_seg_size(dev, shost->max_segment_size); 2009 } 2010 } 2011 EXPORT_SYMBOL_GPL(scsi_init_limits); 2012 2013 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 2014 .get_budget = scsi_mq_get_budget, 2015 .put_budget = scsi_mq_put_budget, 2016 .queue_rq = scsi_queue_rq, 2017 .complete = scsi_complete, 2018 .timeout = scsi_timeout, 2019 #ifdef CONFIG_BLK_DEBUG_FS 2020 .show_rq = scsi_show_rq, 2021 #endif 2022 .init_request = scsi_mq_init_request, 2023 .exit_request = scsi_mq_exit_request, 2024 .cleanup_rq = scsi_cleanup_rq, 2025 .busy = scsi_mq_lld_busy, 2026 .map_queues = scsi_map_queues, 2027 .init_hctx = scsi_init_hctx, 2028 .poll = scsi_mq_poll, 2029 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2030 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2031 }; 2032 2033 2034 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 2035 { 2036 struct Scsi_Host *shost = hctx->driver_data; 2037 2038 shost->hostt->commit_rqs(shost, hctx->queue_num); 2039 } 2040 2041 static const struct blk_mq_ops scsi_mq_ops = { 2042 .get_budget = scsi_mq_get_budget, 2043 .put_budget = scsi_mq_put_budget, 2044 .queue_rq = scsi_queue_rq, 2045 .commit_rqs = scsi_commit_rqs, 2046 .complete = scsi_complete, 2047 .timeout = scsi_timeout, 2048 #ifdef CONFIG_BLK_DEBUG_FS 2049 .show_rq = scsi_show_rq, 2050 #endif 2051 .init_request = scsi_mq_init_request, 2052 .exit_request = scsi_mq_exit_request, 2053 .cleanup_rq = scsi_cleanup_rq, 2054 .busy = scsi_mq_lld_busy, 2055 .map_queues = scsi_map_queues, 2056 .init_hctx = scsi_init_hctx, 2057 .poll = scsi_mq_poll, 2058 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2059 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2060 }; 2061 2062 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2063 { 2064 unsigned int cmd_size, sgl_size; 2065 struct blk_mq_tag_set *tag_set = &shost->tag_set; 2066 2067 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 2068 scsi_mq_inline_sgl_size(shost)); 2069 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2070 if (scsi_host_get_prot(shost)) 2071 cmd_size += sizeof(struct scsi_data_buffer) + 2072 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 2073 2074 memset(tag_set, 0, sizeof(*tag_set)); 2075 if (shost->hostt->commit_rqs) 2076 tag_set->ops = &scsi_mq_ops; 2077 else 2078 tag_set->ops = &scsi_mq_ops_no_commit; 2079 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 2080 tag_set->nr_maps = shost->nr_maps ? : 1; 2081 tag_set->queue_depth = shost->can_queue; 2082 tag_set->cmd_size = cmd_size; 2083 tag_set->numa_node = dev_to_node(shost->dma_dev); 2084 if (shost->hostt->tag_alloc_policy_rr) 2085 tag_set->flags |= BLK_MQ_F_TAG_RR; 2086 if (shost->queuecommand_may_block) 2087 tag_set->flags |= BLK_MQ_F_BLOCKING; 2088 tag_set->driver_data = shost; 2089 if (shost->host_tagset) 2090 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 2091 2092 return blk_mq_alloc_tag_set(tag_set); 2093 } 2094 2095 void scsi_mq_free_tags(struct kref *kref) 2096 { 2097 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2098 tagset_refcnt); 2099 2100 blk_mq_free_tag_set(&shost->tag_set); 2101 complete(&shost->tagset_freed); 2102 } 2103 2104 /** 2105 * scsi_device_from_queue - return sdev associated with a request_queue 2106 * @q: The request queue to return the sdev from 2107 * 2108 * Return the sdev associated with a request queue or NULL if the 2109 * request_queue does not reference a SCSI device. 2110 */ 2111 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2112 { 2113 struct scsi_device *sdev = NULL; 2114 2115 if (q->mq_ops == &scsi_mq_ops_no_commit || 2116 q->mq_ops == &scsi_mq_ops) 2117 sdev = q->queuedata; 2118 if (!sdev || !get_device(&sdev->sdev_gendev)) 2119 sdev = NULL; 2120 2121 return sdev; 2122 } 2123 /* 2124 * pktcdvd should have been integrated into the SCSI layers, but for historical 2125 * reasons like the old IDE driver it isn't. This export allows it to safely 2126 * probe if a given device is a SCSI one and only attach to that. 2127 */ 2128 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2129 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2130 #endif 2131 2132 /** 2133 * scsi_block_requests - Utility function used by low-level drivers to prevent 2134 * further commands from being queued to the device. 2135 * @shost: host in question 2136 * 2137 * There is no timer nor any other means by which the requests get unblocked 2138 * other than the low-level driver calling scsi_unblock_requests(). 2139 */ 2140 void scsi_block_requests(struct Scsi_Host *shost) 2141 { 2142 shost->host_self_blocked = 1; 2143 } 2144 EXPORT_SYMBOL(scsi_block_requests); 2145 2146 /** 2147 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2148 * further commands to be queued to the device. 2149 * @shost: host in question 2150 * 2151 * There is no timer nor any other means by which the requests get unblocked 2152 * other than the low-level driver calling scsi_unblock_requests(). This is done 2153 * as an API function so that changes to the internals of the scsi mid-layer 2154 * won't require wholesale changes to drivers that use this feature. 2155 */ 2156 void scsi_unblock_requests(struct Scsi_Host *shost) 2157 { 2158 shost->host_self_blocked = 0; 2159 scsi_run_host_queues(shost); 2160 } 2161 EXPORT_SYMBOL(scsi_unblock_requests); 2162 2163 void scsi_exit_queue(void) 2164 { 2165 kmem_cache_destroy(scsi_sense_cache); 2166 } 2167 2168 /** 2169 * scsi_mode_select - issue a mode select 2170 * @sdev: SCSI device to be queried 2171 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2172 * @sp: Save page bit (0 == don't save, 1 == save) 2173 * @buffer: request buffer (may not be smaller than eight bytes) 2174 * @len: length of request buffer. 2175 * @timeout: command timeout 2176 * @retries: number of retries before failing 2177 * @data: returns a structure abstracting the mode header data 2178 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2179 * must be SCSI_SENSE_BUFFERSIZE big. 2180 * 2181 * Returns zero if successful; negative error number or scsi 2182 * status on error 2183 * 2184 */ 2185 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2186 unsigned char *buffer, int len, int timeout, int retries, 2187 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2188 { 2189 unsigned char cmd[10]; 2190 unsigned char *real_buffer; 2191 const struct scsi_exec_args exec_args = { 2192 .sshdr = sshdr, 2193 }; 2194 int ret; 2195 2196 memset(cmd, 0, sizeof(cmd)); 2197 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2198 2199 /* 2200 * Use MODE SELECT(10) if the device asked for it or if the mode page 2201 * and the mode select header cannot fit within the maximumm 255 bytes 2202 * of the MODE SELECT(6) command. 2203 */ 2204 if (sdev->use_10_for_ms || 2205 len + 4 > 255 || 2206 data->block_descriptor_length > 255) { 2207 if (len > 65535 - 8) 2208 return -EINVAL; 2209 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2210 if (!real_buffer) 2211 return -ENOMEM; 2212 memcpy(real_buffer + 8, buffer, len); 2213 len += 8; 2214 real_buffer[0] = 0; 2215 real_buffer[1] = 0; 2216 real_buffer[2] = data->medium_type; 2217 real_buffer[3] = data->device_specific; 2218 real_buffer[4] = data->longlba ? 0x01 : 0; 2219 real_buffer[5] = 0; 2220 put_unaligned_be16(data->block_descriptor_length, 2221 &real_buffer[6]); 2222 2223 cmd[0] = MODE_SELECT_10; 2224 put_unaligned_be16(len, &cmd[7]); 2225 } else { 2226 if (data->longlba) 2227 return -EINVAL; 2228 2229 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2230 if (!real_buffer) 2231 return -ENOMEM; 2232 memcpy(real_buffer + 4, buffer, len); 2233 len += 4; 2234 real_buffer[0] = 0; 2235 real_buffer[1] = data->medium_type; 2236 real_buffer[2] = data->device_specific; 2237 real_buffer[3] = data->block_descriptor_length; 2238 2239 cmd[0] = MODE_SELECT; 2240 cmd[4] = len; 2241 } 2242 2243 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2244 timeout, retries, &exec_args); 2245 kfree(real_buffer); 2246 return ret; 2247 } 2248 EXPORT_SYMBOL_GPL(scsi_mode_select); 2249 2250 /** 2251 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2252 * @sdev: SCSI device to be queried 2253 * @dbd: set to prevent mode sense from returning block descriptors 2254 * @modepage: mode page being requested 2255 * @subpage: sub-page of the mode page being requested 2256 * @buffer: request buffer (may not be smaller than eight bytes) 2257 * @len: length of request buffer. 2258 * @timeout: command timeout 2259 * @retries: number of retries before failing 2260 * @data: returns a structure abstracting the mode header data 2261 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2262 * must be SCSI_SENSE_BUFFERSIZE big. 2263 * 2264 * Returns zero if successful, or a negative error number on failure 2265 */ 2266 int 2267 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2268 unsigned char *buffer, int len, int timeout, int retries, 2269 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2270 { 2271 unsigned char cmd[12]; 2272 int use_10_for_ms; 2273 int header_length; 2274 int result; 2275 struct scsi_sense_hdr my_sshdr; 2276 struct scsi_failure failure_defs[] = { 2277 { 2278 .sense = UNIT_ATTENTION, 2279 .asc = SCMD_FAILURE_ASC_ANY, 2280 .ascq = SCMD_FAILURE_ASCQ_ANY, 2281 .allowed = retries, 2282 .result = SAM_STAT_CHECK_CONDITION, 2283 }, 2284 {} 2285 }; 2286 struct scsi_failures failures = { 2287 .failure_definitions = failure_defs, 2288 }; 2289 const struct scsi_exec_args exec_args = { 2290 /* caller might not be interested in sense, but we need it */ 2291 .sshdr = sshdr ? : &my_sshdr, 2292 .failures = &failures, 2293 }; 2294 2295 memset(data, 0, sizeof(*data)); 2296 memset(&cmd[0], 0, 12); 2297 2298 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2299 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2300 cmd[2] = modepage; 2301 cmd[3] = subpage; 2302 2303 sshdr = exec_args.sshdr; 2304 2305 retry: 2306 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2307 2308 if (use_10_for_ms) { 2309 if (len < 8 || len > 65535) 2310 return -EINVAL; 2311 2312 cmd[0] = MODE_SENSE_10; 2313 put_unaligned_be16(len, &cmd[7]); 2314 header_length = 8; 2315 } else { 2316 if (len < 4) 2317 return -EINVAL; 2318 2319 cmd[0] = MODE_SENSE; 2320 cmd[4] = len; 2321 header_length = 4; 2322 } 2323 2324 memset(buffer, 0, len); 2325 2326 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2327 timeout, retries, &exec_args); 2328 if (result < 0) 2329 return result; 2330 2331 /* This code looks awful: what it's doing is making sure an 2332 * ILLEGAL REQUEST sense return identifies the actual command 2333 * byte as the problem. MODE_SENSE commands can return 2334 * ILLEGAL REQUEST if the code page isn't supported */ 2335 2336 if (!scsi_status_is_good(result)) { 2337 if (scsi_sense_valid(sshdr)) { 2338 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2339 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2340 /* 2341 * Invalid command operation code: retry using 2342 * MODE SENSE(6) if this was a MODE SENSE(10) 2343 * request, except if the request mode page is 2344 * too large for MODE SENSE single byte 2345 * allocation length field. 2346 */ 2347 if (use_10_for_ms) { 2348 if (len > 255) 2349 return -EIO; 2350 sdev->use_10_for_ms = 0; 2351 goto retry; 2352 } 2353 } 2354 } 2355 return -EIO; 2356 } 2357 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2358 (modepage == 6 || modepage == 8))) { 2359 /* Initio breakage? */ 2360 header_length = 0; 2361 data->length = 13; 2362 data->medium_type = 0; 2363 data->device_specific = 0; 2364 data->longlba = 0; 2365 data->block_descriptor_length = 0; 2366 } else if (use_10_for_ms) { 2367 data->length = get_unaligned_be16(&buffer[0]) + 2; 2368 data->medium_type = buffer[2]; 2369 data->device_specific = buffer[3]; 2370 data->longlba = buffer[4] & 0x01; 2371 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2372 } else { 2373 data->length = buffer[0] + 1; 2374 data->medium_type = buffer[1]; 2375 data->device_specific = buffer[2]; 2376 data->block_descriptor_length = buffer[3]; 2377 } 2378 data->header_length = header_length; 2379 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(scsi_mode_sense); 2383 2384 /** 2385 * scsi_test_unit_ready - test if unit is ready 2386 * @sdev: scsi device to change the state of. 2387 * @timeout: command timeout 2388 * @retries: number of retries before failing 2389 * @sshdr: outpout pointer for decoded sense information. 2390 * 2391 * Returns zero if unsuccessful or an error if TUR failed. For 2392 * removable media, UNIT_ATTENTION sets ->changed flag. 2393 **/ 2394 int 2395 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2396 struct scsi_sense_hdr *sshdr) 2397 { 2398 char cmd[] = { 2399 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2400 }; 2401 const struct scsi_exec_args exec_args = { 2402 .sshdr = sshdr, 2403 }; 2404 int result; 2405 2406 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2407 do { 2408 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2409 timeout, 1, &exec_args); 2410 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2411 sshdr->sense_key == UNIT_ATTENTION) 2412 sdev->changed = 1; 2413 } while (result > 0 && scsi_sense_valid(sshdr) && 2414 sshdr->sense_key == UNIT_ATTENTION && --retries); 2415 2416 return result; 2417 } 2418 EXPORT_SYMBOL(scsi_test_unit_ready); 2419 2420 /** 2421 * scsi_device_set_state - Take the given device through the device state model. 2422 * @sdev: scsi device to change the state of. 2423 * @state: state to change to. 2424 * 2425 * Returns zero if successful or an error if the requested 2426 * transition is illegal. 2427 */ 2428 int 2429 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2430 { 2431 enum scsi_device_state oldstate = sdev->sdev_state; 2432 2433 if (state == oldstate) 2434 return 0; 2435 2436 switch (state) { 2437 case SDEV_CREATED: 2438 switch (oldstate) { 2439 case SDEV_CREATED_BLOCK: 2440 break; 2441 default: 2442 goto illegal; 2443 } 2444 break; 2445 2446 case SDEV_RUNNING: 2447 switch (oldstate) { 2448 case SDEV_CREATED: 2449 case SDEV_OFFLINE: 2450 case SDEV_TRANSPORT_OFFLINE: 2451 case SDEV_QUIESCE: 2452 case SDEV_BLOCK: 2453 break; 2454 default: 2455 goto illegal; 2456 } 2457 break; 2458 2459 case SDEV_QUIESCE: 2460 switch (oldstate) { 2461 case SDEV_RUNNING: 2462 case SDEV_OFFLINE: 2463 case SDEV_TRANSPORT_OFFLINE: 2464 break; 2465 default: 2466 goto illegal; 2467 } 2468 break; 2469 2470 case SDEV_OFFLINE: 2471 case SDEV_TRANSPORT_OFFLINE: 2472 switch (oldstate) { 2473 case SDEV_CREATED: 2474 case SDEV_RUNNING: 2475 case SDEV_QUIESCE: 2476 case SDEV_BLOCK: 2477 break; 2478 default: 2479 goto illegal; 2480 } 2481 break; 2482 2483 case SDEV_BLOCK: 2484 switch (oldstate) { 2485 case SDEV_RUNNING: 2486 case SDEV_CREATED_BLOCK: 2487 case SDEV_QUIESCE: 2488 case SDEV_OFFLINE: 2489 break; 2490 default: 2491 goto illegal; 2492 } 2493 break; 2494 2495 case SDEV_CREATED_BLOCK: 2496 switch (oldstate) { 2497 case SDEV_CREATED: 2498 break; 2499 default: 2500 goto illegal; 2501 } 2502 break; 2503 2504 case SDEV_CANCEL: 2505 switch (oldstate) { 2506 case SDEV_CREATED: 2507 case SDEV_RUNNING: 2508 case SDEV_QUIESCE: 2509 case SDEV_OFFLINE: 2510 case SDEV_TRANSPORT_OFFLINE: 2511 break; 2512 default: 2513 goto illegal; 2514 } 2515 break; 2516 2517 case SDEV_DEL: 2518 switch (oldstate) { 2519 case SDEV_CREATED: 2520 case SDEV_RUNNING: 2521 case SDEV_OFFLINE: 2522 case SDEV_TRANSPORT_OFFLINE: 2523 case SDEV_CANCEL: 2524 case SDEV_BLOCK: 2525 case SDEV_CREATED_BLOCK: 2526 break; 2527 default: 2528 goto illegal; 2529 } 2530 break; 2531 2532 } 2533 sdev->offline_already = false; 2534 sdev->sdev_state = state; 2535 return 0; 2536 2537 illegal: 2538 SCSI_LOG_ERROR_RECOVERY(1, 2539 sdev_printk(KERN_ERR, sdev, 2540 "Illegal state transition %s->%s", 2541 scsi_device_state_name(oldstate), 2542 scsi_device_state_name(state)) 2543 ); 2544 return -EINVAL; 2545 } 2546 EXPORT_SYMBOL(scsi_device_set_state); 2547 2548 /** 2549 * scsi_evt_emit - emit a single SCSI device uevent 2550 * @sdev: associated SCSI device 2551 * @evt: event to emit 2552 * 2553 * Send a single uevent (scsi_event) to the associated scsi_device. 2554 */ 2555 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2556 { 2557 int idx = 0; 2558 char *envp[3]; 2559 2560 switch (evt->evt_type) { 2561 case SDEV_EVT_MEDIA_CHANGE: 2562 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2563 break; 2564 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2565 scsi_rescan_device(sdev); 2566 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2567 break; 2568 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2569 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2570 break; 2571 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2572 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2573 break; 2574 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2575 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2576 break; 2577 case SDEV_EVT_LUN_CHANGE_REPORTED: 2578 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2579 break; 2580 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2581 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2582 break; 2583 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2584 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2585 break; 2586 default: 2587 /* do nothing */ 2588 break; 2589 } 2590 2591 envp[idx++] = NULL; 2592 2593 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2594 } 2595 2596 /** 2597 * scsi_evt_thread - send a uevent for each scsi event 2598 * @work: work struct for scsi_device 2599 * 2600 * Dispatch queued events to their associated scsi_device kobjects 2601 * as uevents. 2602 */ 2603 void scsi_evt_thread(struct work_struct *work) 2604 { 2605 struct scsi_device *sdev; 2606 enum scsi_device_event evt_type; 2607 LIST_HEAD(event_list); 2608 2609 sdev = container_of(work, struct scsi_device, event_work); 2610 2611 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2612 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2613 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2614 2615 while (1) { 2616 struct scsi_event *evt; 2617 struct list_head *this, *tmp; 2618 unsigned long flags; 2619 2620 spin_lock_irqsave(&sdev->list_lock, flags); 2621 list_splice_init(&sdev->event_list, &event_list); 2622 spin_unlock_irqrestore(&sdev->list_lock, flags); 2623 2624 if (list_empty(&event_list)) 2625 break; 2626 2627 list_for_each_safe(this, tmp, &event_list) { 2628 evt = list_entry(this, struct scsi_event, node); 2629 list_del(&evt->node); 2630 scsi_evt_emit(sdev, evt); 2631 kfree(evt); 2632 } 2633 } 2634 } 2635 2636 /** 2637 * sdev_evt_send - send asserted event to uevent thread 2638 * @sdev: scsi_device event occurred on 2639 * @evt: event to send 2640 * 2641 * Assert scsi device event asynchronously. 2642 */ 2643 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2644 { 2645 unsigned long flags; 2646 2647 #if 0 2648 /* FIXME: currently this check eliminates all media change events 2649 * for polled devices. Need to update to discriminate between AN 2650 * and polled events */ 2651 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2652 kfree(evt); 2653 return; 2654 } 2655 #endif 2656 2657 spin_lock_irqsave(&sdev->list_lock, flags); 2658 list_add_tail(&evt->node, &sdev->event_list); 2659 schedule_work(&sdev->event_work); 2660 spin_unlock_irqrestore(&sdev->list_lock, flags); 2661 } 2662 EXPORT_SYMBOL_GPL(sdev_evt_send); 2663 2664 /** 2665 * sdev_evt_alloc - allocate a new scsi event 2666 * @evt_type: type of event to allocate 2667 * @gfpflags: GFP flags for allocation 2668 * 2669 * Allocates and returns a new scsi_event. 2670 */ 2671 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2672 gfp_t gfpflags) 2673 { 2674 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2675 if (!evt) 2676 return NULL; 2677 2678 evt->evt_type = evt_type; 2679 INIT_LIST_HEAD(&evt->node); 2680 2681 /* evt_type-specific initialization, if any */ 2682 switch (evt_type) { 2683 case SDEV_EVT_MEDIA_CHANGE: 2684 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2685 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2686 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2687 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2688 case SDEV_EVT_LUN_CHANGE_REPORTED: 2689 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2690 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2691 default: 2692 /* do nothing */ 2693 break; 2694 } 2695 2696 return evt; 2697 } 2698 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2699 2700 /** 2701 * sdev_evt_send_simple - send asserted event to uevent thread 2702 * @sdev: scsi_device event occurred on 2703 * @evt_type: type of event to send 2704 * @gfpflags: GFP flags for allocation 2705 * 2706 * Assert scsi device event asynchronously, given an event type. 2707 */ 2708 void sdev_evt_send_simple(struct scsi_device *sdev, 2709 enum scsi_device_event evt_type, gfp_t gfpflags) 2710 { 2711 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2712 if (!evt) { 2713 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2714 evt_type); 2715 return; 2716 } 2717 2718 sdev_evt_send(sdev, evt); 2719 } 2720 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2721 2722 /** 2723 * scsi_device_quiesce - Block all commands except power management. 2724 * @sdev: scsi device to quiesce. 2725 * 2726 * This works by trying to transition to the SDEV_QUIESCE state 2727 * (which must be a legal transition). When the device is in this 2728 * state, only power management requests will be accepted, all others will 2729 * be deferred. 2730 * 2731 * Must be called with user context, may sleep. 2732 * 2733 * Returns zero if unsuccessful or an error if not. 2734 */ 2735 int 2736 scsi_device_quiesce(struct scsi_device *sdev) 2737 { 2738 struct request_queue *q = sdev->request_queue; 2739 unsigned int memflags; 2740 int err; 2741 2742 /* 2743 * It is allowed to call scsi_device_quiesce() multiple times from 2744 * the same context but concurrent scsi_device_quiesce() calls are 2745 * not allowed. 2746 */ 2747 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2748 2749 if (sdev->quiesced_by == current) 2750 return 0; 2751 2752 blk_set_pm_only(q); 2753 2754 memflags = blk_mq_freeze_queue(q); 2755 /* 2756 * Ensure that the effect of blk_set_pm_only() will be visible 2757 * for percpu_ref_tryget() callers that occur after the queue 2758 * unfreeze even if the queue was already frozen before this function 2759 * was called. See also https://lwn.net/Articles/573497/. 2760 */ 2761 synchronize_rcu(); 2762 blk_mq_unfreeze_queue(q, memflags); 2763 2764 mutex_lock(&sdev->state_mutex); 2765 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2766 if (err == 0) 2767 sdev->quiesced_by = current; 2768 else 2769 blk_clear_pm_only(q); 2770 mutex_unlock(&sdev->state_mutex); 2771 2772 return err; 2773 } 2774 EXPORT_SYMBOL(scsi_device_quiesce); 2775 2776 /** 2777 * scsi_device_resume - Restart user issued commands to a quiesced device. 2778 * @sdev: scsi device to resume. 2779 * 2780 * Moves the device from quiesced back to running and restarts the 2781 * queues. 2782 * 2783 * Must be called with user context, may sleep. 2784 */ 2785 void scsi_device_resume(struct scsi_device *sdev) 2786 { 2787 /* check if the device state was mutated prior to resume, and if 2788 * so assume the state is being managed elsewhere (for example 2789 * device deleted during suspend) 2790 */ 2791 mutex_lock(&sdev->state_mutex); 2792 if (sdev->sdev_state == SDEV_QUIESCE) 2793 scsi_device_set_state(sdev, SDEV_RUNNING); 2794 if (sdev->quiesced_by) { 2795 sdev->quiesced_by = NULL; 2796 blk_clear_pm_only(sdev->request_queue); 2797 } 2798 mutex_unlock(&sdev->state_mutex); 2799 } 2800 EXPORT_SYMBOL(scsi_device_resume); 2801 2802 static void 2803 device_quiesce_fn(struct scsi_device *sdev, void *data) 2804 { 2805 scsi_device_quiesce(sdev); 2806 } 2807 2808 void 2809 scsi_target_quiesce(struct scsi_target *starget) 2810 { 2811 starget_for_each_device(starget, NULL, device_quiesce_fn); 2812 } 2813 EXPORT_SYMBOL(scsi_target_quiesce); 2814 2815 static void 2816 device_resume_fn(struct scsi_device *sdev, void *data) 2817 { 2818 scsi_device_resume(sdev); 2819 } 2820 2821 void 2822 scsi_target_resume(struct scsi_target *starget) 2823 { 2824 starget_for_each_device(starget, NULL, device_resume_fn); 2825 } 2826 EXPORT_SYMBOL(scsi_target_resume); 2827 2828 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2829 { 2830 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2831 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2832 2833 return 0; 2834 } 2835 2836 void scsi_start_queue(struct scsi_device *sdev) 2837 { 2838 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2839 blk_mq_unquiesce_queue(sdev->request_queue); 2840 } 2841 2842 static void scsi_stop_queue(struct scsi_device *sdev) 2843 { 2844 /* 2845 * The atomic variable of ->queue_stopped covers that 2846 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2847 * 2848 * The caller needs to wait until quiesce is done. 2849 */ 2850 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2851 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2852 } 2853 2854 /** 2855 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2856 * @sdev: device to block 2857 * 2858 * Pause SCSI command processing on the specified device. Does not sleep. 2859 * 2860 * Returns zero if successful or a negative error code upon failure. 2861 * 2862 * Notes: 2863 * This routine transitions the device to the SDEV_BLOCK state (which must be 2864 * a legal transition). When the device is in this state, command processing 2865 * is paused until the device leaves the SDEV_BLOCK state. See also 2866 * scsi_internal_device_unblock_nowait(). 2867 */ 2868 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2869 { 2870 int ret = __scsi_internal_device_block_nowait(sdev); 2871 2872 /* 2873 * The device has transitioned to SDEV_BLOCK. Stop the 2874 * block layer from calling the midlayer with this device's 2875 * request queue. 2876 */ 2877 if (!ret) 2878 scsi_stop_queue(sdev); 2879 return ret; 2880 } 2881 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2882 2883 /** 2884 * scsi_device_block - try to transition to the SDEV_BLOCK state 2885 * @sdev: device to block 2886 * @data: dummy argument, ignored 2887 * 2888 * Pause SCSI command processing on the specified device. Callers must wait 2889 * until all ongoing scsi_queue_rq() calls have finished after this function 2890 * returns. 2891 * 2892 * Note: 2893 * This routine transitions the device to the SDEV_BLOCK state (which must be 2894 * a legal transition). When the device is in this state, command processing 2895 * is paused until the device leaves the SDEV_BLOCK state. See also 2896 * scsi_internal_device_unblock(). 2897 */ 2898 static void scsi_device_block(struct scsi_device *sdev, void *data) 2899 { 2900 int err; 2901 enum scsi_device_state state; 2902 2903 mutex_lock(&sdev->state_mutex); 2904 err = __scsi_internal_device_block_nowait(sdev); 2905 state = sdev->sdev_state; 2906 if (err == 0) 2907 /* 2908 * scsi_stop_queue() must be called with the state_mutex 2909 * held. Otherwise a simultaneous scsi_start_queue() call 2910 * might unquiesce the queue before we quiesce it. 2911 */ 2912 scsi_stop_queue(sdev); 2913 2914 mutex_unlock(&sdev->state_mutex); 2915 2916 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2917 __func__, dev_name(&sdev->sdev_gendev), state); 2918 } 2919 2920 /** 2921 * scsi_internal_device_unblock_nowait - resume a device after a block request 2922 * @sdev: device to resume 2923 * @new_state: state to set the device to after unblocking 2924 * 2925 * Restart the device queue for a previously suspended SCSI device. Does not 2926 * sleep. 2927 * 2928 * Returns zero if successful or a negative error code upon failure. 2929 * 2930 * Notes: 2931 * This routine transitions the device to the SDEV_RUNNING state or to one of 2932 * the offline states (which must be a legal transition) allowing the midlayer 2933 * to goose the queue for this device. 2934 */ 2935 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2936 enum scsi_device_state new_state) 2937 { 2938 switch (new_state) { 2939 case SDEV_RUNNING: 2940 case SDEV_TRANSPORT_OFFLINE: 2941 break; 2942 default: 2943 return -EINVAL; 2944 } 2945 2946 /* 2947 * Try to transition the scsi device to SDEV_RUNNING or one of the 2948 * offlined states and goose the device queue if successful. 2949 */ 2950 switch (sdev->sdev_state) { 2951 case SDEV_BLOCK: 2952 case SDEV_TRANSPORT_OFFLINE: 2953 sdev->sdev_state = new_state; 2954 break; 2955 case SDEV_CREATED_BLOCK: 2956 if (new_state == SDEV_TRANSPORT_OFFLINE || 2957 new_state == SDEV_OFFLINE) 2958 sdev->sdev_state = new_state; 2959 else 2960 sdev->sdev_state = SDEV_CREATED; 2961 break; 2962 case SDEV_CANCEL: 2963 case SDEV_OFFLINE: 2964 break; 2965 default: 2966 return -EINVAL; 2967 } 2968 scsi_start_queue(sdev); 2969 2970 return 0; 2971 } 2972 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2973 2974 /** 2975 * scsi_internal_device_unblock - resume a device after a block request 2976 * @sdev: device to resume 2977 * @new_state: state to set the device to after unblocking 2978 * 2979 * Restart the device queue for a previously suspended SCSI device. May sleep. 2980 * 2981 * Returns zero if successful or a negative error code upon failure. 2982 * 2983 * Notes: 2984 * This routine transitions the device to the SDEV_RUNNING state or to one of 2985 * the offline states (which must be a legal transition) allowing the midlayer 2986 * to goose the queue for this device. 2987 */ 2988 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2989 enum scsi_device_state new_state) 2990 { 2991 int ret; 2992 2993 mutex_lock(&sdev->state_mutex); 2994 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2995 mutex_unlock(&sdev->state_mutex); 2996 2997 return ret; 2998 } 2999 3000 static int 3001 target_block(struct device *dev, void *data) 3002 { 3003 if (scsi_is_target_device(dev)) 3004 starget_for_each_device(to_scsi_target(dev), NULL, 3005 scsi_device_block); 3006 return 0; 3007 } 3008 3009 /** 3010 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 3011 * @dev: a parent device of one or more scsi_target devices 3012 * @shost: the Scsi_Host to which this device belongs 3013 * 3014 * Iterate over all children of @dev, which should be scsi_target devices, 3015 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 3016 * ongoing scsi_queue_rq() calls to finish. May sleep. 3017 * 3018 * Note: 3019 * @dev must not itself be a scsi_target device. 3020 */ 3021 void 3022 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 3023 { 3024 WARN_ON_ONCE(scsi_is_target_device(dev)); 3025 device_for_each_child(dev, NULL, target_block); 3026 blk_mq_wait_quiesce_done(&shost->tag_set); 3027 } 3028 EXPORT_SYMBOL_GPL(scsi_block_targets); 3029 3030 static void 3031 device_unblock(struct scsi_device *sdev, void *data) 3032 { 3033 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3034 } 3035 3036 static int 3037 target_unblock(struct device *dev, void *data) 3038 { 3039 if (scsi_is_target_device(dev)) 3040 starget_for_each_device(to_scsi_target(dev), data, 3041 device_unblock); 3042 return 0; 3043 } 3044 3045 void 3046 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3047 { 3048 if (scsi_is_target_device(dev)) 3049 starget_for_each_device(to_scsi_target(dev), &new_state, 3050 device_unblock); 3051 else 3052 device_for_each_child(dev, &new_state, target_unblock); 3053 } 3054 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3055 3056 /** 3057 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 3058 * @shost: device to block 3059 * 3060 * Pause SCSI command processing for all logical units associated with the SCSI 3061 * host and wait until pending scsi_queue_rq() calls have finished. 3062 * 3063 * Returns zero if successful or a negative error code upon failure. 3064 */ 3065 int 3066 scsi_host_block(struct Scsi_Host *shost) 3067 { 3068 struct scsi_device *sdev; 3069 int ret; 3070 3071 /* 3072 * Call scsi_internal_device_block_nowait so we can avoid 3073 * calling synchronize_rcu() for each LUN. 3074 */ 3075 shost_for_each_device(sdev, shost) { 3076 mutex_lock(&sdev->state_mutex); 3077 ret = scsi_internal_device_block_nowait(sdev); 3078 mutex_unlock(&sdev->state_mutex); 3079 if (ret) { 3080 scsi_device_put(sdev); 3081 return ret; 3082 } 3083 } 3084 3085 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 3086 blk_mq_wait_quiesce_done(&shost->tag_set); 3087 3088 return 0; 3089 } 3090 EXPORT_SYMBOL_GPL(scsi_host_block); 3091 3092 int 3093 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 3094 { 3095 struct scsi_device *sdev; 3096 int ret = 0; 3097 3098 shost_for_each_device(sdev, shost) { 3099 ret = scsi_internal_device_unblock(sdev, new_state); 3100 if (ret) { 3101 scsi_device_put(sdev); 3102 break; 3103 } 3104 } 3105 return ret; 3106 } 3107 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3108 3109 /** 3110 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3111 * @sgl: scatter-gather list 3112 * @sg_count: number of segments in sg 3113 * @offset: offset in bytes into sg, on return offset into the mapped area 3114 * @len: bytes to map, on return number of bytes mapped 3115 * 3116 * Returns virtual address of the start of the mapped page 3117 */ 3118 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3119 size_t *offset, size_t *len) 3120 { 3121 int i; 3122 size_t sg_len = 0, len_complete = 0; 3123 struct scatterlist *sg; 3124 struct page *page; 3125 3126 WARN_ON(!irqs_disabled()); 3127 3128 for_each_sg(sgl, sg, sg_count, i) { 3129 len_complete = sg_len; /* Complete sg-entries */ 3130 sg_len += sg->length; 3131 if (sg_len > *offset) 3132 break; 3133 } 3134 3135 if (unlikely(i == sg_count)) { 3136 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3137 "elements %d\n", 3138 __func__, sg_len, *offset, sg_count); 3139 WARN_ON(1); 3140 return NULL; 3141 } 3142 3143 /* Offset starting from the beginning of first page in this sg-entry */ 3144 *offset = *offset - len_complete + sg->offset; 3145 3146 /* Assumption: contiguous pages can be accessed as "page + i" */ 3147 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3148 *offset &= ~PAGE_MASK; 3149 3150 /* Bytes in this sg-entry from *offset to the end of the page */ 3151 sg_len = PAGE_SIZE - *offset; 3152 if (*len > sg_len) 3153 *len = sg_len; 3154 3155 return kmap_atomic(page); 3156 } 3157 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3158 3159 /** 3160 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3161 * @virt: virtual address to be unmapped 3162 */ 3163 void scsi_kunmap_atomic_sg(void *virt) 3164 { 3165 kunmap_atomic(virt); 3166 } 3167 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3168 3169 void sdev_disable_disk_events(struct scsi_device *sdev) 3170 { 3171 atomic_inc(&sdev->disk_events_disable_depth); 3172 } 3173 EXPORT_SYMBOL(sdev_disable_disk_events); 3174 3175 void sdev_enable_disk_events(struct scsi_device *sdev) 3176 { 3177 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3178 return; 3179 atomic_dec(&sdev->disk_events_disable_depth); 3180 } 3181 EXPORT_SYMBOL(sdev_enable_disk_events); 3182 3183 static unsigned char designator_prio(const unsigned char *d) 3184 { 3185 if (d[1] & 0x30) 3186 /* not associated with LUN */ 3187 return 0; 3188 3189 if (d[3] == 0) 3190 /* invalid length */ 3191 return 0; 3192 3193 /* 3194 * Order of preference for lun descriptor: 3195 * - SCSI name string 3196 * - NAA IEEE Registered Extended 3197 * - EUI-64 based 16-byte 3198 * - EUI-64 based 12-byte 3199 * - NAA IEEE Registered 3200 * - NAA IEEE Extended 3201 * - EUI-64 based 8-byte 3202 * - SCSI name string (truncated) 3203 * - T10 Vendor ID 3204 * as longer descriptors reduce the likelyhood 3205 * of identification clashes. 3206 */ 3207 3208 switch (d[1] & 0xf) { 3209 case 8: 3210 /* SCSI name string, variable-length UTF-8 */ 3211 return 9; 3212 case 3: 3213 switch (d[4] >> 4) { 3214 case 6: 3215 /* NAA registered extended */ 3216 return 8; 3217 case 5: 3218 /* NAA registered */ 3219 return 5; 3220 case 4: 3221 /* NAA extended */ 3222 return 4; 3223 case 3: 3224 /* NAA locally assigned */ 3225 return 1; 3226 default: 3227 break; 3228 } 3229 break; 3230 case 2: 3231 switch (d[3]) { 3232 case 16: 3233 /* EUI64-based, 16 byte */ 3234 return 7; 3235 case 12: 3236 /* EUI64-based, 12 byte */ 3237 return 6; 3238 case 8: 3239 /* EUI64-based, 8 byte */ 3240 return 3; 3241 default: 3242 break; 3243 } 3244 break; 3245 case 1: 3246 /* T10 vendor ID */ 3247 return 1; 3248 default: 3249 break; 3250 } 3251 3252 return 0; 3253 } 3254 3255 /** 3256 * scsi_vpd_lun_id - return a unique device identification 3257 * @sdev: SCSI device 3258 * @id: buffer for the identification 3259 * @id_len: length of the buffer 3260 * 3261 * Copies a unique device identification into @id based 3262 * on the information in the VPD page 0x83 of the device. 3263 * The string will be formatted as a SCSI name string. 3264 * 3265 * Returns the length of the identification or error on failure. 3266 * If the identifier is longer than the supplied buffer the actual 3267 * identifier length is returned and the buffer is not zero-padded. 3268 */ 3269 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3270 { 3271 u8 cur_id_prio = 0; 3272 u8 cur_id_size = 0; 3273 const unsigned char *d, *cur_id_str; 3274 const struct scsi_vpd *vpd_pg83; 3275 int id_size = -EINVAL; 3276 3277 rcu_read_lock(); 3278 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3279 if (!vpd_pg83) { 3280 rcu_read_unlock(); 3281 return -ENXIO; 3282 } 3283 3284 /* The id string must be at least 20 bytes + terminating NULL byte */ 3285 if (id_len < 21) { 3286 rcu_read_unlock(); 3287 return -EINVAL; 3288 } 3289 3290 memset(id, 0, id_len); 3291 for (d = vpd_pg83->data + 4; 3292 d < vpd_pg83->data + vpd_pg83->len; 3293 d += d[3] + 4) { 3294 u8 prio = designator_prio(d); 3295 3296 if (prio == 0 || cur_id_prio > prio) 3297 continue; 3298 3299 switch (d[1] & 0xf) { 3300 case 0x1: 3301 /* T10 Vendor ID */ 3302 if (cur_id_size > d[3]) 3303 break; 3304 cur_id_prio = prio; 3305 cur_id_size = d[3]; 3306 if (cur_id_size + 4 > id_len) 3307 cur_id_size = id_len - 4; 3308 cur_id_str = d + 4; 3309 id_size = snprintf(id, id_len, "t10.%*pE", 3310 cur_id_size, cur_id_str); 3311 break; 3312 case 0x2: 3313 /* EUI-64 */ 3314 cur_id_prio = prio; 3315 cur_id_size = d[3]; 3316 cur_id_str = d + 4; 3317 switch (cur_id_size) { 3318 case 8: 3319 id_size = snprintf(id, id_len, 3320 "eui.%8phN", 3321 cur_id_str); 3322 break; 3323 case 12: 3324 id_size = snprintf(id, id_len, 3325 "eui.%12phN", 3326 cur_id_str); 3327 break; 3328 case 16: 3329 id_size = snprintf(id, id_len, 3330 "eui.%16phN", 3331 cur_id_str); 3332 break; 3333 default: 3334 break; 3335 } 3336 break; 3337 case 0x3: 3338 /* NAA */ 3339 cur_id_prio = prio; 3340 cur_id_size = d[3]; 3341 cur_id_str = d + 4; 3342 switch (cur_id_size) { 3343 case 8: 3344 id_size = snprintf(id, id_len, 3345 "naa.%8phN", 3346 cur_id_str); 3347 break; 3348 case 16: 3349 id_size = snprintf(id, id_len, 3350 "naa.%16phN", 3351 cur_id_str); 3352 break; 3353 default: 3354 break; 3355 } 3356 break; 3357 case 0x8: 3358 /* SCSI name string */ 3359 if (cur_id_size > d[3]) 3360 break; 3361 /* Prefer others for truncated descriptor */ 3362 if (d[3] > id_len) { 3363 prio = 2; 3364 if (cur_id_prio > prio) 3365 break; 3366 } 3367 cur_id_prio = prio; 3368 cur_id_size = id_size = d[3]; 3369 cur_id_str = d + 4; 3370 if (cur_id_size >= id_len) 3371 cur_id_size = id_len - 1; 3372 memcpy(id, cur_id_str, cur_id_size); 3373 break; 3374 default: 3375 break; 3376 } 3377 } 3378 rcu_read_unlock(); 3379 3380 return id_size; 3381 } 3382 EXPORT_SYMBOL(scsi_vpd_lun_id); 3383 3384 /** 3385 * scsi_vpd_tpg_id - return a target port group identifier 3386 * @sdev: SCSI device 3387 * @rel_id: pointer to return relative target port in if not %NULL 3388 * 3389 * Returns the Target Port Group identifier from the information 3390 * from VPD page 0x83 of the device. 3391 * Optionally sets @rel_id to the relative target port on success. 3392 * 3393 * Return: the identifier or error on failure. 3394 */ 3395 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3396 { 3397 const unsigned char *d; 3398 const struct scsi_vpd *vpd_pg83; 3399 int group_id = -EAGAIN, rel_port = -1; 3400 3401 rcu_read_lock(); 3402 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3403 if (!vpd_pg83) { 3404 rcu_read_unlock(); 3405 return -ENXIO; 3406 } 3407 3408 d = vpd_pg83->data + 4; 3409 while (d < vpd_pg83->data + vpd_pg83->len) { 3410 switch (d[1] & 0xf) { 3411 case 0x4: 3412 /* Relative target port */ 3413 rel_port = get_unaligned_be16(&d[6]); 3414 break; 3415 case 0x5: 3416 /* Target port group */ 3417 group_id = get_unaligned_be16(&d[6]); 3418 break; 3419 default: 3420 break; 3421 } 3422 d += d[3] + 4; 3423 } 3424 rcu_read_unlock(); 3425 3426 if (group_id >= 0 && rel_id && rel_port != -1) 3427 *rel_id = rel_port; 3428 3429 return group_id; 3430 } 3431 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3432 3433 /** 3434 * scsi_build_sense - build sense data for a command 3435 * @scmd: scsi command for which the sense should be formatted 3436 * @desc: Sense format (non-zero == descriptor format, 3437 * 0 == fixed format) 3438 * @key: Sense key 3439 * @asc: Additional sense code 3440 * @ascq: Additional sense code qualifier 3441 * 3442 **/ 3443 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3444 { 3445 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3446 scmd->result = SAM_STAT_CHECK_CONDITION; 3447 } 3448 EXPORT_SYMBOL_GPL(scsi_build_sense); 3449 3450 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST 3451 #include "scsi_lib_test.c" 3452 #endif 3453