xref: /linux/drivers/scsi/scsi_lib.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29 
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32 
33 
34 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE		2
36 
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS	128
43 
44 struct scsi_host_sg_pool {
45 	size_t		size;
46 	char		*name;
47 	struct kmem_cache	*slab;
48 	mempool_t	*pool;
49 };
50 
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 	SP(8),
54 	SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56 	SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 	SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 	SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  */
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	return blk_rq_append_bio(q, rq, bio);
267 }
268 
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271 	bio_put(bio);
272 }
273 
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:		request to fill
277  * @sgl:	scatterlist
278  * @nsegs:	number of elements
279  * @bufflen:	len of buffer
280  * @gfp:	memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 			   int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289 	struct request_queue *q = rq->q;
290 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 	unsigned int data_len = bufflen, len, bytes, off;
292 	struct scatterlist *sg;
293 	struct page *page;
294 	struct bio *bio = NULL;
295 	int i, err, nr_vecs = 0;
296 
297 	for_each_sg(sgl, sg, nsegs, i) {
298 		page = sg_page(sg);
299 		off = sg->offset;
300 		len = sg->length;
301  		data_len += len;
302 
303 		while (len > 0 && data_len > 0) {
304 			/*
305 			 * sg sends a scatterlist that is larger than
306 			 * the data_len it wants transferred for certain
307 			 * IO sizes
308 			 */
309 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310 			bytes = min(bytes, data_len);
311 
312 			if (!bio) {
313 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314 				nr_pages -= nr_vecs;
315 
316 				bio = bio_alloc(gfp, nr_vecs);
317 				if (!bio) {
318 					err = -ENOMEM;
319 					goto free_bios;
320 				}
321 				bio->bi_end_io = scsi_bi_endio;
322 			}
323 
324 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
325 			    bytes) {
326 				bio_put(bio);
327 				err = -EINVAL;
328 				goto free_bios;
329 			}
330 
331 			if (bio->bi_vcnt >= nr_vecs) {
332 				err = scsi_merge_bio(rq, bio);
333 				if (err) {
334 					bio_endio(bio, 0);
335 					goto free_bios;
336 				}
337 				bio = NULL;
338 			}
339 
340 			page++;
341 			len -= bytes;
342 			data_len -=bytes;
343 			off = 0;
344 		}
345 	}
346 
347 	rq->buffer = rq->data = NULL;
348 	rq->data_len = bufflen;
349 	return 0;
350 
351 free_bios:
352 	while ((bio = rq->bio) != NULL) {
353 		rq->bio = bio->bi_next;
354 		/*
355 		 * call endio instead of bio_put incase it was bounced
356 		 */
357 		bio_endio(bio, 0);
358 	}
359 
360 	return err;
361 }
362 
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:	scsi device
366  * @cmd:	scsi command
367  * @cmd_len:	length of scsi cdb
368  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:	len of buffer
371  * @use_sg:	if buffer is a scatterlist this is the number of elements
372  * @timeout:	request timeout in seconds
373  * @retries:	number of times to retry request
374  * @privdata:	data passed to done()
375  * @done:	callback function when done
376  * @gfp:	memory allocation flags
377  */
378 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380 		       int use_sg, int timeout, int retries, void *privdata,
381 		       void (*done)(void *, char *, int, int), gfp_t gfp)
382 {
383 	struct request *req;
384 	struct scsi_io_context *sioc;
385 	int err = 0;
386 	int write = (data_direction == DMA_TO_DEVICE);
387 
388 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389 	if (!sioc)
390 		return DRIVER_ERROR << 24;
391 
392 	req = blk_get_request(sdev->request_queue, write, gfp);
393 	if (!req)
394 		goto free_sense;
395 	req->cmd_type = REQ_TYPE_BLOCK_PC;
396 	req->cmd_flags |= REQ_QUIET;
397 
398 	if (use_sg)
399 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400 	else if (bufflen)
401 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402 
403 	if (err)
404 		goto free_req;
405 
406 	req->cmd_len = cmd_len;
407 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408 	memcpy(req->cmd, cmd, req->cmd_len);
409 	req->sense = sioc->sense;
410 	req->sense_len = 0;
411 	req->timeout = timeout;
412 	req->retries = retries;
413 	req->end_io_data = sioc;
414 
415 	sioc->data = privdata;
416 	sioc->done = done;
417 
418 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419 	return 0;
420 
421 free_req:
422 	blk_put_request(req);
423 free_sense:
424 	kmem_cache_free(scsi_io_context_cache, sioc);
425 	return DRIVER_ERROR << 24;
426 }
427 EXPORT_SYMBOL_GPL(scsi_execute_async);
428 
429 /*
430  * Function:    scsi_init_cmd_errh()
431  *
432  * Purpose:     Initialize cmd fields related to error handling.
433  *
434  * Arguments:   cmd	- command that is ready to be queued.
435  *
436  * Notes:       This function has the job of initializing a number of
437  *              fields related to error handling.   Typically this will
438  *              be called once for each command, as required.
439  */
440 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
441 {
442 	cmd->serial_number = 0;
443 	cmd->resid = 0;
444 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
445 	if (cmd->cmd_len == 0)
446 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447 }
448 
449 void scsi_device_unbusy(struct scsi_device *sdev)
450 {
451 	struct Scsi_Host *shost = sdev->host;
452 	unsigned long flags;
453 
454 	spin_lock_irqsave(shost->host_lock, flags);
455 	shost->host_busy--;
456 	if (unlikely(scsi_host_in_recovery(shost) &&
457 		     (shost->host_failed || shost->host_eh_scheduled)))
458 		scsi_eh_wakeup(shost);
459 	spin_unlock(shost->host_lock);
460 	spin_lock(sdev->request_queue->queue_lock);
461 	sdev->device_busy--;
462 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
463 }
464 
465 /*
466  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467  * and call blk_run_queue for all the scsi_devices on the target -
468  * including current_sdev first.
469  *
470  * Called with *no* scsi locks held.
471  */
472 static void scsi_single_lun_run(struct scsi_device *current_sdev)
473 {
474 	struct Scsi_Host *shost = current_sdev->host;
475 	struct scsi_device *sdev, *tmp;
476 	struct scsi_target *starget = scsi_target(current_sdev);
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(shost->host_lock, flags);
480 	starget->starget_sdev_user = NULL;
481 	spin_unlock_irqrestore(shost->host_lock, flags);
482 
483 	/*
484 	 * Call blk_run_queue for all LUNs on the target, starting with
485 	 * current_sdev. We race with others (to set starget_sdev_user),
486 	 * but in most cases, we will be first. Ideally, each LU on the
487 	 * target would get some limited time or requests on the target.
488 	 */
489 	blk_run_queue(current_sdev->request_queue);
490 
491 	spin_lock_irqsave(shost->host_lock, flags);
492 	if (starget->starget_sdev_user)
493 		goto out;
494 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
495 			same_target_siblings) {
496 		if (sdev == current_sdev)
497 			continue;
498 		if (scsi_device_get(sdev))
499 			continue;
500 
501 		spin_unlock_irqrestore(shost->host_lock, flags);
502 		blk_run_queue(sdev->request_queue);
503 		spin_lock_irqsave(shost->host_lock, flags);
504 
505 		scsi_device_put(sdev);
506 	}
507  out:
508 	spin_unlock_irqrestore(shost->host_lock, flags);
509 }
510 
511 /*
512  * Function:	scsi_run_queue()
513  *
514  * Purpose:	Select a proper request queue to serve next
515  *
516  * Arguments:	q	- last request's queue
517  *
518  * Returns:     Nothing
519  *
520  * Notes:	The previous command was completely finished, start
521  *		a new one if possible.
522  */
523 static void scsi_run_queue(struct request_queue *q)
524 {
525 	struct scsi_device *sdev = q->queuedata;
526 	struct Scsi_Host *shost = sdev->host;
527 	unsigned long flags;
528 
529 	if (scsi_target(sdev)->single_lun)
530 		scsi_single_lun_run(sdev);
531 
532 	spin_lock_irqsave(shost->host_lock, flags);
533 	while (!list_empty(&shost->starved_list) &&
534 	       !shost->host_blocked && !shost->host_self_blocked &&
535 		!((shost->can_queue > 0) &&
536 		  (shost->host_busy >= shost->can_queue))) {
537 		/*
538 		 * As long as shost is accepting commands and we have
539 		 * starved queues, call blk_run_queue. scsi_request_fn
540 		 * drops the queue_lock and can add us back to the
541 		 * starved_list.
542 		 *
543 		 * host_lock protects the starved_list and starved_entry.
544 		 * scsi_request_fn must get the host_lock before checking
545 		 * or modifying starved_list or starved_entry.
546 		 */
547 		sdev = list_entry(shost->starved_list.next,
548 					  struct scsi_device, starved_entry);
549 		list_del_init(&sdev->starved_entry);
550 		spin_unlock_irqrestore(shost->host_lock, flags);
551 
552 
553 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
555 				      &sdev->request_queue->queue_flags)) {
556 			blk_run_queue(sdev->request_queue);
557 			clear_bit(QUEUE_FLAG_REENTER,
558 				  &sdev->request_queue->queue_flags);
559 		} else
560 			blk_run_queue(sdev->request_queue);
561 
562 		spin_lock_irqsave(shost->host_lock, flags);
563 		if (unlikely(!list_empty(&sdev->starved_entry)))
564 			/*
565 			 * sdev lost a race, and was put back on the
566 			 * starved list. This is unlikely but without this
567 			 * in theory we could loop forever.
568 			 */
569 			break;
570 	}
571 	spin_unlock_irqrestore(shost->host_lock, flags);
572 
573 	blk_run_queue(q);
574 }
575 
576 /*
577  * Function:	scsi_requeue_command()
578  *
579  * Purpose:	Handle post-processing of completed commands.
580  *
581  * Arguments:	q	- queue to operate on
582  *		cmd	- command that may need to be requeued.
583  *
584  * Returns:	Nothing
585  *
586  * Notes:	After command completion, there may be blocks left
587  *		over which weren't finished by the previous command
588  *		this can be for a number of reasons - the main one is
589  *		I/O errors in the middle of the request, in which case
590  *		we need to request the blocks that come after the bad
591  *		sector.
592  * Notes:	Upon return, cmd is a stale pointer.
593  */
594 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595 {
596 	struct request *req = cmd->request;
597 	unsigned long flags;
598 
599 	scsi_unprep_request(req);
600 	spin_lock_irqsave(q->queue_lock, flags);
601 	blk_requeue_request(q, req);
602 	spin_unlock_irqrestore(q->queue_lock, flags);
603 
604 	scsi_run_queue(q);
605 }
606 
607 void scsi_next_command(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_device *sdev = cmd->device;
610 	struct request_queue *q = sdev->request_queue;
611 
612 	/* need to hold a reference on the device before we let go of the cmd */
613 	get_device(&sdev->sdev_gendev);
614 
615 	scsi_put_command(cmd);
616 	scsi_run_queue(q);
617 
618 	/* ok to remove device now */
619 	put_device(&sdev->sdev_gendev);
620 }
621 
622 void scsi_run_host_queues(struct Scsi_Host *shost)
623 {
624 	struct scsi_device *sdev;
625 
626 	shost_for_each_device(sdev, shost)
627 		scsi_run_queue(sdev->request_queue);
628 }
629 
630 /*
631  * Function:    scsi_end_request()
632  *
633  * Purpose:     Post-processing of completed commands (usually invoked at end
634  *		of upper level post-processing and scsi_io_completion).
635  *
636  * Arguments:   cmd	 - command that is complete.
637  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638  *              bytes    - number of bytes of completed I/O
639  *		requeue  - indicates whether we should requeue leftovers.
640  *
641  * Lock status: Assumed that lock is not held upon entry.
642  *
643  * Returns:     cmd if requeue required, NULL otherwise.
644  *
645  * Notes:       This is called for block device requests in order to
646  *              mark some number of sectors as complete.
647  *
648  *		We are guaranteeing that the request queue will be goosed
649  *		at some point during this call.
650  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
651  */
652 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653 					  int bytes, int requeue)
654 {
655 	struct request_queue *q = cmd->device->request_queue;
656 	struct request *req = cmd->request;
657 	unsigned long flags;
658 
659 	/*
660 	 * If there are blocks left over at the end, set up the command
661 	 * to queue the remainder of them.
662 	 */
663 	if (end_that_request_chunk(req, uptodate, bytes)) {
664 		int leftover = (req->hard_nr_sectors << 9);
665 
666 		if (blk_pc_request(req))
667 			leftover = req->data_len;
668 
669 		/* kill remainder if no retrys */
670 		if (!uptodate && blk_noretry_request(req))
671 			end_that_request_chunk(req, 0, leftover);
672 		else {
673 			if (requeue) {
674 				/*
675 				 * Bleah.  Leftovers again.  Stick the
676 				 * leftovers in the front of the
677 				 * queue, and goose the queue again.
678 				 */
679 				scsi_requeue_command(q, cmd);
680 				cmd = NULL;
681 			}
682 			return cmd;
683 		}
684 	}
685 
686 	add_disk_randomness(req->rq_disk);
687 
688 	spin_lock_irqsave(q->queue_lock, flags);
689 	if (blk_rq_tagged(req))
690 		blk_queue_end_tag(q, req);
691 	end_that_request_last(req, uptodate);
692 	spin_unlock_irqrestore(q->queue_lock, flags);
693 
694 	/*
695 	 * This will goose the queue request function at the end, so we don't
696 	 * need to worry about launching another command.
697 	 */
698 	scsi_next_command(cmd);
699 	return NULL;
700 }
701 
702 /*
703  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705  */
706 #define SCSI_MAX_SG_CHAIN_SEGMENTS	2048
707 
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710 	unsigned int index;
711 
712 	switch (nents) {
713 	case 1 ... 8:
714 		index = 0;
715 		break;
716 	case 9 ... 16:
717 		index = 1;
718 		break;
719 #if (SCSI_MAX_SG_SEGMENTS > 16)
720 	case 17 ... 32:
721 		index = 2;
722 		break;
723 #if (SCSI_MAX_SG_SEGMENTS > 32)
724 	case 33 ... 64:
725 		index = 3;
726 		break;
727 #if (SCSI_MAX_SG_SEGMENTS > 64)
728 	case 65 ... 128:
729 		index = 4;
730 		break;
731 #endif
732 #endif
733 #endif
734 	default:
735 		printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736 		BUG();
737 	}
738 
739 	return index;
740 }
741 
742 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
743 {
744 	struct scsi_host_sg_pool *sgp;
745 	struct scatterlist *sgl, *prev, *ret;
746 	unsigned int index;
747 	int this, left;
748 
749 	BUG_ON(!cmd->use_sg);
750 
751 	left = cmd->use_sg;
752 	ret = prev = NULL;
753 	do {
754 		this = left;
755 		if (this > SCSI_MAX_SG_SEGMENTS) {
756 			this = SCSI_MAX_SG_SEGMENTS - 1;
757 			index = SG_MEMPOOL_NR - 1;
758 		} else
759 			index = scsi_sgtable_index(this);
760 
761 		left -= this;
762 
763 		sgp = scsi_sg_pools + index;
764 
765 		sgl = mempool_alloc(sgp->pool, gfp_mask);
766 		if (unlikely(!sgl))
767 			goto enomem;
768 
769 		sg_init_table(sgl, sgp->size);
770 
771 		/*
772 		 * first loop through, set initial index and return value
773 		 */
774 		if (!ret)
775 			ret = sgl;
776 
777 		/*
778 		 * chain previous sglist, if any. we know the previous
779 		 * sglist must be the biggest one, or we would not have
780 		 * ended up doing another loop.
781 		 */
782 		if (prev)
783 			sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784 
785 		/*
786 		 * if we have nothing left, mark the last segment as
787 		 * end-of-list
788 		 */
789 		if (!left)
790 			sg_mark_end(&sgl[this - 1]);
791 
792 		/*
793 		 * don't allow subsequent mempool allocs to sleep, it would
794 		 * violate the mempool principle.
795 		 */
796 		gfp_mask &= ~__GFP_WAIT;
797 		gfp_mask |= __GFP_HIGH;
798 		prev = sgl;
799 	} while (left);
800 
801 	/*
802 	 * ->use_sg may get modified after dma mapping has potentially
803 	 * shrunk the number of segments, so keep a copy of it for free.
804 	 */
805 	cmd->__use_sg = cmd->use_sg;
806 	return ret;
807 enomem:
808 	if (ret) {
809 		/*
810 		 * Free entries chained off ret. Since we were trying to
811 		 * allocate another sglist, we know that all entries are of
812 		 * the max size.
813 		 */
814 		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
815 		prev = ret;
816 		ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
817 
818 		while ((sgl = sg_chain_ptr(ret)) != NULL) {
819 			ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
820 			mempool_free(sgl, sgp->pool);
821 		}
822 
823 		mempool_free(prev, sgp->pool);
824 	}
825 	return NULL;
826 }
827 
828 EXPORT_SYMBOL(scsi_alloc_sgtable);
829 
830 void scsi_free_sgtable(struct scsi_cmnd *cmd)
831 {
832 	struct scatterlist *sgl = cmd->request_buffer;
833 	struct scsi_host_sg_pool *sgp;
834 
835 	/*
836 	 * if this is the biggest size sglist, check if we have
837 	 * chained parts we need to free
838 	 */
839 	if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
840 		unsigned short this, left;
841 		struct scatterlist *next;
842 		unsigned int index;
843 
844 		left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
845 		next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
846 		while (left && next) {
847 			sgl = next;
848 			this = left;
849 			if (this > SCSI_MAX_SG_SEGMENTS) {
850 				this = SCSI_MAX_SG_SEGMENTS - 1;
851 				index = SG_MEMPOOL_NR - 1;
852 			} else
853 				index = scsi_sgtable_index(this);
854 
855 			left -= this;
856 
857 			sgp = scsi_sg_pools + index;
858 
859 			if (left)
860 				next = sg_chain_ptr(&sgl[sgp->size - 1]);
861 
862 			mempool_free(sgl, sgp->pool);
863 		}
864 
865 		/*
866 		 * Restore original, will be freed below
867 		 */
868 		sgl = cmd->request_buffer;
869 		sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
870 	} else
871 		sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
872 
873 	mempool_free(sgl, sgp->pool);
874 }
875 
876 EXPORT_SYMBOL(scsi_free_sgtable);
877 
878 /*
879  * Function:    scsi_release_buffers()
880  *
881  * Purpose:     Completion processing for block device I/O requests.
882  *
883  * Arguments:   cmd	- command that we are bailing.
884  *
885  * Lock status: Assumed that no lock is held upon entry.
886  *
887  * Returns:     Nothing
888  *
889  * Notes:       In the event that an upper level driver rejects a
890  *		command, we must release resources allocated during
891  *		the __init_io() function.  Primarily this would involve
892  *		the scatter-gather table, and potentially any bounce
893  *		buffers.
894  */
895 static void scsi_release_buffers(struct scsi_cmnd *cmd)
896 {
897 	if (cmd->use_sg)
898 		scsi_free_sgtable(cmd);
899 
900 	/*
901 	 * Zero these out.  They now point to freed memory, and it is
902 	 * dangerous to hang onto the pointers.
903 	 */
904 	cmd->request_buffer = NULL;
905 	cmd->request_bufflen = 0;
906 }
907 
908 /*
909  * Function:    scsi_io_completion()
910  *
911  * Purpose:     Completion processing for block device I/O requests.
912  *
913  * Arguments:   cmd   - command that is finished.
914  *
915  * Lock status: Assumed that no lock is held upon entry.
916  *
917  * Returns:     Nothing
918  *
919  * Notes:       This function is matched in terms of capabilities to
920  *              the function that created the scatter-gather list.
921  *              In other words, if there are no bounce buffers
922  *              (the normal case for most drivers), we don't need
923  *              the logic to deal with cleaning up afterwards.
924  *
925  *		We must do one of several things here:
926  *
927  *		a) Call scsi_end_request.  This will finish off the
928  *		   specified number of sectors.  If we are done, the
929  *		   command block will be released, and the queue
930  *		   function will be goosed.  If we are not done, then
931  *		   scsi_end_request will directly goose the queue.
932  *
933  *		b) We can just use scsi_requeue_command() here.  This would
934  *		   be used if we just wanted to retry, for example.
935  */
936 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
937 {
938 	int result = cmd->result;
939 	int this_count = cmd->request_bufflen;
940 	struct request_queue *q = cmd->device->request_queue;
941 	struct request *req = cmd->request;
942 	int clear_errors = 1;
943 	struct scsi_sense_hdr sshdr;
944 	int sense_valid = 0;
945 	int sense_deferred = 0;
946 
947 	scsi_release_buffers(cmd);
948 
949 	if (result) {
950 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
951 		if (sense_valid)
952 			sense_deferred = scsi_sense_is_deferred(&sshdr);
953 	}
954 
955 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
956 		req->errors = result;
957 		if (result) {
958 			clear_errors = 0;
959 			if (sense_valid && req->sense) {
960 				/*
961 				 * SG_IO wants current and deferred errors
962 				 */
963 				int len = 8 + cmd->sense_buffer[7];
964 
965 				if (len > SCSI_SENSE_BUFFERSIZE)
966 					len = SCSI_SENSE_BUFFERSIZE;
967 				memcpy(req->sense, cmd->sense_buffer,  len);
968 				req->sense_len = len;
969 			}
970 		}
971 		req->data_len = cmd->resid;
972 	}
973 
974 	/*
975 	 * Next deal with any sectors which we were able to correctly
976 	 * handle.
977 	 */
978 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
979 				      "%d bytes done.\n",
980 				      req->nr_sectors, good_bytes));
981 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
982 
983 	if (clear_errors)
984 		req->errors = 0;
985 
986 	/* A number of bytes were successfully read.  If there
987 	 * are leftovers and there is some kind of error
988 	 * (result != 0), retry the rest.
989 	 */
990 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
991 		return;
992 
993 	/* good_bytes = 0, or (inclusive) there were leftovers and
994 	 * result = 0, so scsi_end_request couldn't retry.
995 	 */
996 	if (sense_valid && !sense_deferred) {
997 		switch (sshdr.sense_key) {
998 		case UNIT_ATTENTION:
999 			if (cmd->device->removable) {
1000 				/* Detected disc change.  Set a bit
1001 				 * and quietly refuse further access.
1002 				 */
1003 				cmd->device->changed = 1;
1004 				scsi_end_request(cmd, 0, this_count, 1);
1005 				return;
1006 			} else {
1007 				/* Must have been a power glitch, or a
1008 				 * bus reset.  Could not have been a
1009 				 * media change, so we just retry the
1010 				 * request and see what happens.
1011 				 */
1012 				scsi_requeue_command(q, cmd);
1013 				return;
1014 			}
1015 			break;
1016 		case ILLEGAL_REQUEST:
1017 			/* If we had an ILLEGAL REQUEST returned, then
1018 			 * we may have performed an unsupported
1019 			 * command.  The only thing this should be
1020 			 * would be a ten byte read where only a six
1021 			 * byte read was supported.  Also, on a system
1022 			 * where READ CAPACITY failed, we may have
1023 			 * read past the end of the disk.
1024 			 */
1025 			if ((cmd->device->use_10_for_rw &&
1026 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1027 			    (cmd->cmnd[0] == READ_10 ||
1028 			     cmd->cmnd[0] == WRITE_10)) {
1029 				cmd->device->use_10_for_rw = 0;
1030 				/* This will cause a retry with a
1031 				 * 6-byte command.
1032 				 */
1033 				scsi_requeue_command(q, cmd);
1034 				return;
1035 			} else {
1036 				scsi_end_request(cmd, 0, this_count, 1);
1037 				return;
1038 			}
1039 			break;
1040 		case NOT_READY:
1041 			/* If the device is in the process of becoming
1042 			 * ready, or has a temporary blockage, retry.
1043 			 */
1044 			if (sshdr.asc == 0x04) {
1045 				switch (sshdr.ascq) {
1046 				case 0x01: /* becoming ready */
1047 				case 0x04: /* format in progress */
1048 				case 0x05: /* rebuild in progress */
1049 				case 0x06: /* recalculation in progress */
1050 				case 0x07: /* operation in progress */
1051 				case 0x08: /* Long write in progress */
1052 				case 0x09: /* self test in progress */
1053 					scsi_requeue_command(q, cmd);
1054 					return;
1055 				default:
1056 					break;
1057 				}
1058 			}
1059 			if (!(req->cmd_flags & REQ_QUIET))
1060 				scsi_cmd_print_sense_hdr(cmd,
1061 							 "Device not ready",
1062 							 &sshdr);
1063 
1064 			scsi_end_request(cmd, 0, this_count, 1);
1065 			return;
1066 		case VOLUME_OVERFLOW:
1067 			if (!(req->cmd_flags & REQ_QUIET)) {
1068 				scmd_printk(KERN_INFO, cmd,
1069 					    "Volume overflow, CDB: ");
1070 				__scsi_print_command(cmd->cmnd);
1071 				scsi_print_sense("", cmd);
1072 			}
1073 			/* See SSC3rXX or current. */
1074 			scsi_end_request(cmd, 0, this_count, 1);
1075 			return;
1076 		default:
1077 			break;
1078 		}
1079 	}
1080 	if (host_byte(result) == DID_RESET) {
1081 		/* Third party bus reset or reset for error recovery
1082 		 * reasons.  Just retry the request and see what
1083 		 * happens.
1084 		 */
1085 		scsi_requeue_command(q, cmd);
1086 		return;
1087 	}
1088 	if (result) {
1089 		if (!(req->cmd_flags & REQ_QUIET)) {
1090 			scsi_print_result(cmd);
1091 			if (driver_byte(result) & DRIVER_SENSE)
1092 				scsi_print_sense("", cmd);
1093 		}
1094 	}
1095 	scsi_end_request(cmd, 0, this_count, !result);
1096 }
1097 
1098 /*
1099  * Function:    scsi_init_io()
1100  *
1101  * Purpose:     SCSI I/O initialize function.
1102  *
1103  * Arguments:   cmd   - Command descriptor we wish to initialize
1104  *
1105  * Returns:     0 on success
1106  *		BLKPREP_DEFER if the failure is retryable
1107  */
1108 static int scsi_init_io(struct scsi_cmnd *cmd)
1109 {
1110 	struct request     *req = cmd->request;
1111 	int		   count;
1112 
1113 	/*
1114 	 * We used to not use scatter-gather for single segment request,
1115 	 * but now we do (it makes highmem I/O easier to support without
1116 	 * kmapping pages)
1117 	 */
1118 	cmd->use_sg = req->nr_phys_segments;
1119 
1120 	/*
1121 	 * If sg table allocation fails, requeue request later.
1122 	 */
1123 	cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1124 	if (unlikely(!cmd->request_buffer)) {
1125 		scsi_unprep_request(req);
1126 		return BLKPREP_DEFER;
1127 	}
1128 
1129 	req->buffer = NULL;
1130 	if (blk_pc_request(req))
1131 		cmd->request_bufflen = req->data_len;
1132 	else
1133 		cmd->request_bufflen = req->nr_sectors << 9;
1134 
1135 	/*
1136 	 * Next, walk the list, and fill in the addresses and sizes of
1137 	 * each segment.
1138 	 */
1139 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1140 	BUG_ON(count > cmd->use_sg);
1141 	cmd->use_sg = count;
1142 	return BLKPREP_OK;
1143 }
1144 
1145 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1146 		struct request *req)
1147 {
1148 	struct scsi_cmnd *cmd;
1149 
1150 	if (!req->special) {
1151 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1152 		if (unlikely(!cmd))
1153 			return NULL;
1154 		req->special = cmd;
1155 	} else {
1156 		cmd = req->special;
1157 	}
1158 
1159 	/* pull a tag out of the request if we have one */
1160 	cmd->tag = req->tag;
1161 	cmd->request = req;
1162 
1163 	return cmd;
1164 }
1165 
1166 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1167 {
1168 	struct scsi_cmnd *cmd;
1169 	int ret = scsi_prep_state_check(sdev, req);
1170 
1171 	if (ret != BLKPREP_OK)
1172 		return ret;
1173 
1174 	cmd = scsi_get_cmd_from_req(sdev, req);
1175 	if (unlikely(!cmd))
1176 		return BLKPREP_DEFER;
1177 
1178 	/*
1179 	 * BLOCK_PC requests may transfer data, in which case they must
1180 	 * a bio attached to them.  Or they might contain a SCSI command
1181 	 * that does not transfer data, in which case they may optionally
1182 	 * submit a request without an attached bio.
1183 	 */
1184 	if (req->bio) {
1185 		int ret;
1186 
1187 		BUG_ON(!req->nr_phys_segments);
1188 
1189 		ret = scsi_init_io(cmd);
1190 		if (unlikely(ret))
1191 			return ret;
1192 	} else {
1193 		BUG_ON(req->data_len);
1194 		BUG_ON(req->data);
1195 
1196 		cmd->request_bufflen = 0;
1197 		cmd->request_buffer = NULL;
1198 		cmd->use_sg = 0;
1199 		req->buffer = NULL;
1200 	}
1201 
1202 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1203 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1204 	cmd->cmd_len = req->cmd_len;
1205 	if (!req->data_len)
1206 		cmd->sc_data_direction = DMA_NONE;
1207 	else if (rq_data_dir(req) == WRITE)
1208 		cmd->sc_data_direction = DMA_TO_DEVICE;
1209 	else
1210 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1211 
1212 	cmd->transfersize = req->data_len;
1213 	cmd->allowed = req->retries;
1214 	cmd->timeout_per_command = req->timeout;
1215 	return BLKPREP_OK;
1216 }
1217 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1218 
1219 /*
1220  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1221  * from filesystems that still need to be translated to SCSI CDBs from
1222  * the ULD.
1223  */
1224 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1225 {
1226 	struct scsi_cmnd *cmd;
1227 	int ret = scsi_prep_state_check(sdev, req);
1228 
1229 	if (ret != BLKPREP_OK)
1230 		return ret;
1231 	/*
1232 	 * Filesystem requests must transfer data.
1233 	 */
1234 	BUG_ON(!req->nr_phys_segments);
1235 
1236 	cmd = scsi_get_cmd_from_req(sdev, req);
1237 	if (unlikely(!cmd))
1238 		return BLKPREP_DEFER;
1239 
1240 	return scsi_init_io(cmd);
1241 }
1242 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1243 
1244 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1245 {
1246 	int ret = BLKPREP_OK;
1247 
1248 	/*
1249 	 * If the device is not in running state we will reject some
1250 	 * or all commands.
1251 	 */
1252 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1253 		switch (sdev->sdev_state) {
1254 		case SDEV_OFFLINE:
1255 			/*
1256 			 * If the device is offline we refuse to process any
1257 			 * commands.  The device must be brought online
1258 			 * before trying any recovery commands.
1259 			 */
1260 			sdev_printk(KERN_ERR, sdev,
1261 				    "rejecting I/O to offline device\n");
1262 			ret = BLKPREP_KILL;
1263 			break;
1264 		case SDEV_DEL:
1265 			/*
1266 			 * If the device is fully deleted, we refuse to
1267 			 * process any commands as well.
1268 			 */
1269 			sdev_printk(KERN_ERR, sdev,
1270 				    "rejecting I/O to dead device\n");
1271 			ret = BLKPREP_KILL;
1272 			break;
1273 		case SDEV_QUIESCE:
1274 		case SDEV_BLOCK:
1275 			/*
1276 			 * If the devices is blocked we defer normal commands.
1277 			 */
1278 			if (!(req->cmd_flags & REQ_PREEMPT))
1279 				ret = BLKPREP_DEFER;
1280 			break;
1281 		default:
1282 			/*
1283 			 * For any other not fully online state we only allow
1284 			 * special commands.  In particular any user initiated
1285 			 * command is not allowed.
1286 			 */
1287 			if (!(req->cmd_flags & REQ_PREEMPT))
1288 				ret = BLKPREP_KILL;
1289 			break;
1290 		}
1291 	}
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL(scsi_prep_state_check);
1295 
1296 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1297 {
1298 	struct scsi_device *sdev = q->queuedata;
1299 
1300 	switch (ret) {
1301 	case BLKPREP_KILL:
1302 		req->errors = DID_NO_CONNECT << 16;
1303 		/* release the command and kill it */
1304 		if (req->special) {
1305 			struct scsi_cmnd *cmd = req->special;
1306 			scsi_release_buffers(cmd);
1307 			scsi_put_command(cmd);
1308 			req->special = NULL;
1309 		}
1310 		break;
1311 	case BLKPREP_DEFER:
1312 		/*
1313 		 * If we defer, the elv_next_request() returns NULL, but the
1314 		 * queue must be restarted, so we plug here if no returning
1315 		 * command will automatically do that.
1316 		 */
1317 		if (sdev->device_busy == 0)
1318 			blk_plug_device(q);
1319 		break;
1320 	default:
1321 		req->cmd_flags |= REQ_DONTPREP;
1322 	}
1323 
1324 	return ret;
1325 }
1326 EXPORT_SYMBOL(scsi_prep_return);
1327 
1328 int scsi_prep_fn(struct request_queue *q, struct request *req)
1329 {
1330 	struct scsi_device *sdev = q->queuedata;
1331 	int ret = BLKPREP_KILL;
1332 
1333 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1334 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1335 	return scsi_prep_return(q, req, ret);
1336 }
1337 
1338 /*
1339  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1340  * return 0.
1341  *
1342  * Called with the queue_lock held.
1343  */
1344 static inline int scsi_dev_queue_ready(struct request_queue *q,
1345 				  struct scsi_device *sdev)
1346 {
1347 	if (sdev->device_busy >= sdev->queue_depth)
1348 		return 0;
1349 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1350 		/*
1351 		 * unblock after device_blocked iterates to zero
1352 		 */
1353 		if (--sdev->device_blocked == 0) {
1354 			SCSI_LOG_MLQUEUE(3,
1355 				   sdev_printk(KERN_INFO, sdev,
1356 				   "unblocking device at zero depth\n"));
1357 		} else {
1358 			blk_plug_device(q);
1359 			return 0;
1360 		}
1361 	}
1362 	if (sdev->device_blocked)
1363 		return 0;
1364 
1365 	return 1;
1366 }
1367 
1368 /*
1369  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1370  * return 0. We must end up running the queue again whenever 0 is
1371  * returned, else IO can hang.
1372  *
1373  * Called with host_lock held.
1374  */
1375 static inline int scsi_host_queue_ready(struct request_queue *q,
1376 				   struct Scsi_Host *shost,
1377 				   struct scsi_device *sdev)
1378 {
1379 	if (scsi_host_in_recovery(shost))
1380 		return 0;
1381 	if (shost->host_busy == 0 && shost->host_blocked) {
1382 		/*
1383 		 * unblock after host_blocked iterates to zero
1384 		 */
1385 		if (--shost->host_blocked == 0) {
1386 			SCSI_LOG_MLQUEUE(3,
1387 				printk("scsi%d unblocking host at zero depth\n",
1388 					shost->host_no));
1389 		} else {
1390 			blk_plug_device(q);
1391 			return 0;
1392 		}
1393 	}
1394 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1395 	    shost->host_blocked || shost->host_self_blocked) {
1396 		if (list_empty(&sdev->starved_entry))
1397 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398 		return 0;
1399 	}
1400 
1401 	/* We're OK to process the command, so we can't be starved */
1402 	if (!list_empty(&sdev->starved_entry))
1403 		list_del_init(&sdev->starved_entry);
1404 
1405 	return 1;
1406 }
1407 
1408 /*
1409  * Kill a request for a dead device
1410  */
1411 static void scsi_kill_request(struct request *req, struct request_queue *q)
1412 {
1413 	struct scsi_cmnd *cmd = req->special;
1414 	struct scsi_device *sdev = cmd->device;
1415 	struct Scsi_Host *shost = sdev->host;
1416 
1417 	blkdev_dequeue_request(req);
1418 
1419 	if (unlikely(cmd == NULL)) {
1420 		printk(KERN_CRIT "impossible request in %s.\n",
1421 				 __FUNCTION__);
1422 		BUG();
1423 	}
1424 
1425 	scsi_init_cmd_errh(cmd);
1426 	cmd->result = DID_NO_CONNECT << 16;
1427 	atomic_inc(&cmd->device->iorequest_cnt);
1428 
1429 	/*
1430 	 * SCSI request completion path will do scsi_device_unbusy(),
1431 	 * bump busy counts.  To bump the counters, we need to dance
1432 	 * with the locks as normal issue path does.
1433 	 */
1434 	sdev->device_busy++;
1435 	spin_unlock(sdev->request_queue->queue_lock);
1436 	spin_lock(shost->host_lock);
1437 	shost->host_busy++;
1438 	spin_unlock(shost->host_lock);
1439 	spin_lock(sdev->request_queue->queue_lock);
1440 
1441 	__scsi_done(cmd);
1442 }
1443 
1444 static void scsi_softirq_done(struct request *rq)
1445 {
1446 	struct scsi_cmnd *cmd = rq->completion_data;
1447 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1448 	int disposition;
1449 
1450 	INIT_LIST_HEAD(&cmd->eh_entry);
1451 
1452 	disposition = scsi_decide_disposition(cmd);
1453 	if (disposition != SUCCESS &&
1454 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455 		sdev_printk(KERN_ERR, cmd->device,
1456 			    "timing out command, waited %lus\n",
1457 			    wait_for/HZ);
1458 		disposition = SUCCESS;
1459 	}
1460 
1461 	scsi_log_completion(cmd, disposition);
1462 
1463 	switch (disposition) {
1464 		case SUCCESS:
1465 			scsi_finish_command(cmd);
1466 			break;
1467 		case NEEDS_RETRY:
1468 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469 			break;
1470 		case ADD_TO_MLQUEUE:
1471 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472 			break;
1473 		default:
1474 			if (!scsi_eh_scmd_add(cmd, 0))
1475 				scsi_finish_command(cmd);
1476 	}
1477 }
1478 
1479 /*
1480  * Function:    scsi_request_fn()
1481  *
1482  * Purpose:     Main strategy routine for SCSI.
1483  *
1484  * Arguments:   q       - Pointer to actual queue.
1485  *
1486  * Returns:     Nothing
1487  *
1488  * Lock status: IO request lock assumed to be held when called.
1489  */
1490 static void scsi_request_fn(struct request_queue *q)
1491 {
1492 	struct scsi_device *sdev = q->queuedata;
1493 	struct Scsi_Host *shost;
1494 	struct scsi_cmnd *cmd;
1495 	struct request *req;
1496 
1497 	if (!sdev) {
1498 		printk("scsi: killing requests for dead queue\n");
1499 		while ((req = elv_next_request(q)) != NULL)
1500 			scsi_kill_request(req, q);
1501 		return;
1502 	}
1503 
1504 	if(!get_device(&sdev->sdev_gendev))
1505 		/* We must be tearing the block queue down already */
1506 		return;
1507 
1508 	/*
1509 	 * To start with, we keep looping until the queue is empty, or until
1510 	 * the host is no longer able to accept any more requests.
1511 	 */
1512 	shost = sdev->host;
1513 	while (!blk_queue_plugged(q)) {
1514 		int rtn;
1515 		/*
1516 		 * get next queueable request.  We do this early to make sure
1517 		 * that the request is fully prepared even if we cannot
1518 		 * accept it.
1519 		 */
1520 		req = elv_next_request(q);
1521 		if (!req || !scsi_dev_queue_ready(q, sdev))
1522 			break;
1523 
1524 		if (unlikely(!scsi_device_online(sdev))) {
1525 			sdev_printk(KERN_ERR, sdev,
1526 				    "rejecting I/O to offline device\n");
1527 			scsi_kill_request(req, q);
1528 			continue;
1529 		}
1530 
1531 
1532 		/*
1533 		 * Remove the request from the request list.
1534 		 */
1535 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536 			blkdev_dequeue_request(req);
1537 		sdev->device_busy++;
1538 
1539 		spin_unlock(q->queue_lock);
1540 		cmd = req->special;
1541 		if (unlikely(cmd == NULL)) {
1542 			printk(KERN_CRIT "impossible request in %s.\n"
1543 					 "please mail a stack trace to "
1544 					 "linux-scsi@vger.kernel.org\n",
1545 					 __FUNCTION__);
1546 			blk_dump_rq_flags(req, "foo");
1547 			BUG();
1548 		}
1549 		spin_lock(shost->host_lock);
1550 
1551 		if (!scsi_host_queue_ready(q, shost, sdev))
1552 			goto not_ready;
1553 		if (scsi_target(sdev)->single_lun) {
1554 			if (scsi_target(sdev)->starget_sdev_user &&
1555 			    scsi_target(sdev)->starget_sdev_user != sdev)
1556 				goto not_ready;
1557 			scsi_target(sdev)->starget_sdev_user = sdev;
1558 		}
1559 		shost->host_busy++;
1560 
1561 		/*
1562 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1563 		 *		take the lock again.
1564 		 */
1565 		spin_unlock_irq(shost->host_lock);
1566 
1567 		/*
1568 		 * Finally, initialize any error handling parameters, and set up
1569 		 * the timers for timeouts.
1570 		 */
1571 		scsi_init_cmd_errh(cmd);
1572 
1573 		/*
1574 		 * Dispatch the command to the low-level driver.
1575 		 */
1576 		rtn = scsi_dispatch_cmd(cmd);
1577 		spin_lock_irq(q->queue_lock);
1578 		if(rtn) {
1579 			/* we're refusing the command; because of
1580 			 * the way locks get dropped, we need to
1581 			 * check here if plugging is required */
1582 			if(sdev->device_busy == 0)
1583 				blk_plug_device(q);
1584 
1585 			break;
1586 		}
1587 	}
1588 
1589 	goto out;
1590 
1591  not_ready:
1592 	spin_unlock_irq(shost->host_lock);
1593 
1594 	/*
1595 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 	 * must return with queue_lock held.
1597 	 *
1598 	 * Decrementing device_busy without checking it is OK, as all such
1599 	 * cases (host limits or settings) should run the queue at some
1600 	 * later time.
1601 	 */
1602 	spin_lock_irq(q->queue_lock);
1603 	blk_requeue_request(q, req);
1604 	sdev->device_busy--;
1605 	if(sdev->device_busy == 0)
1606 		blk_plug_device(q);
1607  out:
1608 	/* must be careful here...if we trigger the ->remove() function
1609 	 * we cannot be holding the q lock */
1610 	spin_unlock_irq(q->queue_lock);
1611 	put_device(&sdev->sdev_gendev);
1612 	spin_lock_irq(q->queue_lock);
1613 }
1614 
1615 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1616 {
1617 	struct device *host_dev;
1618 	u64 bounce_limit = 0xffffffff;
1619 
1620 	if (shost->unchecked_isa_dma)
1621 		return BLK_BOUNCE_ISA;
1622 	/*
1623 	 * Platforms with virtual-DMA translation
1624 	 * hardware have no practical limit.
1625 	 */
1626 	if (!PCI_DMA_BUS_IS_PHYS)
1627 		return BLK_BOUNCE_ANY;
1628 
1629 	host_dev = scsi_get_device(shost);
1630 	if (host_dev && host_dev->dma_mask)
1631 		bounce_limit = *host_dev->dma_mask;
1632 
1633 	return bounce_limit;
1634 }
1635 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1636 
1637 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638 					 request_fn_proc *request_fn)
1639 {
1640 	struct request_queue *q;
1641 
1642 	q = blk_init_queue(request_fn, NULL);
1643 	if (!q)
1644 		return NULL;
1645 
1646 	/*
1647 	 * this limit is imposed by hardware restrictions
1648 	 */
1649 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1650 
1651 	/*
1652 	 * In the future, sg chaining support will be mandatory and this
1653 	 * ifdef can then go away. Right now we don't have all archs
1654 	 * converted, so better keep it safe.
1655 	 */
1656 #ifdef ARCH_HAS_SG_CHAIN
1657 	if (shost->use_sg_chaining)
1658 		blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1659 	else
1660 		blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661 #else
1662 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1663 #endif
1664 
1665 	blk_queue_max_sectors(q, shost->max_sectors);
1666 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1667 	blk_queue_segment_boundary(q, shost->dma_boundary);
1668 
1669 	if (!shost->use_clustering)
1670 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1671 
1672 	/*
1673 	 * set a reasonable default alignment on word boundaries: the
1674 	 * host and device may alter it using
1675 	 * blk_queue_update_dma_alignment() later.
1676 	 */
1677 	blk_queue_dma_alignment(q, 0x03);
1678 
1679 	return q;
1680 }
1681 EXPORT_SYMBOL(__scsi_alloc_queue);
1682 
1683 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1684 {
1685 	struct request_queue *q;
1686 
1687 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1688 	if (!q)
1689 		return NULL;
1690 
1691 	blk_queue_prep_rq(q, scsi_prep_fn);
1692 	blk_queue_softirq_done(q, scsi_softirq_done);
1693 	return q;
1694 }
1695 
1696 void scsi_free_queue(struct request_queue *q)
1697 {
1698 	blk_cleanup_queue(q);
1699 }
1700 
1701 /*
1702  * Function:    scsi_block_requests()
1703  *
1704  * Purpose:     Utility function used by low-level drivers to prevent further
1705  *		commands from being queued to the device.
1706  *
1707  * Arguments:   shost       - Host in question
1708  *
1709  * Returns:     Nothing
1710  *
1711  * Lock status: No locks are assumed held.
1712  *
1713  * Notes:       There is no timer nor any other means by which the requests
1714  *		get unblocked other than the low-level driver calling
1715  *		scsi_unblock_requests().
1716  */
1717 void scsi_block_requests(struct Scsi_Host *shost)
1718 {
1719 	shost->host_self_blocked = 1;
1720 }
1721 EXPORT_SYMBOL(scsi_block_requests);
1722 
1723 /*
1724  * Function:    scsi_unblock_requests()
1725  *
1726  * Purpose:     Utility function used by low-level drivers to allow further
1727  *		commands from being queued to the device.
1728  *
1729  * Arguments:   shost       - Host in question
1730  *
1731  * Returns:     Nothing
1732  *
1733  * Lock status: No locks are assumed held.
1734  *
1735  * Notes:       There is no timer nor any other means by which the requests
1736  *		get unblocked other than the low-level driver calling
1737  *		scsi_unblock_requests().
1738  *
1739  *		This is done as an API function so that changes to the
1740  *		internals of the scsi mid-layer won't require wholesale
1741  *		changes to drivers that use this feature.
1742  */
1743 void scsi_unblock_requests(struct Scsi_Host *shost)
1744 {
1745 	shost->host_self_blocked = 0;
1746 	scsi_run_host_queues(shost);
1747 }
1748 EXPORT_SYMBOL(scsi_unblock_requests);
1749 
1750 int __init scsi_init_queue(void)
1751 {
1752 	int i;
1753 
1754 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1755 					sizeof(struct scsi_io_context),
1756 					0, 0, NULL);
1757 	if (!scsi_io_context_cache) {
1758 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1759 		return -ENOMEM;
1760 	}
1761 
1762 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764 		int size = sgp->size * sizeof(struct scatterlist);
1765 
1766 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767 				SLAB_HWCACHE_ALIGN, NULL);
1768 		if (!sgp->slab) {
1769 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770 					sgp->name);
1771 		}
1772 
1773 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1774 						     sgp->slab);
1775 		if (!sgp->pool) {
1776 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1777 					sgp->name);
1778 		}
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 void scsi_exit_queue(void)
1785 {
1786 	int i;
1787 
1788 	kmem_cache_destroy(scsi_io_context_cache);
1789 
1790 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792 		mempool_destroy(sgp->pool);
1793 		kmem_cache_destroy(sgp->slab);
1794 	}
1795 }
1796 
1797 /**
1798  *	scsi_mode_select - issue a mode select
1799  *	@sdev:	SCSI device to be queried
1800  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1801  *	@sp:	Save page bit (0 == don't save, 1 == save)
1802  *	@modepage: mode page being requested
1803  *	@buffer: request buffer (may not be smaller than eight bytes)
1804  *	@len:	length of request buffer.
1805  *	@timeout: command timeout
1806  *	@retries: number of retries before failing
1807  *	@data: returns a structure abstracting the mode header data
1808  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1809  *		must be SCSI_SENSE_BUFFERSIZE big.
1810  *
1811  *	Returns zero if successful; negative error number or scsi
1812  *	status on error
1813  *
1814  */
1815 int
1816 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1817 		 unsigned char *buffer, int len, int timeout, int retries,
1818 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1819 {
1820 	unsigned char cmd[10];
1821 	unsigned char *real_buffer;
1822 	int ret;
1823 
1824 	memset(cmd, 0, sizeof(cmd));
1825 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1826 
1827 	if (sdev->use_10_for_ms) {
1828 		if (len > 65535)
1829 			return -EINVAL;
1830 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1831 		if (!real_buffer)
1832 			return -ENOMEM;
1833 		memcpy(real_buffer + 8, buffer, len);
1834 		len += 8;
1835 		real_buffer[0] = 0;
1836 		real_buffer[1] = 0;
1837 		real_buffer[2] = data->medium_type;
1838 		real_buffer[3] = data->device_specific;
1839 		real_buffer[4] = data->longlba ? 0x01 : 0;
1840 		real_buffer[5] = 0;
1841 		real_buffer[6] = data->block_descriptor_length >> 8;
1842 		real_buffer[7] = data->block_descriptor_length;
1843 
1844 		cmd[0] = MODE_SELECT_10;
1845 		cmd[7] = len >> 8;
1846 		cmd[8] = len;
1847 	} else {
1848 		if (len > 255 || data->block_descriptor_length > 255 ||
1849 		    data->longlba)
1850 			return -EINVAL;
1851 
1852 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1853 		if (!real_buffer)
1854 			return -ENOMEM;
1855 		memcpy(real_buffer + 4, buffer, len);
1856 		len += 4;
1857 		real_buffer[0] = 0;
1858 		real_buffer[1] = data->medium_type;
1859 		real_buffer[2] = data->device_specific;
1860 		real_buffer[3] = data->block_descriptor_length;
1861 
1862 
1863 		cmd[0] = MODE_SELECT;
1864 		cmd[4] = len;
1865 	}
1866 
1867 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1868 			       sshdr, timeout, retries);
1869 	kfree(real_buffer);
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(scsi_mode_select);
1873 
1874 /**
1875  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1876  *	@sdev:	SCSI device to be queried
1877  *	@dbd:	set if mode sense will allow block descriptors to be returned
1878  *	@modepage: mode page being requested
1879  *	@buffer: request buffer (may not be smaller than eight bytes)
1880  *	@len:	length of request buffer.
1881  *	@timeout: command timeout
1882  *	@retries: number of retries before failing
1883  *	@data: returns a structure abstracting the mode header data
1884  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1885  *		must be SCSI_SENSE_BUFFERSIZE big.
1886  *
1887  *	Returns zero if unsuccessful, or the header offset (either 4
1888  *	or 8 depending on whether a six or ten byte command was
1889  *	issued) if successful.
1890  */
1891 int
1892 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1893 		  unsigned char *buffer, int len, int timeout, int retries,
1894 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1895 {
1896 	unsigned char cmd[12];
1897 	int use_10_for_ms;
1898 	int header_length;
1899 	int result;
1900 	struct scsi_sense_hdr my_sshdr;
1901 
1902 	memset(data, 0, sizeof(*data));
1903 	memset(&cmd[0], 0, 12);
1904 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1905 	cmd[2] = modepage;
1906 
1907 	/* caller might not be interested in sense, but we need it */
1908 	if (!sshdr)
1909 		sshdr = &my_sshdr;
1910 
1911  retry:
1912 	use_10_for_ms = sdev->use_10_for_ms;
1913 
1914 	if (use_10_for_ms) {
1915 		if (len < 8)
1916 			len = 8;
1917 
1918 		cmd[0] = MODE_SENSE_10;
1919 		cmd[8] = len;
1920 		header_length = 8;
1921 	} else {
1922 		if (len < 4)
1923 			len = 4;
1924 
1925 		cmd[0] = MODE_SENSE;
1926 		cmd[4] = len;
1927 		header_length = 4;
1928 	}
1929 
1930 	memset(buffer, 0, len);
1931 
1932 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1933 				  sshdr, timeout, retries);
1934 
1935 	/* This code looks awful: what it's doing is making sure an
1936 	 * ILLEGAL REQUEST sense return identifies the actual command
1937 	 * byte as the problem.  MODE_SENSE commands can return
1938 	 * ILLEGAL REQUEST if the code page isn't supported */
1939 
1940 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1941 	    (driver_byte(result) & DRIVER_SENSE)) {
1942 		if (scsi_sense_valid(sshdr)) {
1943 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1944 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1945 				/*
1946 				 * Invalid command operation code
1947 				 */
1948 				sdev->use_10_for_ms = 0;
1949 				goto retry;
1950 			}
1951 		}
1952 	}
1953 
1954 	if(scsi_status_is_good(result)) {
1955 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1956 			     (modepage == 6 || modepage == 8))) {
1957 			/* Initio breakage? */
1958 			header_length = 0;
1959 			data->length = 13;
1960 			data->medium_type = 0;
1961 			data->device_specific = 0;
1962 			data->longlba = 0;
1963 			data->block_descriptor_length = 0;
1964 		} else if(use_10_for_ms) {
1965 			data->length = buffer[0]*256 + buffer[1] + 2;
1966 			data->medium_type = buffer[2];
1967 			data->device_specific = buffer[3];
1968 			data->longlba = buffer[4] & 0x01;
1969 			data->block_descriptor_length = buffer[6]*256
1970 				+ buffer[7];
1971 		} else {
1972 			data->length = buffer[0] + 1;
1973 			data->medium_type = buffer[1];
1974 			data->device_specific = buffer[2];
1975 			data->block_descriptor_length = buffer[3];
1976 		}
1977 		data->header_length = header_length;
1978 	}
1979 
1980 	return result;
1981 }
1982 EXPORT_SYMBOL(scsi_mode_sense);
1983 
1984 /**
1985  *	scsi_test_unit_ready - test if unit is ready
1986  *	@sdev:	scsi device to change the state of.
1987  *	@timeout: command timeout
1988  *	@retries: number of retries before failing
1989  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1990  *		returning sense. Make sure that this is cleared before passing
1991  *		in.
1992  *
1993  *	Returns zero if unsuccessful or an error if TUR failed.  For
1994  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1995  *	translated to success, with the ->changed flag updated.
1996  **/
1997 int
1998 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1999 		     struct scsi_sense_hdr *sshdr_external)
2000 {
2001 	char cmd[] = {
2002 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2003 	};
2004 	struct scsi_sense_hdr *sshdr;
2005 	int result;
2006 
2007 	if (!sshdr_external)
2008 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2009 	else
2010 		sshdr = sshdr_external;
2011 
2012 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2013 	do {
2014 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2015 					  timeout, retries);
2016 	} while ((driver_byte(result) & DRIVER_SENSE) &&
2017 		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2018 		 --retries);
2019 
2020 	if (!sshdr)
2021 		/* could not allocate sense buffer, so can't process it */
2022 		return result;
2023 
2024 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2025 
2026 		if ((scsi_sense_valid(sshdr)) &&
2027 		    ((sshdr->sense_key == UNIT_ATTENTION) ||
2028 		     (sshdr->sense_key == NOT_READY))) {
2029 			sdev->changed = 1;
2030 			result = 0;
2031 		}
2032 	}
2033 	if (!sshdr_external)
2034 		kfree(sshdr);
2035 	return result;
2036 }
2037 EXPORT_SYMBOL(scsi_test_unit_ready);
2038 
2039 /**
2040  *	scsi_device_set_state - Take the given device through the device state model.
2041  *	@sdev:	scsi device to change the state of.
2042  *	@state:	state to change to.
2043  *
2044  *	Returns zero if unsuccessful or an error if the requested
2045  *	transition is illegal.
2046  */
2047 int
2048 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2049 {
2050 	enum scsi_device_state oldstate = sdev->sdev_state;
2051 
2052 	if (state == oldstate)
2053 		return 0;
2054 
2055 	switch (state) {
2056 	case SDEV_CREATED:
2057 		/* There are no legal states that come back to
2058 		 * created.  This is the manually initialised start
2059 		 * state */
2060 		goto illegal;
2061 
2062 	case SDEV_RUNNING:
2063 		switch (oldstate) {
2064 		case SDEV_CREATED:
2065 		case SDEV_OFFLINE:
2066 		case SDEV_QUIESCE:
2067 		case SDEV_BLOCK:
2068 			break;
2069 		default:
2070 			goto illegal;
2071 		}
2072 		break;
2073 
2074 	case SDEV_QUIESCE:
2075 		switch (oldstate) {
2076 		case SDEV_RUNNING:
2077 		case SDEV_OFFLINE:
2078 			break;
2079 		default:
2080 			goto illegal;
2081 		}
2082 		break;
2083 
2084 	case SDEV_OFFLINE:
2085 		switch (oldstate) {
2086 		case SDEV_CREATED:
2087 		case SDEV_RUNNING:
2088 		case SDEV_QUIESCE:
2089 		case SDEV_BLOCK:
2090 			break;
2091 		default:
2092 			goto illegal;
2093 		}
2094 		break;
2095 
2096 	case SDEV_BLOCK:
2097 		switch (oldstate) {
2098 		case SDEV_CREATED:
2099 		case SDEV_RUNNING:
2100 			break;
2101 		default:
2102 			goto illegal;
2103 		}
2104 		break;
2105 
2106 	case SDEV_CANCEL:
2107 		switch (oldstate) {
2108 		case SDEV_CREATED:
2109 		case SDEV_RUNNING:
2110 		case SDEV_QUIESCE:
2111 		case SDEV_OFFLINE:
2112 		case SDEV_BLOCK:
2113 			break;
2114 		default:
2115 			goto illegal;
2116 		}
2117 		break;
2118 
2119 	case SDEV_DEL:
2120 		switch (oldstate) {
2121 		case SDEV_CREATED:
2122 		case SDEV_RUNNING:
2123 		case SDEV_OFFLINE:
2124 		case SDEV_CANCEL:
2125 			break;
2126 		default:
2127 			goto illegal;
2128 		}
2129 		break;
2130 
2131 	}
2132 	sdev->sdev_state = state;
2133 	return 0;
2134 
2135  illegal:
2136 	SCSI_LOG_ERROR_RECOVERY(1,
2137 				sdev_printk(KERN_ERR, sdev,
2138 					    "Illegal state transition %s->%s\n",
2139 					    scsi_device_state_name(oldstate),
2140 					    scsi_device_state_name(state))
2141 				);
2142 	return -EINVAL;
2143 }
2144 EXPORT_SYMBOL(scsi_device_set_state);
2145 
2146 /**
2147  * 	sdev_evt_emit - emit a single SCSI device uevent
2148  *	@sdev: associated SCSI device
2149  *	@evt: event to emit
2150  *
2151  *	Send a single uevent (scsi_event) to the associated scsi_device.
2152  */
2153 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2154 {
2155 	int idx = 0;
2156 	char *envp[3];
2157 
2158 	switch (evt->evt_type) {
2159 	case SDEV_EVT_MEDIA_CHANGE:
2160 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2161 		break;
2162 
2163 	default:
2164 		/* do nothing */
2165 		break;
2166 	}
2167 
2168 	envp[idx++] = NULL;
2169 
2170 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2171 }
2172 
2173 /**
2174  * 	sdev_evt_thread - send a uevent for each scsi event
2175  *	@work: work struct for scsi_device
2176  *
2177  *	Dispatch queued events to their associated scsi_device kobjects
2178  *	as uevents.
2179  */
2180 void scsi_evt_thread(struct work_struct *work)
2181 {
2182 	struct scsi_device *sdev;
2183 	LIST_HEAD(event_list);
2184 
2185 	sdev = container_of(work, struct scsi_device, event_work);
2186 
2187 	while (1) {
2188 		struct scsi_event *evt;
2189 		struct list_head *this, *tmp;
2190 		unsigned long flags;
2191 
2192 		spin_lock_irqsave(&sdev->list_lock, flags);
2193 		list_splice_init(&sdev->event_list, &event_list);
2194 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2195 
2196 		if (list_empty(&event_list))
2197 			break;
2198 
2199 		list_for_each_safe(this, tmp, &event_list) {
2200 			evt = list_entry(this, struct scsi_event, node);
2201 			list_del(&evt->node);
2202 			scsi_evt_emit(sdev, evt);
2203 			kfree(evt);
2204 		}
2205 	}
2206 }
2207 
2208 /**
2209  * 	sdev_evt_send - send asserted event to uevent thread
2210  *	@sdev: scsi_device event occurred on
2211  *	@evt: event to send
2212  *
2213  *	Assert scsi device event asynchronously.
2214  */
2215 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2216 {
2217 	unsigned long flags;
2218 
2219 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2220 		kfree(evt);
2221 		return;
2222 	}
2223 
2224 	spin_lock_irqsave(&sdev->list_lock, flags);
2225 	list_add_tail(&evt->node, &sdev->event_list);
2226 	schedule_work(&sdev->event_work);
2227 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2228 }
2229 EXPORT_SYMBOL_GPL(sdev_evt_send);
2230 
2231 /**
2232  * 	sdev_evt_alloc - allocate a new scsi event
2233  *	@evt_type: type of event to allocate
2234  *	@gfpflags: GFP flags for allocation
2235  *
2236  *	Allocates and returns a new scsi_event.
2237  */
2238 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2239 				  gfp_t gfpflags)
2240 {
2241 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2242 	if (!evt)
2243 		return NULL;
2244 
2245 	evt->evt_type = evt_type;
2246 	INIT_LIST_HEAD(&evt->node);
2247 
2248 	/* evt_type-specific initialization, if any */
2249 	switch (evt_type) {
2250 	case SDEV_EVT_MEDIA_CHANGE:
2251 	default:
2252 		/* do nothing */
2253 		break;
2254 	}
2255 
2256 	return evt;
2257 }
2258 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2259 
2260 /**
2261  * 	sdev_evt_send_simple - send asserted event to uevent thread
2262  *	@sdev: scsi_device event occurred on
2263  *	@evt_type: type of event to send
2264  *	@gfpflags: GFP flags for allocation
2265  *
2266  *	Assert scsi device event asynchronously, given an event type.
2267  */
2268 void sdev_evt_send_simple(struct scsi_device *sdev,
2269 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2270 {
2271 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2272 	if (!evt) {
2273 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2274 			    evt_type);
2275 		return;
2276 	}
2277 
2278 	sdev_evt_send(sdev, evt);
2279 }
2280 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2281 
2282 /**
2283  *	scsi_device_quiesce - Block user issued commands.
2284  *	@sdev:	scsi device to quiesce.
2285  *
2286  *	This works by trying to transition to the SDEV_QUIESCE state
2287  *	(which must be a legal transition).  When the device is in this
2288  *	state, only special requests will be accepted, all others will
2289  *	be deferred.  Since special requests may also be requeued requests,
2290  *	a successful return doesn't guarantee the device will be
2291  *	totally quiescent.
2292  *
2293  *	Must be called with user context, may sleep.
2294  *
2295  *	Returns zero if unsuccessful or an error if not.
2296  */
2297 int
2298 scsi_device_quiesce(struct scsi_device *sdev)
2299 {
2300 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2301 	if (err)
2302 		return err;
2303 
2304 	scsi_run_queue(sdev->request_queue);
2305 	while (sdev->device_busy) {
2306 		msleep_interruptible(200);
2307 		scsi_run_queue(sdev->request_queue);
2308 	}
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL(scsi_device_quiesce);
2312 
2313 /**
2314  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2315  *	@sdev:	scsi device to resume.
2316  *
2317  *	Moves the device from quiesced back to running and restarts the
2318  *	queues.
2319  *
2320  *	Must be called with user context, may sleep.
2321  */
2322 void
2323 scsi_device_resume(struct scsi_device *sdev)
2324 {
2325 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2326 		return;
2327 	scsi_run_queue(sdev->request_queue);
2328 }
2329 EXPORT_SYMBOL(scsi_device_resume);
2330 
2331 static void
2332 device_quiesce_fn(struct scsi_device *sdev, void *data)
2333 {
2334 	scsi_device_quiesce(sdev);
2335 }
2336 
2337 void
2338 scsi_target_quiesce(struct scsi_target *starget)
2339 {
2340 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2341 }
2342 EXPORT_SYMBOL(scsi_target_quiesce);
2343 
2344 static void
2345 device_resume_fn(struct scsi_device *sdev, void *data)
2346 {
2347 	scsi_device_resume(sdev);
2348 }
2349 
2350 void
2351 scsi_target_resume(struct scsi_target *starget)
2352 {
2353 	starget_for_each_device(starget, NULL, device_resume_fn);
2354 }
2355 EXPORT_SYMBOL(scsi_target_resume);
2356 
2357 /**
2358  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2359  * @sdev:	device to block
2360  *
2361  * Block request made by scsi lld's to temporarily stop all
2362  * scsi commands on the specified device.  Called from interrupt
2363  * or normal process context.
2364  *
2365  * Returns zero if successful or error if not
2366  *
2367  * Notes:
2368  *	This routine transitions the device to the SDEV_BLOCK state
2369  *	(which must be a legal transition).  When the device is in this
2370  *	state, all commands are deferred until the scsi lld reenables
2371  *	the device with scsi_device_unblock or device_block_tmo fires.
2372  *	This routine assumes the host_lock is held on entry.
2373  */
2374 int
2375 scsi_internal_device_block(struct scsi_device *sdev)
2376 {
2377 	struct request_queue *q = sdev->request_queue;
2378 	unsigned long flags;
2379 	int err = 0;
2380 
2381 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2382 	if (err)
2383 		return err;
2384 
2385 	/*
2386 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2387 	 * block layer from calling the midlayer with this device's
2388 	 * request queue.
2389 	 */
2390 	spin_lock_irqsave(q->queue_lock, flags);
2391 	blk_stop_queue(q);
2392 	spin_unlock_irqrestore(q->queue_lock, flags);
2393 
2394 	return 0;
2395 }
2396 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2397 
2398 /**
2399  * scsi_internal_device_unblock - resume a device after a block request
2400  * @sdev:	device to resume
2401  *
2402  * Called by scsi lld's or the midlayer to restart the device queue
2403  * for the previously suspended scsi device.  Called from interrupt or
2404  * normal process context.
2405  *
2406  * Returns zero if successful or error if not.
2407  *
2408  * Notes:
2409  *	This routine transitions the device to the SDEV_RUNNING state
2410  *	(which must be a legal transition) allowing the midlayer to
2411  *	goose the queue for this device.  This routine assumes the
2412  *	host_lock is held upon entry.
2413  */
2414 int
2415 scsi_internal_device_unblock(struct scsi_device *sdev)
2416 {
2417 	struct request_queue *q = sdev->request_queue;
2418 	int err;
2419 	unsigned long flags;
2420 
2421 	/*
2422 	 * Try to transition the scsi device to SDEV_RUNNING
2423 	 * and goose the device queue if successful.
2424 	 */
2425 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2426 	if (err)
2427 		return err;
2428 
2429 	spin_lock_irqsave(q->queue_lock, flags);
2430 	blk_start_queue(q);
2431 	spin_unlock_irqrestore(q->queue_lock, flags);
2432 
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2436 
2437 static void
2438 device_block(struct scsi_device *sdev, void *data)
2439 {
2440 	scsi_internal_device_block(sdev);
2441 }
2442 
2443 static int
2444 target_block(struct device *dev, void *data)
2445 {
2446 	if (scsi_is_target_device(dev))
2447 		starget_for_each_device(to_scsi_target(dev), NULL,
2448 					device_block);
2449 	return 0;
2450 }
2451 
2452 void
2453 scsi_target_block(struct device *dev)
2454 {
2455 	if (scsi_is_target_device(dev))
2456 		starget_for_each_device(to_scsi_target(dev), NULL,
2457 					device_block);
2458 	else
2459 		device_for_each_child(dev, NULL, target_block);
2460 }
2461 EXPORT_SYMBOL_GPL(scsi_target_block);
2462 
2463 static void
2464 device_unblock(struct scsi_device *sdev, void *data)
2465 {
2466 	scsi_internal_device_unblock(sdev);
2467 }
2468 
2469 static int
2470 target_unblock(struct device *dev, void *data)
2471 {
2472 	if (scsi_is_target_device(dev))
2473 		starget_for_each_device(to_scsi_target(dev), NULL,
2474 					device_unblock);
2475 	return 0;
2476 }
2477 
2478 void
2479 scsi_target_unblock(struct device *dev)
2480 {
2481 	if (scsi_is_target_device(dev))
2482 		starget_for_each_device(to_scsi_target(dev), NULL,
2483 					device_unblock);
2484 	else
2485 		device_for_each_child(dev, NULL, target_unblock);
2486 }
2487 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2488 
2489 /**
2490  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2491  * @sgl:	scatter-gather list
2492  * @sg_count:	number of segments in sg
2493  * @offset:	offset in bytes into sg, on return offset into the mapped area
2494  * @len:	bytes to map, on return number of bytes mapped
2495  *
2496  * Returns virtual address of the start of the mapped page
2497  */
2498 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2499 			  size_t *offset, size_t *len)
2500 {
2501 	int i;
2502 	size_t sg_len = 0, len_complete = 0;
2503 	struct scatterlist *sg;
2504 	struct page *page;
2505 
2506 	WARN_ON(!irqs_disabled());
2507 
2508 	for_each_sg(sgl, sg, sg_count, i) {
2509 		len_complete = sg_len; /* Complete sg-entries */
2510 		sg_len += sg->length;
2511 		if (sg_len > *offset)
2512 			break;
2513 	}
2514 
2515 	if (unlikely(i == sg_count)) {
2516 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2517 			"elements %d\n",
2518 		       __FUNCTION__, sg_len, *offset, sg_count);
2519 		WARN_ON(1);
2520 		return NULL;
2521 	}
2522 
2523 	/* Offset starting from the beginning of first page in this sg-entry */
2524 	*offset = *offset - len_complete + sg->offset;
2525 
2526 	/* Assumption: contiguous pages can be accessed as "page + i" */
2527 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2528 	*offset &= ~PAGE_MASK;
2529 
2530 	/* Bytes in this sg-entry from *offset to the end of the page */
2531 	sg_len = PAGE_SIZE - *offset;
2532 	if (*len > sg_len)
2533 		*len = sg_len;
2534 
2535 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2536 }
2537 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2538 
2539 /**
2540  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2541  * @virt:	virtual address to be unmapped
2542  */
2543 void scsi_kunmap_atomic_sg(void *virt)
2544 {
2545 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2546 }
2547 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2548