xref: /linux/drivers/scsi/scsi_lib.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_dbg.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_driver.h>
25 #include <scsi/scsi_eh.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_request.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
34 #define SG_MEMPOOL_SIZE		32
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	kmem_cache_t	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->flags &= ~REQ_DONTPREP;
86 	req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /*
165  * Function:    scsi_do_req
166  *
167  * Purpose:     Queue a SCSI request
168  *
169  * Arguments:   sreq	  - command descriptor.
170  *              cmnd      - actual SCSI command to be performed.
171  *              buffer    - data buffer.
172  *              bufflen   - size of data buffer.
173  *              done      - completion function to be run.
174  *              timeout   - how long to let it run before timeout.
175  *              retries   - number of retries we allow.
176  *
177  * Lock status: No locks held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:	This function is only used for queueing requests for things
182  *		like ioctls and character device requests - this is because
183  *		we essentially just inject a request into the queue for the
184  *		device.
185  *
186  *		In order to support the scsi_device_quiesce function, we
187  *		now inject requests on the *head* of the device queue
188  *		rather than the tail.
189  */
190 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
191 		 void *buffer, unsigned bufflen,
192 		 void (*done)(struct scsi_cmnd *),
193 		 int timeout, int retries)
194 {
195 	/*
196 	 * If the upper level driver is reusing these things, then
197 	 * we should release the low-level block now.  Another one will
198 	 * be allocated later when this request is getting queued.
199 	 */
200 	__scsi_release_request(sreq);
201 
202 	/*
203 	 * Our own function scsi_done (which marks the host as not busy,
204 	 * disables the timeout counter, etc) will be called by us or by the
205 	 * scsi_hosts[host].queuecommand() function needs to also call
206 	 * the completion function for the high level driver.
207 	 */
208 	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
209 	sreq->sr_bufflen = bufflen;
210 	sreq->sr_buffer = buffer;
211 	sreq->sr_allowed = retries;
212 	sreq->sr_done = done;
213 	sreq->sr_timeout_per_command = timeout;
214 
215 	if (sreq->sr_cmd_len == 0)
216 		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
217 
218 	/*
219 	 * head injection *required* here otherwise quiesce won't work
220 	 *
221 	 * Because users of this function are apt to reuse requests with no
222 	 * modification, we have to sanitise the request flags here
223 	 */
224 	sreq->sr_request->flags &= ~REQ_DONTPREP;
225 	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
226 		       	   1, sreq);
227 }
228 EXPORT_SYMBOL(scsi_do_req);
229 
230 /**
231  * scsi_execute - insert request and wait for the result
232  * @sdev:	scsi device
233  * @cmd:	scsi command
234  * @data_direction: data direction
235  * @buffer:	data buffer
236  * @bufflen:	len of buffer
237  * @sense:	optional sense buffer
238  * @timeout:	request timeout in seconds
239  * @retries:	number of times to retry request
240  * @flags:	or into request flags;
241  *
242  * returns the req->errors value which is the the scsi_cmnd result
243  * field.
244  **/
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 		 int data_direction, void *buffer, unsigned bufflen,
247 		 unsigned char *sense, int timeout, int retries, int flags)
248 {
249 	struct request *req;
250 	int write = (data_direction == DMA_TO_DEVICE);
251 	int ret = DRIVER_ERROR << 24;
252 
253 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
254 
255 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
256 					buffer, bufflen, __GFP_WAIT))
257 		goto out;
258 
259 	req->cmd_len = COMMAND_SIZE(cmd[0]);
260 	memcpy(req->cmd, cmd, req->cmd_len);
261 	req->sense = sense;
262 	req->sense_len = 0;
263 	req->retries = retries;
264 	req->timeout = timeout;
265 	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
266 
267 	/*
268 	 * head injection *required* here otherwise quiesce won't work
269 	 */
270 	blk_execute_rq(req->q, NULL, req, 1);
271 
272 	ret = req->errors;
273  out:
274 	blk_put_request(req);
275 
276 	return ret;
277 }
278 EXPORT_SYMBOL(scsi_execute);
279 
280 
281 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
282 		     int data_direction, void *buffer, unsigned bufflen,
283 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
284 {
285 	char *sense = NULL;
286 	int result;
287 
288 	if (sshdr) {
289 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
290 		if (!sense)
291 			return DRIVER_ERROR << 24;
292 	}
293 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 			      sense, timeout, retries, 0);
295 	if (sshdr)
296 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297 
298 	kfree(sense);
299 	return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302 
303 struct scsi_io_context {
304 	void *data;
305 	void (*done)(void *data, char *sense, int result, int resid);
306 	char sense[SCSI_SENSE_BUFFERSIZE];
307 };
308 
309 static kmem_cache_t *scsi_io_context_cache;
310 
311 static void scsi_end_async(struct request *req, int uptodate)
312 {
313 	struct scsi_io_context *sioc = req->end_io_data;
314 
315 	if (sioc->done)
316 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
317 
318 	kmem_cache_free(scsi_io_context_cache, sioc);
319 	__blk_put_request(req->q, req);
320 }
321 
322 static int scsi_merge_bio(struct request *rq, struct bio *bio)
323 {
324 	struct request_queue *q = rq->q;
325 
326 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
327 	if (rq_data_dir(rq) == WRITE)
328 		bio->bi_rw |= (1 << BIO_RW);
329 	blk_queue_bounce(q, &bio);
330 
331 	if (!rq->bio)
332 		blk_rq_bio_prep(q, rq, bio);
333 	else if (!q->back_merge_fn(q, rq, bio))
334 		return -EINVAL;
335 	else {
336 		rq->biotail->bi_next = bio;
337 		rq->biotail = bio;
338 		rq->hard_nr_sectors += bio_sectors(bio);
339 		rq->nr_sectors = rq->hard_nr_sectors;
340 	}
341 
342 	return 0;
343 }
344 
345 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
346 {
347 	if (bio->bi_size)
348 		return 1;
349 
350 	bio_put(bio);
351 	return 0;
352 }
353 
354 /**
355  * scsi_req_map_sg - map a scatterlist into a request
356  * @rq:		request to fill
357  * @sg:		scatterlist
358  * @nsegs:	number of elements
359  * @bufflen:	len of buffer
360  * @gfp:	memory allocation flags
361  *
362  * scsi_req_map_sg maps a scatterlist into a request so that the
363  * request can be sent to the block layer. We do not trust the scatterlist
364  * sent to use, as some ULDs use that struct to only organize the pages.
365  */
366 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
367 			   int nsegs, unsigned bufflen, gfp_t gfp)
368 {
369 	struct request_queue *q = rq->q;
370 	int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 	unsigned int data_len = 0, len, bytes, off;
372 	struct page *page;
373 	struct bio *bio = NULL;
374 	int i, err, nr_vecs = 0;
375 
376 	for (i = 0; i < nsegs; i++) {
377 		page = sgl[i].page;
378 		off = sgl[i].offset;
379 		len = sgl[i].length;
380 		data_len += len;
381 
382 		while (len > 0) {
383 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
384 
385 			if (!bio) {
386 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
387 				nr_pages -= nr_vecs;
388 
389 				bio = bio_alloc(gfp, nr_vecs);
390 				if (!bio) {
391 					err = -ENOMEM;
392 					goto free_bios;
393 				}
394 				bio->bi_end_io = scsi_bi_endio;
395 			}
396 
397 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
398 			    bytes) {
399 				bio_put(bio);
400 				err = -EINVAL;
401 				goto free_bios;
402 			}
403 
404 			if (bio->bi_vcnt >= nr_vecs) {
405 				err = scsi_merge_bio(rq, bio);
406 				if (err) {
407 					bio_endio(bio, bio->bi_size, 0);
408 					goto free_bios;
409 				}
410 				bio = NULL;
411 			}
412 
413 			page++;
414 			len -= bytes;
415 			off = 0;
416 		}
417 	}
418 
419 	rq->buffer = rq->data = NULL;
420 	rq->data_len = data_len;
421 	return 0;
422 
423 free_bios:
424 	while ((bio = rq->bio) != NULL) {
425 		rq->bio = bio->bi_next;
426 		/*
427 		 * call endio instead of bio_put incase it was bounced
428 		 */
429 		bio_endio(bio, bio->bi_size, 0);
430 	}
431 
432 	return err;
433 }
434 
435 /**
436  * scsi_execute_async - insert request
437  * @sdev:	scsi device
438  * @cmd:	scsi command
439  * @cmd_len:	length of scsi cdb
440  * @data_direction: data direction
441  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
442  * @bufflen:	len of buffer
443  * @use_sg:	if buffer is a scatterlist this is the number of elements
444  * @timeout:	request timeout in seconds
445  * @retries:	number of times to retry request
446  * @flags:	or into request flags
447  **/
448 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
449 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
450 		       int use_sg, int timeout, int retries, void *privdata,
451 		       void (*done)(void *, char *, int, int), gfp_t gfp)
452 {
453 	struct request *req;
454 	struct scsi_io_context *sioc;
455 	int err = 0;
456 	int write = (data_direction == DMA_TO_DEVICE);
457 
458 	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
459 	if (!sioc)
460 		return DRIVER_ERROR << 24;
461 	memset(sioc, 0, sizeof(*sioc));
462 
463 	req = blk_get_request(sdev->request_queue, write, gfp);
464 	if (!req)
465 		goto free_sense;
466 	req->flags |= REQ_BLOCK_PC | REQ_QUIET;
467 
468 	if (use_sg)
469 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
470 	else if (bufflen)
471 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
472 
473 	if (err)
474 		goto free_req;
475 
476 	req->cmd_len = cmd_len;
477 	memcpy(req->cmd, cmd, req->cmd_len);
478 	req->sense = sioc->sense;
479 	req->sense_len = 0;
480 	req->timeout = timeout;
481 	req->retries = retries;
482 	req->end_io_data = sioc;
483 
484 	sioc->data = privdata;
485 	sioc->done = done;
486 
487 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
488 	return 0;
489 
490 free_req:
491 	blk_put_request(req);
492 free_sense:
493 	kfree(sioc);
494 	return DRIVER_ERROR << 24;
495 }
496 EXPORT_SYMBOL_GPL(scsi_execute_async);
497 
498 /*
499  * Function:    scsi_init_cmd_errh()
500  *
501  * Purpose:     Initialize cmd fields related to error handling.
502  *
503  * Arguments:   cmd	- command that is ready to be queued.
504  *
505  * Returns:     Nothing
506  *
507  * Notes:       This function has the job of initializing a number of
508  *              fields related to error handling.   Typically this will
509  *              be called once for each command, as required.
510  */
511 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
512 {
513 	cmd->serial_number = 0;
514 
515 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
516 
517 	if (cmd->cmd_len == 0)
518 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
519 
520 	/*
521 	 * We need saved copies of a number of fields - this is because
522 	 * error handling may need to overwrite these with different values
523 	 * to run different commands, and once error handling is complete,
524 	 * we will need to restore these values prior to running the actual
525 	 * command.
526 	 */
527 	cmd->old_use_sg = cmd->use_sg;
528 	cmd->old_cmd_len = cmd->cmd_len;
529 	cmd->sc_old_data_direction = cmd->sc_data_direction;
530 	cmd->old_underflow = cmd->underflow;
531 	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
532 	cmd->buffer = cmd->request_buffer;
533 	cmd->bufflen = cmd->request_bufflen;
534 
535 	return 1;
536 }
537 
538 /*
539  * Function:   scsi_setup_cmd_retry()
540  *
541  * Purpose:    Restore the command state for a retry
542  *
543  * Arguments:  cmd	- command to be restored
544  *
545  * Returns:    Nothing
546  *
547  * Notes:      Immediately prior to retrying a command, we need
548  *             to restore certain fields that we saved above.
549  */
550 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
551 {
552 	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
553 	cmd->request_buffer = cmd->buffer;
554 	cmd->request_bufflen = cmd->bufflen;
555 	cmd->use_sg = cmd->old_use_sg;
556 	cmd->cmd_len = cmd->old_cmd_len;
557 	cmd->sc_data_direction = cmd->sc_old_data_direction;
558 	cmd->underflow = cmd->old_underflow;
559 }
560 
561 void scsi_device_unbusy(struct scsi_device *sdev)
562 {
563 	struct Scsi_Host *shost = sdev->host;
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(shost->host_lock, flags);
567 	shost->host_busy--;
568 	if (unlikely(scsi_host_in_recovery(shost) &&
569 		     shost->host_failed))
570 		scsi_eh_wakeup(shost);
571 	spin_unlock(shost->host_lock);
572 	spin_lock(sdev->request_queue->queue_lock);
573 	sdev->device_busy--;
574 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
575 }
576 
577 /*
578  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
579  * and call blk_run_queue for all the scsi_devices on the target -
580  * including current_sdev first.
581  *
582  * Called with *no* scsi locks held.
583  */
584 static void scsi_single_lun_run(struct scsi_device *current_sdev)
585 {
586 	struct Scsi_Host *shost = current_sdev->host;
587 	struct scsi_device *sdev, *tmp;
588 	struct scsi_target *starget = scsi_target(current_sdev);
589 	unsigned long flags;
590 
591 	spin_lock_irqsave(shost->host_lock, flags);
592 	starget->starget_sdev_user = NULL;
593 	spin_unlock_irqrestore(shost->host_lock, flags);
594 
595 	/*
596 	 * Call blk_run_queue for all LUNs on the target, starting with
597 	 * current_sdev. We race with others (to set starget_sdev_user),
598 	 * but in most cases, we will be first. Ideally, each LU on the
599 	 * target would get some limited time or requests on the target.
600 	 */
601 	blk_run_queue(current_sdev->request_queue);
602 
603 	spin_lock_irqsave(shost->host_lock, flags);
604 	if (starget->starget_sdev_user)
605 		goto out;
606 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
607 			same_target_siblings) {
608 		if (sdev == current_sdev)
609 			continue;
610 		if (scsi_device_get(sdev))
611 			continue;
612 
613 		spin_unlock_irqrestore(shost->host_lock, flags);
614 		blk_run_queue(sdev->request_queue);
615 		spin_lock_irqsave(shost->host_lock, flags);
616 
617 		scsi_device_put(sdev);
618 	}
619  out:
620 	spin_unlock_irqrestore(shost->host_lock, flags);
621 }
622 
623 /*
624  * Function:	scsi_run_queue()
625  *
626  * Purpose:	Select a proper request queue to serve next
627  *
628  * Arguments:	q	- last request's queue
629  *
630  * Returns:     Nothing
631  *
632  * Notes:	The previous command was completely finished, start
633  *		a new one if possible.
634  */
635 static void scsi_run_queue(struct request_queue *q)
636 {
637 	struct scsi_device *sdev = q->queuedata;
638 	struct Scsi_Host *shost = sdev->host;
639 	unsigned long flags;
640 
641 	if (sdev->single_lun)
642 		scsi_single_lun_run(sdev);
643 
644 	spin_lock_irqsave(shost->host_lock, flags);
645 	while (!list_empty(&shost->starved_list) &&
646 	       !shost->host_blocked && !shost->host_self_blocked &&
647 		!((shost->can_queue > 0) &&
648 		  (shost->host_busy >= shost->can_queue))) {
649 		/*
650 		 * As long as shost is accepting commands and we have
651 		 * starved queues, call blk_run_queue. scsi_request_fn
652 		 * drops the queue_lock and can add us back to the
653 		 * starved_list.
654 		 *
655 		 * host_lock protects the starved_list and starved_entry.
656 		 * scsi_request_fn must get the host_lock before checking
657 		 * or modifying starved_list or starved_entry.
658 		 */
659 		sdev = list_entry(shost->starved_list.next,
660 					  struct scsi_device, starved_entry);
661 		list_del_init(&sdev->starved_entry);
662 		spin_unlock_irqrestore(shost->host_lock, flags);
663 
664 		blk_run_queue(sdev->request_queue);
665 
666 		spin_lock_irqsave(shost->host_lock, flags);
667 		if (unlikely(!list_empty(&sdev->starved_entry)))
668 			/*
669 			 * sdev lost a race, and was put back on the
670 			 * starved list. This is unlikely but without this
671 			 * in theory we could loop forever.
672 			 */
673 			break;
674 	}
675 	spin_unlock_irqrestore(shost->host_lock, flags);
676 
677 	blk_run_queue(q);
678 }
679 
680 /*
681  * Function:	scsi_requeue_command()
682  *
683  * Purpose:	Handle post-processing of completed commands.
684  *
685  * Arguments:	q	- queue to operate on
686  *		cmd	- command that may need to be requeued.
687  *
688  * Returns:	Nothing
689  *
690  * Notes:	After command completion, there may be blocks left
691  *		over which weren't finished by the previous command
692  *		this can be for a number of reasons - the main one is
693  *		I/O errors in the middle of the request, in which case
694  *		we need to request the blocks that come after the bad
695  *		sector.
696  * Notes:	Upon return, cmd is a stale pointer.
697  */
698 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
699 {
700 	struct request *req = cmd->request;
701 	unsigned long flags;
702 
703 	scsi_unprep_request(req);
704 	spin_lock_irqsave(q->queue_lock, flags);
705 	blk_requeue_request(q, req);
706 	spin_unlock_irqrestore(q->queue_lock, flags);
707 
708 	scsi_run_queue(q);
709 }
710 
711 void scsi_next_command(struct scsi_cmnd *cmd)
712 {
713 	struct scsi_device *sdev = cmd->device;
714 	struct request_queue *q = sdev->request_queue;
715 
716 	/* need to hold a reference on the device before we let go of the cmd */
717 	get_device(&sdev->sdev_gendev);
718 
719 	scsi_put_command(cmd);
720 	scsi_run_queue(q);
721 
722 	/* ok to remove device now */
723 	put_device(&sdev->sdev_gendev);
724 }
725 
726 void scsi_run_host_queues(struct Scsi_Host *shost)
727 {
728 	struct scsi_device *sdev;
729 
730 	shost_for_each_device(sdev, shost)
731 		scsi_run_queue(sdev->request_queue);
732 }
733 
734 /*
735  * Function:    scsi_end_request()
736  *
737  * Purpose:     Post-processing of completed commands (usually invoked at end
738  *		of upper level post-processing and scsi_io_completion).
739  *
740  * Arguments:   cmd	 - command that is complete.
741  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
742  *              bytes    - number of bytes of completed I/O
743  *		requeue  - indicates whether we should requeue leftovers.
744  *
745  * Lock status: Assumed that lock is not held upon entry.
746  *
747  * Returns:     cmd if requeue required, NULL otherwise.
748  *
749  * Notes:       This is called for block device requests in order to
750  *              mark some number of sectors as complete.
751  *
752  *		We are guaranteeing that the request queue will be goosed
753  *		at some point during this call.
754  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
755  */
756 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
757 					  int bytes, int requeue)
758 {
759 	request_queue_t *q = cmd->device->request_queue;
760 	struct request *req = cmd->request;
761 	unsigned long flags;
762 
763 	/*
764 	 * If there are blocks left over at the end, set up the command
765 	 * to queue the remainder of them.
766 	 */
767 	if (end_that_request_chunk(req, uptodate, bytes)) {
768 		int leftover = (req->hard_nr_sectors << 9);
769 
770 		if (blk_pc_request(req))
771 			leftover = req->data_len;
772 
773 		/* kill remainder if no retrys */
774 		if (!uptodate && blk_noretry_request(req))
775 			end_that_request_chunk(req, 0, leftover);
776 		else {
777 			if (requeue) {
778 				/*
779 				 * Bleah.  Leftovers again.  Stick the
780 				 * leftovers in the front of the
781 				 * queue, and goose the queue again.
782 				 */
783 				scsi_requeue_command(q, cmd);
784 				cmd = NULL;
785 			}
786 			return cmd;
787 		}
788 	}
789 
790 	add_disk_randomness(req->rq_disk);
791 
792 	spin_lock_irqsave(q->queue_lock, flags);
793 	if (blk_rq_tagged(req))
794 		blk_queue_end_tag(q, req);
795 	end_that_request_last(req, uptodate);
796 	spin_unlock_irqrestore(q->queue_lock, flags);
797 
798 	/*
799 	 * This will goose the queue request function at the end, so we don't
800 	 * need to worry about launching another command.
801 	 */
802 	scsi_next_command(cmd);
803 	return NULL;
804 }
805 
806 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
807 {
808 	struct scsi_host_sg_pool *sgp;
809 	struct scatterlist *sgl;
810 
811 	BUG_ON(!cmd->use_sg);
812 
813 	switch (cmd->use_sg) {
814 	case 1 ... 8:
815 		cmd->sglist_len = 0;
816 		break;
817 	case 9 ... 16:
818 		cmd->sglist_len = 1;
819 		break;
820 	case 17 ... 32:
821 		cmd->sglist_len = 2;
822 		break;
823 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
824 	case 33 ... 64:
825 		cmd->sglist_len = 3;
826 		break;
827 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
828 	case 65 ... 128:
829 		cmd->sglist_len = 4;
830 		break;
831 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
832 	case 129 ... 256:
833 		cmd->sglist_len = 5;
834 		break;
835 #endif
836 #endif
837 #endif
838 	default:
839 		return NULL;
840 	}
841 
842 	sgp = scsi_sg_pools + cmd->sglist_len;
843 	sgl = mempool_alloc(sgp->pool, gfp_mask);
844 	return sgl;
845 }
846 
847 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
848 {
849 	struct scsi_host_sg_pool *sgp;
850 
851 	BUG_ON(index >= SG_MEMPOOL_NR);
852 
853 	sgp = scsi_sg_pools + index;
854 	mempool_free(sgl, sgp->pool);
855 }
856 
857 /*
858  * Function:    scsi_release_buffers()
859  *
860  * Purpose:     Completion processing for block device I/O requests.
861  *
862  * Arguments:   cmd	- command that we are bailing.
863  *
864  * Lock status: Assumed that no lock is held upon entry.
865  *
866  * Returns:     Nothing
867  *
868  * Notes:       In the event that an upper level driver rejects a
869  *		command, we must release resources allocated during
870  *		the __init_io() function.  Primarily this would involve
871  *		the scatter-gather table, and potentially any bounce
872  *		buffers.
873  */
874 static void scsi_release_buffers(struct scsi_cmnd *cmd)
875 {
876 	struct request *req = cmd->request;
877 
878 	/*
879 	 * Free up any indirection buffers we allocated for DMA purposes.
880 	 */
881 	if (cmd->use_sg)
882 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
883 	else if (cmd->request_buffer != req->buffer)
884 		kfree(cmd->request_buffer);
885 
886 	/*
887 	 * Zero these out.  They now point to freed memory, and it is
888 	 * dangerous to hang onto the pointers.
889 	 */
890 	cmd->buffer  = NULL;
891 	cmd->bufflen = 0;
892 	cmd->request_buffer = NULL;
893 	cmd->request_bufflen = 0;
894 }
895 
896 /*
897  * Function:    scsi_io_completion()
898  *
899  * Purpose:     Completion processing for block device I/O requests.
900  *
901  * Arguments:   cmd   - command that is finished.
902  *
903  * Lock status: Assumed that no lock is held upon entry.
904  *
905  * Returns:     Nothing
906  *
907  * Notes:       This function is matched in terms of capabilities to
908  *              the function that created the scatter-gather list.
909  *              In other words, if there are no bounce buffers
910  *              (the normal case for most drivers), we don't need
911  *              the logic to deal with cleaning up afterwards.
912  *
913  *		We must do one of several things here:
914  *
915  *		a) Call scsi_end_request.  This will finish off the
916  *		   specified number of sectors.  If we are done, the
917  *		   command block will be released, and the queue
918  *		   function will be goosed.  If we are not done, then
919  *		   scsi_end_request will directly goose the queue.
920  *
921  *		b) We can just use scsi_requeue_command() here.  This would
922  *		   be used if we just wanted to retry, for example.
923  */
924 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
925 			unsigned int block_bytes)
926 {
927 	int result = cmd->result;
928 	int this_count = cmd->bufflen;
929 	request_queue_t *q = cmd->device->request_queue;
930 	struct request *req = cmd->request;
931 	int clear_errors = 1;
932 	struct scsi_sense_hdr sshdr;
933 	int sense_valid = 0;
934 	int sense_deferred = 0;
935 
936 	/*
937 	 * Free up any indirection buffers we allocated for DMA purposes.
938 	 * For the case of a READ, we need to copy the data out of the
939 	 * bounce buffer and into the real buffer.
940 	 */
941 	if (cmd->use_sg)
942 		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
943 	else if (cmd->buffer != req->buffer) {
944 		if (rq_data_dir(req) == READ) {
945 			unsigned long flags;
946 			char *to = bio_kmap_irq(req->bio, &flags);
947 			memcpy(to, cmd->buffer, cmd->bufflen);
948 			bio_kunmap_irq(to, &flags);
949 		}
950 		kfree(cmd->buffer);
951 	}
952 
953 	if (result) {
954 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
955 		if (sense_valid)
956 			sense_deferred = scsi_sense_is_deferred(&sshdr);
957 	}
958 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
959 		req->errors = result;
960 		if (result) {
961 			clear_errors = 0;
962 			if (sense_valid && req->sense) {
963 				/*
964 				 * SG_IO wants current and deferred errors
965 				 */
966 				int len = 8 + cmd->sense_buffer[7];
967 
968 				if (len > SCSI_SENSE_BUFFERSIZE)
969 					len = SCSI_SENSE_BUFFERSIZE;
970 				memcpy(req->sense, cmd->sense_buffer,  len);
971 				req->sense_len = len;
972 			}
973 		} else
974 			req->data_len = cmd->resid;
975 	}
976 
977 	/*
978 	 * Zero these out.  They now point to freed memory, and it is
979 	 * dangerous to hang onto the pointers.
980 	 */
981 	cmd->buffer  = NULL;
982 	cmd->bufflen = 0;
983 	cmd->request_buffer = NULL;
984 	cmd->request_bufflen = 0;
985 
986 	/*
987 	 * Next deal with any sectors which we were able to correctly
988 	 * handle.
989 	 */
990 	if (good_bytes >= 0) {
991 		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
992 					      req->nr_sectors, good_bytes));
993 		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
994 
995 		if (clear_errors)
996 			req->errors = 0;
997 		/*
998 		 * If multiple sectors are requested in one buffer, then
999 		 * they will have been finished off by the first command.
1000 		 * If not, then we have a multi-buffer command.
1001 		 *
1002 		 * If block_bytes != 0, it means we had a medium error
1003 		 * of some sort, and that we want to mark some number of
1004 		 * sectors as not uptodate.  Thus we want to inhibit
1005 		 * requeueing right here - we will requeue down below
1006 		 * when we handle the bad sectors.
1007 		 */
1008 
1009 		/*
1010 		 * If the command completed without error, then either
1011 		 * finish off the rest of the command, or start a new one.
1012 		 */
1013 		if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1014 			return;
1015 	}
1016 	/*
1017 	 * Now, if we were good little boys and girls, Santa left us a request
1018 	 * sense buffer.  We can extract information from this, so we
1019 	 * can choose a block to remap, etc.
1020 	 */
1021 	if (sense_valid && !sense_deferred) {
1022 		switch (sshdr.sense_key) {
1023 		case UNIT_ATTENTION:
1024 			if (cmd->device->removable) {
1025 				/* detected disc change.  set a bit
1026 				 * and quietly refuse further access.
1027 				 */
1028 				cmd->device->changed = 1;
1029 				scsi_end_request(cmd, 0,
1030 						this_count, 1);
1031 				return;
1032 			} else {
1033 				/*
1034 				* Must have been a power glitch, or a
1035 				* bus reset.  Could not have been a
1036 				* media change, so we just retry the
1037 				* request and see what happens.
1038 				*/
1039 				scsi_requeue_command(q, cmd);
1040 				return;
1041 			}
1042 			break;
1043 		case ILLEGAL_REQUEST:
1044 			/*
1045 		 	* If we had an ILLEGAL REQUEST returned, then we may
1046 		 	* have performed an unsupported command.  The only
1047 		 	* thing this should be would be a ten byte read where
1048 			* only a six byte read was supported.  Also, on a
1049 			* system where READ CAPACITY failed, we may have read
1050 			* past the end of the disk.
1051 		 	*/
1052 			if ((cmd->device->use_10_for_rw &&
1053 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1054 			    (cmd->cmnd[0] == READ_10 ||
1055 			     cmd->cmnd[0] == WRITE_10)) {
1056 				cmd->device->use_10_for_rw = 0;
1057 				/*
1058 				 * This will cause a retry with a 6-byte
1059 				 * command.
1060 				 */
1061 				scsi_requeue_command(q, cmd);
1062 				result = 0;
1063 			} else {
1064 				scsi_end_request(cmd, 0, this_count, 1);
1065 				return;
1066 			}
1067 			break;
1068 		case NOT_READY:
1069 			/*
1070 			 * If the device is in the process of becoming ready,
1071 			 * retry.
1072 			 */
1073 			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1074 				scsi_requeue_command(q, cmd);
1075 				return;
1076 			}
1077 			if (!(req->flags & REQ_QUIET))
1078 				scmd_printk(KERN_INFO, cmd,
1079 					   "Device not ready.\n");
1080 			scsi_end_request(cmd, 0, this_count, 1);
1081 			return;
1082 		case VOLUME_OVERFLOW:
1083 			if (!(req->flags & REQ_QUIET)) {
1084 				scmd_printk(KERN_INFO, cmd,
1085 					   "Volume overflow, CDB: ");
1086 				__scsi_print_command(cmd->data_cmnd);
1087 				scsi_print_sense("", cmd);
1088 			}
1089 			scsi_end_request(cmd, 0, block_bytes, 1);
1090 			return;
1091 		default:
1092 			break;
1093 		}
1094 	}			/* driver byte != 0 */
1095 	if (host_byte(result) == DID_RESET) {
1096 		/*
1097 		 * Third party bus reset or reset for error
1098 		 * recovery reasons.  Just retry the request
1099 		 * and see what happens.
1100 		 */
1101 		scsi_requeue_command(q, cmd);
1102 		return;
1103 	}
1104 	if (result) {
1105 		if (!(req->flags & REQ_QUIET)) {
1106 			scmd_printk(KERN_INFO, cmd,
1107 				   "SCSI error: return code = 0x%x\n", result);
1108 
1109 			if (driver_byte(result) & DRIVER_SENSE)
1110 				scsi_print_sense("", cmd);
1111 		}
1112 		/*
1113 		 * Mark a single buffer as not uptodate.  Queue the remainder.
1114 		 * We sometimes get this cruft in the event that a medium error
1115 		 * isn't properly reported.
1116 		 */
1117 		block_bytes = req->hard_cur_sectors << 9;
1118 		if (!block_bytes)
1119 			block_bytes = req->data_len;
1120 		scsi_end_request(cmd, 0, block_bytes, 1);
1121 	}
1122 }
1123 EXPORT_SYMBOL(scsi_io_completion);
1124 
1125 /*
1126  * Function:    scsi_init_io()
1127  *
1128  * Purpose:     SCSI I/O initialize function.
1129  *
1130  * Arguments:   cmd   - Command descriptor we wish to initialize
1131  *
1132  * Returns:     0 on success
1133  *		BLKPREP_DEFER if the failure is retryable
1134  *		BLKPREP_KILL if the failure is fatal
1135  */
1136 static int scsi_init_io(struct scsi_cmnd *cmd)
1137 {
1138 	struct request     *req = cmd->request;
1139 	struct scatterlist *sgpnt;
1140 	int		   count;
1141 
1142 	/*
1143 	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1144 	 */
1145 	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1146 		cmd->request_bufflen = req->data_len;
1147 		cmd->request_buffer = req->data;
1148 		req->buffer = req->data;
1149 		cmd->use_sg = 0;
1150 		return 0;
1151 	}
1152 
1153 	/*
1154 	 * we used to not use scatter-gather for single segment request,
1155 	 * but now we do (it makes highmem I/O easier to support without
1156 	 * kmapping pages)
1157 	 */
1158 	cmd->use_sg = req->nr_phys_segments;
1159 
1160 	/*
1161 	 * if sg table allocation fails, requeue request later.
1162 	 */
1163 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1164 	if (unlikely(!sgpnt)) {
1165 		scsi_unprep_request(req);
1166 		return BLKPREP_DEFER;
1167 	}
1168 
1169 	cmd->request_buffer = (char *) sgpnt;
1170 	cmd->request_bufflen = req->nr_sectors << 9;
1171 	if (blk_pc_request(req))
1172 		cmd->request_bufflen = req->data_len;
1173 	req->buffer = NULL;
1174 
1175 	/*
1176 	 * Next, walk the list, and fill in the addresses and sizes of
1177 	 * each segment.
1178 	 */
1179 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1180 
1181 	/*
1182 	 * mapped well, send it off
1183 	 */
1184 	if (likely(count <= cmd->use_sg)) {
1185 		cmd->use_sg = count;
1186 		return 0;
1187 	}
1188 
1189 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1190 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1191 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1192 			req->current_nr_sectors);
1193 
1194 	/* release the command and kill it */
1195 	scsi_release_buffers(cmd);
1196 	scsi_put_command(cmd);
1197 	return BLKPREP_KILL;
1198 }
1199 
1200 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1201 			       sector_t *error_sector)
1202 {
1203 	struct scsi_device *sdev = q->queuedata;
1204 	struct scsi_driver *drv;
1205 
1206 	if (sdev->sdev_state != SDEV_RUNNING)
1207 		return -ENXIO;
1208 
1209 	drv = *(struct scsi_driver **) disk->private_data;
1210 	if (drv->issue_flush)
1211 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1212 
1213 	return -EOPNOTSUPP;
1214 }
1215 
1216 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1217 {
1218 	BUG_ON(!blk_pc_request(cmd->request));
1219 	/*
1220 	 * This will complete the whole command with uptodate=1 so
1221 	 * as far as the block layer is concerned the command completed
1222 	 * successfully. Since this is a REQ_BLOCK_PC command the
1223 	 * caller should check the request's errors value
1224 	 */
1225 	scsi_io_completion(cmd, cmd->bufflen, 0);
1226 }
1227 
1228 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1229 {
1230 	struct request *req = cmd->request;
1231 
1232 	BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1233 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1234 	cmd->cmd_len = req->cmd_len;
1235 	if (!req->data_len)
1236 		cmd->sc_data_direction = DMA_NONE;
1237 	else if (rq_data_dir(req) == WRITE)
1238 		cmd->sc_data_direction = DMA_TO_DEVICE;
1239 	else
1240 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1241 
1242 	cmd->transfersize = req->data_len;
1243 	cmd->allowed = req->retries;
1244 	cmd->timeout_per_command = req->timeout;
1245 	cmd->done = scsi_blk_pc_done;
1246 }
1247 
1248 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1249 {
1250 	struct scsi_device *sdev = q->queuedata;
1251 	struct scsi_cmnd *cmd;
1252 	int specials_only = 0;
1253 
1254 	/*
1255 	 * Just check to see if the device is online.  If it isn't, we
1256 	 * refuse to process any commands.  The device must be brought
1257 	 * online before trying any recovery commands
1258 	 */
1259 	if (unlikely(!scsi_device_online(sdev))) {
1260 		sdev_printk(KERN_ERR, sdev,
1261 			    "rejecting I/O to offline device\n");
1262 		goto kill;
1263 	}
1264 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1265 		/* OK, we're not in a running state don't prep
1266 		 * user commands */
1267 		if (sdev->sdev_state == SDEV_DEL) {
1268 			/* Device is fully deleted, no commands
1269 			 * at all allowed down */
1270 			sdev_printk(KERN_ERR, sdev,
1271 				    "rejecting I/O to dead device\n");
1272 			goto kill;
1273 		}
1274 		/* OK, we only allow special commands (i.e. not
1275 		 * user initiated ones */
1276 		specials_only = sdev->sdev_state;
1277 	}
1278 
1279 	/*
1280 	 * Find the actual device driver associated with this command.
1281 	 * The SPECIAL requests are things like character device or
1282 	 * ioctls, which did not originate from ll_rw_blk.  Note that
1283 	 * the special field is also used to indicate the cmd for
1284 	 * the remainder of a partially fulfilled request that can
1285 	 * come up when there is a medium error.  We have to treat
1286 	 * these two cases differently.  We differentiate by looking
1287 	 * at request->cmd, as this tells us the real story.
1288 	 */
1289 	if (req->flags & REQ_SPECIAL && req->special) {
1290 		struct scsi_request *sreq = req->special;
1291 
1292 		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1293 			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1294 			if (unlikely(!cmd))
1295 				goto defer;
1296 			scsi_init_cmd_from_req(cmd, sreq);
1297 		} else
1298 			cmd = req->special;
1299 	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1300 
1301 		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1302 			if(specials_only == SDEV_QUIESCE ||
1303 					specials_only == SDEV_BLOCK)
1304 				goto defer;
1305 
1306 			sdev_printk(KERN_ERR, sdev,
1307 				    "rejecting I/O to device being removed\n");
1308 			goto kill;
1309 		}
1310 
1311 
1312 		/*
1313 		 * Now try and find a command block that we can use.
1314 		 */
1315 		if (!req->special) {
1316 			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1317 			if (unlikely(!cmd))
1318 				goto defer;
1319 		} else
1320 			cmd = req->special;
1321 
1322 		/* pull a tag out of the request if we have one */
1323 		cmd->tag = req->tag;
1324 	} else {
1325 		blk_dump_rq_flags(req, "SCSI bad req");
1326 		goto kill;
1327 	}
1328 
1329 	/* note the overloading of req->special.  When the tag
1330 	 * is active it always means cmd.  If the tag goes
1331 	 * back for re-queueing, it may be reset */
1332 	req->special = cmd;
1333 	cmd->request = req;
1334 
1335 	/*
1336 	 * FIXME: drop the lock here because the functions below
1337 	 * expect to be called without the queue lock held.  Also,
1338 	 * previously, we dequeued the request before dropping the
1339 	 * lock.  We hope REQ_STARTED prevents anything untoward from
1340 	 * happening now.
1341 	 */
1342 	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1343 		int ret;
1344 
1345 		/*
1346 		 * This will do a couple of things:
1347 		 *  1) Fill in the actual SCSI command.
1348 		 *  2) Fill in any other upper-level specific fields
1349 		 * (timeout).
1350 		 *
1351 		 * If this returns 0, it means that the request failed
1352 		 * (reading past end of disk, reading offline device,
1353 		 * etc).   This won't actually talk to the device, but
1354 		 * some kinds of consistency checking may cause the
1355 		 * request to be rejected immediately.
1356 		 */
1357 
1358 		/*
1359 		 * This sets up the scatter-gather table (allocating if
1360 		 * required).
1361 		 */
1362 		ret = scsi_init_io(cmd);
1363 		switch(ret) {
1364 			/* For BLKPREP_KILL/DEFER the cmd was released */
1365 		case BLKPREP_KILL:
1366 			goto kill;
1367 		case BLKPREP_DEFER:
1368 			goto defer;
1369 		}
1370 
1371 		/*
1372 		 * Initialize the actual SCSI command for this request.
1373 		 */
1374 		if (req->flags & REQ_BLOCK_PC) {
1375 			scsi_setup_blk_pc_cmnd(cmd);
1376 		} else if (req->rq_disk) {
1377 			struct scsi_driver *drv;
1378 
1379 			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1380 			if (unlikely(!drv->init_command(cmd))) {
1381 				scsi_release_buffers(cmd);
1382 				scsi_put_command(cmd);
1383 				goto kill;
1384 			}
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * The request is now prepped, no need to come back here
1390 	 */
1391 	req->flags |= REQ_DONTPREP;
1392 	return BLKPREP_OK;
1393 
1394  defer:
1395 	/* If we defer, the elv_next_request() returns NULL, but the
1396 	 * queue must be restarted, so we plug here if no returning
1397 	 * command will automatically do that. */
1398 	if (sdev->device_busy == 0)
1399 		blk_plug_device(q);
1400 	return BLKPREP_DEFER;
1401  kill:
1402 	req->errors = DID_NO_CONNECT << 16;
1403 	return BLKPREP_KILL;
1404 }
1405 
1406 /*
1407  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1408  * return 0.
1409  *
1410  * Called with the queue_lock held.
1411  */
1412 static inline int scsi_dev_queue_ready(struct request_queue *q,
1413 				  struct scsi_device *sdev)
1414 {
1415 	if (sdev->device_busy >= sdev->queue_depth)
1416 		return 0;
1417 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1418 		/*
1419 		 * unblock after device_blocked iterates to zero
1420 		 */
1421 		if (--sdev->device_blocked == 0) {
1422 			SCSI_LOG_MLQUEUE(3,
1423 				   sdev_printk(KERN_INFO, sdev,
1424 				   "unblocking device at zero depth\n"));
1425 		} else {
1426 			blk_plug_device(q);
1427 			return 0;
1428 		}
1429 	}
1430 	if (sdev->device_blocked)
1431 		return 0;
1432 
1433 	return 1;
1434 }
1435 
1436 /*
1437  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1438  * return 0. We must end up running the queue again whenever 0 is
1439  * returned, else IO can hang.
1440  *
1441  * Called with host_lock held.
1442  */
1443 static inline int scsi_host_queue_ready(struct request_queue *q,
1444 				   struct Scsi_Host *shost,
1445 				   struct scsi_device *sdev)
1446 {
1447 	if (scsi_host_in_recovery(shost))
1448 		return 0;
1449 	if (shost->host_busy == 0 && shost->host_blocked) {
1450 		/*
1451 		 * unblock after host_blocked iterates to zero
1452 		 */
1453 		if (--shost->host_blocked == 0) {
1454 			SCSI_LOG_MLQUEUE(3,
1455 				printk("scsi%d unblocking host at zero depth\n",
1456 					shost->host_no));
1457 		} else {
1458 			blk_plug_device(q);
1459 			return 0;
1460 		}
1461 	}
1462 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1463 	    shost->host_blocked || shost->host_self_blocked) {
1464 		if (list_empty(&sdev->starved_entry))
1465 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466 		return 0;
1467 	}
1468 
1469 	/* We're OK to process the command, so we can't be starved */
1470 	if (!list_empty(&sdev->starved_entry))
1471 		list_del_init(&sdev->starved_entry);
1472 
1473 	return 1;
1474 }
1475 
1476 /*
1477  * Kill a request for a dead device
1478  */
1479 static void scsi_kill_request(struct request *req, request_queue_t *q)
1480 {
1481 	struct scsi_cmnd *cmd = req->special;
1482 	struct scsi_device *sdev = cmd->device;
1483 	struct Scsi_Host *shost = sdev->host;
1484 
1485 	blkdev_dequeue_request(req);
1486 
1487 	if (unlikely(cmd == NULL)) {
1488 		printk(KERN_CRIT "impossible request in %s.\n",
1489 				 __FUNCTION__);
1490 		BUG();
1491 	}
1492 
1493 	scsi_init_cmd_errh(cmd);
1494 	cmd->result = DID_NO_CONNECT << 16;
1495 	atomic_inc(&cmd->device->iorequest_cnt);
1496 
1497 	/*
1498 	 * SCSI request completion path will do scsi_device_unbusy(),
1499 	 * bump busy counts.  To bump the counters, we need to dance
1500 	 * with the locks as normal issue path does.
1501 	 */
1502 	sdev->device_busy++;
1503 	spin_unlock(sdev->request_queue->queue_lock);
1504 	spin_lock(shost->host_lock);
1505 	shost->host_busy++;
1506 	spin_unlock(shost->host_lock);
1507 	spin_lock(sdev->request_queue->queue_lock);
1508 
1509 	__scsi_done(cmd);
1510 }
1511 
1512 static void scsi_softirq_done(struct request *rq)
1513 {
1514 	struct scsi_cmnd *cmd = rq->completion_data;
1515 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1516 	int disposition;
1517 
1518 	INIT_LIST_HEAD(&cmd->eh_entry);
1519 
1520 	disposition = scsi_decide_disposition(cmd);
1521 	if (disposition != SUCCESS &&
1522 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1523 		sdev_printk(KERN_ERR, cmd->device,
1524 			    "timing out command, waited %lus\n",
1525 			    wait_for/HZ);
1526 		disposition = SUCCESS;
1527 	}
1528 
1529 	scsi_log_completion(cmd, disposition);
1530 
1531 	switch (disposition) {
1532 		case SUCCESS:
1533 			scsi_finish_command(cmd);
1534 			break;
1535 		case NEEDS_RETRY:
1536 			scsi_retry_command(cmd);
1537 			break;
1538 		case ADD_TO_MLQUEUE:
1539 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1540 			break;
1541 		default:
1542 			if (!scsi_eh_scmd_add(cmd, 0))
1543 				scsi_finish_command(cmd);
1544 	}
1545 }
1546 
1547 /*
1548  * Function:    scsi_request_fn()
1549  *
1550  * Purpose:     Main strategy routine for SCSI.
1551  *
1552  * Arguments:   q       - Pointer to actual queue.
1553  *
1554  * Returns:     Nothing
1555  *
1556  * Lock status: IO request lock assumed to be held when called.
1557  */
1558 static void scsi_request_fn(struct request_queue *q)
1559 {
1560 	struct scsi_device *sdev = q->queuedata;
1561 	struct Scsi_Host *shost;
1562 	struct scsi_cmnd *cmd;
1563 	struct request *req;
1564 
1565 	if (!sdev) {
1566 		printk("scsi: killing requests for dead queue\n");
1567 		while ((req = elv_next_request(q)) != NULL)
1568 			scsi_kill_request(req, q);
1569 		return;
1570 	}
1571 
1572 	if(!get_device(&sdev->sdev_gendev))
1573 		/* We must be tearing the block queue down already */
1574 		return;
1575 
1576 	/*
1577 	 * To start with, we keep looping until the queue is empty, or until
1578 	 * the host is no longer able to accept any more requests.
1579 	 */
1580 	shost = sdev->host;
1581 	while (!blk_queue_plugged(q)) {
1582 		int rtn;
1583 		/*
1584 		 * get next queueable request.  We do this early to make sure
1585 		 * that the request is fully prepared even if we cannot
1586 		 * accept it.
1587 		 */
1588 		req = elv_next_request(q);
1589 		if (!req || !scsi_dev_queue_ready(q, sdev))
1590 			break;
1591 
1592 		if (unlikely(!scsi_device_online(sdev))) {
1593 			sdev_printk(KERN_ERR, sdev,
1594 				    "rejecting I/O to offline device\n");
1595 			scsi_kill_request(req, q);
1596 			continue;
1597 		}
1598 
1599 
1600 		/*
1601 		 * Remove the request from the request list.
1602 		 */
1603 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1604 			blkdev_dequeue_request(req);
1605 		sdev->device_busy++;
1606 
1607 		spin_unlock(q->queue_lock);
1608 		cmd = req->special;
1609 		if (unlikely(cmd == NULL)) {
1610 			printk(KERN_CRIT "impossible request in %s.\n"
1611 					 "please mail a stack trace to "
1612 					 "linux-scsi@vger.kernel.org",
1613 					 __FUNCTION__);
1614 			BUG();
1615 		}
1616 		spin_lock(shost->host_lock);
1617 
1618 		if (!scsi_host_queue_ready(q, shost, sdev))
1619 			goto not_ready;
1620 		if (sdev->single_lun) {
1621 			if (scsi_target(sdev)->starget_sdev_user &&
1622 			    scsi_target(sdev)->starget_sdev_user != sdev)
1623 				goto not_ready;
1624 			scsi_target(sdev)->starget_sdev_user = sdev;
1625 		}
1626 		shost->host_busy++;
1627 
1628 		/*
1629 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1630 		 *		take the lock again.
1631 		 */
1632 		spin_unlock_irq(shost->host_lock);
1633 
1634 		/*
1635 		 * Finally, initialize any error handling parameters, and set up
1636 		 * the timers for timeouts.
1637 		 */
1638 		scsi_init_cmd_errh(cmd);
1639 
1640 		/*
1641 		 * Dispatch the command to the low-level driver.
1642 		 */
1643 		rtn = scsi_dispatch_cmd(cmd);
1644 		spin_lock_irq(q->queue_lock);
1645 		if(rtn) {
1646 			/* we're refusing the command; because of
1647 			 * the way locks get dropped, we need to
1648 			 * check here if plugging is required */
1649 			if(sdev->device_busy == 0)
1650 				blk_plug_device(q);
1651 
1652 			break;
1653 		}
1654 	}
1655 
1656 	goto out;
1657 
1658  not_ready:
1659 	spin_unlock_irq(shost->host_lock);
1660 
1661 	/*
1662 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1663 	 * must return with queue_lock held.
1664 	 *
1665 	 * Decrementing device_busy without checking it is OK, as all such
1666 	 * cases (host limits or settings) should run the queue at some
1667 	 * later time.
1668 	 */
1669 	spin_lock_irq(q->queue_lock);
1670 	blk_requeue_request(q, req);
1671 	sdev->device_busy--;
1672 	if(sdev->device_busy == 0)
1673 		blk_plug_device(q);
1674  out:
1675 	/* must be careful here...if we trigger the ->remove() function
1676 	 * we cannot be holding the q lock */
1677 	spin_unlock_irq(q->queue_lock);
1678 	put_device(&sdev->sdev_gendev);
1679 	spin_lock_irq(q->queue_lock);
1680 }
1681 
1682 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1683 {
1684 	struct device *host_dev;
1685 	u64 bounce_limit = 0xffffffff;
1686 
1687 	if (shost->unchecked_isa_dma)
1688 		return BLK_BOUNCE_ISA;
1689 	/*
1690 	 * Platforms with virtual-DMA translation
1691 	 * hardware have no practical limit.
1692 	 */
1693 	if (!PCI_DMA_BUS_IS_PHYS)
1694 		return BLK_BOUNCE_ANY;
1695 
1696 	host_dev = scsi_get_device(shost);
1697 	if (host_dev && host_dev->dma_mask)
1698 		bounce_limit = *host_dev->dma_mask;
1699 
1700 	return bounce_limit;
1701 }
1702 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1703 
1704 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1705 {
1706 	struct Scsi_Host *shost = sdev->host;
1707 	struct request_queue *q;
1708 
1709 	q = blk_init_queue(scsi_request_fn, NULL);
1710 	if (!q)
1711 		return NULL;
1712 
1713 	blk_queue_prep_rq(q, scsi_prep_fn);
1714 
1715 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1716 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1717 	blk_queue_max_sectors(q, shost->max_sectors);
1718 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1719 	blk_queue_segment_boundary(q, shost->dma_boundary);
1720 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1721 	blk_queue_softirq_done(q, scsi_softirq_done);
1722 
1723 	if (!shost->use_clustering)
1724 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1725 	return q;
1726 }
1727 
1728 void scsi_free_queue(struct request_queue *q)
1729 {
1730 	blk_cleanup_queue(q);
1731 }
1732 
1733 /*
1734  * Function:    scsi_block_requests()
1735  *
1736  * Purpose:     Utility function used by low-level drivers to prevent further
1737  *		commands from being queued to the device.
1738  *
1739  * Arguments:   shost       - Host in question
1740  *
1741  * Returns:     Nothing
1742  *
1743  * Lock status: No locks are assumed held.
1744  *
1745  * Notes:       There is no timer nor any other means by which the requests
1746  *		get unblocked other than the low-level driver calling
1747  *		scsi_unblock_requests().
1748  */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751 	shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754 
1755 /*
1756  * Function:    scsi_unblock_requests()
1757  *
1758  * Purpose:     Utility function used by low-level drivers to allow further
1759  *		commands from being queued to the device.
1760  *
1761  * Arguments:   shost       - Host in question
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: No locks are assumed held.
1766  *
1767  * Notes:       There is no timer nor any other means by which the requests
1768  *		get unblocked other than the low-level driver calling
1769  *		scsi_unblock_requests().
1770  *
1771  *		This is done as an API function so that changes to the
1772  *		internals of the scsi mid-layer won't require wholesale
1773  *		changes to drivers that use this feature.
1774  */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777 	shost->host_self_blocked = 0;
1778 	scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781 
1782 int __init scsi_init_queue(void)
1783 {
1784 	int i;
1785 
1786 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1787 					sizeof(struct scsi_io_context),
1788 					0, 0, NULL, NULL);
1789 	if (!scsi_io_context_cache) {
1790 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1791 		return -ENOMEM;
1792 	}
1793 
1794 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796 		int size = sgp->size * sizeof(struct scatterlist);
1797 
1798 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1800 		if (!sgp->slab) {
1801 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802 					sgp->name);
1803 		}
1804 
1805 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1806 						     sgp->slab);
1807 		if (!sgp->pool) {
1808 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1809 					sgp->name);
1810 		}
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 void scsi_exit_queue(void)
1817 {
1818 	int i;
1819 
1820 	kmem_cache_destroy(scsi_io_context_cache);
1821 
1822 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1823 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1824 		mempool_destroy(sgp->pool);
1825 		kmem_cache_destroy(sgp->slab);
1826 	}
1827 }
1828 
1829 /**
1830  *	scsi_mode_select - issue a mode select
1831  *	@sdev:	SCSI device to be queried
1832  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1833  *	@sp:	Save page bit (0 == don't save, 1 == save)
1834  *	@modepage: mode page being requested
1835  *	@buffer: request buffer (may not be smaller than eight bytes)
1836  *	@len:	length of request buffer.
1837  *	@timeout: command timeout
1838  *	@retries: number of retries before failing
1839  *	@data: returns a structure abstracting the mode header data
1840  *	@sense: place to put sense data (or NULL if no sense to be collected).
1841  *		must be SCSI_SENSE_BUFFERSIZE big.
1842  *
1843  *	Returns zero if successful; negative error number or scsi
1844  *	status on error
1845  *
1846  */
1847 int
1848 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1849 		 unsigned char *buffer, int len, int timeout, int retries,
1850 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1851 {
1852 	unsigned char cmd[10];
1853 	unsigned char *real_buffer;
1854 	int ret;
1855 
1856 	memset(cmd, 0, sizeof(cmd));
1857 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1858 
1859 	if (sdev->use_10_for_ms) {
1860 		if (len > 65535)
1861 			return -EINVAL;
1862 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1863 		if (!real_buffer)
1864 			return -ENOMEM;
1865 		memcpy(real_buffer + 8, buffer, len);
1866 		len += 8;
1867 		real_buffer[0] = 0;
1868 		real_buffer[1] = 0;
1869 		real_buffer[2] = data->medium_type;
1870 		real_buffer[3] = data->device_specific;
1871 		real_buffer[4] = data->longlba ? 0x01 : 0;
1872 		real_buffer[5] = 0;
1873 		real_buffer[6] = data->block_descriptor_length >> 8;
1874 		real_buffer[7] = data->block_descriptor_length;
1875 
1876 		cmd[0] = MODE_SELECT_10;
1877 		cmd[7] = len >> 8;
1878 		cmd[8] = len;
1879 	} else {
1880 		if (len > 255 || data->block_descriptor_length > 255 ||
1881 		    data->longlba)
1882 			return -EINVAL;
1883 
1884 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1885 		if (!real_buffer)
1886 			return -ENOMEM;
1887 		memcpy(real_buffer + 4, buffer, len);
1888 		len += 4;
1889 		real_buffer[0] = 0;
1890 		real_buffer[1] = data->medium_type;
1891 		real_buffer[2] = data->device_specific;
1892 		real_buffer[3] = data->block_descriptor_length;
1893 
1894 
1895 		cmd[0] = MODE_SELECT;
1896 		cmd[4] = len;
1897 	}
1898 
1899 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1900 			       sshdr, timeout, retries);
1901 	kfree(real_buffer);
1902 	return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(scsi_mode_select);
1905 
1906 /**
1907  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1908  *		six bytes if necessary.
1909  *	@sdev:	SCSI device to be queried
1910  *	@dbd:	set if mode sense will allow block descriptors to be returned
1911  *	@modepage: mode page being requested
1912  *	@buffer: request buffer (may not be smaller than eight bytes)
1913  *	@len:	length of request buffer.
1914  *	@timeout: command timeout
1915  *	@retries: number of retries before failing
1916  *	@data: returns a structure abstracting the mode header data
1917  *	@sense: place to put sense data (or NULL if no sense to be collected).
1918  *		must be SCSI_SENSE_BUFFERSIZE big.
1919  *
1920  *	Returns zero if unsuccessful, or the header offset (either 4
1921  *	or 8 depending on whether a six or ten byte command was
1922  *	issued) if successful.
1923  **/
1924 int
1925 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1926 		  unsigned char *buffer, int len, int timeout, int retries,
1927 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1928 {
1929 	unsigned char cmd[12];
1930 	int use_10_for_ms;
1931 	int header_length;
1932 	int result;
1933 	struct scsi_sense_hdr my_sshdr;
1934 
1935 	memset(data, 0, sizeof(*data));
1936 	memset(&cmd[0], 0, 12);
1937 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1938 	cmd[2] = modepage;
1939 
1940 	/* caller might not be interested in sense, but we need it */
1941 	if (!sshdr)
1942 		sshdr = &my_sshdr;
1943 
1944  retry:
1945 	use_10_for_ms = sdev->use_10_for_ms;
1946 
1947 	if (use_10_for_ms) {
1948 		if (len < 8)
1949 			len = 8;
1950 
1951 		cmd[0] = MODE_SENSE_10;
1952 		cmd[8] = len;
1953 		header_length = 8;
1954 	} else {
1955 		if (len < 4)
1956 			len = 4;
1957 
1958 		cmd[0] = MODE_SENSE;
1959 		cmd[4] = len;
1960 		header_length = 4;
1961 	}
1962 
1963 	memset(buffer, 0, len);
1964 
1965 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1966 				  sshdr, timeout, retries);
1967 
1968 	/* This code looks awful: what it's doing is making sure an
1969 	 * ILLEGAL REQUEST sense return identifies the actual command
1970 	 * byte as the problem.  MODE_SENSE commands can return
1971 	 * ILLEGAL REQUEST if the code page isn't supported */
1972 
1973 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1974 	    (driver_byte(result) & DRIVER_SENSE)) {
1975 		if (scsi_sense_valid(sshdr)) {
1976 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1977 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1978 				/*
1979 				 * Invalid command operation code
1980 				 */
1981 				sdev->use_10_for_ms = 0;
1982 				goto retry;
1983 			}
1984 		}
1985 	}
1986 
1987 	if(scsi_status_is_good(result)) {
1988 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1989 			     (modepage == 6 || modepage == 8))) {
1990 			/* Initio breakage? */
1991 			header_length = 0;
1992 			data->length = 13;
1993 			data->medium_type = 0;
1994 			data->device_specific = 0;
1995 			data->longlba = 0;
1996 			data->block_descriptor_length = 0;
1997 		} else if(use_10_for_ms) {
1998 			data->length = buffer[0]*256 + buffer[1] + 2;
1999 			data->medium_type = buffer[2];
2000 			data->device_specific = buffer[3];
2001 			data->longlba = buffer[4] & 0x01;
2002 			data->block_descriptor_length = buffer[6]*256
2003 				+ buffer[7];
2004 		} else {
2005 			data->length = buffer[0] + 1;
2006 			data->medium_type = buffer[1];
2007 			data->device_specific = buffer[2];
2008 			data->block_descriptor_length = buffer[3];
2009 		}
2010 		data->header_length = header_length;
2011 	}
2012 
2013 	return result;
2014 }
2015 EXPORT_SYMBOL(scsi_mode_sense);
2016 
2017 int
2018 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
2019 {
2020 	char cmd[] = {
2021 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2022 	};
2023 	struct scsi_sense_hdr sshdr;
2024 	int result;
2025 
2026 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
2027 				  timeout, retries);
2028 
2029 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2030 
2031 		if ((scsi_sense_valid(&sshdr)) &&
2032 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
2033 		     (sshdr.sense_key == NOT_READY))) {
2034 			sdev->changed = 1;
2035 			result = 0;
2036 		}
2037 	}
2038 	return result;
2039 }
2040 EXPORT_SYMBOL(scsi_test_unit_ready);
2041 
2042 /**
2043  *	scsi_device_set_state - Take the given device through the device
2044  *		state model.
2045  *	@sdev:	scsi device to change the state of.
2046  *	@state:	state to change to.
2047  *
2048  *	Returns zero if unsuccessful or an error if the requested
2049  *	transition is illegal.
2050  **/
2051 int
2052 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2053 {
2054 	enum scsi_device_state oldstate = sdev->sdev_state;
2055 
2056 	if (state == oldstate)
2057 		return 0;
2058 
2059 	switch (state) {
2060 	case SDEV_CREATED:
2061 		/* There are no legal states that come back to
2062 		 * created.  This is the manually initialised start
2063 		 * state */
2064 		goto illegal;
2065 
2066 	case SDEV_RUNNING:
2067 		switch (oldstate) {
2068 		case SDEV_CREATED:
2069 		case SDEV_OFFLINE:
2070 		case SDEV_QUIESCE:
2071 		case SDEV_BLOCK:
2072 			break;
2073 		default:
2074 			goto illegal;
2075 		}
2076 		break;
2077 
2078 	case SDEV_QUIESCE:
2079 		switch (oldstate) {
2080 		case SDEV_RUNNING:
2081 		case SDEV_OFFLINE:
2082 			break;
2083 		default:
2084 			goto illegal;
2085 		}
2086 		break;
2087 
2088 	case SDEV_OFFLINE:
2089 		switch (oldstate) {
2090 		case SDEV_CREATED:
2091 		case SDEV_RUNNING:
2092 		case SDEV_QUIESCE:
2093 		case SDEV_BLOCK:
2094 			break;
2095 		default:
2096 			goto illegal;
2097 		}
2098 		break;
2099 
2100 	case SDEV_BLOCK:
2101 		switch (oldstate) {
2102 		case SDEV_CREATED:
2103 		case SDEV_RUNNING:
2104 			break;
2105 		default:
2106 			goto illegal;
2107 		}
2108 		break;
2109 
2110 	case SDEV_CANCEL:
2111 		switch (oldstate) {
2112 		case SDEV_CREATED:
2113 		case SDEV_RUNNING:
2114 		case SDEV_OFFLINE:
2115 		case SDEV_BLOCK:
2116 			break;
2117 		default:
2118 			goto illegal;
2119 		}
2120 		break;
2121 
2122 	case SDEV_DEL:
2123 		switch (oldstate) {
2124 		case SDEV_CANCEL:
2125 			break;
2126 		default:
2127 			goto illegal;
2128 		}
2129 		break;
2130 
2131 	}
2132 	sdev->sdev_state = state;
2133 	return 0;
2134 
2135  illegal:
2136 	SCSI_LOG_ERROR_RECOVERY(1,
2137 				sdev_printk(KERN_ERR, sdev,
2138 					    "Illegal state transition %s->%s\n",
2139 					    scsi_device_state_name(oldstate),
2140 					    scsi_device_state_name(state))
2141 				);
2142 	return -EINVAL;
2143 }
2144 EXPORT_SYMBOL(scsi_device_set_state);
2145 
2146 /**
2147  *	scsi_device_quiesce - Block user issued commands.
2148  *	@sdev:	scsi device to quiesce.
2149  *
2150  *	This works by trying to transition to the SDEV_QUIESCE state
2151  *	(which must be a legal transition).  When the device is in this
2152  *	state, only special requests will be accepted, all others will
2153  *	be deferred.  Since special requests may also be requeued requests,
2154  *	a successful return doesn't guarantee the device will be
2155  *	totally quiescent.
2156  *
2157  *	Must be called with user context, may sleep.
2158  *
2159  *	Returns zero if unsuccessful or an error if not.
2160  **/
2161 int
2162 scsi_device_quiesce(struct scsi_device *sdev)
2163 {
2164 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2165 	if (err)
2166 		return err;
2167 
2168 	scsi_run_queue(sdev->request_queue);
2169 	while (sdev->device_busy) {
2170 		msleep_interruptible(200);
2171 		scsi_run_queue(sdev->request_queue);
2172 	}
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL(scsi_device_quiesce);
2176 
2177 /**
2178  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2179  *	@sdev:	scsi device to resume.
2180  *
2181  *	Moves the device from quiesced back to running and restarts the
2182  *	queues.
2183  *
2184  *	Must be called with user context, may sleep.
2185  **/
2186 void
2187 scsi_device_resume(struct scsi_device *sdev)
2188 {
2189 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2190 		return;
2191 	scsi_run_queue(sdev->request_queue);
2192 }
2193 EXPORT_SYMBOL(scsi_device_resume);
2194 
2195 static void
2196 device_quiesce_fn(struct scsi_device *sdev, void *data)
2197 {
2198 	scsi_device_quiesce(sdev);
2199 }
2200 
2201 void
2202 scsi_target_quiesce(struct scsi_target *starget)
2203 {
2204 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2205 }
2206 EXPORT_SYMBOL(scsi_target_quiesce);
2207 
2208 static void
2209 device_resume_fn(struct scsi_device *sdev, void *data)
2210 {
2211 	scsi_device_resume(sdev);
2212 }
2213 
2214 void
2215 scsi_target_resume(struct scsi_target *starget)
2216 {
2217 	starget_for_each_device(starget, NULL, device_resume_fn);
2218 }
2219 EXPORT_SYMBOL(scsi_target_resume);
2220 
2221 /**
2222  * scsi_internal_device_block - internal function to put a device
2223  *				temporarily into the SDEV_BLOCK state
2224  * @sdev:	device to block
2225  *
2226  * Block request made by scsi lld's to temporarily stop all
2227  * scsi commands on the specified device.  Called from interrupt
2228  * or normal process context.
2229  *
2230  * Returns zero if successful or error if not
2231  *
2232  * Notes:
2233  *	This routine transitions the device to the SDEV_BLOCK state
2234  *	(which must be a legal transition).  When the device is in this
2235  *	state, all commands are deferred until the scsi lld reenables
2236  *	the device with scsi_device_unblock or device_block_tmo fires.
2237  *	This routine assumes the host_lock is held on entry.
2238  **/
2239 int
2240 scsi_internal_device_block(struct scsi_device *sdev)
2241 {
2242 	request_queue_t *q = sdev->request_queue;
2243 	unsigned long flags;
2244 	int err = 0;
2245 
2246 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2247 	if (err)
2248 		return err;
2249 
2250 	/*
2251 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2252 	 * block layer from calling the midlayer with this device's
2253 	 * request queue.
2254 	 */
2255 	spin_lock_irqsave(q->queue_lock, flags);
2256 	blk_stop_queue(q);
2257 	spin_unlock_irqrestore(q->queue_lock, flags);
2258 
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2262 
2263 /**
2264  * scsi_internal_device_unblock - resume a device after a block request
2265  * @sdev:	device to resume
2266  *
2267  * Called by scsi lld's or the midlayer to restart the device queue
2268  * for the previously suspended scsi device.  Called from interrupt or
2269  * normal process context.
2270  *
2271  * Returns zero if successful or error if not.
2272  *
2273  * Notes:
2274  *	This routine transitions the device to the SDEV_RUNNING state
2275  *	(which must be a legal transition) allowing the midlayer to
2276  *	goose the queue for this device.  This routine assumes the
2277  *	host_lock is held upon entry.
2278  **/
2279 int
2280 scsi_internal_device_unblock(struct scsi_device *sdev)
2281 {
2282 	request_queue_t *q = sdev->request_queue;
2283 	int err;
2284 	unsigned long flags;
2285 
2286 	/*
2287 	 * Try to transition the scsi device to SDEV_RUNNING
2288 	 * and goose the device queue if successful.
2289 	 */
2290 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2291 	if (err)
2292 		return err;
2293 
2294 	spin_lock_irqsave(q->queue_lock, flags);
2295 	blk_start_queue(q);
2296 	spin_unlock_irqrestore(q->queue_lock, flags);
2297 
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2301 
2302 static void
2303 device_block(struct scsi_device *sdev, void *data)
2304 {
2305 	scsi_internal_device_block(sdev);
2306 }
2307 
2308 static int
2309 target_block(struct device *dev, void *data)
2310 {
2311 	if (scsi_is_target_device(dev))
2312 		starget_for_each_device(to_scsi_target(dev), NULL,
2313 					device_block);
2314 	return 0;
2315 }
2316 
2317 void
2318 scsi_target_block(struct device *dev)
2319 {
2320 	if (scsi_is_target_device(dev))
2321 		starget_for_each_device(to_scsi_target(dev), NULL,
2322 					device_block);
2323 	else
2324 		device_for_each_child(dev, NULL, target_block);
2325 }
2326 EXPORT_SYMBOL_GPL(scsi_target_block);
2327 
2328 static void
2329 device_unblock(struct scsi_device *sdev, void *data)
2330 {
2331 	scsi_internal_device_unblock(sdev);
2332 }
2333 
2334 static int
2335 target_unblock(struct device *dev, void *data)
2336 {
2337 	if (scsi_is_target_device(dev))
2338 		starget_for_each_device(to_scsi_target(dev), NULL,
2339 					device_unblock);
2340 	return 0;
2341 }
2342 
2343 void
2344 scsi_target_unblock(struct device *dev)
2345 {
2346 	if (scsi_is_target_device(dev))
2347 		starget_for_each_device(to_scsi_target(dev), NULL,
2348 					device_unblock);
2349 	else
2350 		device_for_each_child(dev, NULL, target_unblock);
2351 }
2352 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2353