xref: /linux/drivers/scsi/scsi_lib.c (revision 6feb348783767e3f38d7612e6551ee8b580ac4e9)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct scsi_target *starget = scsi_target(device);
118 	struct request_queue *q = device->request_queue;
119 	unsigned long flags;
120 
121 	SCSI_LOG_MLQUEUE(1,
122 		 printk("Inserting command %p into mlqueue\n", cmd));
123 
124 	/*
125 	 * Set the appropriate busy bit for the device/host.
126 	 *
127 	 * If the host/device isn't busy, assume that something actually
128 	 * completed, and that we should be able to queue a command now.
129 	 *
130 	 * Note that the prior mid-layer assumption that any host could
131 	 * always queue at least one command is now broken.  The mid-layer
132 	 * will implement a user specifiable stall (see
133 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 	 * if a command is requeued with no other commands outstanding
135 	 * either for the device or for the host.
136 	 */
137 	switch (reason) {
138 	case SCSI_MLQUEUE_HOST_BUSY:
139 		host->host_blocked = host->max_host_blocked;
140 		break;
141 	case SCSI_MLQUEUE_DEVICE_BUSY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	scsi_device_unbusy(device);
154 
155 	/*
156 	 * Requeue this command.  It will go before all other commands
157 	 * that are already in the queue.
158 	 *
159 	 * NOTE: there is magic here about the way the queue is plugged if
160 	 * we have no outstanding commands.
161 	 *
162 	 * Although we *don't* plug the queue, we call the request
163 	 * function.  The SCSI request function detects the blocked condition
164 	 * and plugs the queue appropriately.
165          */
166 	spin_lock_irqsave(q->queue_lock, flags);
167 	blk_requeue_request(q, cmd->request);
168 	spin_unlock_irqrestore(q->queue_lock, flags);
169 
170 	scsi_run_queue(q);
171 
172 	return 0;
173 }
174 
175 /**
176  * scsi_execute - insert request and wait for the result
177  * @sdev:	scsi device
178  * @cmd:	scsi command
179  * @data_direction: data direction
180  * @buffer:	data buffer
181  * @bufflen:	len of buffer
182  * @sense:	optional sense buffer
183  * @timeout:	request timeout in seconds
184  * @retries:	number of times to retry request
185  * @flags:	or into request flags;
186  *
187  * returns the req->errors value which is the scsi_cmnd result
188  * field.
189  */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 		 int data_direction, void *buffer, unsigned bufflen,
192 		 unsigned char *sense, int timeout, int retries, int flags)
193 {
194 	struct request *req;
195 	int write = (data_direction == DMA_TO_DEVICE);
196 	int ret = DRIVER_ERROR << 24;
197 
198 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199 
200 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
201 					buffer, bufflen, __GFP_WAIT))
202 		goto out;
203 
204 	req->cmd_len = COMMAND_SIZE(cmd[0]);
205 	memcpy(req->cmd, cmd, req->cmd_len);
206 	req->sense = sense;
207 	req->sense_len = 0;
208 	req->retries = retries;
209 	req->timeout = timeout;
210 	req->cmd_type = REQ_TYPE_BLOCK_PC;
211 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212 
213 	/*
214 	 * head injection *required* here otherwise quiesce won't work
215 	 */
216 	blk_execute_rq(req->q, NULL, req, 1);
217 
218 	/*
219 	 * Some devices (USB mass-storage in particular) may transfer
220 	 * garbage data together with a residue indicating that the data
221 	 * is invalid.  Prevent the garbage from being misinterpreted
222 	 * and prevent security leaks by zeroing out the excess data.
223 	 */
224 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226 
227 	ret = req->errors;
228  out:
229 	blk_put_request(req);
230 
231 	return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234 
235 
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 		     int data_direction, void *buffer, unsigned bufflen,
238 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240 	char *sense = NULL;
241 	int result;
242 
243 	if (sshdr) {
244 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 		if (!sense)
246 			return DRIVER_ERROR << 24;
247 	}
248 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 			      sense, timeout, retries, 0);
250 	if (sshdr)
251 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252 
253 	kfree(sense);
254 	return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257 
258 struct scsi_io_context {
259 	void *data;
260 	void (*done)(void *data, char *sense, int result, int resid);
261 	char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263 
264 static struct kmem_cache *scsi_io_context_cache;
265 
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268 	struct scsi_io_context *sioc = req->end_io_data;
269 
270 	if (sioc->done)
271 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272 
273 	kmem_cache_free(scsi_io_context_cache, sioc);
274 	__blk_put_request(req->q, req);
275 }
276 
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279 	struct request_queue *q = rq->q;
280 
281 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 	if (rq_data_dir(rq) == WRITE)
283 		bio->bi_rw |= (1 << BIO_RW);
284 	blk_queue_bounce(q, &bio);
285 
286 	return blk_rq_append_bio(q, rq, bio);
287 }
288 
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291 	bio_put(bio);
292 }
293 
294 /**
295  * scsi_req_map_sg - map a scatterlist into a request
296  * @rq:		request to fill
297  * @sgl:	scatterlist
298  * @nsegs:	number of elements
299  * @bufflen:	len of buffer
300  * @gfp:	memory allocation flags
301  *
302  * scsi_req_map_sg maps a scatterlist into a request so that the
303  * request can be sent to the block layer. We do not trust the scatterlist
304  * sent to use, as some ULDs use that struct to only organize the pages.
305  */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 			   int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309 	struct request_queue *q = rq->q;
310 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 	unsigned int data_len = bufflen, len, bytes, off;
312 	struct scatterlist *sg;
313 	struct page *page;
314 	struct bio *bio = NULL;
315 	int i, err, nr_vecs = 0;
316 
317 	for_each_sg(sgl, sg, nsegs, i) {
318 		page = sg_page(sg);
319 		off = sg->offset;
320 		len = sg->length;
321 
322 		while (len > 0 && data_len > 0) {
323 			/*
324 			 * sg sends a scatterlist that is larger than
325 			 * the data_len it wants transferred for certain
326 			 * IO sizes
327 			 */
328 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 			bytes = min(bytes, data_len);
330 
331 			if (!bio) {
332 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333 				nr_pages -= nr_vecs;
334 
335 				bio = bio_alloc(gfp, nr_vecs);
336 				if (!bio) {
337 					err = -ENOMEM;
338 					goto free_bios;
339 				}
340 				bio->bi_end_io = scsi_bi_endio;
341 			}
342 
343 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
344 			    bytes) {
345 				bio_put(bio);
346 				err = -EINVAL;
347 				goto free_bios;
348 			}
349 
350 			if (bio->bi_vcnt >= nr_vecs) {
351 				err = scsi_merge_bio(rq, bio);
352 				if (err) {
353 					bio_endio(bio, 0);
354 					goto free_bios;
355 				}
356 				bio = NULL;
357 			}
358 
359 			page++;
360 			len -= bytes;
361 			data_len -=bytes;
362 			off = 0;
363 		}
364 	}
365 
366 	rq->buffer = rq->data = NULL;
367 	rq->data_len = bufflen;
368 	return 0;
369 
370 free_bios:
371 	while ((bio = rq->bio) != NULL) {
372 		rq->bio = bio->bi_next;
373 		/*
374 		 * call endio instead of bio_put incase it was bounced
375 		 */
376 		bio_endio(bio, 0);
377 	}
378 
379 	return err;
380 }
381 
382 /**
383  * scsi_execute_async - insert request
384  * @sdev:	scsi device
385  * @cmd:	scsi command
386  * @cmd_len:	length of scsi cdb
387  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
389  * @bufflen:	len of buffer
390  * @use_sg:	if buffer is a scatterlist this is the number of elements
391  * @timeout:	request timeout in seconds
392  * @retries:	number of times to retry request
393  * @privdata:	data passed to done()
394  * @done:	callback function when done
395  * @gfp:	memory allocation flags
396  */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 		       int use_sg, int timeout, int retries, void *privdata,
400 		       void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402 	struct request *req;
403 	struct scsi_io_context *sioc;
404 	int err = 0;
405 	int write = (data_direction == DMA_TO_DEVICE);
406 
407 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408 	if (!sioc)
409 		return DRIVER_ERROR << 24;
410 
411 	req = blk_get_request(sdev->request_queue, write, gfp);
412 	if (!req)
413 		goto free_sense;
414 	req->cmd_type = REQ_TYPE_BLOCK_PC;
415 	req->cmd_flags |= REQ_QUIET;
416 
417 	if (use_sg)
418 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419 	else if (bufflen)
420 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421 
422 	if (err)
423 		goto free_req;
424 
425 	req->cmd_len = cmd_len;
426 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 	memcpy(req->cmd, cmd, req->cmd_len);
428 	req->sense = sioc->sense;
429 	req->sense_len = 0;
430 	req->timeout = timeout;
431 	req->retries = retries;
432 	req->end_io_data = sioc;
433 
434 	sioc->data = privdata;
435 	sioc->done = done;
436 
437 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438 	return 0;
439 
440 free_req:
441 	blk_put_request(req);
442 free_sense:
443 	kmem_cache_free(scsi_io_context_cache, sioc);
444 	return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447 
448 /*
449  * Function:    scsi_init_cmd_errh()
450  *
451  * Purpose:     Initialize cmd fields related to error handling.
452  *
453  * Arguments:   cmd	- command that is ready to be queued.
454  *
455  * Notes:       This function has the job of initializing a number of
456  *              fields related to error handling.   Typically this will
457  *              be called once for each command, as required.
458  */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461 	cmd->serial_number = 0;
462 	scsi_set_resid(cmd, 0);
463 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 	if (cmd->cmd_len == 0)
465 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467 
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470 	struct Scsi_Host *shost = sdev->host;
471 	struct scsi_target *starget = scsi_target(sdev);
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(shost->host_lock, flags);
475 	shost->host_busy--;
476 	starget->target_busy--;
477 	if (unlikely(scsi_host_in_recovery(shost) &&
478 		     (shost->host_failed || shost->host_eh_scheduled)))
479 		scsi_eh_wakeup(shost);
480 	spin_unlock(shost->host_lock);
481 	spin_lock(sdev->request_queue->queue_lock);
482 	sdev->device_busy--;
483 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485 
486 /*
487  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488  * and call blk_run_queue for all the scsi_devices on the target -
489  * including current_sdev first.
490  *
491  * Called with *no* scsi locks held.
492  */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495 	struct Scsi_Host *shost = current_sdev->host;
496 	struct scsi_device *sdev, *tmp;
497 	struct scsi_target *starget = scsi_target(current_sdev);
498 	unsigned long flags;
499 
500 	spin_lock_irqsave(shost->host_lock, flags);
501 	starget->starget_sdev_user = NULL;
502 	spin_unlock_irqrestore(shost->host_lock, flags);
503 
504 	/*
505 	 * Call blk_run_queue for all LUNs on the target, starting with
506 	 * current_sdev. We race with others (to set starget_sdev_user),
507 	 * but in most cases, we will be first. Ideally, each LU on the
508 	 * target would get some limited time or requests on the target.
509 	 */
510 	blk_run_queue(current_sdev->request_queue);
511 
512 	spin_lock_irqsave(shost->host_lock, flags);
513 	if (starget->starget_sdev_user)
514 		goto out;
515 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 			same_target_siblings) {
517 		if (sdev == current_sdev)
518 			continue;
519 		if (scsi_device_get(sdev))
520 			continue;
521 
522 		spin_unlock_irqrestore(shost->host_lock, flags);
523 		blk_run_queue(sdev->request_queue);
524 		spin_lock_irqsave(shost->host_lock, flags);
525 
526 		scsi_device_put(sdev);
527 	}
528  out:
529 	spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531 
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
533 {
534 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535 		return 1;
536 
537 	return 0;
538 }
539 
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
541 {
542 	return ((starget->can_queue > 0 &&
543 		 starget->target_busy >= starget->can_queue) ||
544 		 starget->target_blocked);
545 }
546 
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
548 {
549 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 	    shost->host_blocked || shost->host_self_blocked)
551 		return 1;
552 
553 	return 0;
554 }
555 
556 /*
557  * Function:	scsi_run_queue()
558  *
559  * Purpose:	Select a proper request queue to serve next
560  *
561  * Arguments:	q	- last request's queue
562  *
563  * Returns:     Nothing
564  *
565  * Notes:	The previous command was completely finished, start
566  *		a new one if possible.
567  */
568 static void scsi_run_queue(struct request_queue *q)
569 {
570 	struct scsi_device *sdev = q->queuedata;
571 	struct Scsi_Host *shost = sdev->host;
572 	LIST_HEAD(starved_list);
573 	unsigned long flags;
574 
575 	if (scsi_target(sdev)->single_lun)
576 		scsi_single_lun_run(sdev);
577 
578 	spin_lock_irqsave(shost->host_lock, flags);
579 	list_splice_init(&shost->starved_list, &starved_list);
580 
581 	while (!list_empty(&starved_list)) {
582 		int flagset;
583 
584 		/*
585 		 * As long as shost is accepting commands and we have
586 		 * starved queues, call blk_run_queue. scsi_request_fn
587 		 * drops the queue_lock and can add us back to the
588 		 * starved_list.
589 		 *
590 		 * host_lock protects the starved_list and starved_entry.
591 		 * scsi_request_fn must get the host_lock before checking
592 		 * or modifying starved_list or starved_entry.
593 		 */
594 		if (scsi_host_is_busy(shost))
595 			break;
596 
597 		sdev = list_entry(starved_list.next,
598 				  struct scsi_device, starved_entry);
599 		list_del_init(&sdev->starved_entry);
600 		if (scsi_target_is_busy(scsi_target(sdev))) {
601 			list_move_tail(&sdev->starved_entry,
602 				       &shost->starved_list);
603 			continue;
604 		}
605 
606 		spin_unlock(shost->host_lock);
607 
608 		spin_lock(sdev->request_queue->queue_lock);
609 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
610 				!test_bit(QUEUE_FLAG_REENTER,
611 					&sdev->request_queue->queue_flags);
612 		if (flagset)
613 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
614 		__blk_run_queue(sdev->request_queue);
615 		if (flagset)
616 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
617 		spin_unlock(sdev->request_queue->queue_lock);
618 
619 		spin_lock(shost->host_lock);
620 	}
621 	/* put any unprocessed entries back */
622 	list_splice(&starved_list, &shost->starved_list);
623 	spin_unlock_irqrestore(shost->host_lock, flags);
624 
625 	blk_run_queue(q);
626 }
627 
628 /*
629  * Function:	scsi_requeue_command()
630  *
631  * Purpose:	Handle post-processing of completed commands.
632  *
633  * Arguments:	q	- queue to operate on
634  *		cmd	- command that may need to be requeued.
635  *
636  * Returns:	Nothing
637  *
638  * Notes:	After command completion, there may be blocks left
639  *		over which weren't finished by the previous command
640  *		this can be for a number of reasons - the main one is
641  *		I/O errors in the middle of the request, in which case
642  *		we need to request the blocks that come after the bad
643  *		sector.
644  * Notes:	Upon return, cmd is a stale pointer.
645  */
646 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
647 {
648 	struct request *req = cmd->request;
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(q->queue_lock, flags);
652 	scsi_unprep_request(req);
653 	blk_requeue_request(q, req);
654 	spin_unlock_irqrestore(q->queue_lock, flags);
655 
656 	scsi_run_queue(q);
657 }
658 
659 void scsi_next_command(struct scsi_cmnd *cmd)
660 {
661 	struct scsi_device *sdev = cmd->device;
662 	struct request_queue *q = sdev->request_queue;
663 
664 	/* need to hold a reference on the device before we let go of the cmd */
665 	get_device(&sdev->sdev_gendev);
666 
667 	scsi_put_command(cmd);
668 	scsi_run_queue(q);
669 
670 	/* ok to remove device now */
671 	put_device(&sdev->sdev_gendev);
672 }
673 
674 void scsi_run_host_queues(struct Scsi_Host *shost)
675 {
676 	struct scsi_device *sdev;
677 
678 	shost_for_each_device(sdev, shost)
679 		scsi_run_queue(sdev->request_queue);
680 }
681 
682 /*
683  * Function:    scsi_end_request()
684  *
685  * Purpose:     Post-processing of completed commands (usually invoked at end
686  *		of upper level post-processing and scsi_io_completion).
687  *
688  * Arguments:   cmd	 - command that is complete.
689  *              error    - 0 if I/O indicates success, < 0 for I/O error.
690  *              bytes    - number of bytes of completed I/O
691  *		requeue  - indicates whether we should requeue leftovers.
692  *
693  * Lock status: Assumed that lock is not held upon entry.
694  *
695  * Returns:     cmd if requeue required, NULL otherwise.
696  *
697  * Notes:       This is called for block device requests in order to
698  *              mark some number of sectors as complete.
699  *
700  *		We are guaranteeing that the request queue will be goosed
701  *		at some point during this call.
702  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
703  */
704 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
705 					  int bytes, int requeue)
706 {
707 	struct request_queue *q = cmd->device->request_queue;
708 	struct request *req = cmd->request;
709 
710 	/*
711 	 * If there are blocks left over at the end, set up the command
712 	 * to queue the remainder of them.
713 	 */
714 	if (blk_end_request(req, error, bytes)) {
715 		int leftover = (req->hard_nr_sectors << 9);
716 
717 		if (blk_pc_request(req))
718 			leftover = req->data_len;
719 
720 		/* kill remainder if no retrys */
721 		if (error && scsi_noretry_cmd(cmd))
722 			blk_end_request(req, error, leftover);
723 		else {
724 			if (requeue) {
725 				/*
726 				 * Bleah.  Leftovers again.  Stick the
727 				 * leftovers in the front of the
728 				 * queue, and goose the queue again.
729 				 */
730 				scsi_requeue_command(q, cmd);
731 				cmd = NULL;
732 			}
733 			return cmd;
734 		}
735 	}
736 
737 	/*
738 	 * This will goose the queue request function at the end, so we don't
739 	 * need to worry about launching another command.
740 	 */
741 	scsi_next_command(cmd);
742 	return NULL;
743 }
744 
745 static inline unsigned int scsi_sgtable_index(unsigned short nents)
746 {
747 	unsigned int index;
748 
749 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
750 
751 	if (nents <= 8)
752 		index = 0;
753 	else
754 		index = get_count_order(nents) - 3;
755 
756 	return index;
757 }
758 
759 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
760 {
761 	struct scsi_host_sg_pool *sgp;
762 
763 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
764 	mempool_free(sgl, sgp->pool);
765 }
766 
767 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
768 {
769 	struct scsi_host_sg_pool *sgp;
770 
771 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
772 	return mempool_alloc(sgp->pool, gfp_mask);
773 }
774 
775 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
776 			      gfp_t gfp_mask)
777 {
778 	int ret;
779 
780 	BUG_ON(!nents);
781 
782 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
783 			       gfp_mask, scsi_sg_alloc);
784 	if (unlikely(ret))
785 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
786 				scsi_sg_free);
787 
788 	return ret;
789 }
790 
791 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
792 {
793 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
794 }
795 
796 /*
797  * Function:    scsi_release_buffers()
798  *
799  * Purpose:     Completion processing for block device I/O requests.
800  *
801  * Arguments:   cmd	- command that we are bailing.
802  *
803  * Lock status: Assumed that no lock is held upon entry.
804  *
805  * Returns:     Nothing
806  *
807  * Notes:       In the event that an upper level driver rejects a
808  *		command, we must release resources allocated during
809  *		the __init_io() function.  Primarily this would involve
810  *		the scatter-gather table, and potentially any bounce
811  *		buffers.
812  */
813 void scsi_release_buffers(struct scsi_cmnd *cmd)
814 {
815 	if (cmd->sdb.table.nents)
816 		scsi_free_sgtable(&cmd->sdb);
817 
818 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
819 
820 	if (scsi_bidi_cmnd(cmd)) {
821 		struct scsi_data_buffer *bidi_sdb =
822 			cmd->request->next_rq->special;
823 		scsi_free_sgtable(bidi_sdb);
824 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
825 		cmd->request->next_rq->special = NULL;
826 	}
827 
828 	if (scsi_prot_sg_count(cmd))
829 		scsi_free_sgtable(cmd->prot_sdb);
830 }
831 EXPORT_SYMBOL(scsi_release_buffers);
832 
833 /*
834  * Bidi commands Must be complete as a whole, both sides at once.
835  * If part of the bytes were written and lld returned
836  * scsi_in()->resid and/or scsi_out()->resid this information will be left
837  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
838  * decide what to do with this information.
839  */
840 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
841 {
842 	struct request *req = cmd->request;
843 	unsigned int dlen = req->data_len;
844 	unsigned int next_dlen = req->next_rq->data_len;
845 
846 	req->data_len = scsi_out(cmd)->resid;
847 	req->next_rq->data_len = scsi_in(cmd)->resid;
848 
849 	/* The req and req->next_rq have not been completed */
850 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
851 
852 	scsi_release_buffers(cmd);
853 
854 	/*
855 	 * This will goose the queue request function at the end, so we don't
856 	 * need to worry about launching another command.
857 	 */
858 	scsi_next_command(cmd);
859 }
860 
861 /*
862  * Function:    scsi_io_completion()
863  *
864  * Purpose:     Completion processing for block device I/O requests.
865  *
866  * Arguments:   cmd   - command that is finished.
867  *
868  * Lock status: Assumed that no lock is held upon entry.
869  *
870  * Returns:     Nothing
871  *
872  * Notes:       This function is matched in terms of capabilities to
873  *              the function that created the scatter-gather list.
874  *              In other words, if there are no bounce buffers
875  *              (the normal case for most drivers), we don't need
876  *              the logic to deal with cleaning up afterwards.
877  *
878  *		We must do one of several things here:
879  *
880  *		a) Call scsi_end_request.  This will finish off the
881  *		   specified number of sectors.  If we are done, the
882  *		   command block will be released, and the queue
883  *		   function will be goosed.  If we are not done, then
884  *		   scsi_end_request will directly goose the queue.
885  *
886  *		b) We can just use scsi_requeue_command() here.  This would
887  *		   be used if we just wanted to retry, for example.
888  */
889 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
890 {
891 	int result = cmd->result;
892 	int this_count;
893 	struct request_queue *q = cmd->device->request_queue;
894 	struct request *req = cmd->request;
895 	int error = 0;
896 	struct scsi_sense_hdr sshdr;
897 	int sense_valid = 0;
898 	int sense_deferred = 0;
899 
900 	if (result) {
901 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
902 		if (sense_valid)
903 			sense_deferred = scsi_sense_is_deferred(&sshdr);
904 	}
905 
906 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
907 		req->errors = result;
908 		if (result) {
909 			if (sense_valid && req->sense) {
910 				/*
911 				 * SG_IO wants current and deferred errors
912 				 */
913 				int len = 8 + cmd->sense_buffer[7];
914 
915 				if (len > SCSI_SENSE_BUFFERSIZE)
916 					len = SCSI_SENSE_BUFFERSIZE;
917 				memcpy(req->sense, cmd->sense_buffer,  len);
918 				req->sense_len = len;
919 			}
920 			if (!sense_deferred)
921 				error = -EIO;
922 		}
923 		if (scsi_bidi_cmnd(cmd)) {
924 			/* will also release_buffers */
925 			scsi_end_bidi_request(cmd);
926 			return;
927 		}
928 		req->data_len = scsi_get_resid(cmd);
929 	}
930 
931 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
932 	scsi_release_buffers(cmd);
933 
934 	/*
935 	 * Next deal with any sectors which we were able to correctly
936 	 * handle.
937 	 */
938 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
939 				      "%d bytes done.\n",
940 				      req->nr_sectors, good_bytes));
941 
942 	/* A number of bytes were successfully read.  If there
943 	 * are leftovers and there is some kind of error
944 	 * (result != 0), retry the rest.
945 	 */
946 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
947 		return;
948 	this_count = blk_rq_bytes(req);
949 
950 	/* good_bytes = 0, or (inclusive) there were leftovers and
951 	 * result = 0, so scsi_end_request couldn't retry.
952 	 */
953 	if (sense_valid && !sense_deferred) {
954 		switch (sshdr.sense_key) {
955 		case UNIT_ATTENTION:
956 			if (cmd->device->removable) {
957 				/* Detected disc change.  Set a bit
958 				 * and quietly refuse further access.
959 				 */
960 				cmd->device->changed = 1;
961 				scsi_end_request(cmd, -EIO, this_count, 1);
962 				return;
963 			} else {
964 				/* Must have been a power glitch, or a
965 				 * bus reset.  Could not have been a
966 				 * media change, so we just retry the
967 				 * request and see what happens.
968 				 */
969 				scsi_requeue_command(q, cmd);
970 				return;
971 			}
972 			break;
973 		case ILLEGAL_REQUEST:
974 			/* If we had an ILLEGAL REQUEST returned, then
975 			 * we may have performed an unsupported
976 			 * command.  The only thing this should be
977 			 * would be a ten byte read where only a six
978 			 * byte read was supported.  Also, on a system
979 			 * where READ CAPACITY failed, we may have
980 			 * read past the end of the disk.
981 			 */
982 			if ((cmd->device->use_10_for_rw &&
983 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
984 			    (cmd->cmnd[0] == READ_10 ||
985 			     cmd->cmnd[0] == WRITE_10)) {
986 				cmd->device->use_10_for_rw = 0;
987 				/* This will cause a retry with a
988 				 * 6-byte command.
989 				 */
990 				scsi_requeue_command(q, cmd);
991 			} else if (sshdr.asc == 0x10) /* DIX */
992 				scsi_end_request(cmd, -EIO, this_count, 0);
993 			else
994 				scsi_end_request(cmd, -EIO, this_count, 1);
995 			return;
996 		case ABORTED_COMMAND:
997 			if (sshdr.asc == 0x10) { /* DIF */
998 				scsi_end_request(cmd, -EIO, this_count, 0);
999 				return;
1000 			}
1001 			break;
1002 		case NOT_READY:
1003 			/* If the device is in the process of becoming
1004 			 * ready, or has a temporary blockage, retry.
1005 			 */
1006 			if (sshdr.asc == 0x04) {
1007 				switch (sshdr.ascq) {
1008 				case 0x01: /* becoming ready */
1009 				case 0x04: /* format in progress */
1010 				case 0x05: /* rebuild in progress */
1011 				case 0x06: /* recalculation in progress */
1012 				case 0x07: /* operation in progress */
1013 				case 0x08: /* Long write in progress */
1014 				case 0x09: /* self test in progress */
1015 					scsi_requeue_command(q, cmd);
1016 					return;
1017 				default:
1018 					break;
1019 				}
1020 			}
1021 			if (!(req->cmd_flags & REQ_QUIET))
1022 				scsi_cmd_print_sense_hdr(cmd,
1023 							 "Device not ready",
1024 							 &sshdr);
1025 
1026 			scsi_end_request(cmd, -EIO, this_count, 1);
1027 			return;
1028 		case VOLUME_OVERFLOW:
1029 			if (!(req->cmd_flags & REQ_QUIET)) {
1030 				scmd_printk(KERN_INFO, cmd,
1031 					    "Volume overflow, CDB: ");
1032 				__scsi_print_command(cmd->cmnd);
1033 				scsi_print_sense("", cmd);
1034 			}
1035 			/* See SSC3rXX or current. */
1036 			scsi_end_request(cmd, -EIO, this_count, 1);
1037 			return;
1038 		default:
1039 			break;
1040 		}
1041 	}
1042 	if (host_byte(result) == DID_RESET) {
1043 		/* Third party bus reset or reset for error recovery
1044 		 * reasons.  Just retry the request and see what
1045 		 * happens.
1046 		 */
1047 		scsi_requeue_command(q, cmd);
1048 		return;
1049 	}
1050 	if (result) {
1051 		if (!(req->cmd_flags & REQ_QUIET)) {
1052 			scsi_print_result(cmd);
1053 			if (driver_byte(result) & DRIVER_SENSE)
1054 				scsi_print_sense("", cmd);
1055 		}
1056 	}
1057 	scsi_end_request(cmd, -EIO, this_count, !result);
1058 }
1059 
1060 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1061 			     gfp_t gfp_mask)
1062 {
1063 	int count;
1064 
1065 	/*
1066 	 * If sg table allocation fails, requeue request later.
1067 	 */
1068 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1069 					gfp_mask))) {
1070 		return BLKPREP_DEFER;
1071 	}
1072 
1073 	req->buffer = NULL;
1074 
1075 	/*
1076 	 * Next, walk the list, and fill in the addresses and sizes of
1077 	 * each segment.
1078 	 */
1079 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1080 	BUG_ON(count > sdb->table.nents);
1081 	sdb->table.nents = count;
1082 	if (blk_pc_request(req))
1083 		sdb->length = req->data_len;
1084 	else
1085 		sdb->length = req->nr_sectors << 9;
1086 	return BLKPREP_OK;
1087 }
1088 
1089 /*
1090  * Function:    scsi_init_io()
1091  *
1092  * Purpose:     SCSI I/O initialize function.
1093  *
1094  * Arguments:   cmd   - Command descriptor we wish to initialize
1095  *
1096  * Returns:     0 on success
1097  *		BLKPREP_DEFER if the failure is retryable
1098  *		BLKPREP_KILL if the failure is fatal
1099  */
1100 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1101 {
1102 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1103 	if (error)
1104 		goto err_exit;
1105 
1106 	if (blk_bidi_rq(cmd->request)) {
1107 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1108 			scsi_sdb_cache, GFP_ATOMIC);
1109 		if (!bidi_sdb) {
1110 			error = BLKPREP_DEFER;
1111 			goto err_exit;
1112 		}
1113 
1114 		cmd->request->next_rq->special = bidi_sdb;
1115 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1116 								    GFP_ATOMIC);
1117 		if (error)
1118 			goto err_exit;
1119 	}
1120 
1121 	if (blk_integrity_rq(cmd->request)) {
1122 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1123 		int ivecs, count;
1124 
1125 		BUG_ON(prot_sdb == NULL);
1126 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1127 
1128 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1129 			error = BLKPREP_DEFER;
1130 			goto err_exit;
1131 		}
1132 
1133 		count = blk_rq_map_integrity_sg(cmd->request,
1134 						prot_sdb->table.sgl);
1135 		BUG_ON(unlikely(count > ivecs));
1136 
1137 		cmd->prot_sdb = prot_sdb;
1138 		cmd->prot_sdb->table.nents = count;
1139 	}
1140 
1141 	return BLKPREP_OK ;
1142 
1143 err_exit:
1144 	scsi_release_buffers(cmd);
1145 	if (error == BLKPREP_KILL)
1146 		scsi_put_command(cmd);
1147 	else /* BLKPREP_DEFER */
1148 		scsi_unprep_request(cmd->request);
1149 
1150 	return error;
1151 }
1152 EXPORT_SYMBOL(scsi_init_io);
1153 
1154 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1155 		struct request *req)
1156 {
1157 	struct scsi_cmnd *cmd;
1158 
1159 	if (!req->special) {
1160 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1161 		if (unlikely(!cmd))
1162 			return NULL;
1163 		req->special = cmd;
1164 	} else {
1165 		cmd = req->special;
1166 	}
1167 
1168 	/* pull a tag out of the request if we have one */
1169 	cmd->tag = req->tag;
1170 	cmd->request = req;
1171 
1172 	cmd->cmnd = req->cmd;
1173 
1174 	return cmd;
1175 }
1176 
1177 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1178 {
1179 	struct scsi_cmnd *cmd;
1180 	int ret = scsi_prep_state_check(sdev, req);
1181 
1182 	if (ret != BLKPREP_OK)
1183 		return ret;
1184 
1185 	cmd = scsi_get_cmd_from_req(sdev, req);
1186 	if (unlikely(!cmd))
1187 		return BLKPREP_DEFER;
1188 
1189 	/*
1190 	 * BLOCK_PC requests may transfer data, in which case they must
1191 	 * a bio attached to them.  Or they might contain a SCSI command
1192 	 * that does not transfer data, in which case they may optionally
1193 	 * submit a request without an attached bio.
1194 	 */
1195 	if (req->bio) {
1196 		int ret;
1197 
1198 		BUG_ON(!req->nr_phys_segments);
1199 
1200 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1201 		if (unlikely(ret))
1202 			return ret;
1203 	} else {
1204 		BUG_ON(req->data_len);
1205 		BUG_ON(req->data);
1206 
1207 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1208 		req->buffer = NULL;
1209 	}
1210 
1211 	cmd->cmd_len = req->cmd_len;
1212 	if (!req->data_len)
1213 		cmd->sc_data_direction = DMA_NONE;
1214 	else if (rq_data_dir(req) == WRITE)
1215 		cmd->sc_data_direction = DMA_TO_DEVICE;
1216 	else
1217 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1218 
1219 	cmd->transfersize = req->data_len;
1220 	cmd->allowed = req->retries;
1221 	return BLKPREP_OK;
1222 }
1223 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1224 
1225 /*
1226  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1227  * from filesystems that still need to be translated to SCSI CDBs from
1228  * the ULD.
1229  */
1230 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1231 {
1232 	struct scsi_cmnd *cmd;
1233 	int ret = scsi_prep_state_check(sdev, req);
1234 
1235 	if (ret != BLKPREP_OK)
1236 		return ret;
1237 
1238 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1239 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1240 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1241 		if (ret != BLKPREP_OK)
1242 			return ret;
1243 	}
1244 
1245 	/*
1246 	 * Filesystem requests must transfer data.
1247 	 */
1248 	BUG_ON(!req->nr_phys_segments);
1249 
1250 	cmd = scsi_get_cmd_from_req(sdev, req);
1251 	if (unlikely(!cmd))
1252 		return BLKPREP_DEFER;
1253 
1254 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1255 	return scsi_init_io(cmd, GFP_ATOMIC);
1256 }
1257 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1258 
1259 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1260 {
1261 	int ret = BLKPREP_OK;
1262 
1263 	/*
1264 	 * If the device is not in running state we will reject some
1265 	 * or all commands.
1266 	 */
1267 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1268 		switch (sdev->sdev_state) {
1269 		case SDEV_OFFLINE:
1270 			/*
1271 			 * If the device is offline we refuse to process any
1272 			 * commands.  The device must be brought online
1273 			 * before trying any recovery commands.
1274 			 */
1275 			sdev_printk(KERN_ERR, sdev,
1276 				    "rejecting I/O to offline device\n");
1277 			ret = BLKPREP_KILL;
1278 			break;
1279 		case SDEV_DEL:
1280 			/*
1281 			 * If the device is fully deleted, we refuse to
1282 			 * process any commands as well.
1283 			 */
1284 			sdev_printk(KERN_ERR, sdev,
1285 				    "rejecting I/O to dead device\n");
1286 			ret = BLKPREP_KILL;
1287 			break;
1288 		case SDEV_QUIESCE:
1289 		case SDEV_BLOCK:
1290 		case SDEV_CREATED_BLOCK:
1291 			/*
1292 			 * If the devices is blocked we defer normal commands.
1293 			 */
1294 			if (!(req->cmd_flags & REQ_PREEMPT))
1295 				ret = BLKPREP_DEFER;
1296 			break;
1297 		default:
1298 			/*
1299 			 * For any other not fully online state we only allow
1300 			 * special commands.  In particular any user initiated
1301 			 * command is not allowed.
1302 			 */
1303 			if (!(req->cmd_flags & REQ_PREEMPT))
1304 				ret = BLKPREP_KILL;
1305 			break;
1306 		}
1307 	}
1308 	return ret;
1309 }
1310 EXPORT_SYMBOL(scsi_prep_state_check);
1311 
1312 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1313 {
1314 	struct scsi_device *sdev = q->queuedata;
1315 
1316 	switch (ret) {
1317 	case BLKPREP_KILL:
1318 		req->errors = DID_NO_CONNECT << 16;
1319 		/* release the command and kill it */
1320 		if (req->special) {
1321 			struct scsi_cmnd *cmd = req->special;
1322 			scsi_release_buffers(cmd);
1323 			scsi_put_command(cmd);
1324 			req->special = NULL;
1325 		}
1326 		break;
1327 	case BLKPREP_DEFER:
1328 		/*
1329 		 * If we defer, the elv_next_request() returns NULL, but the
1330 		 * queue must be restarted, so we plug here if no returning
1331 		 * command will automatically do that.
1332 		 */
1333 		if (sdev->device_busy == 0)
1334 			blk_plug_device(q);
1335 		break;
1336 	default:
1337 		req->cmd_flags |= REQ_DONTPREP;
1338 	}
1339 
1340 	return ret;
1341 }
1342 EXPORT_SYMBOL(scsi_prep_return);
1343 
1344 int scsi_prep_fn(struct request_queue *q, struct request *req)
1345 {
1346 	struct scsi_device *sdev = q->queuedata;
1347 	int ret = BLKPREP_KILL;
1348 
1349 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1350 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1351 	return scsi_prep_return(q, req, ret);
1352 }
1353 
1354 /*
1355  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1356  * return 0.
1357  *
1358  * Called with the queue_lock held.
1359  */
1360 static inline int scsi_dev_queue_ready(struct request_queue *q,
1361 				  struct scsi_device *sdev)
1362 {
1363 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1364 		/*
1365 		 * unblock after device_blocked iterates to zero
1366 		 */
1367 		if (--sdev->device_blocked == 0) {
1368 			SCSI_LOG_MLQUEUE(3,
1369 				   sdev_printk(KERN_INFO, sdev,
1370 				   "unblocking device at zero depth\n"));
1371 		} else {
1372 			blk_plug_device(q);
1373 			return 0;
1374 		}
1375 	}
1376 	if (scsi_device_is_busy(sdev))
1377 		return 0;
1378 
1379 	return 1;
1380 }
1381 
1382 
1383 /*
1384  * scsi_target_queue_ready: checks if there we can send commands to target
1385  * @sdev: scsi device on starget to check.
1386  *
1387  * Called with the host lock held.
1388  */
1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1390 					   struct scsi_device *sdev)
1391 {
1392 	struct scsi_target *starget = scsi_target(sdev);
1393 
1394 	if (starget->single_lun) {
1395 		if (starget->starget_sdev_user &&
1396 		    starget->starget_sdev_user != sdev)
1397 			return 0;
1398 		starget->starget_sdev_user = sdev;
1399 	}
1400 
1401 	if (starget->target_busy == 0 && starget->target_blocked) {
1402 		/*
1403 		 * unblock after target_blocked iterates to zero
1404 		 */
1405 		if (--starget->target_blocked == 0) {
1406 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1407 					 "unblocking target at zero depth\n"));
1408 		} else {
1409 			blk_plug_device(sdev->request_queue);
1410 			return 0;
1411 		}
1412 	}
1413 
1414 	if (scsi_target_is_busy(starget)) {
1415 		if (list_empty(&sdev->starved_entry)) {
1416 			list_add_tail(&sdev->starved_entry,
1417 				      &shost->starved_list);
1418 			return 0;
1419 		}
1420 	}
1421 
1422 	/* We're OK to process the command, so we can't be starved */
1423 	if (!list_empty(&sdev->starved_entry))
1424 		list_del_init(&sdev->starved_entry);
1425 	return 1;
1426 }
1427 
1428 /*
1429  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1430  * return 0. We must end up running the queue again whenever 0 is
1431  * returned, else IO can hang.
1432  *
1433  * Called with host_lock held.
1434  */
1435 static inline int scsi_host_queue_ready(struct request_queue *q,
1436 				   struct Scsi_Host *shost,
1437 				   struct scsi_device *sdev)
1438 {
1439 	if (scsi_host_in_recovery(shost))
1440 		return 0;
1441 	if (shost->host_busy == 0 && shost->host_blocked) {
1442 		/*
1443 		 * unblock after host_blocked iterates to zero
1444 		 */
1445 		if (--shost->host_blocked == 0) {
1446 			SCSI_LOG_MLQUEUE(3,
1447 				printk("scsi%d unblocking host at zero depth\n",
1448 					shost->host_no));
1449 		} else {
1450 			return 0;
1451 		}
1452 	}
1453 	if (scsi_host_is_busy(shost)) {
1454 		if (list_empty(&sdev->starved_entry))
1455 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1456 		return 0;
1457 	}
1458 
1459 	/* We're OK to process the command, so we can't be starved */
1460 	if (!list_empty(&sdev->starved_entry))
1461 		list_del_init(&sdev->starved_entry);
1462 
1463 	return 1;
1464 }
1465 
1466 /*
1467  * Busy state exporting function for request stacking drivers.
1468  *
1469  * For efficiency, no lock is taken to check the busy state of
1470  * shost/starget/sdev, since the returned value is not guaranteed and
1471  * may be changed after request stacking drivers call the function,
1472  * regardless of taking lock or not.
1473  *
1474  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1475  * (e.g. !sdev), scsi needs to return 'not busy'.
1476  * Otherwise, request stacking drivers may hold requests forever.
1477  */
1478 static int scsi_lld_busy(struct request_queue *q)
1479 {
1480 	struct scsi_device *sdev = q->queuedata;
1481 	struct Scsi_Host *shost;
1482 	struct scsi_target *starget;
1483 
1484 	if (!sdev)
1485 		return 0;
1486 
1487 	shost = sdev->host;
1488 	starget = scsi_target(sdev);
1489 
1490 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1491 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1492 		return 1;
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * Kill a request for a dead device
1499  */
1500 static void scsi_kill_request(struct request *req, struct request_queue *q)
1501 {
1502 	struct scsi_cmnd *cmd = req->special;
1503 	struct scsi_device *sdev = cmd->device;
1504 	struct scsi_target *starget = scsi_target(sdev);
1505 	struct Scsi_Host *shost = sdev->host;
1506 
1507 	blkdev_dequeue_request(req);
1508 
1509 	if (unlikely(cmd == NULL)) {
1510 		printk(KERN_CRIT "impossible request in %s.\n",
1511 				 __func__);
1512 		BUG();
1513 	}
1514 
1515 	scsi_init_cmd_errh(cmd);
1516 	cmd->result = DID_NO_CONNECT << 16;
1517 	atomic_inc(&cmd->device->iorequest_cnt);
1518 
1519 	/*
1520 	 * SCSI request completion path will do scsi_device_unbusy(),
1521 	 * bump busy counts.  To bump the counters, we need to dance
1522 	 * with the locks as normal issue path does.
1523 	 */
1524 	sdev->device_busy++;
1525 	spin_unlock(sdev->request_queue->queue_lock);
1526 	spin_lock(shost->host_lock);
1527 	shost->host_busy++;
1528 	starget->target_busy++;
1529 	spin_unlock(shost->host_lock);
1530 	spin_lock(sdev->request_queue->queue_lock);
1531 
1532 	blk_complete_request(req);
1533 }
1534 
1535 static void scsi_softirq_done(struct request *rq)
1536 {
1537 	struct scsi_cmnd *cmd = rq->special;
1538 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1539 	int disposition;
1540 
1541 	INIT_LIST_HEAD(&cmd->eh_entry);
1542 
1543 	/*
1544 	 * Set the serial numbers back to zero
1545 	 */
1546 	cmd->serial_number = 0;
1547 
1548 	atomic_inc(&cmd->device->iodone_cnt);
1549 	if (cmd->result)
1550 		atomic_inc(&cmd->device->ioerr_cnt);
1551 
1552 	disposition = scsi_decide_disposition(cmd);
1553 	if (disposition != SUCCESS &&
1554 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1555 		sdev_printk(KERN_ERR, cmd->device,
1556 			    "timing out command, waited %lus\n",
1557 			    wait_for/HZ);
1558 		disposition = SUCCESS;
1559 	}
1560 
1561 	scsi_log_completion(cmd, disposition);
1562 
1563 	switch (disposition) {
1564 		case SUCCESS:
1565 			scsi_finish_command(cmd);
1566 			break;
1567 		case NEEDS_RETRY:
1568 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1569 			break;
1570 		case ADD_TO_MLQUEUE:
1571 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1572 			break;
1573 		default:
1574 			if (!scsi_eh_scmd_add(cmd, 0))
1575 				scsi_finish_command(cmd);
1576 	}
1577 }
1578 
1579 /*
1580  * Function:    scsi_request_fn()
1581  *
1582  * Purpose:     Main strategy routine for SCSI.
1583  *
1584  * Arguments:   q       - Pointer to actual queue.
1585  *
1586  * Returns:     Nothing
1587  *
1588  * Lock status: IO request lock assumed to be held when called.
1589  */
1590 static void scsi_request_fn(struct request_queue *q)
1591 {
1592 	struct scsi_device *sdev = q->queuedata;
1593 	struct Scsi_Host *shost;
1594 	struct scsi_cmnd *cmd;
1595 	struct request *req;
1596 
1597 	if (!sdev) {
1598 		printk("scsi: killing requests for dead queue\n");
1599 		while ((req = elv_next_request(q)) != NULL)
1600 			scsi_kill_request(req, q);
1601 		return;
1602 	}
1603 
1604 	if(!get_device(&sdev->sdev_gendev))
1605 		/* We must be tearing the block queue down already */
1606 		return;
1607 
1608 	/*
1609 	 * To start with, we keep looping until the queue is empty, or until
1610 	 * the host is no longer able to accept any more requests.
1611 	 */
1612 	shost = sdev->host;
1613 	while (!blk_queue_plugged(q)) {
1614 		int rtn;
1615 		/*
1616 		 * get next queueable request.  We do this early to make sure
1617 		 * that the request is fully prepared even if we cannot
1618 		 * accept it.
1619 		 */
1620 		req = elv_next_request(q);
1621 		if (!req || !scsi_dev_queue_ready(q, sdev))
1622 			break;
1623 
1624 		if (unlikely(!scsi_device_online(sdev))) {
1625 			sdev_printk(KERN_ERR, sdev,
1626 				    "rejecting I/O to offline device\n");
1627 			scsi_kill_request(req, q);
1628 			continue;
1629 		}
1630 
1631 
1632 		/*
1633 		 * Remove the request from the request list.
1634 		 */
1635 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1636 			blkdev_dequeue_request(req);
1637 		sdev->device_busy++;
1638 
1639 		spin_unlock(q->queue_lock);
1640 		cmd = req->special;
1641 		if (unlikely(cmd == NULL)) {
1642 			printk(KERN_CRIT "impossible request in %s.\n"
1643 					 "please mail a stack trace to "
1644 					 "linux-scsi@vger.kernel.org\n",
1645 					 __func__);
1646 			blk_dump_rq_flags(req, "foo");
1647 			BUG();
1648 		}
1649 		spin_lock(shost->host_lock);
1650 
1651 		/*
1652 		 * We hit this when the driver is using a host wide
1653 		 * tag map. For device level tag maps the queue_depth check
1654 		 * in the device ready fn would prevent us from trying
1655 		 * to allocate a tag. Since the map is a shared host resource
1656 		 * we add the dev to the starved list so it eventually gets
1657 		 * a run when a tag is freed.
1658 		 */
1659 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1660 			if (list_empty(&sdev->starved_entry))
1661 				list_add_tail(&sdev->starved_entry,
1662 					      &shost->starved_list);
1663 			goto not_ready;
1664 		}
1665 
1666 		if (!scsi_target_queue_ready(shost, sdev))
1667 			goto not_ready;
1668 
1669 		if (!scsi_host_queue_ready(q, shost, sdev))
1670 			goto not_ready;
1671 
1672 		scsi_target(sdev)->target_busy++;
1673 		shost->host_busy++;
1674 
1675 		/*
1676 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1677 		 *		take the lock again.
1678 		 */
1679 		spin_unlock_irq(shost->host_lock);
1680 
1681 		/*
1682 		 * Finally, initialize any error handling parameters, and set up
1683 		 * the timers for timeouts.
1684 		 */
1685 		scsi_init_cmd_errh(cmd);
1686 
1687 		/*
1688 		 * Dispatch the command to the low-level driver.
1689 		 */
1690 		rtn = scsi_dispatch_cmd(cmd);
1691 		spin_lock_irq(q->queue_lock);
1692 		if(rtn) {
1693 			/* we're refusing the command; because of
1694 			 * the way locks get dropped, we need to
1695 			 * check here if plugging is required */
1696 			if(sdev->device_busy == 0)
1697 				blk_plug_device(q);
1698 
1699 			break;
1700 		}
1701 	}
1702 
1703 	goto out;
1704 
1705  not_ready:
1706 	spin_unlock_irq(shost->host_lock);
1707 
1708 	/*
1709 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1710 	 * must return with queue_lock held.
1711 	 *
1712 	 * Decrementing device_busy without checking it is OK, as all such
1713 	 * cases (host limits or settings) should run the queue at some
1714 	 * later time.
1715 	 */
1716 	spin_lock_irq(q->queue_lock);
1717 	blk_requeue_request(q, req);
1718 	sdev->device_busy--;
1719 	if(sdev->device_busy == 0)
1720 		blk_plug_device(q);
1721  out:
1722 	/* must be careful here...if we trigger the ->remove() function
1723 	 * we cannot be holding the q lock */
1724 	spin_unlock_irq(q->queue_lock);
1725 	put_device(&sdev->sdev_gendev);
1726 	spin_lock_irq(q->queue_lock);
1727 }
1728 
1729 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1730 {
1731 	struct device *host_dev;
1732 	u64 bounce_limit = 0xffffffff;
1733 
1734 	if (shost->unchecked_isa_dma)
1735 		return BLK_BOUNCE_ISA;
1736 	/*
1737 	 * Platforms with virtual-DMA translation
1738 	 * hardware have no practical limit.
1739 	 */
1740 	if (!PCI_DMA_BUS_IS_PHYS)
1741 		return BLK_BOUNCE_ANY;
1742 
1743 	host_dev = scsi_get_device(shost);
1744 	if (host_dev && host_dev->dma_mask)
1745 		bounce_limit = *host_dev->dma_mask;
1746 
1747 	return bounce_limit;
1748 }
1749 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1750 
1751 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1752 					 request_fn_proc *request_fn)
1753 {
1754 	struct request_queue *q;
1755 	struct device *dev = shost->shost_gendev.parent;
1756 
1757 	q = blk_init_queue(request_fn, NULL);
1758 	if (!q)
1759 		return NULL;
1760 
1761 	/*
1762 	 * this limit is imposed by hardware restrictions
1763 	 */
1764 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1765 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1766 
1767 	blk_queue_max_sectors(q, shost->max_sectors);
1768 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1769 	blk_queue_segment_boundary(q, shost->dma_boundary);
1770 	dma_set_seg_boundary(dev, shost->dma_boundary);
1771 
1772 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1773 
1774 	/* New queue, no concurrency on queue_flags */
1775 	if (!shost->use_clustering)
1776 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1777 
1778 	/*
1779 	 * set a reasonable default alignment on word boundaries: the
1780 	 * host and device may alter it using
1781 	 * blk_queue_update_dma_alignment() later.
1782 	 */
1783 	blk_queue_dma_alignment(q, 0x03);
1784 
1785 	return q;
1786 }
1787 EXPORT_SYMBOL(__scsi_alloc_queue);
1788 
1789 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1790 {
1791 	struct request_queue *q;
1792 
1793 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1794 	if (!q)
1795 		return NULL;
1796 
1797 	blk_queue_prep_rq(q, scsi_prep_fn);
1798 	blk_queue_softirq_done(q, scsi_softirq_done);
1799 	blk_queue_rq_timed_out(q, scsi_times_out);
1800 	blk_queue_lld_busy(q, scsi_lld_busy);
1801 	return q;
1802 }
1803 
1804 void scsi_free_queue(struct request_queue *q)
1805 {
1806 	blk_cleanup_queue(q);
1807 }
1808 
1809 /*
1810  * Function:    scsi_block_requests()
1811  *
1812  * Purpose:     Utility function used by low-level drivers to prevent further
1813  *		commands from being queued to the device.
1814  *
1815  * Arguments:   shost       - Host in question
1816  *
1817  * Returns:     Nothing
1818  *
1819  * Lock status: No locks are assumed held.
1820  *
1821  * Notes:       There is no timer nor any other means by which the requests
1822  *		get unblocked other than the low-level driver calling
1823  *		scsi_unblock_requests().
1824  */
1825 void scsi_block_requests(struct Scsi_Host *shost)
1826 {
1827 	shost->host_self_blocked = 1;
1828 }
1829 EXPORT_SYMBOL(scsi_block_requests);
1830 
1831 /*
1832  * Function:    scsi_unblock_requests()
1833  *
1834  * Purpose:     Utility function used by low-level drivers to allow further
1835  *		commands from being queued to the device.
1836  *
1837  * Arguments:   shost       - Host in question
1838  *
1839  * Returns:     Nothing
1840  *
1841  * Lock status: No locks are assumed held.
1842  *
1843  * Notes:       There is no timer nor any other means by which the requests
1844  *		get unblocked other than the low-level driver calling
1845  *		scsi_unblock_requests().
1846  *
1847  *		This is done as an API function so that changes to the
1848  *		internals of the scsi mid-layer won't require wholesale
1849  *		changes to drivers that use this feature.
1850  */
1851 void scsi_unblock_requests(struct Scsi_Host *shost)
1852 {
1853 	shost->host_self_blocked = 0;
1854 	scsi_run_host_queues(shost);
1855 }
1856 EXPORT_SYMBOL(scsi_unblock_requests);
1857 
1858 int __init scsi_init_queue(void)
1859 {
1860 	int i;
1861 
1862 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1863 					sizeof(struct scsi_io_context),
1864 					0, 0, NULL);
1865 	if (!scsi_io_context_cache) {
1866 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1867 		return -ENOMEM;
1868 	}
1869 
1870 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1871 					   sizeof(struct scsi_data_buffer),
1872 					   0, 0, NULL);
1873 	if (!scsi_sdb_cache) {
1874 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1875 		goto cleanup_io_context;
1876 	}
1877 
1878 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1879 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1880 		int size = sgp->size * sizeof(struct scatterlist);
1881 
1882 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1883 				SLAB_HWCACHE_ALIGN, NULL);
1884 		if (!sgp->slab) {
1885 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1886 					sgp->name);
1887 			goto cleanup_sdb;
1888 		}
1889 
1890 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1891 						     sgp->slab);
1892 		if (!sgp->pool) {
1893 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1894 					sgp->name);
1895 			goto cleanup_sdb;
1896 		}
1897 	}
1898 
1899 	return 0;
1900 
1901 cleanup_sdb:
1902 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1903 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1904 		if (sgp->pool)
1905 			mempool_destroy(sgp->pool);
1906 		if (sgp->slab)
1907 			kmem_cache_destroy(sgp->slab);
1908 	}
1909 	kmem_cache_destroy(scsi_sdb_cache);
1910 cleanup_io_context:
1911 	kmem_cache_destroy(scsi_io_context_cache);
1912 
1913 	return -ENOMEM;
1914 }
1915 
1916 void scsi_exit_queue(void)
1917 {
1918 	int i;
1919 
1920 	kmem_cache_destroy(scsi_io_context_cache);
1921 	kmem_cache_destroy(scsi_sdb_cache);
1922 
1923 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1924 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1925 		mempool_destroy(sgp->pool);
1926 		kmem_cache_destroy(sgp->slab);
1927 	}
1928 }
1929 
1930 /**
1931  *	scsi_mode_select - issue a mode select
1932  *	@sdev:	SCSI device to be queried
1933  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1934  *	@sp:	Save page bit (0 == don't save, 1 == save)
1935  *	@modepage: mode page being requested
1936  *	@buffer: request buffer (may not be smaller than eight bytes)
1937  *	@len:	length of request buffer.
1938  *	@timeout: command timeout
1939  *	@retries: number of retries before failing
1940  *	@data: returns a structure abstracting the mode header data
1941  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1942  *		must be SCSI_SENSE_BUFFERSIZE big.
1943  *
1944  *	Returns zero if successful; negative error number or scsi
1945  *	status on error
1946  *
1947  */
1948 int
1949 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1950 		 unsigned char *buffer, int len, int timeout, int retries,
1951 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1952 {
1953 	unsigned char cmd[10];
1954 	unsigned char *real_buffer;
1955 	int ret;
1956 
1957 	memset(cmd, 0, sizeof(cmd));
1958 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1959 
1960 	if (sdev->use_10_for_ms) {
1961 		if (len > 65535)
1962 			return -EINVAL;
1963 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1964 		if (!real_buffer)
1965 			return -ENOMEM;
1966 		memcpy(real_buffer + 8, buffer, len);
1967 		len += 8;
1968 		real_buffer[0] = 0;
1969 		real_buffer[1] = 0;
1970 		real_buffer[2] = data->medium_type;
1971 		real_buffer[3] = data->device_specific;
1972 		real_buffer[4] = data->longlba ? 0x01 : 0;
1973 		real_buffer[5] = 0;
1974 		real_buffer[6] = data->block_descriptor_length >> 8;
1975 		real_buffer[7] = data->block_descriptor_length;
1976 
1977 		cmd[0] = MODE_SELECT_10;
1978 		cmd[7] = len >> 8;
1979 		cmd[8] = len;
1980 	} else {
1981 		if (len > 255 || data->block_descriptor_length > 255 ||
1982 		    data->longlba)
1983 			return -EINVAL;
1984 
1985 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1986 		if (!real_buffer)
1987 			return -ENOMEM;
1988 		memcpy(real_buffer + 4, buffer, len);
1989 		len += 4;
1990 		real_buffer[0] = 0;
1991 		real_buffer[1] = data->medium_type;
1992 		real_buffer[2] = data->device_specific;
1993 		real_buffer[3] = data->block_descriptor_length;
1994 
1995 
1996 		cmd[0] = MODE_SELECT;
1997 		cmd[4] = len;
1998 	}
1999 
2000 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2001 			       sshdr, timeout, retries);
2002 	kfree(real_buffer);
2003 	return ret;
2004 }
2005 EXPORT_SYMBOL_GPL(scsi_mode_select);
2006 
2007 /**
2008  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2009  *	@sdev:	SCSI device to be queried
2010  *	@dbd:	set if mode sense will allow block descriptors to be returned
2011  *	@modepage: mode page being requested
2012  *	@buffer: request buffer (may not be smaller than eight bytes)
2013  *	@len:	length of request buffer.
2014  *	@timeout: command timeout
2015  *	@retries: number of retries before failing
2016  *	@data: returns a structure abstracting the mode header data
2017  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2018  *		must be SCSI_SENSE_BUFFERSIZE big.
2019  *
2020  *	Returns zero if unsuccessful, or the header offset (either 4
2021  *	or 8 depending on whether a six or ten byte command was
2022  *	issued) if successful.
2023  */
2024 int
2025 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2026 		  unsigned char *buffer, int len, int timeout, int retries,
2027 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2028 {
2029 	unsigned char cmd[12];
2030 	int use_10_for_ms;
2031 	int header_length;
2032 	int result;
2033 	struct scsi_sense_hdr my_sshdr;
2034 
2035 	memset(data, 0, sizeof(*data));
2036 	memset(&cmd[0], 0, 12);
2037 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2038 	cmd[2] = modepage;
2039 
2040 	/* caller might not be interested in sense, but we need it */
2041 	if (!sshdr)
2042 		sshdr = &my_sshdr;
2043 
2044  retry:
2045 	use_10_for_ms = sdev->use_10_for_ms;
2046 
2047 	if (use_10_for_ms) {
2048 		if (len < 8)
2049 			len = 8;
2050 
2051 		cmd[0] = MODE_SENSE_10;
2052 		cmd[8] = len;
2053 		header_length = 8;
2054 	} else {
2055 		if (len < 4)
2056 			len = 4;
2057 
2058 		cmd[0] = MODE_SENSE;
2059 		cmd[4] = len;
2060 		header_length = 4;
2061 	}
2062 
2063 	memset(buffer, 0, len);
2064 
2065 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2066 				  sshdr, timeout, retries);
2067 
2068 	/* This code looks awful: what it's doing is making sure an
2069 	 * ILLEGAL REQUEST sense return identifies the actual command
2070 	 * byte as the problem.  MODE_SENSE commands can return
2071 	 * ILLEGAL REQUEST if the code page isn't supported */
2072 
2073 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2074 	    (driver_byte(result) & DRIVER_SENSE)) {
2075 		if (scsi_sense_valid(sshdr)) {
2076 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2077 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2078 				/*
2079 				 * Invalid command operation code
2080 				 */
2081 				sdev->use_10_for_ms = 0;
2082 				goto retry;
2083 			}
2084 		}
2085 	}
2086 
2087 	if(scsi_status_is_good(result)) {
2088 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2089 			     (modepage == 6 || modepage == 8))) {
2090 			/* Initio breakage? */
2091 			header_length = 0;
2092 			data->length = 13;
2093 			data->medium_type = 0;
2094 			data->device_specific = 0;
2095 			data->longlba = 0;
2096 			data->block_descriptor_length = 0;
2097 		} else if(use_10_for_ms) {
2098 			data->length = buffer[0]*256 + buffer[1] + 2;
2099 			data->medium_type = buffer[2];
2100 			data->device_specific = buffer[3];
2101 			data->longlba = buffer[4] & 0x01;
2102 			data->block_descriptor_length = buffer[6]*256
2103 				+ buffer[7];
2104 		} else {
2105 			data->length = buffer[0] + 1;
2106 			data->medium_type = buffer[1];
2107 			data->device_specific = buffer[2];
2108 			data->block_descriptor_length = buffer[3];
2109 		}
2110 		data->header_length = header_length;
2111 	}
2112 
2113 	return result;
2114 }
2115 EXPORT_SYMBOL(scsi_mode_sense);
2116 
2117 /**
2118  *	scsi_test_unit_ready - test if unit is ready
2119  *	@sdev:	scsi device to change the state of.
2120  *	@timeout: command timeout
2121  *	@retries: number of retries before failing
2122  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2123  *		returning sense. Make sure that this is cleared before passing
2124  *		in.
2125  *
2126  *	Returns zero if unsuccessful or an error if TUR failed.  For
2127  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2128  *	translated to success, with the ->changed flag updated.
2129  **/
2130 int
2131 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2132 		     struct scsi_sense_hdr *sshdr_external)
2133 {
2134 	char cmd[] = {
2135 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2136 	};
2137 	struct scsi_sense_hdr *sshdr;
2138 	int result;
2139 
2140 	if (!sshdr_external)
2141 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2142 	else
2143 		sshdr = sshdr_external;
2144 
2145 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2146 	do {
2147 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2148 					  timeout, retries);
2149 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2150 		    sshdr->sense_key == UNIT_ATTENTION)
2151 			sdev->changed = 1;
2152 	} while (scsi_sense_valid(sshdr) &&
2153 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2154 
2155 	if (!sshdr)
2156 		/* could not allocate sense buffer, so can't process it */
2157 		return result;
2158 
2159 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2160 	    (sshdr->sense_key == UNIT_ATTENTION ||
2161 	     sshdr->sense_key == NOT_READY)) {
2162 		sdev->changed = 1;
2163 		result = 0;
2164 	}
2165 	if (!sshdr_external)
2166 		kfree(sshdr);
2167 	return result;
2168 }
2169 EXPORT_SYMBOL(scsi_test_unit_ready);
2170 
2171 /**
2172  *	scsi_device_set_state - Take the given device through the device state model.
2173  *	@sdev:	scsi device to change the state of.
2174  *	@state:	state to change to.
2175  *
2176  *	Returns zero if unsuccessful or an error if the requested
2177  *	transition is illegal.
2178  */
2179 int
2180 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2181 {
2182 	enum scsi_device_state oldstate = sdev->sdev_state;
2183 
2184 	if (state == oldstate)
2185 		return 0;
2186 
2187 	switch (state) {
2188 	case SDEV_CREATED:
2189 		switch (oldstate) {
2190 		case SDEV_CREATED_BLOCK:
2191 			break;
2192 		default:
2193 			goto illegal;
2194 		}
2195 		break;
2196 
2197 	case SDEV_RUNNING:
2198 		switch (oldstate) {
2199 		case SDEV_CREATED:
2200 		case SDEV_OFFLINE:
2201 		case SDEV_QUIESCE:
2202 		case SDEV_BLOCK:
2203 			break;
2204 		default:
2205 			goto illegal;
2206 		}
2207 		break;
2208 
2209 	case SDEV_QUIESCE:
2210 		switch (oldstate) {
2211 		case SDEV_RUNNING:
2212 		case SDEV_OFFLINE:
2213 			break;
2214 		default:
2215 			goto illegal;
2216 		}
2217 		break;
2218 
2219 	case SDEV_OFFLINE:
2220 		switch (oldstate) {
2221 		case SDEV_CREATED:
2222 		case SDEV_RUNNING:
2223 		case SDEV_QUIESCE:
2224 		case SDEV_BLOCK:
2225 			break;
2226 		default:
2227 			goto illegal;
2228 		}
2229 		break;
2230 
2231 	case SDEV_BLOCK:
2232 		switch (oldstate) {
2233 		case SDEV_RUNNING:
2234 		case SDEV_CREATED_BLOCK:
2235 			break;
2236 		default:
2237 			goto illegal;
2238 		}
2239 		break;
2240 
2241 	case SDEV_CREATED_BLOCK:
2242 		switch (oldstate) {
2243 		case SDEV_CREATED:
2244 			break;
2245 		default:
2246 			goto illegal;
2247 		}
2248 		break;
2249 
2250 	case SDEV_CANCEL:
2251 		switch (oldstate) {
2252 		case SDEV_CREATED:
2253 		case SDEV_RUNNING:
2254 		case SDEV_QUIESCE:
2255 		case SDEV_OFFLINE:
2256 		case SDEV_BLOCK:
2257 			break;
2258 		default:
2259 			goto illegal;
2260 		}
2261 		break;
2262 
2263 	case SDEV_DEL:
2264 		switch (oldstate) {
2265 		case SDEV_CREATED:
2266 		case SDEV_RUNNING:
2267 		case SDEV_OFFLINE:
2268 		case SDEV_CANCEL:
2269 			break;
2270 		default:
2271 			goto illegal;
2272 		}
2273 		break;
2274 
2275 	}
2276 	sdev->sdev_state = state;
2277 	return 0;
2278 
2279  illegal:
2280 	SCSI_LOG_ERROR_RECOVERY(1,
2281 				sdev_printk(KERN_ERR, sdev,
2282 					    "Illegal state transition %s->%s\n",
2283 					    scsi_device_state_name(oldstate),
2284 					    scsi_device_state_name(state))
2285 				);
2286 	return -EINVAL;
2287 }
2288 EXPORT_SYMBOL(scsi_device_set_state);
2289 
2290 /**
2291  * 	sdev_evt_emit - emit a single SCSI device uevent
2292  *	@sdev: associated SCSI device
2293  *	@evt: event to emit
2294  *
2295  *	Send a single uevent (scsi_event) to the associated scsi_device.
2296  */
2297 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2298 {
2299 	int idx = 0;
2300 	char *envp[3];
2301 
2302 	switch (evt->evt_type) {
2303 	case SDEV_EVT_MEDIA_CHANGE:
2304 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2305 		break;
2306 
2307 	default:
2308 		/* do nothing */
2309 		break;
2310 	}
2311 
2312 	envp[idx++] = NULL;
2313 
2314 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2315 }
2316 
2317 /**
2318  * 	sdev_evt_thread - send a uevent for each scsi event
2319  *	@work: work struct for scsi_device
2320  *
2321  *	Dispatch queued events to their associated scsi_device kobjects
2322  *	as uevents.
2323  */
2324 void scsi_evt_thread(struct work_struct *work)
2325 {
2326 	struct scsi_device *sdev;
2327 	LIST_HEAD(event_list);
2328 
2329 	sdev = container_of(work, struct scsi_device, event_work);
2330 
2331 	while (1) {
2332 		struct scsi_event *evt;
2333 		struct list_head *this, *tmp;
2334 		unsigned long flags;
2335 
2336 		spin_lock_irqsave(&sdev->list_lock, flags);
2337 		list_splice_init(&sdev->event_list, &event_list);
2338 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2339 
2340 		if (list_empty(&event_list))
2341 			break;
2342 
2343 		list_for_each_safe(this, tmp, &event_list) {
2344 			evt = list_entry(this, struct scsi_event, node);
2345 			list_del(&evt->node);
2346 			scsi_evt_emit(sdev, evt);
2347 			kfree(evt);
2348 		}
2349 	}
2350 }
2351 
2352 /**
2353  * 	sdev_evt_send - send asserted event to uevent thread
2354  *	@sdev: scsi_device event occurred on
2355  *	@evt: event to send
2356  *
2357  *	Assert scsi device event asynchronously.
2358  */
2359 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2360 {
2361 	unsigned long flags;
2362 
2363 #if 0
2364 	/* FIXME: currently this check eliminates all media change events
2365 	 * for polled devices.  Need to update to discriminate between AN
2366 	 * and polled events */
2367 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2368 		kfree(evt);
2369 		return;
2370 	}
2371 #endif
2372 
2373 	spin_lock_irqsave(&sdev->list_lock, flags);
2374 	list_add_tail(&evt->node, &sdev->event_list);
2375 	schedule_work(&sdev->event_work);
2376 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2377 }
2378 EXPORT_SYMBOL_GPL(sdev_evt_send);
2379 
2380 /**
2381  * 	sdev_evt_alloc - allocate a new scsi event
2382  *	@evt_type: type of event to allocate
2383  *	@gfpflags: GFP flags for allocation
2384  *
2385  *	Allocates and returns a new scsi_event.
2386  */
2387 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2388 				  gfp_t gfpflags)
2389 {
2390 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2391 	if (!evt)
2392 		return NULL;
2393 
2394 	evt->evt_type = evt_type;
2395 	INIT_LIST_HEAD(&evt->node);
2396 
2397 	/* evt_type-specific initialization, if any */
2398 	switch (evt_type) {
2399 	case SDEV_EVT_MEDIA_CHANGE:
2400 	default:
2401 		/* do nothing */
2402 		break;
2403 	}
2404 
2405 	return evt;
2406 }
2407 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2408 
2409 /**
2410  * 	sdev_evt_send_simple - send asserted event to uevent thread
2411  *	@sdev: scsi_device event occurred on
2412  *	@evt_type: type of event to send
2413  *	@gfpflags: GFP flags for allocation
2414  *
2415  *	Assert scsi device event asynchronously, given an event type.
2416  */
2417 void sdev_evt_send_simple(struct scsi_device *sdev,
2418 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2419 {
2420 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2421 	if (!evt) {
2422 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2423 			    evt_type);
2424 		return;
2425 	}
2426 
2427 	sdev_evt_send(sdev, evt);
2428 }
2429 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2430 
2431 /**
2432  *	scsi_device_quiesce - Block user issued commands.
2433  *	@sdev:	scsi device to quiesce.
2434  *
2435  *	This works by trying to transition to the SDEV_QUIESCE state
2436  *	(which must be a legal transition).  When the device is in this
2437  *	state, only special requests will be accepted, all others will
2438  *	be deferred.  Since special requests may also be requeued requests,
2439  *	a successful return doesn't guarantee the device will be
2440  *	totally quiescent.
2441  *
2442  *	Must be called with user context, may sleep.
2443  *
2444  *	Returns zero if unsuccessful or an error if not.
2445  */
2446 int
2447 scsi_device_quiesce(struct scsi_device *sdev)
2448 {
2449 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2450 	if (err)
2451 		return err;
2452 
2453 	scsi_run_queue(sdev->request_queue);
2454 	while (sdev->device_busy) {
2455 		msleep_interruptible(200);
2456 		scsi_run_queue(sdev->request_queue);
2457 	}
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL(scsi_device_quiesce);
2461 
2462 /**
2463  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2464  *	@sdev:	scsi device to resume.
2465  *
2466  *	Moves the device from quiesced back to running and restarts the
2467  *	queues.
2468  *
2469  *	Must be called with user context, may sleep.
2470  */
2471 void
2472 scsi_device_resume(struct scsi_device *sdev)
2473 {
2474 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2475 		return;
2476 	scsi_run_queue(sdev->request_queue);
2477 }
2478 EXPORT_SYMBOL(scsi_device_resume);
2479 
2480 static void
2481 device_quiesce_fn(struct scsi_device *sdev, void *data)
2482 {
2483 	scsi_device_quiesce(sdev);
2484 }
2485 
2486 void
2487 scsi_target_quiesce(struct scsi_target *starget)
2488 {
2489 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2490 }
2491 EXPORT_SYMBOL(scsi_target_quiesce);
2492 
2493 static void
2494 device_resume_fn(struct scsi_device *sdev, void *data)
2495 {
2496 	scsi_device_resume(sdev);
2497 }
2498 
2499 void
2500 scsi_target_resume(struct scsi_target *starget)
2501 {
2502 	starget_for_each_device(starget, NULL, device_resume_fn);
2503 }
2504 EXPORT_SYMBOL(scsi_target_resume);
2505 
2506 /**
2507  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2508  * @sdev:	device to block
2509  *
2510  * Block request made by scsi lld's to temporarily stop all
2511  * scsi commands on the specified device.  Called from interrupt
2512  * or normal process context.
2513  *
2514  * Returns zero if successful or error if not
2515  *
2516  * Notes:
2517  *	This routine transitions the device to the SDEV_BLOCK state
2518  *	(which must be a legal transition).  When the device is in this
2519  *	state, all commands are deferred until the scsi lld reenables
2520  *	the device with scsi_device_unblock or device_block_tmo fires.
2521  *	This routine assumes the host_lock is held on entry.
2522  */
2523 int
2524 scsi_internal_device_block(struct scsi_device *sdev)
2525 {
2526 	struct request_queue *q = sdev->request_queue;
2527 	unsigned long flags;
2528 	int err = 0;
2529 
2530 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2531 	if (err) {
2532 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2533 
2534 		if (err)
2535 			return err;
2536 	}
2537 
2538 	/*
2539 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2540 	 * block layer from calling the midlayer with this device's
2541 	 * request queue.
2542 	 */
2543 	spin_lock_irqsave(q->queue_lock, flags);
2544 	blk_stop_queue(q);
2545 	spin_unlock_irqrestore(q->queue_lock, flags);
2546 
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2550 
2551 /**
2552  * scsi_internal_device_unblock - resume a device after a block request
2553  * @sdev:	device to resume
2554  *
2555  * Called by scsi lld's or the midlayer to restart the device queue
2556  * for the previously suspended scsi device.  Called from interrupt or
2557  * normal process context.
2558  *
2559  * Returns zero if successful or error if not.
2560  *
2561  * Notes:
2562  *	This routine transitions the device to the SDEV_RUNNING state
2563  *	(which must be a legal transition) allowing the midlayer to
2564  *	goose the queue for this device.  This routine assumes the
2565  *	host_lock is held upon entry.
2566  */
2567 int
2568 scsi_internal_device_unblock(struct scsi_device *sdev)
2569 {
2570 	struct request_queue *q = sdev->request_queue;
2571 	int err;
2572 	unsigned long flags;
2573 
2574 	/*
2575 	 * Try to transition the scsi device to SDEV_RUNNING
2576 	 * and goose the device queue if successful.
2577 	 */
2578 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2579 	if (err) {
2580 		err = scsi_device_set_state(sdev, SDEV_CREATED);
2581 
2582 		if (err)
2583 			return err;
2584 	}
2585 
2586 	spin_lock_irqsave(q->queue_lock, flags);
2587 	blk_start_queue(q);
2588 	spin_unlock_irqrestore(q->queue_lock, flags);
2589 
2590 	return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2593 
2594 static void
2595 device_block(struct scsi_device *sdev, void *data)
2596 {
2597 	scsi_internal_device_block(sdev);
2598 }
2599 
2600 static int
2601 target_block(struct device *dev, void *data)
2602 {
2603 	if (scsi_is_target_device(dev))
2604 		starget_for_each_device(to_scsi_target(dev), NULL,
2605 					device_block);
2606 	return 0;
2607 }
2608 
2609 void
2610 scsi_target_block(struct device *dev)
2611 {
2612 	if (scsi_is_target_device(dev))
2613 		starget_for_each_device(to_scsi_target(dev), NULL,
2614 					device_block);
2615 	else
2616 		device_for_each_child(dev, NULL, target_block);
2617 }
2618 EXPORT_SYMBOL_GPL(scsi_target_block);
2619 
2620 static void
2621 device_unblock(struct scsi_device *sdev, void *data)
2622 {
2623 	scsi_internal_device_unblock(sdev);
2624 }
2625 
2626 static int
2627 target_unblock(struct device *dev, void *data)
2628 {
2629 	if (scsi_is_target_device(dev))
2630 		starget_for_each_device(to_scsi_target(dev), NULL,
2631 					device_unblock);
2632 	return 0;
2633 }
2634 
2635 void
2636 scsi_target_unblock(struct device *dev)
2637 {
2638 	if (scsi_is_target_device(dev))
2639 		starget_for_each_device(to_scsi_target(dev), NULL,
2640 					device_unblock);
2641 	else
2642 		device_for_each_child(dev, NULL, target_unblock);
2643 }
2644 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2645 
2646 /**
2647  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2648  * @sgl:	scatter-gather list
2649  * @sg_count:	number of segments in sg
2650  * @offset:	offset in bytes into sg, on return offset into the mapped area
2651  * @len:	bytes to map, on return number of bytes mapped
2652  *
2653  * Returns virtual address of the start of the mapped page
2654  */
2655 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2656 			  size_t *offset, size_t *len)
2657 {
2658 	int i;
2659 	size_t sg_len = 0, len_complete = 0;
2660 	struct scatterlist *sg;
2661 	struct page *page;
2662 
2663 	WARN_ON(!irqs_disabled());
2664 
2665 	for_each_sg(sgl, sg, sg_count, i) {
2666 		len_complete = sg_len; /* Complete sg-entries */
2667 		sg_len += sg->length;
2668 		if (sg_len > *offset)
2669 			break;
2670 	}
2671 
2672 	if (unlikely(i == sg_count)) {
2673 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2674 			"elements %d\n",
2675 		       __func__, sg_len, *offset, sg_count);
2676 		WARN_ON(1);
2677 		return NULL;
2678 	}
2679 
2680 	/* Offset starting from the beginning of first page in this sg-entry */
2681 	*offset = *offset - len_complete + sg->offset;
2682 
2683 	/* Assumption: contiguous pages can be accessed as "page + i" */
2684 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2685 	*offset &= ~PAGE_MASK;
2686 
2687 	/* Bytes in this sg-entry from *offset to the end of the page */
2688 	sg_len = PAGE_SIZE - *offset;
2689 	if (*len > sg_len)
2690 		*len = sg_len;
2691 
2692 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2693 }
2694 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2695 
2696 /**
2697  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2698  * @virt:	virtual address to be unmapped
2699  */
2700 void scsi_kunmap_atomic_sg(void *virt)
2701 {
2702 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2703 }
2704 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2705