1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /* 95 * Function: scsi_queue_insert() 96 * 97 * Purpose: Insert a command in the midlevel queue. 98 * 99 * Arguments: cmd - command that we are adding to queue. 100 * reason - why we are inserting command to queue. 101 * 102 * Lock status: Assumed that lock is not held upon entry. 103 * 104 * Returns: Nothing. 105 * 106 * Notes: We do this for one of two cases. Either the host is busy 107 * and it cannot accept any more commands for the time being, 108 * or the device returned QUEUE_FULL and can accept no more 109 * commands. 110 * Notes: This could be called either from an interrupt context or a 111 * normal process context. 112 */ 113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 114 { 115 struct Scsi_Host *host = cmd->device->host; 116 struct scsi_device *device = cmd->device; 117 struct scsi_target *starget = scsi_target(device); 118 struct request_queue *q = device->request_queue; 119 unsigned long flags; 120 121 SCSI_LOG_MLQUEUE(1, 122 printk("Inserting command %p into mlqueue\n", cmd)); 123 124 /* 125 * Set the appropriate busy bit for the device/host. 126 * 127 * If the host/device isn't busy, assume that something actually 128 * completed, and that we should be able to queue a command now. 129 * 130 * Note that the prior mid-layer assumption that any host could 131 * always queue at least one command is now broken. The mid-layer 132 * will implement a user specifiable stall (see 133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 134 * if a command is requeued with no other commands outstanding 135 * either for the device or for the host. 136 */ 137 switch (reason) { 138 case SCSI_MLQUEUE_HOST_BUSY: 139 host->host_blocked = host->max_host_blocked; 140 break; 141 case SCSI_MLQUEUE_DEVICE_BUSY: 142 device->device_blocked = device->max_device_blocked; 143 break; 144 case SCSI_MLQUEUE_TARGET_BUSY: 145 starget->target_blocked = starget->max_target_blocked; 146 break; 147 } 148 149 /* 150 * Decrement the counters, since these commands are no longer 151 * active on the host/device. 152 */ 153 scsi_device_unbusy(device); 154 155 /* 156 * Requeue this command. It will go before all other commands 157 * that are already in the queue. 158 * 159 * NOTE: there is magic here about the way the queue is plugged if 160 * we have no outstanding commands. 161 * 162 * Although we *don't* plug the queue, we call the request 163 * function. The SCSI request function detects the blocked condition 164 * and plugs the queue appropriately. 165 */ 166 spin_lock_irqsave(q->queue_lock, flags); 167 blk_requeue_request(q, cmd->request); 168 spin_unlock_irqrestore(q->queue_lock, flags); 169 170 scsi_run_queue(q); 171 172 return 0; 173 } 174 175 /** 176 * scsi_execute - insert request and wait for the result 177 * @sdev: scsi device 178 * @cmd: scsi command 179 * @data_direction: data direction 180 * @buffer: data buffer 181 * @bufflen: len of buffer 182 * @sense: optional sense buffer 183 * @timeout: request timeout in seconds 184 * @retries: number of times to retry request 185 * @flags: or into request flags; 186 * 187 * returns the req->errors value which is the scsi_cmnd result 188 * field. 189 */ 190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 191 int data_direction, void *buffer, unsigned bufflen, 192 unsigned char *sense, int timeout, int retries, int flags) 193 { 194 struct request *req; 195 int write = (data_direction == DMA_TO_DEVICE); 196 int ret = DRIVER_ERROR << 24; 197 198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 199 200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 201 buffer, bufflen, __GFP_WAIT)) 202 goto out; 203 204 req->cmd_len = COMMAND_SIZE(cmd[0]); 205 memcpy(req->cmd, cmd, req->cmd_len); 206 req->sense = sense; 207 req->sense_len = 0; 208 req->retries = retries; 209 req->timeout = timeout; 210 req->cmd_type = REQ_TYPE_BLOCK_PC; 211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 212 213 /* 214 * head injection *required* here otherwise quiesce won't work 215 */ 216 blk_execute_rq(req->q, NULL, req, 1); 217 218 /* 219 * Some devices (USB mass-storage in particular) may transfer 220 * garbage data together with a residue indicating that the data 221 * is invalid. Prevent the garbage from being misinterpreted 222 * and prevent security leaks by zeroing out the excess data. 223 */ 224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen)) 225 memset(buffer + (bufflen - req->data_len), 0, req->data_len); 226 227 ret = req->errors; 228 out: 229 blk_put_request(req); 230 231 return ret; 232 } 233 EXPORT_SYMBOL(scsi_execute); 234 235 236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 237 int data_direction, void *buffer, unsigned bufflen, 238 struct scsi_sense_hdr *sshdr, int timeout, int retries) 239 { 240 char *sense = NULL; 241 int result; 242 243 if (sshdr) { 244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 245 if (!sense) 246 return DRIVER_ERROR << 24; 247 } 248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 249 sense, timeout, retries, 0); 250 if (sshdr) 251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 252 253 kfree(sense); 254 return result; 255 } 256 EXPORT_SYMBOL(scsi_execute_req); 257 258 struct scsi_io_context { 259 void *data; 260 void (*done)(void *data, char *sense, int result, int resid); 261 char sense[SCSI_SENSE_BUFFERSIZE]; 262 }; 263 264 static struct kmem_cache *scsi_io_context_cache; 265 266 static void scsi_end_async(struct request *req, int uptodate) 267 { 268 struct scsi_io_context *sioc = req->end_io_data; 269 270 if (sioc->done) 271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 272 273 kmem_cache_free(scsi_io_context_cache, sioc); 274 __blk_put_request(req->q, req); 275 } 276 277 static int scsi_merge_bio(struct request *rq, struct bio *bio) 278 { 279 struct request_queue *q = rq->q; 280 281 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 282 if (rq_data_dir(rq) == WRITE) 283 bio->bi_rw |= (1 << BIO_RW); 284 blk_queue_bounce(q, &bio); 285 286 return blk_rq_append_bio(q, rq, bio); 287 } 288 289 static void scsi_bi_endio(struct bio *bio, int error) 290 { 291 bio_put(bio); 292 } 293 294 /** 295 * scsi_req_map_sg - map a scatterlist into a request 296 * @rq: request to fill 297 * @sgl: scatterlist 298 * @nsegs: number of elements 299 * @bufflen: len of buffer 300 * @gfp: memory allocation flags 301 * 302 * scsi_req_map_sg maps a scatterlist into a request so that the 303 * request can be sent to the block layer. We do not trust the scatterlist 304 * sent to use, as some ULDs use that struct to only organize the pages. 305 */ 306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 307 int nsegs, unsigned bufflen, gfp_t gfp) 308 { 309 struct request_queue *q = rq->q; 310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 311 unsigned int data_len = bufflen, len, bytes, off; 312 struct scatterlist *sg; 313 struct page *page; 314 struct bio *bio = NULL; 315 int i, err, nr_vecs = 0; 316 317 for_each_sg(sgl, sg, nsegs, i) { 318 page = sg_page(sg); 319 off = sg->offset; 320 len = sg->length; 321 322 while (len > 0 && data_len > 0) { 323 /* 324 * sg sends a scatterlist that is larger than 325 * the data_len it wants transferred for certain 326 * IO sizes 327 */ 328 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 329 bytes = min(bytes, data_len); 330 331 if (!bio) { 332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 333 nr_pages -= nr_vecs; 334 335 bio = bio_alloc(gfp, nr_vecs); 336 if (!bio) { 337 err = -ENOMEM; 338 goto free_bios; 339 } 340 bio->bi_end_io = scsi_bi_endio; 341 } 342 343 if (bio_add_pc_page(q, bio, page, bytes, off) != 344 bytes) { 345 bio_put(bio); 346 err = -EINVAL; 347 goto free_bios; 348 } 349 350 if (bio->bi_vcnt >= nr_vecs) { 351 err = scsi_merge_bio(rq, bio); 352 if (err) { 353 bio_endio(bio, 0); 354 goto free_bios; 355 } 356 bio = NULL; 357 } 358 359 page++; 360 len -= bytes; 361 data_len -=bytes; 362 off = 0; 363 } 364 } 365 366 rq->buffer = rq->data = NULL; 367 rq->data_len = bufflen; 368 return 0; 369 370 free_bios: 371 while ((bio = rq->bio) != NULL) { 372 rq->bio = bio->bi_next; 373 /* 374 * call endio instead of bio_put incase it was bounced 375 */ 376 bio_endio(bio, 0); 377 } 378 379 return err; 380 } 381 382 /** 383 * scsi_execute_async - insert request 384 * @sdev: scsi device 385 * @cmd: scsi command 386 * @cmd_len: length of scsi cdb 387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE 388 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 389 * @bufflen: len of buffer 390 * @use_sg: if buffer is a scatterlist this is the number of elements 391 * @timeout: request timeout in seconds 392 * @retries: number of times to retry request 393 * @privdata: data passed to done() 394 * @done: callback function when done 395 * @gfp: memory allocation flags 396 */ 397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 398 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 399 int use_sg, int timeout, int retries, void *privdata, 400 void (*done)(void *, char *, int, int), gfp_t gfp) 401 { 402 struct request *req; 403 struct scsi_io_context *sioc; 404 int err = 0; 405 int write = (data_direction == DMA_TO_DEVICE); 406 407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 408 if (!sioc) 409 return DRIVER_ERROR << 24; 410 411 req = blk_get_request(sdev->request_queue, write, gfp); 412 if (!req) 413 goto free_sense; 414 req->cmd_type = REQ_TYPE_BLOCK_PC; 415 req->cmd_flags |= REQ_QUIET; 416 417 if (use_sg) 418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 419 else if (bufflen) 420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 421 422 if (err) 423 goto free_req; 424 425 req->cmd_len = cmd_len; 426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 427 memcpy(req->cmd, cmd, req->cmd_len); 428 req->sense = sioc->sense; 429 req->sense_len = 0; 430 req->timeout = timeout; 431 req->retries = retries; 432 req->end_io_data = sioc; 433 434 sioc->data = privdata; 435 sioc->done = done; 436 437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 438 return 0; 439 440 free_req: 441 blk_put_request(req); 442 free_sense: 443 kmem_cache_free(scsi_io_context_cache, sioc); 444 return DRIVER_ERROR << 24; 445 } 446 EXPORT_SYMBOL_GPL(scsi_execute_async); 447 448 /* 449 * Function: scsi_init_cmd_errh() 450 * 451 * Purpose: Initialize cmd fields related to error handling. 452 * 453 * Arguments: cmd - command that is ready to be queued. 454 * 455 * Notes: This function has the job of initializing a number of 456 * fields related to error handling. Typically this will 457 * be called once for each command, as required. 458 */ 459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 460 { 461 cmd->serial_number = 0; 462 scsi_set_resid(cmd, 0); 463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 464 if (cmd->cmd_len == 0) 465 cmd->cmd_len = scsi_command_size(cmd->cmnd); 466 } 467 468 void scsi_device_unbusy(struct scsi_device *sdev) 469 { 470 struct Scsi_Host *shost = sdev->host; 471 struct scsi_target *starget = scsi_target(sdev); 472 unsigned long flags; 473 474 spin_lock_irqsave(shost->host_lock, flags); 475 shost->host_busy--; 476 starget->target_busy--; 477 if (unlikely(scsi_host_in_recovery(shost) && 478 (shost->host_failed || shost->host_eh_scheduled))) 479 scsi_eh_wakeup(shost); 480 spin_unlock(shost->host_lock); 481 spin_lock(sdev->request_queue->queue_lock); 482 sdev->device_busy--; 483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 484 } 485 486 /* 487 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 488 * and call blk_run_queue for all the scsi_devices on the target - 489 * including current_sdev first. 490 * 491 * Called with *no* scsi locks held. 492 */ 493 static void scsi_single_lun_run(struct scsi_device *current_sdev) 494 { 495 struct Scsi_Host *shost = current_sdev->host; 496 struct scsi_device *sdev, *tmp; 497 struct scsi_target *starget = scsi_target(current_sdev); 498 unsigned long flags; 499 500 spin_lock_irqsave(shost->host_lock, flags); 501 starget->starget_sdev_user = NULL; 502 spin_unlock_irqrestore(shost->host_lock, flags); 503 504 /* 505 * Call blk_run_queue for all LUNs on the target, starting with 506 * current_sdev. We race with others (to set starget_sdev_user), 507 * but in most cases, we will be first. Ideally, each LU on the 508 * target would get some limited time or requests on the target. 509 */ 510 blk_run_queue(current_sdev->request_queue); 511 512 spin_lock_irqsave(shost->host_lock, flags); 513 if (starget->starget_sdev_user) 514 goto out; 515 list_for_each_entry_safe(sdev, tmp, &starget->devices, 516 same_target_siblings) { 517 if (sdev == current_sdev) 518 continue; 519 if (scsi_device_get(sdev)) 520 continue; 521 522 spin_unlock_irqrestore(shost->host_lock, flags); 523 blk_run_queue(sdev->request_queue); 524 spin_lock_irqsave(shost->host_lock, flags); 525 526 scsi_device_put(sdev); 527 } 528 out: 529 spin_unlock_irqrestore(shost->host_lock, flags); 530 } 531 532 static inline int scsi_device_is_busy(struct scsi_device *sdev) 533 { 534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 535 return 1; 536 537 return 0; 538 } 539 540 static inline int scsi_target_is_busy(struct scsi_target *starget) 541 { 542 return ((starget->can_queue > 0 && 543 starget->target_busy >= starget->can_queue) || 544 starget->target_blocked); 545 } 546 547 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 548 { 549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 550 shost->host_blocked || shost->host_self_blocked) 551 return 1; 552 553 return 0; 554 } 555 556 /* 557 * Function: scsi_run_queue() 558 * 559 * Purpose: Select a proper request queue to serve next 560 * 561 * Arguments: q - last request's queue 562 * 563 * Returns: Nothing 564 * 565 * Notes: The previous command was completely finished, start 566 * a new one if possible. 567 */ 568 static void scsi_run_queue(struct request_queue *q) 569 { 570 struct scsi_device *sdev = q->queuedata; 571 struct Scsi_Host *shost = sdev->host; 572 LIST_HEAD(starved_list); 573 unsigned long flags; 574 575 if (scsi_target(sdev)->single_lun) 576 scsi_single_lun_run(sdev); 577 578 spin_lock_irqsave(shost->host_lock, flags); 579 list_splice_init(&shost->starved_list, &starved_list); 580 581 while (!list_empty(&starved_list)) { 582 int flagset; 583 584 /* 585 * As long as shost is accepting commands and we have 586 * starved queues, call blk_run_queue. scsi_request_fn 587 * drops the queue_lock and can add us back to the 588 * starved_list. 589 * 590 * host_lock protects the starved_list and starved_entry. 591 * scsi_request_fn must get the host_lock before checking 592 * or modifying starved_list or starved_entry. 593 */ 594 if (scsi_host_is_busy(shost)) 595 break; 596 597 sdev = list_entry(starved_list.next, 598 struct scsi_device, starved_entry); 599 list_del_init(&sdev->starved_entry); 600 if (scsi_target_is_busy(scsi_target(sdev))) { 601 list_move_tail(&sdev->starved_entry, 602 &shost->starved_list); 603 continue; 604 } 605 606 spin_unlock(shost->host_lock); 607 608 spin_lock(sdev->request_queue->queue_lock); 609 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 610 !test_bit(QUEUE_FLAG_REENTER, 611 &sdev->request_queue->queue_flags); 612 if (flagset) 613 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 614 __blk_run_queue(sdev->request_queue); 615 if (flagset) 616 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 617 spin_unlock(sdev->request_queue->queue_lock); 618 619 spin_lock(shost->host_lock); 620 } 621 /* put any unprocessed entries back */ 622 list_splice(&starved_list, &shost->starved_list); 623 spin_unlock_irqrestore(shost->host_lock, flags); 624 625 blk_run_queue(q); 626 } 627 628 /* 629 * Function: scsi_requeue_command() 630 * 631 * Purpose: Handle post-processing of completed commands. 632 * 633 * Arguments: q - queue to operate on 634 * cmd - command that may need to be requeued. 635 * 636 * Returns: Nothing 637 * 638 * Notes: After command completion, there may be blocks left 639 * over which weren't finished by the previous command 640 * this can be for a number of reasons - the main one is 641 * I/O errors in the middle of the request, in which case 642 * we need to request the blocks that come after the bad 643 * sector. 644 * Notes: Upon return, cmd is a stale pointer. 645 */ 646 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 647 { 648 struct request *req = cmd->request; 649 unsigned long flags; 650 651 spin_lock_irqsave(q->queue_lock, flags); 652 scsi_unprep_request(req); 653 blk_requeue_request(q, req); 654 spin_unlock_irqrestore(q->queue_lock, flags); 655 656 scsi_run_queue(q); 657 } 658 659 void scsi_next_command(struct scsi_cmnd *cmd) 660 { 661 struct scsi_device *sdev = cmd->device; 662 struct request_queue *q = sdev->request_queue; 663 664 /* need to hold a reference on the device before we let go of the cmd */ 665 get_device(&sdev->sdev_gendev); 666 667 scsi_put_command(cmd); 668 scsi_run_queue(q); 669 670 /* ok to remove device now */ 671 put_device(&sdev->sdev_gendev); 672 } 673 674 void scsi_run_host_queues(struct Scsi_Host *shost) 675 { 676 struct scsi_device *sdev; 677 678 shost_for_each_device(sdev, shost) 679 scsi_run_queue(sdev->request_queue); 680 } 681 682 /* 683 * Function: scsi_end_request() 684 * 685 * Purpose: Post-processing of completed commands (usually invoked at end 686 * of upper level post-processing and scsi_io_completion). 687 * 688 * Arguments: cmd - command that is complete. 689 * error - 0 if I/O indicates success, < 0 for I/O error. 690 * bytes - number of bytes of completed I/O 691 * requeue - indicates whether we should requeue leftovers. 692 * 693 * Lock status: Assumed that lock is not held upon entry. 694 * 695 * Returns: cmd if requeue required, NULL otherwise. 696 * 697 * Notes: This is called for block device requests in order to 698 * mark some number of sectors as complete. 699 * 700 * We are guaranteeing that the request queue will be goosed 701 * at some point during this call. 702 * Notes: If cmd was requeued, upon return it will be a stale pointer. 703 */ 704 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 705 int bytes, int requeue) 706 { 707 struct request_queue *q = cmd->device->request_queue; 708 struct request *req = cmd->request; 709 710 /* 711 * If there are blocks left over at the end, set up the command 712 * to queue the remainder of them. 713 */ 714 if (blk_end_request(req, error, bytes)) { 715 int leftover = (req->hard_nr_sectors << 9); 716 717 if (blk_pc_request(req)) 718 leftover = req->data_len; 719 720 /* kill remainder if no retrys */ 721 if (error && scsi_noretry_cmd(cmd)) 722 blk_end_request(req, error, leftover); 723 else { 724 if (requeue) { 725 /* 726 * Bleah. Leftovers again. Stick the 727 * leftovers in the front of the 728 * queue, and goose the queue again. 729 */ 730 scsi_requeue_command(q, cmd); 731 cmd = NULL; 732 } 733 return cmd; 734 } 735 } 736 737 /* 738 * This will goose the queue request function at the end, so we don't 739 * need to worry about launching another command. 740 */ 741 scsi_next_command(cmd); 742 return NULL; 743 } 744 745 static inline unsigned int scsi_sgtable_index(unsigned short nents) 746 { 747 unsigned int index; 748 749 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 750 751 if (nents <= 8) 752 index = 0; 753 else 754 index = get_count_order(nents) - 3; 755 756 return index; 757 } 758 759 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 760 { 761 struct scsi_host_sg_pool *sgp; 762 763 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 764 mempool_free(sgl, sgp->pool); 765 } 766 767 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 768 { 769 struct scsi_host_sg_pool *sgp; 770 771 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 772 return mempool_alloc(sgp->pool, gfp_mask); 773 } 774 775 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 776 gfp_t gfp_mask) 777 { 778 int ret; 779 780 BUG_ON(!nents); 781 782 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 783 gfp_mask, scsi_sg_alloc); 784 if (unlikely(ret)) 785 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 786 scsi_sg_free); 787 788 return ret; 789 } 790 791 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 792 { 793 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 794 } 795 796 /* 797 * Function: scsi_release_buffers() 798 * 799 * Purpose: Completion processing for block device I/O requests. 800 * 801 * Arguments: cmd - command that we are bailing. 802 * 803 * Lock status: Assumed that no lock is held upon entry. 804 * 805 * Returns: Nothing 806 * 807 * Notes: In the event that an upper level driver rejects a 808 * command, we must release resources allocated during 809 * the __init_io() function. Primarily this would involve 810 * the scatter-gather table, and potentially any bounce 811 * buffers. 812 */ 813 void scsi_release_buffers(struct scsi_cmnd *cmd) 814 { 815 if (cmd->sdb.table.nents) 816 scsi_free_sgtable(&cmd->sdb); 817 818 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 819 820 if (scsi_bidi_cmnd(cmd)) { 821 struct scsi_data_buffer *bidi_sdb = 822 cmd->request->next_rq->special; 823 scsi_free_sgtable(bidi_sdb); 824 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 825 cmd->request->next_rq->special = NULL; 826 } 827 828 if (scsi_prot_sg_count(cmd)) 829 scsi_free_sgtable(cmd->prot_sdb); 830 } 831 EXPORT_SYMBOL(scsi_release_buffers); 832 833 /* 834 * Bidi commands Must be complete as a whole, both sides at once. 835 * If part of the bytes were written and lld returned 836 * scsi_in()->resid and/or scsi_out()->resid this information will be left 837 * in req->data_len and req->next_rq->data_len. The upper-layer driver can 838 * decide what to do with this information. 839 */ 840 static void scsi_end_bidi_request(struct scsi_cmnd *cmd) 841 { 842 struct request *req = cmd->request; 843 unsigned int dlen = req->data_len; 844 unsigned int next_dlen = req->next_rq->data_len; 845 846 req->data_len = scsi_out(cmd)->resid; 847 req->next_rq->data_len = scsi_in(cmd)->resid; 848 849 /* The req and req->next_rq have not been completed */ 850 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen)); 851 852 scsi_release_buffers(cmd); 853 854 /* 855 * This will goose the queue request function at the end, so we don't 856 * need to worry about launching another command. 857 */ 858 scsi_next_command(cmd); 859 } 860 861 /* 862 * Function: scsi_io_completion() 863 * 864 * Purpose: Completion processing for block device I/O requests. 865 * 866 * Arguments: cmd - command that is finished. 867 * 868 * Lock status: Assumed that no lock is held upon entry. 869 * 870 * Returns: Nothing 871 * 872 * Notes: This function is matched in terms of capabilities to 873 * the function that created the scatter-gather list. 874 * In other words, if there are no bounce buffers 875 * (the normal case for most drivers), we don't need 876 * the logic to deal with cleaning up afterwards. 877 * 878 * We must do one of several things here: 879 * 880 * a) Call scsi_end_request. This will finish off the 881 * specified number of sectors. If we are done, the 882 * command block will be released, and the queue 883 * function will be goosed. If we are not done, then 884 * scsi_end_request will directly goose the queue. 885 * 886 * b) We can just use scsi_requeue_command() here. This would 887 * be used if we just wanted to retry, for example. 888 */ 889 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 890 { 891 int result = cmd->result; 892 int this_count; 893 struct request_queue *q = cmd->device->request_queue; 894 struct request *req = cmd->request; 895 int error = 0; 896 struct scsi_sense_hdr sshdr; 897 int sense_valid = 0; 898 int sense_deferred = 0; 899 900 if (result) { 901 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 902 if (sense_valid) 903 sense_deferred = scsi_sense_is_deferred(&sshdr); 904 } 905 906 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 907 req->errors = result; 908 if (result) { 909 if (sense_valid && req->sense) { 910 /* 911 * SG_IO wants current and deferred errors 912 */ 913 int len = 8 + cmd->sense_buffer[7]; 914 915 if (len > SCSI_SENSE_BUFFERSIZE) 916 len = SCSI_SENSE_BUFFERSIZE; 917 memcpy(req->sense, cmd->sense_buffer, len); 918 req->sense_len = len; 919 } 920 if (!sense_deferred) 921 error = -EIO; 922 } 923 if (scsi_bidi_cmnd(cmd)) { 924 /* will also release_buffers */ 925 scsi_end_bidi_request(cmd); 926 return; 927 } 928 req->data_len = scsi_get_resid(cmd); 929 } 930 931 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 932 scsi_release_buffers(cmd); 933 934 /* 935 * Next deal with any sectors which we were able to correctly 936 * handle. 937 */ 938 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 939 "%d bytes done.\n", 940 req->nr_sectors, good_bytes)); 941 942 /* A number of bytes were successfully read. If there 943 * are leftovers and there is some kind of error 944 * (result != 0), retry the rest. 945 */ 946 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 947 return; 948 this_count = blk_rq_bytes(req); 949 950 /* good_bytes = 0, or (inclusive) there were leftovers and 951 * result = 0, so scsi_end_request couldn't retry. 952 */ 953 if (sense_valid && !sense_deferred) { 954 switch (sshdr.sense_key) { 955 case UNIT_ATTENTION: 956 if (cmd->device->removable) { 957 /* Detected disc change. Set a bit 958 * and quietly refuse further access. 959 */ 960 cmd->device->changed = 1; 961 scsi_end_request(cmd, -EIO, this_count, 1); 962 return; 963 } else { 964 /* Must have been a power glitch, or a 965 * bus reset. Could not have been a 966 * media change, so we just retry the 967 * request and see what happens. 968 */ 969 scsi_requeue_command(q, cmd); 970 return; 971 } 972 break; 973 case ILLEGAL_REQUEST: 974 /* If we had an ILLEGAL REQUEST returned, then 975 * we may have performed an unsupported 976 * command. The only thing this should be 977 * would be a ten byte read where only a six 978 * byte read was supported. Also, on a system 979 * where READ CAPACITY failed, we may have 980 * read past the end of the disk. 981 */ 982 if ((cmd->device->use_10_for_rw && 983 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 984 (cmd->cmnd[0] == READ_10 || 985 cmd->cmnd[0] == WRITE_10)) { 986 cmd->device->use_10_for_rw = 0; 987 /* This will cause a retry with a 988 * 6-byte command. 989 */ 990 scsi_requeue_command(q, cmd); 991 } else if (sshdr.asc == 0x10) /* DIX */ 992 scsi_end_request(cmd, -EIO, this_count, 0); 993 else 994 scsi_end_request(cmd, -EIO, this_count, 1); 995 return; 996 case ABORTED_COMMAND: 997 if (sshdr.asc == 0x10) { /* DIF */ 998 scsi_end_request(cmd, -EIO, this_count, 0); 999 return; 1000 } 1001 break; 1002 case NOT_READY: 1003 /* If the device is in the process of becoming 1004 * ready, or has a temporary blockage, retry. 1005 */ 1006 if (sshdr.asc == 0x04) { 1007 switch (sshdr.ascq) { 1008 case 0x01: /* becoming ready */ 1009 case 0x04: /* format in progress */ 1010 case 0x05: /* rebuild in progress */ 1011 case 0x06: /* recalculation in progress */ 1012 case 0x07: /* operation in progress */ 1013 case 0x08: /* Long write in progress */ 1014 case 0x09: /* self test in progress */ 1015 scsi_requeue_command(q, cmd); 1016 return; 1017 default: 1018 break; 1019 } 1020 } 1021 if (!(req->cmd_flags & REQ_QUIET)) 1022 scsi_cmd_print_sense_hdr(cmd, 1023 "Device not ready", 1024 &sshdr); 1025 1026 scsi_end_request(cmd, -EIO, this_count, 1); 1027 return; 1028 case VOLUME_OVERFLOW: 1029 if (!(req->cmd_flags & REQ_QUIET)) { 1030 scmd_printk(KERN_INFO, cmd, 1031 "Volume overflow, CDB: "); 1032 __scsi_print_command(cmd->cmnd); 1033 scsi_print_sense("", cmd); 1034 } 1035 /* See SSC3rXX or current. */ 1036 scsi_end_request(cmd, -EIO, this_count, 1); 1037 return; 1038 default: 1039 break; 1040 } 1041 } 1042 if (host_byte(result) == DID_RESET) { 1043 /* Third party bus reset or reset for error recovery 1044 * reasons. Just retry the request and see what 1045 * happens. 1046 */ 1047 scsi_requeue_command(q, cmd); 1048 return; 1049 } 1050 if (result) { 1051 if (!(req->cmd_flags & REQ_QUIET)) { 1052 scsi_print_result(cmd); 1053 if (driver_byte(result) & DRIVER_SENSE) 1054 scsi_print_sense("", cmd); 1055 } 1056 } 1057 scsi_end_request(cmd, -EIO, this_count, !result); 1058 } 1059 1060 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1061 gfp_t gfp_mask) 1062 { 1063 int count; 1064 1065 /* 1066 * If sg table allocation fails, requeue request later. 1067 */ 1068 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1069 gfp_mask))) { 1070 return BLKPREP_DEFER; 1071 } 1072 1073 req->buffer = NULL; 1074 1075 /* 1076 * Next, walk the list, and fill in the addresses and sizes of 1077 * each segment. 1078 */ 1079 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1080 BUG_ON(count > sdb->table.nents); 1081 sdb->table.nents = count; 1082 if (blk_pc_request(req)) 1083 sdb->length = req->data_len; 1084 else 1085 sdb->length = req->nr_sectors << 9; 1086 return BLKPREP_OK; 1087 } 1088 1089 /* 1090 * Function: scsi_init_io() 1091 * 1092 * Purpose: SCSI I/O initialize function. 1093 * 1094 * Arguments: cmd - Command descriptor we wish to initialize 1095 * 1096 * Returns: 0 on success 1097 * BLKPREP_DEFER if the failure is retryable 1098 * BLKPREP_KILL if the failure is fatal 1099 */ 1100 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1101 { 1102 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 1103 if (error) 1104 goto err_exit; 1105 1106 if (blk_bidi_rq(cmd->request)) { 1107 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1108 scsi_sdb_cache, GFP_ATOMIC); 1109 if (!bidi_sdb) { 1110 error = BLKPREP_DEFER; 1111 goto err_exit; 1112 } 1113 1114 cmd->request->next_rq->special = bidi_sdb; 1115 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 1116 GFP_ATOMIC); 1117 if (error) 1118 goto err_exit; 1119 } 1120 1121 if (blk_integrity_rq(cmd->request)) { 1122 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1123 int ivecs, count; 1124 1125 BUG_ON(prot_sdb == NULL); 1126 ivecs = blk_rq_count_integrity_sg(cmd->request); 1127 1128 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1129 error = BLKPREP_DEFER; 1130 goto err_exit; 1131 } 1132 1133 count = blk_rq_map_integrity_sg(cmd->request, 1134 prot_sdb->table.sgl); 1135 BUG_ON(unlikely(count > ivecs)); 1136 1137 cmd->prot_sdb = prot_sdb; 1138 cmd->prot_sdb->table.nents = count; 1139 } 1140 1141 return BLKPREP_OK ; 1142 1143 err_exit: 1144 scsi_release_buffers(cmd); 1145 if (error == BLKPREP_KILL) 1146 scsi_put_command(cmd); 1147 else /* BLKPREP_DEFER */ 1148 scsi_unprep_request(cmd->request); 1149 1150 return error; 1151 } 1152 EXPORT_SYMBOL(scsi_init_io); 1153 1154 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1155 struct request *req) 1156 { 1157 struct scsi_cmnd *cmd; 1158 1159 if (!req->special) { 1160 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1161 if (unlikely(!cmd)) 1162 return NULL; 1163 req->special = cmd; 1164 } else { 1165 cmd = req->special; 1166 } 1167 1168 /* pull a tag out of the request if we have one */ 1169 cmd->tag = req->tag; 1170 cmd->request = req; 1171 1172 cmd->cmnd = req->cmd; 1173 1174 return cmd; 1175 } 1176 1177 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1178 { 1179 struct scsi_cmnd *cmd; 1180 int ret = scsi_prep_state_check(sdev, req); 1181 1182 if (ret != BLKPREP_OK) 1183 return ret; 1184 1185 cmd = scsi_get_cmd_from_req(sdev, req); 1186 if (unlikely(!cmd)) 1187 return BLKPREP_DEFER; 1188 1189 /* 1190 * BLOCK_PC requests may transfer data, in which case they must 1191 * a bio attached to them. Or they might contain a SCSI command 1192 * that does not transfer data, in which case they may optionally 1193 * submit a request without an attached bio. 1194 */ 1195 if (req->bio) { 1196 int ret; 1197 1198 BUG_ON(!req->nr_phys_segments); 1199 1200 ret = scsi_init_io(cmd, GFP_ATOMIC); 1201 if (unlikely(ret)) 1202 return ret; 1203 } else { 1204 BUG_ON(req->data_len); 1205 BUG_ON(req->data); 1206 1207 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1208 req->buffer = NULL; 1209 } 1210 1211 cmd->cmd_len = req->cmd_len; 1212 if (!req->data_len) 1213 cmd->sc_data_direction = DMA_NONE; 1214 else if (rq_data_dir(req) == WRITE) 1215 cmd->sc_data_direction = DMA_TO_DEVICE; 1216 else 1217 cmd->sc_data_direction = DMA_FROM_DEVICE; 1218 1219 cmd->transfersize = req->data_len; 1220 cmd->allowed = req->retries; 1221 return BLKPREP_OK; 1222 } 1223 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1224 1225 /* 1226 * Setup a REQ_TYPE_FS command. These are simple read/write request 1227 * from filesystems that still need to be translated to SCSI CDBs from 1228 * the ULD. 1229 */ 1230 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1231 { 1232 struct scsi_cmnd *cmd; 1233 int ret = scsi_prep_state_check(sdev, req); 1234 1235 if (ret != BLKPREP_OK) 1236 return ret; 1237 1238 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1239 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1240 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1241 if (ret != BLKPREP_OK) 1242 return ret; 1243 } 1244 1245 /* 1246 * Filesystem requests must transfer data. 1247 */ 1248 BUG_ON(!req->nr_phys_segments); 1249 1250 cmd = scsi_get_cmd_from_req(sdev, req); 1251 if (unlikely(!cmd)) 1252 return BLKPREP_DEFER; 1253 1254 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1255 return scsi_init_io(cmd, GFP_ATOMIC); 1256 } 1257 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1258 1259 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1260 { 1261 int ret = BLKPREP_OK; 1262 1263 /* 1264 * If the device is not in running state we will reject some 1265 * or all commands. 1266 */ 1267 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1268 switch (sdev->sdev_state) { 1269 case SDEV_OFFLINE: 1270 /* 1271 * If the device is offline we refuse to process any 1272 * commands. The device must be brought online 1273 * before trying any recovery commands. 1274 */ 1275 sdev_printk(KERN_ERR, sdev, 1276 "rejecting I/O to offline device\n"); 1277 ret = BLKPREP_KILL; 1278 break; 1279 case SDEV_DEL: 1280 /* 1281 * If the device is fully deleted, we refuse to 1282 * process any commands as well. 1283 */ 1284 sdev_printk(KERN_ERR, sdev, 1285 "rejecting I/O to dead device\n"); 1286 ret = BLKPREP_KILL; 1287 break; 1288 case SDEV_QUIESCE: 1289 case SDEV_BLOCK: 1290 case SDEV_CREATED_BLOCK: 1291 /* 1292 * If the devices is blocked we defer normal commands. 1293 */ 1294 if (!(req->cmd_flags & REQ_PREEMPT)) 1295 ret = BLKPREP_DEFER; 1296 break; 1297 default: 1298 /* 1299 * For any other not fully online state we only allow 1300 * special commands. In particular any user initiated 1301 * command is not allowed. 1302 */ 1303 if (!(req->cmd_flags & REQ_PREEMPT)) 1304 ret = BLKPREP_KILL; 1305 break; 1306 } 1307 } 1308 return ret; 1309 } 1310 EXPORT_SYMBOL(scsi_prep_state_check); 1311 1312 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1313 { 1314 struct scsi_device *sdev = q->queuedata; 1315 1316 switch (ret) { 1317 case BLKPREP_KILL: 1318 req->errors = DID_NO_CONNECT << 16; 1319 /* release the command and kill it */ 1320 if (req->special) { 1321 struct scsi_cmnd *cmd = req->special; 1322 scsi_release_buffers(cmd); 1323 scsi_put_command(cmd); 1324 req->special = NULL; 1325 } 1326 break; 1327 case BLKPREP_DEFER: 1328 /* 1329 * If we defer, the elv_next_request() returns NULL, but the 1330 * queue must be restarted, so we plug here if no returning 1331 * command will automatically do that. 1332 */ 1333 if (sdev->device_busy == 0) 1334 blk_plug_device(q); 1335 break; 1336 default: 1337 req->cmd_flags |= REQ_DONTPREP; 1338 } 1339 1340 return ret; 1341 } 1342 EXPORT_SYMBOL(scsi_prep_return); 1343 1344 int scsi_prep_fn(struct request_queue *q, struct request *req) 1345 { 1346 struct scsi_device *sdev = q->queuedata; 1347 int ret = BLKPREP_KILL; 1348 1349 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1350 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1351 return scsi_prep_return(q, req, ret); 1352 } 1353 1354 /* 1355 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1356 * return 0. 1357 * 1358 * Called with the queue_lock held. 1359 */ 1360 static inline int scsi_dev_queue_ready(struct request_queue *q, 1361 struct scsi_device *sdev) 1362 { 1363 if (sdev->device_busy == 0 && sdev->device_blocked) { 1364 /* 1365 * unblock after device_blocked iterates to zero 1366 */ 1367 if (--sdev->device_blocked == 0) { 1368 SCSI_LOG_MLQUEUE(3, 1369 sdev_printk(KERN_INFO, sdev, 1370 "unblocking device at zero depth\n")); 1371 } else { 1372 blk_plug_device(q); 1373 return 0; 1374 } 1375 } 1376 if (scsi_device_is_busy(sdev)) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 1383 /* 1384 * scsi_target_queue_ready: checks if there we can send commands to target 1385 * @sdev: scsi device on starget to check. 1386 * 1387 * Called with the host lock held. 1388 */ 1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1390 struct scsi_device *sdev) 1391 { 1392 struct scsi_target *starget = scsi_target(sdev); 1393 1394 if (starget->single_lun) { 1395 if (starget->starget_sdev_user && 1396 starget->starget_sdev_user != sdev) 1397 return 0; 1398 starget->starget_sdev_user = sdev; 1399 } 1400 1401 if (starget->target_busy == 0 && starget->target_blocked) { 1402 /* 1403 * unblock after target_blocked iterates to zero 1404 */ 1405 if (--starget->target_blocked == 0) { 1406 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1407 "unblocking target at zero depth\n")); 1408 } else { 1409 blk_plug_device(sdev->request_queue); 1410 return 0; 1411 } 1412 } 1413 1414 if (scsi_target_is_busy(starget)) { 1415 if (list_empty(&sdev->starved_entry)) { 1416 list_add_tail(&sdev->starved_entry, 1417 &shost->starved_list); 1418 return 0; 1419 } 1420 } 1421 1422 /* We're OK to process the command, so we can't be starved */ 1423 if (!list_empty(&sdev->starved_entry)) 1424 list_del_init(&sdev->starved_entry); 1425 return 1; 1426 } 1427 1428 /* 1429 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1430 * return 0. We must end up running the queue again whenever 0 is 1431 * returned, else IO can hang. 1432 * 1433 * Called with host_lock held. 1434 */ 1435 static inline int scsi_host_queue_ready(struct request_queue *q, 1436 struct Scsi_Host *shost, 1437 struct scsi_device *sdev) 1438 { 1439 if (scsi_host_in_recovery(shost)) 1440 return 0; 1441 if (shost->host_busy == 0 && shost->host_blocked) { 1442 /* 1443 * unblock after host_blocked iterates to zero 1444 */ 1445 if (--shost->host_blocked == 0) { 1446 SCSI_LOG_MLQUEUE(3, 1447 printk("scsi%d unblocking host at zero depth\n", 1448 shost->host_no)); 1449 } else { 1450 return 0; 1451 } 1452 } 1453 if (scsi_host_is_busy(shost)) { 1454 if (list_empty(&sdev->starved_entry)) 1455 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1456 return 0; 1457 } 1458 1459 /* We're OK to process the command, so we can't be starved */ 1460 if (!list_empty(&sdev->starved_entry)) 1461 list_del_init(&sdev->starved_entry); 1462 1463 return 1; 1464 } 1465 1466 /* 1467 * Busy state exporting function for request stacking drivers. 1468 * 1469 * For efficiency, no lock is taken to check the busy state of 1470 * shost/starget/sdev, since the returned value is not guaranteed and 1471 * may be changed after request stacking drivers call the function, 1472 * regardless of taking lock or not. 1473 * 1474 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1475 * (e.g. !sdev), scsi needs to return 'not busy'. 1476 * Otherwise, request stacking drivers may hold requests forever. 1477 */ 1478 static int scsi_lld_busy(struct request_queue *q) 1479 { 1480 struct scsi_device *sdev = q->queuedata; 1481 struct Scsi_Host *shost; 1482 struct scsi_target *starget; 1483 1484 if (!sdev) 1485 return 0; 1486 1487 shost = sdev->host; 1488 starget = scsi_target(sdev); 1489 1490 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1491 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1492 return 1; 1493 1494 return 0; 1495 } 1496 1497 /* 1498 * Kill a request for a dead device 1499 */ 1500 static void scsi_kill_request(struct request *req, struct request_queue *q) 1501 { 1502 struct scsi_cmnd *cmd = req->special; 1503 struct scsi_device *sdev = cmd->device; 1504 struct scsi_target *starget = scsi_target(sdev); 1505 struct Scsi_Host *shost = sdev->host; 1506 1507 blkdev_dequeue_request(req); 1508 1509 if (unlikely(cmd == NULL)) { 1510 printk(KERN_CRIT "impossible request in %s.\n", 1511 __func__); 1512 BUG(); 1513 } 1514 1515 scsi_init_cmd_errh(cmd); 1516 cmd->result = DID_NO_CONNECT << 16; 1517 atomic_inc(&cmd->device->iorequest_cnt); 1518 1519 /* 1520 * SCSI request completion path will do scsi_device_unbusy(), 1521 * bump busy counts. To bump the counters, we need to dance 1522 * with the locks as normal issue path does. 1523 */ 1524 sdev->device_busy++; 1525 spin_unlock(sdev->request_queue->queue_lock); 1526 spin_lock(shost->host_lock); 1527 shost->host_busy++; 1528 starget->target_busy++; 1529 spin_unlock(shost->host_lock); 1530 spin_lock(sdev->request_queue->queue_lock); 1531 1532 blk_complete_request(req); 1533 } 1534 1535 static void scsi_softirq_done(struct request *rq) 1536 { 1537 struct scsi_cmnd *cmd = rq->special; 1538 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1539 int disposition; 1540 1541 INIT_LIST_HEAD(&cmd->eh_entry); 1542 1543 /* 1544 * Set the serial numbers back to zero 1545 */ 1546 cmd->serial_number = 0; 1547 1548 atomic_inc(&cmd->device->iodone_cnt); 1549 if (cmd->result) 1550 atomic_inc(&cmd->device->ioerr_cnt); 1551 1552 disposition = scsi_decide_disposition(cmd); 1553 if (disposition != SUCCESS && 1554 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1555 sdev_printk(KERN_ERR, cmd->device, 1556 "timing out command, waited %lus\n", 1557 wait_for/HZ); 1558 disposition = SUCCESS; 1559 } 1560 1561 scsi_log_completion(cmd, disposition); 1562 1563 switch (disposition) { 1564 case SUCCESS: 1565 scsi_finish_command(cmd); 1566 break; 1567 case NEEDS_RETRY: 1568 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1569 break; 1570 case ADD_TO_MLQUEUE: 1571 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1572 break; 1573 default: 1574 if (!scsi_eh_scmd_add(cmd, 0)) 1575 scsi_finish_command(cmd); 1576 } 1577 } 1578 1579 /* 1580 * Function: scsi_request_fn() 1581 * 1582 * Purpose: Main strategy routine for SCSI. 1583 * 1584 * Arguments: q - Pointer to actual queue. 1585 * 1586 * Returns: Nothing 1587 * 1588 * Lock status: IO request lock assumed to be held when called. 1589 */ 1590 static void scsi_request_fn(struct request_queue *q) 1591 { 1592 struct scsi_device *sdev = q->queuedata; 1593 struct Scsi_Host *shost; 1594 struct scsi_cmnd *cmd; 1595 struct request *req; 1596 1597 if (!sdev) { 1598 printk("scsi: killing requests for dead queue\n"); 1599 while ((req = elv_next_request(q)) != NULL) 1600 scsi_kill_request(req, q); 1601 return; 1602 } 1603 1604 if(!get_device(&sdev->sdev_gendev)) 1605 /* We must be tearing the block queue down already */ 1606 return; 1607 1608 /* 1609 * To start with, we keep looping until the queue is empty, or until 1610 * the host is no longer able to accept any more requests. 1611 */ 1612 shost = sdev->host; 1613 while (!blk_queue_plugged(q)) { 1614 int rtn; 1615 /* 1616 * get next queueable request. We do this early to make sure 1617 * that the request is fully prepared even if we cannot 1618 * accept it. 1619 */ 1620 req = elv_next_request(q); 1621 if (!req || !scsi_dev_queue_ready(q, sdev)) 1622 break; 1623 1624 if (unlikely(!scsi_device_online(sdev))) { 1625 sdev_printk(KERN_ERR, sdev, 1626 "rejecting I/O to offline device\n"); 1627 scsi_kill_request(req, q); 1628 continue; 1629 } 1630 1631 1632 /* 1633 * Remove the request from the request list. 1634 */ 1635 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1636 blkdev_dequeue_request(req); 1637 sdev->device_busy++; 1638 1639 spin_unlock(q->queue_lock); 1640 cmd = req->special; 1641 if (unlikely(cmd == NULL)) { 1642 printk(KERN_CRIT "impossible request in %s.\n" 1643 "please mail a stack trace to " 1644 "linux-scsi@vger.kernel.org\n", 1645 __func__); 1646 blk_dump_rq_flags(req, "foo"); 1647 BUG(); 1648 } 1649 spin_lock(shost->host_lock); 1650 1651 /* 1652 * We hit this when the driver is using a host wide 1653 * tag map. For device level tag maps the queue_depth check 1654 * in the device ready fn would prevent us from trying 1655 * to allocate a tag. Since the map is a shared host resource 1656 * we add the dev to the starved list so it eventually gets 1657 * a run when a tag is freed. 1658 */ 1659 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1660 if (list_empty(&sdev->starved_entry)) 1661 list_add_tail(&sdev->starved_entry, 1662 &shost->starved_list); 1663 goto not_ready; 1664 } 1665 1666 if (!scsi_target_queue_ready(shost, sdev)) 1667 goto not_ready; 1668 1669 if (!scsi_host_queue_ready(q, shost, sdev)) 1670 goto not_ready; 1671 1672 scsi_target(sdev)->target_busy++; 1673 shost->host_busy++; 1674 1675 /* 1676 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1677 * take the lock again. 1678 */ 1679 spin_unlock_irq(shost->host_lock); 1680 1681 /* 1682 * Finally, initialize any error handling parameters, and set up 1683 * the timers for timeouts. 1684 */ 1685 scsi_init_cmd_errh(cmd); 1686 1687 /* 1688 * Dispatch the command to the low-level driver. 1689 */ 1690 rtn = scsi_dispatch_cmd(cmd); 1691 spin_lock_irq(q->queue_lock); 1692 if(rtn) { 1693 /* we're refusing the command; because of 1694 * the way locks get dropped, we need to 1695 * check here if plugging is required */ 1696 if(sdev->device_busy == 0) 1697 blk_plug_device(q); 1698 1699 break; 1700 } 1701 } 1702 1703 goto out; 1704 1705 not_ready: 1706 spin_unlock_irq(shost->host_lock); 1707 1708 /* 1709 * lock q, handle tag, requeue req, and decrement device_busy. We 1710 * must return with queue_lock held. 1711 * 1712 * Decrementing device_busy without checking it is OK, as all such 1713 * cases (host limits or settings) should run the queue at some 1714 * later time. 1715 */ 1716 spin_lock_irq(q->queue_lock); 1717 blk_requeue_request(q, req); 1718 sdev->device_busy--; 1719 if(sdev->device_busy == 0) 1720 blk_plug_device(q); 1721 out: 1722 /* must be careful here...if we trigger the ->remove() function 1723 * we cannot be holding the q lock */ 1724 spin_unlock_irq(q->queue_lock); 1725 put_device(&sdev->sdev_gendev); 1726 spin_lock_irq(q->queue_lock); 1727 } 1728 1729 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1730 { 1731 struct device *host_dev; 1732 u64 bounce_limit = 0xffffffff; 1733 1734 if (shost->unchecked_isa_dma) 1735 return BLK_BOUNCE_ISA; 1736 /* 1737 * Platforms with virtual-DMA translation 1738 * hardware have no practical limit. 1739 */ 1740 if (!PCI_DMA_BUS_IS_PHYS) 1741 return BLK_BOUNCE_ANY; 1742 1743 host_dev = scsi_get_device(shost); 1744 if (host_dev && host_dev->dma_mask) 1745 bounce_limit = *host_dev->dma_mask; 1746 1747 return bounce_limit; 1748 } 1749 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1750 1751 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1752 request_fn_proc *request_fn) 1753 { 1754 struct request_queue *q; 1755 struct device *dev = shost->shost_gendev.parent; 1756 1757 q = blk_init_queue(request_fn, NULL); 1758 if (!q) 1759 return NULL; 1760 1761 /* 1762 * this limit is imposed by hardware restrictions 1763 */ 1764 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1765 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1766 1767 blk_queue_max_sectors(q, shost->max_sectors); 1768 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1769 blk_queue_segment_boundary(q, shost->dma_boundary); 1770 dma_set_seg_boundary(dev, shost->dma_boundary); 1771 1772 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1773 1774 /* New queue, no concurrency on queue_flags */ 1775 if (!shost->use_clustering) 1776 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1777 1778 /* 1779 * set a reasonable default alignment on word boundaries: the 1780 * host and device may alter it using 1781 * blk_queue_update_dma_alignment() later. 1782 */ 1783 blk_queue_dma_alignment(q, 0x03); 1784 1785 return q; 1786 } 1787 EXPORT_SYMBOL(__scsi_alloc_queue); 1788 1789 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1790 { 1791 struct request_queue *q; 1792 1793 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1794 if (!q) 1795 return NULL; 1796 1797 blk_queue_prep_rq(q, scsi_prep_fn); 1798 blk_queue_softirq_done(q, scsi_softirq_done); 1799 blk_queue_rq_timed_out(q, scsi_times_out); 1800 blk_queue_lld_busy(q, scsi_lld_busy); 1801 return q; 1802 } 1803 1804 void scsi_free_queue(struct request_queue *q) 1805 { 1806 blk_cleanup_queue(q); 1807 } 1808 1809 /* 1810 * Function: scsi_block_requests() 1811 * 1812 * Purpose: Utility function used by low-level drivers to prevent further 1813 * commands from being queued to the device. 1814 * 1815 * Arguments: shost - Host in question 1816 * 1817 * Returns: Nothing 1818 * 1819 * Lock status: No locks are assumed held. 1820 * 1821 * Notes: There is no timer nor any other means by which the requests 1822 * get unblocked other than the low-level driver calling 1823 * scsi_unblock_requests(). 1824 */ 1825 void scsi_block_requests(struct Scsi_Host *shost) 1826 { 1827 shost->host_self_blocked = 1; 1828 } 1829 EXPORT_SYMBOL(scsi_block_requests); 1830 1831 /* 1832 * Function: scsi_unblock_requests() 1833 * 1834 * Purpose: Utility function used by low-level drivers to allow further 1835 * commands from being queued to the device. 1836 * 1837 * Arguments: shost - Host in question 1838 * 1839 * Returns: Nothing 1840 * 1841 * Lock status: No locks are assumed held. 1842 * 1843 * Notes: There is no timer nor any other means by which the requests 1844 * get unblocked other than the low-level driver calling 1845 * scsi_unblock_requests(). 1846 * 1847 * This is done as an API function so that changes to the 1848 * internals of the scsi mid-layer won't require wholesale 1849 * changes to drivers that use this feature. 1850 */ 1851 void scsi_unblock_requests(struct Scsi_Host *shost) 1852 { 1853 shost->host_self_blocked = 0; 1854 scsi_run_host_queues(shost); 1855 } 1856 EXPORT_SYMBOL(scsi_unblock_requests); 1857 1858 int __init scsi_init_queue(void) 1859 { 1860 int i; 1861 1862 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1863 sizeof(struct scsi_io_context), 1864 0, 0, NULL); 1865 if (!scsi_io_context_cache) { 1866 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1867 return -ENOMEM; 1868 } 1869 1870 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1871 sizeof(struct scsi_data_buffer), 1872 0, 0, NULL); 1873 if (!scsi_sdb_cache) { 1874 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1875 goto cleanup_io_context; 1876 } 1877 1878 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1879 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1880 int size = sgp->size * sizeof(struct scatterlist); 1881 1882 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1883 SLAB_HWCACHE_ALIGN, NULL); 1884 if (!sgp->slab) { 1885 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1886 sgp->name); 1887 goto cleanup_sdb; 1888 } 1889 1890 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1891 sgp->slab); 1892 if (!sgp->pool) { 1893 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1894 sgp->name); 1895 goto cleanup_sdb; 1896 } 1897 } 1898 1899 return 0; 1900 1901 cleanup_sdb: 1902 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1903 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1904 if (sgp->pool) 1905 mempool_destroy(sgp->pool); 1906 if (sgp->slab) 1907 kmem_cache_destroy(sgp->slab); 1908 } 1909 kmem_cache_destroy(scsi_sdb_cache); 1910 cleanup_io_context: 1911 kmem_cache_destroy(scsi_io_context_cache); 1912 1913 return -ENOMEM; 1914 } 1915 1916 void scsi_exit_queue(void) 1917 { 1918 int i; 1919 1920 kmem_cache_destroy(scsi_io_context_cache); 1921 kmem_cache_destroy(scsi_sdb_cache); 1922 1923 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1924 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1925 mempool_destroy(sgp->pool); 1926 kmem_cache_destroy(sgp->slab); 1927 } 1928 } 1929 1930 /** 1931 * scsi_mode_select - issue a mode select 1932 * @sdev: SCSI device to be queried 1933 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1934 * @sp: Save page bit (0 == don't save, 1 == save) 1935 * @modepage: mode page being requested 1936 * @buffer: request buffer (may not be smaller than eight bytes) 1937 * @len: length of request buffer. 1938 * @timeout: command timeout 1939 * @retries: number of retries before failing 1940 * @data: returns a structure abstracting the mode header data 1941 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1942 * must be SCSI_SENSE_BUFFERSIZE big. 1943 * 1944 * Returns zero if successful; negative error number or scsi 1945 * status on error 1946 * 1947 */ 1948 int 1949 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1950 unsigned char *buffer, int len, int timeout, int retries, 1951 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1952 { 1953 unsigned char cmd[10]; 1954 unsigned char *real_buffer; 1955 int ret; 1956 1957 memset(cmd, 0, sizeof(cmd)); 1958 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1959 1960 if (sdev->use_10_for_ms) { 1961 if (len > 65535) 1962 return -EINVAL; 1963 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1964 if (!real_buffer) 1965 return -ENOMEM; 1966 memcpy(real_buffer + 8, buffer, len); 1967 len += 8; 1968 real_buffer[0] = 0; 1969 real_buffer[1] = 0; 1970 real_buffer[2] = data->medium_type; 1971 real_buffer[3] = data->device_specific; 1972 real_buffer[4] = data->longlba ? 0x01 : 0; 1973 real_buffer[5] = 0; 1974 real_buffer[6] = data->block_descriptor_length >> 8; 1975 real_buffer[7] = data->block_descriptor_length; 1976 1977 cmd[0] = MODE_SELECT_10; 1978 cmd[7] = len >> 8; 1979 cmd[8] = len; 1980 } else { 1981 if (len > 255 || data->block_descriptor_length > 255 || 1982 data->longlba) 1983 return -EINVAL; 1984 1985 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1986 if (!real_buffer) 1987 return -ENOMEM; 1988 memcpy(real_buffer + 4, buffer, len); 1989 len += 4; 1990 real_buffer[0] = 0; 1991 real_buffer[1] = data->medium_type; 1992 real_buffer[2] = data->device_specific; 1993 real_buffer[3] = data->block_descriptor_length; 1994 1995 1996 cmd[0] = MODE_SELECT; 1997 cmd[4] = len; 1998 } 1999 2000 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2001 sshdr, timeout, retries); 2002 kfree(real_buffer); 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(scsi_mode_select); 2006 2007 /** 2008 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2009 * @sdev: SCSI device to be queried 2010 * @dbd: set if mode sense will allow block descriptors to be returned 2011 * @modepage: mode page being requested 2012 * @buffer: request buffer (may not be smaller than eight bytes) 2013 * @len: length of request buffer. 2014 * @timeout: command timeout 2015 * @retries: number of retries before failing 2016 * @data: returns a structure abstracting the mode header data 2017 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2018 * must be SCSI_SENSE_BUFFERSIZE big. 2019 * 2020 * Returns zero if unsuccessful, or the header offset (either 4 2021 * or 8 depending on whether a six or ten byte command was 2022 * issued) if successful. 2023 */ 2024 int 2025 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2026 unsigned char *buffer, int len, int timeout, int retries, 2027 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2028 { 2029 unsigned char cmd[12]; 2030 int use_10_for_ms; 2031 int header_length; 2032 int result; 2033 struct scsi_sense_hdr my_sshdr; 2034 2035 memset(data, 0, sizeof(*data)); 2036 memset(&cmd[0], 0, 12); 2037 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2038 cmd[2] = modepage; 2039 2040 /* caller might not be interested in sense, but we need it */ 2041 if (!sshdr) 2042 sshdr = &my_sshdr; 2043 2044 retry: 2045 use_10_for_ms = sdev->use_10_for_ms; 2046 2047 if (use_10_for_ms) { 2048 if (len < 8) 2049 len = 8; 2050 2051 cmd[0] = MODE_SENSE_10; 2052 cmd[8] = len; 2053 header_length = 8; 2054 } else { 2055 if (len < 4) 2056 len = 4; 2057 2058 cmd[0] = MODE_SENSE; 2059 cmd[4] = len; 2060 header_length = 4; 2061 } 2062 2063 memset(buffer, 0, len); 2064 2065 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2066 sshdr, timeout, retries); 2067 2068 /* This code looks awful: what it's doing is making sure an 2069 * ILLEGAL REQUEST sense return identifies the actual command 2070 * byte as the problem. MODE_SENSE commands can return 2071 * ILLEGAL REQUEST if the code page isn't supported */ 2072 2073 if (use_10_for_ms && !scsi_status_is_good(result) && 2074 (driver_byte(result) & DRIVER_SENSE)) { 2075 if (scsi_sense_valid(sshdr)) { 2076 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2077 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2078 /* 2079 * Invalid command operation code 2080 */ 2081 sdev->use_10_for_ms = 0; 2082 goto retry; 2083 } 2084 } 2085 } 2086 2087 if(scsi_status_is_good(result)) { 2088 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2089 (modepage == 6 || modepage == 8))) { 2090 /* Initio breakage? */ 2091 header_length = 0; 2092 data->length = 13; 2093 data->medium_type = 0; 2094 data->device_specific = 0; 2095 data->longlba = 0; 2096 data->block_descriptor_length = 0; 2097 } else if(use_10_for_ms) { 2098 data->length = buffer[0]*256 + buffer[1] + 2; 2099 data->medium_type = buffer[2]; 2100 data->device_specific = buffer[3]; 2101 data->longlba = buffer[4] & 0x01; 2102 data->block_descriptor_length = buffer[6]*256 2103 + buffer[7]; 2104 } else { 2105 data->length = buffer[0] + 1; 2106 data->medium_type = buffer[1]; 2107 data->device_specific = buffer[2]; 2108 data->block_descriptor_length = buffer[3]; 2109 } 2110 data->header_length = header_length; 2111 } 2112 2113 return result; 2114 } 2115 EXPORT_SYMBOL(scsi_mode_sense); 2116 2117 /** 2118 * scsi_test_unit_ready - test if unit is ready 2119 * @sdev: scsi device to change the state of. 2120 * @timeout: command timeout 2121 * @retries: number of retries before failing 2122 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2123 * returning sense. Make sure that this is cleared before passing 2124 * in. 2125 * 2126 * Returns zero if unsuccessful or an error if TUR failed. For 2127 * removable media, a return of NOT_READY or UNIT_ATTENTION is 2128 * translated to success, with the ->changed flag updated. 2129 **/ 2130 int 2131 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2132 struct scsi_sense_hdr *sshdr_external) 2133 { 2134 char cmd[] = { 2135 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2136 }; 2137 struct scsi_sense_hdr *sshdr; 2138 int result; 2139 2140 if (!sshdr_external) 2141 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2142 else 2143 sshdr = sshdr_external; 2144 2145 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2146 do { 2147 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2148 timeout, retries); 2149 if (sdev->removable && scsi_sense_valid(sshdr) && 2150 sshdr->sense_key == UNIT_ATTENTION) 2151 sdev->changed = 1; 2152 } while (scsi_sense_valid(sshdr) && 2153 sshdr->sense_key == UNIT_ATTENTION && --retries); 2154 2155 if (!sshdr) 2156 /* could not allocate sense buffer, so can't process it */ 2157 return result; 2158 2159 if (sdev->removable && scsi_sense_valid(sshdr) && 2160 (sshdr->sense_key == UNIT_ATTENTION || 2161 sshdr->sense_key == NOT_READY)) { 2162 sdev->changed = 1; 2163 result = 0; 2164 } 2165 if (!sshdr_external) 2166 kfree(sshdr); 2167 return result; 2168 } 2169 EXPORT_SYMBOL(scsi_test_unit_ready); 2170 2171 /** 2172 * scsi_device_set_state - Take the given device through the device state model. 2173 * @sdev: scsi device to change the state of. 2174 * @state: state to change to. 2175 * 2176 * Returns zero if unsuccessful or an error if the requested 2177 * transition is illegal. 2178 */ 2179 int 2180 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2181 { 2182 enum scsi_device_state oldstate = sdev->sdev_state; 2183 2184 if (state == oldstate) 2185 return 0; 2186 2187 switch (state) { 2188 case SDEV_CREATED: 2189 switch (oldstate) { 2190 case SDEV_CREATED_BLOCK: 2191 break; 2192 default: 2193 goto illegal; 2194 } 2195 break; 2196 2197 case SDEV_RUNNING: 2198 switch (oldstate) { 2199 case SDEV_CREATED: 2200 case SDEV_OFFLINE: 2201 case SDEV_QUIESCE: 2202 case SDEV_BLOCK: 2203 break; 2204 default: 2205 goto illegal; 2206 } 2207 break; 2208 2209 case SDEV_QUIESCE: 2210 switch (oldstate) { 2211 case SDEV_RUNNING: 2212 case SDEV_OFFLINE: 2213 break; 2214 default: 2215 goto illegal; 2216 } 2217 break; 2218 2219 case SDEV_OFFLINE: 2220 switch (oldstate) { 2221 case SDEV_CREATED: 2222 case SDEV_RUNNING: 2223 case SDEV_QUIESCE: 2224 case SDEV_BLOCK: 2225 break; 2226 default: 2227 goto illegal; 2228 } 2229 break; 2230 2231 case SDEV_BLOCK: 2232 switch (oldstate) { 2233 case SDEV_RUNNING: 2234 case SDEV_CREATED_BLOCK: 2235 break; 2236 default: 2237 goto illegal; 2238 } 2239 break; 2240 2241 case SDEV_CREATED_BLOCK: 2242 switch (oldstate) { 2243 case SDEV_CREATED: 2244 break; 2245 default: 2246 goto illegal; 2247 } 2248 break; 2249 2250 case SDEV_CANCEL: 2251 switch (oldstate) { 2252 case SDEV_CREATED: 2253 case SDEV_RUNNING: 2254 case SDEV_QUIESCE: 2255 case SDEV_OFFLINE: 2256 case SDEV_BLOCK: 2257 break; 2258 default: 2259 goto illegal; 2260 } 2261 break; 2262 2263 case SDEV_DEL: 2264 switch (oldstate) { 2265 case SDEV_CREATED: 2266 case SDEV_RUNNING: 2267 case SDEV_OFFLINE: 2268 case SDEV_CANCEL: 2269 break; 2270 default: 2271 goto illegal; 2272 } 2273 break; 2274 2275 } 2276 sdev->sdev_state = state; 2277 return 0; 2278 2279 illegal: 2280 SCSI_LOG_ERROR_RECOVERY(1, 2281 sdev_printk(KERN_ERR, sdev, 2282 "Illegal state transition %s->%s\n", 2283 scsi_device_state_name(oldstate), 2284 scsi_device_state_name(state)) 2285 ); 2286 return -EINVAL; 2287 } 2288 EXPORT_SYMBOL(scsi_device_set_state); 2289 2290 /** 2291 * sdev_evt_emit - emit a single SCSI device uevent 2292 * @sdev: associated SCSI device 2293 * @evt: event to emit 2294 * 2295 * Send a single uevent (scsi_event) to the associated scsi_device. 2296 */ 2297 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2298 { 2299 int idx = 0; 2300 char *envp[3]; 2301 2302 switch (evt->evt_type) { 2303 case SDEV_EVT_MEDIA_CHANGE: 2304 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2305 break; 2306 2307 default: 2308 /* do nothing */ 2309 break; 2310 } 2311 2312 envp[idx++] = NULL; 2313 2314 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2315 } 2316 2317 /** 2318 * sdev_evt_thread - send a uevent for each scsi event 2319 * @work: work struct for scsi_device 2320 * 2321 * Dispatch queued events to their associated scsi_device kobjects 2322 * as uevents. 2323 */ 2324 void scsi_evt_thread(struct work_struct *work) 2325 { 2326 struct scsi_device *sdev; 2327 LIST_HEAD(event_list); 2328 2329 sdev = container_of(work, struct scsi_device, event_work); 2330 2331 while (1) { 2332 struct scsi_event *evt; 2333 struct list_head *this, *tmp; 2334 unsigned long flags; 2335 2336 spin_lock_irqsave(&sdev->list_lock, flags); 2337 list_splice_init(&sdev->event_list, &event_list); 2338 spin_unlock_irqrestore(&sdev->list_lock, flags); 2339 2340 if (list_empty(&event_list)) 2341 break; 2342 2343 list_for_each_safe(this, tmp, &event_list) { 2344 evt = list_entry(this, struct scsi_event, node); 2345 list_del(&evt->node); 2346 scsi_evt_emit(sdev, evt); 2347 kfree(evt); 2348 } 2349 } 2350 } 2351 2352 /** 2353 * sdev_evt_send - send asserted event to uevent thread 2354 * @sdev: scsi_device event occurred on 2355 * @evt: event to send 2356 * 2357 * Assert scsi device event asynchronously. 2358 */ 2359 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2360 { 2361 unsigned long flags; 2362 2363 #if 0 2364 /* FIXME: currently this check eliminates all media change events 2365 * for polled devices. Need to update to discriminate between AN 2366 * and polled events */ 2367 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2368 kfree(evt); 2369 return; 2370 } 2371 #endif 2372 2373 spin_lock_irqsave(&sdev->list_lock, flags); 2374 list_add_tail(&evt->node, &sdev->event_list); 2375 schedule_work(&sdev->event_work); 2376 spin_unlock_irqrestore(&sdev->list_lock, flags); 2377 } 2378 EXPORT_SYMBOL_GPL(sdev_evt_send); 2379 2380 /** 2381 * sdev_evt_alloc - allocate a new scsi event 2382 * @evt_type: type of event to allocate 2383 * @gfpflags: GFP flags for allocation 2384 * 2385 * Allocates and returns a new scsi_event. 2386 */ 2387 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2388 gfp_t gfpflags) 2389 { 2390 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2391 if (!evt) 2392 return NULL; 2393 2394 evt->evt_type = evt_type; 2395 INIT_LIST_HEAD(&evt->node); 2396 2397 /* evt_type-specific initialization, if any */ 2398 switch (evt_type) { 2399 case SDEV_EVT_MEDIA_CHANGE: 2400 default: 2401 /* do nothing */ 2402 break; 2403 } 2404 2405 return evt; 2406 } 2407 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2408 2409 /** 2410 * sdev_evt_send_simple - send asserted event to uevent thread 2411 * @sdev: scsi_device event occurred on 2412 * @evt_type: type of event to send 2413 * @gfpflags: GFP flags for allocation 2414 * 2415 * Assert scsi device event asynchronously, given an event type. 2416 */ 2417 void sdev_evt_send_simple(struct scsi_device *sdev, 2418 enum scsi_device_event evt_type, gfp_t gfpflags) 2419 { 2420 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2421 if (!evt) { 2422 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2423 evt_type); 2424 return; 2425 } 2426 2427 sdev_evt_send(sdev, evt); 2428 } 2429 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2430 2431 /** 2432 * scsi_device_quiesce - Block user issued commands. 2433 * @sdev: scsi device to quiesce. 2434 * 2435 * This works by trying to transition to the SDEV_QUIESCE state 2436 * (which must be a legal transition). When the device is in this 2437 * state, only special requests will be accepted, all others will 2438 * be deferred. Since special requests may also be requeued requests, 2439 * a successful return doesn't guarantee the device will be 2440 * totally quiescent. 2441 * 2442 * Must be called with user context, may sleep. 2443 * 2444 * Returns zero if unsuccessful or an error if not. 2445 */ 2446 int 2447 scsi_device_quiesce(struct scsi_device *sdev) 2448 { 2449 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2450 if (err) 2451 return err; 2452 2453 scsi_run_queue(sdev->request_queue); 2454 while (sdev->device_busy) { 2455 msleep_interruptible(200); 2456 scsi_run_queue(sdev->request_queue); 2457 } 2458 return 0; 2459 } 2460 EXPORT_SYMBOL(scsi_device_quiesce); 2461 2462 /** 2463 * scsi_device_resume - Restart user issued commands to a quiesced device. 2464 * @sdev: scsi device to resume. 2465 * 2466 * Moves the device from quiesced back to running and restarts the 2467 * queues. 2468 * 2469 * Must be called with user context, may sleep. 2470 */ 2471 void 2472 scsi_device_resume(struct scsi_device *sdev) 2473 { 2474 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2475 return; 2476 scsi_run_queue(sdev->request_queue); 2477 } 2478 EXPORT_SYMBOL(scsi_device_resume); 2479 2480 static void 2481 device_quiesce_fn(struct scsi_device *sdev, void *data) 2482 { 2483 scsi_device_quiesce(sdev); 2484 } 2485 2486 void 2487 scsi_target_quiesce(struct scsi_target *starget) 2488 { 2489 starget_for_each_device(starget, NULL, device_quiesce_fn); 2490 } 2491 EXPORT_SYMBOL(scsi_target_quiesce); 2492 2493 static void 2494 device_resume_fn(struct scsi_device *sdev, void *data) 2495 { 2496 scsi_device_resume(sdev); 2497 } 2498 2499 void 2500 scsi_target_resume(struct scsi_target *starget) 2501 { 2502 starget_for_each_device(starget, NULL, device_resume_fn); 2503 } 2504 EXPORT_SYMBOL(scsi_target_resume); 2505 2506 /** 2507 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2508 * @sdev: device to block 2509 * 2510 * Block request made by scsi lld's to temporarily stop all 2511 * scsi commands on the specified device. Called from interrupt 2512 * or normal process context. 2513 * 2514 * Returns zero if successful or error if not 2515 * 2516 * Notes: 2517 * This routine transitions the device to the SDEV_BLOCK state 2518 * (which must be a legal transition). When the device is in this 2519 * state, all commands are deferred until the scsi lld reenables 2520 * the device with scsi_device_unblock or device_block_tmo fires. 2521 * This routine assumes the host_lock is held on entry. 2522 */ 2523 int 2524 scsi_internal_device_block(struct scsi_device *sdev) 2525 { 2526 struct request_queue *q = sdev->request_queue; 2527 unsigned long flags; 2528 int err = 0; 2529 2530 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2531 if (err) { 2532 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2533 2534 if (err) 2535 return err; 2536 } 2537 2538 /* 2539 * The device has transitioned to SDEV_BLOCK. Stop the 2540 * block layer from calling the midlayer with this device's 2541 * request queue. 2542 */ 2543 spin_lock_irqsave(q->queue_lock, flags); 2544 blk_stop_queue(q); 2545 spin_unlock_irqrestore(q->queue_lock, flags); 2546 2547 return 0; 2548 } 2549 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2550 2551 /** 2552 * scsi_internal_device_unblock - resume a device after a block request 2553 * @sdev: device to resume 2554 * 2555 * Called by scsi lld's or the midlayer to restart the device queue 2556 * for the previously suspended scsi device. Called from interrupt or 2557 * normal process context. 2558 * 2559 * Returns zero if successful or error if not. 2560 * 2561 * Notes: 2562 * This routine transitions the device to the SDEV_RUNNING state 2563 * (which must be a legal transition) allowing the midlayer to 2564 * goose the queue for this device. This routine assumes the 2565 * host_lock is held upon entry. 2566 */ 2567 int 2568 scsi_internal_device_unblock(struct scsi_device *sdev) 2569 { 2570 struct request_queue *q = sdev->request_queue; 2571 int err; 2572 unsigned long flags; 2573 2574 /* 2575 * Try to transition the scsi device to SDEV_RUNNING 2576 * and goose the device queue if successful. 2577 */ 2578 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2579 if (err) { 2580 err = scsi_device_set_state(sdev, SDEV_CREATED); 2581 2582 if (err) 2583 return err; 2584 } 2585 2586 spin_lock_irqsave(q->queue_lock, flags); 2587 blk_start_queue(q); 2588 spin_unlock_irqrestore(q->queue_lock, flags); 2589 2590 return 0; 2591 } 2592 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2593 2594 static void 2595 device_block(struct scsi_device *sdev, void *data) 2596 { 2597 scsi_internal_device_block(sdev); 2598 } 2599 2600 static int 2601 target_block(struct device *dev, void *data) 2602 { 2603 if (scsi_is_target_device(dev)) 2604 starget_for_each_device(to_scsi_target(dev), NULL, 2605 device_block); 2606 return 0; 2607 } 2608 2609 void 2610 scsi_target_block(struct device *dev) 2611 { 2612 if (scsi_is_target_device(dev)) 2613 starget_for_each_device(to_scsi_target(dev), NULL, 2614 device_block); 2615 else 2616 device_for_each_child(dev, NULL, target_block); 2617 } 2618 EXPORT_SYMBOL_GPL(scsi_target_block); 2619 2620 static void 2621 device_unblock(struct scsi_device *sdev, void *data) 2622 { 2623 scsi_internal_device_unblock(sdev); 2624 } 2625 2626 static int 2627 target_unblock(struct device *dev, void *data) 2628 { 2629 if (scsi_is_target_device(dev)) 2630 starget_for_each_device(to_scsi_target(dev), NULL, 2631 device_unblock); 2632 return 0; 2633 } 2634 2635 void 2636 scsi_target_unblock(struct device *dev) 2637 { 2638 if (scsi_is_target_device(dev)) 2639 starget_for_each_device(to_scsi_target(dev), NULL, 2640 device_unblock); 2641 else 2642 device_for_each_child(dev, NULL, target_unblock); 2643 } 2644 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2645 2646 /** 2647 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2648 * @sgl: scatter-gather list 2649 * @sg_count: number of segments in sg 2650 * @offset: offset in bytes into sg, on return offset into the mapped area 2651 * @len: bytes to map, on return number of bytes mapped 2652 * 2653 * Returns virtual address of the start of the mapped page 2654 */ 2655 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2656 size_t *offset, size_t *len) 2657 { 2658 int i; 2659 size_t sg_len = 0, len_complete = 0; 2660 struct scatterlist *sg; 2661 struct page *page; 2662 2663 WARN_ON(!irqs_disabled()); 2664 2665 for_each_sg(sgl, sg, sg_count, i) { 2666 len_complete = sg_len; /* Complete sg-entries */ 2667 sg_len += sg->length; 2668 if (sg_len > *offset) 2669 break; 2670 } 2671 2672 if (unlikely(i == sg_count)) { 2673 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2674 "elements %d\n", 2675 __func__, sg_len, *offset, sg_count); 2676 WARN_ON(1); 2677 return NULL; 2678 } 2679 2680 /* Offset starting from the beginning of first page in this sg-entry */ 2681 *offset = *offset - len_complete + sg->offset; 2682 2683 /* Assumption: contiguous pages can be accessed as "page + i" */ 2684 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2685 *offset &= ~PAGE_MASK; 2686 2687 /* Bytes in this sg-entry from *offset to the end of the page */ 2688 sg_len = PAGE_SIZE - *offset; 2689 if (*len > sg_len) 2690 *len = sg_len; 2691 2692 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2693 } 2694 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2695 2696 /** 2697 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2698 * @virt: virtual address to be unmapped 2699 */ 2700 void scsi_kunmap_atomic_sg(void *virt) 2701 { 2702 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2703 } 2704 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2705