1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/completion.h> 13 #include <linux/kernel.h> 14 #include <linux/mempool.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/pci.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_dbg.h> 24 #include <scsi/scsi_device.h> 25 #include <scsi/scsi_driver.h> 26 #include <scsi/scsi_eh.h> 27 #include <scsi/scsi_host.h> 28 29 #include "scsi_priv.h" 30 #include "scsi_logging.h" 31 32 33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 34 #define SG_MEMPOOL_SIZE 32 35 36 struct scsi_host_sg_pool { 37 size_t size; 38 char *name; 39 kmem_cache_t *slab; 40 mempool_t *pool; 41 }; 42 43 #if (SCSI_MAX_PHYS_SEGMENTS < 32) 44 #error SCSI_MAX_PHYS_SEGMENTS is too small 45 #endif 46 47 #define SP(x) { x, "sgpool-" #x } 48 static struct scsi_host_sg_pool scsi_sg_pools[] = { 49 SP(8), 50 SP(16), 51 SP(32), 52 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 53 SP(64), 54 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 55 SP(128), 56 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 57 SP(256), 58 #if (SCSI_MAX_PHYS_SEGMENTS > 256) 59 #error SCSI_MAX_PHYS_SEGMENTS is too large 60 #endif 61 #endif 62 #endif 63 #endif 64 }; 65 #undef SP 66 67 static void scsi_run_queue(struct request_queue *q); 68 69 /* 70 * Function: scsi_unprep_request() 71 * 72 * Purpose: Remove all preparation done for a request, including its 73 * associated scsi_cmnd, so that it can be requeued. 74 * 75 * Arguments: req - request to unprepare 76 * 77 * Lock status: Assumed that no locks are held upon entry. 78 * 79 * Returns: Nothing. 80 */ 81 static void scsi_unprep_request(struct request *req) 82 { 83 struct scsi_cmnd *cmd = req->special; 84 85 req->flags &= ~REQ_DONTPREP; 86 req->special = NULL; 87 88 scsi_put_command(cmd); 89 } 90 91 /* 92 * Function: scsi_queue_insert() 93 * 94 * Purpose: Insert a command in the midlevel queue. 95 * 96 * Arguments: cmd - command that we are adding to queue. 97 * reason - why we are inserting command to queue. 98 * 99 * Lock status: Assumed that lock is not held upon entry. 100 * 101 * Returns: Nothing. 102 * 103 * Notes: We do this for one of two cases. Either the host is busy 104 * and it cannot accept any more commands for the time being, 105 * or the device returned QUEUE_FULL and can accept no more 106 * commands. 107 * Notes: This could be called either from an interrupt context or a 108 * normal process context. 109 */ 110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 111 { 112 struct Scsi_Host *host = cmd->device->host; 113 struct scsi_device *device = cmd->device; 114 struct request_queue *q = device->request_queue; 115 unsigned long flags; 116 117 SCSI_LOG_MLQUEUE(1, 118 printk("Inserting command %p into mlqueue\n", cmd)); 119 120 /* 121 * Set the appropriate busy bit for the device/host. 122 * 123 * If the host/device isn't busy, assume that something actually 124 * completed, and that we should be able to queue a command now. 125 * 126 * Note that the prior mid-layer assumption that any host could 127 * always queue at least one command is now broken. The mid-layer 128 * will implement a user specifiable stall (see 129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 130 * if a command is requeued with no other commands outstanding 131 * either for the device or for the host. 132 */ 133 if (reason == SCSI_MLQUEUE_HOST_BUSY) 134 host->host_blocked = host->max_host_blocked; 135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY) 136 device->device_blocked = device->max_device_blocked; 137 138 /* 139 * Decrement the counters, since these commands are no longer 140 * active on the host/device. 141 */ 142 scsi_device_unbusy(device); 143 144 /* 145 * Requeue this command. It will go before all other commands 146 * that are already in the queue. 147 * 148 * NOTE: there is magic here about the way the queue is plugged if 149 * we have no outstanding commands. 150 * 151 * Although we *don't* plug the queue, we call the request 152 * function. The SCSI request function detects the blocked condition 153 * and plugs the queue appropriately. 154 */ 155 spin_lock_irqsave(q->queue_lock, flags); 156 blk_requeue_request(q, cmd->request); 157 spin_unlock_irqrestore(q->queue_lock, flags); 158 159 scsi_run_queue(q); 160 161 return 0; 162 } 163 164 /** 165 * scsi_execute - insert request and wait for the result 166 * @sdev: scsi device 167 * @cmd: scsi command 168 * @data_direction: data direction 169 * @buffer: data buffer 170 * @bufflen: len of buffer 171 * @sense: optional sense buffer 172 * @timeout: request timeout in seconds 173 * @retries: number of times to retry request 174 * @flags: or into request flags; 175 * 176 * returns the req->errors value which is the the scsi_cmnd result 177 * field. 178 **/ 179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 180 int data_direction, void *buffer, unsigned bufflen, 181 unsigned char *sense, int timeout, int retries, int flags) 182 { 183 struct request *req; 184 int write = (data_direction == DMA_TO_DEVICE); 185 int ret = DRIVER_ERROR << 24; 186 187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 188 189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 190 buffer, bufflen, __GFP_WAIT)) 191 goto out; 192 193 req->cmd_len = COMMAND_SIZE(cmd[0]); 194 memcpy(req->cmd, cmd, req->cmd_len); 195 req->sense = sense; 196 req->sense_len = 0; 197 req->retries = retries; 198 req->timeout = timeout; 199 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET; 200 201 /* 202 * head injection *required* here otherwise quiesce won't work 203 */ 204 blk_execute_rq(req->q, NULL, req, 1); 205 206 ret = req->errors; 207 out: 208 blk_put_request(req); 209 210 return ret; 211 } 212 EXPORT_SYMBOL(scsi_execute); 213 214 215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 216 int data_direction, void *buffer, unsigned bufflen, 217 struct scsi_sense_hdr *sshdr, int timeout, int retries) 218 { 219 char *sense = NULL; 220 int result; 221 222 if (sshdr) { 223 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 224 if (!sense) 225 return DRIVER_ERROR << 24; 226 } 227 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 228 sense, timeout, retries, 0); 229 if (sshdr) 230 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 231 232 kfree(sense); 233 return result; 234 } 235 EXPORT_SYMBOL(scsi_execute_req); 236 237 struct scsi_io_context { 238 void *data; 239 void (*done)(void *data, char *sense, int result, int resid); 240 char sense[SCSI_SENSE_BUFFERSIZE]; 241 }; 242 243 static kmem_cache_t *scsi_io_context_cache; 244 245 static void scsi_end_async(struct request *req, int uptodate) 246 { 247 struct scsi_io_context *sioc = req->end_io_data; 248 249 if (sioc->done) 250 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 251 252 kmem_cache_free(scsi_io_context_cache, sioc); 253 __blk_put_request(req->q, req); 254 } 255 256 static int scsi_merge_bio(struct request *rq, struct bio *bio) 257 { 258 struct request_queue *q = rq->q; 259 260 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 261 if (rq_data_dir(rq) == WRITE) 262 bio->bi_rw |= (1 << BIO_RW); 263 blk_queue_bounce(q, &bio); 264 265 if (!rq->bio) 266 blk_rq_bio_prep(q, rq, bio); 267 else if (!q->back_merge_fn(q, rq, bio)) 268 return -EINVAL; 269 else { 270 rq->biotail->bi_next = bio; 271 rq->biotail = bio; 272 rq->hard_nr_sectors += bio_sectors(bio); 273 rq->nr_sectors = rq->hard_nr_sectors; 274 } 275 276 return 0; 277 } 278 279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error) 280 { 281 if (bio->bi_size) 282 return 1; 283 284 bio_put(bio); 285 return 0; 286 } 287 288 /** 289 * scsi_req_map_sg - map a scatterlist into a request 290 * @rq: request to fill 291 * @sg: scatterlist 292 * @nsegs: number of elements 293 * @bufflen: len of buffer 294 * @gfp: memory allocation flags 295 * 296 * scsi_req_map_sg maps a scatterlist into a request so that the 297 * request can be sent to the block layer. We do not trust the scatterlist 298 * sent to use, as some ULDs use that struct to only organize the pages. 299 */ 300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 301 int nsegs, unsigned bufflen, gfp_t gfp) 302 { 303 struct request_queue *q = rq->q; 304 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 305 unsigned int data_len = 0, len, bytes, off; 306 struct page *page; 307 struct bio *bio = NULL; 308 int i, err, nr_vecs = 0; 309 310 for (i = 0; i < nsegs; i++) { 311 page = sgl[i].page; 312 off = sgl[i].offset; 313 len = sgl[i].length; 314 data_len += len; 315 316 while (len > 0) { 317 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 318 319 if (!bio) { 320 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 321 nr_pages -= nr_vecs; 322 323 bio = bio_alloc(gfp, nr_vecs); 324 if (!bio) { 325 err = -ENOMEM; 326 goto free_bios; 327 } 328 bio->bi_end_io = scsi_bi_endio; 329 } 330 331 if (bio_add_pc_page(q, bio, page, bytes, off) != 332 bytes) { 333 bio_put(bio); 334 err = -EINVAL; 335 goto free_bios; 336 } 337 338 if (bio->bi_vcnt >= nr_vecs) { 339 err = scsi_merge_bio(rq, bio); 340 if (err) { 341 bio_endio(bio, bio->bi_size, 0); 342 goto free_bios; 343 } 344 bio = NULL; 345 } 346 347 page++; 348 len -= bytes; 349 off = 0; 350 } 351 } 352 353 rq->buffer = rq->data = NULL; 354 rq->data_len = data_len; 355 return 0; 356 357 free_bios: 358 while ((bio = rq->bio) != NULL) { 359 rq->bio = bio->bi_next; 360 /* 361 * call endio instead of bio_put incase it was bounced 362 */ 363 bio_endio(bio, bio->bi_size, 0); 364 } 365 366 return err; 367 } 368 369 /** 370 * scsi_execute_async - insert request 371 * @sdev: scsi device 372 * @cmd: scsi command 373 * @cmd_len: length of scsi cdb 374 * @data_direction: data direction 375 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 376 * @bufflen: len of buffer 377 * @use_sg: if buffer is a scatterlist this is the number of elements 378 * @timeout: request timeout in seconds 379 * @retries: number of times to retry request 380 * @flags: or into request flags 381 **/ 382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 383 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 384 int use_sg, int timeout, int retries, void *privdata, 385 void (*done)(void *, char *, int, int), gfp_t gfp) 386 { 387 struct request *req; 388 struct scsi_io_context *sioc; 389 int err = 0; 390 int write = (data_direction == DMA_TO_DEVICE); 391 392 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp); 393 if (!sioc) 394 return DRIVER_ERROR << 24; 395 memset(sioc, 0, sizeof(*sioc)); 396 397 req = blk_get_request(sdev->request_queue, write, gfp); 398 if (!req) 399 goto free_sense; 400 req->flags |= REQ_BLOCK_PC | REQ_QUIET; 401 402 if (use_sg) 403 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 404 else if (bufflen) 405 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 406 407 if (err) 408 goto free_req; 409 410 req->cmd_len = cmd_len; 411 memcpy(req->cmd, cmd, req->cmd_len); 412 req->sense = sioc->sense; 413 req->sense_len = 0; 414 req->timeout = timeout; 415 req->retries = retries; 416 req->end_io_data = sioc; 417 418 sioc->data = privdata; 419 sioc->done = done; 420 421 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 422 return 0; 423 424 free_req: 425 blk_put_request(req); 426 free_sense: 427 kfree(sioc); 428 return DRIVER_ERROR << 24; 429 } 430 EXPORT_SYMBOL_GPL(scsi_execute_async); 431 432 /* 433 * Function: scsi_init_cmd_errh() 434 * 435 * Purpose: Initialize cmd fields related to error handling. 436 * 437 * Arguments: cmd - command that is ready to be queued. 438 * 439 * Notes: This function has the job of initializing a number of 440 * fields related to error handling. Typically this will 441 * be called once for each command, as required. 442 */ 443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 444 { 445 cmd->serial_number = 0; 446 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer); 447 if (cmd->cmd_len == 0) 448 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]); 449 } 450 451 void scsi_device_unbusy(struct scsi_device *sdev) 452 { 453 struct Scsi_Host *shost = sdev->host; 454 unsigned long flags; 455 456 spin_lock_irqsave(shost->host_lock, flags); 457 shost->host_busy--; 458 if (unlikely(scsi_host_in_recovery(shost) && 459 (shost->host_failed || shost->host_eh_scheduled))) 460 scsi_eh_wakeup(shost); 461 spin_unlock(shost->host_lock); 462 spin_lock(sdev->request_queue->queue_lock); 463 sdev->device_busy--; 464 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 465 } 466 467 /* 468 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 469 * and call blk_run_queue for all the scsi_devices on the target - 470 * including current_sdev first. 471 * 472 * Called with *no* scsi locks held. 473 */ 474 static void scsi_single_lun_run(struct scsi_device *current_sdev) 475 { 476 struct Scsi_Host *shost = current_sdev->host; 477 struct scsi_device *sdev, *tmp; 478 struct scsi_target *starget = scsi_target(current_sdev); 479 unsigned long flags; 480 481 spin_lock_irqsave(shost->host_lock, flags); 482 starget->starget_sdev_user = NULL; 483 spin_unlock_irqrestore(shost->host_lock, flags); 484 485 /* 486 * Call blk_run_queue for all LUNs on the target, starting with 487 * current_sdev. We race with others (to set starget_sdev_user), 488 * but in most cases, we will be first. Ideally, each LU on the 489 * target would get some limited time or requests on the target. 490 */ 491 blk_run_queue(current_sdev->request_queue); 492 493 spin_lock_irqsave(shost->host_lock, flags); 494 if (starget->starget_sdev_user) 495 goto out; 496 list_for_each_entry_safe(sdev, tmp, &starget->devices, 497 same_target_siblings) { 498 if (sdev == current_sdev) 499 continue; 500 if (scsi_device_get(sdev)) 501 continue; 502 503 spin_unlock_irqrestore(shost->host_lock, flags); 504 blk_run_queue(sdev->request_queue); 505 spin_lock_irqsave(shost->host_lock, flags); 506 507 scsi_device_put(sdev); 508 } 509 out: 510 spin_unlock_irqrestore(shost->host_lock, flags); 511 } 512 513 /* 514 * Function: scsi_run_queue() 515 * 516 * Purpose: Select a proper request queue to serve next 517 * 518 * Arguments: q - last request's queue 519 * 520 * Returns: Nothing 521 * 522 * Notes: The previous command was completely finished, start 523 * a new one if possible. 524 */ 525 static void scsi_run_queue(struct request_queue *q) 526 { 527 struct scsi_device *sdev = q->queuedata; 528 struct Scsi_Host *shost = sdev->host; 529 unsigned long flags; 530 531 if (sdev->single_lun) 532 scsi_single_lun_run(sdev); 533 534 spin_lock_irqsave(shost->host_lock, flags); 535 while (!list_empty(&shost->starved_list) && 536 !shost->host_blocked && !shost->host_self_blocked && 537 !((shost->can_queue > 0) && 538 (shost->host_busy >= shost->can_queue))) { 539 /* 540 * As long as shost is accepting commands and we have 541 * starved queues, call blk_run_queue. scsi_request_fn 542 * drops the queue_lock and can add us back to the 543 * starved_list. 544 * 545 * host_lock protects the starved_list and starved_entry. 546 * scsi_request_fn must get the host_lock before checking 547 * or modifying starved_list or starved_entry. 548 */ 549 sdev = list_entry(shost->starved_list.next, 550 struct scsi_device, starved_entry); 551 list_del_init(&sdev->starved_entry); 552 spin_unlock_irqrestore(shost->host_lock, flags); 553 554 blk_run_queue(sdev->request_queue); 555 556 spin_lock_irqsave(shost->host_lock, flags); 557 if (unlikely(!list_empty(&sdev->starved_entry))) 558 /* 559 * sdev lost a race, and was put back on the 560 * starved list. This is unlikely but without this 561 * in theory we could loop forever. 562 */ 563 break; 564 } 565 spin_unlock_irqrestore(shost->host_lock, flags); 566 567 blk_run_queue(q); 568 } 569 570 /* 571 * Function: scsi_requeue_command() 572 * 573 * Purpose: Handle post-processing of completed commands. 574 * 575 * Arguments: q - queue to operate on 576 * cmd - command that may need to be requeued. 577 * 578 * Returns: Nothing 579 * 580 * Notes: After command completion, there may be blocks left 581 * over which weren't finished by the previous command 582 * this can be for a number of reasons - the main one is 583 * I/O errors in the middle of the request, in which case 584 * we need to request the blocks that come after the bad 585 * sector. 586 * Notes: Upon return, cmd is a stale pointer. 587 */ 588 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 589 { 590 struct request *req = cmd->request; 591 unsigned long flags; 592 593 scsi_unprep_request(req); 594 spin_lock_irqsave(q->queue_lock, flags); 595 blk_requeue_request(q, req); 596 spin_unlock_irqrestore(q->queue_lock, flags); 597 598 scsi_run_queue(q); 599 } 600 601 void scsi_next_command(struct scsi_cmnd *cmd) 602 { 603 struct scsi_device *sdev = cmd->device; 604 struct request_queue *q = sdev->request_queue; 605 606 /* need to hold a reference on the device before we let go of the cmd */ 607 get_device(&sdev->sdev_gendev); 608 609 scsi_put_command(cmd); 610 scsi_run_queue(q); 611 612 /* ok to remove device now */ 613 put_device(&sdev->sdev_gendev); 614 } 615 616 void scsi_run_host_queues(struct Scsi_Host *shost) 617 { 618 struct scsi_device *sdev; 619 620 shost_for_each_device(sdev, shost) 621 scsi_run_queue(sdev->request_queue); 622 } 623 624 /* 625 * Function: scsi_end_request() 626 * 627 * Purpose: Post-processing of completed commands (usually invoked at end 628 * of upper level post-processing and scsi_io_completion). 629 * 630 * Arguments: cmd - command that is complete. 631 * uptodate - 1 if I/O indicates success, <= 0 for I/O error. 632 * bytes - number of bytes of completed I/O 633 * requeue - indicates whether we should requeue leftovers. 634 * 635 * Lock status: Assumed that lock is not held upon entry. 636 * 637 * Returns: cmd if requeue required, NULL otherwise. 638 * 639 * Notes: This is called for block device requests in order to 640 * mark some number of sectors as complete. 641 * 642 * We are guaranteeing that the request queue will be goosed 643 * at some point during this call. 644 * Notes: If cmd was requeued, upon return it will be a stale pointer. 645 */ 646 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate, 647 int bytes, int requeue) 648 { 649 request_queue_t *q = cmd->device->request_queue; 650 struct request *req = cmd->request; 651 unsigned long flags; 652 653 /* 654 * If there are blocks left over at the end, set up the command 655 * to queue the remainder of them. 656 */ 657 if (end_that_request_chunk(req, uptodate, bytes)) { 658 int leftover = (req->hard_nr_sectors << 9); 659 660 if (blk_pc_request(req)) 661 leftover = req->data_len; 662 663 /* kill remainder if no retrys */ 664 if (!uptodate && blk_noretry_request(req)) 665 end_that_request_chunk(req, 0, leftover); 666 else { 667 if (requeue) { 668 /* 669 * Bleah. Leftovers again. Stick the 670 * leftovers in the front of the 671 * queue, and goose the queue again. 672 */ 673 scsi_requeue_command(q, cmd); 674 cmd = NULL; 675 } 676 return cmd; 677 } 678 } 679 680 add_disk_randomness(req->rq_disk); 681 682 spin_lock_irqsave(q->queue_lock, flags); 683 if (blk_rq_tagged(req)) 684 blk_queue_end_tag(q, req); 685 end_that_request_last(req, uptodate); 686 spin_unlock_irqrestore(q->queue_lock, flags); 687 688 /* 689 * This will goose the queue request function at the end, so we don't 690 * need to worry about launching another command. 691 */ 692 scsi_next_command(cmd); 693 return NULL; 694 } 695 696 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask) 697 { 698 struct scsi_host_sg_pool *sgp; 699 struct scatterlist *sgl; 700 701 BUG_ON(!cmd->use_sg); 702 703 switch (cmd->use_sg) { 704 case 1 ... 8: 705 cmd->sglist_len = 0; 706 break; 707 case 9 ... 16: 708 cmd->sglist_len = 1; 709 break; 710 case 17 ... 32: 711 cmd->sglist_len = 2; 712 break; 713 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 714 case 33 ... 64: 715 cmd->sglist_len = 3; 716 break; 717 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 718 case 65 ... 128: 719 cmd->sglist_len = 4; 720 break; 721 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 722 case 129 ... 256: 723 cmd->sglist_len = 5; 724 break; 725 #endif 726 #endif 727 #endif 728 default: 729 return NULL; 730 } 731 732 sgp = scsi_sg_pools + cmd->sglist_len; 733 sgl = mempool_alloc(sgp->pool, gfp_mask); 734 return sgl; 735 } 736 737 static void scsi_free_sgtable(struct scatterlist *sgl, int index) 738 { 739 struct scsi_host_sg_pool *sgp; 740 741 BUG_ON(index >= SG_MEMPOOL_NR); 742 743 sgp = scsi_sg_pools + index; 744 mempool_free(sgl, sgp->pool); 745 } 746 747 /* 748 * Function: scsi_release_buffers() 749 * 750 * Purpose: Completion processing for block device I/O requests. 751 * 752 * Arguments: cmd - command that we are bailing. 753 * 754 * Lock status: Assumed that no lock is held upon entry. 755 * 756 * Returns: Nothing 757 * 758 * Notes: In the event that an upper level driver rejects a 759 * command, we must release resources allocated during 760 * the __init_io() function. Primarily this would involve 761 * the scatter-gather table, and potentially any bounce 762 * buffers. 763 */ 764 static void scsi_release_buffers(struct scsi_cmnd *cmd) 765 { 766 if (cmd->use_sg) 767 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len); 768 769 /* 770 * Zero these out. They now point to freed memory, and it is 771 * dangerous to hang onto the pointers. 772 */ 773 cmd->request_buffer = NULL; 774 cmd->request_bufflen = 0; 775 } 776 777 /* 778 * Function: scsi_io_completion() 779 * 780 * Purpose: Completion processing for block device I/O requests. 781 * 782 * Arguments: cmd - command that is finished. 783 * 784 * Lock status: Assumed that no lock is held upon entry. 785 * 786 * Returns: Nothing 787 * 788 * Notes: This function is matched in terms of capabilities to 789 * the function that created the scatter-gather list. 790 * In other words, if there are no bounce buffers 791 * (the normal case for most drivers), we don't need 792 * the logic to deal with cleaning up afterwards. 793 * 794 * We must do one of several things here: 795 * 796 * a) Call scsi_end_request. This will finish off the 797 * specified number of sectors. If we are done, the 798 * command block will be released, and the queue 799 * function will be goosed. If we are not done, then 800 * scsi_end_request will directly goose the queue. 801 * 802 * b) We can just use scsi_requeue_command() here. This would 803 * be used if we just wanted to retry, for example. 804 */ 805 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 806 { 807 int result = cmd->result; 808 int this_count = cmd->request_bufflen; 809 request_queue_t *q = cmd->device->request_queue; 810 struct request *req = cmd->request; 811 int clear_errors = 1; 812 struct scsi_sense_hdr sshdr; 813 int sense_valid = 0; 814 int sense_deferred = 0; 815 816 scsi_release_buffers(cmd); 817 818 if (result) { 819 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 820 if (sense_valid) 821 sense_deferred = scsi_sense_is_deferred(&sshdr); 822 } 823 824 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 825 req->errors = result; 826 if (result) { 827 clear_errors = 0; 828 if (sense_valid && req->sense) { 829 /* 830 * SG_IO wants current and deferred errors 831 */ 832 int len = 8 + cmd->sense_buffer[7]; 833 834 if (len > SCSI_SENSE_BUFFERSIZE) 835 len = SCSI_SENSE_BUFFERSIZE; 836 memcpy(req->sense, cmd->sense_buffer, len); 837 req->sense_len = len; 838 } 839 } else 840 req->data_len = cmd->resid; 841 } 842 843 /* 844 * Next deal with any sectors which we were able to correctly 845 * handle. 846 */ 847 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 848 "%d bytes done.\n", 849 req->nr_sectors, good_bytes)); 850 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg)); 851 852 if (clear_errors) 853 req->errors = 0; 854 855 /* A number of bytes were successfully read. If there 856 * are leftovers and there is some kind of error 857 * (result != 0), retry the rest. 858 */ 859 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL) 860 return; 861 862 /* good_bytes = 0, or (inclusive) there were leftovers and 863 * result = 0, so scsi_end_request couldn't retry. 864 */ 865 if (sense_valid && !sense_deferred) { 866 switch (sshdr.sense_key) { 867 case UNIT_ATTENTION: 868 if (cmd->device->removable) { 869 /* Detected disc change. Set a bit 870 * and quietly refuse further access. 871 */ 872 cmd->device->changed = 1; 873 scsi_end_request(cmd, 0, this_count, 1); 874 return; 875 } else { 876 /* Must have been a power glitch, or a 877 * bus reset. Could not have been a 878 * media change, so we just retry the 879 * request and see what happens. 880 */ 881 scsi_requeue_command(q, cmd); 882 return; 883 } 884 break; 885 case ILLEGAL_REQUEST: 886 /* If we had an ILLEGAL REQUEST returned, then 887 * we may have performed an unsupported 888 * command. The only thing this should be 889 * would be a ten byte read where only a six 890 * byte read was supported. Also, on a system 891 * where READ CAPACITY failed, we may have 892 * read past the end of the disk. 893 */ 894 if ((cmd->device->use_10_for_rw && 895 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 896 (cmd->cmnd[0] == READ_10 || 897 cmd->cmnd[0] == WRITE_10)) { 898 cmd->device->use_10_for_rw = 0; 899 /* This will cause a retry with a 900 * 6-byte command. 901 */ 902 scsi_requeue_command(q, cmd); 903 return; 904 } else { 905 scsi_end_request(cmd, 0, this_count, 1); 906 return; 907 } 908 break; 909 case NOT_READY: 910 /* If the device is in the process of becoming 911 * ready, or has a temporary blockage, retry. 912 */ 913 if (sshdr.asc == 0x04) { 914 switch (sshdr.ascq) { 915 case 0x01: /* becoming ready */ 916 case 0x04: /* format in progress */ 917 case 0x05: /* rebuild in progress */ 918 case 0x06: /* recalculation in progress */ 919 case 0x07: /* operation in progress */ 920 case 0x08: /* Long write in progress */ 921 case 0x09: /* self test in progress */ 922 scsi_requeue_command(q, cmd); 923 return; 924 default: 925 break; 926 } 927 } 928 if (!(req->flags & REQ_QUIET)) { 929 scmd_printk(KERN_INFO, cmd, 930 "Device not ready: "); 931 scsi_print_sense_hdr("", &sshdr); 932 } 933 scsi_end_request(cmd, 0, this_count, 1); 934 return; 935 case VOLUME_OVERFLOW: 936 if (!(req->flags & REQ_QUIET)) { 937 scmd_printk(KERN_INFO, cmd, 938 "Volume overflow, CDB: "); 939 __scsi_print_command(cmd->cmnd); 940 scsi_print_sense("", cmd); 941 } 942 /* See SSC3rXX or current. */ 943 scsi_end_request(cmd, 0, this_count, 1); 944 return; 945 default: 946 break; 947 } 948 } 949 if (host_byte(result) == DID_RESET) { 950 /* Third party bus reset or reset for error recovery 951 * reasons. Just retry the request and see what 952 * happens. 953 */ 954 scsi_requeue_command(q, cmd); 955 return; 956 } 957 if (result) { 958 if (!(req->flags & REQ_QUIET)) { 959 scmd_printk(KERN_INFO, cmd, 960 "SCSI error: return code = 0x%08x\n", 961 result); 962 if (driver_byte(result) & DRIVER_SENSE) 963 scsi_print_sense("", cmd); 964 } 965 } 966 scsi_end_request(cmd, 0, this_count, !result); 967 } 968 EXPORT_SYMBOL(scsi_io_completion); 969 970 /* 971 * Function: scsi_init_io() 972 * 973 * Purpose: SCSI I/O initialize function. 974 * 975 * Arguments: cmd - Command descriptor we wish to initialize 976 * 977 * Returns: 0 on success 978 * BLKPREP_DEFER if the failure is retryable 979 * BLKPREP_KILL if the failure is fatal 980 */ 981 static int scsi_init_io(struct scsi_cmnd *cmd) 982 { 983 struct request *req = cmd->request; 984 struct scatterlist *sgpnt; 985 int count; 986 987 /* 988 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer 989 */ 990 if ((req->flags & REQ_BLOCK_PC) && !req->bio) { 991 cmd->request_bufflen = req->data_len; 992 cmd->request_buffer = req->data; 993 req->buffer = req->data; 994 cmd->use_sg = 0; 995 return 0; 996 } 997 998 /* 999 * we used to not use scatter-gather for single segment request, 1000 * but now we do (it makes highmem I/O easier to support without 1001 * kmapping pages) 1002 */ 1003 cmd->use_sg = req->nr_phys_segments; 1004 1005 /* 1006 * if sg table allocation fails, requeue request later. 1007 */ 1008 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC); 1009 if (unlikely(!sgpnt)) { 1010 scsi_unprep_request(req); 1011 return BLKPREP_DEFER; 1012 } 1013 1014 cmd->request_buffer = (char *) sgpnt; 1015 cmd->request_bufflen = req->nr_sectors << 9; 1016 if (blk_pc_request(req)) 1017 cmd->request_bufflen = req->data_len; 1018 req->buffer = NULL; 1019 1020 /* 1021 * Next, walk the list, and fill in the addresses and sizes of 1022 * each segment. 1023 */ 1024 count = blk_rq_map_sg(req->q, req, cmd->request_buffer); 1025 1026 /* 1027 * mapped well, send it off 1028 */ 1029 if (likely(count <= cmd->use_sg)) { 1030 cmd->use_sg = count; 1031 return 0; 1032 } 1033 1034 printk(KERN_ERR "Incorrect number of segments after building list\n"); 1035 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg); 1036 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors, 1037 req->current_nr_sectors); 1038 1039 /* release the command and kill it */ 1040 scsi_release_buffers(cmd); 1041 scsi_put_command(cmd); 1042 return BLKPREP_KILL; 1043 } 1044 1045 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk, 1046 sector_t *error_sector) 1047 { 1048 struct scsi_device *sdev = q->queuedata; 1049 struct scsi_driver *drv; 1050 1051 if (sdev->sdev_state != SDEV_RUNNING) 1052 return -ENXIO; 1053 1054 drv = *(struct scsi_driver **) disk->private_data; 1055 if (drv->issue_flush) 1056 return drv->issue_flush(&sdev->sdev_gendev, error_sector); 1057 1058 return -EOPNOTSUPP; 1059 } 1060 1061 static void scsi_blk_pc_done(struct scsi_cmnd *cmd) 1062 { 1063 BUG_ON(!blk_pc_request(cmd->request)); 1064 /* 1065 * This will complete the whole command with uptodate=1 so 1066 * as far as the block layer is concerned the command completed 1067 * successfully. Since this is a REQ_BLOCK_PC command the 1068 * caller should check the request's errors value 1069 */ 1070 scsi_io_completion(cmd, cmd->request_bufflen); 1071 } 1072 1073 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd) 1074 { 1075 struct request *req = cmd->request; 1076 1077 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd)); 1078 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd)); 1079 cmd->cmd_len = req->cmd_len; 1080 if (!req->data_len) 1081 cmd->sc_data_direction = DMA_NONE; 1082 else if (rq_data_dir(req) == WRITE) 1083 cmd->sc_data_direction = DMA_TO_DEVICE; 1084 else 1085 cmd->sc_data_direction = DMA_FROM_DEVICE; 1086 1087 cmd->transfersize = req->data_len; 1088 cmd->allowed = req->retries; 1089 cmd->timeout_per_command = req->timeout; 1090 cmd->done = scsi_blk_pc_done; 1091 } 1092 1093 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1094 { 1095 struct scsi_device *sdev = q->queuedata; 1096 struct scsi_cmnd *cmd; 1097 int specials_only = 0; 1098 1099 /* 1100 * Just check to see if the device is online. If it isn't, we 1101 * refuse to process any commands. The device must be brought 1102 * online before trying any recovery commands 1103 */ 1104 if (unlikely(!scsi_device_online(sdev))) { 1105 sdev_printk(KERN_ERR, sdev, 1106 "rejecting I/O to offline device\n"); 1107 goto kill; 1108 } 1109 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1110 /* OK, we're not in a running state don't prep 1111 * user commands */ 1112 if (sdev->sdev_state == SDEV_DEL) { 1113 /* Device is fully deleted, no commands 1114 * at all allowed down */ 1115 sdev_printk(KERN_ERR, sdev, 1116 "rejecting I/O to dead device\n"); 1117 goto kill; 1118 } 1119 /* OK, we only allow special commands (i.e. not 1120 * user initiated ones */ 1121 specials_only = sdev->sdev_state; 1122 } 1123 1124 /* 1125 * Find the actual device driver associated with this command. 1126 * The SPECIAL requests are things like character device or 1127 * ioctls, which did not originate from ll_rw_blk. Note that 1128 * the special field is also used to indicate the cmd for 1129 * the remainder of a partially fulfilled request that can 1130 * come up when there is a medium error. We have to treat 1131 * these two cases differently. We differentiate by looking 1132 * at request->cmd, as this tells us the real story. 1133 */ 1134 if (req->flags & REQ_SPECIAL && req->special) { 1135 cmd = req->special; 1136 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) { 1137 1138 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) { 1139 if(specials_only == SDEV_QUIESCE || 1140 specials_only == SDEV_BLOCK) 1141 goto defer; 1142 1143 sdev_printk(KERN_ERR, sdev, 1144 "rejecting I/O to device being removed\n"); 1145 goto kill; 1146 } 1147 1148 1149 /* 1150 * Now try and find a command block that we can use. 1151 */ 1152 if (!req->special) { 1153 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1154 if (unlikely(!cmd)) 1155 goto defer; 1156 } else 1157 cmd = req->special; 1158 1159 /* pull a tag out of the request if we have one */ 1160 cmd->tag = req->tag; 1161 } else { 1162 blk_dump_rq_flags(req, "SCSI bad req"); 1163 goto kill; 1164 } 1165 1166 /* note the overloading of req->special. When the tag 1167 * is active it always means cmd. If the tag goes 1168 * back for re-queueing, it may be reset */ 1169 req->special = cmd; 1170 cmd->request = req; 1171 1172 /* 1173 * FIXME: drop the lock here because the functions below 1174 * expect to be called without the queue lock held. Also, 1175 * previously, we dequeued the request before dropping the 1176 * lock. We hope REQ_STARTED prevents anything untoward from 1177 * happening now. 1178 */ 1179 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) { 1180 int ret; 1181 1182 /* 1183 * This will do a couple of things: 1184 * 1) Fill in the actual SCSI command. 1185 * 2) Fill in any other upper-level specific fields 1186 * (timeout). 1187 * 1188 * If this returns 0, it means that the request failed 1189 * (reading past end of disk, reading offline device, 1190 * etc). This won't actually talk to the device, but 1191 * some kinds of consistency checking may cause the 1192 * request to be rejected immediately. 1193 */ 1194 1195 /* 1196 * This sets up the scatter-gather table (allocating if 1197 * required). 1198 */ 1199 ret = scsi_init_io(cmd); 1200 switch(ret) { 1201 /* For BLKPREP_KILL/DEFER the cmd was released */ 1202 case BLKPREP_KILL: 1203 goto kill; 1204 case BLKPREP_DEFER: 1205 goto defer; 1206 } 1207 1208 /* 1209 * Initialize the actual SCSI command for this request. 1210 */ 1211 if (req->flags & REQ_BLOCK_PC) { 1212 scsi_setup_blk_pc_cmnd(cmd); 1213 } else if (req->rq_disk) { 1214 struct scsi_driver *drv; 1215 1216 drv = *(struct scsi_driver **)req->rq_disk->private_data; 1217 if (unlikely(!drv->init_command(cmd))) { 1218 scsi_release_buffers(cmd); 1219 scsi_put_command(cmd); 1220 goto kill; 1221 } 1222 } 1223 } 1224 1225 /* 1226 * The request is now prepped, no need to come back here 1227 */ 1228 req->flags |= REQ_DONTPREP; 1229 return BLKPREP_OK; 1230 1231 defer: 1232 /* If we defer, the elv_next_request() returns NULL, but the 1233 * queue must be restarted, so we plug here if no returning 1234 * command will automatically do that. */ 1235 if (sdev->device_busy == 0) 1236 blk_plug_device(q); 1237 return BLKPREP_DEFER; 1238 kill: 1239 req->errors = DID_NO_CONNECT << 16; 1240 return BLKPREP_KILL; 1241 } 1242 1243 /* 1244 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1245 * return 0. 1246 * 1247 * Called with the queue_lock held. 1248 */ 1249 static inline int scsi_dev_queue_ready(struct request_queue *q, 1250 struct scsi_device *sdev) 1251 { 1252 if (sdev->device_busy >= sdev->queue_depth) 1253 return 0; 1254 if (sdev->device_busy == 0 && sdev->device_blocked) { 1255 /* 1256 * unblock after device_blocked iterates to zero 1257 */ 1258 if (--sdev->device_blocked == 0) { 1259 SCSI_LOG_MLQUEUE(3, 1260 sdev_printk(KERN_INFO, sdev, 1261 "unblocking device at zero depth\n")); 1262 } else { 1263 blk_plug_device(q); 1264 return 0; 1265 } 1266 } 1267 if (sdev->device_blocked) 1268 return 0; 1269 1270 return 1; 1271 } 1272 1273 /* 1274 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1275 * return 0. We must end up running the queue again whenever 0 is 1276 * returned, else IO can hang. 1277 * 1278 * Called with host_lock held. 1279 */ 1280 static inline int scsi_host_queue_ready(struct request_queue *q, 1281 struct Scsi_Host *shost, 1282 struct scsi_device *sdev) 1283 { 1284 if (scsi_host_in_recovery(shost)) 1285 return 0; 1286 if (shost->host_busy == 0 && shost->host_blocked) { 1287 /* 1288 * unblock after host_blocked iterates to zero 1289 */ 1290 if (--shost->host_blocked == 0) { 1291 SCSI_LOG_MLQUEUE(3, 1292 printk("scsi%d unblocking host at zero depth\n", 1293 shost->host_no)); 1294 } else { 1295 blk_plug_device(q); 1296 return 0; 1297 } 1298 } 1299 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 1300 shost->host_blocked || shost->host_self_blocked) { 1301 if (list_empty(&sdev->starved_entry)) 1302 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1303 return 0; 1304 } 1305 1306 /* We're OK to process the command, so we can't be starved */ 1307 if (!list_empty(&sdev->starved_entry)) 1308 list_del_init(&sdev->starved_entry); 1309 1310 return 1; 1311 } 1312 1313 /* 1314 * Kill a request for a dead device 1315 */ 1316 static void scsi_kill_request(struct request *req, request_queue_t *q) 1317 { 1318 struct scsi_cmnd *cmd = req->special; 1319 struct scsi_device *sdev = cmd->device; 1320 struct Scsi_Host *shost = sdev->host; 1321 1322 blkdev_dequeue_request(req); 1323 1324 if (unlikely(cmd == NULL)) { 1325 printk(KERN_CRIT "impossible request in %s.\n", 1326 __FUNCTION__); 1327 BUG(); 1328 } 1329 1330 scsi_init_cmd_errh(cmd); 1331 cmd->result = DID_NO_CONNECT << 16; 1332 atomic_inc(&cmd->device->iorequest_cnt); 1333 1334 /* 1335 * SCSI request completion path will do scsi_device_unbusy(), 1336 * bump busy counts. To bump the counters, we need to dance 1337 * with the locks as normal issue path does. 1338 */ 1339 sdev->device_busy++; 1340 spin_unlock(sdev->request_queue->queue_lock); 1341 spin_lock(shost->host_lock); 1342 shost->host_busy++; 1343 spin_unlock(shost->host_lock); 1344 spin_lock(sdev->request_queue->queue_lock); 1345 1346 __scsi_done(cmd); 1347 } 1348 1349 static void scsi_softirq_done(struct request *rq) 1350 { 1351 struct scsi_cmnd *cmd = rq->completion_data; 1352 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command; 1353 int disposition; 1354 1355 INIT_LIST_HEAD(&cmd->eh_entry); 1356 1357 disposition = scsi_decide_disposition(cmd); 1358 if (disposition != SUCCESS && 1359 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1360 sdev_printk(KERN_ERR, cmd->device, 1361 "timing out command, waited %lus\n", 1362 wait_for/HZ); 1363 disposition = SUCCESS; 1364 } 1365 1366 scsi_log_completion(cmd, disposition); 1367 1368 switch (disposition) { 1369 case SUCCESS: 1370 scsi_finish_command(cmd); 1371 break; 1372 case NEEDS_RETRY: 1373 scsi_retry_command(cmd); 1374 break; 1375 case ADD_TO_MLQUEUE: 1376 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1377 break; 1378 default: 1379 if (!scsi_eh_scmd_add(cmd, 0)) 1380 scsi_finish_command(cmd); 1381 } 1382 } 1383 1384 /* 1385 * Function: scsi_request_fn() 1386 * 1387 * Purpose: Main strategy routine for SCSI. 1388 * 1389 * Arguments: q - Pointer to actual queue. 1390 * 1391 * Returns: Nothing 1392 * 1393 * Lock status: IO request lock assumed to be held when called. 1394 */ 1395 static void scsi_request_fn(struct request_queue *q) 1396 { 1397 struct scsi_device *sdev = q->queuedata; 1398 struct Scsi_Host *shost; 1399 struct scsi_cmnd *cmd; 1400 struct request *req; 1401 1402 if (!sdev) { 1403 printk("scsi: killing requests for dead queue\n"); 1404 while ((req = elv_next_request(q)) != NULL) 1405 scsi_kill_request(req, q); 1406 return; 1407 } 1408 1409 if(!get_device(&sdev->sdev_gendev)) 1410 /* We must be tearing the block queue down already */ 1411 return; 1412 1413 /* 1414 * To start with, we keep looping until the queue is empty, or until 1415 * the host is no longer able to accept any more requests. 1416 */ 1417 shost = sdev->host; 1418 while (!blk_queue_plugged(q)) { 1419 int rtn; 1420 /* 1421 * get next queueable request. We do this early to make sure 1422 * that the request is fully prepared even if we cannot 1423 * accept it. 1424 */ 1425 req = elv_next_request(q); 1426 if (!req || !scsi_dev_queue_ready(q, sdev)) 1427 break; 1428 1429 if (unlikely(!scsi_device_online(sdev))) { 1430 sdev_printk(KERN_ERR, sdev, 1431 "rejecting I/O to offline device\n"); 1432 scsi_kill_request(req, q); 1433 continue; 1434 } 1435 1436 1437 /* 1438 * Remove the request from the request list. 1439 */ 1440 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1441 blkdev_dequeue_request(req); 1442 sdev->device_busy++; 1443 1444 spin_unlock(q->queue_lock); 1445 cmd = req->special; 1446 if (unlikely(cmd == NULL)) { 1447 printk(KERN_CRIT "impossible request in %s.\n" 1448 "please mail a stack trace to " 1449 "linux-scsi@vger.kernel.org", 1450 __FUNCTION__); 1451 BUG(); 1452 } 1453 spin_lock(shost->host_lock); 1454 1455 if (!scsi_host_queue_ready(q, shost, sdev)) 1456 goto not_ready; 1457 if (sdev->single_lun) { 1458 if (scsi_target(sdev)->starget_sdev_user && 1459 scsi_target(sdev)->starget_sdev_user != sdev) 1460 goto not_ready; 1461 scsi_target(sdev)->starget_sdev_user = sdev; 1462 } 1463 shost->host_busy++; 1464 1465 /* 1466 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1467 * take the lock again. 1468 */ 1469 spin_unlock_irq(shost->host_lock); 1470 1471 /* 1472 * Finally, initialize any error handling parameters, and set up 1473 * the timers for timeouts. 1474 */ 1475 scsi_init_cmd_errh(cmd); 1476 1477 /* 1478 * Dispatch the command to the low-level driver. 1479 */ 1480 rtn = scsi_dispatch_cmd(cmd); 1481 spin_lock_irq(q->queue_lock); 1482 if(rtn) { 1483 /* we're refusing the command; because of 1484 * the way locks get dropped, we need to 1485 * check here if plugging is required */ 1486 if(sdev->device_busy == 0) 1487 blk_plug_device(q); 1488 1489 break; 1490 } 1491 } 1492 1493 goto out; 1494 1495 not_ready: 1496 spin_unlock_irq(shost->host_lock); 1497 1498 /* 1499 * lock q, handle tag, requeue req, and decrement device_busy. We 1500 * must return with queue_lock held. 1501 * 1502 * Decrementing device_busy without checking it is OK, as all such 1503 * cases (host limits or settings) should run the queue at some 1504 * later time. 1505 */ 1506 spin_lock_irq(q->queue_lock); 1507 blk_requeue_request(q, req); 1508 sdev->device_busy--; 1509 if(sdev->device_busy == 0) 1510 blk_plug_device(q); 1511 out: 1512 /* must be careful here...if we trigger the ->remove() function 1513 * we cannot be holding the q lock */ 1514 spin_unlock_irq(q->queue_lock); 1515 put_device(&sdev->sdev_gendev); 1516 spin_lock_irq(q->queue_lock); 1517 } 1518 1519 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1520 { 1521 struct device *host_dev; 1522 u64 bounce_limit = 0xffffffff; 1523 1524 if (shost->unchecked_isa_dma) 1525 return BLK_BOUNCE_ISA; 1526 /* 1527 * Platforms with virtual-DMA translation 1528 * hardware have no practical limit. 1529 */ 1530 if (!PCI_DMA_BUS_IS_PHYS) 1531 return BLK_BOUNCE_ANY; 1532 1533 host_dev = scsi_get_device(shost); 1534 if (host_dev && host_dev->dma_mask) 1535 bounce_limit = *host_dev->dma_mask; 1536 1537 return bounce_limit; 1538 } 1539 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1540 1541 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1542 { 1543 struct Scsi_Host *shost = sdev->host; 1544 struct request_queue *q; 1545 1546 q = blk_init_queue(scsi_request_fn, NULL); 1547 if (!q) 1548 return NULL; 1549 1550 blk_queue_prep_rq(q, scsi_prep_fn); 1551 1552 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1553 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS); 1554 blk_queue_max_sectors(q, shost->max_sectors); 1555 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1556 blk_queue_segment_boundary(q, shost->dma_boundary); 1557 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn); 1558 blk_queue_softirq_done(q, scsi_softirq_done); 1559 1560 if (!shost->use_clustering) 1561 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 1562 return q; 1563 } 1564 1565 void scsi_free_queue(struct request_queue *q) 1566 { 1567 blk_cleanup_queue(q); 1568 } 1569 1570 /* 1571 * Function: scsi_block_requests() 1572 * 1573 * Purpose: Utility function used by low-level drivers to prevent further 1574 * commands from being queued to the device. 1575 * 1576 * Arguments: shost - Host in question 1577 * 1578 * Returns: Nothing 1579 * 1580 * Lock status: No locks are assumed held. 1581 * 1582 * Notes: There is no timer nor any other means by which the requests 1583 * get unblocked other than the low-level driver calling 1584 * scsi_unblock_requests(). 1585 */ 1586 void scsi_block_requests(struct Scsi_Host *shost) 1587 { 1588 shost->host_self_blocked = 1; 1589 } 1590 EXPORT_SYMBOL(scsi_block_requests); 1591 1592 /* 1593 * Function: scsi_unblock_requests() 1594 * 1595 * Purpose: Utility function used by low-level drivers to allow further 1596 * commands from being queued to the device. 1597 * 1598 * Arguments: shost - Host in question 1599 * 1600 * Returns: Nothing 1601 * 1602 * Lock status: No locks are assumed held. 1603 * 1604 * Notes: There is no timer nor any other means by which the requests 1605 * get unblocked other than the low-level driver calling 1606 * scsi_unblock_requests(). 1607 * 1608 * This is done as an API function so that changes to the 1609 * internals of the scsi mid-layer won't require wholesale 1610 * changes to drivers that use this feature. 1611 */ 1612 void scsi_unblock_requests(struct Scsi_Host *shost) 1613 { 1614 shost->host_self_blocked = 0; 1615 scsi_run_host_queues(shost); 1616 } 1617 EXPORT_SYMBOL(scsi_unblock_requests); 1618 1619 int __init scsi_init_queue(void) 1620 { 1621 int i; 1622 1623 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1624 sizeof(struct scsi_io_context), 1625 0, 0, NULL, NULL); 1626 if (!scsi_io_context_cache) { 1627 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1628 return -ENOMEM; 1629 } 1630 1631 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1632 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1633 int size = sgp->size * sizeof(struct scatterlist); 1634 1635 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1636 SLAB_HWCACHE_ALIGN, NULL, NULL); 1637 if (!sgp->slab) { 1638 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1639 sgp->name); 1640 } 1641 1642 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1643 sgp->slab); 1644 if (!sgp->pool) { 1645 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1646 sgp->name); 1647 } 1648 } 1649 1650 return 0; 1651 } 1652 1653 void scsi_exit_queue(void) 1654 { 1655 int i; 1656 1657 kmem_cache_destroy(scsi_io_context_cache); 1658 1659 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1660 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1661 mempool_destroy(sgp->pool); 1662 kmem_cache_destroy(sgp->slab); 1663 } 1664 } 1665 1666 /** 1667 * scsi_mode_select - issue a mode select 1668 * @sdev: SCSI device to be queried 1669 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1670 * @sp: Save page bit (0 == don't save, 1 == save) 1671 * @modepage: mode page being requested 1672 * @buffer: request buffer (may not be smaller than eight bytes) 1673 * @len: length of request buffer. 1674 * @timeout: command timeout 1675 * @retries: number of retries before failing 1676 * @data: returns a structure abstracting the mode header data 1677 * @sense: place to put sense data (or NULL if no sense to be collected). 1678 * must be SCSI_SENSE_BUFFERSIZE big. 1679 * 1680 * Returns zero if successful; negative error number or scsi 1681 * status on error 1682 * 1683 */ 1684 int 1685 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1686 unsigned char *buffer, int len, int timeout, int retries, 1687 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1688 { 1689 unsigned char cmd[10]; 1690 unsigned char *real_buffer; 1691 int ret; 1692 1693 memset(cmd, 0, sizeof(cmd)); 1694 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1695 1696 if (sdev->use_10_for_ms) { 1697 if (len > 65535) 1698 return -EINVAL; 1699 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1700 if (!real_buffer) 1701 return -ENOMEM; 1702 memcpy(real_buffer + 8, buffer, len); 1703 len += 8; 1704 real_buffer[0] = 0; 1705 real_buffer[1] = 0; 1706 real_buffer[2] = data->medium_type; 1707 real_buffer[3] = data->device_specific; 1708 real_buffer[4] = data->longlba ? 0x01 : 0; 1709 real_buffer[5] = 0; 1710 real_buffer[6] = data->block_descriptor_length >> 8; 1711 real_buffer[7] = data->block_descriptor_length; 1712 1713 cmd[0] = MODE_SELECT_10; 1714 cmd[7] = len >> 8; 1715 cmd[8] = len; 1716 } else { 1717 if (len > 255 || data->block_descriptor_length > 255 || 1718 data->longlba) 1719 return -EINVAL; 1720 1721 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1722 if (!real_buffer) 1723 return -ENOMEM; 1724 memcpy(real_buffer + 4, buffer, len); 1725 len += 4; 1726 real_buffer[0] = 0; 1727 real_buffer[1] = data->medium_type; 1728 real_buffer[2] = data->device_specific; 1729 real_buffer[3] = data->block_descriptor_length; 1730 1731 1732 cmd[0] = MODE_SELECT; 1733 cmd[4] = len; 1734 } 1735 1736 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1737 sshdr, timeout, retries); 1738 kfree(real_buffer); 1739 return ret; 1740 } 1741 EXPORT_SYMBOL_GPL(scsi_mode_select); 1742 1743 /** 1744 * scsi_mode_sense - issue a mode sense, falling back from 10 to 1745 * six bytes if necessary. 1746 * @sdev: SCSI device to be queried 1747 * @dbd: set if mode sense will allow block descriptors to be returned 1748 * @modepage: mode page being requested 1749 * @buffer: request buffer (may not be smaller than eight bytes) 1750 * @len: length of request buffer. 1751 * @timeout: command timeout 1752 * @retries: number of retries before failing 1753 * @data: returns a structure abstracting the mode header data 1754 * @sense: place to put sense data (or NULL if no sense to be collected). 1755 * must be SCSI_SENSE_BUFFERSIZE big. 1756 * 1757 * Returns zero if unsuccessful, or the header offset (either 4 1758 * or 8 depending on whether a six or ten byte command was 1759 * issued) if successful. 1760 **/ 1761 int 1762 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1763 unsigned char *buffer, int len, int timeout, int retries, 1764 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1765 { 1766 unsigned char cmd[12]; 1767 int use_10_for_ms; 1768 int header_length; 1769 int result; 1770 struct scsi_sense_hdr my_sshdr; 1771 1772 memset(data, 0, sizeof(*data)); 1773 memset(&cmd[0], 0, 12); 1774 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1775 cmd[2] = modepage; 1776 1777 /* caller might not be interested in sense, but we need it */ 1778 if (!sshdr) 1779 sshdr = &my_sshdr; 1780 1781 retry: 1782 use_10_for_ms = sdev->use_10_for_ms; 1783 1784 if (use_10_for_ms) { 1785 if (len < 8) 1786 len = 8; 1787 1788 cmd[0] = MODE_SENSE_10; 1789 cmd[8] = len; 1790 header_length = 8; 1791 } else { 1792 if (len < 4) 1793 len = 4; 1794 1795 cmd[0] = MODE_SENSE; 1796 cmd[4] = len; 1797 header_length = 4; 1798 } 1799 1800 memset(buffer, 0, len); 1801 1802 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1803 sshdr, timeout, retries); 1804 1805 /* This code looks awful: what it's doing is making sure an 1806 * ILLEGAL REQUEST sense return identifies the actual command 1807 * byte as the problem. MODE_SENSE commands can return 1808 * ILLEGAL REQUEST if the code page isn't supported */ 1809 1810 if (use_10_for_ms && !scsi_status_is_good(result) && 1811 (driver_byte(result) & DRIVER_SENSE)) { 1812 if (scsi_sense_valid(sshdr)) { 1813 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1814 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1815 /* 1816 * Invalid command operation code 1817 */ 1818 sdev->use_10_for_ms = 0; 1819 goto retry; 1820 } 1821 } 1822 } 1823 1824 if(scsi_status_is_good(result)) { 1825 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1826 (modepage == 6 || modepage == 8))) { 1827 /* Initio breakage? */ 1828 header_length = 0; 1829 data->length = 13; 1830 data->medium_type = 0; 1831 data->device_specific = 0; 1832 data->longlba = 0; 1833 data->block_descriptor_length = 0; 1834 } else if(use_10_for_ms) { 1835 data->length = buffer[0]*256 + buffer[1] + 2; 1836 data->medium_type = buffer[2]; 1837 data->device_specific = buffer[3]; 1838 data->longlba = buffer[4] & 0x01; 1839 data->block_descriptor_length = buffer[6]*256 1840 + buffer[7]; 1841 } else { 1842 data->length = buffer[0] + 1; 1843 data->medium_type = buffer[1]; 1844 data->device_specific = buffer[2]; 1845 data->block_descriptor_length = buffer[3]; 1846 } 1847 data->header_length = header_length; 1848 } 1849 1850 return result; 1851 } 1852 EXPORT_SYMBOL(scsi_mode_sense); 1853 1854 int 1855 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries) 1856 { 1857 char cmd[] = { 1858 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1859 }; 1860 struct scsi_sense_hdr sshdr; 1861 int result; 1862 1863 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr, 1864 timeout, retries); 1865 1866 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) { 1867 1868 if ((scsi_sense_valid(&sshdr)) && 1869 ((sshdr.sense_key == UNIT_ATTENTION) || 1870 (sshdr.sense_key == NOT_READY))) { 1871 sdev->changed = 1; 1872 result = 0; 1873 } 1874 } 1875 return result; 1876 } 1877 EXPORT_SYMBOL(scsi_test_unit_ready); 1878 1879 /** 1880 * scsi_device_set_state - Take the given device through the device 1881 * state model. 1882 * @sdev: scsi device to change the state of. 1883 * @state: state to change to. 1884 * 1885 * Returns zero if unsuccessful or an error if the requested 1886 * transition is illegal. 1887 **/ 1888 int 1889 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 1890 { 1891 enum scsi_device_state oldstate = sdev->sdev_state; 1892 1893 if (state == oldstate) 1894 return 0; 1895 1896 switch (state) { 1897 case SDEV_CREATED: 1898 /* There are no legal states that come back to 1899 * created. This is the manually initialised start 1900 * state */ 1901 goto illegal; 1902 1903 case SDEV_RUNNING: 1904 switch (oldstate) { 1905 case SDEV_CREATED: 1906 case SDEV_OFFLINE: 1907 case SDEV_QUIESCE: 1908 case SDEV_BLOCK: 1909 break; 1910 default: 1911 goto illegal; 1912 } 1913 break; 1914 1915 case SDEV_QUIESCE: 1916 switch (oldstate) { 1917 case SDEV_RUNNING: 1918 case SDEV_OFFLINE: 1919 break; 1920 default: 1921 goto illegal; 1922 } 1923 break; 1924 1925 case SDEV_OFFLINE: 1926 switch (oldstate) { 1927 case SDEV_CREATED: 1928 case SDEV_RUNNING: 1929 case SDEV_QUIESCE: 1930 case SDEV_BLOCK: 1931 break; 1932 default: 1933 goto illegal; 1934 } 1935 break; 1936 1937 case SDEV_BLOCK: 1938 switch (oldstate) { 1939 case SDEV_CREATED: 1940 case SDEV_RUNNING: 1941 break; 1942 default: 1943 goto illegal; 1944 } 1945 break; 1946 1947 case SDEV_CANCEL: 1948 switch (oldstate) { 1949 case SDEV_CREATED: 1950 case SDEV_RUNNING: 1951 case SDEV_QUIESCE: 1952 case SDEV_OFFLINE: 1953 case SDEV_BLOCK: 1954 break; 1955 default: 1956 goto illegal; 1957 } 1958 break; 1959 1960 case SDEV_DEL: 1961 switch (oldstate) { 1962 case SDEV_CREATED: 1963 case SDEV_RUNNING: 1964 case SDEV_OFFLINE: 1965 case SDEV_CANCEL: 1966 break; 1967 default: 1968 goto illegal; 1969 } 1970 break; 1971 1972 } 1973 sdev->sdev_state = state; 1974 return 0; 1975 1976 illegal: 1977 SCSI_LOG_ERROR_RECOVERY(1, 1978 sdev_printk(KERN_ERR, sdev, 1979 "Illegal state transition %s->%s\n", 1980 scsi_device_state_name(oldstate), 1981 scsi_device_state_name(state)) 1982 ); 1983 return -EINVAL; 1984 } 1985 EXPORT_SYMBOL(scsi_device_set_state); 1986 1987 /** 1988 * scsi_device_quiesce - Block user issued commands. 1989 * @sdev: scsi device to quiesce. 1990 * 1991 * This works by trying to transition to the SDEV_QUIESCE state 1992 * (which must be a legal transition). When the device is in this 1993 * state, only special requests will be accepted, all others will 1994 * be deferred. Since special requests may also be requeued requests, 1995 * a successful return doesn't guarantee the device will be 1996 * totally quiescent. 1997 * 1998 * Must be called with user context, may sleep. 1999 * 2000 * Returns zero if unsuccessful or an error if not. 2001 **/ 2002 int 2003 scsi_device_quiesce(struct scsi_device *sdev) 2004 { 2005 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2006 if (err) 2007 return err; 2008 2009 scsi_run_queue(sdev->request_queue); 2010 while (sdev->device_busy) { 2011 msleep_interruptible(200); 2012 scsi_run_queue(sdev->request_queue); 2013 } 2014 return 0; 2015 } 2016 EXPORT_SYMBOL(scsi_device_quiesce); 2017 2018 /** 2019 * scsi_device_resume - Restart user issued commands to a quiesced device. 2020 * @sdev: scsi device to resume. 2021 * 2022 * Moves the device from quiesced back to running and restarts the 2023 * queues. 2024 * 2025 * Must be called with user context, may sleep. 2026 **/ 2027 void 2028 scsi_device_resume(struct scsi_device *sdev) 2029 { 2030 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2031 return; 2032 scsi_run_queue(sdev->request_queue); 2033 } 2034 EXPORT_SYMBOL(scsi_device_resume); 2035 2036 static void 2037 device_quiesce_fn(struct scsi_device *sdev, void *data) 2038 { 2039 scsi_device_quiesce(sdev); 2040 } 2041 2042 void 2043 scsi_target_quiesce(struct scsi_target *starget) 2044 { 2045 starget_for_each_device(starget, NULL, device_quiesce_fn); 2046 } 2047 EXPORT_SYMBOL(scsi_target_quiesce); 2048 2049 static void 2050 device_resume_fn(struct scsi_device *sdev, void *data) 2051 { 2052 scsi_device_resume(sdev); 2053 } 2054 2055 void 2056 scsi_target_resume(struct scsi_target *starget) 2057 { 2058 starget_for_each_device(starget, NULL, device_resume_fn); 2059 } 2060 EXPORT_SYMBOL(scsi_target_resume); 2061 2062 /** 2063 * scsi_internal_device_block - internal function to put a device 2064 * temporarily into the SDEV_BLOCK state 2065 * @sdev: device to block 2066 * 2067 * Block request made by scsi lld's to temporarily stop all 2068 * scsi commands on the specified device. Called from interrupt 2069 * or normal process context. 2070 * 2071 * Returns zero if successful or error if not 2072 * 2073 * Notes: 2074 * This routine transitions the device to the SDEV_BLOCK state 2075 * (which must be a legal transition). When the device is in this 2076 * state, all commands are deferred until the scsi lld reenables 2077 * the device with scsi_device_unblock or device_block_tmo fires. 2078 * This routine assumes the host_lock is held on entry. 2079 **/ 2080 int 2081 scsi_internal_device_block(struct scsi_device *sdev) 2082 { 2083 request_queue_t *q = sdev->request_queue; 2084 unsigned long flags; 2085 int err = 0; 2086 2087 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2088 if (err) 2089 return err; 2090 2091 /* 2092 * The device has transitioned to SDEV_BLOCK. Stop the 2093 * block layer from calling the midlayer with this device's 2094 * request queue. 2095 */ 2096 spin_lock_irqsave(q->queue_lock, flags); 2097 blk_stop_queue(q); 2098 spin_unlock_irqrestore(q->queue_lock, flags); 2099 2100 return 0; 2101 } 2102 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2103 2104 /** 2105 * scsi_internal_device_unblock - resume a device after a block request 2106 * @sdev: device to resume 2107 * 2108 * Called by scsi lld's or the midlayer to restart the device queue 2109 * for the previously suspended scsi device. Called from interrupt or 2110 * normal process context. 2111 * 2112 * Returns zero if successful or error if not. 2113 * 2114 * Notes: 2115 * This routine transitions the device to the SDEV_RUNNING state 2116 * (which must be a legal transition) allowing the midlayer to 2117 * goose the queue for this device. This routine assumes the 2118 * host_lock is held upon entry. 2119 **/ 2120 int 2121 scsi_internal_device_unblock(struct scsi_device *sdev) 2122 { 2123 request_queue_t *q = sdev->request_queue; 2124 int err; 2125 unsigned long flags; 2126 2127 /* 2128 * Try to transition the scsi device to SDEV_RUNNING 2129 * and goose the device queue if successful. 2130 */ 2131 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2132 if (err) 2133 return err; 2134 2135 spin_lock_irqsave(q->queue_lock, flags); 2136 blk_start_queue(q); 2137 spin_unlock_irqrestore(q->queue_lock, flags); 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2142 2143 static void 2144 device_block(struct scsi_device *sdev, void *data) 2145 { 2146 scsi_internal_device_block(sdev); 2147 } 2148 2149 static int 2150 target_block(struct device *dev, void *data) 2151 { 2152 if (scsi_is_target_device(dev)) 2153 starget_for_each_device(to_scsi_target(dev), NULL, 2154 device_block); 2155 return 0; 2156 } 2157 2158 void 2159 scsi_target_block(struct device *dev) 2160 { 2161 if (scsi_is_target_device(dev)) 2162 starget_for_each_device(to_scsi_target(dev), NULL, 2163 device_block); 2164 else 2165 device_for_each_child(dev, NULL, target_block); 2166 } 2167 EXPORT_SYMBOL_GPL(scsi_target_block); 2168 2169 static void 2170 device_unblock(struct scsi_device *sdev, void *data) 2171 { 2172 scsi_internal_device_unblock(sdev); 2173 } 2174 2175 static int 2176 target_unblock(struct device *dev, void *data) 2177 { 2178 if (scsi_is_target_device(dev)) 2179 starget_for_each_device(to_scsi_target(dev), NULL, 2180 device_unblock); 2181 return 0; 2182 } 2183 2184 void 2185 scsi_target_unblock(struct device *dev) 2186 { 2187 if (scsi_is_target_device(dev)) 2188 starget_for_each_device(to_scsi_target(dev), NULL, 2189 device_unblock); 2190 else 2191 device_for_each_child(dev, NULL, target_unblock); 2192 } 2193 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2194 2195 /** 2196 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2197 * @sg: scatter-gather list 2198 * @sg_count: number of segments in sg 2199 * @offset: offset in bytes into sg, on return offset into the mapped area 2200 * @len: bytes to map, on return number of bytes mapped 2201 * 2202 * Returns virtual address of the start of the mapped page 2203 */ 2204 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, 2205 size_t *offset, size_t *len) 2206 { 2207 int i; 2208 size_t sg_len = 0, len_complete = 0; 2209 struct page *page; 2210 2211 for (i = 0; i < sg_count; i++) { 2212 len_complete = sg_len; /* Complete sg-entries */ 2213 sg_len += sg[i].length; 2214 if (sg_len > *offset) 2215 break; 2216 } 2217 2218 if (unlikely(i == sg_count)) { 2219 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2220 "elements %d\n", 2221 __FUNCTION__, sg_len, *offset, sg_count); 2222 WARN_ON(1); 2223 return NULL; 2224 } 2225 2226 /* Offset starting from the beginning of first page in this sg-entry */ 2227 *offset = *offset - len_complete + sg[i].offset; 2228 2229 /* Assumption: contiguous pages can be accessed as "page + i" */ 2230 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT)); 2231 *offset &= ~PAGE_MASK; 2232 2233 /* Bytes in this sg-entry from *offset to the end of the page */ 2234 sg_len = PAGE_SIZE - *offset; 2235 if (*len > sg_len) 2236 *len = sg_len; 2237 2238 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2239 } 2240 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2241 2242 /** 2243 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously 2244 * mapped with scsi_kmap_atomic_sg 2245 * @virt: virtual address to be unmapped 2246 */ 2247 void scsi_kunmap_atomic_sg(void *virt) 2248 { 2249 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2250 } 2251 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2252