1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, GFP_NOIO)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 atomic_dec(&shost->host_busy); 349 if (unlikely(scsi_host_in_recovery(shost))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 if (shost->host_failed || shost->host_eh_scheduled) 352 scsi_eh_wakeup(shost); 353 spin_unlock_irqrestore(shost->host_lock, flags); 354 } 355 rcu_read_unlock(); 356 } 357 358 void scsi_device_unbusy(struct scsi_device *sdev) 359 { 360 struct Scsi_Host *shost = sdev->host; 361 struct scsi_target *starget = scsi_target(sdev); 362 363 scsi_dec_host_busy(shost); 364 365 if (starget->can_queue > 0) 366 atomic_dec(&starget->target_busy); 367 368 atomic_dec(&sdev->device_busy); 369 } 370 371 static void scsi_kick_queue(struct request_queue *q) 372 { 373 if (q->mq_ops) 374 blk_mq_start_hw_queues(q); 375 else 376 blk_run_queue(q); 377 } 378 379 /* 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 381 * and call blk_run_queue for all the scsi_devices on the target - 382 * including current_sdev first. 383 * 384 * Called with *no* scsi locks held. 385 */ 386 static void scsi_single_lun_run(struct scsi_device *current_sdev) 387 { 388 struct Scsi_Host *shost = current_sdev->host; 389 struct scsi_device *sdev, *tmp; 390 struct scsi_target *starget = scsi_target(current_sdev); 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 starget->starget_sdev_user = NULL; 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 397 /* 398 * Call blk_run_queue for all LUNs on the target, starting with 399 * current_sdev. We race with others (to set starget_sdev_user), 400 * but in most cases, we will be first. Ideally, each LU on the 401 * target would get some limited time or requests on the target. 402 */ 403 scsi_kick_queue(current_sdev->request_queue); 404 405 spin_lock_irqsave(shost->host_lock, flags); 406 if (starget->starget_sdev_user) 407 goto out; 408 list_for_each_entry_safe(sdev, tmp, &starget->devices, 409 same_target_siblings) { 410 if (sdev == current_sdev) 411 continue; 412 if (scsi_device_get(sdev)) 413 continue; 414 415 spin_unlock_irqrestore(shost->host_lock, flags); 416 scsi_kick_queue(sdev->request_queue); 417 spin_lock_irqsave(shost->host_lock, flags); 418 419 scsi_device_put(sdev); 420 } 421 out: 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 426 { 427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 428 return true; 429 if (atomic_read(&sdev->device_blocked) > 0) 430 return true; 431 return false; 432 } 433 434 static inline bool scsi_target_is_busy(struct scsi_target *starget) 435 { 436 if (starget->can_queue > 0) { 437 if (atomic_read(&starget->target_busy) >= starget->can_queue) 438 return true; 439 if (atomic_read(&starget->target_blocked) > 0) 440 return true; 441 } 442 return false; 443 } 444 445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 446 { 447 if (shost->can_queue > 0 && 448 atomic_read(&shost->host_busy) >= shost->can_queue) 449 return true; 450 if (atomic_read(&shost->host_blocked) > 0) 451 return true; 452 if (shost->host_self_blocked) 453 return true; 454 return false; 455 } 456 457 static void scsi_starved_list_run(struct Scsi_Host *shost) 458 { 459 LIST_HEAD(starved_list); 460 struct scsi_device *sdev; 461 unsigned long flags; 462 463 spin_lock_irqsave(shost->host_lock, flags); 464 list_splice_init(&shost->starved_list, &starved_list); 465 466 while (!list_empty(&starved_list)) { 467 struct request_queue *slq; 468 469 /* 470 * As long as shost is accepting commands and we have 471 * starved queues, call blk_run_queue. scsi_request_fn 472 * drops the queue_lock and can add us back to the 473 * starved_list. 474 * 475 * host_lock protects the starved_list and starved_entry. 476 * scsi_request_fn must get the host_lock before checking 477 * or modifying starved_list or starved_entry. 478 */ 479 if (scsi_host_is_busy(shost)) 480 break; 481 482 sdev = list_entry(starved_list.next, 483 struct scsi_device, starved_entry); 484 list_del_init(&sdev->starved_entry); 485 if (scsi_target_is_busy(scsi_target(sdev))) { 486 list_move_tail(&sdev->starved_entry, 487 &shost->starved_list); 488 continue; 489 } 490 491 /* 492 * Once we drop the host lock, a racing scsi_remove_device() 493 * call may remove the sdev from the starved list and destroy 494 * it and the queue. Mitigate by taking a reference to the 495 * queue and never touching the sdev again after we drop the 496 * host lock. Note: if __scsi_remove_device() invokes 497 * blk_cleanup_queue() before the queue is run from this 498 * function then blk_run_queue() will return immediately since 499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 500 */ 501 slq = sdev->request_queue; 502 if (!blk_get_queue(slq)) 503 continue; 504 spin_unlock_irqrestore(shost->host_lock, flags); 505 506 scsi_kick_queue(slq); 507 blk_put_queue(slq); 508 509 spin_lock_irqsave(shost->host_lock, flags); 510 } 511 /* put any unprocessed entries back */ 512 list_splice(&starved_list, &shost->starved_list); 513 spin_unlock_irqrestore(shost->host_lock, flags); 514 } 515 516 /* 517 * Function: scsi_run_queue() 518 * 519 * Purpose: Select a proper request queue to serve next 520 * 521 * Arguments: q - last request's queue 522 * 523 * Returns: Nothing 524 * 525 * Notes: The previous command was completely finished, start 526 * a new one if possible. 527 */ 528 static void scsi_run_queue(struct request_queue *q) 529 { 530 struct scsi_device *sdev = q->queuedata; 531 532 if (scsi_target(sdev)->single_lun) 533 scsi_single_lun_run(sdev); 534 if (!list_empty(&sdev->host->starved_list)) 535 scsi_starved_list_run(sdev->host); 536 537 if (q->mq_ops) 538 blk_mq_run_hw_queues(q, false); 539 else 540 blk_run_queue(q); 541 } 542 543 void scsi_requeue_run_queue(struct work_struct *work) 544 { 545 struct scsi_device *sdev; 546 struct request_queue *q; 547 548 sdev = container_of(work, struct scsi_device, requeue_work); 549 q = sdev->request_queue; 550 scsi_run_queue(q); 551 } 552 553 /* 554 * Function: scsi_requeue_command() 555 * 556 * Purpose: Handle post-processing of completed commands. 557 * 558 * Arguments: q - queue to operate on 559 * cmd - command that may need to be requeued. 560 * 561 * Returns: Nothing 562 * 563 * Notes: After command completion, there may be blocks left 564 * over which weren't finished by the previous command 565 * this can be for a number of reasons - the main one is 566 * I/O errors in the middle of the request, in which case 567 * we need to request the blocks that come after the bad 568 * sector. 569 * Notes: Upon return, cmd is a stale pointer. 570 */ 571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 572 { 573 struct scsi_device *sdev = cmd->device; 574 struct request *req = cmd->request; 575 unsigned long flags; 576 577 spin_lock_irqsave(q->queue_lock, flags); 578 blk_unprep_request(req); 579 req->special = NULL; 580 scsi_put_command(cmd); 581 blk_requeue_request(q, req); 582 spin_unlock_irqrestore(q->queue_lock, flags); 583 584 scsi_run_queue(q); 585 586 put_device(&sdev->sdev_gendev); 587 } 588 589 void scsi_run_host_queues(struct Scsi_Host *shost) 590 { 591 struct scsi_device *sdev; 592 593 shost_for_each_device(sdev, shost) 594 scsi_run_queue(sdev->request_queue); 595 } 596 597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 598 { 599 if (!blk_rq_is_passthrough(cmd->request)) { 600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 601 602 if (drv->uninit_command) 603 drv->uninit_command(cmd); 604 } 605 } 606 607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 608 { 609 struct scsi_data_buffer *sdb; 610 611 if (cmd->sdb.table.nents) 612 sg_free_table_chained(&cmd->sdb.table, true); 613 if (cmd->request->next_rq) { 614 sdb = cmd->request->next_rq->special; 615 if (sdb) 616 sg_free_table_chained(&sdb->table, true); 617 } 618 if (scsi_prot_sg_count(cmd)) 619 sg_free_table_chained(&cmd->prot_sdb->table, true); 620 } 621 622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 623 { 624 scsi_mq_free_sgtables(cmd); 625 scsi_uninit_cmd(cmd); 626 scsi_del_cmd_from_list(cmd); 627 } 628 629 /* 630 * Function: scsi_release_buffers() 631 * 632 * Purpose: Free resources allocate for a scsi_command. 633 * 634 * Arguments: cmd - command that we are bailing. 635 * 636 * Lock status: Assumed that no lock is held upon entry. 637 * 638 * Returns: Nothing 639 * 640 * Notes: In the event that an upper level driver rejects a 641 * command, we must release resources allocated during 642 * the __init_io() function. Primarily this would involve 643 * the scatter-gather table. 644 */ 645 static void scsi_release_buffers(struct scsi_cmnd *cmd) 646 { 647 if (cmd->sdb.table.nents) 648 sg_free_table_chained(&cmd->sdb.table, false); 649 650 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 651 652 if (scsi_prot_sg_count(cmd)) 653 sg_free_table_chained(&cmd->prot_sdb->table, false); 654 } 655 656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 657 { 658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 659 660 sg_free_table_chained(&bidi_sdb->table, false); 661 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 662 cmd->request->next_rq->special = NULL; 663 } 664 665 static bool scsi_end_request(struct request *req, blk_status_t error, 666 unsigned int bytes, unsigned int bidi_bytes) 667 { 668 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 669 struct scsi_device *sdev = cmd->device; 670 struct request_queue *q = sdev->request_queue; 671 672 if (blk_update_request(req, error, bytes)) 673 return true; 674 675 /* Bidi request must be completed as a whole */ 676 if (unlikely(bidi_bytes) && 677 blk_update_request(req->next_rq, error, bidi_bytes)) 678 return true; 679 680 if (blk_queue_add_random(q)) 681 add_disk_randomness(req->rq_disk); 682 683 if (!blk_rq_is_scsi(req)) { 684 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 685 cmd->flags &= ~SCMD_INITIALIZED; 686 destroy_rcu_head(&cmd->rcu); 687 } 688 689 if (req->mq_ctx) { 690 /* 691 * In the MQ case the command gets freed by __blk_mq_end_request, 692 * so we have to do all cleanup that depends on it earlier. 693 * 694 * We also can't kick the queues from irq context, so we 695 * will have to defer it to a workqueue. 696 */ 697 scsi_mq_uninit_cmd(cmd); 698 699 __blk_mq_end_request(req, error); 700 701 if (scsi_target(sdev)->single_lun || 702 !list_empty(&sdev->host->starved_list)) 703 kblockd_schedule_work(&sdev->requeue_work); 704 else 705 blk_mq_run_hw_queues(q, true); 706 } else { 707 unsigned long flags; 708 709 if (bidi_bytes) 710 scsi_release_bidi_buffers(cmd); 711 scsi_release_buffers(cmd); 712 scsi_put_command(cmd); 713 714 spin_lock_irqsave(q->queue_lock, flags); 715 blk_finish_request(req, error); 716 spin_unlock_irqrestore(q->queue_lock, flags); 717 718 scsi_run_queue(q); 719 } 720 721 put_device(&sdev->sdev_gendev); 722 return false; 723 } 724 725 /** 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 727 * @cmd: SCSI command 728 * @result: scsi error code 729 * 730 * Translate a SCSI result code into a blk_status_t value. May reset the host 731 * byte of @cmd->result. 732 */ 733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 734 { 735 switch (host_byte(result)) { 736 case DID_OK: 737 /* 738 * Also check the other bytes than the status byte in result 739 * to handle the case when a SCSI LLD sets result to 740 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 741 */ 742 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 743 return BLK_STS_OK; 744 return BLK_STS_IOERR; 745 case DID_TRANSPORT_FAILFAST: 746 return BLK_STS_TRANSPORT; 747 case DID_TARGET_FAILURE: 748 set_host_byte(cmd, DID_OK); 749 return BLK_STS_TARGET; 750 case DID_NEXUS_FAILURE: 751 return BLK_STS_NEXUS; 752 case DID_ALLOC_FAILURE: 753 set_host_byte(cmd, DID_OK); 754 return BLK_STS_NOSPC; 755 case DID_MEDIUM_ERROR: 756 set_host_byte(cmd, DID_OK); 757 return BLK_STS_MEDIUM; 758 default: 759 return BLK_STS_IOERR; 760 } 761 } 762 763 /* 764 * Function: scsi_io_completion() 765 * 766 * Purpose: Completion processing for block device I/O requests. 767 * 768 * Arguments: cmd - command that is finished. 769 * 770 * Lock status: Assumed that no lock is held upon entry. 771 * 772 * Returns: Nothing 773 * 774 * Notes: We will finish off the specified number of sectors. If we 775 * are done, the command block will be released and the queue 776 * function will be goosed. If we are not done then we have to 777 * figure out what to do next: 778 * 779 * a) We can call scsi_requeue_command(). The request 780 * will be unprepared and put back on the queue. Then 781 * a new command will be created for it. This should 782 * be used if we made forward progress, or if we want 783 * to switch from READ(10) to READ(6) for example. 784 * 785 * b) We can call __scsi_queue_insert(). The request will 786 * be put back on the queue and retried using the same 787 * command as before, possibly after a delay. 788 * 789 * c) We can call scsi_end_request() with -EIO to fail 790 * the remainder of the request. 791 */ 792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 793 { 794 int result = cmd->result; 795 struct request_queue *q = cmd->device->request_queue; 796 struct request *req = cmd->request; 797 blk_status_t error = BLK_STS_OK; 798 struct scsi_sense_hdr sshdr; 799 bool sense_valid = false; 800 int sense_deferred = 0, level = 0; 801 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 802 ACTION_DELAYED_RETRY} action; 803 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 804 805 if (result) { 806 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 807 if (sense_valid) 808 sense_deferred = scsi_sense_is_deferred(&sshdr); 809 } 810 811 if (blk_rq_is_passthrough(req)) { 812 if (result) { 813 if (sense_valid) { 814 /* 815 * SG_IO wants current and deferred errors 816 */ 817 scsi_req(req)->sense_len = 818 min(8 + cmd->sense_buffer[7], 819 SCSI_SENSE_BUFFERSIZE); 820 } 821 if (!sense_deferred) 822 error = scsi_result_to_blk_status(cmd, result); 823 } 824 /* 825 * scsi_result_to_blk_status may have reset the host_byte 826 */ 827 scsi_req(req)->result = cmd->result; 828 scsi_req(req)->resid_len = scsi_get_resid(cmd); 829 830 if (scsi_bidi_cmnd(cmd)) { 831 /* 832 * Bidi commands Must be complete as a whole, 833 * both sides at once. 834 */ 835 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 836 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 837 blk_rq_bytes(req->next_rq))) 838 BUG(); 839 return; 840 } 841 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 842 /* 843 * Flush commands do not transfers any data, and thus cannot use 844 * good_bytes != blk_rq_bytes(req) as the signal for an error. 845 * This sets the error explicitly for the problem case. 846 */ 847 error = scsi_result_to_blk_status(cmd, result); 848 } 849 850 /* no bidi support for !blk_rq_is_passthrough yet */ 851 BUG_ON(blk_bidi_rq(req)); 852 853 /* 854 * Next deal with any sectors which we were able to correctly 855 * handle. 856 */ 857 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 858 "%u sectors total, %d bytes done.\n", 859 blk_rq_sectors(req), good_bytes)); 860 861 /* 862 * Recovered errors need reporting, but they're always treated as 863 * success, so fiddle the result code here. For passthrough requests 864 * we already took a copy of the original into sreq->result which 865 * is what gets returned to the user 866 */ 867 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 868 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 869 * print since caller wants ATA registers. Only occurs on 870 * SCSI ATA PASS_THROUGH commands when CK_COND=1 871 */ 872 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 873 ; 874 else if (!(req->rq_flags & RQF_QUIET)) 875 scsi_print_sense(cmd); 876 result = 0; 877 /* for passthrough error may be set */ 878 error = BLK_STS_OK; 879 } 880 /* 881 * Another corner case: the SCSI status byte is non-zero but 'good'. 882 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 883 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 884 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 885 * intermediate statuses (both obsolete in SAM-4) as good. 886 */ 887 if (status_byte(result) && scsi_status_is_good(result)) { 888 result = 0; 889 error = BLK_STS_OK; 890 } 891 892 /* 893 * special case: failed zero length commands always need to 894 * drop down into the retry code. Otherwise, if we finished 895 * all bytes in the request we are done now. 896 */ 897 if (!(blk_rq_bytes(req) == 0 && error) && 898 !scsi_end_request(req, error, good_bytes, 0)) 899 return; 900 901 /* 902 * Kill remainder if no retrys. 903 */ 904 if (error && scsi_noretry_cmd(cmd)) { 905 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 906 BUG(); 907 return; 908 } 909 910 /* 911 * If there had been no error, but we have leftover bytes in the 912 * requeues just queue the command up again. 913 */ 914 if (result == 0) 915 goto requeue; 916 917 error = scsi_result_to_blk_status(cmd, result); 918 919 if (host_byte(result) == DID_RESET) { 920 /* Third party bus reset or reset for error recovery 921 * reasons. Just retry the command and see what 922 * happens. 923 */ 924 action = ACTION_RETRY; 925 } else if (sense_valid && !sense_deferred) { 926 switch (sshdr.sense_key) { 927 case UNIT_ATTENTION: 928 if (cmd->device->removable) { 929 /* Detected disc change. Set a bit 930 * and quietly refuse further access. 931 */ 932 cmd->device->changed = 1; 933 action = ACTION_FAIL; 934 } else { 935 /* Must have been a power glitch, or a 936 * bus reset. Could not have been a 937 * media change, so we just retry the 938 * command and see what happens. 939 */ 940 action = ACTION_RETRY; 941 } 942 break; 943 case ILLEGAL_REQUEST: 944 /* If we had an ILLEGAL REQUEST returned, then 945 * we may have performed an unsupported 946 * command. The only thing this should be 947 * would be a ten byte read where only a six 948 * byte read was supported. Also, on a system 949 * where READ CAPACITY failed, we may have 950 * read past the end of the disk. 951 */ 952 if ((cmd->device->use_10_for_rw && 953 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 954 (cmd->cmnd[0] == READ_10 || 955 cmd->cmnd[0] == WRITE_10)) { 956 /* This will issue a new 6-byte command. */ 957 cmd->device->use_10_for_rw = 0; 958 action = ACTION_REPREP; 959 } else if (sshdr.asc == 0x10) /* DIX */ { 960 action = ACTION_FAIL; 961 error = BLK_STS_PROTECTION; 962 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 963 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 964 action = ACTION_FAIL; 965 error = BLK_STS_TARGET; 966 } else 967 action = ACTION_FAIL; 968 break; 969 case ABORTED_COMMAND: 970 action = ACTION_FAIL; 971 if (sshdr.asc == 0x10) /* DIF */ 972 error = BLK_STS_PROTECTION; 973 break; 974 case NOT_READY: 975 /* If the device is in the process of becoming 976 * ready, or has a temporary blockage, retry. 977 */ 978 if (sshdr.asc == 0x04) { 979 switch (sshdr.ascq) { 980 case 0x01: /* becoming ready */ 981 case 0x04: /* format in progress */ 982 case 0x05: /* rebuild in progress */ 983 case 0x06: /* recalculation in progress */ 984 case 0x07: /* operation in progress */ 985 case 0x08: /* Long write in progress */ 986 case 0x09: /* self test in progress */ 987 case 0x14: /* space allocation in progress */ 988 action = ACTION_DELAYED_RETRY; 989 break; 990 default: 991 action = ACTION_FAIL; 992 break; 993 } 994 } else 995 action = ACTION_FAIL; 996 break; 997 case VOLUME_OVERFLOW: 998 /* See SSC3rXX or current. */ 999 action = ACTION_FAIL; 1000 break; 1001 default: 1002 action = ACTION_FAIL; 1003 break; 1004 } 1005 } else 1006 action = ACTION_FAIL; 1007 1008 if (action != ACTION_FAIL && 1009 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 1010 action = ACTION_FAIL; 1011 1012 switch (action) { 1013 case ACTION_FAIL: 1014 /* Give up and fail the remainder of the request */ 1015 if (!(req->rq_flags & RQF_QUIET)) { 1016 static DEFINE_RATELIMIT_STATE(_rs, 1017 DEFAULT_RATELIMIT_INTERVAL, 1018 DEFAULT_RATELIMIT_BURST); 1019 1020 if (unlikely(scsi_logging_level)) 1021 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 1022 SCSI_LOG_MLCOMPLETE_BITS); 1023 1024 /* 1025 * if logging is enabled the failure will be printed 1026 * in scsi_log_completion(), so avoid duplicate messages 1027 */ 1028 if (!level && __ratelimit(&_rs)) { 1029 scsi_print_result(cmd, NULL, FAILED); 1030 if (driver_byte(result) & DRIVER_SENSE) 1031 scsi_print_sense(cmd); 1032 scsi_print_command(cmd); 1033 } 1034 } 1035 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1036 return; 1037 /*FALLTHRU*/ 1038 case ACTION_REPREP: 1039 requeue: 1040 /* Unprep the request and put it back at the head of the queue. 1041 * A new command will be prepared and issued. 1042 */ 1043 if (q->mq_ops) { 1044 scsi_mq_requeue_cmd(cmd); 1045 } else { 1046 scsi_release_buffers(cmd); 1047 scsi_requeue_command(q, cmd); 1048 } 1049 break; 1050 case ACTION_RETRY: 1051 /* Retry the same command immediately */ 1052 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 1053 break; 1054 case ACTION_DELAYED_RETRY: 1055 /* Retry the same command after a delay */ 1056 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 1057 break; 1058 } 1059 } 1060 1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1062 { 1063 int count; 1064 1065 /* 1066 * If sg table allocation fails, requeue request later. 1067 */ 1068 if (unlikely(sg_alloc_table_chained(&sdb->table, 1069 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1070 return BLKPREP_DEFER; 1071 1072 /* 1073 * Next, walk the list, and fill in the addresses and sizes of 1074 * each segment. 1075 */ 1076 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1077 BUG_ON(count > sdb->table.nents); 1078 sdb->table.nents = count; 1079 sdb->length = blk_rq_payload_bytes(req); 1080 return BLKPREP_OK; 1081 } 1082 1083 /* 1084 * Function: scsi_init_io() 1085 * 1086 * Purpose: SCSI I/O initialize function. 1087 * 1088 * Arguments: cmd - Command descriptor we wish to initialize 1089 * 1090 * Returns: 0 on success 1091 * BLKPREP_DEFER if the failure is retryable 1092 * BLKPREP_KILL if the failure is fatal 1093 */ 1094 int scsi_init_io(struct scsi_cmnd *cmd) 1095 { 1096 struct scsi_device *sdev = cmd->device; 1097 struct request *rq = cmd->request; 1098 bool is_mq = (rq->mq_ctx != NULL); 1099 int error = BLKPREP_KILL; 1100 1101 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1102 goto err_exit; 1103 1104 error = scsi_init_sgtable(rq, &cmd->sdb); 1105 if (error) 1106 goto err_exit; 1107 1108 if (blk_bidi_rq(rq)) { 1109 if (!rq->q->mq_ops) { 1110 struct scsi_data_buffer *bidi_sdb = 1111 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1112 if (!bidi_sdb) { 1113 error = BLKPREP_DEFER; 1114 goto err_exit; 1115 } 1116 1117 rq->next_rq->special = bidi_sdb; 1118 } 1119 1120 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1121 if (error) 1122 goto err_exit; 1123 } 1124 1125 if (blk_integrity_rq(rq)) { 1126 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1127 int ivecs, count; 1128 1129 if (prot_sdb == NULL) { 1130 /* 1131 * This can happen if someone (e.g. multipath) 1132 * queues a command to a device on an adapter 1133 * that does not support DIX. 1134 */ 1135 WARN_ON_ONCE(1); 1136 error = BLKPREP_KILL; 1137 goto err_exit; 1138 } 1139 1140 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1141 1142 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1143 prot_sdb->table.sgl)) { 1144 error = BLKPREP_DEFER; 1145 goto err_exit; 1146 } 1147 1148 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1149 prot_sdb->table.sgl); 1150 BUG_ON(unlikely(count > ivecs)); 1151 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1152 1153 cmd->prot_sdb = prot_sdb; 1154 cmd->prot_sdb->table.nents = count; 1155 } 1156 1157 return BLKPREP_OK; 1158 err_exit: 1159 if (is_mq) { 1160 scsi_mq_free_sgtables(cmd); 1161 } else { 1162 scsi_release_buffers(cmd); 1163 cmd->request->special = NULL; 1164 scsi_put_command(cmd); 1165 put_device(&sdev->sdev_gendev); 1166 } 1167 return error; 1168 } 1169 EXPORT_SYMBOL(scsi_init_io); 1170 1171 /** 1172 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1173 * @rq: Request associated with the SCSI command to be initialized. 1174 * 1175 * This function initializes the members of struct scsi_cmnd that must be 1176 * initialized before request processing starts and that won't be 1177 * reinitialized if a SCSI command is requeued. 1178 * 1179 * Called from inside blk_get_request() for pass-through requests and from 1180 * inside scsi_init_command() for filesystem requests. 1181 */ 1182 static void scsi_initialize_rq(struct request *rq) 1183 { 1184 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1185 1186 scsi_req_init(&cmd->req); 1187 init_rcu_head(&cmd->rcu); 1188 cmd->jiffies_at_alloc = jiffies; 1189 cmd->retries = 0; 1190 } 1191 1192 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1193 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1194 { 1195 struct scsi_device *sdev = cmd->device; 1196 struct Scsi_Host *shost = sdev->host; 1197 unsigned long flags; 1198 1199 if (shost->use_cmd_list) { 1200 spin_lock_irqsave(&sdev->list_lock, flags); 1201 list_add_tail(&cmd->list, &sdev->cmd_list); 1202 spin_unlock_irqrestore(&sdev->list_lock, flags); 1203 } 1204 } 1205 1206 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1207 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1208 { 1209 struct scsi_device *sdev = cmd->device; 1210 struct Scsi_Host *shost = sdev->host; 1211 unsigned long flags; 1212 1213 if (shost->use_cmd_list) { 1214 spin_lock_irqsave(&sdev->list_lock, flags); 1215 BUG_ON(list_empty(&cmd->list)); 1216 list_del_init(&cmd->list); 1217 spin_unlock_irqrestore(&sdev->list_lock, flags); 1218 } 1219 } 1220 1221 /* Called after a request has been started. */ 1222 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1223 { 1224 void *buf = cmd->sense_buffer; 1225 void *prot = cmd->prot_sdb; 1226 struct request *rq = blk_mq_rq_from_pdu(cmd); 1227 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1228 unsigned long jiffies_at_alloc; 1229 int retries; 1230 1231 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1232 flags |= SCMD_INITIALIZED; 1233 scsi_initialize_rq(rq); 1234 } 1235 1236 jiffies_at_alloc = cmd->jiffies_at_alloc; 1237 retries = cmd->retries; 1238 /* zero out the cmd, except for the embedded scsi_request */ 1239 memset((char *)cmd + sizeof(cmd->req), 0, 1240 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1241 1242 cmd->device = dev; 1243 cmd->sense_buffer = buf; 1244 cmd->prot_sdb = prot; 1245 cmd->flags = flags; 1246 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1247 cmd->jiffies_at_alloc = jiffies_at_alloc; 1248 cmd->retries = retries; 1249 1250 scsi_add_cmd_to_list(cmd); 1251 } 1252 1253 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1254 { 1255 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1256 1257 /* 1258 * Passthrough requests may transfer data, in which case they must 1259 * a bio attached to them. Or they might contain a SCSI command 1260 * that does not transfer data, in which case they may optionally 1261 * submit a request without an attached bio. 1262 */ 1263 if (req->bio) { 1264 int ret = scsi_init_io(cmd); 1265 if (unlikely(ret)) 1266 return ret; 1267 } else { 1268 BUG_ON(blk_rq_bytes(req)); 1269 1270 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1271 } 1272 1273 cmd->cmd_len = scsi_req(req)->cmd_len; 1274 cmd->cmnd = scsi_req(req)->cmd; 1275 cmd->transfersize = blk_rq_bytes(req); 1276 cmd->allowed = scsi_req(req)->retries; 1277 return BLKPREP_OK; 1278 } 1279 1280 /* 1281 * Setup a normal block command. These are simple request from filesystems 1282 * that still need to be translated to SCSI CDBs from the ULD. 1283 */ 1284 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1285 { 1286 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1287 1288 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1289 int ret = sdev->handler->prep_fn(sdev, req); 1290 if (ret != BLKPREP_OK) 1291 return ret; 1292 } 1293 1294 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1295 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1296 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1297 } 1298 1299 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1300 { 1301 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1302 1303 if (!blk_rq_bytes(req)) 1304 cmd->sc_data_direction = DMA_NONE; 1305 else if (rq_data_dir(req) == WRITE) 1306 cmd->sc_data_direction = DMA_TO_DEVICE; 1307 else 1308 cmd->sc_data_direction = DMA_FROM_DEVICE; 1309 1310 if (blk_rq_is_scsi(req)) 1311 return scsi_setup_scsi_cmnd(sdev, req); 1312 else 1313 return scsi_setup_fs_cmnd(sdev, req); 1314 } 1315 1316 static int 1317 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1318 { 1319 int ret = BLKPREP_OK; 1320 1321 /* 1322 * If the device is not in running state we will reject some 1323 * or all commands. 1324 */ 1325 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1326 switch (sdev->sdev_state) { 1327 case SDEV_OFFLINE: 1328 case SDEV_TRANSPORT_OFFLINE: 1329 /* 1330 * If the device is offline we refuse to process any 1331 * commands. The device must be brought online 1332 * before trying any recovery commands. 1333 */ 1334 sdev_printk(KERN_ERR, sdev, 1335 "rejecting I/O to offline device\n"); 1336 ret = BLKPREP_KILL; 1337 break; 1338 case SDEV_DEL: 1339 /* 1340 * If the device is fully deleted, we refuse to 1341 * process any commands as well. 1342 */ 1343 sdev_printk(KERN_ERR, sdev, 1344 "rejecting I/O to dead device\n"); 1345 ret = BLKPREP_KILL; 1346 break; 1347 case SDEV_BLOCK: 1348 case SDEV_CREATED_BLOCK: 1349 ret = BLKPREP_DEFER; 1350 break; 1351 case SDEV_QUIESCE: 1352 /* 1353 * If the devices is blocked we defer normal commands. 1354 */ 1355 if (req && !(req->rq_flags & RQF_PREEMPT)) 1356 ret = BLKPREP_DEFER; 1357 break; 1358 default: 1359 /* 1360 * For any other not fully online state we only allow 1361 * special commands. In particular any user initiated 1362 * command is not allowed. 1363 */ 1364 if (req && !(req->rq_flags & RQF_PREEMPT)) 1365 ret = BLKPREP_KILL; 1366 break; 1367 } 1368 } 1369 return ret; 1370 } 1371 1372 static int 1373 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1374 { 1375 struct scsi_device *sdev = q->queuedata; 1376 1377 switch (ret) { 1378 case BLKPREP_KILL: 1379 case BLKPREP_INVALID: 1380 scsi_req(req)->result = DID_NO_CONNECT << 16; 1381 /* release the command and kill it */ 1382 if (req->special) { 1383 struct scsi_cmnd *cmd = req->special; 1384 scsi_release_buffers(cmd); 1385 scsi_put_command(cmd); 1386 put_device(&sdev->sdev_gendev); 1387 req->special = NULL; 1388 } 1389 break; 1390 case BLKPREP_DEFER: 1391 /* 1392 * If we defer, the blk_peek_request() returns NULL, but the 1393 * queue must be restarted, so we schedule a callback to happen 1394 * shortly. 1395 */ 1396 if (atomic_read(&sdev->device_busy) == 0) 1397 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1398 break; 1399 default: 1400 req->rq_flags |= RQF_DONTPREP; 1401 } 1402 1403 return ret; 1404 } 1405 1406 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1407 { 1408 struct scsi_device *sdev = q->queuedata; 1409 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1410 int ret; 1411 1412 ret = scsi_prep_state_check(sdev, req); 1413 if (ret != BLKPREP_OK) 1414 goto out; 1415 1416 if (!req->special) { 1417 /* Bail if we can't get a reference to the device */ 1418 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1419 ret = BLKPREP_DEFER; 1420 goto out; 1421 } 1422 1423 scsi_init_command(sdev, cmd); 1424 req->special = cmd; 1425 } 1426 1427 cmd->tag = req->tag; 1428 cmd->request = req; 1429 cmd->prot_op = SCSI_PROT_NORMAL; 1430 1431 ret = scsi_setup_cmnd(sdev, req); 1432 out: 1433 return scsi_prep_return(q, req, ret); 1434 } 1435 1436 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1437 { 1438 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1439 } 1440 1441 /* 1442 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1443 * return 0. 1444 * 1445 * Called with the queue_lock held. 1446 */ 1447 static inline int scsi_dev_queue_ready(struct request_queue *q, 1448 struct scsi_device *sdev) 1449 { 1450 unsigned int busy; 1451 1452 busy = atomic_inc_return(&sdev->device_busy) - 1; 1453 if (atomic_read(&sdev->device_blocked)) { 1454 if (busy) 1455 goto out_dec; 1456 1457 /* 1458 * unblock after device_blocked iterates to zero 1459 */ 1460 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1461 /* 1462 * For the MQ case we take care of this in the caller. 1463 */ 1464 if (!q->mq_ops) 1465 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1466 goto out_dec; 1467 } 1468 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1469 "unblocking device at zero depth\n")); 1470 } 1471 1472 if (busy >= sdev->queue_depth) 1473 goto out_dec; 1474 1475 return 1; 1476 out_dec: 1477 atomic_dec(&sdev->device_busy); 1478 return 0; 1479 } 1480 1481 /* 1482 * scsi_target_queue_ready: checks if there we can send commands to target 1483 * @sdev: scsi device on starget to check. 1484 */ 1485 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1486 struct scsi_device *sdev) 1487 { 1488 struct scsi_target *starget = scsi_target(sdev); 1489 unsigned int busy; 1490 1491 if (starget->single_lun) { 1492 spin_lock_irq(shost->host_lock); 1493 if (starget->starget_sdev_user && 1494 starget->starget_sdev_user != sdev) { 1495 spin_unlock_irq(shost->host_lock); 1496 return 0; 1497 } 1498 starget->starget_sdev_user = sdev; 1499 spin_unlock_irq(shost->host_lock); 1500 } 1501 1502 if (starget->can_queue <= 0) 1503 return 1; 1504 1505 busy = atomic_inc_return(&starget->target_busy) - 1; 1506 if (atomic_read(&starget->target_blocked) > 0) { 1507 if (busy) 1508 goto starved; 1509 1510 /* 1511 * unblock after target_blocked iterates to zero 1512 */ 1513 if (atomic_dec_return(&starget->target_blocked) > 0) 1514 goto out_dec; 1515 1516 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1517 "unblocking target at zero depth\n")); 1518 } 1519 1520 if (busy >= starget->can_queue) 1521 goto starved; 1522 1523 return 1; 1524 1525 starved: 1526 spin_lock_irq(shost->host_lock); 1527 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1528 spin_unlock_irq(shost->host_lock); 1529 out_dec: 1530 if (starget->can_queue > 0) 1531 atomic_dec(&starget->target_busy); 1532 return 0; 1533 } 1534 1535 /* 1536 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1537 * return 0. We must end up running the queue again whenever 0 is 1538 * returned, else IO can hang. 1539 */ 1540 static inline int scsi_host_queue_ready(struct request_queue *q, 1541 struct Scsi_Host *shost, 1542 struct scsi_device *sdev) 1543 { 1544 unsigned int busy; 1545 1546 if (scsi_host_in_recovery(shost)) 1547 return 0; 1548 1549 busy = atomic_inc_return(&shost->host_busy) - 1; 1550 if (atomic_read(&shost->host_blocked) > 0) { 1551 if (busy) 1552 goto starved; 1553 1554 /* 1555 * unblock after host_blocked iterates to zero 1556 */ 1557 if (atomic_dec_return(&shost->host_blocked) > 0) 1558 goto out_dec; 1559 1560 SCSI_LOG_MLQUEUE(3, 1561 shost_printk(KERN_INFO, shost, 1562 "unblocking host at zero depth\n")); 1563 } 1564 1565 if (shost->can_queue > 0 && busy >= shost->can_queue) 1566 goto starved; 1567 if (shost->host_self_blocked) 1568 goto starved; 1569 1570 /* We're OK to process the command, so we can't be starved */ 1571 if (!list_empty(&sdev->starved_entry)) { 1572 spin_lock_irq(shost->host_lock); 1573 if (!list_empty(&sdev->starved_entry)) 1574 list_del_init(&sdev->starved_entry); 1575 spin_unlock_irq(shost->host_lock); 1576 } 1577 1578 return 1; 1579 1580 starved: 1581 spin_lock_irq(shost->host_lock); 1582 if (list_empty(&sdev->starved_entry)) 1583 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1584 spin_unlock_irq(shost->host_lock); 1585 out_dec: 1586 scsi_dec_host_busy(shost); 1587 return 0; 1588 } 1589 1590 /* 1591 * Busy state exporting function for request stacking drivers. 1592 * 1593 * For efficiency, no lock is taken to check the busy state of 1594 * shost/starget/sdev, since the returned value is not guaranteed and 1595 * may be changed after request stacking drivers call the function, 1596 * regardless of taking lock or not. 1597 * 1598 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1599 * needs to return 'not busy'. Otherwise, request stacking drivers 1600 * may hold requests forever. 1601 */ 1602 static int scsi_lld_busy(struct request_queue *q) 1603 { 1604 struct scsi_device *sdev = q->queuedata; 1605 struct Scsi_Host *shost; 1606 1607 if (blk_queue_dying(q)) 1608 return 0; 1609 1610 shost = sdev->host; 1611 1612 /* 1613 * Ignore host/starget busy state. 1614 * Since block layer does not have a concept of fairness across 1615 * multiple queues, congestion of host/starget needs to be handled 1616 * in SCSI layer. 1617 */ 1618 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1619 return 1; 1620 1621 return 0; 1622 } 1623 1624 /* 1625 * Kill a request for a dead device 1626 */ 1627 static void scsi_kill_request(struct request *req, struct request_queue *q) 1628 { 1629 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1630 struct scsi_device *sdev; 1631 struct scsi_target *starget; 1632 struct Scsi_Host *shost; 1633 1634 blk_start_request(req); 1635 1636 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1637 1638 sdev = cmd->device; 1639 starget = scsi_target(sdev); 1640 shost = sdev->host; 1641 scsi_init_cmd_errh(cmd); 1642 cmd->result = DID_NO_CONNECT << 16; 1643 atomic_inc(&cmd->device->iorequest_cnt); 1644 1645 /* 1646 * SCSI request completion path will do scsi_device_unbusy(), 1647 * bump busy counts. To bump the counters, we need to dance 1648 * with the locks as normal issue path does. 1649 */ 1650 atomic_inc(&sdev->device_busy); 1651 atomic_inc(&shost->host_busy); 1652 if (starget->can_queue > 0) 1653 atomic_inc(&starget->target_busy); 1654 1655 blk_complete_request(req); 1656 } 1657 1658 static void scsi_softirq_done(struct request *rq) 1659 { 1660 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1661 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1662 int disposition; 1663 1664 INIT_LIST_HEAD(&cmd->eh_entry); 1665 1666 atomic_inc(&cmd->device->iodone_cnt); 1667 if (cmd->result) 1668 atomic_inc(&cmd->device->ioerr_cnt); 1669 1670 disposition = scsi_decide_disposition(cmd); 1671 if (disposition != SUCCESS && 1672 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1673 sdev_printk(KERN_ERR, cmd->device, 1674 "timing out command, waited %lus\n", 1675 wait_for/HZ); 1676 disposition = SUCCESS; 1677 } 1678 1679 scsi_log_completion(cmd, disposition); 1680 1681 switch (disposition) { 1682 case SUCCESS: 1683 scsi_finish_command(cmd); 1684 break; 1685 case NEEDS_RETRY: 1686 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1687 break; 1688 case ADD_TO_MLQUEUE: 1689 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1690 break; 1691 default: 1692 scsi_eh_scmd_add(cmd); 1693 break; 1694 } 1695 } 1696 1697 /** 1698 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1699 * @cmd: command block we are dispatching. 1700 * 1701 * Return: nonzero return request was rejected and device's queue needs to be 1702 * plugged. 1703 */ 1704 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1705 { 1706 struct Scsi_Host *host = cmd->device->host; 1707 int rtn = 0; 1708 1709 atomic_inc(&cmd->device->iorequest_cnt); 1710 1711 /* check if the device is still usable */ 1712 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1713 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1714 * returns an immediate error upwards, and signals 1715 * that the device is no longer present */ 1716 cmd->result = DID_NO_CONNECT << 16; 1717 goto done; 1718 } 1719 1720 /* Check to see if the scsi lld made this device blocked. */ 1721 if (unlikely(scsi_device_blocked(cmd->device))) { 1722 /* 1723 * in blocked state, the command is just put back on 1724 * the device queue. The suspend state has already 1725 * blocked the queue so future requests should not 1726 * occur until the device transitions out of the 1727 * suspend state. 1728 */ 1729 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1730 "queuecommand : device blocked\n")); 1731 return SCSI_MLQUEUE_DEVICE_BUSY; 1732 } 1733 1734 /* Store the LUN value in cmnd, if needed. */ 1735 if (cmd->device->lun_in_cdb) 1736 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1737 (cmd->device->lun << 5 & 0xe0); 1738 1739 scsi_log_send(cmd); 1740 1741 /* 1742 * Before we queue this command, check if the command 1743 * length exceeds what the host adapter can handle. 1744 */ 1745 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1746 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1747 "queuecommand : command too long. " 1748 "cdb_size=%d host->max_cmd_len=%d\n", 1749 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1750 cmd->result = (DID_ABORT << 16); 1751 goto done; 1752 } 1753 1754 if (unlikely(host->shost_state == SHOST_DEL)) { 1755 cmd->result = (DID_NO_CONNECT << 16); 1756 goto done; 1757 1758 } 1759 1760 trace_scsi_dispatch_cmd_start(cmd); 1761 rtn = host->hostt->queuecommand(host, cmd); 1762 if (rtn) { 1763 trace_scsi_dispatch_cmd_error(cmd, rtn); 1764 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1765 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1766 rtn = SCSI_MLQUEUE_HOST_BUSY; 1767 1768 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1769 "queuecommand : request rejected\n")); 1770 } 1771 1772 return rtn; 1773 done: 1774 cmd->scsi_done(cmd); 1775 return 0; 1776 } 1777 1778 /** 1779 * scsi_done - Invoke completion on finished SCSI command. 1780 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1781 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1782 * 1783 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1784 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1785 * calls blk_complete_request() for further processing. 1786 * 1787 * This function is interrupt context safe. 1788 */ 1789 static void scsi_done(struct scsi_cmnd *cmd) 1790 { 1791 trace_scsi_dispatch_cmd_done(cmd); 1792 blk_complete_request(cmd->request); 1793 } 1794 1795 /* 1796 * Function: scsi_request_fn() 1797 * 1798 * Purpose: Main strategy routine for SCSI. 1799 * 1800 * Arguments: q - Pointer to actual queue. 1801 * 1802 * Returns: Nothing 1803 * 1804 * Lock status: request queue lock assumed to be held when called. 1805 * 1806 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1807 * protection for ZBC disks. 1808 */ 1809 static void scsi_request_fn(struct request_queue *q) 1810 __releases(q->queue_lock) 1811 __acquires(q->queue_lock) 1812 { 1813 struct scsi_device *sdev = q->queuedata; 1814 struct Scsi_Host *shost; 1815 struct scsi_cmnd *cmd; 1816 struct request *req; 1817 1818 /* 1819 * To start with, we keep looping until the queue is empty, or until 1820 * the host is no longer able to accept any more requests. 1821 */ 1822 shost = sdev->host; 1823 for (;;) { 1824 int rtn; 1825 /* 1826 * get next queueable request. We do this early to make sure 1827 * that the request is fully prepared even if we cannot 1828 * accept it. 1829 */ 1830 req = blk_peek_request(q); 1831 if (!req) 1832 break; 1833 1834 if (unlikely(!scsi_device_online(sdev))) { 1835 sdev_printk(KERN_ERR, sdev, 1836 "rejecting I/O to offline device\n"); 1837 scsi_kill_request(req, q); 1838 continue; 1839 } 1840 1841 if (!scsi_dev_queue_ready(q, sdev)) 1842 break; 1843 1844 /* 1845 * Remove the request from the request list. 1846 */ 1847 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1848 blk_start_request(req); 1849 1850 spin_unlock_irq(q->queue_lock); 1851 cmd = blk_mq_rq_to_pdu(req); 1852 if (cmd != req->special) { 1853 printk(KERN_CRIT "impossible request in %s.\n" 1854 "please mail a stack trace to " 1855 "linux-scsi@vger.kernel.org\n", 1856 __func__); 1857 blk_dump_rq_flags(req, "foo"); 1858 BUG(); 1859 } 1860 1861 /* 1862 * We hit this when the driver is using a host wide 1863 * tag map. For device level tag maps the queue_depth check 1864 * in the device ready fn would prevent us from trying 1865 * to allocate a tag. Since the map is a shared host resource 1866 * we add the dev to the starved list so it eventually gets 1867 * a run when a tag is freed. 1868 */ 1869 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1870 spin_lock_irq(shost->host_lock); 1871 if (list_empty(&sdev->starved_entry)) 1872 list_add_tail(&sdev->starved_entry, 1873 &shost->starved_list); 1874 spin_unlock_irq(shost->host_lock); 1875 goto not_ready; 1876 } 1877 1878 if (!scsi_target_queue_ready(shost, sdev)) 1879 goto not_ready; 1880 1881 if (!scsi_host_queue_ready(q, shost, sdev)) 1882 goto host_not_ready; 1883 1884 if (sdev->simple_tags) 1885 cmd->flags |= SCMD_TAGGED; 1886 else 1887 cmd->flags &= ~SCMD_TAGGED; 1888 1889 /* 1890 * Finally, initialize any error handling parameters, and set up 1891 * the timers for timeouts. 1892 */ 1893 scsi_init_cmd_errh(cmd); 1894 1895 /* 1896 * Dispatch the command to the low-level driver. 1897 */ 1898 cmd->scsi_done = scsi_done; 1899 rtn = scsi_dispatch_cmd(cmd); 1900 if (rtn) { 1901 scsi_queue_insert(cmd, rtn); 1902 spin_lock_irq(q->queue_lock); 1903 goto out_delay; 1904 } 1905 spin_lock_irq(q->queue_lock); 1906 } 1907 1908 return; 1909 1910 host_not_ready: 1911 if (scsi_target(sdev)->can_queue > 0) 1912 atomic_dec(&scsi_target(sdev)->target_busy); 1913 not_ready: 1914 /* 1915 * lock q, handle tag, requeue req, and decrement device_busy. We 1916 * must return with queue_lock held. 1917 * 1918 * Decrementing device_busy without checking it is OK, as all such 1919 * cases (host limits or settings) should run the queue at some 1920 * later time. 1921 */ 1922 spin_lock_irq(q->queue_lock); 1923 blk_requeue_request(q, req); 1924 atomic_dec(&sdev->device_busy); 1925 out_delay: 1926 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1927 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1928 } 1929 1930 static inline blk_status_t prep_to_mq(int ret) 1931 { 1932 switch (ret) { 1933 case BLKPREP_OK: 1934 return BLK_STS_OK; 1935 case BLKPREP_DEFER: 1936 return BLK_STS_RESOURCE; 1937 default: 1938 return BLK_STS_IOERR; 1939 } 1940 } 1941 1942 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1943 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1944 { 1945 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1946 sizeof(struct scatterlist); 1947 } 1948 1949 static int scsi_mq_prep_fn(struct request *req) 1950 { 1951 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1952 struct scsi_device *sdev = req->q->queuedata; 1953 struct Scsi_Host *shost = sdev->host; 1954 struct scatterlist *sg; 1955 1956 scsi_init_command(sdev, cmd); 1957 1958 req->special = cmd; 1959 1960 cmd->request = req; 1961 1962 cmd->tag = req->tag; 1963 cmd->prot_op = SCSI_PROT_NORMAL; 1964 1965 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1966 cmd->sdb.table.sgl = sg; 1967 1968 if (scsi_host_get_prot(shost)) { 1969 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1970 1971 cmd->prot_sdb->table.sgl = 1972 (struct scatterlist *)(cmd->prot_sdb + 1); 1973 } 1974 1975 if (blk_bidi_rq(req)) { 1976 struct request *next_rq = req->next_rq; 1977 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1978 1979 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1980 bidi_sdb->table.sgl = 1981 (struct scatterlist *)(bidi_sdb + 1); 1982 1983 next_rq->special = bidi_sdb; 1984 } 1985 1986 blk_mq_start_request(req); 1987 1988 return scsi_setup_cmnd(sdev, req); 1989 } 1990 1991 static void scsi_mq_done(struct scsi_cmnd *cmd) 1992 { 1993 trace_scsi_dispatch_cmd_done(cmd); 1994 blk_mq_complete_request(cmd->request); 1995 } 1996 1997 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1998 { 1999 struct request_queue *q = hctx->queue; 2000 struct scsi_device *sdev = q->queuedata; 2001 2002 atomic_dec(&sdev->device_busy); 2003 put_device(&sdev->sdev_gendev); 2004 } 2005 2006 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2007 { 2008 struct request_queue *q = hctx->queue; 2009 struct scsi_device *sdev = q->queuedata; 2010 2011 if (!get_device(&sdev->sdev_gendev)) 2012 goto out; 2013 if (!scsi_dev_queue_ready(q, sdev)) 2014 goto out_put_device; 2015 2016 return true; 2017 2018 out_put_device: 2019 put_device(&sdev->sdev_gendev); 2020 out: 2021 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2022 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2023 return false; 2024 } 2025 2026 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2027 const struct blk_mq_queue_data *bd) 2028 { 2029 struct request *req = bd->rq; 2030 struct request_queue *q = req->q; 2031 struct scsi_device *sdev = q->queuedata; 2032 struct Scsi_Host *shost = sdev->host; 2033 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2034 blk_status_t ret; 2035 int reason; 2036 2037 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2038 if (ret != BLK_STS_OK) 2039 goto out_put_budget; 2040 2041 ret = BLK_STS_RESOURCE; 2042 if (!scsi_target_queue_ready(shost, sdev)) 2043 goto out_put_budget; 2044 if (!scsi_host_queue_ready(q, shost, sdev)) 2045 goto out_dec_target_busy; 2046 2047 if (!(req->rq_flags & RQF_DONTPREP)) { 2048 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2049 if (ret != BLK_STS_OK) 2050 goto out_dec_host_busy; 2051 req->rq_flags |= RQF_DONTPREP; 2052 } else { 2053 blk_mq_start_request(req); 2054 } 2055 2056 if (sdev->simple_tags) 2057 cmd->flags |= SCMD_TAGGED; 2058 else 2059 cmd->flags &= ~SCMD_TAGGED; 2060 2061 scsi_init_cmd_errh(cmd); 2062 cmd->scsi_done = scsi_mq_done; 2063 2064 reason = scsi_dispatch_cmd(cmd); 2065 if (reason) { 2066 scsi_set_blocked(cmd, reason); 2067 ret = BLK_STS_RESOURCE; 2068 goto out_dec_host_busy; 2069 } 2070 2071 return BLK_STS_OK; 2072 2073 out_dec_host_busy: 2074 scsi_dec_host_busy(shost); 2075 out_dec_target_busy: 2076 if (scsi_target(sdev)->can_queue > 0) 2077 atomic_dec(&scsi_target(sdev)->target_busy); 2078 out_put_budget: 2079 scsi_mq_put_budget(hctx); 2080 switch (ret) { 2081 case BLK_STS_OK: 2082 break; 2083 case BLK_STS_RESOURCE: 2084 if (atomic_read(&sdev->device_busy) || 2085 scsi_device_blocked(sdev)) 2086 ret = BLK_STS_DEV_RESOURCE; 2087 break; 2088 default: 2089 /* 2090 * Make sure to release all allocated ressources when 2091 * we hit an error, as we will never see this command 2092 * again. 2093 */ 2094 if (req->rq_flags & RQF_DONTPREP) 2095 scsi_mq_uninit_cmd(cmd); 2096 break; 2097 } 2098 return ret; 2099 } 2100 2101 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2102 bool reserved) 2103 { 2104 if (reserved) 2105 return BLK_EH_RESET_TIMER; 2106 return scsi_times_out(req); 2107 } 2108 2109 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2110 unsigned int hctx_idx, unsigned int numa_node) 2111 { 2112 struct Scsi_Host *shost = set->driver_data; 2113 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2114 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2115 struct scatterlist *sg; 2116 2117 if (unchecked_isa_dma) 2118 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2119 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2120 GFP_KERNEL, numa_node); 2121 if (!cmd->sense_buffer) 2122 return -ENOMEM; 2123 cmd->req.sense = cmd->sense_buffer; 2124 2125 if (scsi_host_get_prot(shost)) { 2126 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2127 shost->hostt->cmd_size; 2128 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2129 } 2130 2131 return 0; 2132 } 2133 2134 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2135 unsigned int hctx_idx) 2136 { 2137 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2138 2139 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2140 cmd->sense_buffer); 2141 } 2142 2143 static int scsi_map_queues(struct blk_mq_tag_set *set) 2144 { 2145 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2146 2147 if (shost->hostt->map_queues) 2148 return shost->hostt->map_queues(shost); 2149 return blk_mq_map_queues(set); 2150 } 2151 2152 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2153 { 2154 struct device *dev = shost->dma_dev; 2155 2156 /* 2157 * this limit is imposed by hardware restrictions 2158 */ 2159 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2160 SG_MAX_SEGMENTS)); 2161 2162 if (scsi_host_prot_dma(shost)) { 2163 shost->sg_prot_tablesize = 2164 min_not_zero(shost->sg_prot_tablesize, 2165 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2166 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2167 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2168 } 2169 2170 blk_queue_max_hw_sectors(q, shost->max_sectors); 2171 if (shost->unchecked_isa_dma) 2172 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 2173 blk_queue_segment_boundary(q, shost->dma_boundary); 2174 dma_set_seg_boundary(dev, shost->dma_boundary); 2175 2176 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2177 2178 if (!shost->use_clustering) 2179 q->limits.cluster = 0; 2180 2181 /* 2182 * Set a reasonable default alignment: The larger of 32-byte (dword), 2183 * which is a common minimum for HBAs, and the minimum DMA alignment, 2184 * which is set by the platform. 2185 * 2186 * Devices that require a bigger alignment can increase it later. 2187 */ 2188 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2189 } 2190 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2191 2192 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2193 gfp_t gfp) 2194 { 2195 struct Scsi_Host *shost = q->rq_alloc_data; 2196 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2197 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2198 2199 memset(cmd, 0, sizeof(*cmd)); 2200 2201 if (unchecked_isa_dma) 2202 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2203 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2204 NUMA_NO_NODE); 2205 if (!cmd->sense_buffer) 2206 goto fail; 2207 cmd->req.sense = cmd->sense_buffer; 2208 2209 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2210 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2211 if (!cmd->prot_sdb) 2212 goto fail_free_sense; 2213 } 2214 2215 return 0; 2216 2217 fail_free_sense: 2218 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2219 fail: 2220 return -ENOMEM; 2221 } 2222 2223 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2224 { 2225 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2226 2227 if (cmd->prot_sdb) 2228 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2229 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2230 cmd->sense_buffer); 2231 } 2232 2233 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2234 { 2235 struct Scsi_Host *shost = sdev->host; 2236 struct request_queue *q; 2237 2238 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2239 if (!q) 2240 return NULL; 2241 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2242 q->rq_alloc_data = shost; 2243 q->request_fn = scsi_request_fn; 2244 q->init_rq_fn = scsi_old_init_rq; 2245 q->exit_rq_fn = scsi_old_exit_rq; 2246 q->initialize_rq_fn = scsi_initialize_rq; 2247 2248 if (blk_init_allocated_queue(q) < 0) { 2249 blk_cleanup_queue(q); 2250 return NULL; 2251 } 2252 2253 __scsi_init_queue(shost, q); 2254 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2255 blk_queue_prep_rq(q, scsi_prep_fn); 2256 blk_queue_unprep_rq(q, scsi_unprep_fn); 2257 blk_queue_softirq_done(q, scsi_softirq_done); 2258 blk_queue_rq_timed_out(q, scsi_times_out); 2259 blk_queue_lld_busy(q, scsi_lld_busy); 2260 return q; 2261 } 2262 2263 static const struct blk_mq_ops scsi_mq_ops = { 2264 .get_budget = scsi_mq_get_budget, 2265 .put_budget = scsi_mq_put_budget, 2266 .queue_rq = scsi_queue_rq, 2267 .complete = scsi_softirq_done, 2268 .timeout = scsi_timeout, 2269 #ifdef CONFIG_BLK_DEBUG_FS 2270 .show_rq = scsi_show_rq, 2271 #endif 2272 .init_request = scsi_mq_init_request, 2273 .exit_request = scsi_mq_exit_request, 2274 .initialize_rq_fn = scsi_initialize_rq, 2275 .map_queues = scsi_map_queues, 2276 }; 2277 2278 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2279 { 2280 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2281 if (IS_ERR(sdev->request_queue)) 2282 return NULL; 2283 2284 sdev->request_queue->queuedata = sdev; 2285 __scsi_init_queue(sdev->host, sdev->request_queue); 2286 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2287 return sdev->request_queue; 2288 } 2289 2290 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2291 { 2292 unsigned int cmd_size, sgl_size; 2293 2294 sgl_size = scsi_mq_sgl_size(shost); 2295 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2296 if (scsi_host_get_prot(shost)) 2297 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2298 2299 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2300 shost->tag_set.ops = &scsi_mq_ops; 2301 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2302 shost->tag_set.queue_depth = shost->can_queue; 2303 shost->tag_set.cmd_size = cmd_size; 2304 shost->tag_set.numa_node = NUMA_NO_NODE; 2305 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2306 shost->tag_set.flags |= 2307 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2308 shost->tag_set.driver_data = shost; 2309 2310 return blk_mq_alloc_tag_set(&shost->tag_set); 2311 } 2312 2313 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2314 { 2315 blk_mq_free_tag_set(&shost->tag_set); 2316 } 2317 2318 /** 2319 * scsi_device_from_queue - return sdev associated with a request_queue 2320 * @q: The request queue to return the sdev from 2321 * 2322 * Return the sdev associated with a request queue or NULL if the 2323 * request_queue does not reference a SCSI device. 2324 */ 2325 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2326 { 2327 struct scsi_device *sdev = NULL; 2328 2329 if (q->mq_ops) { 2330 if (q->mq_ops == &scsi_mq_ops) 2331 sdev = q->queuedata; 2332 } else if (q->request_fn == scsi_request_fn) 2333 sdev = q->queuedata; 2334 if (!sdev || !get_device(&sdev->sdev_gendev)) 2335 sdev = NULL; 2336 2337 return sdev; 2338 } 2339 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2340 2341 /* 2342 * Function: scsi_block_requests() 2343 * 2344 * Purpose: Utility function used by low-level drivers to prevent further 2345 * commands from being queued to the device. 2346 * 2347 * Arguments: shost - Host in question 2348 * 2349 * Returns: Nothing 2350 * 2351 * Lock status: No locks are assumed held. 2352 * 2353 * Notes: There is no timer nor any other means by which the requests 2354 * get unblocked other than the low-level driver calling 2355 * scsi_unblock_requests(). 2356 */ 2357 void scsi_block_requests(struct Scsi_Host *shost) 2358 { 2359 shost->host_self_blocked = 1; 2360 } 2361 EXPORT_SYMBOL(scsi_block_requests); 2362 2363 /* 2364 * Function: scsi_unblock_requests() 2365 * 2366 * Purpose: Utility function used by low-level drivers to allow further 2367 * commands from being queued to the device. 2368 * 2369 * Arguments: shost - Host in question 2370 * 2371 * Returns: Nothing 2372 * 2373 * Lock status: No locks are assumed held. 2374 * 2375 * Notes: There is no timer nor any other means by which the requests 2376 * get unblocked other than the low-level driver calling 2377 * scsi_unblock_requests(). 2378 * 2379 * This is done as an API function so that changes to the 2380 * internals of the scsi mid-layer won't require wholesale 2381 * changes to drivers that use this feature. 2382 */ 2383 void scsi_unblock_requests(struct Scsi_Host *shost) 2384 { 2385 shost->host_self_blocked = 0; 2386 scsi_run_host_queues(shost); 2387 } 2388 EXPORT_SYMBOL(scsi_unblock_requests); 2389 2390 int __init scsi_init_queue(void) 2391 { 2392 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2393 sizeof(struct scsi_data_buffer), 2394 0, 0, NULL); 2395 if (!scsi_sdb_cache) { 2396 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2397 return -ENOMEM; 2398 } 2399 2400 return 0; 2401 } 2402 2403 void scsi_exit_queue(void) 2404 { 2405 kmem_cache_destroy(scsi_sense_cache); 2406 kmem_cache_destroy(scsi_sense_isadma_cache); 2407 kmem_cache_destroy(scsi_sdb_cache); 2408 } 2409 2410 /** 2411 * scsi_mode_select - issue a mode select 2412 * @sdev: SCSI device to be queried 2413 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2414 * @sp: Save page bit (0 == don't save, 1 == save) 2415 * @modepage: mode page being requested 2416 * @buffer: request buffer (may not be smaller than eight bytes) 2417 * @len: length of request buffer. 2418 * @timeout: command timeout 2419 * @retries: number of retries before failing 2420 * @data: returns a structure abstracting the mode header data 2421 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2422 * must be SCSI_SENSE_BUFFERSIZE big. 2423 * 2424 * Returns zero if successful; negative error number or scsi 2425 * status on error 2426 * 2427 */ 2428 int 2429 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2430 unsigned char *buffer, int len, int timeout, int retries, 2431 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2432 { 2433 unsigned char cmd[10]; 2434 unsigned char *real_buffer; 2435 int ret; 2436 2437 memset(cmd, 0, sizeof(cmd)); 2438 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2439 2440 if (sdev->use_10_for_ms) { 2441 if (len > 65535) 2442 return -EINVAL; 2443 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2444 if (!real_buffer) 2445 return -ENOMEM; 2446 memcpy(real_buffer + 8, buffer, len); 2447 len += 8; 2448 real_buffer[0] = 0; 2449 real_buffer[1] = 0; 2450 real_buffer[2] = data->medium_type; 2451 real_buffer[3] = data->device_specific; 2452 real_buffer[4] = data->longlba ? 0x01 : 0; 2453 real_buffer[5] = 0; 2454 real_buffer[6] = data->block_descriptor_length >> 8; 2455 real_buffer[7] = data->block_descriptor_length; 2456 2457 cmd[0] = MODE_SELECT_10; 2458 cmd[7] = len >> 8; 2459 cmd[8] = len; 2460 } else { 2461 if (len > 255 || data->block_descriptor_length > 255 || 2462 data->longlba) 2463 return -EINVAL; 2464 2465 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2466 if (!real_buffer) 2467 return -ENOMEM; 2468 memcpy(real_buffer + 4, buffer, len); 2469 len += 4; 2470 real_buffer[0] = 0; 2471 real_buffer[1] = data->medium_type; 2472 real_buffer[2] = data->device_specific; 2473 real_buffer[3] = data->block_descriptor_length; 2474 2475 2476 cmd[0] = MODE_SELECT; 2477 cmd[4] = len; 2478 } 2479 2480 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2481 sshdr, timeout, retries, NULL); 2482 kfree(real_buffer); 2483 return ret; 2484 } 2485 EXPORT_SYMBOL_GPL(scsi_mode_select); 2486 2487 /** 2488 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2489 * @sdev: SCSI device to be queried 2490 * @dbd: set if mode sense will allow block descriptors to be returned 2491 * @modepage: mode page being requested 2492 * @buffer: request buffer (may not be smaller than eight bytes) 2493 * @len: length of request buffer. 2494 * @timeout: command timeout 2495 * @retries: number of retries before failing 2496 * @data: returns a structure abstracting the mode header data 2497 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2498 * must be SCSI_SENSE_BUFFERSIZE big. 2499 * 2500 * Returns zero if unsuccessful, or the header offset (either 4 2501 * or 8 depending on whether a six or ten byte command was 2502 * issued) if successful. 2503 */ 2504 int 2505 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2506 unsigned char *buffer, int len, int timeout, int retries, 2507 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2508 { 2509 unsigned char cmd[12]; 2510 int use_10_for_ms; 2511 int header_length; 2512 int result, retry_count = retries; 2513 struct scsi_sense_hdr my_sshdr; 2514 2515 memset(data, 0, sizeof(*data)); 2516 memset(&cmd[0], 0, 12); 2517 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2518 cmd[2] = modepage; 2519 2520 /* caller might not be interested in sense, but we need it */ 2521 if (!sshdr) 2522 sshdr = &my_sshdr; 2523 2524 retry: 2525 use_10_for_ms = sdev->use_10_for_ms; 2526 2527 if (use_10_for_ms) { 2528 if (len < 8) 2529 len = 8; 2530 2531 cmd[0] = MODE_SENSE_10; 2532 cmd[8] = len; 2533 header_length = 8; 2534 } else { 2535 if (len < 4) 2536 len = 4; 2537 2538 cmd[0] = MODE_SENSE; 2539 cmd[4] = len; 2540 header_length = 4; 2541 } 2542 2543 memset(buffer, 0, len); 2544 2545 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2546 sshdr, timeout, retries, NULL); 2547 2548 /* This code looks awful: what it's doing is making sure an 2549 * ILLEGAL REQUEST sense return identifies the actual command 2550 * byte as the problem. MODE_SENSE commands can return 2551 * ILLEGAL REQUEST if the code page isn't supported */ 2552 2553 if (use_10_for_ms && !scsi_status_is_good(result) && 2554 (driver_byte(result) & DRIVER_SENSE)) { 2555 if (scsi_sense_valid(sshdr)) { 2556 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2557 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2558 /* 2559 * Invalid command operation code 2560 */ 2561 sdev->use_10_for_ms = 0; 2562 goto retry; 2563 } 2564 } 2565 } 2566 2567 if(scsi_status_is_good(result)) { 2568 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2569 (modepage == 6 || modepage == 8))) { 2570 /* Initio breakage? */ 2571 header_length = 0; 2572 data->length = 13; 2573 data->medium_type = 0; 2574 data->device_specific = 0; 2575 data->longlba = 0; 2576 data->block_descriptor_length = 0; 2577 } else if(use_10_for_ms) { 2578 data->length = buffer[0]*256 + buffer[1] + 2; 2579 data->medium_type = buffer[2]; 2580 data->device_specific = buffer[3]; 2581 data->longlba = buffer[4] & 0x01; 2582 data->block_descriptor_length = buffer[6]*256 2583 + buffer[7]; 2584 } else { 2585 data->length = buffer[0] + 1; 2586 data->medium_type = buffer[1]; 2587 data->device_specific = buffer[2]; 2588 data->block_descriptor_length = buffer[3]; 2589 } 2590 data->header_length = header_length; 2591 } else if ((status_byte(result) == CHECK_CONDITION) && 2592 scsi_sense_valid(sshdr) && 2593 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2594 retry_count--; 2595 goto retry; 2596 } 2597 2598 return result; 2599 } 2600 EXPORT_SYMBOL(scsi_mode_sense); 2601 2602 /** 2603 * scsi_test_unit_ready - test if unit is ready 2604 * @sdev: scsi device to change the state of. 2605 * @timeout: command timeout 2606 * @retries: number of retries before failing 2607 * @sshdr: outpout pointer for decoded sense information. 2608 * 2609 * Returns zero if unsuccessful or an error if TUR failed. For 2610 * removable media, UNIT_ATTENTION sets ->changed flag. 2611 **/ 2612 int 2613 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2614 struct scsi_sense_hdr *sshdr) 2615 { 2616 char cmd[] = { 2617 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2618 }; 2619 int result; 2620 2621 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2622 do { 2623 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2624 timeout, 1, NULL); 2625 if (sdev->removable && scsi_sense_valid(sshdr) && 2626 sshdr->sense_key == UNIT_ATTENTION) 2627 sdev->changed = 1; 2628 } while (scsi_sense_valid(sshdr) && 2629 sshdr->sense_key == UNIT_ATTENTION && --retries); 2630 2631 return result; 2632 } 2633 EXPORT_SYMBOL(scsi_test_unit_ready); 2634 2635 /** 2636 * scsi_device_set_state - Take the given device through the device state model. 2637 * @sdev: scsi device to change the state of. 2638 * @state: state to change to. 2639 * 2640 * Returns zero if successful or an error if the requested 2641 * transition is illegal. 2642 */ 2643 int 2644 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2645 { 2646 enum scsi_device_state oldstate = sdev->sdev_state; 2647 2648 if (state == oldstate) 2649 return 0; 2650 2651 switch (state) { 2652 case SDEV_CREATED: 2653 switch (oldstate) { 2654 case SDEV_CREATED_BLOCK: 2655 break; 2656 default: 2657 goto illegal; 2658 } 2659 break; 2660 2661 case SDEV_RUNNING: 2662 switch (oldstate) { 2663 case SDEV_CREATED: 2664 case SDEV_OFFLINE: 2665 case SDEV_TRANSPORT_OFFLINE: 2666 case SDEV_QUIESCE: 2667 case SDEV_BLOCK: 2668 break; 2669 default: 2670 goto illegal; 2671 } 2672 break; 2673 2674 case SDEV_QUIESCE: 2675 switch (oldstate) { 2676 case SDEV_RUNNING: 2677 case SDEV_OFFLINE: 2678 case SDEV_TRANSPORT_OFFLINE: 2679 break; 2680 default: 2681 goto illegal; 2682 } 2683 break; 2684 2685 case SDEV_OFFLINE: 2686 case SDEV_TRANSPORT_OFFLINE: 2687 switch (oldstate) { 2688 case SDEV_CREATED: 2689 case SDEV_RUNNING: 2690 case SDEV_QUIESCE: 2691 case SDEV_BLOCK: 2692 break; 2693 default: 2694 goto illegal; 2695 } 2696 break; 2697 2698 case SDEV_BLOCK: 2699 switch (oldstate) { 2700 case SDEV_RUNNING: 2701 case SDEV_CREATED_BLOCK: 2702 break; 2703 default: 2704 goto illegal; 2705 } 2706 break; 2707 2708 case SDEV_CREATED_BLOCK: 2709 switch (oldstate) { 2710 case SDEV_CREATED: 2711 break; 2712 default: 2713 goto illegal; 2714 } 2715 break; 2716 2717 case SDEV_CANCEL: 2718 switch (oldstate) { 2719 case SDEV_CREATED: 2720 case SDEV_RUNNING: 2721 case SDEV_QUIESCE: 2722 case SDEV_OFFLINE: 2723 case SDEV_TRANSPORT_OFFLINE: 2724 break; 2725 default: 2726 goto illegal; 2727 } 2728 break; 2729 2730 case SDEV_DEL: 2731 switch (oldstate) { 2732 case SDEV_CREATED: 2733 case SDEV_RUNNING: 2734 case SDEV_OFFLINE: 2735 case SDEV_TRANSPORT_OFFLINE: 2736 case SDEV_CANCEL: 2737 case SDEV_BLOCK: 2738 case SDEV_CREATED_BLOCK: 2739 break; 2740 default: 2741 goto illegal; 2742 } 2743 break; 2744 2745 } 2746 sdev->sdev_state = state; 2747 return 0; 2748 2749 illegal: 2750 SCSI_LOG_ERROR_RECOVERY(1, 2751 sdev_printk(KERN_ERR, sdev, 2752 "Illegal state transition %s->%s", 2753 scsi_device_state_name(oldstate), 2754 scsi_device_state_name(state)) 2755 ); 2756 return -EINVAL; 2757 } 2758 EXPORT_SYMBOL(scsi_device_set_state); 2759 2760 /** 2761 * sdev_evt_emit - emit a single SCSI device uevent 2762 * @sdev: associated SCSI device 2763 * @evt: event to emit 2764 * 2765 * Send a single uevent (scsi_event) to the associated scsi_device. 2766 */ 2767 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2768 { 2769 int idx = 0; 2770 char *envp[3]; 2771 2772 switch (evt->evt_type) { 2773 case SDEV_EVT_MEDIA_CHANGE: 2774 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2775 break; 2776 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2777 scsi_rescan_device(&sdev->sdev_gendev); 2778 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2779 break; 2780 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2781 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2782 break; 2783 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2784 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2785 break; 2786 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2787 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2788 break; 2789 case SDEV_EVT_LUN_CHANGE_REPORTED: 2790 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2791 break; 2792 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2793 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2794 break; 2795 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2796 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2797 break; 2798 default: 2799 /* do nothing */ 2800 break; 2801 } 2802 2803 envp[idx++] = NULL; 2804 2805 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2806 } 2807 2808 /** 2809 * sdev_evt_thread - send a uevent for each scsi event 2810 * @work: work struct for scsi_device 2811 * 2812 * Dispatch queued events to their associated scsi_device kobjects 2813 * as uevents. 2814 */ 2815 void scsi_evt_thread(struct work_struct *work) 2816 { 2817 struct scsi_device *sdev; 2818 enum scsi_device_event evt_type; 2819 LIST_HEAD(event_list); 2820 2821 sdev = container_of(work, struct scsi_device, event_work); 2822 2823 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2824 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2825 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2826 2827 while (1) { 2828 struct scsi_event *evt; 2829 struct list_head *this, *tmp; 2830 unsigned long flags; 2831 2832 spin_lock_irqsave(&sdev->list_lock, flags); 2833 list_splice_init(&sdev->event_list, &event_list); 2834 spin_unlock_irqrestore(&sdev->list_lock, flags); 2835 2836 if (list_empty(&event_list)) 2837 break; 2838 2839 list_for_each_safe(this, tmp, &event_list) { 2840 evt = list_entry(this, struct scsi_event, node); 2841 list_del(&evt->node); 2842 scsi_evt_emit(sdev, evt); 2843 kfree(evt); 2844 } 2845 } 2846 } 2847 2848 /** 2849 * sdev_evt_send - send asserted event to uevent thread 2850 * @sdev: scsi_device event occurred on 2851 * @evt: event to send 2852 * 2853 * Assert scsi device event asynchronously. 2854 */ 2855 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2856 { 2857 unsigned long flags; 2858 2859 #if 0 2860 /* FIXME: currently this check eliminates all media change events 2861 * for polled devices. Need to update to discriminate between AN 2862 * and polled events */ 2863 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2864 kfree(evt); 2865 return; 2866 } 2867 #endif 2868 2869 spin_lock_irqsave(&sdev->list_lock, flags); 2870 list_add_tail(&evt->node, &sdev->event_list); 2871 schedule_work(&sdev->event_work); 2872 spin_unlock_irqrestore(&sdev->list_lock, flags); 2873 } 2874 EXPORT_SYMBOL_GPL(sdev_evt_send); 2875 2876 /** 2877 * sdev_evt_alloc - allocate a new scsi event 2878 * @evt_type: type of event to allocate 2879 * @gfpflags: GFP flags for allocation 2880 * 2881 * Allocates and returns a new scsi_event. 2882 */ 2883 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2884 gfp_t gfpflags) 2885 { 2886 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2887 if (!evt) 2888 return NULL; 2889 2890 evt->evt_type = evt_type; 2891 INIT_LIST_HEAD(&evt->node); 2892 2893 /* evt_type-specific initialization, if any */ 2894 switch (evt_type) { 2895 case SDEV_EVT_MEDIA_CHANGE: 2896 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2897 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2898 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2899 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2900 case SDEV_EVT_LUN_CHANGE_REPORTED: 2901 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2902 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2903 default: 2904 /* do nothing */ 2905 break; 2906 } 2907 2908 return evt; 2909 } 2910 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2911 2912 /** 2913 * sdev_evt_send_simple - send asserted event to uevent thread 2914 * @sdev: scsi_device event occurred on 2915 * @evt_type: type of event to send 2916 * @gfpflags: GFP flags for allocation 2917 * 2918 * Assert scsi device event asynchronously, given an event type. 2919 */ 2920 void sdev_evt_send_simple(struct scsi_device *sdev, 2921 enum scsi_device_event evt_type, gfp_t gfpflags) 2922 { 2923 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2924 if (!evt) { 2925 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2926 evt_type); 2927 return; 2928 } 2929 2930 sdev_evt_send(sdev, evt); 2931 } 2932 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2933 2934 /** 2935 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2936 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2937 */ 2938 static int scsi_request_fn_active(struct scsi_device *sdev) 2939 { 2940 struct request_queue *q = sdev->request_queue; 2941 int request_fn_active; 2942 2943 WARN_ON_ONCE(sdev->host->use_blk_mq); 2944 2945 spin_lock_irq(q->queue_lock); 2946 request_fn_active = q->request_fn_active; 2947 spin_unlock_irq(q->queue_lock); 2948 2949 return request_fn_active; 2950 } 2951 2952 /** 2953 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2954 * @sdev: SCSI device pointer. 2955 * 2956 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2957 * invoked from scsi_request_fn() have finished. 2958 */ 2959 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2960 { 2961 WARN_ON_ONCE(sdev->host->use_blk_mq); 2962 2963 while (scsi_request_fn_active(sdev)) 2964 msleep(20); 2965 } 2966 2967 /** 2968 * scsi_device_quiesce - Block user issued commands. 2969 * @sdev: scsi device to quiesce. 2970 * 2971 * This works by trying to transition to the SDEV_QUIESCE state 2972 * (which must be a legal transition). When the device is in this 2973 * state, only special requests will be accepted, all others will 2974 * be deferred. Since special requests may also be requeued requests, 2975 * a successful return doesn't guarantee the device will be 2976 * totally quiescent. 2977 * 2978 * Must be called with user context, may sleep. 2979 * 2980 * Returns zero if unsuccessful or an error if not. 2981 */ 2982 int 2983 scsi_device_quiesce(struct scsi_device *sdev) 2984 { 2985 struct request_queue *q = sdev->request_queue; 2986 int err; 2987 2988 /* 2989 * It is allowed to call scsi_device_quiesce() multiple times from 2990 * the same context but concurrent scsi_device_quiesce() calls are 2991 * not allowed. 2992 */ 2993 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2994 2995 blk_set_preempt_only(q); 2996 2997 blk_mq_freeze_queue(q); 2998 /* 2999 * Ensure that the effect of blk_set_preempt_only() will be visible 3000 * for percpu_ref_tryget() callers that occur after the queue 3001 * unfreeze even if the queue was already frozen before this function 3002 * was called. See also https://lwn.net/Articles/573497/. 3003 */ 3004 synchronize_rcu(); 3005 blk_mq_unfreeze_queue(q); 3006 3007 mutex_lock(&sdev->state_mutex); 3008 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3009 if (err == 0) 3010 sdev->quiesced_by = current; 3011 else 3012 blk_clear_preempt_only(q); 3013 mutex_unlock(&sdev->state_mutex); 3014 3015 return err; 3016 } 3017 EXPORT_SYMBOL(scsi_device_quiesce); 3018 3019 /** 3020 * scsi_device_resume - Restart user issued commands to a quiesced device. 3021 * @sdev: scsi device to resume. 3022 * 3023 * Moves the device from quiesced back to running and restarts the 3024 * queues. 3025 * 3026 * Must be called with user context, may sleep. 3027 */ 3028 void scsi_device_resume(struct scsi_device *sdev) 3029 { 3030 /* check if the device state was mutated prior to resume, and if 3031 * so assume the state is being managed elsewhere (for example 3032 * device deleted during suspend) 3033 */ 3034 mutex_lock(&sdev->state_mutex); 3035 WARN_ON_ONCE(!sdev->quiesced_by); 3036 sdev->quiesced_by = NULL; 3037 blk_clear_preempt_only(sdev->request_queue); 3038 if (sdev->sdev_state == SDEV_QUIESCE) 3039 scsi_device_set_state(sdev, SDEV_RUNNING); 3040 mutex_unlock(&sdev->state_mutex); 3041 } 3042 EXPORT_SYMBOL(scsi_device_resume); 3043 3044 static void 3045 device_quiesce_fn(struct scsi_device *sdev, void *data) 3046 { 3047 scsi_device_quiesce(sdev); 3048 } 3049 3050 void 3051 scsi_target_quiesce(struct scsi_target *starget) 3052 { 3053 starget_for_each_device(starget, NULL, device_quiesce_fn); 3054 } 3055 EXPORT_SYMBOL(scsi_target_quiesce); 3056 3057 static void 3058 device_resume_fn(struct scsi_device *sdev, void *data) 3059 { 3060 scsi_device_resume(sdev); 3061 } 3062 3063 void 3064 scsi_target_resume(struct scsi_target *starget) 3065 { 3066 starget_for_each_device(starget, NULL, device_resume_fn); 3067 } 3068 EXPORT_SYMBOL(scsi_target_resume); 3069 3070 /** 3071 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3072 * @sdev: device to block 3073 * 3074 * Pause SCSI command processing on the specified device. Does not sleep. 3075 * 3076 * Returns zero if successful or a negative error code upon failure. 3077 * 3078 * Notes: 3079 * This routine transitions the device to the SDEV_BLOCK state (which must be 3080 * a legal transition). When the device is in this state, command processing 3081 * is paused until the device leaves the SDEV_BLOCK state. See also 3082 * scsi_internal_device_unblock_nowait(). 3083 */ 3084 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3085 { 3086 struct request_queue *q = sdev->request_queue; 3087 unsigned long flags; 3088 int err = 0; 3089 3090 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3091 if (err) { 3092 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3093 3094 if (err) 3095 return err; 3096 } 3097 3098 /* 3099 * The device has transitioned to SDEV_BLOCK. Stop the 3100 * block layer from calling the midlayer with this device's 3101 * request queue. 3102 */ 3103 if (q->mq_ops) { 3104 blk_mq_quiesce_queue_nowait(q); 3105 } else { 3106 spin_lock_irqsave(q->queue_lock, flags); 3107 blk_stop_queue(q); 3108 spin_unlock_irqrestore(q->queue_lock, flags); 3109 } 3110 3111 return 0; 3112 } 3113 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3114 3115 /** 3116 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3117 * @sdev: device to block 3118 * 3119 * Pause SCSI command processing on the specified device and wait until all 3120 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3121 * 3122 * Returns zero if successful or a negative error code upon failure. 3123 * 3124 * Note: 3125 * This routine transitions the device to the SDEV_BLOCK state (which must be 3126 * a legal transition). When the device is in this state, command processing 3127 * is paused until the device leaves the SDEV_BLOCK state. See also 3128 * scsi_internal_device_unblock(). 3129 * 3130 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3131 * scsi_internal_device_block() has blocked a SCSI device and also 3132 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3133 */ 3134 static int scsi_internal_device_block(struct scsi_device *sdev) 3135 { 3136 struct request_queue *q = sdev->request_queue; 3137 int err; 3138 3139 mutex_lock(&sdev->state_mutex); 3140 err = scsi_internal_device_block_nowait(sdev); 3141 if (err == 0) { 3142 if (q->mq_ops) 3143 blk_mq_quiesce_queue(q); 3144 else 3145 scsi_wait_for_queuecommand(sdev); 3146 } 3147 mutex_unlock(&sdev->state_mutex); 3148 3149 return err; 3150 } 3151 3152 void scsi_start_queue(struct scsi_device *sdev) 3153 { 3154 struct request_queue *q = sdev->request_queue; 3155 unsigned long flags; 3156 3157 if (q->mq_ops) { 3158 blk_mq_unquiesce_queue(q); 3159 } else { 3160 spin_lock_irqsave(q->queue_lock, flags); 3161 blk_start_queue(q); 3162 spin_unlock_irqrestore(q->queue_lock, flags); 3163 } 3164 } 3165 3166 /** 3167 * scsi_internal_device_unblock_nowait - resume a device after a block request 3168 * @sdev: device to resume 3169 * @new_state: state to set the device to after unblocking 3170 * 3171 * Restart the device queue for a previously suspended SCSI device. Does not 3172 * sleep. 3173 * 3174 * Returns zero if successful or a negative error code upon failure. 3175 * 3176 * Notes: 3177 * This routine transitions the device to the SDEV_RUNNING state or to one of 3178 * the offline states (which must be a legal transition) allowing the midlayer 3179 * to goose the queue for this device. 3180 */ 3181 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3182 enum scsi_device_state new_state) 3183 { 3184 /* 3185 * Try to transition the scsi device to SDEV_RUNNING or one of the 3186 * offlined states and goose the device queue if successful. 3187 */ 3188 switch (sdev->sdev_state) { 3189 case SDEV_BLOCK: 3190 case SDEV_TRANSPORT_OFFLINE: 3191 sdev->sdev_state = new_state; 3192 break; 3193 case SDEV_CREATED_BLOCK: 3194 if (new_state == SDEV_TRANSPORT_OFFLINE || 3195 new_state == SDEV_OFFLINE) 3196 sdev->sdev_state = new_state; 3197 else 3198 sdev->sdev_state = SDEV_CREATED; 3199 break; 3200 case SDEV_CANCEL: 3201 case SDEV_OFFLINE: 3202 break; 3203 default: 3204 return -EINVAL; 3205 } 3206 scsi_start_queue(sdev); 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3211 3212 /** 3213 * scsi_internal_device_unblock - resume a device after a block request 3214 * @sdev: device to resume 3215 * @new_state: state to set the device to after unblocking 3216 * 3217 * Restart the device queue for a previously suspended SCSI device. May sleep. 3218 * 3219 * Returns zero if successful or a negative error code upon failure. 3220 * 3221 * Notes: 3222 * This routine transitions the device to the SDEV_RUNNING state or to one of 3223 * the offline states (which must be a legal transition) allowing the midlayer 3224 * to goose the queue for this device. 3225 */ 3226 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3227 enum scsi_device_state new_state) 3228 { 3229 int ret; 3230 3231 mutex_lock(&sdev->state_mutex); 3232 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3233 mutex_unlock(&sdev->state_mutex); 3234 3235 return ret; 3236 } 3237 3238 static void 3239 device_block(struct scsi_device *sdev, void *data) 3240 { 3241 scsi_internal_device_block(sdev); 3242 } 3243 3244 static int 3245 target_block(struct device *dev, void *data) 3246 { 3247 if (scsi_is_target_device(dev)) 3248 starget_for_each_device(to_scsi_target(dev), NULL, 3249 device_block); 3250 return 0; 3251 } 3252 3253 void 3254 scsi_target_block(struct device *dev) 3255 { 3256 if (scsi_is_target_device(dev)) 3257 starget_for_each_device(to_scsi_target(dev), NULL, 3258 device_block); 3259 else 3260 device_for_each_child(dev, NULL, target_block); 3261 } 3262 EXPORT_SYMBOL_GPL(scsi_target_block); 3263 3264 static void 3265 device_unblock(struct scsi_device *sdev, void *data) 3266 { 3267 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3268 } 3269 3270 static int 3271 target_unblock(struct device *dev, void *data) 3272 { 3273 if (scsi_is_target_device(dev)) 3274 starget_for_each_device(to_scsi_target(dev), data, 3275 device_unblock); 3276 return 0; 3277 } 3278 3279 void 3280 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3281 { 3282 if (scsi_is_target_device(dev)) 3283 starget_for_each_device(to_scsi_target(dev), &new_state, 3284 device_unblock); 3285 else 3286 device_for_each_child(dev, &new_state, target_unblock); 3287 } 3288 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3289 3290 /** 3291 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3292 * @sgl: scatter-gather list 3293 * @sg_count: number of segments in sg 3294 * @offset: offset in bytes into sg, on return offset into the mapped area 3295 * @len: bytes to map, on return number of bytes mapped 3296 * 3297 * Returns virtual address of the start of the mapped page 3298 */ 3299 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3300 size_t *offset, size_t *len) 3301 { 3302 int i; 3303 size_t sg_len = 0, len_complete = 0; 3304 struct scatterlist *sg; 3305 struct page *page; 3306 3307 WARN_ON(!irqs_disabled()); 3308 3309 for_each_sg(sgl, sg, sg_count, i) { 3310 len_complete = sg_len; /* Complete sg-entries */ 3311 sg_len += sg->length; 3312 if (sg_len > *offset) 3313 break; 3314 } 3315 3316 if (unlikely(i == sg_count)) { 3317 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3318 "elements %d\n", 3319 __func__, sg_len, *offset, sg_count); 3320 WARN_ON(1); 3321 return NULL; 3322 } 3323 3324 /* Offset starting from the beginning of first page in this sg-entry */ 3325 *offset = *offset - len_complete + sg->offset; 3326 3327 /* Assumption: contiguous pages can be accessed as "page + i" */ 3328 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3329 *offset &= ~PAGE_MASK; 3330 3331 /* Bytes in this sg-entry from *offset to the end of the page */ 3332 sg_len = PAGE_SIZE - *offset; 3333 if (*len > sg_len) 3334 *len = sg_len; 3335 3336 return kmap_atomic(page); 3337 } 3338 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3339 3340 /** 3341 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3342 * @virt: virtual address to be unmapped 3343 */ 3344 void scsi_kunmap_atomic_sg(void *virt) 3345 { 3346 kunmap_atomic(virt); 3347 } 3348 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3349 3350 void sdev_disable_disk_events(struct scsi_device *sdev) 3351 { 3352 atomic_inc(&sdev->disk_events_disable_depth); 3353 } 3354 EXPORT_SYMBOL(sdev_disable_disk_events); 3355 3356 void sdev_enable_disk_events(struct scsi_device *sdev) 3357 { 3358 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3359 return; 3360 atomic_dec(&sdev->disk_events_disable_depth); 3361 } 3362 EXPORT_SYMBOL(sdev_enable_disk_events); 3363 3364 /** 3365 * scsi_vpd_lun_id - return a unique device identification 3366 * @sdev: SCSI device 3367 * @id: buffer for the identification 3368 * @id_len: length of the buffer 3369 * 3370 * Copies a unique device identification into @id based 3371 * on the information in the VPD page 0x83 of the device. 3372 * The string will be formatted as a SCSI name string. 3373 * 3374 * Returns the length of the identification or error on failure. 3375 * If the identifier is longer than the supplied buffer the actual 3376 * identifier length is returned and the buffer is not zero-padded. 3377 */ 3378 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3379 { 3380 u8 cur_id_type = 0xff; 3381 u8 cur_id_size = 0; 3382 const unsigned char *d, *cur_id_str; 3383 const struct scsi_vpd *vpd_pg83; 3384 int id_size = -EINVAL; 3385 3386 rcu_read_lock(); 3387 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3388 if (!vpd_pg83) { 3389 rcu_read_unlock(); 3390 return -ENXIO; 3391 } 3392 3393 /* 3394 * Look for the correct descriptor. 3395 * Order of preference for lun descriptor: 3396 * - SCSI name string 3397 * - NAA IEEE Registered Extended 3398 * - EUI-64 based 16-byte 3399 * - EUI-64 based 12-byte 3400 * - NAA IEEE Registered 3401 * - NAA IEEE Extended 3402 * - T10 Vendor ID 3403 * as longer descriptors reduce the likelyhood 3404 * of identification clashes. 3405 */ 3406 3407 /* The id string must be at least 20 bytes + terminating NULL byte */ 3408 if (id_len < 21) { 3409 rcu_read_unlock(); 3410 return -EINVAL; 3411 } 3412 3413 memset(id, 0, id_len); 3414 d = vpd_pg83->data + 4; 3415 while (d < vpd_pg83->data + vpd_pg83->len) { 3416 /* Skip designators not referring to the LUN */ 3417 if ((d[1] & 0x30) != 0x00) 3418 goto next_desig; 3419 3420 switch (d[1] & 0xf) { 3421 case 0x1: 3422 /* T10 Vendor ID */ 3423 if (cur_id_size > d[3]) 3424 break; 3425 /* Prefer anything */ 3426 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3427 break; 3428 cur_id_size = d[3]; 3429 if (cur_id_size + 4 > id_len) 3430 cur_id_size = id_len - 4; 3431 cur_id_str = d + 4; 3432 cur_id_type = d[1] & 0xf; 3433 id_size = snprintf(id, id_len, "t10.%*pE", 3434 cur_id_size, cur_id_str); 3435 break; 3436 case 0x2: 3437 /* EUI-64 */ 3438 if (cur_id_size > d[3]) 3439 break; 3440 /* Prefer NAA IEEE Registered Extended */ 3441 if (cur_id_type == 0x3 && 3442 cur_id_size == d[3]) 3443 break; 3444 cur_id_size = d[3]; 3445 cur_id_str = d + 4; 3446 cur_id_type = d[1] & 0xf; 3447 switch (cur_id_size) { 3448 case 8: 3449 id_size = snprintf(id, id_len, 3450 "eui.%8phN", 3451 cur_id_str); 3452 break; 3453 case 12: 3454 id_size = snprintf(id, id_len, 3455 "eui.%12phN", 3456 cur_id_str); 3457 break; 3458 case 16: 3459 id_size = snprintf(id, id_len, 3460 "eui.%16phN", 3461 cur_id_str); 3462 break; 3463 default: 3464 cur_id_size = 0; 3465 break; 3466 } 3467 break; 3468 case 0x3: 3469 /* NAA */ 3470 if (cur_id_size > d[3]) 3471 break; 3472 cur_id_size = d[3]; 3473 cur_id_str = d + 4; 3474 cur_id_type = d[1] & 0xf; 3475 switch (cur_id_size) { 3476 case 8: 3477 id_size = snprintf(id, id_len, 3478 "naa.%8phN", 3479 cur_id_str); 3480 break; 3481 case 16: 3482 id_size = snprintf(id, id_len, 3483 "naa.%16phN", 3484 cur_id_str); 3485 break; 3486 default: 3487 cur_id_size = 0; 3488 break; 3489 } 3490 break; 3491 case 0x8: 3492 /* SCSI name string */ 3493 if (cur_id_size + 4 > d[3]) 3494 break; 3495 /* Prefer others for truncated descriptor */ 3496 if (cur_id_size && d[3] > id_len) 3497 break; 3498 cur_id_size = id_size = d[3]; 3499 cur_id_str = d + 4; 3500 cur_id_type = d[1] & 0xf; 3501 if (cur_id_size >= id_len) 3502 cur_id_size = id_len - 1; 3503 memcpy(id, cur_id_str, cur_id_size); 3504 /* Decrease priority for truncated descriptor */ 3505 if (cur_id_size != id_size) 3506 cur_id_size = 6; 3507 break; 3508 default: 3509 break; 3510 } 3511 next_desig: 3512 d += d[3] + 4; 3513 } 3514 rcu_read_unlock(); 3515 3516 return id_size; 3517 } 3518 EXPORT_SYMBOL(scsi_vpd_lun_id); 3519 3520 /* 3521 * scsi_vpd_tpg_id - return a target port group identifier 3522 * @sdev: SCSI device 3523 * 3524 * Returns the Target Port Group identifier from the information 3525 * froom VPD page 0x83 of the device. 3526 * 3527 * Returns the identifier or error on failure. 3528 */ 3529 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3530 { 3531 const unsigned char *d; 3532 const struct scsi_vpd *vpd_pg83; 3533 int group_id = -EAGAIN, rel_port = -1; 3534 3535 rcu_read_lock(); 3536 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3537 if (!vpd_pg83) { 3538 rcu_read_unlock(); 3539 return -ENXIO; 3540 } 3541 3542 d = vpd_pg83->data + 4; 3543 while (d < vpd_pg83->data + vpd_pg83->len) { 3544 switch (d[1] & 0xf) { 3545 case 0x4: 3546 /* Relative target port */ 3547 rel_port = get_unaligned_be16(&d[6]); 3548 break; 3549 case 0x5: 3550 /* Target port group */ 3551 group_id = get_unaligned_be16(&d[6]); 3552 break; 3553 default: 3554 break; 3555 } 3556 d += d[3] + 4; 3557 } 3558 rcu_read_unlock(); 3559 3560 if (group_id >= 0 && rel_id && rel_port != -1) 3561 *rel_id = rel_port; 3562 3563 return group_id; 3564 } 3565 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3566