1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <linux/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 /** 188 * scsi_failures_reset_retries - reset all failures to zero 189 * @failures: &struct scsi_failures with specific failure modes set 190 */ 191 void scsi_failures_reset_retries(struct scsi_failures *failures) 192 { 193 struct scsi_failure *failure; 194 195 failures->total_retries = 0; 196 197 for (failure = failures->failure_definitions; failure->result; 198 failure++) 199 failure->retries = 0; 200 } 201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries); 202 203 /** 204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry. 205 * @scmd: scsi_cmnd to check. 206 * @failures: scsi_failures struct that lists failures to check for. 207 * 208 * Returns -EAGAIN if the caller should retry else 0. 209 */ 210 static int scsi_check_passthrough(struct scsi_cmnd *scmd, 211 struct scsi_failures *failures) 212 { 213 struct scsi_failure *failure; 214 struct scsi_sense_hdr sshdr; 215 enum sam_status status; 216 217 if (!scmd->result) 218 return 0; 219 220 if (!failures) 221 return 0; 222 223 for (failure = failures->failure_definitions; failure->result; 224 failure++) { 225 if (failure->result == SCMD_FAILURE_RESULT_ANY) 226 goto maybe_retry; 227 228 if (host_byte(scmd->result) && 229 host_byte(scmd->result) == host_byte(failure->result)) 230 goto maybe_retry; 231 232 status = status_byte(scmd->result); 233 if (!status) 234 continue; 235 236 if (failure->result == SCMD_FAILURE_STAT_ANY && 237 !scsi_status_is_good(scmd->result)) 238 goto maybe_retry; 239 240 if (status != status_byte(failure->result)) 241 continue; 242 243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION || 244 failure->sense == SCMD_FAILURE_SENSE_ANY) 245 goto maybe_retry; 246 247 if (!scsi_command_normalize_sense(scmd, &sshdr)) 248 return 0; 249 250 if (failure->sense != sshdr.sense_key) 251 continue; 252 253 if (failure->asc == SCMD_FAILURE_ASC_ANY) 254 goto maybe_retry; 255 256 if (failure->asc != sshdr.asc) 257 continue; 258 259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY || 260 failure->ascq == sshdr.ascq) 261 goto maybe_retry; 262 } 263 264 return 0; 265 266 maybe_retry: 267 if (failure->allowed) { 268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT || 269 ++failure->retries <= failure->allowed) 270 return -EAGAIN; 271 } else { 272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT || 273 ++failures->total_retries <= failures->total_allowed) 274 return -EAGAIN; 275 } 276 277 return 0; 278 } 279 280 /** 281 * scsi_execute_cmd - insert request and wait for the result 282 * @sdev: scsi_device 283 * @cmd: scsi command 284 * @opf: block layer request cmd_flags 285 * @buffer: data buffer 286 * @bufflen: len of buffer 287 * @timeout: request timeout in HZ 288 * @ml_retries: number of times SCSI midlayer will retry request 289 * @args: Optional args. See struct definition for field descriptions 290 * 291 * Returns the scsi_cmnd result field if a command was executed, or a negative 292 * Linux error code if we didn't get that far. 293 */ 294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 295 blk_opf_t opf, void *buffer, unsigned int bufflen, 296 int timeout, int ml_retries, 297 const struct scsi_exec_args *args) 298 { 299 static const struct scsi_exec_args default_args; 300 struct request *req; 301 struct scsi_cmnd *scmd; 302 int ret; 303 304 if (!args) 305 args = &default_args; 306 else if (WARN_ON_ONCE(args->sense && 307 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 308 return -EINVAL; 309 310 retry: 311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 312 if (IS_ERR(req)) 313 return PTR_ERR(req); 314 315 if (bufflen) { 316 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_NOIO); 317 if (ret) 318 goto out; 319 } 320 scmd = blk_mq_rq_to_pdu(req); 321 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 322 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 323 scmd->allowed = ml_retries; 324 scmd->flags |= args->scmd_flags; 325 req->timeout = timeout; 326 req->rq_flags |= RQF_QUIET; 327 328 /* 329 * head injection *required* here otherwise quiesce won't work 330 */ 331 blk_execute_rq(req, true); 332 333 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) { 334 blk_mq_free_request(req); 335 goto retry; 336 } 337 338 /* 339 * Some devices (USB mass-storage in particular) may transfer 340 * garbage data together with a residue indicating that the data 341 * is invalid. Prevent the garbage from being misinterpreted 342 * and prevent security leaks by zeroing out the excess data. 343 */ 344 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 345 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 346 347 if (args->resid) 348 *args->resid = scmd->resid_len; 349 if (args->sense) 350 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 351 if (args->sshdr) 352 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 353 args->sshdr); 354 355 ret = scmd->result; 356 out: 357 blk_mq_free_request(req); 358 359 return ret; 360 } 361 EXPORT_SYMBOL(scsi_execute_cmd); 362 363 /* 364 * Wake up the error handler if necessary. Avoid as follows that the error 365 * handler is not woken up if host in-flight requests number == 366 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 367 * with an RCU read lock in this function to ensure that this function in 368 * its entirety either finishes before scsi_eh_scmd_add() increases the 369 * host_failed counter or that it notices the shost state change made by 370 * scsi_eh_scmd_add(). 371 */ 372 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 373 { 374 unsigned long flags; 375 376 rcu_read_lock(); 377 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 378 if (unlikely(scsi_host_in_recovery(shost))) { 379 unsigned int busy = scsi_host_busy(shost); 380 381 spin_lock_irqsave(shost->host_lock, flags); 382 if (shost->host_failed || shost->host_eh_scheduled) 383 scsi_eh_wakeup(shost, busy); 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 } 386 rcu_read_unlock(); 387 } 388 389 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 390 { 391 struct Scsi_Host *shost = sdev->host; 392 struct scsi_target *starget = scsi_target(sdev); 393 394 scsi_dec_host_busy(shost, cmd); 395 396 if (starget->can_queue > 0) 397 atomic_dec(&starget->target_busy); 398 399 if (sdev->budget_map.map) 400 sbitmap_put(&sdev->budget_map, cmd->budget_token); 401 cmd->budget_token = -1; 402 } 403 404 /* 405 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 406 * interrupts disabled. 407 */ 408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 409 { 410 struct scsi_device *current_sdev = data; 411 412 if (sdev != current_sdev) 413 blk_mq_run_hw_queues(sdev->request_queue, true); 414 } 415 416 /* 417 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 418 * and call blk_run_queue for all the scsi_devices on the target - 419 * including current_sdev first. 420 * 421 * Called with *no* scsi locks held. 422 */ 423 static void scsi_single_lun_run(struct scsi_device *current_sdev) 424 { 425 struct Scsi_Host *shost = current_sdev->host; 426 struct scsi_target *starget = scsi_target(current_sdev); 427 unsigned long flags; 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 starget->starget_sdev_user = NULL; 431 spin_unlock_irqrestore(shost->host_lock, flags); 432 433 /* 434 * Call blk_run_queue for all LUNs on the target, starting with 435 * current_sdev. We race with others (to set starget_sdev_user), 436 * but in most cases, we will be first. Ideally, each LU on the 437 * target would get some limited time or requests on the target. 438 */ 439 blk_mq_run_hw_queues(current_sdev->request_queue, 440 shost->queuecommand_may_block); 441 442 spin_lock_irqsave(shost->host_lock, flags); 443 if (!starget->starget_sdev_user) 444 __starget_for_each_device(starget, current_sdev, 445 scsi_kick_sdev_queue); 446 spin_unlock_irqrestore(shost->host_lock, flags); 447 } 448 449 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 450 { 451 if (scsi_device_busy(sdev) >= sdev->queue_depth) 452 return true; 453 if (atomic_read(&sdev->device_blocked) > 0) 454 return true; 455 return false; 456 } 457 458 static inline bool scsi_target_is_busy(struct scsi_target *starget) 459 { 460 if (starget->can_queue > 0) { 461 if (atomic_read(&starget->target_busy) >= starget->can_queue) 462 return true; 463 if (atomic_read(&starget->target_blocked) > 0) 464 return true; 465 } 466 return false; 467 } 468 469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 470 { 471 if (atomic_read(&shost->host_blocked) > 0) 472 return true; 473 if (shost->host_self_blocked) 474 return true; 475 return false; 476 } 477 478 static void scsi_starved_list_run(struct Scsi_Host *shost) 479 { 480 LIST_HEAD(starved_list); 481 struct scsi_device *sdev; 482 unsigned long flags; 483 484 spin_lock_irqsave(shost->host_lock, flags); 485 list_splice_init(&shost->starved_list, &starved_list); 486 487 while (!list_empty(&starved_list)) { 488 struct request_queue *slq; 489 490 /* 491 * As long as shost is accepting commands and we have 492 * starved queues, call blk_run_queue. scsi_request_fn 493 * drops the queue_lock and can add us back to the 494 * starved_list. 495 * 496 * host_lock protects the starved_list and starved_entry. 497 * scsi_request_fn must get the host_lock before checking 498 * or modifying starved_list or starved_entry. 499 */ 500 if (scsi_host_is_busy(shost)) 501 break; 502 503 sdev = list_entry(starved_list.next, 504 struct scsi_device, starved_entry); 505 list_del_init(&sdev->starved_entry); 506 if (scsi_target_is_busy(scsi_target(sdev))) { 507 list_move_tail(&sdev->starved_entry, 508 &shost->starved_list); 509 continue; 510 } 511 512 /* 513 * Once we drop the host lock, a racing scsi_remove_device() 514 * call may remove the sdev from the starved list and destroy 515 * it and the queue. Mitigate by taking a reference to the 516 * queue and never touching the sdev again after we drop the 517 * host lock. Note: if __scsi_remove_device() invokes 518 * blk_mq_destroy_queue() before the queue is run from this 519 * function then blk_run_queue() will return immediately since 520 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 521 */ 522 slq = sdev->request_queue; 523 if (!blk_get_queue(slq)) 524 continue; 525 spin_unlock_irqrestore(shost->host_lock, flags); 526 527 blk_mq_run_hw_queues(slq, false); 528 blk_put_queue(slq); 529 530 spin_lock_irqsave(shost->host_lock, flags); 531 } 532 /* put any unprocessed entries back */ 533 list_splice(&starved_list, &shost->starved_list); 534 spin_unlock_irqrestore(shost->host_lock, flags); 535 } 536 537 /** 538 * scsi_run_queue - Select a proper request queue to serve next. 539 * @q: last request's queue 540 * 541 * The previous command was completely finished, start a new one if possible. 542 */ 543 static void scsi_run_queue(struct request_queue *q) 544 { 545 struct scsi_device *sdev = q->queuedata; 546 547 if (scsi_target(sdev)->single_lun) 548 scsi_single_lun_run(sdev); 549 if (!list_empty(&sdev->host->starved_list)) 550 scsi_starved_list_run(sdev->host); 551 552 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 553 blk_mq_kick_requeue_list(q); 554 } 555 556 void scsi_requeue_run_queue(struct work_struct *work) 557 { 558 struct scsi_device *sdev; 559 struct request_queue *q; 560 561 sdev = container_of(work, struct scsi_device, requeue_work); 562 q = sdev->request_queue; 563 scsi_run_queue(q); 564 } 565 566 void scsi_run_host_queues(struct Scsi_Host *shost) 567 { 568 struct scsi_device *sdev; 569 570 shost_for_each_device(sdev, shost) 571 scsi_run_queue(sdev->request_queue); 572 } 573 574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 575 { 576 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 577 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 578 579 if (drv->uninit_command) 580 drv->uninit_command(cmd); 581 } 582 } 583 584 void scsi_free_sgtables(struct scsi_cmnd *cmd) 585 { 586 if (cmd->sdb.table.nents) 587 sg_free_table_chained(&cmd->sdb.table, 588 SCSI_INLINE_SG_CNT); 589 if (scsi_prot_sg_count(cmd)) 590 sg_free_table_chained(&cmd->prot_sdb->table, 591 SCSI_INLINE_PROT_SG_CNT); 592 } 593 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 594 595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 596 { 597 scsi_free_sgtables(cmd); 598 scsi_uninit_cmd(cmd); 599 } 600 601 static void scsi_run_queue_async(struct scsi_device *sdev) 602 { 603 if (scsi_host_in_recovery(sdev->host)) 604 return; 605 606 if (scsi_target(sdev)->single_lun || 607 !list_empty(&sdev->host->starved_list)) { 608 kblockd_schedule_work(&sdev->requeue_work); 609 } else { 610 /* 611 * smp_mb() present in sbitmap_queue_clear() or implied in 612 * .end_io is for ordering writing .device_busy in 613 * scsi_device_unbusy() and reading sdev->restarts. 614 */ 615 int old = atomic_read(&sdev->restarts); 616 617 /* 618 * ->restarts has to be kept as non-zero if new budget 619 * contention occurs. 620 * 621 * No need to run queue when either another re-run 622 * queue wins in updating ->restarts or a new budget 623 * contention occurs. 624 */ 625 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 626 blk_mq_run_hw_queues(sdev->request_queue, true); 627 } 628 } 629 630 /* Returns false when no more bytes to process, true if there are more */ 631 static bool scsi_end_request(struct request *req, blk_status_t error, 632 unsigned int bytes) 633 { 634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 635 struct scsi_device *sdev = cmd->device; 636 struct request_queue *q = sdev->request_queue; 637 638 if (blk_update_request(req, error, bytes)) 639 return true; 640 641 if (q->limits.features & BLK_FEAT_ADD_RANDOM) 642 add_disk_randomness(req->q->disk); 643 644 WARN_ON_ONCE(!blk_rq_is_passthrough(req) && 645 !(cmd->flags & SCMD_INITIALIZED)); 646 cmd->flags = 0; 647 648 /* 649 * Calling rcu_barrier() is not necessary here because the 650 * SCSI error handler guarantees that the function called by 651 * call_rcu() has been called before scsi_end_request() is 652 * called. 653 */ 654 destroy_rcu_head(&cmd->rcu); 655 656 /* 657 * In the MQ case the command gets freed by __blk_mq_end_request, 658 * so we have to do all cleanup that depends on it earlier. 659 * 660 * We also can't kick the queues from irq context, so we 661 * will have to defer it to a workqueue. 662 */ 663 scsi_mq_uninit_cmd(cmd); 664 665 /* 666 * queue is still alive, so grab the ref for preventing it 667 * from being cleaned up during running queue. 668 */ 669 percpu_ref_get(&q->q_usage_counter); 670 671 __blk_mq_end_request(req, error); 672 673 scsi_run_queue_async(sdev); 674 675 percpu_ref_put(&q->q_usage_counter); 676 return false; 677 } 678 679 /** 680 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 681 * @result: scsi error code 682 * 683 * Translate a SCSI result code into a blk_status_t value. 684 */ 685 static blk_status_t scsi_result_to_blk_status(int result) 686 { 687 /* 688 * Check the scsi-ml byte first in case we converted a host or status 689 * byte. 690 */ 691 switch (scsi_ml_byte(result)) { 692 case SCSIML_STAT_OK: 693 break; 694 case SCSIML_STAT_RESV_CONFLICT: 695 return BLK_STS_RESV_CONFLICT; 696 case SCSIML_STAT_NOSPC: 697 return BLK_STS_NOSPC; 698 case SCSIML_STAT_MED_ERROR: 699 return BLK_STS_MEDIUM; 700 case SCSIML_STAT_TGT_FAILURE: 701 return BLK_STS_TARGET; 702 case SCSIML_STAT_DL_TIMEOUT: 703 return BLK_STS_DURATION_LIMIT; 704 } 705 706 switch (host_byte(result)) { 707 case DID_OK: 708 if (scsi_status_is_good(result)) 709 return BLK_STS_OK; 710 return BLK_STS_IOERR; 711 case DID_TRANSPORT_FAILFAST: 712 case DID_TRANSPORT_MARGINAL: 713 return BLK_STS_TRANSPORT; 714 default: 715 return BLK_STS_IOERR; 716 } 717 } 718 719 /** 720 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 721 * @rq: request to examine 722 * 723 * Description: 724 * A request could be merge of IOs which require different failure 725 * handling. This function determines the number of bytes which 726 * can be failed from the beginning of the request without 727 * crossing into area which need to be retried further. 728 * 729 * Return: 730 * The number of bytes to fail. 731 */ 732 static unsigned int scsi_rq_err_bytes(const struct request *rq) 733 { 734 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 735 unsigned int bytes = 0; 736 struct bio *bio; 737 738 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 739 return blk_rq_bytes(rq); 740 741 /* 742 * Currently the only 'mixing' which can happen is between 743 * different fastfail types. We can safely fail portions 744 * which have all the failfast bits that the first one has - 745 * the ones which are at least as eager to fail as the first 746 * one. 747 */ 748 for (bio = rq->bio; bio; bio = bio->bi_next) { 749 if ((bio->bi_opf & ff) != ff) 750 break; 751 bytes += bio->bi_iter.bi_size; 752 } 753 754 /* this could lead to infinite loop */ 755 BUG_ON(blk_rq_bytes(rq) && !bytes); 756 return bytes; 757 } 758 759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 760 { 761 struct request *req = scsi_cmd_to_rq(cmd); 762 unsigned long wait_for; 763 764 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 765 return false; 766 767 wait_for = (cmd->allowed + 1) * req->timeout; 768 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 769 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 770 wait_for/HZ); 771 return true; 772 } 773 return false; 774 } 775 776 /* 777 * When ALUA transition state is returned, reprep the cmd to 778 * use the ALUA handler's transition timeout. Delay the reprep 779 * 1 sec to avoid aggressive retries of the target in that 780 * state. 781 */ 782 #define ALUA_TRANSITION_REPREP_DELAY 1000 783 784 /* Helper for scsi_io_completion() when special action required. */ 785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 786 { 787 struct request *req = scsi_cmd_to_rq(cmd); 788 int level = 0; 789 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 790 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 791 struct scsi_sense_hdr sshdr; 792 bool sense_valid; 793 bool sense_current = true; /* false implies "deferred sense" */ 794 blk_status_t blk_stat; 795 796 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 797 if (sense_valid) 798 sense_current = !scsi_sense_is_deferred(&sshdr); 799 800 blk_stat = scsi_result_to_blk_status(result); 801 802 if (host_byte(result) == DID_RESET) { 803 /* Third party bus reset or reset for error recovery 804 * reasons. Just retry the command and see what 805 * happens. 806 */ 807 action = ACTION_RETRY; 808 } else if (sense_valid && sense_current) { 809 switch (sshdr.sense_key) { 810 case UNIT_ATTENTION: 811 if (cmd->device->removable) { 812 /* Detected disc change. Set a bit 813 * and quietly refuse further access. 814 */ 815 cmd->device->changed = 1; 816 action = ACTION_FAIL; 817 } else { 818 /* Must have been a power glitch, or a 819 * bus reset. Could not have been a 820 * media change, so we just retry the 821 * command and see what happens. 822 */ 823 action = ACTION_RETRY; 824 } 825 break; 826 case ILLEGAL_REQUEST: 827 /* If we had an ILLEGAL REQUEST returned, then 828 * we may have performed an unsupported 829 * command. The only thing this should be 830 * would be a ten byte read where only a six 831 * byte read was supported. Also, on a system 832 * where READ CAPACITY failed, we may have 833 * read past the end of the disk. 834 */ 835 if ((cmd->device->use_10_for_rw && 836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 837 (cmd->cmnd[0] == READ_10 || 838 cmd->cmnd[0] == WRITE_10)) { 839 /* This will issue a new 6-byte command. */ 840 cmd->device->use_10_for_rw = 0; 841 action = ACTION_REPREP; 842 } else if (sshdr.asc == 0x10) /* DIX */ { 843 action = ACTION_FAIL; 844 blk_stat = BLK_STS_PROTECTION; 845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 847 action = ACTION_FAIL; 848 blk_stat = BLK_STS_TARGET; 849 } else 850 action = ACTION_FAIL; 851 break; 852 case ABORTED_COMMAND: 853 action = ACTION_FAIL; 854 if (sshdr.asc == 0x10) /* DIF */ 855 blk_stat = BLK_STS_PROTECTION; 856 break; 857 case NOT_READY: 858 /* If the device is in the process of becoming 859 * ready, or has a temporary blockage, retry. 860 */ 861 if (sshdr.asc == 0x04) { 862 switch (sshdr.ascq) { 863 case 0x01: /* becoming ready */ 864 case 0x04: /* format in progress */ 865 case 0x05: /* rebuild in progress */ 866 case 0x06: /* recalculation in progress */ 867 case 0x07: /* operation in progress */ 868 case 0x08: /* Long write in progress */ 869 case 0x09: /* self test in progress */ 870 case 0x11: /* notify (enable spinup) required */ 871 case 0x14: /* space allocation in progress */ 872 case 0x1a: /* start stop unit in progress */ 873 case 0x1b: /* sanitize in progress */ 874 case 0x1d: /* configuration in progress */ 875 action = ACTION_DELAYED_RETRY; 876 break; 877 case 0x0a: /* ALUA state transition */ 878 action = ACTION_DELAYED_REPREP; 879 break; 880 /* 881 * Depopulation might take many hours, 882 * thus it is not worthwhile to retry. 883 */ 884 case 0x24: /* depopulation in progress */ 885 case 0x25: /* depopulation restore in progress */ 886 fallthrough; 887 default: 888 action = ACTION_FAIL; 889 break; 890 } 891 } else 892 action = ACTION_FAIL; 893 break; 894 case VOLUME_OVERFLOW: 895 /* See SSC3rXX or current. */ 896 action = ACTION_FAIL; 897 break; 898 case DATA_PROTECT: 899 action = ACTION_FAIL; 900 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 901 (sshdr.asc == 0x55 && 902 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 903 /* Insufficient zone resources */ 904 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 905 } 906 break; 907 case COMPLETED: 908 fallthrough; 909 default: 910 action = ACTION_FAIL; 911 break; 912 } 913 } else 914 action = ACTION_FAIL; 915 916 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 917 action = ACTION_FAIL; 918 919 switch (action) { 920 case ACTION_FAIL: 921 /* Give up and fail the remainder of the request */ 922 if (!(req->rq_flags & RQF_QUIET)) { 923 static DEFINE_RATELIMIT_STATE(_rs, 924 DEFAULT_RATELIMIT_INTERVAL, 925 DEFAULT_RATELIMIT_BURST); 926 927 if (unlikely(scsi_logging_level)) 928 level = 929 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 930 SCSI_LOG_MLCOMPLETE_BITS); 931 932 /* 933 * if logging is enabled the failure will be printed 934 * in scsi_log_completion(), so avoid duplicate messages 935 */ 936 if (!level && __ratelimit(&_rs)) { 937 scsi_print_result(cmd, NULL, FAILED); 938 if (sense_valid) 939 scsi_print_sense(cmd); 940 scsi_print_command(cmd); 941 } 942 } 943 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 944 return; 945 fallthrough; 946 case ACTION_REPREP: 947 scsi_mq_requeue_cmd(cmd, 0); 948 break; 949 case ACTION_DELAYED_REPREP: 950 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 951 break; 952 case ACTION_RETRY: 953 /* Retry the same command immediately */ 954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 955 break; 956 case ACTION_DELAYED_RETRY: 957 /* Retry the same command after a delay */ 958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 959 break; 960 } 961 } 962 963 /* 964 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 965 * new result that may suppress further error checking. Also modifies 966 * *blk_statp in some cases. 967 */ 968 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 969 blk_status_t *blk_statp) 970 { 971 bool sense_valid; 972 bool sense_current = true; /* false implies "deferred sense" */ 973 struct request *req = scsi_cmd_to_rq(cmd); 974 struct scsi_sense_hdr sshdr; 975 976 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 977 if (sense_valid) 978 sense_current = !scsi_sense_is_deferred(&sshdr); 979 980 if (blk_rq_is_passthrough(req)) { 981 if (sense_valid) { 982 /* 983 * SG_IO wants current and deferred errors 984 */ 985 cmd->sense_len = min(8 + cmd->sense_buffer[7], 986 SCSI_SENSE_BUFFERSIZE); 987 } 988 if (sense_current) 989 *blk_statp = scsi_result_to_blk_status(result); 990 } else if (blk_rq_bytes(req) == 0 && sense_current) { 991 /* 992 * Flush commands do not transfers any data, and thus cannot use 993 * good_bytes != blk_rq_bytes(req) as the signal for an error. 994 * This sets *blk_statp explicitly for the problem case. 995 */ 996 *blk_statp = scsi_result_to_blk_status(result); 997 } 998 /* 999 * Recovered errors need reporting, but they're always treated as 1000 * success, so fiddle the result code here. For passthrough requests 1001 * we already took a copy of the original into sreq->result which 1002 * is what gets returned to the user 1003 */ 1004 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 1005 bool do_print = true; 1006 /* 1007 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 1008 * skip print since caller wants ATA registers. Only occurs 1009 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 1010 */ 1011 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 1012 do_print = false; 1013 else if (req->rq_flags & RQF_QUIET) 1014 do_print = false; 1015 if (do_print) 1016 scsi_print_sense(cmd); 1017 result = 0; 1018 /* for passthrough, *blk_statp may be set */ 1019 *blk_statp = BLK_STS_OK; 1020 } 1021 /* 1022 * Another corner case: the SCSI status byte is non-zero but 'good'. 1023 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1024 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1025 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1026 * intermediate statuses (both obsolete in SAM-4) as good. 1027 */ 1028 if ((result & 0xff) && scsi_status_is_good(result)) { 1029 result = 0; 1030 *blk_statp = BLK_STS_OK; 1031 } 1032 return result; 1033 } 1034 1035 /** 1036 * scsi_io_completion - Completion processing for SCSI commands. 1037 * @cmd: command that is finished. 1038 * @good_bytes: number of processed bytes. 1039 * 1040 * We will finish off the specified number of sectors. If we are done, the 1041 * command block will be released and the queue function will be goosed. If we 1042 * are not done then we have to figure out what to do next: 1043 * 1044 * a) We can call scsi_mq_requeue_cmd(). The request will be 1045 * unprepared and put back on the queue. Then a new command will 1046 * be created for it. This should be used if we made forward 1047 * progress, or if we want to switch from READ(10) to READ(6) for 1048 * example. 1049 * 1050 * b) We can call scsi_io_completion_action(). The request will be 1051 * put back on the queue and retried using the same command as 1052 * before, possibly after a delay. 1053 * 1054 * c) We can call scsi_end_request() with blk_stat other than 1055 * BLK_STS_OK, to fail the remainder of the request. 1056 */ 1057 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1058 { 1059 int result = cmd->result; 1060 struct request *req = scsi_cmd_to_rq(cmd); 1061 blk_status_t blk_stat = BLK_STS_OK; 1062 1063 if (unlikely(result)) /* a nz result may or may not be an error */ 1064 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1065 1066 /* 1067 * Next deal with any sectors which we were able to correctly 1068 * handle. 1069 */ 1070 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1071 "%u sectors total, %d bytes done.\n", 1072 blk_rq_sectors(req), good_bytes)); 1073 1074 /* 1075 * Failed, zero length commands always need to drop down 1076 * to retry code. Fast path should return in this block. 1077 */ 1078 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1079 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 1080 return; /* no bytes remaining */ 1081 } 1082 1083 /* Kill remainder if no retries. */ 1084 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1085 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 1086 WARN_ONCE(true, 1087 "Bytes remaining after failed, no-retry command"); 1088 return; 1089 } 1090 1091 /* 1092 * If there had been no error, but we have leftover bytes in the 1093 * request just queue the command up again. 1094 */ 1095 if (likely(result == 0)) 1096 scsi_mq_requeue_cmd(cmd, 0); 1097 else 1098 scsi_io_completion_action(cmd, result); 1099 } 1100 1101 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1102 struct request *rq) 1103 { 1104 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1105 !op_is_write(req_op(rq)) && 1106 sdev->host->hostt->dma_need_drain(rq); 1107 } 1108 1109 /** 1110 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1111 * @cmd: SCSI command data structure to initialize. 1112 * 1113 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1114 * for @cmd. 1115 * 1116 * Returns: 1117 * * BLK_STS_OK - on success 1118 * * BLK_STS_RESOURCE - if the failure is retryable 1119 * * BLK_STS_IOERR - if the failure is fatal 1120 */ 1121 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1122 { 1123 struct scsi_device *sdev = cmd->device; 1124 struct request *rq = scsi_cmd_to_rq(cmd); 1125 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1126 struct scatterlist *last_sg = NULL; 1127 blk_status_t ret; 1128 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1129 int count; 1130 1131 if (WARN_ON_ONCE(!nr_segs)) 1132 return BLK_STS_IOERR; 1133 1134 /* 1135 * Make sure there is space for the drain. The driver must adjust 1136 * max_hw_segments to be prepared for this. 1137 */ 1138 if (need_drain) 1139 nr_segs++; 1140 1141 /* 1142 * If sg table allocation fails, requeue request later. 1143 */ 1144 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1145 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1146 return BLK_STS_RESOURCE; 1147 1148 /* 1149 * Next, walk the list, and fill in the addresses and sizes of 1150 * each segment. 1151 */ 1152 count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg); 1153 1154 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) { 1155 unsigned int pad_len = 1156 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1157 1158 last_sg->length += pad_len; 1159 cmd->extra_len += pad_len; 1160 } 1161 1162 if (need_drain) { 1163 sg_unmark_end(last_sg); 1164 last_sg = sg_next(last_sg); 1165 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1166 sg_mark_end(last_sg); 1167 1168 cmd->extra_len += sdev->dma_drain_len; 1169 count++; 1170 } 1171 1172 BUG_ON(count > cmd->sdb.table.nents); 1173 cmd->sdb.table.nents = count; 1174 cmd->sdb.length = blk_rq_payload_bytes(rq); 1175 1176 if (blk_integrity_rq(rq)) { 1177 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1178 1179 if (WARN_ON_ONCE(!prot_sdb)) { 1180 /* 1181 * This can happen if someone (e.g. multipath) 1182 * queues a command to a device on an adapter 1183 * that does not support DIX. 1184 */ 1185 ret = BLK_STS_IOERR; 1186 goto out_free_sgtables; 1187 } 1188 1189 if (sg_alloc_table_chained(&prot_sdb->table, 1190 rq->nr_integrity_segments, 1191 prot_sdb->table.sgl, 1192 SCSI_INLINE_PROT_SG_CNT)) { 1193 ret = BLK_STS_RESOURCE; 1194 goto out_free_sgtables; 1195 } 1196 1197 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl); 1198 cmd->prot_sdb = prot_sdb; 1199 cmd->prot_sdb->table.nents = count; 1200 } 1201 1202 return BLK_STS_OK; 1203 out_free_sgtables: 1204 scsi_free_sgtables(cmd); 1205 return ret; 1206 } 1207 EXPORT_SYMBOL(scsi_alloc_sgtables); 1208 1209 /** 1210 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1211 * @rq: Request associated with the SCSI command to be initialized. 1212 * 1213 * This function initializes the members of struct scsi_cmnd that must be 1214 * initialized before request processing starts and that won't be 1215 * reinitialized if a SCSI command is requeued. 1216 */ 1217 static void scsi_initialize_rq(struct request *rq) 1218 { 1219 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1220 1221 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1222 cmd->cmd_len = MAX_COMMAND_SIZE; 1223 cmd->sense_len = 0; 1224 init_rcu_head(&cmd->rcu); 1225 cmd->jiffies_at_alloc = jiffies; 1226 cmd->retries = 0; 1227 } 1228 1229 /** 1230 * scsi_alloc_request - allocate a block request and partially 1231 * initialize its &scsi_cmnd 1232 * @q: the device's request queue 1233 * @opf: the request operation code 1234 * @flags: block layer allocation flags 1235 * 1236 * Return: &struct request pointer on success or %NULL on failure 1237 */ 1238 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1239 blk_mq_req_flags_t flags) 1240 { 1241 struct request *rq; 1242 1243 rq = blk_mq_alloc_request(q, opf, flags); 1244 if (!IS_ERR(rq)) 1245 scsi_initialize_rq(rq); 1246 return rq; 1247 } 1248 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1249 1250 /* 1251 * Only called when the request isn't completed by SCSI, and not freed by 1252 * SCSI 1253 */ 1254 static void scsi_cleanup_rq(struct request *rq) 1255 { 1256 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1257 1258 cmd->flags = 0; 1259 1260 if (rq->rq_flags & RQF_DONTPREP) { 1261 scsi_mq_uninit_cmd(cmd); 1262 rq->rq_flags &= ~RQF_DONTPREP; 1263 } 1264 } 1265 1266 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1267 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1268 { 1269 struct request *rq = scsi_cmd_to_rq(cmd); 1270 1271 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1272 cmd->flags |= SCMD_INITIALIZED; 1273 scsi_initialize_rq(rq); 1274 } 1275 1276 cmd->device = dev; 1277 INIT_LIST_HEAD(&cmd->eh_entry); 1278 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1279 } 1280 1281 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1282 struct request *req) 1283 { 1284 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1285 1286 /* 1287 * Passthrough requests may transfer data, in which case they must 1288 * a bio attached to them. Or they might contain a SCSI command 1289 * that does not transfer data, in which case they may optionally 1290 * submit a request without an attached bio. 1291 */ 1292 if (req->bio) { 1293 blk_status_t ret = scsi_alloc_sgtables(cmd); 1294 if (unlikely(ret != BLK_STS_OK)) 1295 return ret; 1296 } else { 1297 BUG_ON(blk_rq_bytes(req)); 1298 1299 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1300 } 1301 1302 cmd->transfersize = blk_rq_bytes(req); 1303 return BLK_STS_OK; 1304 } 1305 1306 static blk_status_t 1307 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1308 { 1309 switch (sdev->sdev_state) { 1310 case SDEV_CREATED: 1311 return BLK_STS_OK; 1312 case SDEV_OFFLINE: 1313 case SDEV_TRANSPORT_OFFLINE: 1314 /* 1315 * If the device is offline we refuse to process any 1316 * commands. The device must be brought online 1317 * before trying any recovery commands. 1318 */ 1319 if (!sdev->offline_already) { 1320 sdev->offline_already = true; 1321 sdev_printk(KERN_ERR, sdev, 1322 "rejecting I/O to offline device\n"); 1323 } 1324 return BLK_STS_IOERR; 1325 case SDEV_DEL: 1326 /* 1327 * If the device is fully deleted, we refuse to 1328 * process any commands as well. 1329 */ 1330 sdev_printk(KERN_ERR, sdev, 1331 "rejecting I/O to dead device\n"); 1332 return BLK_STS_IOERR; 1333 case SDEV_BLOCK: 1334 case SDEV_CREATED_BLOCK: 1335 return BLK_STS_RESOURCE; 1336 case SDEV_QUIESCE: 1337 /* 1338 * If the device is blocked we only accept power management 1339 * commands. 1340 */ 1341 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1342 return BLK_STS_RESOURCE; 1343 return BLK_STS_OK; 1344 default: 1345 /* 1346 * For any other not fully online state we only allow 1347 * power management commands. 1348 */ 1349 if (req && !(req->rq_flags & RQF_PM)) 1350 return BLK_STS_OFFLINE; 1351 return BLK_STS_OK; 1352 } 1353 } 1354 1355 /* 1356 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1357 * and return the token else return -1. 1358 */ 1359 static inline int scsi_dev_queue_ready(struct request_queue *q, 1360 struct scsi_device *sdev) 1361 { 1362 int token; 1363 1364 if (!sdev->budget_map.map) 1365 return INT_MAX; 1366 1367 token = sbitmap_get(&sdev->budget_map); 1368 if (token < 0) 1369 return -1; 1370 1371 if (!atomic_read(&sdev->device_blocked)) 1372 return token; 1373 1374 /* 1375 * Only unblock if no other commands are pending and 1376 * if device_blocked has decreased to zero 1377 */ 1378 if (scsi_device_busy(sdev) > 1 || 1379 atomic_dec_return(&sdev->device_blocked) > 0) { 1380 sbitmap_put(&sdev->budget_map, token); 1381 return -1; 1382 } 1383 1384 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1385 "unblocking device at zero depth\n")); 1386 1387 return token; 1388 } 1389 1390 /* 1391 * scsi_target_queue_ready: checks if there we can send commands to target 1392 * @sdev: scsi device on starget to check. 1393 */ 1394 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1395 struct scsi_device *sdev) 1396 { 1397 struct scsi_target *starget = scsi_target(sdev); 1398 unsigned int busy; 1399 1400 if (starget->single_lun) { 1401 spin_lock_irq(shost->host_lock); 1402 if (starget->starget_sdev_user && 1403 starget->starget_sdev_user != sdev) { 1404 spin_unlock_irq(shost->host_lock); 1405 return 0; 1406 } 1407 starget->starget_sdev_user = sdev; 1408 spin_unlock_irq(shost->host_lock); 1409 } 1410 1411 if (starget->can_queue <= 0) 1412 return 1; 1413 1414 busy = atomic_inc_return(&starget->target_busy) - 1; 1415 if (atomic_read(&starget->target_blocked) > 0) { 1416 if (busy) 1417 goto starved; 1418 1419 /* 1420 * unblock after target_blocked iterates to zero 1421 */ 1422 if (atomic_dec_return(&starget->target_blocked) > 0) 1423 goto out_dec; 1424 1425 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1426 "unblocking target at zero depth\n")); 1427 } 1428 1429 if (busy >= starget->can_queue) 1430 goto starved; 1431 1432 return 1; 1433 1434 starved: 1435 spin_lock_irq(shost->host_lock); 1436 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1437 spin_unlock_irq(shost->host_lock); 1438 out_dec: 1439 if (starget->can_queue > 0) 1440 atomic_dec(&starget->target_busy); 1441 return 0; 1442 } 1443 1444 /* 1445 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1446 * return 0. We must end up running the queue again whenever 0 is 1447 * returned, else IO can hang. 1448 */ 1449 static inline int scsi_host_queue_ready(struct request_queue *q, 1450 struct Scsi_Host *shost, 1451 struct scsi_device *sdev, 1452 struct scsi_cmnd *cmd) 1453 { 1454 if (atomic_read(&shost->host_blocked) > 0) { 1455 if (scsi_host_busy(shost) > 0) 1456 goto starved; 1457 1458 /* 1459 * unblock after host_blocked iterates to zero 1460 */ 1461 if (atomic_dec_return(&shost->host_blocked) > 0) 1462 goto out_dec; 1463 1464 SCSI_LOG_MLQUEUE(3, 1465 shost_printk(KERN_INFO, shost, 1466 "unblocking host at zero depth\n")); 1467 } 1468 1469 if (shost->host_self_blocked) 1470 goto starved; 1471 1472 /* We're OK to process the command, so we can't be starved */ 1473 if (!list_empty(&sdev->starved_entry)) { 1474 spin_lock_irq(shost->host_lock); 1475 if (!list_empty(&sdev->starved_entry)) 1476 list_del_init(&sdev->starved_entry); 1477 spin_unlock_irq(shost->host_lock); 1478 } 1479 1480 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1481 1482 return 1; 1483 1484 starved: 1485 spin_lock_irq(shost->host_lock); 1486 if (list_empty(&sdev->starved_entry)) 1487 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1488 spin_unlock_irq(shost->host_lock); 1489 out_dec: 1490 scsi_dec_host_busy(shost, cmd); 1491 return 0; 1492 } 1493 1494 /* 1495 * Busy state exporting function for request stacking drivers. 1496 * 1497 * For efficiency, no lock is taken to check the busy state of 1498 * shost/starget/sdev, since the returned value is not guaranteed and 1499 * may be changed after request stacking drivers call the function, 1500 * regardless of taking lock or not. 1501 * 1502 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1503 * needs to return 'not busy'. Otherwise, request stacking drivers 1504 * may hold requests forever. 1505 */ 1506 static bool scsi_mq_lld_busy(struct request_queue *q) 1507 { 1508 struct scsi_device *sdev = q->queuedata; 1509 struct Scsi_Host *shost; 1510 1511 if (blk_queue_dying(q)) 1512 return false; 1513 1514 shost = sdev->host; 1515 1516 /* 1517 * Ignore host/starget busy state. 1518 * Since block layer does not have a concept of fairness across 1519 * multiple queues, congestion of host/starget needs to be handled 1520 * in SCSI layer. 1521 */ 1522 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1523 return true; 1524 1525 return false; 1526 } 1527 1528 /* 1529 * Block layer request completion callback. May be called from interrupt 1530 * context. 1531 */ 1532 static void scsi_complete(struct request *rq) 1533 { 1534 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1535 enum scsi_disposition disposition; 1536 1537 if (blk_mq_is_reserved_rq(rq)) { 1538 /* Only pass-through requests are supported in this code path. */ 1539 WARN_ON_ONCE(!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))); 1540 scsi_mq_uninit_cmd(cmd); 1541 __blk_mq_end_request(rq, scsi_result_to_blk_status(cmd->result)); 1542 return; 1543 } 1544 1545 INIT_LIST_HEAD(&cmd->eh_entry); 1546 1547 atomic_inc(&cmd->device->iodone_cnt); 1548 if (cmd->result) 1549 atomic_inc(&cmd->device->ioerr_cnt); 1550 1551 disposition = scsi_decide_disposition(cmd); 1552 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1553 disposition = SUCCESS; 1554 1555 scsi_log_completion(cmd, disposition); 1556 1557 switch (disposition) { 1558 case SUCCESS: 1559 scsi_finish_command(cmd); 1560 break; 1561 case NEEDS_RETRY: 1562 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1563 break; 1564 case ADD_TO_MLQUEUE: 1565 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1566 break; 1567 default: 1568 scsi_eh_scmd_add(cmd); 1569 break; 1570 } 1571 } 1572 1573 /** 1574 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1575 * @cmd: command block we are dispatching. 1576 * 1577 * Return: nonzero return request was rejected and device's queue needs to be 1578 * plugged. 1579 */ 1580 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1581 { 1582 struct Scsi_Host *host = cmd->device->host; 1583 int rtn = 0; 1584 1585 atomic_inc(&cmd->device->iorequest_cnt); 1586 1587 /* check if the device is still usable */ 1588 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1589 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1590 * returns an immediate error upwards, and signals 1591 * that the device is no longer present */ 1592 cmd->result = DID_NO_CONNECT << 16; 1593 goto done; 1594 } 1595 1596 /* Check to see if the scsi lld made this device blocked. */ 1597 if (unlikely(scsi_device_blocked(cmd->device))) { 1598 /* 1599 * in blocked state, the command is just put back on 1600 * the device queue. The suspend state has already 1601 * blocked the queue so future requests should not 1602 * occur until the device transitions out of the 1603 * suspend state. 1604 */ 1605 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1606 "queuecommand : device blocked\n")); 1607 atomic_dec(&cmd->device->iorequest_cnt); 1608 return SCSI_MLQUEUE_DEVICE_BUSY; 1609 } 1610 1611 /* Store the LUN value in cmnd, if needed. */ 1612 if (cmd->device->lun_in_cdb) 1613 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1614 (cmd->device->lun << 5 & 0xe0); 1615 1616 scsi_log_send(cmd); 1617 1618 /* 1619 * Before we queue this command, check if the command 1620 * length exceeds what the host adapter can handle. 1621 */ 1622 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1623 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1624 "queuecommand : command too long. " 1625 "cdb_size=%d host->max_cmd_len=%d\n", 1626 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1627 cmd->result = (DID_ABORT << 16); 1628 goto done; 1629 } 1630 1631 if (unlikely(host->shost_state == SHOST_DEL)) { 1632 cmd->result = (DID_NO_CONNECT << 16); 1633 goto done; 1634 1635 } 1636 1637 trace_scsi_dispatch_cmd_start(cmd); 1638 rtn = host->hostt->queuecommand(host, cmd); 1639 if (rtn) { 1640 atomic_dec(&cmd->device->iorequest_cnt); 1641 trace_scsi_dispatch_cmd_error(cmd, rtn); 1642 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1643 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1644 rtn = SCSI_MLQUEUE_HOST_BUSY; 1645 1646 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1647 "queuecommand : request rejected\n")); 1648 } 1649 1650 return rtn; 1651 done: 1652 scsi_done(cmd); 1653 return 0; 1654 } 1655 1656 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1657 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1658 { 1659 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1660 sizeof(struct scatterlist); 1661 } 1662 1663 static blk_status_t scsi_prepare_cmd(struct request *req) 1664 { 1665 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1666 struct scsi_device *sdev = req->q->queuedata; 1667 struct Scsi_Host *shost = sdev->host; 1668 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1669 struct scatterlist *sg; 1670 1671 scsi_init_command(sdev, cmd); 1672 1673 cmd->eh_eflags = 0; 1674 cmd->prot_type = 0; 1675 cmd->prot_flags = 0; 1676 cmd->submitter = 0; 1677 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1678 cmd->underflow = 0; 1679 cmd->transfersize = 0; 1680 cmd->host_scribble = NULL; 1681 cmd->result = 0; 1682 cmd->extra_len = 0; 1683 cmd->state = 0; 1684 if (in_flight) 1685 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1686 1687 cmd->prot_op = SCSI_PROT_NORMAL; 1688 if (blk_rq_bytes(req)) 1689 cmd->sc_data_direction = rq_dma_dir(req); 1690 else 1691 cmd->sc_data_direction = DMA_NONE; 1692 1693 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1694 cmd->sdb.table.sgl = sg; 1695 1696 if (scsi_host_get_prot(shost)) { 1697 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1698 1699 cmd->prot_sdb->table.sgl = 1700 (struct scatterlist *)(cmd->prot_sdb + 1); 1701 } 1702 1703 /* 1704 * Special handling for passthrough commands, which don't go to the ULP 1705 * at all: 1706 */ 1707 if (blk_rq_is_passthrough(req)) 1708 return scsi_setup_scsi_cmnd(sdev, req); 1709 1710 if (sdev->handler && sdev->handler->prep_fn) { 1711 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1712 1713 if (ret != BLK_STS_OK) 1714 return ret; 1715 } 1716 1717 /* Usually overridden by the ULP */ 1718 cmd->allowed = 0; 1719 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1720 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1721 } 1722 1723 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1724 { 1725 struct request *req = scsi_cmd_to_rq(cmd); 1726 1727 switch (cmd->submitter) { 1728 case SUBMITTED_BY_BLOCK_LAYER: 1729 break; 1730 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1731 return scsi_eh_done(cmd); 1732 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1733 return; 1734 } 1735 1736 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1737 return; 1738 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1739 return; 1740 trace_scsi_dispatch_cmd_done(cmd); 1741 1742 if (complete_directly) 1743 blk_mq_complete_request_direct(req, scsi_complete); 1744 else 1745 blk_mq_complete_request(req); 1746 } 1747 1748 void scsi_done(struct scsi_cmnd *cmd) 1749 { 1750 scsi_done_internal(cmd, false); 1751 } 1752 EXPORT_SYMBOL(scsi_done); 1753 1754 void scsi_done_direct(struct scsi_cmnd *cmd) 1755 { 1756 scsi_done_internal(cmd, true); 1757 } 1758 EXPORT_SYMBOL(scsi_done_direct); 1759 1760 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1761 { 1762 struct scsi_device *sdev = q->queuedata; 1763 1764 if (sdev->budget_map.map) 1765 sbitmap_put(&sdev->budget_map, budget_token); 1766 } 1767 1768 /* 1769 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1770 * not change behaviour from the previous unplug mechanism, experimentation 1771 * may prove this needs changing. 1772 */ 1773 #define SCSI_QUEUE_DELAY 3 1774 1775 static int scsi_mq_get_budget(struct request_queue *q) 1776 { 1777 struct scsi_device *sdev = q->queuedata; 1778 int token = scsi_dev_queue_ready(q, sdev); 1779 1780 if (token >= 0) 1781 return token; 1782 1783 atomic_inc(&sdev->restarts); 1784 1785 /* 1786 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1787 * .restarts must be incremented before .device_busy is read because the 1788 * code in scsi_run_queue_async() depends on the order of these operations. 1789 */ 1790 smp_mb__after_atomic(); 1791 1792 /* 1793 * If all in-flight requests originated from this LUN are completed 1794 * before reading .device_busy, sdev->device_busy will be observed as 1795 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1796 * soon. Otherwise, completion of one of these requests will observe 1797 * the .restarts flag, and the request queue will be run for handling 1798 * this request, see scsi_end_request(). 1799 */ 1800 if (unlikely(scsi_device_busy(sdev) == 0 && 1801 !scsi_device_blocked(sdev))) 1802 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1803 return -1; 1804 } 1805 1806 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1807 { 1808 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1809 1810 cmd->budget_token = token; 1811 } 1812 1813 static int scsi_mq_get_rq_budget_token(struct request *req) 1814 { 1815 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1816 1817 return cmd->budget_token; 1818 } 1819 1820 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1821 const struct blk_mq_queue_data *bd) 1822 { 1823 struct request *req = bd->rq; 1824 struct request_queue *q = req->q; 1825 struct scsi_device *sdev = q->queuedata; 1826 struct Scsi_Host *shost = sdev->host; 1827 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1828 blk_status_t ret; 1829 int reason; 1830 1831 WARN_ON_ONCE(cmd->budget_token < 0); 1832 1833 /* 1834 * Bypass the SCSI device, SCSI target and SCSI host checks for 1835 * reserved commands. 1836 */ 1837 if (!blk_mq_is_reserved_rq(req)) { 1838 /* 1839 * If the device is not in running state we will reject some or 1840 * all commands. 1841 */ 1842 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1843 ret = scsi_device_state_check(sdev, req); 1844 if (ret != BLK_STS_OK) 1845 goto out_put_budget; 1846 } 1847 1848 ret = BLK_STS_RESOURCE; 1849 if (!scsi_target_queue_ready(shost, sdev)) 1850 goto out_put_budget; 1851 if (unlikely(scsi_host_in_recovery(shost))) { 1852 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1853 ret = BLK_STS_OFFLINE; 1854 goto out_dec_target_busy; 1855 } 1856 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1857 goto out_dec_target_busy; 1858 } 1859 1860 /* 1861 * Only clear the driver-private command data if the LLD does not supply 1862 * a function to initialize that data. 1863 */ 1864 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv) 1865 memset(scsi_cmd_priv(cmd), 0, shost->hostt->cmd_size); 1866 1867 if (!(req->rq_flags & RQF_DONTPREP)) { 1868 ret = scsi_prepare_cmd(req); 1869 if (ret != BLK_STS_OK) 1870 goto out_dec_host_busy; 1871 req->rq_flags |= RQF_DONTPREP; 1872 } else { 1873 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1874 } 1875 1876 cmd->flags &= SCMD_PRESERVED_FLAGS; 1877 if (sdev->simple_tags) 1878 cmd->flags |= SCMD_TAGGED; 1879 if (bd->last) 1880 cmd->flags |= SCMD_LAST; 1881 1882 scsi_set_resid(cmd, 0); 1883 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1884 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1885 1886 blk_mq_start_request(req); 1887 if (blk_mq_is_reserved_rq(req)) { 1888 reason = shost->hostt->queue_reserved_command(shost, cmd); 1889 if (reason) { 1890 ret = BLK_STS_RESOURCE; 1891 goto out_put_budget; 1892 } 1893 return BLK_STS_OK; 1894 } 1895 reason = scsi_dispatch_cmd(cmd); 1896 if (reason) { 1897 scsi_set_blocked(cmd, reason); 1898 ret = BLK_STS_RESOURCE; 1899 goto out_dec_host_busy; 1900 } 1901 1902 return BLK_STS_OK; 1903 1904 out_dec_host_busy: 1905 scsi_dec_host_busy(shost, cmd); 1906 out_dec_target_busy: 1907 if (scsi_target(sdev)->can_queue > 0) 1908 atomic_dec(&scsi_target(sdev)->target_busy); 1909 out_put_budget: 1910 scsi_mq_put_budget(q, cmd->budget_token); 1911 cmd->budget_token = -1; 1912 switch (ret) { 1913 case BLK_STS_OK: 1914 break; 1915 case BLK_STS_RESOURCE: 1916 if (scsi_device_blocked(sdev)) 1917 ret = BLK_STS_DEV_RESOURCE; 1918 break; 1919 case BLK_STS_AGAIN: 1920 cmd->result = DID_BUS_BUSY << 16; 1921 if (req->rq_flags & RQF_DONTPREP) 1922 scsi_mq_uninit_cmd(cmd); 1923 break; 1924 default: 1925 if (unlikely(!scsi_device_online(sdev))) 1926 cmd->result = DID_NO_CONNECT << 16; 1927 else 1928 cmd->result = DID_ERROR << 16; 1929 /* 1930 * Make sure to release all allocated resources when 1931 * we hit an error, as we will never see this command 1932 * again. 1933 */ 1934 if (req->rq_flags & RQF_DONTPREP) 1935 scsi_mq_uninit_cmd(cmd); 1936 scsi_run_queue_async(sdev); 1937 break; 1938 } 1939 return ret; 1940 } 1941 1942 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1943 unsigned int hctx_idx, unsigned int numa_node) 1944 { 1945 struct Scsi_Host *shost = set->driver_data; 1946 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1947 struct scatterlist *sg; 1948 int ret = 0; 1949 1950 cmd->sense_buffer = 1951 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1952 if (!cmd->sense_buffer) 1953 return -ENOMEM; 1954 1955 if (scsi_host_get_prot(shost)) { 1956 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1957 shost->hostt->cmd_size; 1958 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1959 } 1960 1961 if (shost->hostt->init_cmd_priv) { 1962 ret = shost->hostt->init_cmd_priv(shost, cmd); 1963 if (ret < 0) 1964 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1965 } 1966 1967 return ret; 1968 } 1969 1970 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1971 unsigned int hctx_idx) 1972 { 1973 struct Scsi_Host *shost = set->driver_data; 1974 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1975 1976 if (shost->hostt->exit_cmd_priv) 1977 shost->hostt->exit_cmd_priv(shost, cmd); 1978 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1979 } 1980 1981 1982 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1983 { 1984 struct Scsi_Host *shost = hctx->driver_data; 1985 1986 if (shost->hostt->mq_poll) 1987 return shost->hostt->mq_poll(shost, hctx->queue_num); 1988 1989 return 0; 1990 } 1991 1992 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1993 unsigned int hctx_idx) 1994 { 1995 struct Scsi_Host *shost = data; 1996 1997 hctx->driver_data = shost; 1998 return 0; 1999 } 2000 2001 static void scsi_map_queues(struct blk_mq_tag_set *set) 2002 { 2003 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2004 2005 if (shost->hostt->map_queues) 2006 return shost->hostt->map_queues(shost); 2007 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2008 } 2009 2010 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim) 2011 { 2012 struct device *dev = shost->dma_dev; 2013 2014 memset(lim, 0, sizeof(*lim)); 2015 lim->max_segments = 2016 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS); 2017 2018 if (scsi_host_prot_dma(shost)) { 2019 shost->sg_prot_tablesize = 2020 min_not_zero(shost->sg_prot_tablesize, 2021 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2022 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2023 lim->max_integrity_segments = shost->sg_prot_tablesize; 2024 } 2025 2026 lim->max_hw_sectors = shost->max_sectors; 2027 lim->seg_boundary_mask = shost->dma_boundary; 2028 lim->max_segment_size = shost->max_segment_size; 2029 lim->virt_boundary_mask = shost->virt_boundary_mask; 2030 lim->dma_alignment = max_t(unsigned int, 2031 shost->dma_alignment, dma_get_cache_alignment() - 1); 2032 2033 /* 2034 * Propagate the DMA formation properties to the dma-mapping layer as 2035 * a courtesy service to the LLDDs. This needs to check that the buses 2036 * actually support the DMA API first, though. 2037 */ 2038 if (dev->dma_parms) { 2039 dma_set_seg_boundary(dev, shost->dma_boundary); 2040 dma_set_max_seg_size(dev, shost->max_segment_size); 2041 } 2042 } 2043 EXPORT_SYMBOL_GPL(scsi_init_limits); 2044 2045 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 2046 .get_budget = scsi_mq_get_budget, 2047 .put_budget = scsi_mq_put_budget, 2048 .queue_rq = scsi_queue_rq, 2049 .complete = scsi_complete, 2050 .timeout = scsi_timeout, 2051 #ifdef CONFIG_BLK_DEBUG_FS 2052 .show_rq = scsi_show_rq, 2053 #endif 2054 .init_request = scsi_mq_init_request, 2055 .exit_request = scsi_mq_exit_request, 2056 .cleanup_rq = scsi_cleanup_rq, 2057 .busy = scsi_mq_lld_busy, 2058 .map_queues = scsi_map_queues, 2059 .init_hctx = scsi_init_hctx, 2060 .poll = scsi_mq_poll, 2061 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2062 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2063 }; 2064 2065 2066 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 2067 { 2068 struct Scsi_Host *shost = hctx->driver_data; 2069 2070 shost->hostt->commit_rqs(shost, hctx->queue_num); 2071 } 2072 2073 static const struct blk_mq_ops scsi_mq_ops = { 2074 .get_budget = scsi_mq_get_budget, 2075 .put_budget = scsi_mq_put_budget, 2076 .queue_rq = scsi_queue_rq, 2077 .commit_rqs = scsi_commit_rqs, 2078 .complete = scsi_complete, 2079 .timeout = scsi_timeout, 2080 #ifdef CONFIG_BLK_DEBUG_FS 2081 .show_rq = scsi_show_rq, 2082 #endif 2083 .init_request = scsi_mq_init_request, 2084 .exit_request = scsi_mq_exit_request, 2085 .cleanup_rq = scsi_cleanup_rq, 2086 .busy = scsi_mq_lld_busy, 2087 .map_queues = scsi_map_queues, 2088 .init_hctx = scsi_init_hctx, 2089 .poll = scsi_mq_poll, 2090 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2091 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2092 }; 2093 2094 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2095 { 2096 unsigned int cmd_size, sgl_size; 2097 struct blk_mq_tag_set *tag_set = &shost->tag_set; 2098 2099 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 2100 scsi_mq_inline_sgl_size(shost)); 2101 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2102 if (scsi_host_get_prot(shost)) 2103 cmd_size += sizeof(struct scsi_data_buffer) + 2104 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 2105 2106 memset(tag_set, 0, sizeof(*tag_set)); 2107 if (shost->hostt->commit_rqs) 2108 tag_set->ops = &scsi_mq_ops; 2109 else 2110 tag_set->ops = &scsi_mq_ops_no_commit; 2111 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 2112 tag_set->nr_maps = shost->nr_maps ? : 1; 2113 tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds; 2114 tag_set->reserved_tags = shost->nr_reserved_cmds; 2115 tag_set->cmd_size = cmd_size; 2116 tag_set->numa_node = dev_to_node(shost->dma_dev); 2117 if (shost->hostt->tag_alloc_policy_rr) 2118 tag_set->flags |= BLK_MQ_F_TAG_RR; 2119 if (shost->queuecommand_may_block) 2120 tag_set->flags |= BLK_MQ_F_BLOCKING; 2121 tag_set->driver_data = shost; 2122 if (shost->host_tagset) 2123 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 2124 2125 return blk_mq_alloc_tag_set(tag_set); 2126 } 2127 2128 void scsi_mq_free_tags(struct kref *kref) 2129 { 2130 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2131 tagset_refcnt); 2132 2133 blk_mq_free_tag_set(&shost->tag_set); 2134 complete(&shost->tagset_freed); 2135 } 2136 2137 /** 2138 * scsi_get_internal_cmd() - Allocate an internal SCSI command. 2139 * @sdev: SCSI device from which to allocate the command 2140 * @data_direction: Data direction for the allocated command 2141 * @flags: request allocation flags, e.g. BLK_MQ_REQ_RESERVED or 2142 * BLK_MQ_REQ_NOWAIT. 2143 * 2144 * Allocates a SCSI command for internal LLDD use. 2145 */ 2146 struct scsi_cmnd *scsi_get_internal_cmd(struct scsi_device *sdev, 2147 enum dma_data_direction data_direction, 2148 blk_mq_req_flags_t flags) 2149 { 2150 enum req_op op = data_direction == DMA_TO_DEVICE ? REQ_OP_DRV_OUT : 2151 REQ_OP_DRV_IN; 2152 struct scsi_cmnd *scmd; 2153 struct request *rq; 2154 2155 rq = scsi_alloc_request(sdev->request_queue, op, flags); 2156 if (IS_ERR(rq)) 2157 return NULL; 2158 scmd = blk_mq_rq_to_pdu(rq); 2159 scmd->device = sdev; 2160 2161 return scmd; 2162 } 2163 EXPORT_SYMBOL_GPL(scsi_get_internal_cmd); 2164 2165 /** 2166 * scsi_put_internal_cmd() - Free an internal SCSI command. 2167 * @scmd: SCSI command to be freed 2168 */ 2169 void scsi_put_internal_cmd(struct scsi_cmnd *scmd) 2170 { 2171 blk_mq_free_request(blk_mq_rq_from_pdu(scmd)); 2172 } 2173 EXPORT_SYMBOL_GPL(scsi_put_internal_cmd); 2174 2175 /** 2176 * scsi_device_from_queue - return sdev associated with a request_queue 2177 * @q: The request queue to return the sdev from 2178 * 2179 * Return the sdev associated with a request queue or NULL if the 2180 * request_queue does not reference a SCSI device. 2181 */ 2182 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2183 { 2184 struct scsi_device *sdev = NULL; 2185 2186 if (q->mq_ops == &scsi_mq_ops_no_commit || 2187 q->mq_ops == &scsi_mq_ops) 2188 sdev = q->queuedata; 2189 if (!sdev || !get_device(&sdev->sdev_gendev)) 2190 sdev = NULL; 2191 2192 return sdev; 2193 } 2194 /* 2195 * pktcdvd should have been integrated into the SCSI layers, but for historical 2196 * reasons like the old IDE driver it isn't. This export allows it to safely 2197 * probe if a given device is a SCSI one and only attach to that. 2198 */ 2199 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2200 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2201 #endif 2202 2203 /** 2204 * scsi_block_requests - Utility function used by low-level drivers to prevent 2205 * further commands from being queued to the device. 2206 * @shost: host in question 2207 * 2208 * There is no timer nor any other means by which the requests get unblocked 2209 * other than the low-level driver calling scsi_unblock_requests(). 2210 */ 2211 void scsi_block_requests(struct Scsi_Host *shost) 2212 { 2213 shost->host_self_blocked = 1; 2214 } 2215 EXPORT_SYMBOL(scsi_block_requests); 2216 2217 /** 2218 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2219 * further commands to be queued to the device. 2220 * @shost: host in question 2221 * 2222 * There is no timer nor any other means by which the requests get unblocked 2223 * other than the low-level driver calling scsi_unblock_requests(). This is done 2224 * as an API function so that changes to the internals of the scsi mid-layer 2225 * won't require wholesale changes to drivers that use this feature. 2226 */ 2227 void scsi_unblock_requests(struct Scsi_Host *shost) 2228 { 2229 shost->host_self_blocked = 0; 2230 scsi_run_host_queues(shost); 2231 } 2232 EXPORT_SYMBOL(scsi_unblock_requests); 2233 2234 void scsi_exit_queue(void) 2235 { 2236 kmem_cache_destroy(scsi_sense_cache); 2237 } 2238 2239 /** 2240 * scsi_mode_select - issue a mode select 2241 * @sdev: SCSI device to be queried 2242 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2243 * @sp: Save page bit (0 == don't save, 1 == save) 2244 * @buffer: request buffer (may not be smaller than eight bytes) 2245 * @len: length of request buffer. 2246 * @timeout: command timeout 2247 * @retries: number of retries before failing 2248 * @data: returns a structure abstracting the mode header data 2249 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2250 * must be SCSI_SENSE_BUFFERSIZE big. 2251 * 2252 * Returns zero if successful; negative error number or scsi 2253 * status on error 2254 * 2255 */ 2256 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2257 unsigned char *buffer, int len, int timeout, int retries, 2258 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2259 { 2260 unsigned char cmd[10]; 2261 unsigned char *real_buffer; 2262 const struct scsi_exec_args exec_args = { 2263 .sshdr = sshdr, 2264 }; 2265 int ret; 2266 2267 memset(cmd, 0, sizeof(cmd)); 2268 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2269 2270 /* 2271 * Use MODE SELECT(10) if the device asked for it or if the mode page 2272 * and the mode select header cannot fit within the maximumm 255 bytes 2273 * of the MODE SELECT(6) command. 2274 */ 2275 if (sdev->use_10_for_ms || 2276 len + 4 > 255 || 2277 data->block_descriptor_length > 255) { 2278 if (len > 65535 - 8) 2279 return -EINVAL; 2280 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2281 if (!real_buffer) 2282 return -ENOMEM; 2283 memcpy(real_buffer + 8, buffer, len); 2284 len += 8; 2285 real_buffer[0] = 0; 2286 real_buffer[1] = 0; 2287 real_buffer[2] = data->medium_type; 2288 real_buffer[3] = data->device_specific; 2289 real_buffer[4] = data->longlba ? 0x01 : 0; 2290 real_buffer[5] = 0; 2291 put_unaligned_be16(data->block_descriptor_length, 2292 &real_buffer[6]); 2293 2294 cmd[0] = MODE_SELECT_10; 2295 put_unaligned_be16(len, &cmd[7]); 2296 } else { 2297 if (data->longlba) 2298 return -EINVAL; 2299 2300 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2301 if (!real_buffer) 2302 return -ENOMEM; 2303 memcpy(real_buffer + 4, buffer, len); 2304 len += 4; 2305 real_buffer[0] = 0; 2306 real_buffer[1] = data->medium_type; 2307 real_buffer[2] = data->device_specific; 2308 real_buffer[3] = data->block_descriptor_length; 2309 2310 cmd[0] = MODE_SELECT; 2311 cmd[4] = len; 2312 } 2313 2314 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2315 timeout, retries, &exec_args); 2316 kfree(real_buffer); 2317 return ret; 2318 } 2319 EXPORT_SYMBOL_GPL(scsi_mode_select); 2320 2321 /** 2322 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2323 * @sdev: SCSI device to be queried 2324 * @dbd: set to prevent mode sense from returning block descriptors 2325 * @modepage: mode page being requested 2326 * @subpage: sub-page of the mode page being requested 2327 * @buffer: request buffer (may not be smaller than eight bytes) 2328 * @len: length of request buffer. 2329 * @timeout: command timeout 2330 * @retries: number of retries before failing 2331 * @data: returns a structure abstracting the mode header data 2332 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2333 * must be SCSI_SENSE_BUFFERSIZE big. 2334 * 2335 * Returns zero if successful, or a negative error number on failure 2336 */ 2337 int 2338 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2339 unsigned char *buffer, int len, int timeout, int retries, 2340 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2341 { 2342 unsigned char cmd[12]; 2343 int use_10_for_ms; 2344 int header_length; 2345 int result; 2346 struct scsi_sense_hdr my_sshdr; 2347 struct scsi_failure failure_defs[] = { 2348 { 2349 .sense = UNIT_ATTENTION, 2350 .asc = SCMD_FAILURE_ASC_ANY, 2351 .ascq = SCMD_FAILURE_ASCQ_ANY, 2352 .allowed = retries, 2353 .result = SAM_STAT_CHECK_CONDITION, 2354 }, 2355 {} 2356 }; 2357 struct scsi_failures failures = { 2358 .failure_definitions = failure_defs, 2359 }; 2360 const struct scsi_exec_args exec_args = { 2361 /* caller might not be interested in sense, but we need it */ 2362 .sshdr = sshdr ? : &my_sshdr, 2363 .failures = &failures, 2364 }; 2365 2366 memset(data, 0, sizeof(*data)); 2367 memset(&cmd[0], 0, 12); 2368 2369 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2370 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2371 cmd[2] = modepage; 2372 cmd[3] = subpage; 2373 2374 sshdr = exec_args.sshdr; 2375 2376 retry: 2377 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2378 2379 if (use_10_for_ms) { 2380 if (len < 8 || len > 65535) 2381 return -EINVAL; 2382 2383 cmd[0] = MODE_SENSE_10; 2384 put_unaligned_be16(len, &cmd[7]); 2385 header_length = 8; 2386 } else { 2387 if (len < 4) 2388 return -EINVAL; 2389 2390 cmd[0] = MODE_SENSE; 2391 cmd[4] = len; 2392 header_length = 4; 2393 } 2394 2395 memset(buffer, 0, len); 2396 2397 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2398 timeout, retries, &exec_args); 2399 if (result < 0) 2400 return result; 2401 2402 /* This code looks awful: what it's doing is making sure an 2403 * ILLEGAL REQUEST sense return identifies the actual command 2404 * byte as the problem. MODE_SENSE commands can return 2405 * ILLEGAL REQUEST if the code page isn't supported */ 2406 2407 if (!scsi_status_is_good(result)) { 2408 if (scsi_sense_valid(sshdr)) { 2409 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2410 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2411 /* 2412 * Invalid command operation code: retry using 2413 * MODE SENSE(6) if this was a MODE SENSE(10) 2414 * request, except if the request mode page is 2415 * too large for MODE SENSE single byte 2416 * allocation length field. 2417 */ 2418 if (use_10_for_ms) { 2419 if (len > 255) 2420 return -EIO; 2421 sdev->use_10_for_ms = 0; 2422 goto retry; 2423 } 2424 } 2425 } 2426 return -EIO; 2427 } 2428 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2429 (modepage == 6 || modepage == 8))) { 2430 /* Initio breakage? */ 2431 header_length = 0; 2432 data->length = 13; 2433 data->medium_type = 0; 2434 data->device_specific = 0; 2435 data->longlba = 0; 2436 data->block_descriptor_length = 0; 2437 } else if (use_10_for_ms) { 2438 data->length = get_unaligned_be16(&buffer[0]) + 2; 2439 data->medium_type = buffer[2]; 2440 data->device_specific = buffer[3]; 2441 data->longlba = buffer[4] & 0x01; 2442 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2443 } else { 2444 data->length = buffer[0] + 1; 2445 data->medium_type = buffer[1]; 2446 data->device_specific = buffer[2]; 2447 data->block_descriptor_length = buffer[3]; 2448 } 2449 data->header_length = header_length; 2450 2451 return 0; 2452 } 2453 EXPORT_SYMBOL(scsi_mode_sense); 2454 2455 /** 2456 * scsi_test_unit_ready - test if unit is ready 2457 * @sdev: scsi device to change the state of. 2458 * @timeout: command timeout 2459 * @retries: number of retries before failing 2460 * @sshdr: outpout pointer for decoded sense information. 2461 * 2462 * Returns zero if unsuccessful or an error if TUR failed. For 2463 * removable media, UNIT_ATTENTION sets ->changed flag. 2464 **/ 2465 int 2466 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2467 struct scsi_sense_hdr *sshdr) 2468 { 2469 char cmd[] = { 2470 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2471 }; 2472 const struct scsi_exec_args exec_args = { 2473 .sshdr = sshdr, 2474 }; 2475 int result; 2476 2477 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2478 do { 2479 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2480 timeout, 1, &exec_args); 2481 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2482 sshdr->sense_key == UNIT_ATTENTION) 2483 sdev->changed = 1; 2484 } while (result > 0 && scsi_sense_valid(sshdr) && 2485 sshdr->sense_key == UNIT_ATTENTION && --retries); 2486 2487 return result; 2488 } 2489 EXPORT_SYMBOL(scsi_test_unit_ready); 2490 2491 /** 2492 * scsi_device_set_state - Take the given device through the device state model. 2493 * @sdev: scsi device to change the state of. 2494 * @state: state to change to. 2495 * 2496 * Returns zero if successful or an error if the requested 2497 * transition is illegal. 2498 */ 2499 int 2500 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2501 { 2502 enum scsi_device_state oldstate = sdev->sdev_state; 2503 2504 if (state == oldstate) 2505 return 0; 2506 2507 switch (state) { 2508 case SDEV_CREATED: 2509 switch (oldstate) { 2510 case SDEV_CREATED_BLOCK: 2511 break; 2512 default: 2513 goto illegal; 2514 } 2515 break; 2516 2517 case SDEV_RUNNING: 2518 switch (oldstate) { 2519 case SDEV_CREATED: 2520 case SDEV_OFFLINE: 2521 case SDEV_TRANSPORT_OFFLINE: 2522 case SDEV_QUIESCE: 2523 case SDEV_BLOCK: 2524 break; 2525 default: 2526 goto illegal; 2527 } 2528 break; 2529 2530 case SDEV_QUIESCE: 2531 switch (oldstate) { 2532 case SDEV_RUNNING: 2533 case SDEV_OFFLINE: 2534 case SDEV_TRANSPORT_OFFLINE: 2535 break; 2536 default: 2537 goto illegal; 2538 } 2539 break; 2540 2541 case SDEV_OFFLINE: 2542 case SDEV_TRANSPORT_OFFLINE: 2543 switch (oldstate) { 2544 case SDEV_CREATED: 2545 case SDEV_RUNNING: 2546 case SDEV_QUIESCE: 2547 case SDEV_BLOCK: 2548 break; 2549 default: 2550 goto illegal; 2551 } 2552 break; 2553 2554 case SDEV_BLOCK: 2555 switch (oldstate) { 2556 case SDEV_RUNNING: 2557 case SDEV_CREATED_BLOCK: 2558 case SDEV_QUIESCE: 2559 case SDEV_OFFLINE: 2560 break; 2561 default: 2562 goto illegal; 2563 } 2564 break; 2565 2566 case SDEV_CREATED_BLOCK: 2567 switch (oldstate) { 2568 case SDEV_CREATED: 2569 break; 2570 default: 2571 goto illegal; 2572 } 2573 break; 2574 2575 case SDEV_CANCEL: 2576 switch (oldstate) { 2577 case SDEV_CREATED: 2578 case SDEV_RUNNING: 2579 case SDEV_QUIESCE: 2580 case SDEV_OFFLINE: 2581 case SDEV_TRANSPORT_OFFLINE: 2582 break; 2583 default: 2584 goto illegal; 2585 } 2586 break; 2587 2588 case SDEV_DEL: 2589 switch (oldstate) { 2590 case SDEV_CREATED: 2591 case SDEV_RUNNING: 2592 case SDEV_OFFLINE: 2593 case SDEV_TRANSPORT_OFFLINE: 2594 case SDEV_CANCEL: 2595 case SDEV_BLOCK: 2596 case SDEV_CREATED_BLOCK: 2597 break; 2598 default: 2599 goto illegal; 2600 } 2601 break; 2602 2603 } 2604 sdev->offline_already = false; 2605 sdev->sdev_state = state; 2606 return 0; 2607 2608 illegal: 2609 SCSI_LOG_ERROR_RECOVERY(1, 2610 sdev_printk(KERN_ERR, sdev, 2611 "Illegal state transition %s->%s", 2612 scsi_device_state_name(oldstate), 2613 scsi_device_state_name(state)) 2614 ); 2615 return -EINVAL; 2616 } 2617 EXPORT_SYMBOL(scsi_device_set_state); 2618 2619 /** 2620 * scsi_evt_emit - emit a single SCSI device uevent 2621 * @sdev: associated SCSI device 2622 * @evt: event to emit 2623 * 2624 * Send a single uevent (scsi_event) to the associated scsi_device. 2625 */ 2626 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2627 { 2628 int idx = 0; 2629 char *envp[3]; 2630 2631 switch (evt->evt_type) { 2632 case SDEV_EVT_MEDIA_CHANGE: 2633 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2634 break; 2635 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2636 scsi_rescan_device(sdev); 2637 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2638 break; 2639 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2640 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2641 break; 2642 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2643 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2644 break; 2645 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2646 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2647 break; 2648 case SDEV_EVT_LUN_CHANGE_REPORTED: 2649 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2650 break; 2651 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2652 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2653 break; 2654 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2655 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2656 break; 2657 default: 2658 /* do nothing */ 2659 break; 2660 } 2661 2662 envp[idx++] = NULL; 2663 2664 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2665 } 2666 2667 /** 2668 * scsi_evt_thread - send a uevent for each scsi event 2669 * @work: work struct for scsi_device 2670 * 2671 * Dispatch queued events to their associated scsi_device kobjects 2672 * as uevents. 2673 */ 2674 void scsi_evt_thread(struct work_struct *work) 2675 { 2676 struct scsi_device *sdev; 2677 enum scsi_device_event evt_type; 2678 LIST_HEAD(event_list); 2679 2680 sdev = container_of(work, struct scsi_device, event_work); 2681 2682 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2683 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2684 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2685 2686 while (1) { 2687 struct scsi_event *evt; 2688 struct list_head *this, *tmp; 2689 unsigned long flags; 2690 2691 spin_lock_irqsave(&sdev->list_lock, flags); 2692 list_splice_init(&sdev->event_list, &event_list); 2693 spin_unlock_irqrestore(&sdev->list_lock, flags); 2694 2695 if (list_empty(&event_list)) 2696 break; 2697 2698 list_for_each_safe(this, tmp, &event_list) { 2699 evt = list_entry(this, struct scsi_event, node); 2700 list_del(&evt->node); 2701 scsi_evt_emit(sdev, evt); 2702 kfree(evt); 2703 } 2704 } 2705 } 2706 2707 /** 2708 * sdev_evt_send - send asserted event to uevent thread 2709 * @sdev: scsi_device event occurred on 2710 * @evt: event to send 2711 * 2712 * Assert scsi device event asynchronously. 2713 */ 2714 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2715 { 2716 unsigned long flags; 2717 2718 #if 0 2719 /* FIXME: currently this check eliminates all media change events 2720 * for polled devices. Need to update to discriminate between AN 2721 * and polled events */ 2722 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2723 kfree(evt); 2724 return; 2725 } 2726 #endif 2727 2728 spin_lock_irqsave(&sdev->list_lock, flags); 2729 list_add_tail(&evt->node, &sdev->event_list); 2730 schedule_work(&sdev->event_work); 2731 spin_unlock_irqrestore(&sdev->list_lock, flags); 2732 } 2733 EXPORT_SYMBOL_GPL(sdev_evt_send); 2734 2735 /** 2736 * sdev_evt_alloc - allocate a new scsi event 2737 * @evt_type: type of event to allocate 2738 * @gfpflags: GFP flags for allocation 2739 * 2740 * Allocates and returns a new scsi_event. 2741 */ 2742 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2743 gfp_t gfpflags) 2744 { 2745 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2746 if (!evt) 2747 return NULL; 2748 2749 evt->evt_type = evt_type; 2750 INIT_LIST_HEAD(&evt->node); 2751 2752 /* evt_type-specific initialization, if any */ 2753 switch (evt_type) { 2754 case SDEV_EVT_MEDIA_CHANGE: 2755 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2756 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2757 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2758 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2759 case SDEV_EVT_LUN_CHANGE_REPORTED: 2760 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2761 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2762 default: 2763 /* do nothing */ 2764 break; 2765 } 2766 2767 return evt; 2768 } 2769 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2770 2771 /** 2772 * sdev_evt_send_simple - send asserted event to uevent thread 2773 * @sdev: scsi_device event occurred on 2774 * @evt_type: type of event to send 2775 * @gfpflags: GFP flags for allocation 2776 * 2777 * Assert scsi device event asynchronously, given an event type. 2778 */ 2779 void sdev_evt_send_simple(struct scsi_device *sdev, 2780 enum scsi_device_event evt_type, gfp_t gfpflags) 2781 { 2782 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2783 if (!evt) { 2784 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2785 evt_type); 2786 return; 2787 } 2788 2789 sdev_evt_send(sdev, evt); 2790 } 2791 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2792 2793 /** 2794 * scsi_device_quiesce - Block all commands except power management. 2795 * @sdev: scsi device to quiesce. 2796 * 2797 * This works by trying to transition to the SDEV_QUIESCE state 2798 * (which must be a legal transition). When the device is in this 2799 * state, only power management requests will be accepted, all others will 2800 * be deferred. 2801 * 2802 * Must be called with user context, may sleep. 2803 * 2804 * Returns zero if successful or an error if not. 2805 */ 2806 int 2807 scsi_device_quiesce(struct scsi_device *sdev) 2808 { 2809 struct request_queue *q = sdev->request_queue; 2810 unsigned int memflags; 2811 int err; 2812 2813 /* 2814 * It is allowed to call scsi_device_quiesce() multiple times from 2815 * the same context but concurrent scsi_device_quiesce() calls are 2816 * not allowed. 2817 */ 2818 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2819 2820 if (sdev->quiesced_by == current) 2821 return 0; 2822 2823 blk_set_pm_only(q); 2824 2825 memflags = blk_mq_freeze_queue(q); 2826 /* 2827 * Ensure that the effect of blk_set_pm_only() will be visible 2828 * for percpu_ref_tryget() callers that occur after the queue 2829 * unfreeze even if the queue was already frozen before this function 2830 * was called. See also https://lwn.net/Articles/573497/. 2831 */ 2832 synchronize_rcu(); 2833 blk_mq_unfreeze_queue(q, memflags); 2834 2835 mutex_lock(&sdev->state_mutex); 2836 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2837 if (err == 0) 2838 sdev->quiesced_by = current; 2839 else 2840 blk_clear_pm_only(q); 2841 mutex_unlock(&sdev->state_mutex); 2842 2843 return err; 2844 } 2845 EXPORT_SYMBOL(scsi_device_quiesce); 2846 2847 /** 2848 * scsi_device_resume - Restart user issued commands to a quiesced device. 2849 * @sdev: scsi device to resume. 2850 * 2851 * Moves the device from quiesced back to running and restarts the 2852 * queues. 2853 * 2854 * Must be called with user context, may sleep. 2855 */ 2856 void scsi_device_resume(struct scsi_device *sdev) 2857 { 2858 /* check if the device state was mutated prior to resume, and if 2859 * so assume the state is being managed elsewhere (for example 2860 * device deleted during suspend) 2861 */ 2862 mutex_lock(&sdev->state_mutex); 2863 if (sdev->sdev_state == SDEV_QUIESCE) 2864 scsi_device_set_state(sdev, SDEV_RUNNING); 2865 if (sdev->quiesced_by) { 2866 sdev->quiesced_by = NULL; 2867 blk_clear_pm_only(sdev->request_queue); 2868 } 2869 mutex_unlock(&sdev->state_mutex); 2870 } 2871 EXPORT_SYMBOL(scsi_device_resume); 2872 2873 static void 2874 device_quiesce_fn(struct scsi_device *sdev, void *data) 2875 { 2876 scsi_device_quiesce(sdev); 2877 } 2878 2879 void 2880 scsi_target_quiesce(struct scsi_target *starget) 2881 { 2882 starget_for_each_device(starget, NULL, device_quiesce_fn); 2883 } 2884 EXPORT_SYMBOL(scsi_target_quiesce); 2885 2886 static void 2887 device_resume_fn(struct scsi_device *sdev, void *data) 2888 { 2889 scsi_device_resume(sdev); 2890 } 2891 2892 void 2893 scsi_target_resume(struct scsi_target *starget) 2894 { 2895 starget_for_each_device(starget, NULL, device_resume_fn); 2896 } 2897 EXPORT_SYMBOL(scsi_target_resume); 2898 2899 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2900 { 2901 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2902 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2903 2904 return 0; 2905 } 2906 2907 void scsi_start_queue(struct scsi_device *sdev) 2908 { 2909 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2910 blk_mq_unquiesce_queue(sdev->request_queue); 2911 } 2912 2913 static void scsi_stop_queue(struct scsi_device *sdev) 2914 { 2915 /* 2916 * The atomic variable of ->queue_stopped covers that 2917 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2918 * 2919 * The caller needs to wait until quiesce is done. 2920 */ 2921 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2922 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2923 } 2924 2925 /** 2926 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2927 * @sdev: device to block 2928 * 2929 * Pause SCSI command processing on the specified device. Does not sleep. 2930 * 2931 * Returns zero if successful or a negative error code upon failure. 2932 * 2933 * Notes: 2934 * This routine transitions the device to the SDEV_BLOCK state (which must be 2935 * a legal transition). When the device is in this state, command processing 2936 * is paused until the device leaves the SDEV_BLOCK state. See also 2937 * scsi_internal_device_unblock_nowait(). 2938 */ 2939 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2940 { 2941 int ret = __scsi_internal_device_block_nowait(sdev); 2942 2943 /* 2944 * The device has transitioned to SDEV_BLOCK. Stop the 2945 * block layer from calling the midlayer with this device's 2946 * request queue. 2947 */ 2948 if (!ret) 2949 scsi_stop_queue(sdev); 2950 return ret; 2951 } 2952 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2953 2954 /** 2955 * scsi_device_block - try to transition to the SDEV_BLOCK state 2956 * @sdev: device to block 2957 * @data: dummy argument, ignored 2958 * 2959 * Pause SCSI command processing on the specified device. Callers must wait 2960 * until all ongoing scsi_queue_rq() calls have finished after this function 2961 * returns. 2962 * 2963 * Note: 2964 * This routine transitions the device to the SDEV_BLOCK state (which must be 2965 * a legal transition). When the device is in this state, command processing 2966 * is paused until the device leaves the SDEV_BLOCK state. See also 2967 * scsi_internal_device_unblock(). 2968 */ 2969 static void scsi_device_block(struct scsi_device *sdev, void *data) 2970 { 2971 int err; 2972 enum scsi_device_state state; 2973 2974 mutex_lock(&sdev->state_mutex); 2975 err = __scsi_internal_device_block_nowait(sdev); 2976 state = sdev->sdev_state; 2977 if (err == 0) 2978 /* 2979 * scsi_stop_queue() must be called with the state_mutex 2980 * held. Otherwise a simultaneous scsi_start_queue() call 2981 * might unquiesce the queue before we quiesce it. 2982 */ 2983 scsi_stop_queue(sdev); 2984 2985 mutex_unlock(&sdev->state_mutex); 2986 2987 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2988 __func__, dev_name(&sdev->sdev_gendev), state); 2989 } 2990 2991 /** 2992 * scsi_internal_device_unblock_nowait - resume a device after a block request 2993 * @sdev: device to resume 2994 * @new_state: state to set the device to after unblocking 2995 * 2996 * Restart the device queue for a previously suspended SCSI device. Does not 2997 * sleep. 2998 * 2999 * Returns zero if successful or a negative error code upon failure. 3000 * 3001 * Notes: 3002 * This routine transitions the device to the SDEV_RUNNING state or to one of 3003 * the offline states (which must be a legal transition) allowing the midlayer 3004 * to goose the queue for this device. 3005 */ 3006 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3007 enum scsi_device_state new_state) 3008 { 3009 switch (new_state) { 3010 case SDEV_RUNNING: 3011 case SDEV_TRANSPORT_OFFLINE: 3012 break; 3013 default: 3014 return -EINVAL; 3015 } 3016 3017 /* 3018 * Try to transition the scsi device to SDEV_RUNNING or one of the 3019 * offlined states and goose the device queue if successful. 3020 */ 3021 switch (sdev->sdev_state) { 3022 case SDEV_BLOCK: 3023 case SDEV_TRANSPORT_OFFLINE: 3024 sdev->sdev_state = new_state; 3025 break; 3026 case SDEV_CREATED_BLOCK: 3027 if (new_state == SDEV_TRANSPORT_OFFLINE || 3028 new_state == SDEV_OFFLINE) 3029 sdev->sdev_state = new_state; 3030 else 3031 sdev->sdev_state = SDEV_CREATED; 3032 break; 3033 case SDEV_CANCEL: 3034 case SDEV_OFFLINE: 3035 break; 3036 default: 3037 return -EINVAL; 3038 } 3039 scsi_start_queue(sdev); 3040 3041 return 0; 3042 } 3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3044 3045 /** 3046 * scsi_internal_device_unblock - resume a device after a block request 3047 * @sdev: device to resume 3048 * @new_state: state to set the device to after unblocking 3049 * 3050 * Restart the device queue for a previously suspended SCSI device. May sleep. 3051 * 3052 * Returns zero if successful or a negative error code upon failure. 3053 * 3054 * Notes: 3055 * This routine transitions the device to the SDEV_RUNNING state or to one of 3056 * the offline states (which must be a legal transition) allowing the midlayer 3057 * to goose the queue for this device. 3058 */ 3059 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3060 enum scsi_device_state new_state) 3061 { 3062 int ret; 3063 3064 mutex_lock(&sdev->state_mutex); 3065 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3066 mutex_unlock(&sdev->state_mutex); 3067 3068 return ret; 3069 } 3070 3071 static int 3072 target_block(struct device *dev, void *data) 3073 { 3074 if (scsi_is_target_device(dev)) 3075 starget_for_each_device(to_scsi_target(dev), NULL, 3076 scsi_device_block); 3077 return 0; 3078 } 3079 3080 /** 3081 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 3082 * @dev: a parent device of one or more scsi_target devices 3083 * @shost: the Scsi_Host to which this device belongs 3084 * 3085 * Iterate over all children of @dev, which should be scsi_target devices, 3086 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 3087 * ongoing scsi_queue_rq() calls to finish. May sleep. 3088 * 3089 * Note: 3090 * @dev must not itself be a scsi_target device. 3091 */ 3092 void 3093 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 3094 { 3095 WARN_ON_ONCE(scsi_is_target_device(dev)); 3096 device_for_each_child(dev, NULL, target_block); 3097 blk_mq_wait_quiesce_done(&shost->tag_set); 3098 } 3099 EXPORT_SYMBOL_GPL(scsi_block_targets); 3100 3101 static void 3102 device_unblock(struct scsi_device *sdev, void *data) 3103 { 3104 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3105 } 3106 3107 static int 3108 target_unblock(struct device *dev, void *data) 3109 { 3110 if (scsi_is_target_device(dev)) 3111 starget_for_each_device(to_scsi_target(dev), data, 3112 device_unblock); 3113 return 0; 3114 } 3115 3116 void 3117 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3118 { 3119 if (scsi_is_target_device(dev)) 3120 starget_for_each_device(to_scsi_target(dev), &new_state, 3121 device_unblock); 3122 else 3123 device_for_each_child(dev, &new_state, target_unblock); 3124 } 3125 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3126 3127 /** 3128 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 3129 * @shost: device to block 3130 * 3131 * Pause SCSI command processing for all logical units associated with the SCSI 3132 * host and wait until pending scsi_queue_rq() calls have finished. 3133 * 3134 * Returns zero if successful or a negative error code upon failure. 3135 */ 3136 int 3137 scsi_host_block(struct Scsi_Host *shost) 3138 { 3139 struct scsi_device *sdev; 3140 int ret; 3141 3142 /* 3143 * Call scsi_internal_device_block_nowait so we can avoid 3144 * calling synchronize_rcu() for each LUN. 3145 */ 3146 shost_for_each_device(sdev, shost) { 3147 mutex_lock(&sdev->state_mutex); 3148 ret = scsi_internal_device_block_nowait(sdev); 3149 mutex_unlock(&sdev->state_mutex); 3150 if (ret) { 3151 scsi_device_put(sdev); 3152 return ret; 3153 } 3154 } 3155 3156 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 3157 blk_mq_wait_quiesce_done(&shost->tag_set); 3158 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(scsi_host_block); 3162 3163 int 3164 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 3165 { 3166 struct scsi_device *sdev; 3167 int ret = 0; 3168 3169 shost_for_each_device(sdev, shost) { 3170 ret = scsi_internal_device_unblock(sdev, new_state); 3171 if (ret) { 3172 scsi_device_put(sdev); 3173 break; 3174 } 3175 } 3176 return ret; 3177 } 3178 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3179 3180 /** 3181 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3182 * @sgl: scatter-gather list 3183 * @sg_count: number of segments in sg 3184 * @offset: offset in bytes into sg, on return offset into the mapped area 3185 * @len: bytes to map, on return number of bytes mapped 3186 * 3187 * Returns virtual address of the start of the mapped page 3188 */ 3189 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3190 size_t *offset, size_t *len) 3191 { 3192 int i; 3193 size_t sg_len = 0, len_complete = 0; 3194 struct scatterlist *sg; 3195 struct page *page; 3196 3197 WARN_ON(!irqs_disabled()); 3198 3199 for_each_sg(sgl, sg, sg_count, i) { 3200 len_complete = sg_len; /* Complete sg-entries */ 3201 sg_len += sg->length; 3202 if (sg_len > *offset) 3203 break; 3204 } 3205 3206 if (unlikely(i == sg_count)) { 3207 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3208 "elements %d\n", 3209 __func__, sg_len, *offset, sg_count); 3210 WARN_ON(1); 3211 return NULL; 3212 } 3213 3214 /* Offset starting from the beginning of first page in this sg-entry */ 3215 *offset = *offset - len_complete + sg->offset; 3216 3217 page = sg_page(sg) + (*offset >> PAGE_SHIFT); 3218 *offset &= ~PAGE_MASK; 3219 3220 /* Bytes in this sg-entry from *offset to the end of the page */ 3221 sg_len = PAGE_SIZE - *offset; 3222 if (*len > sg_len) 3223 *len = sg_len; 3224 3225 return kmap_atomic(page); 3226 } 3227 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3228 3229 /** 3230 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3231 * @virt: virtual address to be unmapped 3232 */ 3233 void scsi_kunmap_atomic_sg(void *virt) 3234 { 3235 kunmap_atomic(virt); 3236 } 3237 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3238 3239 void sdev_disable_disk_events(struct scsi_device *sdev) 3240 { 3241 atomic_inc(&sdev->disk_events_disable_depth); 3242 } 3243 EXPORT_SYMBOL(sdev_disable_disk_events); 3244 3245 void sdev_enable_disk_events(struct scsi_device *sdev) 3246 { 3247 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3248 return; 3249 atomic_dec(&sdev->disk_events_disable_depth); 3250 } 3251 EXPORT_SYMBOL(sdev_enable_disk_events); 3252 3253 static unsigned char designator_prio(const unsigned char *d) 3254 { 3255 if (d[1] & 0x30) 3256 /* not associated with LUN */ 3257 return 0; 3258 3259 if (d[3] == 0) 3260 /* invalid length */ 3261 return 0; 3262 3263 /* 3264 * Order of preference for lun descriptor: 3265 * - SCSI name string 3266 * - NAA IEEE Registered Extended 3267 * - EUI-64 based 16-byte 3268 * - EUI-64 based 12-byte 3269 * - NAA IEEE Registered 3270 * - NAA IEEE Extended 3271 * - EUI-64 based 8-byte 3272 * - SCSI name string (truncated) 3273 * - T10 Vendor ID 3274 * as longer descriptors reduce the likelyhood 3275 * of identification clashes. 3276 */ 3277 3278 switch (d[1] & 0xf) { 3279 case 8: 3280 /* SCSI name string, variable-length UTF-8 */ 3281 return 9; 3282 case 3: 3283 switch (d[4] >> 4) { 3284 case 6: 3285 /* NAA registered extended */ 3286 return 8; 3287 case 5: 3288 /* NAA registered */ 3289 return 5; 3290 case 4: 3291 /* NAA extended */ 3292 return 4; 3293 case 3: 3294 /* NAA locally assigned */ 3295 return 1; 3296 default: 3297 break; 3298 } 3299 break; 3300 case 2: 3301 switch (d[3]) { 3302 case 16: 3303 /* EUI64-based, 16 byte */ 3304 return 7; 3305 case 12: 3306 /* EUI64-based, 12 byte */ 3307 return 6; 3308 case 8: 3309 /* EUI64-based, 8 byte */ 3310 return 3; 3311 default: 3312 break; 3313 } 3314 break; 3315 case 1: 3316 /* T10 vendor ID */ 3317 return 1; 3318 default: 3319 break; 3320 } 3321 3322 return 0; 3323 } 3324 3325 /** 3326 * scsi_vpd_lun_id - return a unique device identification 3327 * @sdev: SCSI device 3328 * @id: buffer for the identification 3329 * @id_len: length of the buffer 3330 * 3331 * Copies a unique device identification into @id based 3332 * on the information in the VPD page 0x83 of the device. 3333 * The string will be formatted as a SCSI name string. 3334 * 3335 * Returns the length of the identification or error on failure. 3336 * If the identifier is longer than the supplied buffer the actual 3337 * identifier length is returned and the buffer is not zero-padded. 3338 */ 3339 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3340 { 3341 u8 cur_id_prio = 0; 3342 u8 cur_id_size = 0; 3343 const unsigned char *d, *cur_id_str; 3344 const struct scsi_vpd *vpd_pg83; 3345 int id_size = -EINVAL; 3346 3347 rcu_read_lock(); 3348 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3349 if (!vpd_pg83) { 3350 rcu_read_unlock(); 3351 return -ENXIO; 3352 } 3353 3354 /* The id string must be at least 20 bytes + terminating NULL byte */ 3355 if (id_len < 21) { 3356 rcu_read_unlock(); 3357 return -EINVAL; 3358 } 3359 3360 memset(id, 0, id_len); 3361 for (d = vpd_pg83->data + 4; 3362 d < vpd_pg83->data + vpd_pg83->len; 3363 d += d[3] + 4) { 3364 u8 prio = designator_prio(d); 3365 3366 if (prio == 0 || cur_id_prio > prio) 3367 continue; 3368 3369 switch (d[1] & 0xf) { 3370 case 0x1: 3371 /* T10 Vendor ID */ 3372 if (cur_id_size > d[3]) 3373 break; 3374 cur_id_prio = prio; 3375 cur_id_size = d[3]; 3376 if (cur_id_size + 4 > id_len) 3377 cur_id_size = id_len - 4; 3378 cur_id_str = d + 4; 3379 id_size = snprintf(id, id_len, "t10.%*pE", 3380 cur_id_size, cur_id_str); 3381 break; 3382 case 0x2: 3383 /* EUI-64 */ 3384 cur_id_prio = prio; 3385 cur_id_size = d[3]; 3386 cur_id_str = d + 4; 3387 switch (cur_id_size) { 3388 case 8: 3389 id_size = snprintf(id, id_len, 3390 "eui.%8phN", 3391 cur_id_str); 3392 break; 3393 case 12: 3394 id_size = snprintf(id, id_len, 3395 "eui.%12phN", 3396 cur_id_str); 3397 break; 3398 case 16: 3399 id_size = snprintf(id, id_len, 3400 "eui.%16phN", 3401 cur_id_str); 3402 break; 3403 default: 3404 break; 3405 } 3406 break; 3407 case 0x3: 3408 /* NAA */ 3409 cur_id_prio = prio; 3410 cur_id_size = d[3]; 3411 cur_id_str = d + 4; 3412 switch (cur_id_size) { 3413 case 8: 3414 id_size = snprintf(id, id_len, 3415 "naa.%8phN", 3416 cur_id_str); 3417 break; 3418 case 16: 3419 id_size = snprintf(id, id_len, 3420 "naa.%16phN", 3421 cur_id_str); 3422 break; 3423 default: 3424 break; 3425 } 3426 break; 3427 case 0x8: 3428 /* SCSI name string */ 3429 if (cur_id_size > d[3]) 3430 break; 3431 /* Prefer others for truncated descriptor */ 3432 if (d[3] > id_len) { 3433 prio = 2; 3434 if (cur_id_prio > prio) 3435 break; 3436 } 3437 cur_id_prio = prio; 3438 cur_id_size = id_size = d[3]; 3439 cur_id_str = d + 4; 3440 if (cur_id_size >= id_len) 3441 cur_id_size = id_len - 1; 3442 memcpy(id, cur_id_str, cur_id_size); 3443 break; 3444 default: 3445 break; 3446 } 3447 } 3448 rcu_read_unlock(); 3449 3450 return id_size; 3451 } 3452 EXPORT_SYMBOL(scsi_vpd_lun_id); 3453 3454 /** 3455 * scsi_vpd_tpg_id - return a target port group identifier 3456 * @sdev: SCSI device 3457 * @rel_id: pointer to return relative target port in if not %NULL 3458 * 3459 * Returns the Target Port Group identifier from the information 3460 * from VPD page 0x83 of the device. 3461 * Optionally sets @rel_id to the relative target port on success. 3462 * 3463 * Return: the identifier or error on failure. 3464 */ 3465 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3466 { 3467 const unsigned char *d; 3468 const struct scsi_vpd *vpd_pg83; 3469 int group_id = -EAGAIN, rel_port = -1; 3470 3471 rcu_read_lock(); 3472 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3473 if (!vpd_pg83) { 3474 rcu_read_unlock(); 3475 return -ENXIO; 3476 } 3477 3478 d = vpd_pg83->data + 4; 3479 while (d < vpd_pg83->data + vpd_pg83->len) { 3480 switch (d[1] & 0xf) { 3481 case 0x4: 3482 /* Relative target port */ 3483 rel_port = get_unaligned_be16(&d[6]); 3484 break; 3485 case 0x5: 3486 /* Target port group */ 3487 group_id = get_unaligned_be16(&d[6]); 3488 break; 3489 default: 3490 break; 3491 } 3492 d += d[3] + 4; 3493 } 3494 rcu_read_unlock(); 3495 3496 if (group_id >= 0 && rel_id && rel_port != -1) 3497 *rel_id = rel_port; 3498 3499 return group_id; 3500 } 3501 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3502 3503 /** 3504 * scsi_build_sense - build sense data for a command 3505 * @scmd: scsi command for which the sense should be formatted 3506 * @desc: Sense format (non-zero == descriptor format, 3507 * 0 == fixed format) 3508 * @key: Sense key 3509 * @asc: Additional sense code 3510 * @ascq: Additional sense code qualifier 3511 * 3512 **/ 3513 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3514 { 3515 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3516 scmd->result = SAM_STAT_CHECK_CONDITION; 3517 } 3518 EXPORT_SYMBOL_GPL(scsi_build_sense); 3519 3520 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST 3521 #include "scsi_lib_test.c" 3522 #endif 3523