1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static inline struct kmem_cache * 48 scsi_select_sense_cache(struct Scsi_Host *shost) 49 { 50 return shost->unchecked_isa_dma ? 51 scsi_sense_isadma_cache : scsi_sense_cache; 52 } 53 54 static void scsi_free_sense_buffer(struct Scsi_Host *shost, 55 unsigned char *sense_buffer) 56 { 57 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer); 58 } 59 60 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost, 61 gfp_t gfp_mask, int numa_node) 62 { 63 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask, 64 numa_node); 65 } 66 67 int scsi_init_sense_cache(struct Scsi_Host *shost) 68 { 69 struct kmem_cache *cache; 70 int ret = 0; 71 72 cache = scsi_select_sense_cache(shost); 73 if (cache) 74 return 0; 75 76 mutex_lock(&scsi_sense_cache_mutex); 77 if (shost->unchecked_isa_dma) { 78 scsi_sense_isadma_cache = 79 kmem_cache_create("scsi_sense_cache(DMA)", 80 SCSI_SENSE_BUFFERSIZE, 0, 81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 82 if (!scsi_sense_isadma_cache) 83 ret = -ENOMEM; 84 } else { 85 scsi_sense_cache = 86 kmem_cache_create("scsi_sense_cache", 87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 88 if (!scsi_sense_cache) 89 ret = -ENOMEM; 90 } 91 92 mutex_unlock(&scsi_sense_cache_mutex); 93 return ret; 94 } 95 96 /* 97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 98 * not change behaviour from the previous unplug mechanism, experimentation 99 * may prove this needs changing. 100 */ 101 #define SCSI_QUEUE_DELAY 3 102 103 static void 104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 105 { 106 struct Scsi_Host *host = cmd->device->host; 107 struct scsi_device *device = cmd->device; 108 struct scsi_target *starget = scsi_target(device); 109 110 /* 111 * Set the appropriate busy bit for the device/host. 112 * 113 * If the host/device isn't busy, assume that something actually 114 * completed, and that we should be able to queue a command now. 115 * 116 * Note that the prior mid-layer assumption that any host could 117 * always queue at least one command is now broken. The mid-layer 118 * will implement a user specifiable stall (see 119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 120 * if a command is requeued with no other commands outstanding 121 * either for the device or for the host. 122 */ 123 switch (reason) { 124 case SCSI_MLQUEUE_HOST_BUSY: 125 atomic_set(&host->host_blocked, host->max_host_blocked); 126 break; 127 case SCSI_MLQUEUE_DEVICE_BUSY: 128 case SCSI_MLQUEUE_EH_RETRY: 129 atomic_set(&device->device_blocked, 130 device->max_device_blocked); 131 break; 132 case SCSI_MLQUEUE_TARGET_BUSY: 133 atomic_set(&starget->target_blocked, 134 starget->max_target_blocked); 135 break; 136 } 137 } 138 139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 140 { 141 struct scsi_device *sdev = cmd->device; 142 143 blk_mq_requeue_request(cmd->request, true); 144 put_device(&sdev->sdev_gendev); 145 } 146 147 /** 148 * __scsi_queue_insert - private queue insertion 149 * @cmd: The SCSI command being requeued 150 * @reason: The reason for the requeue 151 * @unbusy: Whether the queue should be unbusied 152 * 153 * This is a private queue insertion. The public interface 154 * scsi_queue_insert() always assumes the queue should be unbusied 155 * because it's always called before the completion. This function is 156 * for a requeue after completion, which should only occur in this 157 * file. 158 */ 159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 160 { 161 struct scsi_device *device = cmd->device; 162 struct request_queue *q = device->request_queue; 163 unsigned long flags; 164 165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 166 "Inserting command %p into mlqueue\n", cmd)); 167 168 scsi_set_blocked(cmd, reason); 169 170 /* 171 * Decrement the counters, since these commands are no longer 172 * active on the host/device. 173 */ 174 if (unbusy) 175 scsi_device_unbusy(device); 176 177 /* 178 * Requeue this command. It will go before all other commands 179 * that are already in the queue. Schedule requeue work under 180 * lock such that the kblockd_schedule_work() call happens 181 * before blk_cleanup_queue() finishes. 182 */ 183 cmd->result = 0; 184 if (q->mq_ops) { 185 scsi_mq_requeue_cmd(cmd); 186 return; 187 } 188 spin_lock_irqsave(q->queue_lock, flags); 189 blk_requeue_request(q, cmd->request); 190 kblockd_schedule_work(&device->requeue_work); 191 spin_unlock_irqrestore(q->queue_lock, flags); 192 } 193 194 /* 195 * Function: scsi_queue_insert() 196 * 197 * Purpose: Insert a command in the midlevel queue. 198 * 199 * Arguments: cmd - command that we are adding to queue. 200 * reason - why we are inserting command to queue. 201 * 202 * Lock status: Assumed that lock is not held upon entry. 203 * 204 * Returns: Nothing. 205 * 206 * Notes: We do this for one of two cases. Either the host is busy 207 * and it cannot accept any more commands for the time being, 208 * or the device returned QUEUE_FULL and can accept no more 209 * commands. 210 * Notes: This could be called either from an interrupt context or a 211 * normal process context. 212 */ 213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 214 { 215 __scsi_queue_insert(cmd, reason, 1); 216 } 217 218 219 /** 220 * scsi_execute - insert request and wait for the result 221 * @sdev: scsi device 222 * @cmd: scsi command 223 * @data_direction: data direction 224 * @buffer: data buffer 225 * @bufflen: len of buffer 226 * @sense: optional sense buffer 227 * @sshdr: optional decoded sense header 228 * @timeout: request timeout in seconds 229 * @retries: number of times to retry request 230 * @flags: flags for ->cmd_flags 231 * @rq_flags: flags for ->rq_flags 232 * @resid: optional residual length 233 * 234 * Returns the scsi_cmnd result field if a command was executed, or a negative 235 * Linux error code if we didn't get that far. 236 */ 237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 238 int data_direction, void *buffer, unsigned bufflen, 239 unsigned char *sense, struct scsi_sense_hdr *sshdr, 240 int timeout, int retries, u64 flags, req_flags_t rq_flags, 241 int *resid) 242 { 243 struct request *req; 244 struct scsi_request *rq; 245 int ret = DRIVER_ERROR << 24; 246 247 req = blk_get_request(sdev->request_queue, 248 data_direction == DMA_TO_DEVICE ? 249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 250 if (IS_ERR(req)) 251 return ret; 252 rq = scsi_req(req); 253 254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 255 buffer, bufflen, __GFP_RECLAIM)) 256 goto out; 257 258 rq->cmd_len = COMMAND_SIZE(cmd[0]); 259 memcpy(rq->cmd, cmd, rq->cmd_len); 260 rq->retries = retries; 261 req->timeout = timeout; 262 req->cmd_flags |= flags; 263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 264 265 /* 266 * head injection *required* here otherwise quiesce won't work 267 */ 268 blk_execute_rq(req->q, NULL, req, 1); 269 270 /* 271 * Some devices (USB mass-storage in particular) may transfer 272 * garbage data together with a residue indicating that the data 273 * is invalid. Prevent the garbage from being misinterpreted 274 * and prevent security leaks by zeroing out the excess data. 275 */ 276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 278 279 if (resid) 280 *resid = rq->resid_len; 281 if (sense && rq->sense_len) 282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 283 if (sshdr) 284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 285 ret = rq->result; 286 out: 287 blk_put_request(req); 288 289 return ret; 290 } 291 EXPORT_SYMBOL(scsi_execute); 292 293 /* 294 * Function: scsi_init_cmd_errh() 295 * 296 * Purpose: Initialize cmd fields related to error handling. 297 * 298 * Arguments: cmd - command that is ready to be queued. 299 * 300 * Notes: This function has the job of initializing a number of 301 * fields related to error handling. Typically this will 302 * be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 cmd->serial_number = 0; 307 scsi_set_resid(cmd, 0); 308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 309 if (cmd->cmd_len == 0) 310 cmd->cmd_len = scsi_command_size(cmd->cmnd); 311 } 312 313 void scsi_device_unbusy(struct scsi_device *sdev) 314 { 315 struct Scsi_Host *shost = sdev->host; 316 struct scsi_target *starget = scsi_target(sdev); 317 unsigned long flags; 318 319 atomic_dec(&shost->host_busy); 320 if (starget->can_queue > 0) 321 atomic_dec(&starget->target_busy); 322 323 if (unlikely(scsi_host_in_recovery(shost) && 324 (shost->host_failed || shost->host_eh_scheduled))) { 325 spin_lock_irqsave(shost->host_lock, flags); 326 scsi_eh_wakeup(shost); 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 } 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 if (q->mq_ops) 336 blk_mq_start_hw_queues(q); 337 else 338 blk_run_queue(q); 339 } 340 341 /* 342 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 343 * and call blk_run_queue for all the scsi_devices on the target - 344 * including current_sdev first. 345 * 346 * Called with *no* scsi locks held. 347 */ 348 static void scsi_single_lun_run(struct scsi_device *current_sdev) 349 { 350 struct Scsi_Host *shost = current_sdev->host; 351 struct scsi_device *sdev, *tmp; 352 struct scsi_target *starget = scsi_target(current_sdev); 353 unsigned long flags; 354 355 spin_lock_irqsave(shost->host_lock, flags); 356 starget->starget_sdev_user = NULL; 357 spin_unlock_irqrestore(shost->host_lock, flags); 358 359 /* 360 * Call blk_run_queue for all LUNs on the target, starting with 361 * current_sdev. We race with others (to set starget_sdev_user), 362 * but in most cases, we will be first. Ideally, each LU on the 363 * target would get some limited time or requests on the target. 364 */ 365 scsi_kick_queue(current_sdev->request_queue); 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 if (starget->starget_sdev_user) 369 goto out; 370 list_for_each_entry_safe(sdev, tmp, &starget->devices, 371 same_target_siblings) { 372 if (sdev == current_sdev) 373 continue; 374 if (scsi_device_get(sdev)) 375 continue; 376 377 spin_unlock_irqrestore(shost->host_lock, flags); 378 scsi_kick_queue(sdev->request_queue); 379 spin_lock_irqsave(shost->host_lock, flags); 380 381 scsi_device_put(sdev); 382 } 383 out: 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 } 386 387 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 388 { 389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 390 return true; 391 if (atomic_read(&sdev->device_blocked) > 0) 392 return true; 393 return false; 394 } 395 396 static inline bool scsi_target_is_busy(struct scsi_target *starget) 397 { 398 if (starget->can_queue > 0) { 399 if (atomic_read(&starget->target_busy) >= starget->can_queue) 400 return true; 401 if (atomic_read(&starget->target_blocked) > 0) 402 return true; 403 } 404 return false; 405 } 406 407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 408 { 409 if (shost->can_queue > 0 && 410 atomic_read(&shost->host_busy) >= shost->can_queue) 411 return true; 412 if (atomic_read(&shost->host_blocked) > 0) 413 return true; 414 if (shost->host_self_blocked) 415 return true; 416 return false; 417 } 418 419 static void scsi_starved_list_run(struct Scsi_Host *shost) 420 { 421 LIST_HEAD(starved_list); 422 struct scsi_device *sdev; 423 unsigned long flags; 424 425 spin_lock_irqsave(shost->host_lock, flags); 426 list_splice_init(&shost->starved_list, &starved_list); 427 428 while (!list_empty(&starved_list)) { 429 struct request_queue *slq; 430 431 /* 432 * As long as shost is accepting commands and we have 433 * starved queues, call blk_run_queue. scsi_request_fn 434 * drops the queue_lock and can add us back to the 435 * starved_list. 436 * 437 * host_lock protects the starved_list and starved_entry. 438 * scsi_request_fn must get the host_lock before checking 439 * or modifying starved_list or starved_entry. 440 */ 441 if (scsi_host_is_busy(shost)) 442 break; 443 444 sdev = list_entry(starved_list.next, 445 struct scsi_device, starved_entry); 446 list_del_init(&sdev->starved_entry); 447 if (scsi_target_is_busy(scsi_target(sdev))) { 448 list_move_tail(&sdev->starved_entry, 449 &shost->starved_list); 450 continue; 451 } 452 453 /* 454 * Once we drop the host lock, a racing scsi_remove_device() 455 * call may remove the sdev from the starved list and destroy 456 * it and the queue. Mitigate by taking a reference to the 457 * queue and never touching the sdev again after we drop the 458 * host lock. Note: if __scsi_remove_device() invokes 459 * blk_cleanup_queue() before the queue is run from this 460 * function then blk_run_queue() will return immediately since 461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 462 */ 463 slq = sdev->request_queue; 464 if (!blk_get_queue(slq)) 465 continue; 466 spin_unlock_irqrestore(shost->host_lock, flags); 467 468 scsi_kick_queue(slq); 469 blk_put_queue(slq); 470 471 spin_lock_irqsave(shost->host_lock, flags); 472 } 473 /* put any unprocessed entries back */ 474 list_splice(&starved_list, &shost->starved_list); 475 spin_unlock_irqrestore(shost->host_lock, flags); 476 } 477 478 /* 479 * Function: scsi_run_queue() 480 * 481 * Purpose: Select a proper request queue to serve next 482 * 483 * Arguments: q - last request's queue 484 * 485 * Returns: Nothing 486 * 487 * Notes: The previous command was completely finished, start 488 * a new one if possible. 489 */ 490 static void scsi_run_queue(struct request_queue *q) 491 { 492 struct scsi_device *sdev = q->queuedata; 493 494 if (scsi_target(sdev)->single_lun) 495 scsi_single_lun_run(sdev); 496 if (!list_empty(&sdev->host->starved_list)) 497 scsi_starved_list_run(sdev->host); 498 499 if (q->mq_ops) 500 blk_mq_run_hw_queues(q, false); 501 else 502 blk_run_queue(q); 503 } 504 505 void scsi_requeue_run_queue(struct work_struct *work) 506 { 507 struct scsi_device *sdev; 508 struct request_queue *q; 509 510 sdev = container_of(work, struct scsi_device, requeue_work); 511 q = sdev->request_queue; 512 scsi_run_queue(q); 513 } 514 515 /* 516 * Function: scsi_requeue_command() 517 * 518 * Purpose: Handle post-processing of completed commands. 519 * 520 * Arguments: q - queue to operate on 521 * cmd - command that may need to be requeued. 522 * 523 * Returns: Nothing 524 * 525 * Notes: After command completion, there may be blocks left 526 * over which weren't finished by the previous command 527 * this can be for a number of reasons - the main one is 528 * I/O errors in the middle of the request, in which case 529 * we need to request the blocks that come after the bad 530 * sector. 531 * Notes: Upon return, cmd is a stale pointer. 532 */ 533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 534 { 535 struct scsi_device *sdev = cmd->device; 536 struct request *req = cmd->request; 537 unsigned long flags; 538 539 spin_lock_irqsave(q->queue_lock, flags); 540 blk_unprep_request(req); 541 req->special = NULL; 542 scsi_put_command(cmd); 543 blk_requeue_request(q, req); 544 spin_unlock_irqrestore(q->queue_lock, flags); 545 546 scsi_run_queue(q); 547 548 put_device(&sdev->sdev_gendev); 549 } 550 551 void scsi_run_host_queues(struct Scsi_Host *shost) 552 { 553 struct scsi_device *sdev; 554 555 shost_for_each_device(sdev, shost) 556 scsi_run_queue(sdev->request_queue); 557 } 558 559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 560 { 561 if (!blk_rq_is_passthrough(cmd->request)) { 562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 563 564 if (drv->uninit_command) 565 drv->uninit_command(cmd); 566 } 567 } 568 569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 570 { 571 struct scsi_data_buffer *sdb; 572 573 if (cmd->sdb.table.nents) 574 sg_free_table_chained(&cmd->sdb.table, true); 575 if (cmd->request->next_rq) { 576 sdb = cmd->request->next_rq->special; 577 if (sdb) 578 sg_free_table_chained(&sdb->table, true); 579 } 580 if (scsi_prot_sg_count(cmd)) 581 sg_free_table_chained(&cmd->prot_sdb->table, true); 582 } 583 584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 585 { 586 struct scsi_device *sdev = cmd->device; 587 struct Scsi_Host *shost = sdev->host; 588 unsigned long flags; 589 590 scsi_mq_free_sgtables(cmd); 591 scsi_uninit_cmd(cmd); 592 593 if (shost->use_cmd_list) { 594 BUG_ON(list_empty(&cmd->list)); 595 spin_lock_irqsave(&sdev->list_lock, flags); 596 list_del_init(&cmd->list); 597 spin_unlock_irqrestore(&sdev->list_lock, flags); 598 } 599 } 600 601 /* 602 * Function: scsi_release_buffers() 603 * 604 * Purpose: Free resources allocate for a scsi_command. 605 * 606 * Arguments: cmd - command that we are bailing. 607 * 608 * Lock status: Assumed that no lock is held upon entry. 609 * 610 * Returns: Nothing 611 * 612 * Notes: In the event that an upper level driver rejects a 613 * command, we must release resources allocated during 614 * the __init_io() function. Primarily this would involve 615 * the scatter-gather table. 616 */ 617 static void scsi_release_buffers(struct scsi_cmnd *cmd) 618 { 619 if (cmd->sdb.table.nents) 620 sg_free_table_chained(&cmd->sdb.table, false); 621 622 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 623 624 if (scsi_prot_sg_count(cmd)) 625 sg_free_table_chained(&cmd->prot_sdb->table, false); 626 } 627 628 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 629 { 630 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 631 632 sg_free_table_chained(&bidi_sdb->table, false); 633 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 634 cmd->request->next_rq->special = NULL; 635 } 636 637 static bool scsi_end_request(struct request *req, blk_status_t error, 638 unsigned int bytes, unsigned int bidi_bytes) 639 { 640 struct scsi_cmnd *cmd = req->special; 641 struct scsi_device *sdev = cmd->device; 642 struct request_queue *q = sdev->request_queue; 643 644 if (blk_update_request(req, error, bytes)) 645 return true; 646 647 /* Bidi request must be completed as a whole */ 648 if (unlikely(bidi_bytes) && 649 blk_update_request(req->next_rq, error, bidi_bytes)) 650 return true; 651 652 if (blk_queue_add_random(q)) 653 add_disk_randomness(req->rq_disk); 654 655 if (req->mq_ctx) { 656 /* 657 * In the MQ case the command gets freed by __blk_mq_end_request, 658 * so we have to do all cleanup that depends on it earlier. 659 * 660 * We also can't kick the queues from irq context, so we 661 * will have to defer it to a workqueue. 662 */ 663 scsi_mq_uninit_cmd(cmd); 664 665 __blk_mq_end_request(req, error); 666 667 if (scsi_target(sdev)->single_lun || 668 !list_empty(&sdev->host->starved_list)) 669 kblockd_schedule_work(&sdev->requeue_work); 670 else 671 blk_mq_run_hw_queues(q, true); 672 } else { 673 unsigned long flags; 674 675 if (bidi_bytes) 676 scsi_release_bidi_buffers(cmd); 677 scsi_release_buffers(cmd); 678 scsi_put_command(cmd); 679 680 spin_lock_irqsave(q->queue_lock, flags); 681 blk_finish_request(req, error); 682 spin_unlock_irqrestore(q->queue_lock, flags); 683 684 scsi_run_queue(q); 685 } 686 687 put_device(&sdev->sdev_gendev); 688 return false; 689 } 690 691 /** 692 * __scsi_error_from_host_byte - translate SCSI error code into errno 693 * @cmd: SCSI command (unused) 694 * @result: scsi error code 695 * 696 * Translate SCSI error code into block errors. 697 */ 698 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 699 int result) 700 { 701 switch (host_byte(result)) { 702 case DID_TRANSPORT_FAILFAST: 703 return BLK_STS_TRANSPORT; 704 case DID_TARGET_FAILURE: 705 set_host_byte(cmd, DID_OK); 706 return BLK_STS_TARGET; 707 case DID_NEXUS_FAILURE: 708 return BLK_STS_NEXUS; 709 case DID_ALLOC_FAILURE: 710 set_host_byte(cmd, DID_OK); 711 return BLK_STS_NOSPC; 712 case DID_MEDIUM_ERROR: 713 set_host_byte(cmd, DID_OK); 714 return BLK_STS_MEDIUM; 715 default: 716 return BLK_STS_IOERR; 717 } 718 } 719 720 /* 721 * Function: scsi_io_completion() 722 * 723 * Purpose: Completion processing for block device I/O requests. 724 * 725 * Arguments: cmd - command that is finished. 726 * 727 * Lock status: Assumed that no lock is held upon entry. 728 * 729 * Returns: Nothing 730 * 731 * Notes: We will finish off the specified number of sectors. If we 732 * are done, the command block will be released and the queue 733 * function will be goosed. If we are not done then we have to 734 * figure out what to do next: 735 * 736 * a) We can call scsi_requeue_command(). The request 737 * will be unprepared and put back on the queue. Then 738 * a new command will be created for it. This should 739 * be used if we made forward progress, or if we want 740 * to switch from READ(10) to READ(6) for example. 741 * 742 * b) We can call __scsi_queue_insert(). The request will 743 * be put back on the queue and retried using the same 744 * command as before, possibly after a delay. 745 * 746 * c) We can call scsi_end_request() with -EIO to fail 747 * the remainder of the request. 748 */ 749 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 750 { 751 int result = cmd->result; 752 struct request_queue *q = cmd->device->request_queue; 753 struct request *req = cmd->request; 754 blk_status_t error = BLK_STS_OK; 755 struct scsi_sense_hdr sshdr; 756 bool sense_valid = false; 757 int sense_deferred = 0, level = 0; 758 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 759 ACTION_DELAYED_RETRY} action; 760 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 761 762 if (result) { 763 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 764 if (sense_valid) 765 sense_deferred = scsi_sense_is_deferred(&sshdr); 766 } 767 768 if (blk_rq_is_passthrough(req)) { 769 if (result) { 770 if (sense_valid) { 771 /* 772 * SG_IO wants current and deferred errors 773 */ 774 scsi_req(req)->sense_len = 775 min(8 + cmd->sense_buffer[7], 776 SCSI_SENSE_BUFFERSIZE); 777 } 778 if (!sense_deferred) 779 error = __scsi_error_from_host_byte(cmd, result); 780 } 781 /* 782 * __scsi_error_from_host_byte may have reset the host_byte 783 */ 784 scsi_req(req)->result = cmd->result; 785 scsi_req(req)->resid_len = scsi_get_resid(cmd); 786 787 if (scsi_bidi_cmnd(cmd)) { 788 /* 789 * Bidi commands Must be complete as a whole, 790 * both sides at once. 791 */ 792 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 793 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 794 blk_rq_bytes(req->next_rq))) 795 BUG(); 796 return; 797 } 798 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 799 /* 800 * Flush commands do not transfers any data, and thus cannot use 801 * good_bytes != blk_rq_bytes(req) as the signal for an error. 802 * This sets the error explicitly for the problem case. 803 */ 804 error = __scsi_error_from_host_byte(cmd, result); 805 } 806 807 /* no bidi support for !blk_rq_is_passthrough yet */ 808 BUG_ON(blk_bidi_rq(req)); 809 810 /* 811 * Next deal with any sectors which we were able to correctly 812 * handle. 813 */ 814 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 815 "%u sectors total, %d bytes done.\n", 816 blk_rq_sectors(req), good_bytes)); 817 818 /* 819 * Recovered errors need reporting, but they're always treated as 820 * success, so fiddle the result code here. For passthrough requests 821 * we already took a copy of the original into sreq->result which 822 * is what gets returned to the user 823 */ 824 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 825 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 826 * print since caller wants ATA registers. Only occurs on 827 * SCSI ATA PASS_THROUGH commands when CK_COND=1 828 */ 829 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 830 ; 831 else if (!(req->rq_flags & RQF_QUIET)) 832 scsi_print_sense(cmd); 833 result = 0; 834 /* for passthrough error may be set */ 835 error = BLK_STS_OK; 836 } 837 838 /* 839 * special case: failed zero length commands always need to 840 * drop down into the retry code. Otherwise, if we finished 841 * all bytes in the request we are done now. 842 */ 843 if (!(blk_rq_bytes(req) == 0 && error) && 844 !scsi_end_request(req, error, good_bytes, 0)) 845 return; 846 847 /* 848 * Kill remainder if no retrys. 849 */ 850 if (error && scsi_noretry_cmd(cmd)) { 851 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 852 BUG(); 853 return; 854 } 855 856 /* 857 * If there had been no error, but we have leftover bytes in the 858 * requeues just queue the command up again. 859 */ 860 if (result == 0) 861 goto requeue; 862 863 error = __scsi_error_from_host_byte(cmd, result); 864 865 if (host_byte(result) == DID_RESET) { 866 /* Third party bus reset or reset for error recovery 867 * reasons. Just retry the command and see what 868 * happens. 869 */ 870 action = ACTION_RETRY; 871 } else if (sense_valid && !sense_deferred) { 872 switch (sshdr.sense_key) { 873 case UNIT_ATTENTION: 874 if (cmd->device->removable) { 875 /* Detected disc change. Set a bit 876 * and quietly refuse further access. 877 */ 878 cmd->device->changed = 1; 879 action = ACTION_FAIL; 880 } else { 881 /* Must have been a power glitch, or a 882 * bus reset. Could not have been a 883 * media change, so we just retry the 884 * command and see what happens. 885 */ 886 action = ACTION_RETRY; 887 } 888 break; 889 case ILLEGAL_REQUEST: 890 /* If we had an ILLEGAL REQUEST returned, then 891 * we may have performed an unsupported 892 * command. The only thing this should be 893 * would be a ten byte read where only a six 894 * byte read was supported. Also, on a system 895 * where READ CAPACITY failed, we may have 896 * read past the end of the disk. 897 */ 898 if ((cmd->device->use_10_for_rw && 899 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 900 (cmd->cmnd[0] == READ_10 || 901 cmd->cmnd[0] == WRITE_10)) { 902 /* This will issue a new 6-byte command. */ 903 cmd->device->use_10_for_rw = 0; 904 action = ACTION_REPREP; 905 } else if (sshdr.asc == 0x10) /* DIX */ { 906 action = ACTION_FAIL; 907 error = BLK_STS_PROTECTION; 908 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 909 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 910 action = ACTION_FAIL; 911 error = BLK_STS_TARGET; 912 } else 913 action = ACTION_FAIL; 914 break; 915 case ABORTED_COMMAND: 916 action = ACTION_FAIL; 917 if (sshdr.asc == 0x10) /* DIF */ 918 error = BLK_STS_PROTECTION; 919 break; 920 case NOT_READY: 921 /* If the device is in the process of becoming 922 * ready, or has a temporary blockage, retry. 923 */ 924 if (sshdr.asc == 0x04) { 925 switch (sshdr.ascq) { 926 case 0x01: /* becoming ready */ 927 case 0x04: /* format in progress */ 928 case 0x05: /* rebuild in progress */ 929 case 0x06: /* recalculation in progress */ 930 case 0x07: /* operation in progress */ 931 case 0x08: /* Long write in progress */ 932 case 0x09: /* self test in progress */ 933 case 0x14: /* space allocation in progress */ 934 action = ACTION_DELAYED_RETRY; 935 break; 936 default: 937 action = ACTION_FAIL; 938 break; 939 } 940 } else 941 action = ACTION_FAIL; 942 break; 943 case VOLUME_OVERFLOW: 944 /* See SSC3rXX or current. */ 945 action = ACTION_FAIL; 946 break; 947 default: 948 action = ACTION_FAIL; 949 break; 950 } 951 } else 952 action = ACTION_FAIL; 953 954 if (action != ACTION_FAIL && 955 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 956 action = ACTION_FAIL; 957 958 switch (action) { 959 case ACTION_FAIL: 960 /* Give up and fail the remainder of the request */ 961 if (!(req->rq_flags & RQF_QUIET)) { 962 static DEFINE_RATELIMIT_STATE(_rs, 963 DEFAULT_RATELIMIT_INTERVAL, 964 DEFAULT_RATELIMIT_BURST); 965 966 if (unlikely(scsi_logging_level)) 967 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 968 SCSI_LOG_MLCOMPLETE_BITS); 969 970 /* 971 * if logging is enabled the failure will be printed 972 * in scsi_log_completion(), so avoid duplicate messages 973 */ 974 if (!level && __ratelimit(&_rs)) { 975 scsi_print_result(cmd, NULL, FAILED); 976 if (driver_byte(result) & DRIVER_SENSE) 977 scsi_print_sense(cmd); 978 scsi_print_command(cmd); 979 } 980 } 981 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 982 return; 983 /*FALLTHRU*/ 984 case ACTION_REPREP: 985 requeue: 986 /* Unprep the request and put it back at the head of the queue. 987 * A new command will be prepared and issued. 988 */ 989 if (q->mq_ops) { 990 cmd->request->rq_flags &= ~RQF_DONTPREP; 991 scsi_mq_uninit_cmd(cmd); 992 scsi_mq_requeue_cmd(cmd); 993 } else { 994 scsi_release_buffers(cmd); 995 scsi_requeue_command(q, cmd); 996 } 997 break; 998 case ACTION_RETRY: 999 /* Retry the same command immediately */ 1000 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1001 break; 1002 case ACTION_DELAYED_RETRY: 1003 /* Retry the same command after a delay */ 1004 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1005 break; 1006 } 1007 } 1008 1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1010 { 1011 int count; 1012 1013 /* 1014 * If sg table allocation fails, requeue request later. 1015 */ 1016 if (unlikely(sg_alloc_table_chained(&sdb->table, 1017 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1018 return BLKPREP_DEFER; 1019 1020 /* 1021 * Next, walk the list, and fill in the addresses and sizes of 1022 * each segment. 1023 */ 1024 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1025 BUG_ON(count > sdb->table.nents); 1026 sdb->table.nents = count; 1027 sdb->length = blk_rq_payload_bytes(req); 1028 return BLKPREP_OK; 1029 } 1030 1031 /* 1032 * Function: scsi_init_io() 1033 * 1034 * Purpose: SCSI I/O initialize function. 1035 * 1036 * Arguments: cmd - Command descriptor we wish to initialize 1037 * 1038 * Returns: 0 on success 1039 * BLKPREP_DEFER if the failure is retryable 1040 * BLKPREP_KILL if the failure is fatal 1041 */ 1042 int scsi_init_io(struct scsi_cmnd *cmd) 1043 { 1044 struct scsi_device *sdev = cmd->device; 1045 struct request *rq = cmd->request; 1046 bool is_mq = (rq->mq_ctx != NULL); 1047 int error = BLKPREP_KILL; 1048 1049 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1050 goto err_exit; 1051 1052 error = scsi_init_sgtable(rq, &cmd->sdb); 1053 if (error) 1054 goto err_exit; 1055 1056 if (blk_bidi_rq(rq)) { 1057 if (!rq->q->mq_ops) { 1058 struct scsi_data_buffer *bidi_sdb = 1059 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1060 if (!bidi_sdb) { 1061 error = BLKPREP_DEFER; 1062 goto err_exit; 1063 } 1064 1065 rq->next_rq->special = bidi_sdb; 1066 } 1067 1068 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1069 if (error) 1070 goto err_exit; 1071 } 1072 1073 if (blk_integrity_rq(rq)) { 1074 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1075 int ivecs, count; 1076 1077 if (prot_sdb == NULL) { 1078 /* 1079 * This can happen if someone (e.g. multipath) 1080 * queues a command to a device on an adapter 1081 * that does not support DIX. 1082 */ 1083 WARN_ON_ONCE(1); 1084 error = BLKPREP_KILL; 1085 goto err_exit; 1086 } 1087 1088 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1089 1090 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1091 prot_sdb->table.sgl)) { 1092 error = BLKPREP_DEFER; 1093 goto err_exit; 1094 } 1095 1096 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1097 prot_sdb->table.sgl); 1098 BUG_ON(unlikely(count > ivecs)); 1099 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1100 1101 cmd->prot_sdb = prot_sdb; 1102 cmd->prot_sdb->table.nents = count; 1103 } 1104 1105 return BLKPREP_OK; 1106 err_exit: 1107 if (is_mq) { 1108 scsi_mq_free_sgtables(cmd); 1109 } else { 1110 scsi_release_buffers(cmd); 1111 cmd->request->special = NULL; 1112 scsi_put_command(cmd); 1113 put_device(&sdev->sdev_gendev); 1114 } 1115 return error; 1116 } 1117 EXPORT_SYMBOL(scsi_init_io); 1118 1119 /** 1120 * scsi_initialize_rq - initialize struct scsi_cmnd.req 1121 * 1122 * Called from inside blk_get_request(). 1123 */ 1124 void scsi_initialize_rq(struct request *rq) 1125 { 1126 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1127 1128 scsi_req_init(&cmd->req); 1129 } 1130 EXPORT_SYMBOL(scsi_initialize_rq); 1131 1132 /* Called after a request has been started. */ 1133 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1134 { 1135 void *buf = cmd->sense_buffer; 1136 void *prot = cmd->prot_sdb; 1137 unsigned long flags; 1138 1139 /* zero out the cmd, except for the embedded scsi_request */ 1140 memset((char *)cmd + sizeof(cmd->req), 0, 1141 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1142 1143 cmd->device = dev; 1144 cmd->sense_buffer = buf; 1145 cmd->prot_sdb = prot; 1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1147 cmd->jiffies_at_alloc = jiffies; 1148 1149 spin_lock_irqsave(&dev->list_lock, flags); 1150 list_add_tail(&cmd->list, &dev->cmd_list); 1151 spin_unlock_irqrestore(&dev->list_lock, flags); 1152 } 1153 1154 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1155 { 1156 struct scsi_cmnd *cmd = req->special; 1157 1158 /* 1159 * Passthrough requests may transfer data, in which case they must 1160 * a bio attached to them. Or they might contain a SCSI command 1161 * that does not transfer data, in which case they may optionally 1162 * submit a request without an attached bio. 1163 */ 1164 if (req->bio) { 1165 int ret = scsi_init_io(cmd); 1166 if (unlikely(ret)) 1167 return ret; 1168 } else { 1169 BUG_ON(blk_rq_bytes(req)); 1170 1171 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1172 } 1173 1174 cmd->cmd_len = scsi_req(req)->cmd_len; 1175 cmd->cmnd = scsi_req(req)->cmd; 1176 cmd->transfersize = blk_rq_bytes(req); 1177 cmd->allowed = scsi_req(req)->retries; 1178 return BLKPREP_OK; 1179 } 1180 1181 /* 1182 * Setup a normal block command. These are simple request from filesystems 1183 * that still need to be translated to SCSI CDBs from the ULD. 1184 */ 1185 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1186 { 1187 struct scsi_cmnd *cmd = req->special; 1188 1189 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1190 int ret = sdev->handler->prep_fn(sdev, req); 1191 if (ret != BLKPREP_OK) 1192 return ret; 1193 } 1194 1195 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1196 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1197 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1198 } 1199 1200 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1201 { 1202 struct scsi_cmnd *cmd = req->special; 1203 1204 if (!blk_rq_bytes(req)) 1205 cmd->sc_data_direction = DMA_NONE; 1206 else if (rq_data_dir(req) == WRITE) 1207 cmd->sc_data_direction = DMA_TO_DEVICE; 1208 else 1209 cmd->sc_data_direction = DMA_FROM_DEVICE; 1210 1211 if (blk_rq_is_scsi(req)) 1212 return scsi_setup_scsi_cmnd(sdev, req); 1213 else 1214 return scsi_setup_fs_cmnd(sdev, req); 1215 } 1216 1217 static int 1218 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1219 { 1220 int ret = BLKPREP_OK; 1221 1222 /* 1223 * If the device is not in running state we will reject some 1224 * or all commands. 1225 */ 1226 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1227 switch (sdev->sdev_state) { 1228 case SDEV_OFFLINE: 1229 case SDEV_TRANSPORT_OFFLINE: 1230 /* 1231 * If the device is offline we refuse to process any 1232 * commands. The device must be brought online 1233 * before trying any recovery commands. 1234 */ 1235 sdev_printk(KERN_ERR, sdev, 1236 "rejecting I/O to offline device\n"); 1237 ret = BLKPREP_KILL; 1238 break; 1239 case SDEV_DEL: 1240 /* 1241 * If the device is fully deleted, we refuse to 1242 * process any commands as well. 1243 */ 1244 sdev_printk(KERN_ERR, sdev, 1245 "rejecting I/O to dead device\n"); 1246 ret = BLKPREP_KILL; 1247 break; 1248 case SDEV_BLOCK: 1249 case SDEV_CREATED_BLOCK: 1250 ret = BLKPREP_DEFER; 1251 break; 1252 case SDEV_QUIESCE: 1253 /* 1254 * If the devices is blocked we defer normal commands. 1255 */ 1256 if (!(req->rq_flags & RQF_PREEMPT)) 1257 ret = BLKPREP_DEFER; 1258 break; 1259 default: 1260 /* 1261 * For any other not fully online state we only allow 1262 * special commands. In particular any user initiated 1263 * command is not allowed. 1264 */ 1265 if (!(req->rq_flags & RQF_PREEMPT)) 1266 ret = BLKPREP_KILL; 1267 break; 1268 } 1269 } 1270 return ret; 1271 } 1272 1273 static int 1274 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1275 { 1276 struct scsi_device *sdev = q->queuedata; 1277 1278 switch (ret) { 1279 case BLKPREP_KILL: 1280 case BLKPREP_INVALID: 1281 scsi_req(req)->result = DID_NO_CONNECT << 16; 1282 /* release the command and kill it */ 1283 if (req->special) { 1284 struct scsi_cmnd *cmd = req->special; 1285 scsi_release_buffers(cmd); 1286 scsi_put_command(cmd); 1287 put_device(&sdev->sdev_gendev); 1288 req->special = NULL; 1289 } 1290 break; 1291 case BLKPREP_DEFER: 1292 /* 1293 * If we defer, the blk_peek_request() returns NULL, but the 1294 * queue must be restarted, so we schedule a callback to happen 1295 * shortly. 1296 */ 1297 if (atomic_read(&sdev->device_busy) == 0) 1298 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1299 break; 1300 default: 1301 req->rq_flags |= RQF_DONTPREP; 1302 } 1303 1304 return ret; 1305 } 1306 1307 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1308 { 1309 struct scsi_device *sdev = q->queuedata; 1310 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1311 int ret; 1312 1313 ret = scsi_prep_state_check(sdev, req); 1314 if (ret != BLKPREP_OK) 1315 goto out; 1316 1317 if (!req->special) { 1318 /* Bail if we can't get a reference to the device */ 1319 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1320 ret = BLKPREP_DEFER; 1321 goto out; 1322 } 1323 1324 scsi_init_command(sdev, cmd); 1325 req->special = cmd; 1326 } 1327 1328 cmd->tag = req->tag; 1329 cmd->request = req; 1330 cmd->prot_op = SCSI_PROT_NORMAL; 1331 1332 ret = scsi_setup_cmnd(sdev, req); 1333 out: 1334 return scsi_prep_return(q, req, ret); 1335 } 1336 1337 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1338 { 1339 scsi_uninit_cmd(req->special); 1340 } 1341 1342 /* 1343 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1344 * return 0. 1345 * 1346 * Called with the queue_lock held. 1347 */ 1348 static inline int scsi_dev_queue_ready(struct request_queue *q, 1349 struct scsi_device *sdev) 1350 { 1351 unsigned int busy; 1352 1353 busy = atomic_inc_return(&sdev->device_busy) - 1; 1354 if (atomic_read(&sdev->device_blocked)) { 1355 if (busy) 1356 goto out_dec; 1357 1358 /* 1359 * unblock after device_blocked iterates to zero 1360 */ 1361 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1362 /* 1363 * For the MQ case we take care of this in the caller. 1364 */ 1365 if (!q->mq_ops) 1366 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1367 goto out_dec; 1368 } 1369 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1370 "unblocking device at zero depth\n")); 1371 } 1372 1373 if (busy >= sdev->queue_depth) 1374 goto out_dec; 1375 1376 return 1; 1377 out_dec: 1378 atomic_dec(&sdev->device_busy); 1379 return 0; 1380 } 1381 1382 /* 1383 * scsi_target_queue_ready: checks if there we can send commands to target 1384 * @sdev: scsi device on starget to check. 1385 */ 1386 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1387 struct scsi_device *sdev) 1388 { 1389 struct scsi_target *starget = scsi_target(sdev); 1390 unsigned int busy; 1391 1392 if (starget->single_lun) { 1393 spin_lock_irq(shost->host_lock); 1394 if (starget->starget_sdev_user && 1395 starget->starget_sdev_user != sdev) { 1396 spin_unlock_irq(shost->host_lock); 1397 return 0; 1398 } 1399 starget->starget_sdev_user = sdev; 1400 spin_unlock_irq(shost->host_lock); 1401 } 1402 1403 if (starget->can_queue <= 0) 1404 return 1; 1405 1406 busy = atomic_inc_return(&starget->target_busy) - 1; 1407 if (atomic_read(&starget->target_blocked) > 0) { 1408 if (busy) 1409 goto starved; 1410 1411 /* 1412 * unblock after target_blocked iterates to zero 1413 */ 1414 if (atomic_dec_return(&starget->target_blocked) > 0) 1415 goto out_dec; 1416 1417 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1418 "unblocking target at zero depth\n")); 1419 } 1420 1421 if (busy >= starget->can_queue) 1422 goto starved; 1423 1424 return 1; 1425 1426 starved: 1427 spin_lock_irq(shost->host_lock); 1428 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1429 spin_unlock_irq(shost->host_lock); 1430 out_dec: 1431 if (starget->can_queue > 0) 1432 atomic_dec(&starget->target_busy); 1433 return 0; 1434 } 1435 1436 /* 1437 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1438 * return 0. We must end up running the queue again whenever 0 is 1439 * returned, else IO can hang. 1440 */ 1441 static inline int scsi_host_queue_ready(struct request_queue *q, 1442 struct Scsi_Host *shost, 1443 struct scsi_device *sdev) 1444 { 1445 unsigned int busy; 1446 1447 if (scsi_host_in_recovery(shost)) 1448 return 0; 1449 1450 busy = atomic_inc_return(&shost->host_busy) - 1; 1451 if (atomic_read(&shost->host_blocked) > 0) { 1452 if (busy) 1453 goto starved; 1454 1455 /* 1456 * unblock after host_blocked iterates to zero 1457 */ 1458 if (atomic_dec_return(&shost->host_blocked) > 0) 1459 goto out_dec; 1460 1461 SCSI_LOG_MLQUEUE(3, 1462 shost_printk(KERN_INFO, shost, 1463 "unblocking host at zero depth\n")); 1464 } 1465 1466 if (shost->can_queue > 0 && busy >= shost->can_queue) 1467 goto starved; 1468 if (shost->host_self_blocked) 1469 goto starved; 1470 1471 /* We're OK to process the command, so we can't be starved */ 1472 if (!list_empty(&sdev->starved_entry)) { 1473 spin_lock_irq(shost->host_lock); 1474 if (!list_empty(&sdev->starved_entry)) 1475 list_del_init(&sdev->starved_entry); 1476 spin_unlock_irq(shost->host_lock); 1477 } 1478 1479 return 1; 1480 1481 starved: 1482 spin_lock_irq(shost->host_lock); 1483 if (list_empty(&sdev->starved_entry)) 1484 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1485 spin_unlock_irq(shost->host_lock); 1486 out_dec: 1487 atomic_dec(&shost->host_busy); 1488 return 0; 1489 } 1490 1491 /* 1492 * Busy state exporting function for request stacking drivers. 1493 * 1494 * For efficiency, no lock is taken to check the busy state of 1495 * shost/starget/sdev, since the returned value is not guaranteed and 1496 * may be changed after request stacking drivers call the function, 1497 * regardless of taking lock or not. 1498 * 1499 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1500 * needs to return 'not busy'. Otherwise, request stacking drivers 1501 * may hold requests forever. 1502 */ 1503 static int scsi_lld_busy(struct request_queue *q) 1504 { 1505 struct scsi_device *sdev = q->queuedata; 1506 struct Scsi_Host *shost; 1507 1508 if (blk_queue_dying(q)) 1509 return 0; 1510 1511 shost = sdev->host; 1512 1513 /* 1514 * Ignore host/starget busy state. 1515 * Since block layer does not have a concept of fairness across 1516 * multiple queues, congestion of host/starget needs to be handled 1517 * in SCSI layer. 1518 */ 1519 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1520 return 1; 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * Kill a request for a dead device 1527 */ 1528 static void scsi_kill_request(struct request *req, struct request_queue *q) 1529 { 1530 struct scsi_cmnd *cmd = req->special; 1531 struct scsi_device *sdev; 1532 struct scsi_target *starget; 1533 struct Scsi_Host *shost; 1534 1535 blk_start_request(req); 1536 1537 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1538 1539 sdev = cmd->device; 1540 starget = scsi_target(sdev); 1541 shost = sdev->host; 1542 scsi_init_cmd_errh(cmd); 1543 cmd->result = DID_NO_CONNECT << 16; 1544 atomic_inc(&cmd->device->iorequest_cnt); 1545 1546 /* 1547 * SCSI request completion path will do scsi_device_unbusy(), 1548 * bump busy counts. To bump the counters, we need to dance 1549 * with the locks as normal issue path does. 1550 */ 1551 atomic_inc(&sdev->device_busy); 1552 atomic_inc(&shost->host_busy); 1553 if (starget->can_queue > 0) 1554 atomic_inc(&starget->target_busy); 1555 1556 blk_complete_request(req); 1557 } 1558 1559 static void scsi_softirq_done(struct request *rq) 1560 { 1561 struct scsi_cmnd *cmd = rq->special; 1562 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1563 int disposition; 1564 1565 INIT_LIST_HEAD(&cmd->eh_entry); 1566 1567 atomic_inc(&cmd->device->iodone_cnt); 1568 if (cmd->result) 1569 atomic_inc(&cmd->device->ioerr_cnt); 1570 1571 disposition = scsi_decide_disposition(cmd); 1572 if (disposition != SUCCESS && 1573 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1574 sdev_printk(KERN_ERR, cmd->device, 1575 "timing out command, waited %lus\n", 1576 wait_for/HZ); 1577 disposition = SUCCESS; 1578 } 1579 1580 scsi_log_completion(cmd, disposition); 1581 1582 switch (disposition) { 1583 case SUCCESS: 1584 scsi_finish_command(cmd); 1585 break; 1586 case NEEDS_RETRY: 1587 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1588 break; 1589 case ADD_TO_MLQUEUE: 1590 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1591 break; 1592 default: 1593 scsi_eh_scmd_add(cmd); 1594 break; 1595 } 1596 } 1597 1598 /** 1599 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1600 * @cmd: command block we are dispatching. 1601 * 1602 * Return: nonzero return request was rejected and device's queue needs to be 1603 * plugged. 1604 */ 1605 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1606 { 1607 struct Scsi_Host *host = cmd->device->host; 1608 int rtn = 0; 1609 1610 atomic_inc(&cmd->device->iorequest_cnt); 1611 1612 /* check if the device is still usable */ 1613 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1614 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1615 * returns an immediate error upwards, and signals 1616 * that the device is no longer present */ 1617 cmd->result = DID_NO_CONNECT << 16; 1618 goto done; 1619 } 1620 1621 /* Check to see if the scsi lld made this device blocked. */ 1622 if (unlikely(scsi_device_blocked(cmd->device))) { 1623 /* 1624 * in blocked state, the command is just put back on 1625 * the device queue. The suspend state has already 1626 * blocked the queue so future requests should not 1627 * occur until the device transitions out of the 1628 * suspend state. 1629 */ 1630 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1631 "queuecommand : device blocked\n")); 1632 return SCSI_MLQUEUE_DEVICE_BUSY; 1633 } 1634 1635 /* Store the LUN value in cmnd, if needed. */ 1636 if (cmd->device->lun_in_cdb) 1637 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1638 (cmd->device->lun << 5 & 0xe0); 1639 1640 scsi_log_send(cmd); 1641 1642 /* 1643 * Before we queue this command, check if the command 1644 * length exceeds what the host adapter can handle. 1645 */ 1646 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1647 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1648 "queuecommand : command too long. " 1649 "cdb_size=%d host->max_cmd_len=%d\n", 1650 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1651 cmd->result = (DID_ABORT << 16); 1652 goto done; 1653 } 1654 1655 if (unlikely(host->shost_state == SHOST_DEL)) { 1656 cmd->result = (DID_NO_CONNECT << 16); 1657 goto done; 1658 1659 } 1660 1661 trace_scsi_dispatch_cmd_start(cmd); 1662 rtn = host->hostt->queuecommand(host, cmd); 1663 if (rtn) { 1664 trace_scsi_dispatch_cmd_error(cmd, rtn); 1665 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1666 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1667 rtn = SCSI_MLQUEUE_HOST_BUSY; 1668 1669 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1670 "queuecommand : request rejected\n")); 1671 } 1672 1673 return rtn; 1674 done: 1675 cmd->scsi_done(cmd); 1676 return 0; 1677 } 1678 1679 /** 1680 * scsi_done - Invoke completion on finished SCSI command. 1681 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1682 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1683 * 1684 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1685 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1686 * calls blk_complete_request() for further processing. 1687 * 1688 * This function is interrupt context safe. 1689 */ 1690 static void scsi_done(struct scsi_cmnd *cmd) 1691 { 1692 trace_scsi_dispatch_cmd_done(cmd); 1693 blk_complete_request(cmd->request); 1694 } 1695 1696 /* 1697 * Function: scsi_request_fn() 1698 * 1699 * Purpose: Main strategy routine for SCSI. 1700 * 1701 * Arguments: q - Pointer to actual queue. 1702 * 1703 * Returns: Nothing 1704 * 1705 * Lock status: IO request lock assumed to be held when called. 1706 */ 1707 static void scsi_request_fn(struct request_queue *q) 1708 __releases(q->queue_lock) 1709 __acquires(q->queue_lock) 1710 { 1711 struct scsi_device *sdev = q->queuedata; 1712 struct Scsi_Host *shost; 1713 struct scsi_cmnd *cmd; 1714 struct request *req; 1715 1716 /* 1717 * To start with, we keep looping until the queue is empty, or until 1718 * the host is no longer able to accept any more requests. 1719 */ 1720 shost = sdev->host; 1721 for (;;) { 1722 int rtn; 1723 /* 1724 * get next queueable request. We do this early to make sure 1725 * that the request is fully prepared even if we cannot 1726 * accept it. 1727 */ 1728 req = blk_peek_request(q); 1729 if (!req) 1730 break; 1731 1732 if (unlikely(!scsi_device_online(sdev))) { 1733 sdev_printk(KERN_ERR, sdev, 1734 "rejecting I/O to offline device\n"); 1735 scsi_kill_request(req, q); 1736 continue; 1737 } 1738 1739 if (!scsi_dev_queue_ready(q, sdev)) 1740 break; 1741 1742 /* 1743 * Remove the request from the request list. 1744 */ 1745 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1746 blk_start_request(req); 1747 1748 spin_unlock_irq(q->queue_lock); 1749 cmd = req->special; 1750 if (unlikely(cmd == NULL)) { 1751 printk(KERN_CRIT "impossible request in %s.\n" 1752 "please mail a stack trace to " 1753 "linux-scsi@vger.kernel.org\n", 1754 __func__); 1755 blk_dump_rq_flags(req, "foo"); 1756 BUG(); 1757 } 1758 1759 /* 1760 * We hit this when the driver is using a host wide 1761 * tag map. For device level tag maps the queue_depth check 1762 * in the device ready fn would prevent us from trying 1763 * to allocate a tag. Since the map is a shared host resource 1764 * we add the dev to the starved list so it eventually gets 1765 * a run when a tag is freed. 1766 */ 1767 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1768 spin_lock_irq(shost->host_lock); 1769 if (list_empty(&sdev->starved_entry)) 1770 list_add_tail(&sdev->starved_entry, 1771 &shost->starved_list); 1772 spin_unlock_irq(shost->host_lock); 1773 goto not_ready; 1774 } 1775 1776 if (!scsi_target_queue_ready(shost, sdev)) 1777 goto not_ready; 1778 1779 if (!scsi_host_queue_ready(q, shost, sdev)) 1780 goto host_not_ready; 1781 1782 if (sdev->simple_tags) 1783 cmd->flags |= SCMD_TAGGED; 1784 else 1785 cmd->flags &= ~SCMD_TAGGED; 1786 1787 /* 1788 * Finally, initialize any error handling parameters, and set up 1789 * the timers for timeouts. 1790 */ 1791 scsi_init_cmd_errh(cmd); 1792 1793 /* 1794 * Dispatch the command to the low-level driver. 1795 */ 1796 cmd->scsi_done = scsi_done; 1797 rtn = scsi_dispatch_cmd(cmd); 1798 if (rtn) { 1799 scsi_queue_insert(cmd, rtn); 1800 spin_lock_irq(q->queue_lock); 1801 goto out_delay; 1802 } 1803 spin_lock_irq(q->queue_lock); 1804 } 1805 1806 return; 1807 1808 host_not_ready: 1809 if (scsi_target(sdev)->can_queue > 0) 1810 atomic_dec(&scsi_target(sdev)->target_busy); 1811 not_ready: 1812 /* 1813 * lock q, handle tag, requeue req, and decrement device_busy. We 1814 * must return with queue_lock held. 1815 * 1816 * Decrementing device_busy without checking it is OK, as all such 1817 * cases (host limits or settings) should run the queue at some 1818 * later time. 1819 */ 1820 spin_lock_irq(q->queue_lock); 1821 blk_requeue_request(q, req); 1822 atomic_dec(&sdev->device_busy); 1823 out_delay: 1824 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1825 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1826 } 1827 1828 static inline blk_status_t prep_to_mq(int ret) 1829 { 1830 switch (ret) { 1831 case BLKPREP_OK: 1832 return BLK_STS_OK; 1833 case BLKPREP_DEFER: 1834 return BLK_STS_RESOURCE; 1835 default: 1836 return BLK_STS_IOERR; 1837 } 1838 } 1839 1840 static int scsi_mq_prep_fn(struct request *req) 1841 { 1842 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1843 struct scsi_device *sdev = req->q->queuedata; 1844 struct Scsi_Host *shost = sdev->host; 1845 unsigned char *sense_buf = cmd->sense_buffer; 1846 struct scatterlist *sg; 1847 1848 /* zero out the cmd, except for the embedded scsi_request */ 1849 memset((char *)cmd + sizeof(cmd->req), 0, 1850 sizeof(*cmd) - sizeof(cmd->req) + shost->hostt->cmd_size); 1851 1852 req->special = cmd; 1853 1854 cmd->request = req; 1855 cmd->device = sdev; 1856 cmd->sense_buffer = sense_buf; 1857 1858 cmd->tag = req->tag; 1859 1860 cmd->prot_op = SCSI_PROT_NORMAL; 1861 1862 INIT_LIST_HEAD(&cmd->list); 1863 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1864 cmd->jiffies_at_alloc = jiffies; 1865 1866 if (shost->use_cmd_list) { 1867 spin_lock_irq(&sdev->list_lock); 1868 list_add_tail(&cmd->list, &sdev->cmd_list); 1869 spin_unlock_irq(&sdev->list_lock); 1870 } 1871 1872 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1873 cmd->sdb.table.sgl = sg; 1874 1875 if (scsi_host_get_prot(shost)) { 1876 cmd->prot_sdb = (void *)sg + 1877 min_t(unsigned int, 1878 shost->sg_tablesize, SG_CHUNK_SIZE) * 1879 sizeof(struct scatterlist); 1880 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1881 1882 cmd->prot_sdb->table.sgl = 1883 (struct scatterlist *)(cmd->prot_sdb + 1); 1884 } 1885 1886 if (blk_bidi_rq(req)) { 1887 struct request *next_rq = req->next_rq; 1888 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1889 1890 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1891 bidi_sdb->table.sgl = 1892 (struct scatterlist *)(bidi_sdb + 1); 1893 1894 next_rq->special = bidi_sdb; 1895 } 1896 1897 blk_mq_start_request(req); 1898 1899 return scsi_setup_cmnd(sdev, req); 1900 } 1901 1902 static void scsi_mq_done(struct scsi_cmnd *cmd) 1903 { 1904 trace_scsi_dispatch_cmd_done(cmd); 1905 blk_mq_complete_request(cmd->request); 1906 } 1907 1908 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1909 const struct blk_mq_queue_data *bd) 1910 { 1911 struct request *req = bd->rq; 1912 struct request_queue *q = req->q; 1913 struct scsi_device *sdev = q->queuedata; 1914 struct Scsi_Host *shost = sdev->host; 1915 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1916 blk_status_t ret; 1917 int reason; 1918 1919 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1920 if (ret != BLK_STS_OK) 1921 goto out; 1922 1923 ret = BLK_STS_RESOURCE; 1924 if (!get_device(&sdev->sdev_gendev)) 1925 goto out; 1926 1927 if (!scsi_dev_queue_ready(q, sdev)) 1928 goto out_put_device; 1929 if (!scsi_target_queue_ready(shost, sdev)) 1930 goto out_dec_device_busy; 1931 if (!scsi_host_queue_ready(q, shost, sdev)) 1932 goto out_dec_target_busy; 1933 1934 if (!(req->rq_flags & RQF_DONTPREP)) { 1935 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1936 if (ret != BLK_STS_OK) 1937 goto out_dec_host_busy; 1938 req->rq_flags |= RQF_DONTPREP; 1939 } else { 1940 blk_mq_start_request(req); 1941 } 1942 1943 if (sdev->simple_tags) 1944 cmd->flags |= SCMD_TAGGED; 1945 else 1946 cmd->flags &= ~SCMD_TAGGED; 1947 1948 scsi_init_cmd_errh(cmd); 1949 cmd->scsi_done = scsi_mq_done; 1950 1951 reason = scsi_dispatch_cmd(cmd); 1952 if (reason) { 1953 scsi_set_blocked(cmd, reason); 1954 ret = BLK_STS_RESOURCE; 1955 goto out_dec_host_busy; 1956 } 1957 1958 return BLK_STS_OK; 1959 1960 out_dec_host_busy: 1961 atomic_dec(&shost->host_busy); 1962 out_dec_target_busy: 1963 if (scsi_target(sdev)->can_queue > 0) 1964 atomic_dec(&scsi_target(sdev)->target_busy); 1965 out_dec_device_busy: 1966 atomic_dec(&sdev->device_busy); 1967 out_put_device: 1968 put_device(&sdev->sdev_gendev); 1969 out: 1970 switch (ret) { 1971 case BLK_STS_OK: 1972 break; 1973 case BLK_STS_RESOURCE: 1974 if (atomic_read(&sdev->device_busy) == 0 && 1975 !scsi_device_blocked(sdev)) 1976 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1977 break; 1978 default: 1979 /* 1980 * Make sure to release all allocated ressources when 1981 * we hit an error, as we will never see this command 1982 * again. 1983 */ 1984 if (req->rq_flags & RQF_DONTPREP) 1985 scsi_mq_uninit_cmd(cmd); 1986 break; 1987 } 1988 return ret; 1989 } 1990 1991 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1992 bool reserved) 1993 { 1994 if (reserved) 1995 return BLK_EH_RESET_TIMER; 1996 return scsi_times_out(req); 1997 } 1998 1999 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq, 2000 unsigned int hctx_idx, unsigned int numa_node) 2001 { 2002 struct Scsi_Host *shost = set->driver_data; 2003 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2004 2005 cmd->sense_buffer = 2006 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node); 2007 if (!cmd->sense_buffer) 2008 return -ENOMEM; 2009 cmd->req.sense = cmd->sense_buffer; 2010 return 0; 2011 } 2012 2013 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2014 unsigned int hctx_idx) 2015 { 2016 struct Scsi_Host *shost = set->driver_data; 2017 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2018 2019 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2020 } 2021 2022 static int scsi_map_queues(struct blk_mq_tag_set *set) 2023 { 2024 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2025 2026 if (shost->hostt->map_queues) 2027 return shost->hostt->map_queues(shost); 2028 return blk_mq_map_queues(set); 2029 } 2030 2031 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2032 { 2033 struct device *host_dev; 2034 u64 bounce_limit = 0xffffffff; 2035 2036 if (shost->unchecked_isa_dma) 2037 return BLK_BOUNCE_ISA; 2038 /* 2039 * Platforms with virtual-DMA translation 2040 * hardware have no practical limit. 2041 */ 2042 if (!PCI_DMA_BUS_IS_PHYS) 2043 return BLK_BOUNCE_ANY; 2044 2045 host_dev = scsi_get_device(shost); 2046 if (host_dev && host_dev->dma_mask) 2047 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2048 2049 return bounce_limit; 2050 } 2051 2052 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2053 { 2054 struct device *dev = shost->dma_dev; 2055 2056 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2057 2058 /* 2059 * this limit is imposed by hardware restrictions 2060 */ 2061 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2062 SG_MAX_SEGMENTS)); 2063 2064 if (scsi_host_prot_dma(shost)) { 2065 shost->sg_prot_tablesize = 2066 min_not_zero(shost->sg_prot_tablesize, 2067 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2068 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2069 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2070 } 2071 2072 blk_queue_max_hw_sectors(q, shost->max_sectors); 2073 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2074 blk_queue_segment_boundary(q, shost->dma_boundary); 2075 dma_set_seg_boundary(dev, shost->dma_boundary); 2076 2077 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2078 2079 if (!shost->use_clustering) 2080 q->limits.cluster = 0; 2081 2082 /* 2083 * set a reasonable default alignment on word boundaries: the 2084 * host and device may alter it using 2085 * blk_queue_update_dma_alignment() later. 2086 */ 2087 blk_queue_dma_alignment(q, 0x03); 2088 } 2089 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2090 2091 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp) 2092 { 2093 struct Scsi_Host *shost = q->rq_alloc_data; 2094 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2095 2096 memset(cmd, 0, sizeof(*cmd)); 2097 2098 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE); 2099 if (!cmd->sense_buffer) 2100 goto fail; 2101 cmd->req.sense = cmd->sense_buffer; 2102 2103 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2104 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2105 if (!cmd->prot_sdb) 2106 goto fail_free_sense; 2107 } 2108 2109 return 0; 2110 2111 fail_free_sense: 2112 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2113 fail: 2114 return -ENOMEM; 2115 } 2116 2117 static void scsi_exit_rq(struct request_queue *q, struct request *rq) 2118 { 2119 struct Scsi_Host *shost = q->rq_alloc_data; 2120 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2121 2122 if (cmd->prot_sdb) 2123 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2124 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2125 } 2126 2127 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2128 { 2129 struct Scsi_Host *shost = sdev->host; 2130 struct request_queue *q; 2131 2132 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2133 if (!q) 2134 return NULL; 2135 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2136 q->rq_alloc_data = shost; 2137 q->request_fn = scsi_request_fn; 2138 q->init_rq_fn = scsi_init_rq; 2139 q->exit_rq_fn = scsi_exit_rq; 2140 q->initialize_rq_fn = scsi_initialize_rq; 2141 2142 if (blk_init_allocated_queue(q) < 0) { 2143 blk_cleanup_queue(q); 2144 return NULL; 2145 } 2146 2147 __scsi_init_queue(shost, q); 2148 blk_queue_prep_rq(q, scsi_prep_fn); 2149 blk_queue_unprep_rq(q, scsi_unprep_fn); 2150 blk_queue_softirq_done(q, scsi_softirq_done); 2151 blk_queue_rq_timed_out(q, scsi_times_out); 2152 blk_queue_lld_busy(q, scsi_lld_busy); 2153 return q; 2154 } 2155 2156 static const struct blk_mq_ops scsi_mq_ops = { 2157 .queue_rq = scsi_queue_rq, 2158 .complete = scsi_softirq_done, 2159 .timeout = scsi_timeout, 2160 #ifdef CONFIG_BLK_DEBUG_FS 2161 .show_rq = scsi_show_rq, 2162 #endif 2163 .init_request = scsi_init_request, 2164 .exit_request = scsi_exit_request, 2165 .initialize_rq_fn = scsi_initialize_rq, 2166 .map_queues = scsi_map_queues, 2167 }; 2168 2169 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2170 { 2171 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2172 if (IS_ERR(sdev->request_queue)) 2173 return NULL; 2174 2175 sdev->request_queue->queuedata = sdev; 2176 __scsi_init_queue(sdev->host, sdev->request_queue); 2177 return sdev->request_queue; 2178 } 2179 2180 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2181 { 2182 unsigned int cmd_size, sgl_size, tbl_size; 2183 2184 tbl_size = shost->sg_tablesize; 2185 if (tbl_size > SG_CHUNK_SIZE) 2186 tbl_size = SG_CHUNK_SIZE; 2187 sgl_size = tbl_size * sizeof(struct scatterlist); 2188 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2189 if (scsi_host_get_prot(shost)) 2190 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2191 2192 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2193 shost->tag_set.ops = &scsi_mq_ops; 2194 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2195 shost->tag_set.queue_depth = shost->can_queue; 2196 shost->tag_set.cmd_size = cmd_size; 2197 shost->tag_set.numa_node = NUMA_NO_NODE; 2198 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2199 shost->tag_set.flags |= 2200 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2201 shost->tag_set.driver_data = shost; 2202 2203 return blk_mq_alloc_tag_set(&shost->tag_set); 2204 } 2205 2206 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2207 { 2208 blk_mq_free_tag_set(&shost->tag_set); 2209 } 2210 2211 /** 2212 * scsi_device_from_queue - return sdev associated with a request_queue 2213 * @q: The request queue to return the sdev from 2214 * 2215 * Return the sdev associated with a request queue or NULL if the 2216 * request_queue does not reference a SCSI device. 2217 */ 2218 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2219 { 2220 struct scsi_device *sdev = NULL; 2221 2222 if (q->mq_ops) { 2223 if (q->mq_ops == &scsi_mq_ops) 2224 sdev = q->queuedata; 2225 } else if (q->request_fn == scsi_request_fn) 2226 sdev = q->queuedata; 2227 if (!sdev || !get_device(&sdev->sdev_gendev)) 2228 sdev = NULL; 2229 2230 return sdev; 2231 } 2232 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2233 2234 /* 2235 * Function: scsi_block_requests() 2236 * 2237 * Purpose: Utility function used by low-level drivers to prevent further 2238 * commands from being queued to the device. 2239 * 2240 * Arguments: shost - Host in question 2241 * 2242 * Returns: Nothing 2243 * 2244 * Lock status: No locks are assumed held. 2245 * 2246 * Notes: There is no timer nor any other means by which the requests 2247 * get unblocked other than the low-level driver calling 2248 * scsi_unblock_requests(). 2249 */ 2250 void scsi_block_requests(struct Scsi_Host *shost) 2251 { 2252 shost->host_self_blocked = 1; 2253 } 2254 EXPORT_SYMBOL(scsi_block_requests); 2255 2256 /* 2257 * Function: scsi_unblock_requests() 2258 * 2259 * Purpose: Utility function used by low-level drivers to allow further 2260 * commands from being queued to the device. 2261 * 2262 * Arguments: shost - Host in question 2263 * 2264 * Returns: Nothing 2265 * 2266 * Lock status: No locks are assumed held. 2267 * 2268 * Notes: There is no timer nor any other means by which the requests 2269 * get unblocked other than the low-level driver calling 2270 * scsi_unblock_requests(). 2271 * 2272 * This is done as an API function so that changes to the 2273 * internals of the scsi mid-layer won't require wholesale 2274 * changes to drivers that use this feature. 2275 */ 2276 void scsi_unblock_requests(struct Scsi_Host *shost) 2277 { 2278 shost->host_self_blocked = 0; 2279 scsi_run_host_queues(shost); 2280 } 2281 EXPORT_SYMBOL(scsi_unblock_requests); 2282 2283 int __init scsi_init_queue(void) 2284 { 2285 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2286 sizeof(struct scsi_data_buffer), 2287 0, 0, NULL); 2288 if (!scsi_sdb_cache) { 2289 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2290 return -ENOMEM; 2291 } 2292 2293 return 0; 2294 } 2295 2296 void scsi_exit_queue(void) 2297 { 2298 kmem_cache_destroy(scsi_sense_cache); 2299 kmem_cache_destroy(scsi_sense_isadma_cache); 2300 kmem_cache_destroy(scsi_sdb_cache); 2301 } 2302 2303 /** 2304 * scsi_mode_select - issue a mode select 2305 * @sdev: SCSI device to be queried 2306 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2307 * @sp: Save page bit (0 == don't save, 1 == save) 2308 * @modepage: mode page being requested 2309 * @buffer: request buffer (may not be smaller than eight bytes) 2310 * @len: length of request buffer. 2311 * @timeout: command timeout 2312 * @retries: number of retries before failing 2313 * @data: returns a structure abstracting the mode header data 2314 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2315 * must be SCSI_SENSE_BUFFERSIZE big. 2316 * 2317 * Returns zero if successful; negative error number or scsi 2318 * status on error 2319 * 2320 */ 2321 int 2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2323 unsigned char *buffer, int len, int timeout, int retries, 2324 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2325 { 2326 unsigned char cmd[10]; 2327 unsigned char *real_buffer; 2328 int ret; 2329 2330 memset(cmd, 0, sizeof(cmd)); 2331 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2332 2333 if (sdev->use_10_for_ms) { 2334 if (len > 65535) 2335 return -EINVAL; 2336 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2337 if (!real_buffer) 2338 return -ENOMEM; 2339 memcpy(real_buffer + 8, buffer, len); 2340 len += 8; 2341 real_buffer[0] = 0; 2342 real_buffer[1] = 0; 2343 real_buffer[2] = data->medium_type; 2344 real_buffer[3] = data->device_specific; 2345 real_buffer[4] = data->longlba ? 0x01 : 0; 2346 real_buffer[5] = 0; 2347 real_buffer[6] = data->block_descriptor_length >> 8; 2348 real_buffer[7] = data->block_descriptor_length; 2349 2350 cmd[0] = MODE_SELECT_10; 2351 cmd[7] = len >> 8; 2352 cmd[8] = len; 2353 } else { 2354 if (len > 255 || data->block_descriptor_length > 255 || 2355 data->longlba) 2356 return -EINVAL; 2357 2358 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2359 if (!real_buffer) 2360 return -ENOMEM; 2361 memcpy(real_buffer + 4, buffer, len); 2362 len += 4; 2363 real_buffer[0] = 0; 2364 real_buffer[1] = data->medium_type; 2365 real_buffer[2] = data->device_specific; 2366 real_buffer[3] = data->block_descriptor_length; 2367 2368 2369 cmd[0] = MODE_SELECT; 2370 cmd[4] = len; 2371 } 2372 2373 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2374 sshdr, timeout, retries, NULL); 2375 kfree(real_buffer); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(scsi_mode_select); 2379 2380 /** 2381 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2382 * @sdev: SCSI device to be queried 2383 * @dbd: set if mode sense will allow block descriptors to be returned 2384 * @modepage: mode page being requested 2385 * @buffer: request buffer (may not be smaller than eight bytes) 2386 * @len: length of request buffer. 2387 * @timeout: command timeout 2388 * @retries: number of retries before failing 2389 * @data: returns a structure abstracting the mode header data 2390 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2391 * must be SCSI_SENSE_BUFFERSIZE big. 2392 * 2393 * Returns zero if unsuccessful, or the header offset (either 4 2394 * or 8 depending on whether a six or ten byte command was 2395 * issued) if successful. 2396 */ 2397 int 2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2399 unsigned char *buffer, int len, int timeout, int retries, 2400 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2401 { 2402 unsigned char cmd[12]; 2403 int use_10_for_ms; 2404 int header_length; 2405 int result, retry_count = retries; 2406 struct scsi_sense_hdr my_sshdr; 2407 2408 memset(data, 0, sizeof(*data)); 2409 memset(&cmd[0], 0, 12); 2410 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2411 cmd[2] = modepage; 2412 2413 /* caller might not be interested in sense, but we need it */ 2414 if (!sshdr) 2415 sshdr = &my_sshdr; 2416 2417 retry: 2418 use_10_for_ms = sdev->use_10_for_ms; 2419 2420 if (use_10_for_ms) { 2421 if (len < 8) 2422 len = 8; 2423 2424 cmd[0] = MODE_SENSE_10; 2425 cmd[8] = len; 2426 header_length = 8; 2427 } else { 2428 if (len < 4) 2429 len = 4; 2430 2431 cmd[0] = MODE_SENSE; 2432 cmd[4] = len; 2433 header_length = 4; 2434 } 2435 2436 memset(buffer, 0, len); 2437 2438 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2439 sshdr, timeout, retries, NULL); 2440 2441 /* This code looks awful: what it's doing is making sure an 2442 * ILLEGAL REQUEST sense return identifies the actual command 2443 * byte as the problem. MODE_SENSE commands can return 2444 * ILLEGAL REQUEST if the code page isn't supported */ 2445 2446 if (use_10_for_ms && !scsi_status_is_good(result) && 2447 (driver_byte(result) & DRIVER_SENSE)) { 2448 if (scsi_sense_valid(sshdr)) { 2449 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2450 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2451 /* 2452 * Invalid command operation code 2453 */ 2454 sdev->use_10_for_ms = 0; 2455 goto retry; 2456 } 2457 } 2458 } 2459 2460 if(scsi_status_is_good(result)) { 2461 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2462 (modepage == 6 || modepage == 8))) { 2463 /* Initio breakage? */ 2464 header_length = 0; 2465 data->length = 13; 2466 data->medium_type = 0; 2467 data->device_specific = 0; 2468 data->longlba = 0; 2469 data->block_descriptor_length = 0; 2470 } else if(use_10_for_ms) { 2471 data->length = buffer[0]*256 + buffer[1] + 2; 2472 data->medium_type = buffer[2]; 2473 data->device_specific = buffer[3]; 2474 data->longlba = buffer[4] & 0x01; 2475 data->block_descriptor_length = buffer[6]*256 2476 + buffer[7]; 2477 } else { 2478 data->length = buffer[0] + 1; 2479 data->medium_type = buffer[1]; 2480 data->device_specific = buffer[2]; 2481 data->block_descriptor_length = buffer[3]; 2482 } 2483 data->header_length = header_length; 2484 } else if ((status_byte(result) == CHECK_CONDITION) && 2485 scsi_sense_valid(sshdr) && 2486 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2487 retry_count--; 2488 goto retry; 2489 } 2490 2491 return result; 2492 } 2493 EXPORT_SYMBOL(scsi_mode_sense); 2494 2495 /** 2496 * scsi_test_unit_ready - test if unit is ready 2497 * @sdev: scsi device to change the state of. 2498 * @timeout: command timeout 2499 * @retries: number of retries before failing 2500 * @sshdr: outpout pointer for decoded sense information. 2501 * 2502 * Returns zero if unsuccessful or an error if TUR failed. For 2503 * removable media, UNIT_ATTENTION sets ->changed flag. 2504 **/ 2505 int 2506 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2507 struct scsi_sense_hdr *sshdr) 2508 { 2509 char cmd[] = { 2510 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2511 }; 2512 int result; 2513 2514 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2515 do { 2516 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2517 timeout, retries, NULL); 2518 if (sdev->removable && scsi_sense_valid(sshdr) && 2519 sshdr->sense_key == UNIT_ATTENTION) 2520 sdev->changed = 1; 2521 } while (scsi_sense_valid(sshdr) && 2522 sshdr->sense_key == UNIT_ATTENTION && --retries); 2523 2524 return result; 2525 } 2526 EXPORT_SYMBOL(scsi_test_unit_ready); 2527 2528 /** 2529 * scsi_device_set_state - Take the given device through the device state model. 2530 * @sdev: scsi device to change the state of. 2531 * @state: state to change to. 2532 * 2533 * Returns zero if unsuccessful or an error if the requested 2534 * transition is illegal. 2535 */ 2536 int 2537 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2538 { 2539 enum scsi_device_state oldstate = sdev->sdev_state; 2540 2541 if (state == oldstate) 2542 return 0; 2543 2544 switch (state) { 2545 case SDEV_CREATED: 2546 switch (oldstate) { 2547 case SDEV_CREATED_BLOCK: 2548 break; 2549 default: 2550 goto illegal; 2551 } 2552 break; 2553 2554 case SDEV_RUNNING: 2555 switch (oldstate) { 2556 case SDEV_CREATED: 2557 case SDEV_OFFLINE: 2558 case SDEV_TRANSPORT_OFFLINE: 2559 case SDEV_QUIESCE: 2560 case SDEV_BLOCK: 2561 break; 2562 default: 2563 goto illegal; 2564 } 2565 break; 2566 2567 case SDEV_QUIESCE: 2568 switch (oldstate) { 2569 case SDEV_RUNNING: 2570 case SDEV_OFFLINE: 2571 case SDEV_TRANSPORT_OFFLINE: 2572 break; 2573 default: 2574 goto illegal; 2575 } 2576 break; 2577 2578 case SDEV_OFFLINE: 2579 case SDEV_TRANSPORT_OFFLINE: 2580 switch (oldstate) { 2581 case SDEV_CREATED: 2582 case SDEV_RUNNING: 2583 case SDEV_QUIESCE: 2584 case SDEV_BLOCK: 2585 break; 2586 default: 2587 goto illegal; 2588 } 2589 break; 2590 2591 case SDEV_BLOCK: 2592 switch (oldstate) { 2593 case SDEV_RUNNING: 2594 case SDEV_CREATED_BLOCK: 2595 break; 2596 default: 2597 goto illegal; 2598 } 2599 break; 2600 2601 case SDEV_CREATED_BLOCK: 2602 switch (oldstate) { 2603 case SDEV_CREATED: 2604 break; 2605 default: 2606 goto illegal; 2607 } 2608 break; 2609 2610 case SDEV_CANCEL: 2611 switch (oldstate) { 2612 case SDEV_CREATED: 2613 case SDEV_RUNNING: 2614 case SDEV_QUIESCE: 2615 case SDEV_OFFLINE: 2616 case SDEV_TRANSPORT_OFFLINE: 2617 case SDEV_BLOCK: 2618 break; 2619 default: 2620 goto illegal; 2621 } 2622 break; 2623 2624 case SDEV_DEL: 2625 switch (oldstate) { 2626 case SDEV_CREATED: 2627 case SDEV_RUNNING: 2628 case SDEV_OFFLINE: 2629 case SDEV_TRANSPORT_OFFLINE: 2630 case SDEV_CANCEL: 2631 case SDEV_CREATED_BLOCK: 2632 break; 2633 default: 2634 goto illegal; 2635 } 2636 break; 2637 2638 } 2639 sdev->sdev_state = state; 2640 return 0; 2641 2642 illegal: 2643 SCSI_LOG_ERROR_RECOVERY(1, 2644 sdev_printk(KERN_ERR, sdev, 2645 "Illegal state transition %s->%s", 2646 scsi_device_state_name(oldstate), 2647 scsi_device_state_name(state)) 2648 ); 2649 return -EINVAL; 2650 } 2651 EXPORT_SYMBOL(scsi_device_set_state); 2652 2653 /** 2654 * sdev_evt_emit - emit a single SCSI device uevent 2655 * @sdev: associated SCSI device 2656 * @evt: event to emit 2657 * 2658 * Send a single uevent (scsi_event) to the associated scsi_device. 2659 */ 2660 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2661 { 2662 int idx = 0; 2663 char *envp[3]; 2664 2665 switch (evt->evt_type) { 2666 case SDEV_EVT_MEDIA_CHANGE: 2667 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2668 break; 2669 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2670 scsi_rescan_device(&sdev->sdev_gendev); 2671 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2672 break; 2673 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2674 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2675 break; 2676 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2677 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2678 break; 2679 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2680 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2681 break; 2682 case SDEV_EVT_LUN_CHANGE_REPORTED: 2683 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2684 break; 2685 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2686 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2687 break; 2688 default: 2689 /* do nothing */ 2690 break; 2691 } 2692 2693 envp[idx++] = NULL; 2694 2695 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2696 } 2697 2698 /** 2699 * sdev_evt_thread - send a uevent for each scsi event 2700 * @work: work struct for scsi_device 2701 * 2702 * Dispatch queued events to their associated scsi_device kobjects 2703 * as uevents. 2704 */ 2705 void scsi_evt_thread(struct work_struct *work) 2706 { 2707 struct scsi_device *sdev; 2708 enum scsi_device_event evt_type; 2709 LIST_HEAD(event_list); 2710 2711 sdev = container_of(work, struct scsi_device, event_work); 2712 2713 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2714 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2715 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2716 2717 while (1) { 2718 struct scsi_event *evt; 2719 struct list_head *this, *tmp; 2720 unsigned long flags; 2721 2722 spin_lock_irqsave(&sdev->list_lock, flags); 2723 list_splice_init(&sdev->event_list, &event_list); 2724 spin_unlock_irqrestore(&sdev->list_lock, flags); 2725 2726 if (list_empty(&event_list)) 2727 break; 2728 2729 list_for_each_safe(this, tmp, &event_list) { 2730 evt = list_entry(this, struct scsi_event, node); 2731 list_del(&evt->node); 2732 scsi_evt_emit(sdev, evt); 2733 kfree(evt); 2734 } 2735 } 2736 } 2737 2738 /** 2739 * sdev_evt_send - send asserted event to uevent thread 2740 * @sdev: scsi_device event occurred on 2741 * @evt: event to send 2742 * 2743 * Assert scsi device event asynchronously. 2744 */ 2745 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2746 { 2747 unsigned long flags; 2748 2749 #if 0 2750 /* FIXME: currently this check eliminates all media change events 2751 * for polled devices. Need to update to discriminate between AN 2752 * and polled events */ 2753 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2754 kfree(evt); 2755 return; 2756 } 2757 #endif 2758 2759 spin_lock_irqsave(&sdev->list_lock, flags); 2760 list_add_tail(&evt->node, &sdev->event_list); 2761 schedule_work(&sdev->event_work); 2762 spin_unlock_irqrestore(&sdev->list_lock, flags); 2763 } 2764 EXPORT_SYMBOL_GPL(sdev_evt_send); 2765 2766 /** 2767 * sdev_evt_alloc - allocate a new scsi event 2768 * @evt_type: type of event to allocate 2769 * @gfpflags: GFP flags for allocation 2770 * 2771 * Allocates and returns a new scsi_event. 2772 */ 2773 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2774 gfp_t gfpflags) 2775 { 2776 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2777 if (!evt) 2778 return NULL; 2779 2780 evt->evt_type = evt_type; 2781 INIT_LIST_HEAD(&evt->node); 2782 2783 /* evt_type-specific initialization, if any */ 2784 switch (evt_type) { 2785 case SDEV_EVT_MEDIA_CHANGE: 2786 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2787 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2788 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2789 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2790 case SDEV_EVT_LUN_CHANGE_REPORTED: 2791 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2792 default: 2793 /* do nothing */ 2794 break; 2795 } 2796 2797 return evt; 2798 } 2799 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2800 2801 /** 2802 * sdev_evt_send_simple - send asserted event to uevent thread 2803 * @sdev: scsi_device event occurred on 2804 * @evt_type: type of event to send 2805 * @gfpflags: GFP flags for allocation 2806 * 2807 * Assert scsi device event asynchronously, given an event type. 2808 */ 2809 void sdev_evt_send_simple(struct scsi_device *sdev, 2810 enum scsi_device_event evt_type, gfp_t gfpflags) 2811 { 2812 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2813 if (!evt) { 2814 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2815 evt_type); 2816 return; 2817 } 2818 2819 sdev_evt_send(sdev, evt); 2820 } 2821 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2822 2823 /** 2824 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2825 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2826 */ 2827 static int scsi_request_fn_active(struct scsi_device *sdev) 2828 { 2829 struct request_queue *q = sdev->request_queue; 2830 int request_fn_active; 2831 2832 WARN_ON_ONCE(sdev->host->use_blk_mq); 2833 2834 spin_lock_irq(q->queue_lock); 2835 request_fn_active = q->request_fn_active; 2836 spin_unlock_irq(q->queue_lock); 2837 2838 return request_fn_active; 2839 } 2840 2841 /** 2842 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2843 * @sdev: SCSI device pointer. 2844 * 2845 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2846 * invoked from scsi_request_fn() have finished. 2847 */ 2848 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2849 { 2850 WARN_ON_ONCE(sdev->host->use_blk_mq); 2851 2852 while (scsi_request_fn_active(sdev)) 2853 msleep(20); 2854 } 2855 2856 /** 2857 * scsi_device_quiesce - Block user issued commands. 2858 * @sdev: scsi device to quiesce. 2859 * 2860 * This works by trying to transition to the SDEV_QUIESCE state 2861 * (which must be a legal transition). When the device is in this 2862 * state, only special requests will be accepted, all others will 2863 * be deferred. Since special requests may also be requeued requests, 2864 * a successful return doesn't guarantee the device will be 2865 * totally quiescent. 2866 * 2867 * Must be called with user context, may sleep. 2868 * 2869 * Returns zero if unsuccessful or an error if not. 2870 */ 2871 int 2872 scsi_device_quiesce(struct scsi_device *sdev) 2873 { 2874 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2875 if (err) 2876 return err; 2877 2878 scsi_run_queue(sdev->request_queue); 2879 while (atomic_read(&sdev->device_busy)) { 2880 msleep_interruptible(200); 2881 scsi_run_queue(sdev->request_queue); 2882 } 2883 return 0; 2884 } 2885 EXPORT_SYMBOL(scsi_device_quiesce); 2886 2887 /** 2888 * scsi_device_resume - Restart user issued commands to a quiesced device. 2889 * @sdev: scsi device to resume. 2890 * 2891 * Moves the device from quiesced back to running and restarts the 2892 * queues. 2893 * 2894 * Must be called with user context, may sleep. 2895 */ 2896 void scsi_device_resume(struct scsi_device *sdev) 2897 { 2898 /* check if the device state was mutated prior to resume, and if 2899 * so assume the state is being managed elsewhere (for example 2900 * device deleted during suspend) 2901 */ 2902 if (sdev->sdev_state != SDEV_QUIESCE || 2903 scsi_device_set_state(sdev, SDEV_RUNNING)) 2904 return; 2905 scsi_run_queue(sdev->request_queue); 2906 } 2907 EXPORT_SYMBOL(scsi_device_resume); 2908 2909 static void 2910 device_quiesce_fn(struct scsi_device *sdev, void *data) 2911 { 2912 scsi_device_quiesce(sdev); 2913 } 2914 2915 void 2916 scsi_target_quiesce(struct scsi_target *starget) 2917 { 2918 starget_for_each_device(starget, NULL, device_quiesce_fn); 2919 } 2920 EXPORT_SYMBOL(scsi_target_quiesce); 2921 2922 static void 2923 device_resume_fn(struct scsi_device *sdev, void *data) 2924 { 2925 scsi_device_resume(sdev); 2926 } 2927 2928 void 2929 scsi_target_resume(struct scsi_target *starget) 2930 { 2931 starget_for_each_device(starget, NULL, device_resume_fn); 2932 } 2933 EXPORT_SYMBOL(scsi_target_resume); 2934 2935 /** 2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2937 * @sdev: device to block 2938 * @wait: Whether or not to wait until ongoing .queuecommand() / 2939 * .queue_rq() calls have finished. 2940 * 2941 * Block request made by scsi lld's to temporarily stop all 2942 * scsi commands on the specified device. May sleep. 2943 * 2944 * Returns zero if successful or error if not 2945 * 2946 * Notes: 2947 * This routine transitions the device to the SDEV_BLOCK state 2948 * (which must be a legal transition). When the device is in this 2949 * state, all commands are deferred until the scsi lld reenables 2950 * the device with scsi_device_unblock or device_block_tmo fires. 2951 * 2952 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2953 * scsi_internal_device_block() has blocked a SCSI device and also 2954 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2955 */ 2956 int 2957 scsi_internal_device_block(struct scsi_device *sdev, bool wait) 2958 { 2959 struct request_queue *q = sdev->request_queue; 2960 unsigned long flags; 2961 int err = 0; 2962 2963 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2964 if (err) { 2965 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2966 2967 if (err) 2968 return err; 2969 } 2970 2971 /* 2972 * The device has transitioned to SDEV_BLOCK. Stop the 2973 * block layer from calling the midlayer with this device's 2974 * request queue. 2975 */ 2976 if (q->mq_ops) { 2977 if (wait) 2978 blk_mq_quiesce_queue(q); 2979 else 2980 blk_mq_quiesce_queue_nowait(q); 2981 } else { 2982 spin_lock_irqsave(q->queue_lock, flags); 2983 blk_stop_queue(q); 2984 spin_unlock_irqrestore(q->queue_lock, flags); 2985 if (wait) 2986 scsi_wait_for_queuecommand(sdev); 2987 } 2988 2989 return 0; 2990 } 2991 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2992 2993 /** 2994 * scsi_internal_device_unblock - resume a device after a block request 2995 * @sdev: device to resume 2996 * @new_state: state to set devices to after unblocking 2997 * 2998 * Called by scsi lld's or the midlayer to restart the device queue 2999 * for the previously suspended scsi device. Called from interrupt or 3000 * normal process context. 3001 * 3002 * Returns zero if successful or error if not. 3003 * 3004 * Notes: 3005 * This routine transitions the device to the SDEV_RUNNING state 3006 * or to one of the offline states (which must be a legal transition) 3007 * allowing the midlayer to goose the queue for this device. 3008 */ 3009 int 3010 scsi_internal_device_unblock(struct scsi_device *sdev, 3011 enum scsi_device_state new_state) 3012 { 3013 struct request_queue *q = sdev->request_queue; 3014 unsigned long flags; 3015 3016 /* 3017 * Try to transition the scsi device to SDEV_RUNNING or one of the 3018 * offlined states and goose the device queue if successful. 3019 */ 3020 if ((sdev->sdev_state == SDEV_BLOCK) || 3021 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 3022 sdev->sdev_state = new_state; 3023 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 3024 if (new_state == SDEV_TRANSPORT_OFFLINE || 3025 new_state == SDEV_OFFLINE) 3026 sdev->sdev_state = new_state; 3027 else 3028 sdev->sdev_state = SDEV_CREATED; 3029 } else if (sdev->sdev_state != SDEV_CANCEL && 3030 sdev->sdev_state != SDEV_OFFLINE) 3031 return -EINVAL; 3032 3033 if (q->mq_ops) { 3034 blk_mq_unquiesce_queue(q); 3035 } else { 3036 spin_lock_irqsave(q->queue_lock, flags); 3037 blk_start_queue(q); 3038 spin_unlock_irqrestore(q->queue_lock, flags); 3039 } 3040 3041 return 0; 3042 } 3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 3044 3045 static void 3046 device_block(struct scsi_device *sdev, void *data) 3047 { 3048 scsi_internal_device_block(sdev, true); 3049 } 3050 3051 static int 3052 target_block(struct device *dev, void *data) 3053 { 3054 if (scsi_is_target_device(dev)) 3055 starget_for_each_device(to_scsi_target(dev), NULL, 3056 device_block); 3057 return 0; 3058 } 3059 3060 void 3061 scsi_target_block(struct device *dev) 3062 { 3063 if (scsi_is_target_device(dev)) 3064 starget_for_each_device(to_scsi_target(dev), NULL, 3065 device_block); 3066 else 3067 device_for_each_child(dev, NULL, target_block); 3068 } 3069 EXPORT_SYMBOL_GPL(scsi_target_block); 3070 3071 static void 3072 device_unblock(struct scsi_device *sdev, void *data) 3073 { 3074 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3075 } 3076 3077 static int 3078 target_unblock(struct device *dev, void *data) 3079 { 3080 if (scsi_is_target_device(dev)) 3081 starget_for_each_device(to_scsi_target(dev), data, 3082 device_unblock); 3083 return 0; 3084 } 3085 3086 void 3087 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3088 { 3089 if (scsi_is_target_device(dev)) 3090 starget_for_each_device(to_scsi_target(dev), &new_state, 3091 device_unblock); 3092 else 3093 device_for_each_child(dev, &new_state, target_unblock); 3094 } 3095 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3096 3097 /** 3098 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3099 * @sgl: scatter-gather list 3100 * @sg_count: number of segments in sg 3101 * @offset: offset in bytes into sg, on return offset into the mapped area 3102 * @len: bytes to map, on return number of bytes mapped 3103 * 3104 * Returns virtual address of the start of the mapped page 3105 */ 3106 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3107 size_t *offset, size_t *len) 3108 { 3109 int i; 3110 size_t sg_len = 0, len_complete = 0; 3111 struct scatterlist *sg; 3112 struct page *page; 3113 3114 WARN_ON(!irqs_disabled()); 3115 3116 for_each_sg(sgl, sg, sg_count, i) { 3117 len_complete = sg_len; /* Complete sg-entries */ 3118 sg_len += sg->length; 3119 if (sg_len > *offset) 3120 break; 3121 } 3122 3123 if (unlikely(i == sg_count)) { 3124 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3125 "elements %d\n", 3126 __func__, sg_len, *offset, sg_count); 3127 WARN_ON(1); 3128 return NULL; 3129 } 3130 3131 /* Offset starting from the beginning of first page in this sg-entry */ 3132 *offset = *offset - len_complete + sg->offset; 3133 3134 /* Assumption: contiguous pages can be accessed as "page + i" */ 3135 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3136 *offset &= ~PAGE_MASK; 3137 3138 /* Bytes in this sg-entry from *offset to the end of the page */ 3139 sg_len = PAGE_SIZE - *offset; 3140 if (*len > sg_len) 3141 *len = sg_len; 3142 3143 return kmap_atomic(page); 3144 } 3145 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3146 3147 /** 3148 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3149 * @virt: virtual address to be unmapped 3150 */ 3151 void scsi_kunmap_atomic_sg(void *virt) 3152 { 3153 kunmap_atomic(virt); 3154 } 3155 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3156 3157 void sdev_disable_disk_events(struct scsi_device *sdev) 3158 { 3159 atomic_inc(&sdev->disk_events_disable_depth); 3160 } 3161 EXPORT_SYMBOL(sdev_disable_disk_events); 3162 3163 void sdev_enable_disk_events(struct scsi_device *sdev) 3164 { 3165 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3166 return; 3167 atomic_dec(&sdev->disk_events_disable_depth); 3168 } 3169 EXPORT_SYMBOL(sdev_enable_disk_events); 3170 3171 /** 3172 * scsi_vpd_lun_id - return a unique device identification 3173 * @sdev: SCSI device 3174 * @id: buffer for the identification 3175 * @id_len: length of the buffer 3176 * 3177 * Copies a unique device identification into @id based 3178 * on the information in the VPD page 0x83 of the device. 3179 * The string will be formatted as a SCSI name string. 3180 * 3181 * Returns the length of the identification or error on failure. 3182 * If the identifier is longer than the supplied buffer the actual 3183 * identifier length is returned and the buffer is not zero-padded. 3184 */ 3185 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3186 { 3187 u8 cur_id_type = 0xff; 3188 u8 cur_id_size = 0; 3189 unsigned char *d, *cur_id_str; 3190 unsigned char __rcu *vpd_pg83; 3191 int id_size = -EINVAL; 3192 3193 rcu_read_lock(); 3194 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3195 if (!vpd_pg83) { 3196 rcu_read_unlock(); 3197 return -ENXIO; 3198 } 3199 3200 /* 3201 * Look for the correct descriptor. 3202 * Order of preference for lun descriptor: 3203 * - SCSI name string 3204 * - NAA IEEE Registered Extended 3205 * - EUI-64 based 16-byte 3206 * - EUI-64 based 12-byte 3207 * - NAA IEEE Registered 3208 * - NAA IEEE Extended 3209 * - T10 Vendor ID 3210 * as longer descriptors reduce the likelyhood 3211 * of identification clashes. 3212 */ 3213 3214 /* The id string must be at least 20 bytes + terminating NULL byte */ 3215 if (id_len < 21) { 3216 rcu_read_unlock(); 3217 return -EINVAL; 3218 } 3219 3220 memset(id, 0, id_len); 3221 d = vpd_pg83 + 4; 3222 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3223 /* Skip designators not referring to the LUN */ 3224 if ((d[1] & 0x30) != 0x00) 3225 goto next_desig; 3226 3227 switch (d[1] & 0xf) { 3228 case 0x1: 3229 /* T10 Vendor ID */ 3230 if (cur_id_size > d[3]) 3231 break; 3232 /* Prefer anything */ 3233 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3234 break; 3235 cur_id_size = d[3]; 3236 if (cur_id_size + 4 > id_len) 3237 cur_id_size = id_len - 4; 3238 cur_id_str = d + 4; 3239 cur_id_type = d[1] & 0xf; 3240 id_size = snprintf(id, id_len, "t10.%*pE", 3241 cur_id_size, cur_id_str); 3242 break; 3243 case 0x2: 3244 /* EUI-64 */ 3245 if (cur_id_size > d[3]) 3246 break; 3247 /* Prefer NAA IEEE Registered Extended */ 3248 if (cur_id_type == 0x3 && 3249 cur_id_size == d[3]) 3250 break; 3251 cur_id_size = d[3]; 3252 cur_id_str = d + 4; 3253 cur_id_type = d[1] & 0xf; 3254 switch (cur_id_size) { 3255 case 8: 3256 id_size = snprintf(id, id_len, 3257 "eui.%8phN", 3258 cur_id_str); 3259 break; 3260 case 12: 3261 id_size = snprintf(id, id_len, 3262 "eui.%12phN", 3263 cur_id_str); 3264 break; 3265 case 16: 3266 id_size = snprintf(id, id_len, 3267 "eui.%16phN", 3268 cur_id_str); 3269 break; 3270 default: 3271 cur_id_size = 0; 3272 break; 3273 } 3274 break; 3275 case 0x3: 3276 /* NAA */ 3277 if (cur_id_size > d[3]) 3278 break; 3279 cur_id_size = d[3]; 3280 cur_id_str = d + 4; 3281 cur_id_type = d[1] & 0xf; 3282 switch (cur_id_size) { 3283 case 8: 3284 id_size = snprintf(id, id_len, 3285 "naa.%8phN", 3286 cur_id_str); 3287 break; 3288 case 16: 3289 id_size = snprintf(id, id_len, 3290 "naa.%16phN", 3291 cur_id_str); 3292 break; 3293 default: 3294 cur_id_size = 0; 3295 break; 3296 } 3297 break; 3298 case 0x8: 3299 /* SCSI name string */ 3300 if (cur_id_size + 4 > d[3]) 3301 break; 3302 /* Prefer others for truncated descriptor */ 3303 if (cur_id_size && d[3] > id_len) 3304 break; 3305 cur_id_size = id_size = d[3]; 3306 cur_id_str = d + 4; 3307 cur_id_type = d[1] & 0xf; 3308 if (cur_id_size >= id_len) 3309 cur_id_size = id_len - 1; 3310 memcpy(id, cur_id_str, cur_id_size); 3311 /* Decrease priority for truncated descriptor */ 3312 if (cur_id_size != id_size) 3313 cur_id_size = 6; 3314 break; 3315 default: 3316 break; 3317 } 3318 next_desig: 3319 d += d[3] + 4; 3320 } 3321 rcu_read_unlock(); 3322 3323 return id_size; 3324 } 3325 EXPORT_SYMBOL(scsi_vpd_lun_id); 3326 3327 /* 3328 * scsi_vpd_tpg_id - return a target port group identifier 3329 * @sdev: SCSI device 3330 * 3331 * Returns the Target Port Group identifier from the information 3332 * froom VPD page 0x83 of the device. 3333 * 3334 * Returns the identifier or error on failure. 3335 */ 3336 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3337 { 3338 unsigned char *d; 3339 unsigned char __rcu *vpd_pg83; 3340 int group_id = -EAGAIN, rel_port = -1; 3341 3342 rcu_read_lock(); 3343 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3344 if (!vpd_pg83) { 3345 rcu_read_unlock(); 3346 return -ENXIO; 3347 } 3348 3349 d = sdev->vpd_pg83 + 4; 3350 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3351 switch (d[1] & 0xf) { 3352 case 0x4: 3353 /* Relative target port */ 3354 rel_port = get_unaligned_be16(&d[6]); 3355 break; 3356 case 0x5: 3357 /* Target port group */ 3358 group_id = get_unaligned_be16(&d[6]); 3359 break; 3360 default: 3361 break; 3362 } 3363 d += d[3] + 4; 3364 } 3365 rcu_read_unlock(); 3366 3367 if (group_id >= 0 && rel_id && rel_port != -1) 3368 *rel_id = rel_port; 3369 3370 return group_id; 3371 } 3372 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3373