xref: /linux/drivers/scsi/scsi_lib.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(struct Scsi_Host *shost)
49 {
50 	return shost->unchecked_isa_dma ?
51 		scsi_sense_isadma_cache : scsi_sense_cache;
52 }
53 
54 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
55 		unsigned char *sense_buffer)
56 {
57 	kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
58 }
59 
60 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
61 	gfp_t gfp_mask, int numa_node)
62 {
63 	return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
64 			numa_node);
65 }
66 
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69 	struct kmem_cache *cache;
70 	int ret = 0;
71 
72 	cache = scsi_select_sense_cache(shost);
73 	if (cache)
74 		return 0;
75 
76 	mutex_lock(&scsi_sense_cache_mutex);
77 	if (shost->unchecked_isa_dma) {
78 		scsi_sense_isadma_cache =
79 			kmem_cache_create("scsi_sense_cache(DMA)",
80 			SCSI_SENSE_BUFFERSIZE, 0,
81 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82 		if (!scsi_sense_isadma_cache)
83 			ret = -ENOMEM;
84 	} else {
85 		scsi_sense_cache =
86 			kmem_cache_create("scsi_sense_cache",
87 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88 		if (!scsi_sense_cache)
89 			ret = -ENOMEM;
90 	}
91 
92 	mutex_unlock(&scsi_sense_cache_mutex);
93 	return ret;
94 }
95 
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY	3
102 
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106 	struct Scsi_Host *host = cmd->device->host;
107 	struct scsi_device *device = cmd->device;
108 	struct scsi_target *starget = scsi_target(device);
109 
110 	/*
111 	 * Set the appropriate busy bit for the device/host.
112 	 *
113 	 * If the host/device isn't busy, assume that something actually
114 	 * completed, and that we should be able to queue a command now.
115 	 *
116 	 * Note that the prior mid-layer assumption that any host could
117 	 * always queue at least one command is now broken.  The mid-layer
118 	 * will implement a user specifiable stall (see
119 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 	 * if a command is requeued with no other commands outstanding
121 	 * either for the device or for the host.
122 	 */
123 	switch (reason) {
124 	case SCSI_MLQUEUE_HOST_BUSY:
125 		atomic_set(&host->host_blocked, host->max_host_blocked);
126 		break;
127 	case SCSI_MLQUEUE_DEVICE_BUSY:
128 	case SCSI_MLQUEUE_EH_RETRY:
129 		atomic_set(&device->device_blocked,
130 			   device->max_device_blocked);
131 		break;
132 	case SCSI_MLQUEUE_TARGET_BUSY:
133 		atomic_set(&starget->target_blocked,
134 			   starget->max_target_blocked);
135 		break;
136 	}
137 }
138 
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141 	struct scsi_device *sdev = cmd->device;
142 
143 	blk_mq_requeue_request(cmd->request, true);
144 	put_device(&sdev->sdev_gendev);
145 }
146 
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161 	struct scsi_device *device = cmd->device;
162 	struct request_queue *q = device->request_queue;
163 	unsigned long flags;
164 
165 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166 		"Inserting command %p into mlqueue\n", cmd));
167 
168 	scsi_set_blocked(cmd, reason);
169 
170 	/*
171 	 * Decrement the counters, since these commands are no longer
172 	 * active on the host/device.
173 	 */
174 	if (unbusy)
175 		scsi_device_unbusy(device);
176 
177 	/*
178 	 * Requeue this command.  It will go before all other commands
179 	 * that are already in the queue. Schedule requeue work under
180 	 * lock such that the kblockd_schedule_work() call happens
181 	 * before blk_cleanup_queue() finishes.
182 	 */
183 	cmd->result = 0;
184 	if (q->mq_ops) {
185 		scsi_mq_requeue_cmd(cmd);
186 		return;
187 	}
188 	spin_lock_irqsave(q->queue_lock, flags);
189 	blk_requeue_request(q, cmd->request);
190 	kblockd_schedule_work(&device->requeue_work);
191 	spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193 
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215 	__scsi_queue_insert(cmd, reason, 1);
216 }
217 
218 
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:	scsi device
222  * @cmd:	scsi command
223  * @data_direction: data direction
224  * @buffer:	data buffer
225  * @bufflen:	len of buffer
226  * @sense:	optional sense buffer
227  * @sshdr:	optional decoded sense header
228  * @timeout:	request timeout in seconds
229  * @retries:	number of times to retry request
230  * @flags:	flags for ->cmd_flags
231  * @rq_flags:	flags for ->rq_flags
232  * @resid:	optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238 		 int data_direction, void *buffer, unsigned bufflen,
239 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
240 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
241 		 int *resid)
242 {
243 	struct request *req;
244 	struct scsi_request *rq;
245 	int ret = DRIVER_ERROR << 24;
246 
247 	req = blk_get_request(sdev->request_queue,
248 			data_direction == DMA_TO_DEVICE ?
249 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250 	if (IS_ERR(req))
251 		return ret;
252 	rq = scsi_req(req);
253 
254 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
255 					buffer, bufflen, __GFP_RECLAIM))
256 		goto out;
257 
258 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 	memcpy(rq->cmd, cmd, rq->cmd_len);
260 	rq->retries = retries;
261 	req->timeout = timeout;
262 	req->cmd_flags |= flags;
263 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264 
265 	/*
266 	 * head injection *required* here otherwise quiesce won't work
267 	 */
268 	blk_execute_rq(req->q, NULL, req, 1);
269 
270 	/*
271 	 * Some devices (USB mass-storage in particular) may transfer
272 	 * garbage data together with a residue indicating that the data
273 	 * is invalid.  Prevent the garbage from being misinterpreted
274 	 * and prevent security leaks by zeroing out the excess data.
275 	 */
276 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278 
279 	if (resid)
280 		*resid = rq->resid_len;
281 	if (sense && rq->sense_len)
282 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 	if (sshdr)
284 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 	ret = rq->result;
286  out:
287 	blk_put_request(req);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292 
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd	- command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	cmd->serial_number = 0;
307 	scsi_set_resid(cmd, 0);
308 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 	if (cmd->cmd_len == 0)
310 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312 
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 	struct Scsi_Host *shost = sdev->host;
316 	struct scsi_target *starget = scsi_target(sdev);
317 	unsigned long flags;
318 
319 	atomic_dec(&shost->host_busy);
320 	if (starget->can_queue > 0)
321 		atomic_dec(&starget->target_busy);
322 
323 	if (unlikely(scsi_host_in_recovery(shost) &&
324 		     (shost->host_failed || shost->host_eh_scheduled))) {
325 		spin_lock_irqsave(shost->host_lock, flags);
326 		scsi_eh_wakeup(shost);
327 		spin_unlock_irqrestore(shost->host_lock, flags);
328 	}
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	if (q->mq_ops)
336 		blk_mq_start_hw_queues(q);
337 	else
338 		blk_run_queue(q);
339 }
340 
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 	struct Scsi_Host *shost = current_sdev->host;
351 	struct scsi_device *sdev, *tmp;
352 	struct scsi_target *starget = scsi_target(current_sdev);
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(shost->host_lock, flags);
356 	starget->starget_sdev_user = NULL;
357 	spin_unlock_irqrestore(shost->host_lock, flags);
358 
359 	/*
360 	 * Call blk_run_queue for all LUNs on the target, starting with
361 	 * current_sdev. We race with others (to set starget_sdev_user),
362 	 * but in most cases, we will be first. Ideally, each LU on the
363 	 * target would get some limited time or requests on the target.
364 	 */
365 	scsi_kick_queue(current_sdev->request_queue);
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	if (starget->starget_sdev_user)
369 		goto out;
370 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 			same_target_siblings) {
372 		if (sdev == current_sdev)
373 			continue;
374 		if (scsi_device_get(sdev))
375 			continue;
376 
377 		spin_unlock_irqrestore(shost->host_lock, flags);
378 		scsi_kick_queue(sdev->request_queue);
379 		spin_lock_irqsave(shost->host_lock, flags);
380 
381 		scsi_device_put(sdev);
382 	}
383  out:
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 		return true;
391 	if (atomic_read(&sdev->device_blocked) > 0)
392 		return true;
393 	return false;
394 }
395 
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 	if (starget->can_queue > 0) {
399 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 			return true;
401 		if (atomic_read(&starget->target_blocked) > 0)
402 			return true;
403 	}
404 	return false;
405 }
406 
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 	if (shost->can_queue > 0 &&
410 	    atomic_read(&shost->host_busy) >= shost->can_queue)
411 		return true;
412 	if (atomic_read(&shost->host_blocked) > 0)
413 		return true;
414 	if (shost->host_self_blocked)
415 		return true;
416 	return false;
417 }
418 
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 	LIST_HEAD(starved_list);
422 	struct scsi_device *sdev;
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(shost->host_lock, flags);
426 	list_splice_init(&shost->starved_list, &starved_list);
427 
428 	while (!list_empty(&starved_list)) {
429 		struct request_queue *slq;
430 
431 		/*
432 		 * As long as shost is accepting commands and we have
433 		 * starved queues, call blk_run_queue. scsi_request_fn
434 		 * drops the queue_lock and can add us back to the
435 		 * starved_list.
436 		 *
437 		 * host_lock protects the starved_list and starved_entry.
438 		 * scsi_request_fn must get the host_lock before checking
439 		 * or modifying starved_list or starved_entry.
440 		 */
441 		if (scsi_host_is_busy(shost))
442 			break;
443 
444 		sdev = list_entry(starved_list.next,
445 				  struct scsi_device, starved_entry);
446 		list_del_init(&sdev->starved_entry);
447 		if (scsi_target_is_busy(scsi_target(sdev))) {
448 			list_move_tail(&sdev->starved_entry,
449 				       &shost->starved_list);
450 			continue;
451 		}
452 
453 		/*
454 		 * Once we drop the host lock, a racing scsi_remove_device()
455 		 * call may remove the sdev from the starved list and destroy
456 		 * it and the queue.  Mitigate by taking a reference to the
457 		 * queue and never touching the sdev again after we drop the
458 		 * host lock.  Note: if __scsi_remove_device() invokes
459 		 * blk_cleanup_queue() before the queue is run from this
460 		 * function then blk_run_queue() will return immediately since
461 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 		 */
463 		slq = sdev->request_queue;
464 		if (!blk_get_queue(slq))
465 			continue;
466 		spin_unlock_irqrestore(shost->host_lock, flags);
467 
468 		scsi_kick_queue(slq);
469 		blk_put_queue(slq);
470 
471 		spin_lock_irqsave(shost->host_lock, flags);
472 	}
473 	/* put any unprocessed entries back */
474 	list_splice(&starved_list, &shost->starved_list);
475 	spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477 
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 	struct scsi_device *sdev = q->queuedata;
493 
494 	if (scsi_target(sdev)->single_lun)
495 		scsi_single_lun_run(sdev);
496 	if (!list_empty(&sdev->host->starved_list))
497 		scsi_starved_list_run(sdev->host);
498 
499 	if (q->mq_ops)
500 		blk_mq_run_hw_queues(q, false);
501 	else
502 		blk_run_queue(q);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 /*
516  * Function:	scsi_requeue_command()
517  *
518  * Purpose:	Handle post-processing of completed commands.
519  *
520  * Arguments:	q	- queue to operate on
521  *		cmd	- command that may need to be requeued.
522  *
523  * Returns:	Nothing
524  *
525  * Notes:	After command completion, there may be blocks left
526  *		over which weren't finished by the previous command
527  *		this can be for a number of reasons - the main one is
528  *		I/O errors in the middle of the request, in which case
529  *		we need to request the blocks that come after the bad
530  *		sector.
531  * Notes:	Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 	struct scsi_device *sdev = cmd->device;
536 	struct request *req = cmd->request;
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(q->queue_lock, flags);
540 	blk_unprep_request(req);
541 	req->special = NULL;
542 	scsi_put_command(cmd);
543 	blk_requeue_request(q, req);
544 	spin_unlock_irqrestore(q->queue_lock, flags);
545 
546 	scsi_run_queue(q);
547 
548 	put_device(&sdev->sdev_gendev);
549 }
550 
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 	struct scsi_device *sdev;
554 
555 	shost_for_each_device(sdev, shost)
556 		scsi_run_queue(sdev->request_queue);
557 }
558 
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 	if (!blk_rq_is_passthrough(cmd->request)) {
562 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563 
564 		if (drv->uninit_command)
565 			drv->uninit_command(cmd);
566 	}
567 }
568 
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 	struct scsi_data_buffer *sdb;
572 
573 	if (cmd->sdb.table.nents)
574 		sg_free_table_chained(&cmd->sdb.table, true);
575 	if (cmd->request->next_rq) {
576 		sdb = cmd->request->next_rq->special;
577 		if (sdb)
578 			sg_free_table_chained(&sdb->table, true);
579 	}
580 	if (scsi_prot_sg_count(cmd))
581 		sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583 
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 	struct scsi_device *sdev = cmd->device;
587 	struct Scsi_Host *shost = sdev->host;
588 	unsigned long flags;
589 
590 	scsi_mq_free_sgtables(cmd);
591 	scsi_uninit_cmd(cmd);
592 
593 	if (shost->use_cmd_list) {
594 		BUG_ON(list_empty(&cmd->list));
595 		spin_lock_irqsave(&sdev->list_lock, flags);
596 		list_del_init(&cmd->list);
597 		spin_unlock_irqrestore(&sdev->list_lock, flags);
598 	}
599 }
600 
601 /*
602  * Function:    scsi_release_buffers()
603  *
604  * Purpose:     Free resources allocate for a scsi_command.
605  *
606  * Arguments:   cmd	- command that we are bailing.
607  *
608  * Lock status: Assumed that no lock is held upon entry.
609  *
610  * Returns:     Nothing
611  *
612  * Notes:       In the event that an upper level driver rejects a
613  *		command, we must release resources allocated during
614  *		the __init_io() function.  Primarily this would involve
615  *		the scatter-gather table.
616  */
617 static void scsi_release_buffers(struct scsi_cmnd *cmd)
618 {
619 	if (cmd->sdb.table.nents)
620 		sg_free_table_chained(&cmd->sdb.table, false);
621 
622 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
623 
624 	if (scsi_prot_sg_count(cmd))
625 		sg_free_table_chained(&cmd->prot_sdb->table, false);
626 }
627 
628 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
629 {
630 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
631 
632 	sg_free_table_chained(&bidi_sdb->table, false);
633 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
634 	cmd->request->next_rq->special = NULL;
635 }
636 
637 static bool scsi_end_request(struct request *req, blk_status_t error,
638 		unsigned int bytes, unsigned int bidi_bytes)
639 {
640 	struct scsi_cmnd *cmd = req->special;
641 	struct scsi_device *sdev = cmd->device;
642 	struct request_queue *q = sdev->request_queue;
643 
644 	if (blk_update_request(req, error, bytes))
645 		return true;
646 
647 	/* Bidi request must be completed as a whole */
648 	if (unlikely(bidi_bytes) &&
649 	    blk_update_request(req->next_rq, error, bidi_bytes))
650 		return true;
651 
652 	if (blk_queue_add_random(q))
653 		add_disk_randomness(req->rq_disk);
654 
655 	if (req->mq_ctx) {
656 		/*
657 		 * In the MQ case the command gets freed by __blk_mq_end_request,
658 		 * so we have to do all cleanup that depends on it earlier.
659 		 *
660 		 * We also can't kick the queues from irq context, so we
661 		 * will have to defer it to a workqueue.
662 		 */
663 		scsi_mq_uninit_cmd(cmd);
664 
665 		__blk_mq_end_request(req, error);
666 
667 		if (scsi_target(sdev)->single_lun ||
668 		    !list_empty(&sdev->host->starved_list))
669 			kblockd_schedule_work(&sdev->requeue_work);
670 		else
671 			blk_mq_run_hw_queues(q, true);
672 	} else {
673 		unsigned long flags;
674 
675 		if (bidi_bytes)
676 			scsi_release_bidi_buffers(cmd);
677 		scsi_release_buffers(cmd);
678 		scsi_put_command(cmd);
679 
680 		spin_lock_irqsave(q->queue_lock, flags);
681 		blk_finish_request(req, error);
682 		spin_unlock_irqrestore(q->queue_lock, flags);
683 
684 		scsi_run_queue(q);
685 	}
686 
687 	put_device(&sdev->sdev_gendev);
688 	return false;
689 }
690 
691 /**
692  * __scsi_error_from_host_byte - translate SCSI error code into errno
693  * @cmd:	SCSI command (unused)
694  * @result:	scsi error code
695  *
696  * Translate SCSI error code into block errors.
697  */
698 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
699 		int result)
700 {
701 	switch (host_byte(result)) {
702 	case DID_TRANSPORT_FAILFAST:
703 		return BLK_STS_TRANSPORT;
704 	case DID_TARGET_FAILURE:
705 		set_host_byte(cmd, DID_OK);
706 		return BLK_STS_TARGET;
707 	case DID_NEXUS_FAILURE:
708 		return BLK_STS_NEXUS;
709 	case DID_ALLOC_FAILURE:
710 		set_host_byte(cmd, DID_OK);
711 		return BLK_STS_NOSPC;
712 	case DID_MEDIUM_ERROR:
713 		set_host_byte(cmd, DID_OK);
714 		return BLK_STS_MEDIUM;
715 	default:
716 		return BLK_STS_IOERR;
717 	}
718 }
719 
720 /*
721  * Function:    scsi_io_completion()
722  *
723  * Purpose:     Completion processing for block device I/O requests.
724  *
725  * Arguments:   cmd   - command that is finished.
726  *
727  * Lock status: Assumed that no lock is held upon entry.
728  *
729  * Returns:     Nothing
730  *
731  * Notes:       We will finish off the specified number of sectors.  If we
732  *		are done, the command block will be released and the queue
733  *		function will be goosed.  If we are not done then we have to
734  *		figure out what to do next:
735  *
736  *		a) We can call scsi_requeue_command().  The request
737  *		   will be unprepared and put back on the queue.  Then
738  *		   a new command will be created for it.  This should
739  *		   be used if we made forward progress, or if we want
740  *		   to switch from READ(10) to READ(6) for example.
741  *
742  *		b) We can call __scsi_queue_insert().  The request will
743  *		   be put back on the queue and retried using the same
744  *		   command as before, possibly after a delay.
745  *
746  *		c) We can call scsi_end_request() with -EIO to fail
747  *		   the remainder of the request.
748  */
749 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
750 {
751 	int result = cmd->result;
752 	struct request_queue *q = cmd->device->request_queue;
753 	struct request *req = cmd->request;
754 	blk_status_t error = BLK_STS_OK;
755 	struct scsi_sense_hdr sshdr;
756 	bool sense_valid = false;
757 	int sense_deferred = 0, level = 0;
758 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
759 	      ACTION_DELAYED_RETRY} action;
760 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
761 
762 	if (result) {
763 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
764 		if (sense_valid)
765 			sense_deferred = scsi_sense_is_deferred(&sshdr);
766 	}
767 
768 	if (blk_rq_is_passthrough(req)) {
769 		if (result) {
770 			if (sense_valid) {
771 				/*
772 				 * SG_IO wants current and deferred errors
773 				 */
774 				scsi_req(req)->sense_len =
775 					min(8 + cmd->sense_buffer[7],
776 					    SCSI_SENSE_BUFFERSIZE);
777 			}
778 			if (!sense_deferred)
779 				error = __scsi_error_from_host_byte(cmd, result);
780 		}
781 		/*
782 		 * __scsi_error_from_host_byte may have reset the host_byte
783 		 */
784 		scsi_req(req)->result = cmd->result;
785 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
786 
787 		if (scsi_bidi_cmnd(cmd)) {
788 			/*
789 			 * Bidi commands Must be complete as a whole,
790 			 * both sides at once.
791 			 */
792 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
793 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
794 					blk_rq_bytes(req->next_rq)))
795 				BUG();
796 			return;
797 		}
798 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
799 		/*
800 		 * Flush commands do not transfers any data, and thus cannot use
801 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
802 		 * This sets the error explicitly for the problem case.
803 		 */
804 		error = __scsi_error_from_host_byte(cmd, result);
805 	}
806 
807 	/* no bidi support for !blk_rq_is_passthrough yet */
808 	BUG_ON(blk_bidi_rq(req));
809 
810 	/*
811 	 * Next deal with any sectors which we were able to correctly
812 	 * handle.
813 	 */
814 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
815 		"%u sectors total, %d bytes done.\n",
816 		blk_rq_sectors(req), good_bytes));
817 
818 	/*
819 	 * Recovered errors need reporting, but they're always treated as
820 	 * success, so fiddle the result code here.  For passthrough requests
821 	 * we already took a copy of the original into sreq->result which
822 	 * is what gets returned to the user
823 	 */
824 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
825 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
826 		 * print since caller wants ATA registers. Only occurs on
827 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
828 		 */
829 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
830 			;
831 		else if (!(req->rq_flags & RQF_QUIET))
832 			scsi_print_sense(cmd);
833 		result = 0;
834 		/* for passthrough error may be set */
835 		error = BLK_STS_OK;
836 	}
837 
838 	/*
839 	 * special case: failed zero length commands always need to
840 	 * drop down into the retry code. Otherwise, if we finished
841 	 * all bytes in the request we are done now.
842 	 */
843 	if (!(blk_rq_bytes(req) == 0 && error) &&
844 	    !scsi_end_request(req, error, good_bytes, 0))
845 		return;
846 
847 	/*
848 	 * Kill remainder if no retrys.
849 	 */
850 	if (error && scsi_noretry_cmd(cmd)) {
851 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
852 			BUG();
853 		return;
854 	}
855 
856 	/*
857 	 * If there had been no error, but we have leftover bytes in the
858 	 * requeues just queue the command up again.
859 	 */
860 	if (result == 0)
861 		goto requeue;
862 
863 	error = __scsi_error_from_host_byte(cmd, result);
864 
865 	if (host_byte(result) == DID_RESET) {
866 		/* Third party bus reset or reset for error recovery
867 		 * reasons.  Just retry the command and see what
868 		 * happens.
869 		 */
870 		action = ACTION_RETRY;
871 	} else if (sense_valid && !sense_deferred) {
872 		switch (sshdr.sense_key) {
873 		case UNIT_ATTENTION:
874 			if (cmd->device->removable) {
875 				/* Detected disc change.  Set a bit
876 				 * and quietly refuse further access.
877 				 */
878 				cmd->device->changed = 1;
879 				action = ACTION_FAIL;
880 			} else {
881 				/* Must have been a power glitch, or a
882 				 * bus reset.  Could not have been a
883 				 * media change, so we just retry the
884 				 * command and see what happens.
885 				 */
886 				action = ACTION_RETRY;
887 			}
888 			break;
889 		case ILLEGAL_REQUEST:
890 			/* If we had an ILLEGAL REQUEST returned, then
891 			 * we may have performed an unsupported
892 			 * command.  The only thing this should be
893 			 * would be a ten byte read where only a six
894 			 * byte read was supported.  Also, on a system
895 			 * where READ CAPACITY failed, we may have
896 			 * read past the end of the disk.
897 			 */
898 			if ((cmd->device->use_10_for_rw &&
899 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
900 			    (cmd->cmnd[0] == READ_10 ||
901 			     cmd->cmnd[0] == WRITE_10)) {
902 				/* This will issue a new 6-byte command. */
903 				cmd->device->use_10_for_rw = 0;
904 				action = ACTION_REPREP;
905 			} else if (sshdr.asc == 0x10) /* DIX */ {
906 				action = ACTION_FAIL;
907 				error = BLK_STS_PROTECTION;
908 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
909 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
910 				action = ACTION_FAIL;
911 				error = BLK_STS_TARGET;
912 			} else
913 				action = ACTION_FAIL;
914 			break;
915 		case ABORTED_COMMAND:
916 			action = ACTION_FAIL;
917 			if (sshdr.asc == 0x10) /* DIF */
918 				error = BLK_STS_PROTECTION;
919 			break;
920 		case NOT_READY:
921 			/* If the device is in the process of becoming
922 			 * ready, or has a temporary blockage, retry.
923 			 */
924 			if (sshdr.asc == 0x04) {
925 				switch (sshdr.ascq) {
926 				case 0x01: /* becoming ready */
927 				case 0x04: /* format in progress */
928 				case 0x05: /* rebuild in progress */
929 				case 0x06: /* recalculation in progress */
930 				case 0x07: /* operation in progress */
931 				case 0x08: /* Long write in progress */
932 				case 0x09: /* self test in progress */
933 				case 0x14: /* space allocation in progress */
934 					action = ACTION_DELAYED_RETRY;
935 					break;
936 				default:
937 					action = ACTION_FAIL;
938 					break;
939 				}
940 			} else
941 				action = ACTION_FAIL;
942 			break;
943 		case VOLUME_OVERFLOW:
944 			/* See SSC3rXX or current. */
945 			action = ACTION_FAIL;
946 			break;
947 		default:
948 			action = ACTION_FAIL;
949 			break;
950 		}
951 	} else
952 		action = ACTION_FAIL;
953 
954 	if (action != ACTION_FAIL &&
955 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
956 		action = ACTION_FAIL;
957 
958 	switch (action) {
959 	case ACTION_FAIL:
960 		/* Give up and fail the remainder of the request */
961 		if (!(req->rq_flags & RQF_QUIET)) {
962 			static DEFINE_RATELIMIT_STATE(_rs,
963 					DEFAULT_RATELIMIT_INTERVAL,
964 					DEFAULT_RATELIMIT_BURST);
965 
966 			if (unlikely(scsi_logging_level))
967 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
968 						       SCSI_LOG_MLCOMPLETE_BITS);
969 
970 			/*
971 			 * if logging is enabled the failure will be printed
972 			 * in scsi_log_completion(), so avoid duplicate messages
973 			 */
974 			if (!level && __ratelimit(&_rs)) {
975 				scsi_print_result(cmd, NULL, FAILED);
976 				if (driver_byte(result) & DRIVER_SENSE)
977 					scsi_print_sense(cmd);
978 				scsi_print_command(cmd);
979 			}
980 		}
981 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
982 			return;
983 		/*FALLTHRU*/
984 	case ACTION_REPREP:
985 	requeue:
986 		/* Unprep the request and put it back at the head of the queue.
987 		 * A new command will be prepared and issued.
988 		 */
989 		if (q->mq_ops) {
990 			cmd->request->rq_flags &= ~RQF_DONTPREP;
991 			scsi_mq_uninit_cmd(cmd);
992 			scsi_mq_requeue_cmd(cmd);
993 		} else {
994 			scsi_release_buffers(cmd);
995 			scsi_requeue_command(q, cmd);
996 		}
997 		break;
998 	case ACTION_RETRY:
999 		/* Retry the same command immediately */
1000 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001 		break;
1002 	case ACTION_DELAYED_RETRY:
1003 		/* Retry the same command after a delay */
1004 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005 		break;
1006 	}
1007 }
1008 
1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1010 {
1011 	int count;
1012 
1013 	/*
1014 	 * If sg table allocation fails, requeue request later.
1015 	 */
1016 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1017 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1018 		return BLKPREP_DEFER;
1019 
1020 	/*
1021 	 * Next, walk the list, and fill in the addresses and sizes of
1022 	 * each segment.
1023 	 */
1024 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025 	BUG_ON(count > sdb->table.nents);
1026 	sdb->table.nents = count;
1027 	sdb->length = blk_rq_payload_bytes(req);
1028 	return BLKPREP_OK;
1029 }
1030 
1031 /*
1032  * Function:    scsi_init_io()
1033  *
1034  * Purpose:     SCSI I/O initialize function.
1035  *
1036  * Arguments:   cmd   - Command descriptor we wish to initialize
1037  *
1038  * Returns:     0 on success
1039  *		BLKPREP_DEFER if the failure is retryable
1040  *		BLKPREP_KILL if the failure is fatal
1041  */
1042 int scsi_init_io(struct scsi_cmnd *cmd)
1043 {
1044 	struct scsi_device *sdev = cmd->device;
1045 	struct request *rq = cmd->request;
1046 	bool is_mq = (rq->mq_ctx != NULL);
1047 	int error = BLKPREP_KILL;
1048 
1049 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1050 		goto err_exit;
1051 
1052 	error = scsi_init_sgtable(rq, &cmd->sdb);
1053 	if (error)
1054 		goto err_exit;
1055 
1056 	if (blk_bidi_rq(rq)) {
1057 		if (!rq->q->mq_ops) {
1058 			struct scsi_data_buffer *bidi_sdb =
1059 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1060 			if (!bidi_sdb) {
1061 				error = BLKPREP_DEFER;
1062 				goto err_exit;
1063 			}
1064 
1065 			rq->next_rq->special = bidi_sdb;
1066 		}
1067 
1068 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1069 		if (error)
1070 			goto err_exit;
1071 	}
1072 
1073 	if (blk_integrity_rq(rq)) {
1074 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075 		int ivecs, count;
1076 
1077 		if (prot_sdb == NULL) {
1078 			/*
1079 			 * This can happen if someone (e.g. multipath)
1080 			 * queues a command to a device on an adapter
1081 			 * that does not support DIX.
1082 			 */
1083 			WARN_ON_ONCE(1);
1084 			error = BLKPREP_KILL;
1085 			goto err_exit;
1086 		}
1087 
1088 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089 
1090 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091 				prot_sdb->table.sgl)) {
1092 			error = BLKPREP_DEFER;
1093 			goto err_exit;
1094 		}
1095 
1096 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097 						prot_sdb->table.sgl);
1098 		BUG_ON(unlikely(count > ivecs));
1099 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1100 
1101 		cmd->prot_sdb = prot_sdb;
1102 		cmd->prot_sdb->table.nents = count;
1103 	}
1104 
1105 	return BLKPREP_OK;
1106 err_exit:
1107 	if (is_mq) {
1108 		scsi_mq_free_sgtables(cmd);
1109 	} else {
1110 		scsi_release_buffers(cmd);
1111 		cmd->request->special = NULL;
1112 		scsi_put_command(cmd);
1113 		put_device(&sdev->sdev_gendev);
1114 	}
1115 	return error;
1116 }
1117 EXPORT_SYMBOL(scsi_init_io);
1118 
1119 /**
1120  * scsi_initialize_rq - initialize struct scsi_cmnd.req
1121  *
1122  * Called from inside blk_get_request().
1123  */
1124 void scsi_initialize_rq(struct request *rq)
1125 {
1126 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1127 
1128 	scsi_req_init(&cmd->req);
1129 }
1130 EXPORT_SYMBOL(scsi_initialize_rq);
1131 
1132 /* Called after a request has been started. */
1133 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1134 {
1135 	void *buf = cmd->sense_buffer;
1136 	void *prot = cmd->prot_sdb;
1137 	unsigned long flags;
1138 
1139 	/* zero out the cmd, except for the embedded scsi_request */
1140 	memset((char *)cmd + sizeof(cmd->req), 0,
1141 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1142 
1143 	cmd->device = dev;
1144 	cmd->sense_buffer = buf;
1145 	cmd->prot_sdb = prot;
1146 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 	cmd->jiffies_at_alloc = jiffies;
1148 
1149 	spin_lock_irqsave(&dev->list_lock, flags);
1150 	list_add_tail(&cmd->list, &dev->cmd_list);
1151 	spin_unlock_irqrestore(&dev->list_lock, flags);
1152 }
1153 
1154 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1155 {
1156 	struct scsi_cmnd *cmd = req->special;
1157 
1158 	/*
1159 	 * Passthrough requests may transfer data, in which case they must
1160 	 * a bio attached to them.  Or they might contain a SCSI command
1161 	 * that does not transfer data, in which case they may optionally
1162 	 * submit a request without an attached bio.
1163 	 */
1164 	if (req->bio) {
1165 		int ret = scsi_init_io(cmd);
1166 		if (unlikely(ret))
1167 			return ret;
1168 	} else {
1169 		BUG_ON(blk_rq_bytes(req));
1170 
1171 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1172 	}
1173 
1174 	cmd->cmd_len = scsi_req(req)->cmd_len;
1175 	cmd->cmnd = scsi_req(req)->cmd;
1176 	cmd->transfersize = blk_rq_bytes(req);
1177 	cmd->allowed = scsi_req(req)->retries;
1178 	return BLKPREP_OK;
1179 }
1180 
1181 /*
1182  * Setup a normal block command.  These are simple request from filesystems
1183  * that still need to be translated to SCSI CDBs from the ULD.
1184  */
1185 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1186 {
1187 	struct scsi_cmnd *cmd = req->special;
1188 
1189 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1190 		int ret = sdev->handler->prep_fn(sdev, req);
1191 		if (ret != BLKPREP_OK)
1192 			return ret;
1193 	}
1194 
1195 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1196 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1197 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1198 }
1199 
1200 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1201 {
1202 	struct scsi_cmnd *cmd = req->special;
1203 
1204 	if (!blk_rq_bytes(req))
1205 		cmd->sc_data_direction = DMA_NONE;
1206 	else if (rq_data_dir(req) == WRITE)
1207 		cmd->sc_data_direction = DMA_TO_DEVICE;
1208 	else
1209 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1210 
1211 	if (blk_rq_is_scsi(req))
1212 		return scsi_setup_scsi_cmnd(sdev, req);
1213 	else
1214 		return scsi_setup_fs_cmnd(sdev, req);
1215 }
1216 
1217 static int
1218 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1219 {
1220 	int ret = BLKPREP_OK;
1221 
1222 	/*
1223 	 * If the device is not in running state we will reject some
1224 	 * or all commands.
1225 	 */
1226 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1227 		switch (sdev->sdev_state) {
1228 		case SDEV_OFFLINE:
1229 		case SDEV_TRANSPORT_OFFLINE:
1230 			/*
1231 			 * If the device is offline we refuse to process any
1232 			 * commands.  The device must be brought online
1233 			 * before trying any recovery commands.
1234 			 */
1235 			sdev_printk(KERN_ERR, sdev,
1236 				    "rejecting I/O to offline device\n");
1237 			ret = BLKPREP_KILL;
1238 			break;
1239 		case SDEV_DEL:
1240 			/*
1241 			 * If the device is fully deleted, we refuse to
1242 			 * process any commands as well.
1243 			 */
1244 			sdev_printk(KERN_ERR, sdev,
1245 				    "rejecting I/O to dead device\n");
1246 			ret = BLKPREP_KILL;
1247 			break;
1248 		case SDEV_BLOCK:
1249 		case SDEV_CREATED_BLOCK:
1250 			ret = BLKPREP_DEFER;
1251 			break;
1252 		case SDEV_QUIESCE:
1253 			/*
1254 			 * If the devices is blocked we defer normal commands.
1255 			 */
1256 			if (!(req->rq_flags & RQF_PREEMPT))
1257 				ret = BLKPREP_DEFER;
1258 			break;
1259 		default:
1260 			/*
1261 			 * For any other not fully online state we only allow
1262 			 * special commands.  In particular any user initiated
1263 			 * command is not allowed.
1264 			 */
1265 			if (!(req->rq_flags & RQF_PREEMPT))
1266 				ret = BLKPREP_KILL;
1267 			break;
1268 		}
1269 	}
1270 	return ret;
1271 }
1272 
1273 static int
1274 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1275 {
1276 	struct scsi_device *sdev = q->queuedata;
1277 
1278 	switch (ret) {
1279 	case BLKPREP_KILL:
1280 	case BLKPREP_INVALID:
1281 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1282 		/* release the command and kill it */
1283 		if (req->special) {
1284 			struct scsi_cmnd *cmd = req->special;
1285 			scsi_release_buffers(cmd);
1286 			scsi_put_command(cmd);
1287 			put_device(&sdev->sdev_gendev);
1288 			req->special = NULL;
1289 		}
1290 		break;
1291 	case BLKPREP_DEFER:
1292 		/*
1293 		 * If we defer, the blk_peek_request() returns NULL, but the
1294 		 * queue must be restarted, so we schedule a callback to happen
1295 		 * shortly.
1296 		 */
1297 		if (atomic_read(&sdev->device_busy) == 0)
1298 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1299 		break;
1300 	default:
1301 		req->rq_flags |= RQF_DONTPREP;
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1308 {
1309 	struct scsi_device *sdev = q->queuedata;
1310 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1311 	int ret;
1312 
1313 	ret = scsi_prep_state_check(sdev, req);
1314 	if (ret != BLKPREP_OK)
1315 		goto out;
1316 
1317 	if (!req->special) {
1318 		/* Bail if we can't get a reference to the device */
1319 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1320 			ret = BLKPREP_DEFER;
1321 			goto out;
1322 		}
1323 
1324 		scsi_init_command(sdev, cmd);
1325 		req->special = cmd;
1326 	}
1327 
1328 	cmd->tag = req->tag;
1329 	cmd->request = req;
1330 	cmd->prot_op = SCSI_PROT_NORMAL;
1331 
1332 	ret = scsi_setup_cmnd(sdev, req);
1333 out:
1334 	return scsi_prep_return(q, req, ret);
1335 }
1336 
1337 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1338 {
1339 	scsi_uninit_cmd(req->special);
1340 }
1341 
1342 /*
1343  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1344  * return 0.
1345  *
1346  * Called with the queue_lock held.
1347  */
1348 static inline int scsi_dev_queue_ready(struct request_queue *q,
1349 				  struct scsi_device *sdev)
1350 {
1351 	unsigned int busy;
1352 
1353 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1354 	if (atomic_read(&sdev->device_blocked)) {
1355 		if (busy)
1356 			goto out_dec;
1357 
1358 		/*
1359 		 * unblock after device_blocked iterates to zero
1360 		 */
1361 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1362 			/*
1363 			 * For the MQ case we take care of this in the caller.
1364 			 */
1365 			if (!q->mq_ops)
1366 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1367 			goto out_dec;
1368 		}
1369 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1370 				   "unblocking device at zero depth\n"));
1371 	}
1372 
1373 	if (busy >= sdev->queue_depth)
1374 		goto out_dec;
1375 
1376 	return 1;
1377 out_dec:
1378 	atomic_dec(&sdev->device_busy);
1379 	return 0;
1380 }
1381 
1382 /*
1383  * scsi_target_queue_ready: checks if there we can send commands to target
1384  * @sdev: scsi device on starget to check.
1385  */
1386 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1387 					   struct scsi_device *sdev)
1388 {
1389 	struct scsi_target *starget = scsi_target(sdev);
1390 	unsigned int busy;
1391 
1392 	if (starget->single_lun) {
1393 		spin_lock_irq(shost->host_lock);
1394 		if (starget->starget_sdev_user &&
1395 		    starget->starget_sdev_user != sdev) {
1396 			spin_unlock_irq(shost->host_lock);
1397 			return 0;
1398 		}
1399 		starget->starget_sdev_user = sdev;
1400 		spin_unlock_irq(shost->host_lock);
1401 	}
1402 
1403 	if (starget->can_queue <= 0)
1404 		return 1;
1405 
1406 	busy = atomic_inc_return(&starget->target_busy) - 1;
1407 	if (atomic_read(&starget->target_blocked) > 0) {
1408 		if (busy)
1409 			goto starved;
1410 
1411 		/*
1412 		 * unblock after target_blocked iterates to zero
1413 		 */
1414 		if (atomic_dec_return(&starget->target_blocked) > 0)
1415 			goto out_dec;
1416 
1417 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1418 				 "unblocking target at zero depth\n"));
1419 	}
1420 
1421 	if (busy >= starget->can_queue)
1422 		goto starved;
1423 
1424 	return 1;
1425 
1426 starved:
1427 	spin_lock_irq(shost->host_lock);
1428 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1429 	spin_unlock_irq(shost->host_lock);
1430 out_dec:
1431 	if (starget->can_queue > 0)
1432 		atomic_dec(&starget->target_busy);
1433 	return 0;
1434 }
1435 
1436 /*
1437  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1438  * return 0. We must end up running the queue again whenever 0 is
1439  * returned, else IO can hang.
1440  */
1441 static inline int scsi_host_queue_ready(struct request_queue *q,
1442 				   struct Scsi_Host *shost,
1443 				   struct scsi_device *sdev)
1444 {
1445 	unsigned int busy;
1446 
1447 	if (scsi_host_in_recovery(shost))
1448 		return 0;
1449 
1450 	busy = atomic_inc_return(&shost->host_busy) - 1;
1451 	if (atomic_read(&shost->host_blocked) > 0) {
1452 		if (busy)
1453 			goto starved;
1454 
1455 		/*
1456 		 * unblock after host_blocked iterates to zero
1457 		 */
1458 		if (atomic_dec_return(&shost->host_blocked) > 0)
1459 			goto out_dec;
1460 
1461 		SCSI_LOG_MLQUEUE(3,
1462 			shost_printk(KERN_INFO, shost,
1463 				     "unblocking host at zero depth\n"));
1464 	}
1465 
1466 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1467 		goto starved;
1468 	if (shost->host_self_blocked)
1469 		goto starved;
1470 
1471 	/* We're OK to process the command, so we can't be starved */
1472 	if (!list_empty(&sdev->starved_entry)) {
1473 		spin_lock_irq(shost->host_lock);
1474 		if (!list_empty(&sdev->starved_entry))
1475 			list_del_init(&sdev->starved_entry);
1476 		spin_unlock_irq(shost->host_lock);
1477 	}
1478 
1479 	return 1;
1480 
1481 starved:
1482 	spin_lock_irq(shost->host_lock);
1483 	if (list_empty(&sdev->starved_entry))
1484 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1485 	spin_unlock_irq(shost->host_lock);
1486 out_dec:
1487 	atomic_dec(&shost->host_busy);
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Busy state exporting function for request stacking drivers.
1493  *
1494  * For efficiency, no lock is taken to check the busy state of
1495  * shost/starget/sdev, since the returned value is not guaranteed and
1496  * may be changed after request stacking drivers call the function,
1497  * regardless of taking lock or not.
1498  *
1499  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1500  * needs to return 'not busy'. Otherwise, request stacking drivers
1501  * may hold requests forever.
1502  */
1503 static int scsi_lld_busy(struct request_queue *q)
1504 {
1505 	struct scsi_device *sdev = q->queuedata;
1506 	struct Scsi_Host *shost;
1507 
1508 	if (blk_queue_dying(q))
1509 		return 0;
1510 
1511 	shost = sdev->host;
1512 
1513 	/*
1514 	 * Ignore host/starget busy state.
1515 	 * Since block layer does not have a concept of fairness across
1516 	 * multiple queues, congestion of host/starget needs to be handled
1517 	 * in SCSI layer.
1518 	 */
1519 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1520 		return 1;
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Kill a request for a dead device
1527  */
1528 static void scsi_kill_request(struct request *req, struct request_queue *q)
1529 {
1530 	struct scsi_cmnd *cmd = req->special;
1531 	struct scsi_device *sdev;
1532 	struct scsi_target *starget;
1533 	struct Scsi_Host *shost;
1534 
1535 	blk_start_request(req);
1536 
1537 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1538 
1539 	sdev = cmd->device;
1540 	starget = scsi_target(sdev);
1541 	shost = sdev->host;
1542 	scsi_init_cmd_errh(cmd);
1543 	cmd->result = DID_NO_CONNECT << 16;
1544 	atomic_inc(&cmd->device->iorequest_cnt);
1545 
1546 	/*
1547 	 * SCSI request completion path will do scsi_device_unbusy(),
1548 	 * bump busy counts.  To bump the counters, we need to dance
1549 	 * with the locks as normal issue path does.
1550 	 */
1551 	atomic_inc(&sdev->device_busy);
1552 	atomic_inc(&shost->host_busy);
1553 	if (starget->can_queue > 0)
1554 		atomic_inc(&starget->target_busy);
1555 
1556 	blk_complete_request(req);
1557 }
1558 
1559 static void scsi_softirq_done(struct request *rq)
1560 {
1561 	struct scsi_cmnd *cmd = rq->special;
1562 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1563 	int disposition;
1564 
1565 	INIT_LIST_HEAD(&cmd->eh_entry);
1566 
1567 	atomic_inc(&cmd->device->iodone_cnt);
1568 	if (cmd->result)
1569 		atomic_inc(&cmd->device->ioerr_cnt);
1570 
1571 	disposition = scsi_decide_disposition(cmd);
1572 	if (disposition != SUCCESS &&
1573 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1574 		sdev_printk(KERN_ERR, cmd->device,
1575 			    "timing out command, waited %lus\n",
1576 			    wait_for/HZ);
1577 		disposition = SUCCESS;
1578 	}
1579 
1580 	scsi_log_completion(cmd, disposition);
1581 
1582 	switch (disposition) {
1583 		case SUCCESS:
1584 			scsi_finish_command(cmd);
1585 			break;
1586 		case NEEDS_RETRY:
1587 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1588 			break;
1589 		case ADD_TO_MLQUEUE:
1590 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1591 			break;
1592 		default:
1593 			scsi_eh_scmd_add(cmd);
1594 			break;
1595 	}
1596 }
1597 
1598 /**
1599  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1600  * @cmd: command block we are dispatching.
1601  *
1602  * Return: nonzero return request was rejected and device's queue needs to be
1603  * plugged.
1604  */
1605 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1606 {
1607 	struct Scsi_Host *host = cmd->device->host;
1608 	int rtn = 0;
1609 
1610 	atomic_inc(&cmd->device->iorequest_cnt);
1611 
1612 	/* check if the device is still usable */
1613 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1614 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1615 		 * returns an immediate error upwards, and signals
1616 		 * that the device is no longer present */
1617 		cmd->result = DID_NO_CONNECT << 16;
1618 		goto done;
1619 	}
1620 
1621 	/* Check to see if the scsi lld made this device blocked. */
1622 	if (unlikely(scsi_device_blocked(cmd->device))) {
1623 		/*
1624 		 * in blocked state, the command is just put back on
1625 		 * the device queue.  The suspend state has already
1626 		 * blocked the queue so future requests should not
1627 		 * occur until the device transitions out of the
1628 		 * suspend state.
1629 		 */
1630 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1631 			"queuecommand : device blocked\n"));
1632 		return SCSI_MLQUEUE_DEVICE_BUSY;
1633 	}
1634 
1635 	/* Store the LUN value in cmnd, if needed. */
1636 	if (cmd->device->lun_in_cdb)
1637 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1638 			       (cmd->device->lun << 5 & 0xe0);
1639 
1640 	scsi_log_send(cmd);
1641 
1642 	/*
1643 	 * Before we queue this command, check if the command
1644 	 * length exceeds what the host adapter can handle.
1645 	 */
1646 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1647 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1648 			       "queuecommand : command too long. "
1649 			       "cdb_size=%d host->max_cmd_len=%d\n",
1650 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1651 		cmd->result = (DID_ABORT << 16);
1652 		goto done;
1653 	}
1654 
1655 	if (unlikely(host->shost_state == SHOST_DEL)) {
1656 		cmd->result = (DID_NO_CONNECT << 16);
1657 		goto done;
1658 
1659 	}
1660 
1661 	trace_scsi_dispatch_cmd_start(cmd);
1662 	rtn = host->hostt->queuecommand(host, cmd);
1663 	if (rtn) {
1664 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1665 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1666 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1667 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1668 
1669 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1670 			"queuecommand : request rejected\n"));
1671 	}
1672 
1673 	return rtn;
1674  done:
1675 	cmd->scsi_done(cmd);
1676 	return 0;
1677 }
1678 
1679 /**
1680  * scsi_done - Invoke completion on finished SCSI command.
1681  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1682  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1683  *
1684  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1685  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1686  * calls blk_complete_request() for further processing.
1687  *
1688  * This function is interrupt context safe.
1689  */
1690 static void scsi_done(struct scsi_cmnd *cmd)
1691 {
1692 	trace_scsi_dispatch_cmd_done(cmd);
1693 	blk_complete_request(cmd->request);
1694 }
1695 
1696 /*
1697  * Function:    scsi_request_fn()
1698  *
1699  * Purpose:     Main strategy routine for SCSI.
1700  *
1701  * Arguments:   q       - Pointer to actual queue.
1702  *
1703  * Returns:     Nothing
1704  *
1705  * Lock status: IO request lock assumed to be held when called.
1706  */
1707 static void scsi_request_fn(struct request_queue *q)
1708 	__releases(q->queue_lock)
1709 	__acquires(q->queue_lock)
1710 {
1711 	struct scsi_device *sdev = q->queuedata;
1712 	struct Scsi_Host *shost;
1713 	struct scsi_cmnd *cmd;
1714 	struct request *req;
1715 
1716 	/*
1717 	 * To start with, we keep looping until the queue is empty, or until
1718 	 * the host is no longer able to accept any more requests.
1719 	 */
1720 	shost = sdev->host;
1721 	for (;;) {
1722 		int rtn;
1723 		/*
1724 		 * get next queueable request.  We do this early to make sure
1725 		 * that the request is fully prepared even if we cannot
1726 		 * accept it.
1727 		 */
1728 		req = blk_peek_request(q);
1729 		if (!req)
1730 			break;
1731 
1732 		if (unlikely(!scsi_device_online(sdev))) {
1733 			sdev_printk(KERN_ERR, sdev,
1734 				    "rejecting I/O to offline device\n");
1735 			scsi_kill_request(req, q);
1736 			continue;
1737 		}
1738 
1739 		if (!scsi_dev_queue_ready(q, sdev))
1740 			break;
1741 
1742 		/*
1743 		 * Remove the request from the request list.
1744 		 */
1745 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1746 			blk_start_request(req);
1747 
1748 		spin_unlock_irq(q->queue_lock);
1749 		cmd = req->special;
1750 		if (unlikely(cmd == NULL)) {
1751 			printk(KERN_CRIT "impossible request in %s.\n"
1752 					 "please mail a stack trace to "
1753 					 "linux-scsi@vger.kernel.org\n",
1754 					 __func__);
1755 			blk_dump_rq_flags(req, "foo");
1756 			BUG();
1757 		}
1758 
1759 		/*
1760 		 * We hit this when the driver is using a host wide
1761 		 * tag map. For device level tag maps the queue_depth check
1762 		 * in the device ready fn would prevent us from trying
1763 		 * to allocate a tag. Since the map is a shared host resource
1764 		 * we add the dev to the starved list so it eventually gets
1765 		 * a run when a tag is freed.
1766 		 */
1767 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1768 			spin_lock_irq(shost->host_lock);
1769 			if (list_empty(&sdev->starved_entry))
1770 				list_add_tail(&sdev->starved_entry,
1771 					      &shost->starved_list);
1772 			spin_unlock_irq(shost->host_lock);
1773 			goto not_ready;
1774 		}
1775 
1776 		if (!scsi_target_queue_ready(shost, sdev))
1777 			goto not_ready;
1778 
1779 		if (!scsi_host_queue_ready(q, shost, sdev))
1780 			goto host_not_ready;
1781 
1782 		if (sdev->simple_tags)
1783 			cmd->flags |= SCMD_TAGGED;
1784 		else
1785 			cmd->flags &= ~SCMD_TAGGED;
1786 
1787 		/*
1788 		 * Finally, initialize any error handling parameters, and set up
1789 		 * the timers for timeouts.
1790 		 */
1791 		scsi_init_cmd_errh(cmd);
1792 
1793 		/*
1794 		 * Dispatch the command to the low-level driver.
1795 		 */
1796 		cmd->scsi_done = scsi_done;
1797 		rtn = scsi_dispatch_cmd(cmd);
1798 		if (rtn) {
1799 			scsi_queue_insert(cmd, rtn);
1800 			spin_lock_irq(q->queue_lock);
1801 			goto out_delay;
1802 		}
1803 		spin_lock_irq(q->queue_lock);
1804 	}
1805 
1806 	return;
1807 
1808  host_not_ready:
1809 	if (scsi_target(sdev)->can_queue > 0)
1810 		atomic_dec(&scsi_target(sdev)->target_busy);
1811  not_ready:
1812 	/*
1813 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1814 	 * must return with queue_lock held.
1815 	 *
1816 	 * Decrementing device_busy without checking it is OK, as all such
1817 	 * cases (host limits or settings) should run the queue at some
1818 	 * later time.
1819 	 */
1820 	spin_lock_irq(q->queue_lock);
1821 	blk_requeue_request(q, req);
1822 	atomic_dec(&sdev->device_busy);
1823 out_delay:
1824 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1825 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1826 }
1827 
1828 static inline blk_status_t prep_to_mq(int ret)
1829 {
1830 	switch (ret) {
1831 	case BLKPREP_OK:
1832 		return BLK_STS_OK;
1833 	case BLKPREP_DEFER:
1834 		return BLK_STS_RESOURCE;
1835 	default:
1836 		return BLK_STS_IOERR;
1837 	}
1838 }
1839 
1840 static int scsi_mq_prep_fn(struct request *req)
1841 {
1842 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1843 	struct scsi_device *sdev = req->q->queuedata;
1844 	struct Scsi_Host *shost = sdev->host;
1845 	unsigned char *sense_buf = cmd->sense_buffer;
1846 	struct scatterlist *sg;
1847 
1848 	/* zero out the cmd, except for the embedded scsi_request */
1849 	memset((char *)cmd + sizeof(cmd->req), 0,
1850 		sizeof(*cmd) - sizeof(cmd->req) + shost->hostt->cmd_size);
1851 
1852 	req->special = cmd;
1853 
1854 	cmd->request = req;
1855 	cmd->device = sdev;
1856 	cmd->sense_buffer = sense_buf;
1857 
1858 	cmd->tag = req->tag;
1859 
1860 	cmd->prot_op = SCSI_PROT_NORMAL;
1861 
1862 	INIT_LIST_HEAD(&cmd->list);
1863 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1864 	cmd->jiffies_at_alloc = jiffies;
1865 
1866 	if (shost->use_cmd_list) {
1867 		spin_lock_irq(&sdev->list_lock);
1868 		list_add_tail(&cmd->list, &sdev->cmd_list);
1869 		spin_unlock_irq(&sdev->list_lock);
1870 	}
1871 
1872 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1873 	cmd->sdb.table.sgl = sg;
1874 
1875 	if (scsi_host_get_prot(shost)) {
1876 		cmd->prot_sdb = (void *)sg +
1877 			min_t(unsigned int,
1878 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1879 			sizeof(struct scatterlist);
1880 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1881 
1882 		cmd->prot_sdb->table.sgl =
1883 			(struct scatterlist *)(cmd->prot_sdb + 1);
1884 	}
1885 
1886 	if (blk_bidi_rq(req)) {
1887 		struct request *next_rq = req->next_rq;
1888 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1889 
1890 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1891 		bidi_sdb->table.sgl =
1892 			(struct scatterlist *)(bidi_sdb + 1);
1893 
1894 		next_rq->special = bidi_sdb;
1895 	}
1896 
1897 	blk_mq_start_request(req);
1898 
1899 	return scsi_setup_cmnd(sdev, req);
1900 }
1901 
1902 static void scsi_mq_done(struct scsi_cmnd *cmd)
1903 {
1904 	trace_scsi_dispatch_cmd_done(cmd);
1905 	blk_mq_complete_request(cmd->request);
1906 }
1907 
1908 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1909 			 const struct blk_mq_queue_data *bd)
1910 {
1911 	struct request *req = bd->rq;
1912 	struct request_queue *q = req->q;
1913 	struct scsi_device *sdev = q->queuedata;
1914 	struct Scsi_Host *shost = sdev->host;
1915 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1916 	blk_status_t ret;
1917 	int reason;
1918 
1919 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1920 	if (ret != BLK_STS_OK)
1921 		goto out;
1922 
1923 	ret = BLK_STS_RESOURCE;
1924 	if (!get_device(&sdev->sdev_gendev))
1925 		goto out;
1926 
1927 	if (!scsi_dev_queue_ready(q, sdev))
1928 		goto out_put_device;
1929 	if (!scsi_target_queue_ready(shost, sdev))
1930 		goto out_dec_device_busy;
1931 	if (!scsi_host_queue_ready(q, shost, sdev))
1932 		goto out_dec_target_busy;
1933 
1934 	if (!(req->rq_flags & RQF_DONTPREP)) {
1935 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1936 		if (ret != BLK_STS_OK)
1937 			goto out_dec_host_busy;
1938 		req->rq_flags |= RQF_DONTPREP;
1939 	} else {
1940 		blk_mq_start_request(req);
1941 	}
1942 
1943 	if (sdev->simple_tags)
1944 		cmd->flags |= SCMD_TAGGED;
1945 	else
1946 		cmd->flags &= ~SCMD_TAGGED;
1947 
1948 	scsi_init_cmd_errh(cmd);
1949 	cmd->scsi_done = scsi_mq_done;
1950 
1951 	reason = scsi_dispatch_cmd(cmd);
1952 	if (reason) {
1953 		scsi_set_blocked(cmd, reason);
1954 		ret = BLK_STS_RESOURCE;
1955 		goto out_dec_host_busy;
1956 	}
1957 
1958 	return BLK_STS_OK;
1959 
1960 out_dec_host_busy:
1961 	atomic_dec(&shost->host_busy);
1962 out_dec_target_busy:
1963 	if (scsi_target(sdev)->can_queue > 0)
1964 		atomic_dec(&scsi_target(sdev)->target_busy);
1965 out_dec_device_busy:
1966 	atomic_dec(&sdev->device_busy);
1967 out_put_device:
1968 	put_device(&sdev->sdev_gendev);
1969 out:
1970 	switch (ret) {
1971 	case BLK_STS_OK:
1972 		break;
1973 	case BLK_STS_RESOURCE:
1974 		if (atomic_read(&sdev->device_busy) == 0 &&
1975 		    !scsi_device_blocked(sdev))
1976 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1977 		break;
1978 	default:
1979 		/*
1980 		 * Make sure to release all allocated ressources when
1981 		 * we hit an error, as we will never see this command
1982 		 * again.
1983 		 */
1984 		if (req->rq_flags & RQF_DONTPREP)
1985 			scsi_mq_uninit_cmd(cmd);
1986 		break;
1987 	}
1988 	return ret;
1989 }
1990 
1991 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1992 		bool reserved)
1993 {
1994 	if (reserved)
1995 		return BLK_EH_RESET_TIMER;
1996 	return scsi_times_out(req);
1997 }
1998 
1999 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2000 		unsigned int hctx_idx, unsigned int numa_node)
2001 {
2002 	struct Scsi_Host *shost = set->driver_data;
2003 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2004 
2005 	cmd->sense_buffer =
2006 		scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2007 	if (!cmd->sense_buffer)
2008 		return -ENOMEM;
2009 	cmd->req.sense = cmd->sense_buffer;
2010 	return 0;
2011 }
2012 
2013 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2014 		unsigned int hctx_idx)
2015 {
2016 	struct Scsi_Host *shost = set->driver_data;
2017 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2018 
2019 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2020 }
2021 
2022 static int scsi_map_queues(struct blk_mq_tag_set *set)
2023 {
2024 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2025 
2026 	if (shost->hostt->map_queues)
2027 		return shost->hostt->map_queues(shost);
2028 	return blk_mq_map_queues(set);
2029 }
2030 
2031 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2032 {
2033 	struct device *host_dev;
2034 	u64 bounce_limit = 0xffffffff;
2035 
2036 	if (shost->unchecked_isa_dma)
2037 		return BLK_BOUNCE_ISA;
2038 	/*
2039 	 * Platforms with virtual-DMA translation
2040 	 * hardware have no practical limit.
2041 	 */
2042 	if (!PCI_DMA_BUS_IS_PHYS)
2043 		return BLK_BOUNCE_ANY;
2044 
2045 	host_dev = scsi_get_device(shost);
2046 	if (host_dev && host_dev->dma_mask)
2047 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2048 
2049 	return bounce_limit;
2050 }
2051 
2052 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2053 {
2054 	struct device *dev = shost->dma_dev;
2055 
2056 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2057 
2058 	/*
2059 	 * this limit is imposed by hardware restrictions
2060 	 */
2061 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2062 					SG_MAX_SEGMENTS));
2063 
2064 	if (scsi_host_prot_dma(shost)) {
2065 		shost->sg_prot_tablesize =
2066 			min_not_zero(shost->sg_prot_tablesize,
2067 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2068 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2069 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2070 	}
2071 
2072 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2073 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2074 	blk_queue_segment_boundary(q, shost->dma_boundary);
2075 	dma_set_seg_boundary(dev, shost->dma_boundary);
2076 
2077 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2078 
2079 	if (!shost->use_clustering)
2080 		q->limits.cluster = 0;
2081 
2082 	/*
2083 	 * set a reasonable default alignment on word boundaries: the
2084 	 * host and device may alter it using
2085 	 * blk_queue_update_dma_alignment() later.
2086 	 */
2087 	blk_queue_dma_alignment(q, 0x03);
2088 }
2089 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2090 
2091 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2092 {
2093 	struct Scsi_Host *shost = q->rq_alloc_data;
2094 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2095 
2096 	memset(cmd, 0, sizeof(*cmd));
2097 
2098 	cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2099 	if (!cmd->sense_buffer)
2100 		goto fail;
2101 	cmd->req.sense = cmd->sense_buffer;
2102 
2103 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2104 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2105 		if (!cmd->prot_sdb)
2106 			goto fail_free_sense;
2107 	}
2108 
2109 	return 0;
2110 
2111 fail_free_sense:
2112 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2113 fail:
2114 	return -ENOMEM;
2115 }
2116 
2117 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2118 {
2119 	struct Scsi_Host *shost = q->rq_alloc_data;
2120 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2121 
2122 	if (cmd->prot_sdb)
2123 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2124 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2125 }
2126 
2127 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2128 {
2129 	struct Scsi_Host *shost = sdev->host;
2130 	struct request_queue *q;
2131 
2132 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2133 	if (!q)
2134 		return NULL;
2135 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2136 	q->rq_alloc_data = shost;
2137 	q->request_fn = scsi_request_fn;
2138 	q->init_rq_fn = scsi_init_rq;
2139 	q->exit_rq_fn = scsi_exit_rq;
2140 	q->initialize_rq_fn = scsi_initialize_rq;
2141 
2142 	if (blk_init_allocated_queue(q) < 0) {
2143 		blk_cleanup_queue(q);
2144 		return NULL;
2145 	}
2146 
2147 	__scsi_init_queue(shost, q);
2148 	blk_queue_prep_rq(q, scsi_prep_fn);
2149 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2150 	blk_queue_softirq_done(q, scsi_softirq_done);
2151 	blk_queue_rq_timed_out(q, scsi_times_out);
2152 	blk_queue_lld_busy(q, scsi_lld_busy);
2153 	return q;
2154 }
2155 
2156 static const struct blk_mq_ops scsi_mq_ops = {
2157 	.queue_rq	= scsi_queue_rq,
2158 	.complete	= scsi_softirq_done,
2159 	.timeout	= scsi_timeout,
2160 #ifdef CONFIG_BLK_DEBUG_FS
2161 	.show_rq	= scsi_show_rq,
2162 #endif
2163 	.init_request	= scsi_init_request,
2164 	.exit_request	= scsi_exit_request,
2165 	.initialize_rq_fn = scsi_initialize_rq,
2166 	.map_queues	= scsi_map_queues,
2167 };
2168 
2169 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2170 {
2171 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2172 	if (IS_ERR(sdev->request_queue))
2173 		return NULL;
2174 
2175 	sdev->request_queue->queuedata = sdev;
2176 	__scsi_init_queue(sdev->host, sdev->request_queue);
2177 	return sdev->request_queue;
2178 }
2179 
2180 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2181 {
2182 	unsigned int cmd_size, sgl_size, tbl_size;
2183 
2184 	tbl_size = shost->sg_tablesize;
2185 	if (tbl_size > SG_CHUNK_SIZE)
2186 		tbl_size = SG_CHUNK_SIZE;
2187 	sgl_size = tbl_size * sizeof(struct scatterlist);
2188 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2189 	if (scsi_host_get_prot(shost))
2190 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2191 
2192 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2193 	shost->tag_set.ops = &scsi_mq_ops;
2194 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2195 	shost->tag_set.queue_depth = shost->can_queue;
2196 	shost->tag_set.cmd_size = cmd_size;
2197 	shost->tag_set.numa_node = NUMA_NO_NODE;
2198 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2199 	shost->tag_set.flags |=
2200 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2201 	shost->tag_set.driver_data = shost;
2202 
2203 	return blk_mq_alloc_tag_set(&shost->tag_set);
2204 }
2205 
2206 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2207 {
2208 	blk_mq_free_tag_set(&shost->tag_set);
2209 }
2210 
2211 /**
2212  * scsi_device_from_queue - return sdev associated with a request_queue
2213  * @q: The request queue to return the sdev from
2214  *
2215  * Return the sdev associated with a request queue or NULL if the
2216  * request_queue does not reference a SCSI device.
2217  */
2218 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2219 {
2220 	struct scsi_device *sdev = NULL;
2221 
2222 	if (q->mq_ops) {
2223 		if (q->mq_ops == &scsi_mq_ops)
2224 			sdev = q->queuedata;
2225 	} else if (q->request_fn == scsi_request_fn)
2226 		sdev = q->queuedata;
2227 	if (!sdev || !get_device(&sdev->sdev_gendev))
2228 		sdev = NULL;
2229 
2230 	return sdev;
2231 }
2232 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2233 
2234 /*
2235  * Function:    scsi_block_requests()
2236  *
2237  * Purpose:     Utility function used by low-level drivers to prevent further
2238  *		commands from being queued to the device.
2239  *
2240  * Arguments:   shost       - Host in question
2241  *
2242  * Returns:     Nothing
2243  *
2244  * Lock status: No locks are assumed held.
2245  *
2246  * Notes:       There is no timer nor any other means by which the requests
2247  *		get unblocked other than the low-level driver calling
2248  *		scsi_unblock_requests().
2249  */
2250 void scsi_block_requests(struct Scsi_Host *shost)
2251 {
2252 	shost->host_self_blocked = 1;
2253 }
2254 EXPORT_SYMBOL(scsi_block_requests);
2255 
2256 /*
2257  * Function:    scsi_unblock_requests()
2258  *
2259  * Purpose:     Utility function used by low-level drivers to allow further
2260  *		commands from being queued to the device.
2261  *
2262  * Arguments:   shost       - Host in question
2263  *
2264  * Returns:     Nothing
2265  *
2266  * Lock status: No locks are assumed held.
2267  *
2268  * Notes:       There is no timer nor any other means by which the requests
2269  *		get unblocked other than the low-level driver calling
2270  *		scsi_unblock_requests().
2271  *
2272  *		This is done as an API function so that changes to the
2273  *		internals of the scsi mid-layer won't require wholesale
2274  *		changes to drivers that use this feature.
2275  */
2276 void scsi_unblock_requests(struct Scsi_Host *shost)
2277 {
2278 	shost->host_self_blocked = 0;
2279 	scsi_run_host_queues(shost);
2280 }
2281 EXPORT_SYMBOL(scsi_unblock_requests);
2282 
2283 int __init scsi_init_queue(void)
2284 {
2285 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2286 					   sizeof(struct scsi_data_buffer),
2287 					   0, 0, NULL);
2288 	if (!scsi_sdb_cache) {
2289 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2290 		return -ENOMEM;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 void scsi_exit_queue(void)
2297 {
2298 	kmem_cache_destroy(scsi_sense_cache);
2299 	kmem_cache_destroy(scsi_sense_isadma_cache);
2300 	kmem_cache_destroy(scsi_sdb_cache);
2301 }
2302 
2303 /**
2304  *	scsi_mode_select - issue a mode select
2305  *	@sdev:	SCSI device to be queried
2306  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2307  *	@sp:	Save page bit (0 == don't save, 1 == save)
2308  *	@modepage: mode page being requested
2309  *	@buffer: request buffer (may not be smaller than eight bytes)
2310  *	@len:	length of request buffer.
2311  *	@timeout: command timeout
2312  *	@retries: number of retries before failing
2313  *	@data: returns a structure abstracting the mode header data
2314  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2315  *		must be SCSI_SENSE_BUFFERSIZE big.
2316  *
2317  *	Returns zero if successful; negative error number or scsi
2318  *	status on error
2319  *
2320  */
2321 int
2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2323 		 unsigned char *buffer, int len, int timeout, int retries,
2324 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2325 {
2326 	unsigned char cmd[10];
2327 	unsigned char *real_buffer;
2328 	int ret;
2329 
2330 	memset(cmd, 0, sizeof(cmd));
2331 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2332 
2333 	if (sdev->use_10_for_ms) {
2334 		if (len > 65535)
2335 			return -EINVAL;
2336 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2337 		if (!real_buffer)
2338 			return -ENOMEM;
2339 		memcpy(real_buffer + 8, buffer, len);
2340 		len += 8;
2341 		real_buffer[0] = 0;
2342 		real_buffer[1] = 0;
2343 		real_buffer[2] = data->medium_type;
2344 		real_buffer[3] = data->device_specific;
2345 		real_buffer[4] = data->longlba ? 0x01 : 0;
2346 		real_buffer[5] = 0;
2347 		real_buffer[6] = data->block_descriptor_length >> 8;
2348 		real_buffer[7] = data->block_descriptor_length;
2349 
2350 		cmd[0] = MODE_SELECT_10;
2351 		cmd[7] = len >> 8;
2352 		cmd[8] = len;
2353 	} else {
2354 		if (len > 255 || data->block_descriptor_length > 255 ||
2355 		    data->longlba)
2356 			return -EINVAL;
2357 
2358 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2359 		if (!real_buffer)
2360 			return -ENOMEM;
2361 		memcpy(real_buffer + 4, buffer, len);
2362 		len += 4;
2363 		real_buffer[0] = 0;
2364 		real_buffer[1] = data->medium_type;
2365 		real_buffer[2] = data->device_specific;
2366 		real_buffer[3] = data->block_descriptor_length;
2367 
2368 
2369 		cmd[0] = MODE_SELECT;
2370 		cmd[4] = len;
2371 	}
2372 
2373 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2374 			       sshdr, timeout, retries, NULL);
2375 	kfree(real_buffer);
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(scsi_mode_select);
2379 
2380 /**
2381  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2382  *	@sdev:	SCSI device to be queried
2383  *	@dbd:	set if mode sense will allow block descriptors to be returned
2384  *	@modepage: mode page being requested
2385  *	@buffer: request buffer (may not be smaller than eight bytes)
2386  *	@len:	length of request buffer.
2387  *	@timeout: command timeout
2388  *	@retries: number of retries before failing
2389  *	@data: returns a structure abstracting the mode header data
2390  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2391  *		must be SCSI_SENSE_BUFFERSIZE big.
2392  *
2393  *	Returns zero if unsuccessful, or the header offset (either 4
2394  *	or 8 depending on whether a six or ten byte command was
2395  *	issued) if successful.
2396  */
2397 int
2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2399 		  unsigned char *buffer, int len, int timeout, int retries,
2400 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401 {
2402 	unsigned char cmd[12];
2403 	int use_10_for_ms;
2404 	int header_length;
2405 	int result, retry_count = retries;
2406 	struct scsi_sense_hdr my_sshdr;
2407 
2408 	memset(data, 0, sizeof(*data));
2409 	memset(&cmd[0], 0, 12);
2410 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2411 	cmd[2] = modepage;
2412 
2413 	/* caller might not be interested in sense, but we need it */
2414 	if (!sshdr)
2415 		sshdr = &my_sshdr;
2416 
2417  retry:
2418 	use_10_for_ms = sdev->use_10_for_ms;
2419 
2420 	if (use_10_for_ms) {
2421 		if (len < 8)
2422 			len = 8;
2423 
2424 		cmd[0] = MODE_SENSE_10;
2425 		cmd[8] = len;
2426 		header_length = 8;
2427 	} else {
2428 		if (len < 4)
2429 			len = 4;
2430 
2431 		cmd[0] = MODE_SENSE;
2432 		cmd[4] = len;
2433 		header_length = 4;
2434 	}
2435 
2436 	memset(buffer, 0, len);
2437 
2438 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2439 				  sshdr, timeout, retries, NULL);
2440 
2441 	/* This code looks awful: what it's doing is making sure an
2442 	 * ILLEGAL REQUEST sense return identifies the actual command
2443 	 * byte as the problem.  MODE_SENSE commands can return
2444 	 * ILLEGAL REQUEST if the code page isn't supported */
2445 
2446 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2447 	    (driver_byte(result) & DRIVER_SENSE)) {
2448 		if (scsi_sense_valid(sshdr)) {
2449 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2450 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2451 				/*
2452 				 * Invalid command operation code
2453 				 */
2454 				sdev->use_10_for_ms = 0;
2455 				goto retry;
2456 			}
2457 		}
2458 	}
2459 
2460 	if(scsi_status_is_good(result)) {
2461 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2462 			     (modepage == 6 || modepage == 8))) {
2463 			/* Initio breakage? */
2464 			header_length = 0;
2465 			data->length = 13;
2466 			data->medium_type = 0;
2467 			data->device_specific = 0;
2468 			data->longlba = 0;
2469 			data->block_descriptor_length = 0;
2470 		} else if(use_10_for_ms) {
2471 			data->length = buffer[0]*256 + buffer[1] + 2;
2472 			data->medium_type = buffer[2];
2473 			data->device_specific = buffer[3];
2474 			data->longlba = buffer[4] & 0x01;
2475 			data->block_descriptor_length = buffer[6]*256
2476 				+ buffer[7];
2477 		} else {
2478 			data->length = buffer[0] + 1;
2479 			data->medium_type = buffer[1];
2480 			data->device_specific = buffer[2];
2481 			data->block_descriptor_length = buffer[3];
2482 		}
2483 		data->header_length = header_length;
2484 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2485 		   scsi_sense_valid(sshdr) &&
2486 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2487 		retry_count--;
2488 		goto retry;
2489 	}
2490 
2491 	return result;
2492 }
2493 EXPORT_SYMBOL(scsi_mode_sense);
2494 
2495 /**
2496  *	scsi_test_unit_ready - test if unit is ready
2497  *	@sdev:	scsi device to change the state of.
2498  *	@timeout: command timeout
2499  *	@retries: number of retries before failing
2500  *	@sshdr: outpout pointer for decoded sense information.
2501  *
2502  *	Returns zero if unsuccessful or an error if TUR failed.  For
2503  *	removable media, UNIT_ATTENTION sets ->changed flag.
2504  **/
2505 int
2506 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2507 		     struct scsi_sense_hdr *sshdr)
2508 {
2509 	char cmd[] = {
2510 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2511 	};
2512 	int result;
2513 
2514 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2515 	do {
2516 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2517 					  timeout, retries, NULL);
2518 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2519 		    sshdr->sense_key == UNIT_ATTENTION)
2520 			sdev->changed = 1;
2521 	} while (scsi_sense_valid(sshdr) &&
2522 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2523 
2524 	return result;
2525 }
2526 EXPORT_SYMBOL(scsi_test_unit_ready);
2527 
2528 /**
2529  *	scsi_device_set_state - Take the given device through the device state model.
2530  *	@sdev:	scsi device to change the state of.
2531  *	@state:	state to change to.
2532  *
2533  *	Returns zero if unsuccessful or an error if the requested
2534  *	transition is illegal.
2535  */
2536 int
2537 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2538 {
2539 	enum scsi_device_state oldstate = sdev->sdev_state;
2540 
2541 	if (state == oldstate)
2542 		return 0;
2543 
2544 	switch (state) {
2545 	case SDEV_CREATED:
2546 		switch (oldstate) {
2547 		case SDEV_CREATED_BLOCK:
2548 			break;
2549 		default:
2550 			goto illegal;
2551 		}
2552 		break;
2553 
2554 	case SDEV_RUNNING:
2555 		switch (oldstate) {
2556 		case SDEV_CREATED:
2557 		case SDEV_OFFLINE:
2558 		case SDEV_TRANSPORT_OFFLINE:
2559 		case SDEV_QUIESCE:
2560 		case SDEV_BLOCK:
2561 			break;
2562 		default:
2563 			goto illegal;
2564 		}
2565 		break;
2566 
2567 	case SDEV_QUIESCE:
2568 		switch (oldstate) {
2569 		case SDEV_RUNNING:
2570 		case SDEV_OFFLINE:
2571 		case SDEV_TRANSPORT_OFFLINE:
2572 			break;
2573 		default:
2574 			goto illegal;
2575 		}
2576 		break;
2577 
2578 	case SDEV_OFFLINE:
2579 	case SDEV_TRANSPORT_OFFLINE:
2580 		switch (oldstate) {
2581 		case SDEV_CREATED:
2582 		case SDEV_RUNNING:
2583 		case SDEV_QUIESCE:
2584 		case SDEV_BLOCK:
2585 			break;
2586 		default:
2587 			goto illegal;
2588 		}
2589 		break;
2590 
2591 	case SDEV_BLOCK:
2592 		switch (oldstate) {
2593 		case SDEV_RUNNING:
2594 		case SDEV_CREATED_BLOCK:
2595 			break;
2596 		default:
2597 			goto illegal;
2598 		}
2599 		break;
2600 
2601 	case SDEV_CREATED_BLOCK:
2602 		switch (oldstate) {
2603 		case SDEV_CREATED:
2604 			break;
2605 		default:
2606 			goto illegal;
2607 		}
2608 		break;
2609 
2610 	case SDEV_CANCEL:
2611 		switch (oldstate) {
2612 		case SDEV_CREATED:
2613 		case SDEV_RUNNING:
2614 		case SDEV_QUIESCE:
2615 		case SDEV_OFFLINE:
2616 		case SDEV_TRANSPORT_OFFLINE:
2617 		case SDEV_BLOCK:
2618 			break;
2619 		default:
2620 			goto illegal;
2621 		}
2622 		break;
2623 
2624 	case SDEV_DEL:
2625 		switch (oldstate) {
2626 		case SDEV_CREATED:
2627 		case SDEV_RUNNING:
2628 		case SDEV_OFFLINE:
2629 		case SDEV_TRANSPORT_OFFLINE:
2630 		case SDEV_CANCEL:
2631 		case SDEV_CREATED_BLOCK:
2632 			break;
2633 		default:
2634 			goto illegal;
2635 		}
2636 		break;
2637 
2638 	}
2639 	sdev->sdev_state = state;
2640 	return 0;
2641 
2642  illegal:
2643 	SCSI_LOG_ERROR_RECOVERY(1,
2644 				sdev_printk(KERN_ERR, sdev,
2645 					    "Illegal state transition %s->%s",
2646 					    scsi_device_state_name(oldstate),
2647 					    scsi_device_state_name(state))
2648 				);
2649 	return -EINVAL;
2650 }
2651 EXPORT_SYMBOL(scsi_device_set_state);
2652 
2653 /**
2654  * 	sdev_evt_emit - emit a single SCSI device uevent
2655  *	@sdev: associated SCSI device
2656  *	@evt: event to emit
2657  *
2658  *	Send a single uevent (scsi_event) to the associated scsi_device.
2659  */
2660 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2661 {
2662 	int idx = 0;
2663 	char *envp[3];
2664 
2665 	switch (evt->evt_type) {
2666 	case SDEV_EVT_MEDIA_CHANGE:
2667 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2668 		break;
2669 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2670 		scsi_rescan_device(&sdev->sdev_gendev);
2671 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2672 		break;
2673 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2674 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2675 		break;
2676 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2677 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2678 		break;
2679 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2681 		break;
2682 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2683 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2684 		break;
2685 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2686 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2687 		break;
2688 	default:
2689 		/* do nothing */
2690 		break;
2691 	}
2692 
2693 	envp[idx++] = NULL;
2694 
2695 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2696 }
2697 
2698 /**
2699  * 	sdev_evt_thread - send a uevent for each scsi event
2700  *	@work: work struct for scsi_device
2701  *
2702  *	Dispatch queued events to their associated scsi_device kobjects
2703  *	as uevents.
2704  */
2705 void scsi_evt_thread(struct work_struct *work)
2706 {
2707 	struct scsi_device *sdev;
2708 	enum scsi_device_event evt_type;
2709 	LIST_HEAD(event_list);
2710 
2711 	sdev = container_of(work, struct scsi_device, event_work);
2712 
2713 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2714 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2715 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2716 
2717 	while (1) {
2718 		struct scsi_event *evt;
2719 		struct list_head *this, *tmp;
2720 		unsigned long flags;
2721 
2722 		spin_lock_irqsave(&sdev->list_lock, flags);
2723 		list_splice_init(&sdev->event_list, &event_list);
2724 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2725 
2726 		if (list_empty(&event_list))
2727 			break;
2728 
2729 		list_for_each_safe(this, tmp, &event_list) {
2730 			evt = list_entry(this, struct scsi_event, node);
2731 			list_del(&evt->node);
2732 			scsi_evt_emit(sdev, evt);
2733 			kfree(evt);
2734 		}
2735 	}
2736 }
2737 
2738 /**
2739  * 	sdev_evt_send - send asserted event to uevent thread
2740  *	@sdev: scsi_device event occurred on
2741  *	@evt: event to send
2742  *
2743  *	Assert scsi device event asynchronously.
2744  */
2745 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2746 {
2747 	unsigned long flags;
2748 
2749 #if 0
2750 	/* FIXME: currently this check eliminates all media change events
2751 	 * for polled devices.  Need to update to discriminate between AN
2752 	 * and polled events */
2753 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2754 		kfree(evt);
2755 		return;
2756 	}
2757 #endif
2758 
2759 	spin_lock_irqsave(&sdev->list_lock, flags);
2760 	list_add_tail(&evt->node, &sdev->event_list);
2761 	schedule_work(&sdev->event_work);
2762 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2763 }
2764 EXPORT_SYMBOL_GPL(sdev_evt_send);
2765 
2766 /**
2767  * 	sdev_evt_alloc - allocate a new scsi event
2768  *	@evt_type: type of event to allocate
2769  *	@gfpflags: GFP flags for allocation
2770  *
2771  *	Allocates and returns a new scsi_event.
2772  */
2773 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2774 				  gfp_t gfpflags)
2775 {
2776 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2777 	if (!evt)
2778 		return NULL;
2779 
2780 	evt->evt_type = evt_type;
2781 	INIT_LIST_HEAD(&evt->node);
2782 
2783 	/* evt_type-specific initialization, if any */
2784 	switch (evt_type) {
2785 	case SDEV_EVT_MEDIA_CHANGE:
2786 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2787 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2788 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2789 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2790 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2791 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2792 	default:
2793 		/* do nothing */
2794 		break;
2795 	}
2796 
2797 	return evt;
2798 }
2799 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2800 
2801 /**
2802  * 	sdev_evt_send_simple - send asserted event to uevent thread
2803  *	@sdev: scsi_device event occurred on
2804  *	@evt_type: type of event to send
2805  *	@gfpflags: GFP flags for allocation
2806  *
2807  *	Assert scsi device event asynchronously, given an event type.
2808  */
2809 void sdev_evt_send_simple(struct scsi_device *sdev,
2810 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2811 {
2812 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2813 	if (!evt) {
2814 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2815 			    evt_type);
2816 		return;
2817 	}
2818 
2819 	sdev_evt_send(sdev, evt);
2820 }
2821 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2822 
2823 /**
2824  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2825  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2826  */
2827 static int scsi_request_fn_active(struct scsi_device *sdev)
2828 {
2829 	struct request_queue *q = sdev->request_queue;
2830 	int request_fn_active;
2831 
2832 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2833 
2834 	spin_lock_irq(q->queue_lock);
2835 	request_fn_active = q->request_fn_active;
2836 	spin_unlock_irq(q->queue_lock);
2837 
2838 	return request_fn_active;
2839 }
2840 
2841 /**
2842  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2843  * @sdev: SCSI device pointer.
2844  *
2845  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2846  * invoked from scsi_request_fn() have finished.
2847  */
2848 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2849 {
2850 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2851 
2852 	while (scsi_request_fn_active(sdev))
2853 		msleep(20);
2854 }
2855 
2856 /**
2857  *	scsi_device_quiesce - Block user issued commands.
2858  *	@sdev:	scsi device to quiesce.
2859  *
2860  *	This works by trying to transition to the SDEV_QUIESCE state
2861  *	(which must be a legal transition).  When the device is in this
2862  *	state, only special requests will be accepted, all others will
2863  *	be deferred.  Since special requests may also be requeued requests,
2864  *	a successful return doesn't guarantee the device will be
2865  *	totally quiescent.
2866  *
2867  *	Must be called with user context, may sleep.
2868  *
2869  *	Returns zero if unsuccessful or an error if not.
2870  */
2871 int
2872 scsi_device_quiesce(struct scsi_device *sdev)
2873 {
2874 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875 	if (err)
2876 		return err;
2877 
2878 	scsi_run_queue(sdev->request_queue);
2879 	while (atomic_read(&sdev->device_busy)) {
2880 		msleep_interruptible(200);
2881 		scsi_run_queue(sdev->request_queue);
2882 	}
2883 	return 0;
2884 }
2885 EXPORT_SYMBOL(scsi_device_quiesce);
2886 
2887 /**
2888  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2889  *	@sdev:	scsi device to resume.
2890  *
2891  *	Moves the device from quiesced back to running and restarts the
2892  *	queues.
2893  *
2894  *	Must be called with user context, may sleep.
2895  */
2896 void scsi_device_resume(struct scsi_device *sdev)
2897 {
2898 	/* check if the device state was mutated prior to resume, and if
2899 	 * so assume the state is being managed elsewhere (for example
2900 	 * device deleted during suspend)
2901 	 */
2902 	if (sdev->sdev_state != SDEV_QUIESCE ||
2903 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2904 		return;
2905 	scsi_run_queue(sdev->request_queue);
2906 }
2907 EXPORT_SYMBOL(scsi_device_resume);
2908 
2909 static void
2910 device_quiesce_fn(struct scsi_device *sdev, void *data)
2911 {
2912 	scsi_device_quiesce(sdev);
2913 }
2914 
2915 void
2916 scsi_target_quiesce(struct scsi_target *starget)
2917 {
2918 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2919 }
2920 EXPORT_SYMBOL(scsi_target_quiesce);
2921 
2922 static void
2923 device_resume_fn(struct scsi_device *sdev, void *data)
2924 {
2925 	scsi_device_resume(sdev);
2926 }
2927 
2928 void
2929 scsi_target_resume(struct scsi_target *starget)
2930 {
2931 	starget_for_each_device(starget, NULL, device_resume_fn);
2932 }
2933 EXPORT_SYMBOL(scsi_target_resume);
2934 
2935 /**
2936  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937  * @sdev:	device to block
2938  * @wait:	Whether or not to wait until ongoing .queuecommand() /
2939  *		.queue_rq() calls have finished.
2940  *
2941  * Block request made by scsi lld's to temporarily stop all
2942  * scsi commands on the specified device. May sleep.
2943  *
2944  * Returns zero if successful or error if not
2945  *
2946  * Notes:
2947  *	This routine transitions the device to the SDEV_BLOCK state
2948  *	(which must be a legal transition).  When the device is in this
2949  *	state, all commands are deferred until the scsi lld reenables
2950  *	the device with scsi_device_unblock or device_block_tmo fires.
2951  *
2952  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2953  * scsi_internal_device_block() has blocked a SCSI device and also
2954  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2955  */
2956 int
2957 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2958 {
2959 	struct request_queue *q = sdev->request_queue;
2960 	unsigned long flags;
2961 	int err = 0;
2962 
2963 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2964 	if (err) {
2965 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2966 
2967 		if (err)
2968 			return err;
2969 	}
2970 
2971 	/*
2972 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2973 	 * block layer from calling the midlayer with this device's
2974 	 * request queue.
2975 	 */
2976 	if (q->mq_ops) {
2977 		if (wait)
2978 			blk_mq_quiesce_queue(q);
2979 		else
2980 			blk_mq_quiesce_queue_nowait(q);
2981 	} else {
2982 		spin_lock_irqsave(q->queue_lock, flags);
2983 		blk_stop_queue(q);
2984 		spin_unlock_irqrestore(q->queue_lock, flags);
2985 		if (wait)
2986 			scsi_wait_for_queuecommand(sdev);
2987 	}
2988 
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2992 
2993 /**
2994  * scsi_internal_device_unblock - resume a device after a block request
2995  * @sdev:	device to resume
2996  * @new_state:	state to set devices to after unblocking
2997  *
2998  * Called by scsi lld's or the midlayer to restart the device queue
2999  * for the previously suspended scsi device.  Called from interrupt or
3000  * normal process context.
3001  *
3002  * Returns zero if successful or error if not.
3003  *
3004  * Notes:
3005  *	This routine transitions the device to the SDEV_RUNNING state
3006  *	or to one of the offline states (which must be a legal transition)
3007  *	allowing the midlayer to goose the queue for this device.
3008  */
3009 int
3010 scsi_internal_device_unblock(struct scsi_device *sdev,
3011 			     enum scsi_device_state new_state)
3012 {
3013 	struct request_queue *q = sdev->request_queue;
3014 	unsigned long flags;
3015 
3016 	/*
3017 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3018 	 * offlined states and goose the device queue if successful.
3019 	 */
3020 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3021 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3022 		sdev->sdev_state = new_state;
3023 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3024 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3025 		    new_state == SDEV_OFFLINE)
3026 			sdev->sdev_state = new_state;
3027 		else
3028 			sdev->sdev_state = SDEV_CREATED;
3029 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3030 		 sdev->sdev_state != SDEV_OFFLINE)
3031 		return -EINVAL;
3032 
3033 	if (q->mq_ops) {
3034 		blk_mq_unquiesce_queue(q);
3035 	} else {
3036 		spin_lock_irqsave(q->queue_lock, flags);
3037 		blk_start_queue(q);
3038 		spin_unlock_irqrestore(q->queue_lock, flags);
3039 	}
3040 
3041 	return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3044 
3045 static void
3046 device_block(struct scsi_device *sdev, void *data)
3047 {
3048 	scsi_internal_device_block(sdev, true);
3049 }
3050 
3051 static int
3052 target_block(struct device *dev, void *data)
3053 {
3054 	if (scsi_is_target_device(dev))
3055 		starget_for_each_device(to_scsi_target(dev), NULL,
3056 					device_block);
3057 	return 0;
3058 }
3059 
3060 void
3061 scsi_target_block(struct device *dev)
3062 {
3063 	if (scsi_is_target_device(dev))
3064 		starget_for_each_device(to_scsi_target(dev), NULL,
3065 					device_block);
3066 	else
3067 		device_for_each_child(dev, NULL, target_block);
3068 }
3069 EXPORT_SYMBOL_GPL(scsi_target_block);
3070 
3071 static void
3072 device_unblock(struct scsi_device *sdev, void *data)
3073 {
3074 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3075 }
3076 
3077 static int
3078 target_unblock(struct device *dev, void *data)
3079 {
3080 	if (scsi_is_target_device(dev))
3081 		starget_for_each_device(to_scsi_target(dev), data,
3082 					device_unblock);
3083 	return 0;
3084 }
3085 
3086 void
3087 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3088 {
3089 	if (scsi_is_target_device(dev))
3090 		starget_for_each_device(to_scsi_target(dev), &new_state,
3091 					device_unblock);
3092 	else
3093 		device_for_each_child(dev, &new_state, target_unblock);
3094 }
3095 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3096 
3097 /**
3098  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3099  * @sgl:	scatter-gather list
3100  * @sg_count:	number of segments in sg
3101  * @offset:	offset in bytes into sg, on return offset into the mapped area
3102  * @len:	bytes to map, on return number of bytes mapped
3103  *
3104  * Returns virtual address of the start of the mapped page
3105  */
3106 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3107 			  size_t *offset, size_t *len)
3108 {
3109 	int i;
3110 	size_t sg_len = 0, len_complete = 0;
3111 	struct scatterlist *sg;
3112 	struct page *page;
3113 
3114 	WARN_ON(!irqs_disabled());
3115 
3116 	for_each_sg(sgl, sg, sg_count, i) {
3117 		len_complete = sg_len; /* Complete sg-entries */
3118 		sg_len += sg->length;
3119 		if (sg_len > *offset)
3120 			break;
3121 	}
3122 
3123 	if (unlikely(i == sg_count)) {
3124 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3125 			"elements %d\n",
3126 		       __func__, sg_len, *offset, sg_count);
3127 		WARN_ON(1);
3128 		return NULL;
3129 	}
3130 
3131 	/* Offset starting from the beginning of first page in this sg-entry */
3132 	*offset = *offset - len_complete + sg->offset;
3133 
3134 	/* Assumption: contiguous pages can be accessed as "page + i" */
3135 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3136 	*offset &= ~PAGE_MASK;
3137 
3138 	/* Bytes in this sg-entry from *offset to the end of the page */
3139 	sg_len = PAGE_SIZE - *offset;
3140 	if (*len > sg_len)
3141 		*len = sg_len;
3142 
3143 	return kmap_atomic(page);
3144 }
3145 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3146 
3147 /**
3148  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3149  * @virt:	virtual address to be unmapped
3150  */
3151 void scsi_kunmap_atomic_sg(void *virt)
3152 {
3153 	kunmap_atomic(virt);
3154 }
3155 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3156 
3157 void sdev_disable_disk_events(struct scsi_device *sdev)
3158 {
3159 	atomic_inc(&sdev->disk_events_disable_depth);
3160 }
3161 EXPORT_SYMBOL(sdev_disable_disk_events);
3162 
3163 void sdev_enable_disk_events(struct scsi_device *sdev)
3164 {
3165 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3166 		return;
3167 	atomic_dec(&sdev->disk_events_disable_depth);
3168 }
3169 EXPORT_SYMBOL(sdev_enable_disk_events);
3170 
3171 /**
3172  * scsi_vpd_lun_id - return a unique device identification
3173  * @sdev: SCSI device
3174  * @id:   buffer for the identification
3175  * @id_len:  length of the buffer
3176  *
3177  * Copies a unique device identification into @id based
3178  * on the information in the VPD page 0x83 of the device.
3179  * The string will be formatted as a SCSI name string.
3180  *
3181  * Returns the length of the identification or error on failure.
3182  * If the identifier is longer than the supplied buffer the actual
3183  * identifier length is returned and the buffer is not zero-padded.
3184  */
3185 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3186 {
3187 	u8 cur_id_type = 0xff;
3188 	u8 cur_id_size = 0;
3189 	unsigned char *d, *cur_id_str;
3190 	unsigned char __rcu *vpd_pg83;
3191 	int id_size = -EINVAL;
3192 
3193 	rcu_read_lock();
3194 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3195 	if (!vpd_pg83) {
3196 		rcu_read_unlock();
3197 		return -ENXIO;
3198 	}
3199 
3200 	/*
3201 	 * Look for the correct descriptor.
3202 	 * Order of preference for lun descriptor:
3203 	 * - SCSI name string
3204 	 * - NAA IEEE Registered Extended
3205 	 * - EUI-64 based 16-byte
3206 	 * - EUI-64 based 12-byte
3207 	 * - NAA IEEE Registered
3208 	 * - NAA IEEE Extended
3209 	 * - T10 Vendor ID
3210 	 * as longer descriptors reduce the likelyhood
3211 	 * of identification clashes.
3212 	 */
3213 
3214 	/* The id string must be at least 20 bytes + terminating NULL byte */
3215 	if (id_len < 21) {
3216 		rcu_read_unlock();
3217 		return -EINVAL;
3218 	}
3219 
3220 	memset(id, 0, id_len);
3221 	d = vpd_pg83 + 4;
3222 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3223 		/* Skip designators not referring to the LUN */
3224 		if ((d[1] & 0x30) != 0x00)
3225 			goto next_desig;
3226 
3227 		switch (d[1] & 0xf) {
3228 		case 0x1:
3229 			/* T10 Vendor ID */
3230 			if (cur_id_size > d[3])
3231 				break;
3232 			/* Prefer anything */
3233 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3234 				break;
3235 			cur_id_size = d[3];
3236 			if (cur_id_size + 4 > id_len)
3237 				cur_id_size = id_len - 4;
3238 			cur_id_str = d + 4;
3239 			cur_id_type = d[1] & 0xf;
3240 			id_size = snprintf(id, id_len, "t10.%*pE",
3241 					   cur_id_size, cur_id_str);
3242 			break;
3243 		case 0x2:
3244 			/* EUI-64 */
3245 			if (cur_id_size > d[3])
3246 				break;
3247 			/* Prefer NAA IEEE Registered Extended */
3248 			if (cur_id_type == 0x3 &&
3249 			    cur_id_size == d[3])
3250 				break;
3251 			cur_id_size = d[3];
3252 			cur_id_str = d + 4;
3253 			cur_id_type = d[1] & 0xf;
3254 			switch (cur_id_size) {
3255 			case 8:
3256 				id_size = snprintf(id, id_len,
3257 						   "eui.%8phN",
3258 						   cur_id_str);
3259 				break;
3260 			case 12:
3261 				id_size = snprintf(id, id_len,
3262 						   "eui.%12phN",
3263 						   cur_id_str);
3264 				break;
3265 			case 16:
3266 				id_size = snprintf(id, id_len,
3267 						   "eui.%16phN",
3268 						   cur_id_str);
3269 				break;
3270 			default:
3271 				cur_id_size = 0;
3272 				break;
3273 			}
3274 			break;
3275 		case 0x3:
3276 			/* NAA */
3277 			if (cur_id_size > d[3])
3278 				break;
3279 			cur_id_size = d[3];
3280 			cur_id_str = d + 4;
3281 			cur_id_type = d[1] & 0xf;
3282 			switch (cur_id_size) {
3283 			case 8:
3284 				id_size = snprintf(id, id_len,
3285 						   "naa.%8phN",
3286 						   cur_id_str);
3287 				break;
3288 			case 16:
3289 				id_size = snprintf(id, id_len,
3290 						   "naa.%16phN",
3291 						   cur_id_str);
3292 				break;
3293 			default:
3294 				cur_id_size = 0;
3295 				break;
3296 			}
3297 			break;
3298 		case 0x8:
3299 			/* SCSI name string */
3300 			if (cur_id_size + 4 > d[3])
3301 				break;
3302 			/* Prefer others for truncated descriptor */
3303 			if (cur_id_size && d[3] > id_len)
3304 				break;
3305 			cur_id_size = id_size = d[3];
3306 			cur_id_str = d + 4;
3307 			cur_id_type = d[1] & 0xf;
3308 			if (cur_id_size >= id_len)
3309 				cur_id_size = id_len - 1;
3310 			memcpy(id, cur_id_str, cur_id_size);
3311 			/* Decrease priority for truncated descriptor */
3312 			if (cur_id_size != id_size)
3313 				cur_id_size = 6;
3314 			break;
3315 		default:
3316 			break;
3317 		}
3318 next_desig:
3319 		d += d[3] + 4;
3320 	}
3321 	rcu_read_unlock();
3322 
3323 	return id_size;
3324 }
3325 EXPORT_SYMBOL(scsi_vpd_lun_id);
3326 
3327 /*
3328  * scsi_vpd_tpg_id - return a target port group identifier
3329  * @sdev: SCSI device
3330  *
3331  * Returns the Target Port Group identifier from the information
3332  * froom VPD page 0x83 of the device.
3333  *
3334  * Returns the identifier or error on failure.
3335  */
3336 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3337 {
3338 	unsigned char *d;
3339 	unsigned char __rcu *vpd_pg83;
3340 	int group_id = -EAGAIN, rel_port = -1;
3341 
3342 	rcu_read_lock();
3343 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3344 	if (!vpd_pg83) {
3345 		rcu_read_unlock();
3346 		return -ENXIO;
3347 	}
3348 
3349 	d = sdev->vpd_pg83 + 4;
3350 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3351 		switch (d[1] & 0xf) {
3352 		case 0x4:
3353 			/* Relative target port */
3354 			rel_port = get_unaligned_be16(&d[6]);
3355 			break;
3356 		case 0x5:
3357 			/* Target port group */
3358 			group_id = get_unaligned_be16(&d[6]);
3359 			break;
3360 		default:
3361 			break;
3362 		}
3363 		d += d[3] + 4;
3364 	}
3365 	rcu_read_unlock();
3366 
3367 	if (group_id >= 0 && rel_id && rel_port != -1)
3368 		*rel_id = rel_port;
3369 
3370 	return group_id;
3371 }
3372 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3373