1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_dh.h> 34 35 #include <trace/events/scsi.h> 36 37 #include "scsi_priv.h" 38 #include "scsi_logging.h" 39 40 41 struct kmem_cache *scsi_sdb_cache; 42 43 /* 44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 45 * not change behaviour from the previous unplug mechanism, experimentation 46 * may prove this needs changing. 47 */ 48 #define SCSI_QUEUE_DELAY 3 49 50 static void 51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 52 { 53 struct Scsi_Host *host = cmd->device->host; 54 struct scsi_device *device = cmd->device; 55 struct scsi_target *starget = scsi_target(device); 56 57 /* 58 * Set the appropriate busy bit for the device/host. 59 * 60 * If the host/device isn't busy, assume that something actually 61 * completed, and that we should be able to queue a command now. 62 * 63 * Note that the prior mid-layer assumption that any host could 64 * always queue at least one command is now broken. The mid-layer 65 * will implement a user specifiable stall (see 66 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 67 * if a command is requeued with no other commands outstanding 68 * either for the device or for the host. 69 */ 70 switch (reason) { 71 case SCSI_MLQUEUE_HOST_BUSY: 72 atomic_set(&host->host_blocked, host->max_host_blocked); 73 break; 74 case SCSI_MLQUEUE_DEVICE_BUSY: 75 case SCSI_MLQUEUE_EH_RETRY: 76 atomic_set(&device->device_blocked, 77 device->max_device_blocked); 78 break; 79 case SCSI_MLQUEUE_TARGET_BUSY: 80 atomic_set(&starget->target_blocked, 81 starget->max_target_blocked); 82 break; 83 } 84 } 85 86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 87 { 88 struct scsi_device *sdev = cmd->device; 89 90 blk_mq_requeue_request(cmd->request, true); 91 put_device(&sdev->sdev_gendev); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct scsi_device *device = cmd->device; 109 struct request_queue *q = device->request_queue; 110 unsigned long flags; 111 112 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 113 "Inserting command %p into mlqueue\n", cmd)); 114 115 scsi_set_blocked(cmd, reason); 116 117 /* 118 * Decrement the counters, since these commands are no longer 119 * active on the host/device. 120 */ 121 if (unbusy) 122 scsi_device_unbusy(device); 123 124 /* 125 * Requeue this command. It will go before all other commands 126 * that are already in the queue. Schedule requeue work under 127 * lock such that the kblockd_schedule_work() call happens 128 * before blk_cleanup_queue() finishes. 129 */ 130 cmd->result = 0; 131 if (q->mq_ops) { 132 scsi_mq_requeue_cmd(cmd); 133 return; 134 } 135 spin_lock_irqsave(q->queue_lock, flags); 136 blk_requeue_request(q, cmd->request); 137 kblockd_schedule_work(&device->requeue_work); 138 spin_unlock_irqrestore(q->queue_lock, flags); 139 } 140 141 /* 142 * Function: scsi_queue_insert() 143 * 144 * Purpose: Insert a command in the midlevel queue. 145 * 146 * Arguments: cmd - command that we are adding to queue. 147 * reason - why we are inserting command to queue. 148 * 149 * Lock status: Assumed that lock is not held upon entry. 150 * 151 * Returns: Nothing. 152 * 153 * Notes: We do this for one of two cases. Either the host is busy 154 * and it cannot accept any more commands for the time being, 155 * or the device returned QUEUE_FULL and can accept no more 156 * commands. 157 * Notes: This could be called either from an interrupt context or a 158 * normal process context. 159 */ 160 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 161 { 162 __scsi_queue_insert(cmd, reason, 1); 163 } 164 165 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 166 int data_direction, void *buffer, unsigned bufflen, 167 unsigned char *sense, int timeout, int retries, u64 flags, 168 req_flags_t rq_flags, int *resid) 169 { 170 struct request *req; 171 int write = (data_direction == DMA_TO_DEVICE); 172 int ret = DRIVER_ERROR << 24; 173 174 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM); 175 if (IS_ERR(req)) 176 return ret; 177 blk_rq_set_block_pc(req); 178 179 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 180 buffer, bufflen, __GFP_RECLAIM)) 181 goto out; 182 183 req->cmd_len = COMMAND_SIZE(cmd[0]); 184 memcpy(req->cmd, cmd, req->cmd_len); 185 req->sense = sense; 186 req->sense_len = 0; 187 req->retries = retries; 188 req->timeout = timeout; 189 req->cmd_flags |= flags; 190 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 191 192 /* 193 * head injection *required* here otherwise quiesce won't work 194 */ 195 blk_execute_rq(req->q, NULL, req, 1); 196 197 /* 198 * Some devices (USB mass-storage in particular) may transfer 199 * garbage data together with a residue indicating that the data 200 * is invalid. Prevent the garbage from being misinterpreted 201 * and prevent security leaks by zeroing out the excess data. 202 */ 203 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 204 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 205 206 if (resid) 207 *resid = req->resid_len; 208 ret = req->errors; 209 out: 210 blk_put_request(req); 211 212 return ret; 213 } 214 215 /** 216 * scsi_execute - insert request and wait for the result 217 * @sdev: scsi device 218 * @cmd: scsi command 219 * @data_direction: data direction 220 * @buffer: data buffer 221 * @bufflen: len of buffer 222 * @sense: optional sense buffer 223 * @timeout: request timeout in seconds 224 * @retries: number of times to retry request 225 * @flags: or into request flags; 226 * @resid: optional residual length 227 * 228 * returns the req->errors value which is the scsi_cmnd result 229 * field. 230 */ 231 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 232 int data_direction, void *buffer, unsigned bufflen, 233 unsigned char *sense, int timeout, int retries, u64 flags, 234 int *resid) 235 { 236 return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, 237 timeout, retries, flags, 0, resid); 238 } 239 EXPORT_SYMBOL(scsi_execute); 240 241 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 242 int data_direction, void *buffer, unsigned bufflen, 243 struct scsi_sense_hdr *sshdr, int timeout, int retries, 244 int *resid, u64 flags, req_flags_t rq_flags) 245 { 246 char *sense = NULL; 247 int result; 248 249 if (sshdr) { 250 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 251 if (!sense) 252 return DRIVER_ERROR << 24; 253 } 254 result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 255 sense, timeout, retries, flags, rq_flags, resid); 256 if (sshdr) 257 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 258 259 kfree(sense); 260 return result; 261 } 262 EXPORT_SYMBOL(scsi_execute_req_flags); 263 264 /* 265 * Function: scsi_init_cmd_errh() 266 * 267 * Purpose: Initialize cmd fields related to error handling. 268 * 269 * Arguments: cmd - command that is ready to be queued. 270 * 271 * Notes: This function has the job of initializing a number of 272 * fields related to error handling. Typically this will 273 * be called once for each command, as required. 274 */ 275 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 276 { 277 cmd->serial_number = 0; 278 scsi_set_resid(cmd, 0); 279 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 280 if (cmd->cmd_len == 0) 281 cmd->cmd_len = scsi_command_size(cmd->cmnd); 282 } 283 284 void scsi_device_unbusy(struct scsi_device *sdev) 285 { 286 struct Scsi_Host *shost = sdev->host; 287 struct scsi_target *starget = scsi_target(sdev); 288 unsigned long flags; 289 290 atomic_dec(&shost->host_busy); 291 if (starget->can_queue > 0) 292 atomic_dec(&starget->target_busy); 293 294 if (unlikely(scsi_host_in_recovery(shost) && 295 (shost->host_failed || shost->host_eh_scheduled))) { 296 spin_lock_irqsave(shost->host_lock, flags); 297 scsi_eh_wakeup(shost); 298 spin_unlock_irqrestore(shost->host_lock, flags); 299 } 300 301 atomic_dec(&sdev->device_busy); 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 if (q->mq_ops) 307 blk_mq_start_hw_queues(q); 308 else 309 blk_run_queue(q); 310 } 311 312 /* 313 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 314 * and call blk_run_queue for all the scsi_devices on the target - 315 * including current_sdev first. 316 * 317 * Called with *no* scsi locks held. 318 */ 319 static void scsi_single_lun_run(struct scsi_device *current_sdev) 320 { 321 struct Scsi_Host *shost = current_sdev->host; 322 struct scsi_device *sdev, *tmp; 323 struct scsi_target *starget = scsi_target(current_sdev); 324 unsigned long flags; 325 326 spin_lock_irqsave(shost->host_lock, flags); 327 starget->starget_sdev_user = NULL; 328 spin_unlock_irqrestore(shost->host_lock, flags); 329 330 /* 331 * Call blk_run_queue for all LUNs on the target, starting with 332 * current_sdev. We race with others (to set starget_sdev_user), 333 * but in most cases, we will be first. Ideally, each LU on the 334 * target would get some limited time or requests on the target. 335 */ 336 scsi_kick_queue(current_sdev->request_queue); 337 338 spin_lock_irqsave(shost->host_lock, flags); 339 if (starget->starget_sdev_user) 340 goto out; 341 list_for_each_entry_safe(sdev, tmp, &starget->devices, 342 same_target_siblings) { 343 if (sdev == current_sdev) 344 continue; 345 if (scsi_device_get(sdev)) 346 continue; 347 348 spin_unlock_irqrestore(shost->host_lock, flags); 349 scsi_kick_queue(sdev->request_queue); 350 spin_lock_irqsave(shost->host_lock, flags); 351 352 scsi_device_put(sdev); 353 } 354 out: 355 spin_unlock_irqrestore(shost->host_lock, flags); 356 } 357 358 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 359 { 360 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 361 return true; 362 if (atomic_read(&sdev->device_blocked) > 0) 363 return true; 364 return false; 365 } 366 367 static inline bool scsi_target_is_busy(struct scsi_target *starget) 368 { 369 if (starget->can_queue > 0) { 370 if (atomic_read(&starget->target_busy) >= starget->can_queue) 371 return true; 372 if (atomic_read(&starget->target_blocked) > 0) 373 return true; 374 } 375 return false; 376 } 377 378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 379 { 380 if (shost->can_queue > 0 && 381 atomic_read(&shost->host_busy) >= shost->can_queue) 382 return true; 383 if (atomic_read(&shost->host_blocked) > 0) 384 return true; 385 if (shost->host_self_blocked) 386 return true; 387 return false; 388 } 389 390 static void scsi_starved_list_run(struct Scsi_Host *shost) 391 { 392 LIST_HEAD(starved_list); 393 struct scsi_device *sdev; 394 unsigned long flags; 395 396 spin_lock_irqsave(shost->host_lock, flags); 397 list_splice_init(&shost->starved_list, &starved_list); 398 399 while (!list_empty(&starved_list)) { 400 struct request_queue *slq; 401 402 /* 403 * As long as shost is accepting commands and we have 404 * starved queues, call blk_run_queue. scsi_request_fn 405 * drops the queue_lock and can add us back to the 406 * starved_list. 407 * 408 * host_lock protects the starved_list and starved_entry. 409 * scsi_request_fn must get the host_lock before checking 410 * or modifying starved_list or starved_entry. 411 */ 412 if (scsi_host_is_busy(shost)) 413 break; 414 415 sdev = list_entry(starved_list.next, 416 struct scsi_device, starved_entry); 417 list_del_init(&sdev->starved_entry); 418 if (scsi_target_is_busy(scsi_target(sdev))) { 419 list_move_tail(&sdev->starved_entry, 420 &shost->starved_list); 421 continue; 422 } 423 424 /* 425 * Once we drop the host lock, a racing scsi_remove_device() 426 * call may remove the sdev from the starved list and destroy 427 * it and the queue. Mitigate by taking a reference to the 428 * queue and never touching the sdev again after we drop the 429 * host lock. Note: if __scsi_remove_device() invokes 430 * blk_cleanup_queue() before the queue is run from this 431 * function then blk_run_queue() will return immediately since 432 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 433 */ 434 slq = sdev->request_queue; 435 if (!blk_get_queue(slq)) 436 continue; 437 spin_unlock_irqrestore(shost->host_lock, flags); 438 439 scsi_kick_queue(slq); 440 blk_put_queue(slq); 441 442 spin_lock_irqsave(shost->host_lock, flags); 443 } 444 /* put any unprocessed entries back */ 445 list_splice(&starved_list, &shost->starved_list); 446 spin_unlock_irqrestore(shost->host_lock, flags); 447 } 448 449 /* 450 * Function: scsi_run_queue() 451 * 452 * Purpose: Select a proper request queue to serve next 453 * 454 * Arguments: q - last request's queue 455 * 456 * Returns: Nothing 457 * 458 * Notes: The previous command was completely finished, start 459 * a new one if possible. 460 */ 461 static void scsi_run_queue(struct request_queue *q) 462 { 463 struct scsi_device *sdev = q->queuedata; 464 465 if (scsi_target(sdev)->single_lun) 466 scsi_single_lun_run(sdev); 467 if (!list_empty(&sdev->host->starved_list)) 468 scsi_starved_list_run(sdev->host); 469 470 if (q->mq_ops) 471 blk_mq_start_stopped_hw_queues(q, false); 472 else 473 blk_run_queue(q); 474 } 475 476 void scsi_requeue_run_queue(struct work_struct *work) 477 { 478 struct scsi_device *sdev; 479 struct request_queue *q; 480 481 sdev = container_of(work, struct scsi_device, requeue_work); 482 q = sdev->request_queue; 483 scsi_run_queue(q); 484 } 485 486 /* 487 * Function: scsi_requeue_command() 488 * 489 * Purpose: Handle post-processing of completed commands. 490 * 491 * Arguments: q - queue to operate on 492 * cmd - command that may need to be requeued. 493 * 494 * Returns: Nothing 495 * 496 * Notes: After command completion, there may be blocks left 497 * over which weren't finished by the previous command 498 * this can be for a number of reasons - the main one is 499 * I/O errors in the middle of the request, in which case 500 * we need to request the blocks that come after the bad 501 * sector. 502 * Notes: Upon return, cmd is a stale pointer. 503 */ 504 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 505 { 506 struct scsi_device *sdev = cmd->device; 507 struct request *req = cmd->request; 508 unsigned long flags; 509 510 spin_lock_irqsave(q->queue_lock, flags); 511 blk_unprep_request(req); 512 req->special = NULL; 513 scsi_put_command(cmd); 514 blk_requeue_request(q, req); 515 spin_unlock_irqrestore(q->queue_lock, flags); 516 517 scsi_run_queue(q); 518 519 put_device(&sdev->sdev_gendev); 520 } 521 522 void scsi_run_host_queues(struct Scsi_Host *shost) 523 { 524 struct scsi_device *sdev; 525 526 shost_for_each_device(sdev, shost) 527 scsi_run_queue(sdev->request_queue); 528 } 529 530 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 531 { 532 if (cmd->request->cmd_type == REQ_TYPE_FS) { 533 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 534 535 if (drv->uninit_command) 536 drv->uninit_command(cmd); 537 } 538 } 539 540 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 541 { 542 struct scsi_data_buffer *sdb; 543 544 if (cmd->sdb.table.nents) 545 sg_free_table_chained(&cmd->sdb.table, true); 546 if (cmd->request->next_rq) { 547 sdb = cmd->request->next_rq->special; 548 if (sdb) 549 sg_free_table_chained(&sdb->table, true); 550 } 551 if (scsi_prot_sg_count(cmd)) 552 sg_free_table_chained(&cmd->prot_sdb->table, true); 553 } 554 555 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 556 { 557 struct scsi_device *sdev = cmd->device; 558 struct Scsi_Host *shost = sdev->host; 559 unsigned long flags; 560 561 scsi_mq_free_sgtables(cmd); 562 scsi_uninit_cmd(cmd); 563 564 if (shost->use_cmd_list) { 565 BUG_ON(list_empty(&cmd->list)); 566 spin_lock_irqsave(&sdev->list_lock, flags); 567 list_del_init(&cmd->list); 568 spin_unlock_irqrestore(&sdev->list_lock, flags); 569 } 570 } 571 572 /* 573 * Function: scsi_release_buffers() 574 * 575 * Purpose: Free resources allocate for a scsi_command. 576 * 577 * Arguments: cmd - command that we are bailing. 578 * 579 * Lock status: Assumed that no lock is held upon entry. 580 * 581 * Returns: Nothing 582 * 583 * Notes: In the event that an upper level driver rejects a 584 * command, we must release resources allocated during 585 * the __init_io() function. Primarily this would involve 586 * the scatter-gather table. 587 */ 588 static void scsi_release_buffers(struct scsi_cmnd *cmd) 589 { 590 if (cmd->sdb.table.nents) 591 sg_free_table_chained(&cmd->sdb.table, false); 592 593 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 594 595 if (scsi_prot_sg_count(cmd)) 596 sg_free_table_chained(&cmd->prot_sdb->table, false); 597 } 598 599 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 600 { 601 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 602 603 sg_free_table_chained(&bidi_sdb->table, false); 604 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 605 cmd->request->next_rq->special = NULL; 606 } 607 608 static bool scsi_end_request(struct request *req, int error, 609 unsigned int bytes, unsigned int bidi_bytes) 610 { 611 struct scsi_cmnd *cmd = req->special; 612 struct scsi_device *sdev = cmd->device; 613 struct request_queue *q = sdev->request_queue; 614 615 if (blk_update_request(req, error, bytes)) 616 return true; 617 618 /* Bidi request must be completed as a whole */ 619 if (unlikely(bidi_bytes) && 620 blk_update_request(req->next_rq, error, bidi_bytes)) 621 return true; 622 623 if (blk_queue_add_random(q)) 624 add_disk_randomness(req->rq_disk); 625 626 if (req->mq_ctx) { 627 /* 628 * In the MQ case the command gets freed by __blk_mq_end_request, 629 * so we have to do all cleanup that depends on it earlier. 630 * 631 * We also can't kick the queues from irq context, so we 632 * will have to defer it to a workqueue. 633 */ 634 scsi_mq_uninit_cmd(cmd); 635 636 __blk_mq_end_request(req, error); 637 638 if (scsi_target(sdev)->single_lun || 639 !list_empty(&sdev->host->starved_list)) 640 kblockd_schedule_work(&sdev->requeue_work); 641 else 642 blk_mq_start_stopped_hw_queues(q, true); 643 } else { 644 unsigned long flags; 645 646 if (bidi_bytes) 647 scsi_release_bidi_buffers(cmd); 648 649 spin_lock_irqsave(q->queue_lock, flags); 650 blk_finish_request(req, error); 651 spin_unlock_irqrestore(q->queue_lock, flags); 652 653 scsi_release_buffers(cmd); 654 655 scsi_put_command(cmd); 656 scsi_run_queue(q); 657 } 658 659 put_device(&sdev->sdev_gendev); 660 return false; 661 } 662 663 /** 664 * __scsi_error_from_host_byte - translate SCSI error code into errno 665 * @cmd: SCSI command (unused) 666 * @result: scsi error code 667 * 668 * Translate SCSI error code into standard UNIX errno. 669 * Return values: 670 * -ENOLINK temporary transport failure 671 * -EREMOTEIO permanent target failure, do not retry 672 * -EBADE permanent nexus failure, retry on other path 673 * -ENOSPC No write space available 674 * -ENODATA Medium error 675 * -EIO unspecified I/O error 676 */ 677 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 678 { 679 int error = 0; 680 681 switch(host_byte(result)) { 682 case DID_TRANSPORT_FAILFAST: 683 error = -ENOLINK; 684 break; 685 case DID_TARGET_FAILURE: 686 set_host_byte(cmd, DID_OK); 687 error = -EREMOTEIO; 688 break; 689 case DID_NEXUS_FAILURE: 690 set_host_byte(cmd, DID_OK); 691 error = -EBADE; 692 break; 693 case DID_ALLOC_FAILURE: 694 set_host_byte(cmd, DID_OK); 695 error = -ENOSPC; 696 break; 697 case DID_MEDIUM_ERROR: 698 set_host_byte(cmd, DID_OK); 699 error = -ENODATA; 700 break; 701 default: 702 error = -EIO; 703 break; 704 } 705 706 return error; 707 } 708 709 /* 710 * Function: scsi_io_completion() 711 * 712 * Purpose: Completion processing for block device I/O requests. 713 * 714 * Arguments: cmd - command that is finished. 715 * 716 * Lock status: Assumed that no lock is held upon entry. 717 * 718 * Returns: Nothing 719 * 720 * Notes: We will finish off the specified number of sectors. If we 721 * are done, the command block will be released and the queue 722 * function will be goosed. If we are not done then we have to 723 * figure out what to do next: 724 * 725 * a) We can call scsi_requeue_command(). The request 726 * will be unprepared and put back on the queue. Then 727 * a new command will be created for it. This should 728 * be used if we made forward progress, or if we want 729 * to switch from READ(10) to READ(6) for example. 730 * 731 * b) We can call __scsi_queue_insert(). The request will 732 * be put back on the queue and retried using the same 733 * command as before, possibly after a delay. 734 * 735 * c) We can call scsi_end_request() with -EIO to fail 736 * the remainder of the request. 737 */ 738 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 739 { 740 int result = cmd->result; 741 struct request_queue *q = cmd->device->request_queue; 742 struct request *req = cmd->request; 743 int error = 0; 744 struct scsi_sense_hdr sshdr; 745 bool sense_valid = false; 746 int sense_deferred = 0, level = 0; 747 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 748 ACTION_DELAYED_RETRY} action; 749 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 750 751 if (result) { 752 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 753 if (sense_valid) 754 sense_deferred = scsi_sense_is_deferred(&sshdr); 755 } 756 757 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 758 if (result) { 759 if (sense_valid && req->sense) { 760 /* 761 * SG_IO wants current and deferred errors 762 */ 763 int len = 8 + cmd->sense_buffer[7]; 764 765 if (len > SCSI_SENSE_BUFFERSIZE) 766 len = SCSI_SENSE_BUFFERSIZE; 767 memcpy(req->sense, cmd->sense_buffer, len); 768 req->sense_len = len; 769 } 770 if (!sense_deferred) 771 error = __scsi_error_from_host_byte(cmd, result); 772 } 773 /* 774 * __scsi_error_from_host_byte may have reset the host_byte 775 */ 776 req->errors = cmd->result; 777 778 req->resid_len = scsi_get_resid(cmd); 779 780 if (scsi_bidi_cmnd(cmd)) { 781 /* 782 * Bidi commands Must be complete as a whole, 783 * both sides at once. 784 */ 785 req->next_rq->resid_len = scsi_in(cmd)->resid; 786 if (scsi_end_request(req, 0, blk_rq_bytes(req), 787 blk_rq_bytes(req->next_rq))) 788 BUG(); 789 return; 790 } 791 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 792 /* 793 * Certain non BLOCK_PC requests are commands that don't 794 * actually transfer anything (FLUSH), so cannot use 795 * good_bytes != blk_rq_bytes(req) as the signal for an error. 796 * This sets the error explicitly for the problem case. 797 */ 798 error = __scsi_error_from_host_byte(cmd, result); 799 } 800 801 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 802 BUG_ON(blk_bidi_rq(req)); 803 804 /* 805 * Next deal with any sectors which we were able to correctly 806 * handle. 807 */ 808 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 809 "%u sectors total, %d bytes done.\n", 810 blk_rq_sectors(req), good_bytes)); 811 812 /* 813 * Recovered errors need reporting, but they're always treated 814 * as success, so fiddle the result code here. For BLOCK_PC 815 * we already took a copy of the original into rq->errors which 816 * is what gets returned to the user 817 */ 818 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 819 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 820 * print since caller wants ATA registers. Only occurs on 821 * SCSI ATA PASS_THROUGH commands when CK_COND=1 822 */ 823 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 824 ; 825 else if (!(req->rq_flags & RQF_QUIET)) 826 scsi_print_sense(cmd); 827 result = 0; 828 /* BLOCK_PC may have set error */ 829 error = 0; 830 } 831 832 /* 833 * special case: failed zero length commands always need to 834 * drop down into the retry code. Otherwise, if we finished 835 * all bytes in the request we are done now. 836 */ 837 if (!(blk_rq_bytes(req) == 0 && error) && 838 !scsi_end_request(req, error, good_bytes, 0)) 839 return; 840 841 /* 842 * Kill remainder if no retrys. 843 */ 844 if (error && scsi_noretry_cmd(cmd)) { 845 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 846 BUG(); 847 return; 848 } 849 850 /* 851 * If there had been no error, but we have leftover bytes in the 852 * requeues just queue the command up again. 853 */ 854 if (result == 0) 855 goto requeue; 856 857 error = __scsi_error_from_host_byte(cmd, result); 858 859 if (host_byte(result) == DID_RESET) { 860 /* Third party bus reset or reset for error recovery 861 * reasons. Just retry the command and see what 862 * happens. 863 */ 864 action = ACTION_RETRY; 865 } else if (sense_valid && !sense_deferred) { 866 switch (sshdr.sense_key) { 867 case UNIT_ATTENTION: 868 if (cmd->device->removable) { 869 /* Detected disc change. Set a bit 870 * and quietly refuse further access. 871 */ 872 cmd->device->changed = 1; 873 action = ACTION_FAIL; 874 } else { 875 /* Must have been a power glitch, or a 876 * bus reset. Could not have been a 877 * media change, so we just retry the 878 * command and see what happens. 879 */ 880 action = ACTION_RETRY; 881 } 882 break; 883 case ILLEGAL_REQUEST: 884 /* If we had an ILLEGAL REQUEST returned, then 885 * we may have performed an unsupported 886 * command. The only thing this should be 887 * would be a ten byte read where only a six 888 * byte read was supported. Also, on a system 889 * where READ CAPACITY failed, we may have 890 * read past the end of the disk. 891 */ 892 if ((cmd->device->use_10_for_rw && 893 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 894 (cmd->cmnd[0] == READ_10 || 895 cmd->cmnd[0] == WRITE_10)) { 896 /* This will issue a new 6-byte command. */ 897 cmd->device->use_10_for_rw = 0; 898 action = ACTION_REPREP; 899 } else if (sshdr.asc == 0x10) /* DIX */ { 900 action = ACTION_FAIL; 901 error = -EILSEQ; 902 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 903 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 904 action = ACTION_FAIL; 905 error = -EREMOTEIO; 906 } else 907 action = ACTION_FAIL; 908 break; 909 case ABORTED_COMMAND: 910 action = ACTION_FAIL; 911 if (sshdr.asc == 0x10) /* DIF */ 912 error = -EILSEQ; 913 break; 914 case NOT_READY: 915 /* If the device is in the process of becoming 916 * ready, or has a temporary blockage, retry. 917 */ 918 if (sshdr.asc == 0x04) { 919 switch (sshdr.ascq) { 920 case 0x01: /* becoming ready */ 921 case 0x04: /* format in progress */ 922 case 0x05: /* rebuild in progress */ 923 case 0x06: /* recalculation in progress */ 924 case 0x07: /* operation in progress */ 925 case 0x08: /* Long write in progress */ 926 case 0x09: /* self test in progress */ 927 case 0x14: /* space allocation in progress */ 928 action = ACTION_DELAYED_RETRY; 929 break; 930 default: 931 action = ACTION_FAIL; 932 break; 933 } 934 } else 935 action = ACTION_FAIL; 936 break; 937 case VOLUME_OVERFLOW: 938 /* See SSC3rXX or current. */ 939 action = ACTION_FAIL; 940 break; 941 default: 942 action = ACTION_FAIL; 943 break; 944 } 945 } else 946 action = ACTION_FAIL; 947 948 if (action != ACTION_FAIL && 949 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 950 action = ACTION_FAIL; 951 952 switch (action) { 953 case ACTION_FAIL: 954 /* Give up and fail the remainder of the request */ 955 if (!(req->rq_flags & RQF_QUIET)) { 956 static DEFINE_RATELIMIT_STATE(_rs, 957 DEFAULT_RATELIMIT_INTERVAL, 958 DEFAULT_RATELIMIT_BURST); 959 960 if (unlikely(scsi_logging_level)) 961 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 962 SCSI_LOG_MLCOMPLETE_BITS); 963 964 /* 965 * if logging is enabled the failure will be printed 966 * in scsi_log_completion(), so avoid duplicate messages 967 */ 968 if (!level && __ratelimit(&_rs)) { 969 scsi_print_result(cmd, NULL, FAILED); 970 if (driver_byte(result) & DRIVER_SENSE) 971 scsi_print_sense(cmd); 972 scsi_print_command(cmd); 973 } 974 } 975 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 976 return; 977 /*FALLTHRU*/ 978 case ACTION_REPREP: 979 requeue: 980 /* Unprep the request and put it back at the head of the queue. 981 * A new command will be prepared and issued. 982 */ 983 if (q->mq_ops) { 984 cmd->request->rq_flags &= ~RQF_DONTPREP; 985 scsi_mq_uninit_cmd(cmd); 986 scsi_mq_requeue_cmd(cmd); 987 } else { 988 scsi_release_buffers(cmd); 989 scsi_requeue_command(q, cmd); 990 } 991 break; 992 case ACTION_RETRY: 993 /* Retry the same command immediately */ 994 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 995 break; 996 case ACTION_DELAYED_RETRY: 997 /* Retry the same command after a delay */ 998 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 999 break; 1000 } 1001 } 1002 1003 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1004 { 1005 int count; 1006 1007 /* 1008 * If sg table allocation fails, requeue request later. 1009 */ 1010 if (unlikely(sg_alloc_table_chained(&sdb->table, 1011 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1012 return BLKPREP_DEFER; 1013 1014 /* 1015 * Next, walk the list, and fill in the addresses and sizes of 1016 * each segment. 1017 */ 1018 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1019 BUG_ON(count > sdb->table.nents); 1020 sdb->table.nents = count; 1021 sdb->length = blk_rq_payload_bytes(req); 1022 return BLKPREP_OK; 1023 } 1024 1025 /* 1026 * Function: scsi_init_io() 1027 * 1028 * Purpose: SCSI I/O initialize function. 1029 * 1030 * Arguments: cmd - Command descriptor we wish to initialize 1031 * 1032 * Returns: 0 on success 1033 * BLKPREP_DEFER if the failure is retryable 1034 * BLKPREP_KILL if the failure is fatal 1035 */ 1036 int scsi_init_io(struct scsi_cmnd *cmd) 1037 { 1038 struct scsi_device *sdev = cmd->device; 1039 struct request *rq = cmd->request; 1040 bool is_mq = (rq->mq_ctx != NULL); 1041 int error; 1042 1043 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1044 return -EINVAL; 1045 1046 error = scsi_init_sgtable(rq, &cmd->sdb); 1047 if (error) 1048 goto err_exit; 1049 1050 if (blk_bidi_rq(rq)) { 1051 if (!rq->q->mq_ops) { 1052 struct scsi_data_buffer *bidi_sdb = 1053 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1054 if (!bidi_sdb) { 1055 error = BLKPREP_DEFER; 1056 goto err_exit; 1057 } 1058 1059 rq->next_rq->special = bidi_sdb; 1060 } 1061 1062 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1063 if (error) 1064 goto err_exit; 1065 } 1066 1067 if (blk_integrity_rq(rq)) { 1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1069 int ivecs, count; 1070 1071 if (prot_sdb == NULL) { 1072 /* 1073 * This can happen if someone (e.g. multipath) 1074 * queues a command to a device on an adapter 1075 * that does not support DIX. 1076 */ 1077 WARN_ON_ONCE(1); 1078 error = BLKPREP_KILL; 1079 goto err_exit; 1080 } 1081 1082 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1083 1084 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1085 prot_sdb->table.sgl)) { 1086 error = BLKPREP_DEFER; 1087 goto err_exit; 1088 } 1089 1090 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1091 prot_sdb->table.sgl); 1092 BUG_ON(unlikely(count > ivecs)); 1093 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1094 1095 cmd->prot_sdb = prot_sdb; 1096 cmd->prot_sdb->table.nents = count; 1097 } 1098 1099 return BLKPREP_OK; 1100 err_exit: 1101 if (is_mq) { 1102 scsi_mq_free_sgtables(cmd); 1103 } else { 1104 scsi_release_buffers(cmd); 1105 cmd->request->special = NULL; 1106 scsi_put_command(cmd); 1107 put_device(&sdev->sdev_gendev); 1108 } 1109 return error; 1110 } 1111 EXPORT_SYMBOL(scsi_init_io); 1112 1113 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1114 struct request *req) 1115 { 1116 struct scsi_cmnd *cmd; 1117 1118 if (!req->special) { 1119 /* Bail if we can't get a reference to the device */ 1120 if (!get_device(&sdev->sdev_gendev)) 1121 return NULL; 1122 1123 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1124 if (unlikely(!cmd)) { 1125 put_device(&sdev->sdev_gendev); 1126 return NULL; 1127 } 1128 req->special = cmd; 1129 } else { 1130 cmd = req->special; 1131 } 1132 1133 /* pull a tag out of the request if we have one */ 1134 cmd->tag = req->tag; 1135 cmd->request = req; 1136 1137 cmd->cmnd = req->cmd; 1138 cmd->prot_op = SCSI_PROT_NORMAL; 1139 1140 return cmd; 1141 } 1142 1143 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1144 { 1145 struct scsi_cmnd *cmd = req->special; 1146 1147 /* 1148 * BLOCK_PC requests may transfer data, in which case they must 1149 * a bio attached to them. Or they might contain a SCSI command 1150 * that does not transfer data, in which case they may optionally 1151 * submit a request without an attached bio. 1152 */ 1153 if (req->bio) { 1154 int ret = scsi_init_io(cmd); 1155 if (unlikely(ret)) 1156 return ret; 1157 } else { 1158 BUG_ON(blk_rq_bytes(req)); 1159 1160 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1161 } 1162 1163 cmd->cmd_len = req->cmd_len; 1164 cmd->transfersize = blk_rq_bytes(req); 1165 cmd->allowed = req->retries; 1166 return BLKPREP_OK; 1167 } 1168 1169 /* 1170 * Setup a REQ_TYPE_FS command. These are simple request from filesystems 1171 * that still need to be translated to SCSI CDBs from the ULD. 1172 */ 1173 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1174 { 1175 struct scsi_cmnd *cmd = req->special; 1176 1177 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1178 int ret = sdev->handler->prep_fn(sdev, req); 1179 if (ret != BLKPREP_OK) 1180 return ret; 1181 } 1182 1183 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1184 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1185 } 1186 1187 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1188 { 1189 struct scsi_cmnd *cmd = req->special; 1190 1191 if (!blk_rq_bytes(req)) 1192 cmd->sc_data_direction = DMA_NONE; 1193 else if (rq_data_dir(req) == WRITE) 1194 cmd->sc_data_direction = DMA_TO_DEVICE; 1195 else 1196 cmd->sc_data_direction = DMA_FROM_DEVICE; 1197 1198 switch (req->cmd_type) { 1199 case REQ_TYPE_FS: 1200 return scsi_setup_fs_cmnd(sdev, req); 1201 case REQ_TYPE_BLOCK_PC: 1202 return scsi_setup_blk_pc_cmnd(sdev, req); 1203 default: 1204 return BLKPREP_KILL; 1205 } 1206 } 1207 1208 static int 1209 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1210 { 1211 int ret = BLKPREP_OK; 1212 1213 /* 1214 * If the device is not in running state we will reject some 1215 * or all commands. 1216 */ 1217 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1218 switch (sdev->sdev_state) { 1219 case SDEV_OFFLINE: 1220 case SDEV_TRANSPORT_OFFLINE: 1221 /* 1222 * If the device is offline we refuse to process any 1223 * commands. The device must be brought online 1224 * before trying any recovery commands. 1225 */ 1226 sdev_printk(KERN_ERR, sdev, 1227 "rejecting I/O to offline device\n"); 1228 ret = BLKPREP_KILL; 1229 break; 1230 case SDEV_DEL: 1231 /* 1232 * If the device is fully deleted, we refuse to 1233 * process any commands as well. 1234 */ 1235 sdev_printk(KERN_ERR, sdev, 1236 "rejecting I/O to dead device\n"); 1237 ret = BLKPREP_KILL; 1238 break; 1239 case SDEV_BLOCK: 1240 case SDEV_CREATED_BLOCK: 1241 ret = BLKPREP_DEFER; 1242 break; 1243 case SDEV_QUIESCE: 1244 /* 1245 * If the devices is blocked we defer normal commands. 1246 */ 1247 if (!(req->rq_flags & RQF_PREEMPT)) 1248 ret = BLKPREP_DEFER; 1249 break; 1250 default: 1251 /* 1252 * For any other not fully online state we only allow 1253 * special commands. In particular any user initiated 1254 * command is not allowed. 1255 */ 1256 if (!(req->rq_flags & RQF_PREEMPT)) 1257 ret = BLKPREP_KILL; 1258 break; 1259 } 1260 } 1261 return ret; 1262 } 1263 1264 static int 1265 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1266 { 1267 struct scsi_device *sdev = q->queuedata; 1268 1269 switch (ret) { 1270 case BLKPREP_KILL: 1271 case BLKPREP_INVALID: 1272 req->errors = DID_NO_CONNECT << 16; 1273 /* release the command and kill it */ 1274 if (req->special) { 1275 struct scsi_cmnd *cmd = req->special; 1276 scsi_release_buffers(cmd); 1277 scsi_put_command(cmd); 1278 put_device(&sdev->sdev_gendev); 1279 req->special = NULL; 1280 } 1281 break; 1282 case BLKPREP_DEFER: 1283 /* 1284 * If we defer, the blk_peek_request() returns NULL, but the 1285 * queue must be restarted, so we schedule a callback to happen 1286 * shortly. 1287 */ 1288 if (atomic_read(&sdev->device_busy) == 0) 1289 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1290 break; 1291 default: 1292 req->rq_flags |= RQF_DONTPREP; 1293 } 1294 1295 return ret; 1296 } 1297 1298 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1299 { 1300 struct scsi_device *sdev = q->queuedata; 1301 struct scsi_cmnd *cmd; 1302 int ret; 1303 1304 ret = scsi_prep_state_check(sdev, req); 1305 if (ret != BLKPREP_OK) 1306 goto out; 1307 1308 cmd = scsi_get_cmd_from_req(sdev, req); 1309 if (unlikely(!cmd)) { 1310 ret = BLKPREP_DEFER; 1311 goto out; 1312 } 1313 1314 ret = scsi_setup_cmnd(sdev, req); 1315 out: 1316 return scsi_prep_return(q, req, ret); 1317 } 1318 1319 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1320 { 1321 scsi_uninit_cmd(req->special); 1322 } 1323 1324 /* 1325 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1326 * return 0. 1327 * 1328 * Called with the queue_lock held. 1329 */ 1330 static inline int scsi_dev_queue_ready(struct request_queue *q, 1331 struct scsi_device *sdev) 1332 { 1333 unsigned int busy; 1334 1335 busy = atomic_inc_return(&sdev->device_busy) - 1; 1336 if (atomic_read(&sdev->device_blocked)) { 1337 if (busy) 1338 goto out_dec; 1339 1340 /* 1341 * unblock after device_blocked iterates to zero 1342 */ 1343 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1344 /* 1345 * For the MQ case we take care of this in the caller. 1346 */ 1347 if (!q->mq_ops) 1348 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1349 goto out_dec; 1350 } 1351 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1352 "unblocking device at zero depth\n")); 1353 } 1354 1355 if (busy >= sdev->queue_depth) 1356 goto out_dec; 1357 1358 return 1; 1359 out_dec: 1360 atomic_dec(&sdev->device_busy); 1361 return 0; 1362 } 1363 1364 /* 1365 * scsi_target_queue_ready: checks if there we can send commands to target 1366 * @sdev: scsi device on starget to check. 1367 */ 1368 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1369 struct scsi_device *sdev) 1370 { 1371 struct scsi_target *starget = scsi_target(sdev); 1372 unsigned int busy; 1373 1374 if (starget->single_lun) { 1375 spin_lock_irq(shost->host_lock); 1376 if (starget->starget_sdev_user && 1377 starget->starget_sdev_user != sdev) { 1378 spin_unlock_irq(shost->host_lock); 1379 return 0; 1380 } 1381 starget->starget_sdev_user = sdev; 1382 spin_unlock_irq(shost->host_lock); 1383 } 1384 1385 if (starget->can_queue <= 0) 1386 return 1; 1387 1388 busy = atomic_inc_return(&starget->target_busy) - 1; 1389 if (atomic_read(&starget->target_blocked) > 0) { 1390 if (busy) 1391 goto starved; 1392 1393 /* 1394 * unblock after target_blocked iterates to zero 1395 */ 1396 if (atomic_dec_return(&starget->target_blocked) > 0) 1397 goto out_dec; 1398 1399 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1400 "unblocking target at zero depth\n")); 1401 } 1402 1403 if (busy >= starget->can_queue) 1404 goto starved; 1405 1406 return 1; 1407 1408 starved: 1409 spin_lock_irq(shost->host_lock); 1410 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1411 spin_unlock_irq(shost->host_lock); 1412 out_dec: 1413 if (starget->can_queue > 0) 1414 atomic_dec(&starget->target_busy); 1415 return 0; 1416 } 1417 1418 /* 1419 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1420 * return 0. We must end up running the queue again whenever 0 is 1421 * returned, else IO can hang. 1422 */ 1423 static inline int scsi_host_queue_ready(struct request_queue *q, 1424 struct Scsi_Host *shost, 1425 struct scsi_device *sdev) 1426 { 1427 unsigned int busy; 1428 1429 if (scsi_host_in_recovery(shost)) 1430 return 0; 1431 1432 busy = atomic_inc_return(&shost->host_busy) - 1; 1433 if (atomic_read(&shost->host_blocked) > 0) { 1434 if (busy) 1435 goto starved; 1436 1437 /* 1438 * unblock after host_blocked iterates to zero 1439 */ 1440 if (atomic_dec_return(&shost->host_blocked) > 0) 1441 goto out_dec; 1442 1443 SCSI_LOG_MLQUEUE(3, 1444 shost_printk(KERN_INFO, shost, 1445 "unblocking host at zero depth\n")); 1446 } 1447 1448 if (shost->can_queue > 0 && busy >= shost->can_queue) 1449 goto starved; 1450 if (shost->host_self_blocked) 1451 goto starved; 1452 1453 /* We're OK to process the command, so we can't be starved */ 1454 if (!list_empty(&sdev->starved_entry)) { 1455 spin_lock_irq(shost->host_lock); 1456 if (!list_empty(&sdev->starved_entry)) 1457 list_del_init(&sdev->starved_entry); 1458 spin_unlock_irq(shost->host_lock); 1459 } 1460 1461 return 1; 1462 1463 starved: 1464 spin_lock_irq(shost->host_lock); 1465 if (list_empty(&sdev->starved_entry)) 1466 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1467 spin_unlock_irq(shost->host_lock); 1468 out_dec: 1469 atomic_dec(&shost->host_busy); 1470 return 0; 1471 } 1472 1473 /* 1474 * Busy state exporting function for request stacking drivers. 1475 * 1476 * For efficiency, no lock is taken to check the busy state of 1477 * shost/starget/sdev, since the returned value is not guaranteed and 1478 * may be changed after request stacking drivers call the function, 1479 * regardless of taking lock or not. 1480 * 1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1482 * needs to return 'not busy'. Otherwise, request stacking drivers 1483 * may hold requests forever. 1484 */ 1485 static int scsi_lld_busy(struct request_queue *q) 1486 { 1487 struct scsi_device *sdev = q->queuedata; 1488 struct Scsi_Host *shost; 1489 1490 if (blk_queue_dying(q)) 1491 return 0; 1492 1493 shost = sdev->host; 1494 1495 /* 1496 * Ignore host/starget busy state. 1497 * Since block layer does not have a concept of fairness across 1498 * multiple queues, congestion of host/starget needs to be handled 1499 * in SCSI layer. 1500 */ 1501 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1502 return 1; 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * Kill a request for a dead device 1509 */ 1510 static void scsi_kill_request(struct request *req, struct request_queue *q) 1511 { 1512 struct scsi_cmnd *cmd = req->special; 1513 struct scsi_device *sdev; 1514 struct scsi_target *starget; 1515 struct Scsi_Host *shost; 1516 1517 blk_start_request(req); 1518 1519 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1520 1521 sdev = cmd->device; 1522 starget = scsi_target(sdev); 1523 shost = sdev->host; 1524 scsi_init_cmd_errh(cmd); 1525 cmd->result = DID_NO_CONNECT << 16; 1526 atomic_inc(&cmd->device->iorequest_cnt); 1527 1528 /* 1529 * SCSI request completion path will do scsi_device_unbusy(), 1530 * bump busy counts. To bump the counters, we need to dance 1531 * with the locks as normal issue path does. 1532 */ 1533 atomic_inc(&sdev->device_busy); 1534 atomic_inc(&shost->host_busy); 1535 if (starget->can_queue > 0) 1536 atomic_inc(&starget->target_busy); 1537 1538 blk_complete_request(req); 1539 } 1540 1541 static void scsi_softirq_done(struct request *rq) 1542 { 1543 struct scsi_cmnd *cmd = rq->special; 1544 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1545 int disposition; 1546 1547 INIT_LIST_HEAD(&cmd->eh_entry); 1548 1549 atomic_inc(&cmd->device->iodone_cnt); 1550 if (cmd->result) 1551 atomic_inc(&cmd->device->ioerr_cnt); 1552 1553 disposition = scsi_decide_disposition(cmd); 1554 if (disposition != SUCCESS && 1555 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1556 sdev_printk(KERN_ERR, cmd->device, 1557 "timing out command, waited %lus\n", 1558 wait_for/HZ); 1559 disposition = SUCCESS; 1560 } 1561 1562 scsi_log_completion(cmd, disposition); 1563 1564 switch (disposition) { 1565 case SUCCESS: 1566 scsi_finish_command(cmd); 1567 break; 1568 case NEEDS_RETRY: 1569 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1570 break; 1571 case ADD_TO_MLQUEUE: 1572 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1573 break; 1574 default: 1575 if (!scsi_eh_scmd_add(cmd, 0)) 1576 scsi_finish_command(cmd); 1577 } 1578 } 1579 1580 /** 1581 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1582 * @cmd: command block we are dispatching. 1583 * 1584 * Return: nonzero return request was rejected and device's queue needs to be 1585 * plugged. 1586 */ 1587 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1588 { 1589 struct Scsi_Host *host = cmd->device->host; 1590 int rtn = 0; 1591 1592 atomic_inc(&cmd->device->iorequest_cnt); 1593 1594 /* check if the device is still usable */ 1595 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1596 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1597 * returns an immediate error upwards, and signals 1598 * that the device is no longer present */ 1599 cmd->result = DID_NO_CONNECT << 16; 1600 goto done; 1601 } 1602 1603 /* Check to see if the scsi lld made this device blocked. */ 1604 if (unlikely(scsi_device_blocked(cmd->device))) { 1605 /* 1606 * in blocked state, the command is just put back on 1607 * the device queue. The suspend state has already 1608 * blocked the queue so future requests should not 1609 * occur until the device transitions out of the 1610 * suspend state. 1611 */ 1612 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1613 "queuecommand : device blocked\n")); 1614 return SCSI_MLQUEUE_DEVICE_BUSY; 1615 } 1616 1617 /* Store the LUN value in cmnd, if needed. */ 1618 if (cmd->device->lun_in_cdb) 1619 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1620 (cmd->device->lun << 5 & 0xe0); 1621 1622 scsi_log_send(cmd); 1623 1624 /* 1625 * Before we queue this command, check if the command 1626 * length exceeds what the host adapter can handle. 1627 */ 1628 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1629 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1630 "queuecommand : command too long. " 1631 "cdb_size=%d host->max_cmd_len=%d\n", 1632 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1633 cmd->result = (DID_ABORT << 16); 1634 goto done; 1635 } 1636 1637 if (unlikely(host->shost_state == SHOST_DEL)) { 1638 cmd->result = (DID_NO_CONNECT << 16); 1639 goto done; 1640 1641 } 1642 1643 trace_scsi_dispatch_cmd_start(cmd); 1644 rtn = host->hostt->queuecommand(host, cmd); 1645 if (rtn) { 1646 trace_scsi_dispatch_cmd_error(cmd, rtn); 1647 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1648 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1649 rtn = SCSI_MLQUEUE_HOST_BUSY; 1650 1651 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1652 "queuecommand : request rejected\n")); 1653 } 1654 1655 return rtn; 1656 done: 1657 cmd->scsi_done(cmd); 1658 return 0; 1659 } 1660 1661 /** 1662 * scsi_done - Invoke completion on finished SCSI command. 1663 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1664 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1665 * 1666 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1667 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1668 * calls blk_complete_request() for further processing. 1669 * 1670 * This function is interrupt context safe. 1671 */ 1672 static void scsi_done(struct scsi_cmnd *cmd) 1673 { 1674 trace_scsi_dispatch_cmd_done(cmd); 1675 blk_complete_request(cmd->request); 1676 } 1677 1678 /* 1679 * Function: scsi_request_fn() 1680 * 1681 * Purpose: Main strategy routine for SCSI. 1682 * 1683 * Arguments: q - Pointer to actual queue. 1684 * 1685 * Returns: Nothing 1686 * 1687 * Lock status: IO request lock assumed to be held when called. 1688 */ 1689 static void scsi_request_fn(struct request_queue *q) 1690 __releases(q->queue_lock) 1691 __acquires(q->queue_lock) 1692 { 1693 struct scsi_device *sdev = q->queuedata; 1694 struct Scsi_Host *shost; 1695 struct scsi_cmnd *cmd; 1696 struct request *req; 1697 1698 /* 1699 * To start with, we keep looping until the queue is empty, or until 1700 * the host is no longer able to accept any more requests. 1701 */ 1702 shost = sdev->host; 1703 for (;;) { 1704 int rtn; 1705 /* 1706 * get next queueable request. We do this early to make sure 1707 * that the request is fully prepared even if we cannot 1708 * accept it. 1709 */ 1710 req = blk_peek_request(q); 1711 if (!req) 1712 break; 1713 1714 if (unlikely(!scsi_device_online(sdev))) { 1715 sdev_printk(KERN_ERR, sdev, 1716 "rejecting I/O to offline device\n"); 1717 scsi_kill_request(req, q); 1718 continue; 1719 } 1720 1721 if (!scsi_dev_queue_ready(q, sdev)) 1722 break; 1723 1724 /* 1725 * Remove the request from the request list. 1726 */ 1727 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1728 blk_start_request(req); 1729 1730 spin_unlock_irq(q->queue_lock); 1731 cmd = req->special; 1732 if (unlikely(cmd == NULL)) { 1733 printk(KERN_CRIT "impossible request in %s.\n" 1734 "please mail a stack trace to " 1735 "linux-scsi@vger.kernel.org\n", 1736 __func__); 1737 blk_dump_rq_flags(req, "foo"); 1738 BUG(); 1739 } 1740 1741 /* 1742 * We hit this when the driver is using a host wide 1743 * tag map. For device level tag maps the queue_depth check 1744 * in the device ready fn would prevent us from trying 1745 * to allocate a tag. Since the map is a shared host resource 1746 * we add the dev to the starved list so it eventually gets 1747 * a run when a tag is freed. 1748 */ 1749 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1750 spin_lock_irq(shost->host_lock); 1751 if (list_empty(&sdev->starved_entry)) 1752 list_add_tail(&sdev->starved_entry, 1753 &shost->starved_list); 1754 spin_unlock_irq(shost->host_lock); 1755 goto not_ready; 1756 } 1757 1758 if (!scsi_target_queue_ready(shost, sdev)) 1759 goto not_ready; 1760 1761 if (!scsi_host_queue_ready(q, shost, sdev)) 1762 goto host_not_ready; 1763 1764 if (sdev->simple_tags) 1765 cmd->flags |= SCMD_TAGGED; 1766 else 1767 cmd->flags &= ~SCMD_TAGGED; 1768 1769 /* 1770 * Finally, initialize any error handling parameters, and set up 1771 * the timers for timeouts. 1772 */ 1773 scsi_init_cmd_errh(cmd); 1774 1775 /* 1776 * Dispatch the command to the low-level driver. 1777 */ 1778 cmd->scsi_done = scsi_done; 1779 rtn = scsi_dispatch_cmd(cmd); 1780 if (rtn) { 1781 scsi_queue_insert(cmd, rtn); 1782 spin_lock_irq(q->queue_lock); 1783 goto out_delay; 1784 } 1785 spin_lock_irq(q->queue_lock); 1786 } 1787 1788 return; 1789 1790 host_not_ready: 1791 if (scsi_target(sdev)->can_queue > 0) 1792 atomic_dec(&scsi_target(sdev)->target_busy); 1793 not_ready: 1794 /* 1795 * lock q, handle tag, requeue req, and decrement device_busy. We 1796 * must return with queue_lock held. 1797 * 1798 * Decrementing device_busy without checking it is OK, as all such 1799 * cases (host limits or settings) should run the queue at some 1800 * later time. 1801 */ 1802 spin_lock_irq(q->queue_lock); 1803 blk_requeue_request(q, req); 1804 atomic_dec(&sdev->device_busy); 1805 out_delay: 1806 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1807 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1808 } 1809 1810 static inline int prep_to_mq(int ret) 1811 { 1812 switch (ret) { 1813 case BLKPREP_OK: 1814 return BLK_MQ_RQ_QUEUE_OK; 1815 case BLKPREP_DEFER: 1816 return BLK_MQ_RQ_QUEUE_BUSY; 1817 default: 1818 return BLK_MQ_RQ_QUEUE_ERROR; 1819 } 1820 } 1821 1822 static int scsi_mq_prep_fn(struct request *req) 1823 { 1824 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1825 struct scsi_device *sdev = req->q->queuedata; 1826 struct Scsi_Host *shost = sdev->host; 1827 unsigned char *sense_buf = cmd->sense_buffer; 1828 struct scatterlist *sg; 1829 1830 memset(cmd, 0, sizeof(struct scsi_cmnd)); 1831 1832 req->special = cmd; 1833 1834 cmd->request = req; 1835 cmd->device = sdev; 1836 cmd->sense_buffer = sense_buf; 1837 1838 cmd->tag = req->tag; 1839 1840 cmd->cmnd = req->cmd; 1841 cmd->prot_op = SCSI_PROT_NORMAL; 1842 1843 INIT_LIST_HEAD(&cmd->list); 1844 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1845 cmd->jiffies_at_alloc = jiffies; 1846 1847 if (shost->use_cmd_list) { 1848 spin_lock_irq(&sdev->list_lock); 1849 list_add_tail(&cmd->list, &sdev->cmd_list); 1850 spin_unlock_irq(&sdev->list_lock); 1851 } 1852 1853 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1854 cmd->sdb.table.sgl = sg; 1855 1856 if (scsi_host_get_prot(shost)) { 1857 cmd->prot_sdb = (void *)sg + 1858 min_t(unsigned int, 1859 shost->sg_tablesize, SG_CHUNK_SIZE) * 1860 sizeof(struct scatterlist); 1861 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1862 1863 cmd->prot_sdb->table.sgl = 1864 (struct scatterlist *)(cmd->prot_sdb + 1); 1865 } 1866 1867 if (blk_bidi_rq(req)) { 1868 struct request *next_rq = req->next_rq; 1869 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1870 1871 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1872 bidi_sdb->table.sgl = 1873 (struct scatterlist *)(bidi_sdb + 1); 1874 1875 next_rq->special = bidi_sdb; 1876 } 1877 1878 blk_mq_start_request(req); 1879 1880 return scsi_setup_cmnd(sdev, req); 1881 } 1882 1883 static void scsi_mq_done(struct scsi_cmnd *cmd) 1884 { 1885 trace_scsi_dispatch_cmd_done(cmd); 1886 blk_mq_complete_request(cmd->request, cmd->request->errors); 1887 } 1888 1889 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1890 const struct blk_mq_queue_data *bd) 1891 { 1892 struct request *req = bd->rq; 1893 struct request_queue *q = req->q; 1894 struct scsi_device *sdev = q->queuedata; 1895 struct Scsi_Host *shost = sdev->host; 1896 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1897 int ret; 1898 int reason; 1899 1900 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1901 if (ret != BLK_MQ_RQ_QUEUE_OK) 1902 goto out; 1903 1904 ret = BLK_MQ_RQ_QUEUE_BUSY; 1905 if (!get_device(&sdev->sdev_gendev)) 1906 goto out; 1907 1908 if (!scsi_dev_queue_ready(q, sdev)) 1909 goto out_put_device; 1910 if (!scsi_target_queue_ready(shost, sdev)) 1911 goto out_dec_device_busy; 1912 if (!scsi_host_queue_ready(q, shost, sdev)) 1913 goto out_dec_target_busy; 1914 1915 1916 if (!(req->rq_flags & RQF_DONTPREP)) { 1917 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1918 if (ret != BLK_MQ_RQ_QUEUE_OK) 1919 goto out_dec_host_busy; 1920 req->rq_flags |= RQF_DONTPREP; 1921 } else { 1922 blk_mq_start_request(req); 1923 } 1924 1925 if (sdev->simple_tags) 1926 cmd->flags |= SCMD_TAGGED; 1927 else 1928 cmd->flags &= ~SCMD_TAGGED; 1929 1930 scsi_init_cmd_errh(cmd); 1931 cmd->scsi_done = scsi_mq_done; 1932 1933 reason = scsi_dispatch_cmd(cmd); 1934 if (reason) { 1935 scsi_set_blocked(cmd, reason); 1936 ret = BLK_MQ_RQ_QUEUE_BUSY; 1937 goto out_dec_host_busy; 1938 } 1939 1940 return BLK_MQ_RQ_QUEUE_OK; 1941 1942 out_dec_host_busy: 1943 atomic_dec(&shost->host_busy); 1944 out_dec_target_busy: 1945 if (scsi_target(sdev)->can_queue > 0) 1946 atomic_dec(&scsi_target(sdev)->target_busy); 1947 out_dec_device_busy: 1948 atomic_dec(&sdev->device_busy); 1949 out_put_device: 1950 put_device(&sdev->sdev_gendev); 1951 out: 1952 switch (ret) { 1953 case BLK_MQ_RQ_QUEUE_BUSY: 1954 if (atomic_read(&sdev->device_busy) == 0 && 1955 !scsi_device_blocked(sdev)) 1956 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY); 1957 break; 1958 case BLK_MQ_RQ_QUEUE_ERROR: 1959 /* 1960 * Make sure to release all allocated ressources when 1961 * we hit an error, as we will never see this command 1962 * again. 1963 */ 1964 if (req->rq_flags & RQF_DONTPREP) 1965 scsi_mq_uninit_cmd(cmd); 1966 break; 1967 default: 1968 break; 1969 } 1970 return ret; 1971 } 1972 1973 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1974 bool reserved) 1975 { 1976 if (reserved) 1977 return BLK_EH_RESET_TIMER; 1978 return scsi_times_out(req); 1979 } 1980 1981 static int scsi_init_request(void *data, struct request *rq, 1982 unsigned int hctx_idx, unsigned int request_idx, 1983 unsigned int numa_node) 1984 { 1985 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1986 1987 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL, 1988 numa_node); 1989 if (!cmd->sense_buffer) 1990 return -ENOMEM; 1991 return 0; 1992 } 1993 1994 static void scsi_exit_request(void *data, struct request *rq, 1995 unsigned int hctx_idx, unsigned int request_idx) 1996 { 1997 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1998 1999 kfree(cmd->sense_buffer); 2000 } 2001 2002 static int scsi_map_queues(struct blk_mq_tag_set *set) 2003 { 2004 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2005 2006 if (shost->hostt->map_queues) 2007 return shost->hostt->map_queues(shost); 2008 return blk_mq_map_queues(set); 2009 } 2010 2011 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2012 { 2013 struct device *host_dev; 2014 u64 bounce_limit = 0xffffffff; 2015 2016 if (shost->unchecked_isa_dma) 2017 return BLK_BOUNCE_ISA; 2018 /* 2019 * Platforms with virtual-DMA translation 2020 * hardware have no practical limit. 2021 */ 2022 if (!PCI_DMA_BUS_IS_PHYS) 2023 return BLK_BOUNCE_ANY; 2024 2025 host_dev = scsi_get_device(shost); 2026 if (host_dev && host_dev->dma_mask) 2027 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2028 2029 return bounce_limit; 2030 } 2031 2032 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2033 { 2034 struct device *dev = shost->dma_dev; 2035 2036 /* 2037 * this limit is imposed by hardware restrictions 2038 */ 2039 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2040 SG_MAX_SEGMENTS)); 2041 2042 if (scsi_host_prot_dma(shost)) { 2043 shost->sg_prot_tablesize = 2044 min_not_zero(shost->sg_prot_tablesize, 2045 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2046 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2047 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2048 } 2049 2050 blk_queue_max_hw_sectors(q, shost->max_sectors); 2051 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2052 blk_queue_segment_boundary(q, shost->dma_boundary); 2053 dma_set_seg_boundary(dev, shost->dma_boundary); 2054 2055 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2056 2057 if (!shost->use_clustering) 2058 q->limits.cluster = 0; 2059 2060 /* 2061 * set a reasonable default alignment on word boundaries: the 2062 * host and device may alter it using 2063 * blk_queue_update_dma_alignment() later. 2064 */ 2065 blk_queue_dma_alignment(q, 0x03); 2066 } 2067 2068 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 2069 request_fn_proc *request_fn) 2070 { 2071 struct request_queue *q; 2072 2073 q = blk_init_queue(request_fn, NULL); 2074 if (!q) 2075 return NULL; 2076 __scsi_init_queue(shost, q); 2077 return q; 2078 } 2079 EXPORT_SYMBOL(__scsi_alloc_queue); 2080 2081 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2082 { 2083 struct request_queue *q; 2084 2085 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 2086 if (!q) 2087 return NULL; 2088 2089 blk_queue_prep_rq(q, scsi_prep_fn); 2090 blk_queue_unprep_rq(q, scsi_unprep_fn); 2091 blk_queue_softirq_done(q, scsi_softirq_done); 2092 blk_queue_rq_timed_out(q, scsi_times_out); 2093 blk_queue_lld_busy(q, scsi_lld_busy); 2094 return q; 2095 } 2096 2097 static struct blk_mq_ops scsi_mq_ops = { 2098 .queue_rq = scsi_queue_rq, 2099 .complete = scsi_softirq_done, 2100 .timeout = scsi_timeout, 2101 .init_request = scsi_init_request, 2102 .exit_request = scsi_exit_request, 2103 .map_queues = scsi_map_queues, 2104 }; 2105 2106 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2107 { 2108 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2109 if (IS_ERR(sdev->request_queue)) 2110 return NULL; 2111 2112 sdev->request_queue->queuedata = sdev; 2113 __scsi_init_queue(sdev->host, sdev->request_queue); 2114 return sdev->request_queue; 2115 } 2116 2117 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2118 { 2119 unsigned int cmd_size, sgl_size, tbl_size; 2120 2121 tbl_size = shost->sg_tablesize; 2122 if (tbl_size > SG_CHUNK_SIZE) 2123 tbl_size = SG_CHUNK_SIZE; 2124 sgl_size = tbl_size * sizeof(struct scatterlist); 2125 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2126 if (scsi_host_get_prot(shost)) 2127 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2128 2129 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2130 shost->tag_set.ops = &scsi_mq_ops; 2131 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2132 shost->tag_set.queue_depth = shost->can_queue; 2133 shost->tag_set.cmd_size = cmd_size; 2134 shost->tag_set.numa_node = NUMA_NO_NODE; 2135 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2136 shost->tag_set.flags |= 2137 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2138 shost->tag_set.driver_data = shost; 2139 2140 return blk_mq_alloc_tag_set(&shost->tag_set); 2141 } 2142 2143 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2144 { 2145 blk_mq_free_tag_set(&shost->tag_set); 2146 } 2147 2148 /* 2149 * Function: scsi_block_requests() 2150 * 2151 * Purpose: Utility function used by low-level drivers to prevent further 2152 * commands from being queued to the device. 2153 * 2154 * Arguments: shost - Host in question 2155 * 2156 * Returns: Nothing 2157 * 2158 * Lock status: No locks are assumed held. 2159 * 2160 * Notes: There is no timer nor any other means by which the requests 2161 * get unblocked other than the low-level driver calling 2162 * scsi_unblock_requests(). 2163 */ 2164 void scsi_block_requests(struct Scsi_Host *shost) 2165 { 2166 shost->host_self_blocked = 1; 2167 } 2168 EXPORT_SYMBOL(scsi_block_requests); 2169 2170 /* 2171 * Function: scsi_unblock_requests() 2172 * 2173 * Purpose: Utility function used by low-level drivers to allow further 2174 * commands from being queued to the device. 2175 * 2176 * Arguments: shost - Host in question 2177 * 2178 * Returns: Nothing 2179 * 2180 * Lock status: No locks are assumed held. 2181 * 2182 * Notes: There is no timer nor any other means by which the requests 2183 * get unblocked other than the low-level driver calling 2184 * scsi_unblock_requests(). 2185 * 2186 * This is done as an API function so that changes to the 2187 * internals of the scsi mid-layer won't require wholesale 2188 * changes to drivers that use this feature. 2189 */ 2190 void scsi_unblock_requests(struct Scsi_Host *shost) 2191 { 2192 shost->host_self_blocked = 0; 2193 scsi_run_host_queues(shost); 2194 } 2195 EXPORT_SYMBOL(scsi_unblock_requests); 2196 2197 int __init scsi_init_queue(void) 2198 { 2199 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2200 sizeof(struct scsi_data_buffer), 2201 0, 0, NULL); 2202 if (!scsi_sdb_cache) { 2203 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2204 return -ENOMEM; 2205 } 2206 2207 return 0; 2208 } 2209 2210 void scsi_exit_queue(void) 2211 { 2212 kmem_cache_destroy(scsi_sdb_cache); 2213 } 2214 2215 /** 2216 * scsi_mode_select - issue a mode select 2217 * @sdev: SCSI device to be queried 2218 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2219 * @sp: Save page bit (0 == don't save, 1 == save) 2220 * @modepage: mode page being requested 2221 * @buffer: request buffer (may not be smaller than eight bytes) 2222 * @len: length of request buffer. 2223 * @timeout: command timeout 2224 * @retries: number of retries before failing 2225 * @data: returns a structure abstracting the mode header data 2226 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2227 * must be SCSI_SENSE_BUFFERSIZE big. 2228 * 2229 * Returns zero if successful; negative error number or scsi 2230 * status on error 2231 * 2232 */ 2233 int 2234 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2235 unsigned char *buffer, int len, int timeout, int retries, 2236 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2237 { 2238 unsigned char cmd[10]; 2239 unsigned char *real_buffer; 2240 int ret; 2241 2242 memset(cmd, 0, sizeof(cmd)); 2243 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2244 2245 if (sdev->use_10_for_ms) { 2246 if (len > 65535) 2247 return -EINVAL; 2248 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2249 if (!real_buffer) 2250 return -ENOMEM; 2251 memcpy(real_buffer + 8, buffer, len); 2252 len += 8; 2253 real_buffer[0] = 0; 2254 real_buffer[1] = 0; 2255 real_buffer[2] = data->medium_type; 2256 real_buffer[3] = data->device_specific; 2257 real_buffer[4] = data->longlba ? 0x01 : 0; 2258 real_buffer[5] = 0; 2259 real_buffer[6] = data->block_descriptor_length >> 8; 2260 real_buffer[7] = data->block_descriptor_length; 2261 2262 cmd[0] = MODE_SELECT_10; 2263 cmd[7] = len >> 8; 2264 cmd[8] = len; 2265 } else { 2266 if (len > 255 || data->block_descriptor_length > 255 || 2267 data->longlba) 2268 return -EINVAL; 2269 2270 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2271 if (!real_buffer) 2272 return -ENOMEM; 2273 memcpy(real_buffer + 4, buffer, len); 2274 len += 4; 2275 real_buffer[0] = 0; 2276 real_buffer[1] = data->medium_type; 2277 real_buffer[2] = data->device_specific; 2278 real_buffer[3] = data->block_descriptor_length; 2279 2280 2281 cmd[0] = MODE_SELECT; 2282 cmd[4] = len; 2283 } 2284 2285 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2286 sshdr, timeout, retries, NULL); 2287 kfree(real_buffer); 2288 return ret; 2289 } 2290 EXPORT_SYMBOL_GPL(scsi_mode_select); 2291 2292 /** 2293 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2294 * @sdev: SCSI device to be queried 2295 * @dbd: set if mode sense will allow block descriptors to be returned 2296 * @modepage: mode page being requested 2297 * @buffer: request buffer (may not be smaller than eight bytes) 2298 * @len: length of request buffer. 2299 * @timeout: command timeout 2300 * @retries: number of retries before failing 2301 * @data: returns a structure abstracting the mode header data 2302 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2303 * must be SCSI_SENSE_BUFFERSIZE big. 2304 * 2305 * Returns zero if unsuccessful, or the header offset (either 4 2306 * or 8 depending on whether a six or ten byte command was 2307 * issued) if successful. 2308 */ 2309 int 2310 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2311 unsigned char *buffer, int len, int timeout, int retries, 2312 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2313 { 2314 unsigned char cmd[12]; 2315 int use_10_for_ms; 2316 int header_length; 2317 int result, retry_count = retries; 2318 struct scsi_sense_hdr my_sshdr; 2319 2320 memset(data, 0, sizeof(*data)); 2321 memset(&cmd[0], 0, 12); 2322 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2323 cmd[2] = modepage; 2324 2325 /* caller might not be interested in sense, but we need it */ 2326 if (!sshdr) 2327 sshdr = &my_sshdr; 2328 2329 retry: 2330 use_10_for_ms = sdev->use_10_for_ms; 2331 2332 if (use_10_for_ms) { 2333 if (len < 8) 2334 len = 8; 2335 2336 cmd[0] = MODE_SENSE_10; 2337 cmd[8] = len; 2338 header_length = 8; 2339 } else { 2340 if (len < 4) 2341 len = 4; 2342 2343 cmd[0] = MODE_SENSE; 2344 cmd[4] = len; 2345 header_length = 4; 2346 } 2347 2348 memset(buffer, 0, len); 2349 2350 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2351 sshdr, timeout, retries, NULL); 2352 2353 /* This code looks awful: what it's doing is making sure an 2354 * ILLEGAL REQUEST sense return identifies the actual command 2355 * byte as the problem. MODE_SENSE commands can return 2356 * ILLEGAL REQUEST if the code page isn't supported */ 2357 2358 if (use_10_for_ms && !scsi_status_is_good(result) && 2359 (driver_byte(result) & DRIVER_SENSE)) { 2360 if (scsi_sense_valid(sshdr)) { 2361 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2362 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2363 /* 2364 * Invalid command operation code 2365 */ 2366 sdev->use_10_for_ms = 0; 2367 goto retry; 2368 } 2369 } 2370 } 2371 2372 if(scsi_status_is_good(result)) { 2373 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2374 (modepage == 6 || modepage == 8))) { 2375 /* Initio breakage? */ 2376 header_length = 0; 2377 data->length = 13; 2378 data->medium_type = 0; 2379 data->device_specific = 0; 2380 data->longlba = 0; 2381 data->block_descriptor_length = 0; 2382 } else if(use_10_for_ms) { 2383 data->length = buffer[0]*256 + buffer[1] + 2; 2384 data->medium_type = buffer[2]; 2385 data->device_specific = buffer[3]; 2386 data->longlba = buffer[4] & 0x01; 2387 data->block_descriptor_length = buffer[6]*256 2388 + buffer[7]; 2389 } else { 2390 data->length = buffer[0] + 1; 2391 data->medium_type = buffer[1]; 2392 data->device_specific = buffer[2]; 2393 data->block_descriptor_length = buffer[3]; 2394 } 2395 data->header_length = header_length; 2396 } else if ((status_byte(result) == CHECK_CONDITION) && 2397 scsi_sense_valid(sshdr) && 2398 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2399 retry_count--; 2400 goto retry; 2401 } 2402 2403 return result; 2404 } 2405 EXPORT_SYMBOL(scsi_mode_sense); 2406 2407 /** 2408 * scsi_test_unit_ready - test if unit is ready 2409 * @sdev: scsi device to change the state of. 2410 * @timeout: command timeout 2411 * @retries: number of retries before failing 2412 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2413 * returning sense. Make sure that this is cleared before passing 2414 * in. 2415 * 2416 * Returns zero if unsuccessful or an error if TUR failed. For 2417 * removable media, UNIT_ATTENTION sets ->changed flag. 2418 **/ 2419 int 2420 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2421 struct scsi_sense_hdr *sshdr_external) 2422 { 2423 char cmd[] = { 2424 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2425 }; 2426 struct scsi_sense_hdr *sshdr; 2427 int result; 2428 2429 if (!sshdr_external) 2430 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2431 else 2432 sshdr = sshdr_external; 2433 2434 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2435 do { 2436 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2437 timeout, retries, NULL); 2438 if (sdev->removable && scsi_sense_valid(sshdr) && 2439 sshdr->sense_key == UNIT_ATTENTION) 2440 sdev->changed = 1; 2441 } while (scsi_sense_valid(sshdr) && 2442 sshdr->sense_key == UNIT_ATTENTION && --retries); 2443 2444 if (!sshdr_external) 2445 kfree(sshdr); 2446 return result; 2447 } 2448 EXPORT_SYMBOL(scsi_test_unit_ready); 2449 2450 /** 2451 * scsi_device_set_state - Take the given device through the device state model. 2452 * @sdev: scsi device to change the state of. 2453 * @state: state to change to. 2454 * 2455 * Returns zero if unsuccessful or an error if the requested 2456 * transition is illegal. 2457 */ 2458 int 2459 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2460 { 2461 enum scsi_device_state oldstate = sdev->sdev_state; 2462 2463 if (state == oldstate) 2464 return 0; 2465 2466 switch (state) { 2467 case SDEV_CREATED: 2468 switch (oldstate) { 2469 case SDEV_CREATED_BLOCK: 2470 break; 2471 default: 2472 goto illegal; 2473 } 2474 break; 2475 2476 case SDEV_RUNNING: 2477 switch (oldstate) { 2478 case SDEV_CREATED: 2479 case SDEV_OFFLINE: 2480 case SDEV_TRANSPORT_OFFLINE: 2481 case SDEV_QUIESCE: 2482 case SDEV_BLOCK: 2483 break; 2484 default: 2485 goto illegal; 2486 } 2487 break; 2488 2489 case SDEV_QUIESCE: 2490 switch (oldstate) { 2491 case SDEV_RUNNING: 2492 case SDEV_OFFLINE: 2493 case SDEV_TRANSPORT_OFFLINE: 2494 break; 2495 default: 2496 goto illegal; 2497 } 2498 break; 2499 2500 case SDEV_OFFLINE: 2501 case SDEV_TRANSPORT_OFFLINE: 2502 switch (oldstate) { 2503 case SDEV_CREATED: 2504 case SDEV_RUNNING: 2505 case SDEV_QUIESCE: 2506 case SDEV_BLOCK: 2507 break; 2508 default: 2509 goto illegal; 2510 } 2511 break; 2512 2513 case SDEV_BLOCK: 2514 switch (oldstate) { 2515 case SDEV_RUNNING: 2516 case SDEV_CREATED_BLOCK: 2517 break; 2518 default: 2519 goto illegal; 2520 } 2521 break; 2522 2523 case SDEV_CREATED_BLOCK: 2524 switch (oldstate) { 2525 case SDEV_CREATED: 2526 break; 2527 default: 2528 goto illegal; 2529 } 2530 break; 2531 2532 case SDEV_CANCEL: 2533 switch (oldstate) { 2534 case SDEV_CREATED: 2535 case SDEV_RUNNING: 2536 case SDEV_QUIESCE: 2537 case SDEV_OFFLINE: 2538 case SDEV_TRANSPORT_OFFLINE: 2539 case SDEV_BLOCK: 2540 break; 2541 default: 2542 goto illegal; 2543 } 2544 break; 2545 2546 case SDEV_DEL: 2547 switch (oldstate) { 2548 case SDEV_CREATED: 2549 case SDEV_RUNNING: 2550 case SDEV_OFFLINE: 2551 case SDEV_TRANSPORT_OFFLINE: 2552 case SDEV_CANCEL: 2553 case SDEV_CREATED_BLOCK: 2554 break; 2555 default: 2556 goto illegal; 2557 } 2558 break; 2559 2560 } 2561 sdev->sdev_state = state; 2562 return 0; 2563 2564 illegal: 2565 SCSI_LOG_ERROR_RECOVERY(1, 2566 sdev_printk(KERN_ERR, sdev, 2567 "Illegal state transition %s->%s", 2568 scsi_device_state_name(oldstate), 2569 scsi_device_state_name(state)) 2570 ); 2571 return -EINVAL; 2572 } 2573 EXPORT_SYMBOL(scsi_device_set_state); 2574 2575 /** 2576 * sdev_evt_emit - emit a single SCSI device uevent 2577 * @sdev: associated SCSI device 2578 * @evt: event to emit 2579 * 2580 * Send a single uevent (scsi_event) to the associated scsi_device. 2581 */ 2582 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2583 { 2584 int idx = 0; 2585 char *envp[3]; 2586 2587 switch (evt->evt_type) { 2588 case SDEV_EVT_MEDIA_CHANGE: 2589 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2590 break; 2591 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2592 scsi_rescan_device(&sdev->sdev_gendev); 2593 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2594 break; 2595 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2596 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2597 break; 2598 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2599 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2600 break; 2601 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2602 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2603 break; 2604 case SDEV_EVT_LUN_CHANGE_REPORTED: 2605 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2606 break; 2607 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2608 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2609 break; 2610 default: 2611 /* do nothing */ 2612 break; 2613 } 2614 2615 envp[idx++] = NULL; 2616 2617 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2618 } 2619 2620 /** 2621 * sdev_evt_thread - send a uevent for each scsi event 2622 * @work: work struct for scsi_device 2623 * 2624 * Dispatch queued events to their associated scsi_device kobjects 2625 * as uevents. 2626 */ 2627 void scsi_evt_thread(struct work_struct *work) 2628 { 2629 struct scsi_device *sdev; 2630 enum scsi_device_event evt_type; 2631 LIST_HEAD(event_list); 2632 2633 sdev = container_of(work, struct scsi_device, event_work); 2634 2635 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2636 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2637 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2638 2639 while (1) { 2640 struct scsi_event *evt; 2641 struct list_head *this, *tmp; 2642 unsigned long flags; 2643 2644 spin_lock_irqsave(&sdev->list_lock, flags); 2645 list_splice_init(&sdev->event_list, &event_list); 2646 spin_unlock_irqrestore(&sdev->list_lock, flags); 2647 2648 if (list_empty(&event_list)) 2649 break; 2650 2651 list_for_each_safe(this, tmp, &event_list) { 2652 evt = list_entry(this, struct scsi_event, node); 2653 list_del(&evt->node); 2654 scsi_evt_emit(sdev, evt); 2655 kfree(evt); 2656 } 2657 } 2658 } 2659 2660 /** 2661 * sdev_evt_send - send asserted event to uevent thread 2662 * @sdev: scsi_device event occurred on 2663 * @evt: event to send 2664 * 2665 * Assert scsi device event asynchronously. 2666 */ 2667 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2668 { 2669 unsigned long flags; 2670 2671 #if 0 2672 /* FIXME: currently this check eliminates all media change events 2673 * for polled devices. Need to update to discriminate between AN 2674 * and polled events */ 2675 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2676 kfree(evt); 2677 return; 2678 } 2679 #endif 2680 2681 spin_lock_irqsave(&sdev->list_lock, flags); 2682 list_add_tail(&evt->node, &sdev->event_list); 2683 schedule_work(&sdev->event_work); 2684 spin_unlock_irqrestore(&sdev->list_lock, flags); 2685 } 2686 EXPORT_SYMBOL_GPL(sdev_evt_send); 2687 2688 /** 2689 * sdev_evt_alloc - allocate a new scsi event 2690 * @evt_type: type of event to allocate 2691 * @gfpflags: GFP flags for allocation 2692 * 2693 * Allocates and returns a new scsi_event. 2694 */ 2695 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2696 gfp_t gfpflags) 2697 { 2698 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2699 if (!evt) 2700 return NULL; 2701 2702 evt->evt_type = evt_type; 2703 INIT_LIST_HEAD(&evt->node); 2704 2705 /* evt_type-specific initialization, if any */ 2706 switch (evt_type) { 2707 case SDEV_EVT_MEDIA_CHANGE: 2708 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2709 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2710 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2711 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2712 case SDEV_EVT_LUN_CHANGE_REPORTED: 2713 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2714 default: 2715 /* do nothing */ 2716 break; 2717 } 2718 2719 return evt; 2720 } 2721 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2722 2723 /** 2724 * sdev_evt_send_simple - send asserted event to uevent thread 2725 * @sdev: scsi_device event occurred on 2726 * @evt_type: type of event to send 2727 * @gfpflags: GFP flags for allocation 2728 * 2729 * Assert scsi device event asynchronously, given an event type. 2730 */ 2731 void sdev_evt_send_simple(struct scsi_device *sdev, 2732 enum scsi_device_event evt_type, gfp_t gfpflags) 2733 { 2734 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2735 if (!evt) { 2736 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2737 evt_type); 2738 return; 2739 } 2740 2741 sdev_evt_send(sdev, evt); 2742 } 2743 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2744 2745 /** 2746 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2747 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2748 */ 2749 static int scsi_request_fn_active(struct scsi_device *sdev) 2750 { 2751 struct request_queue *q = sdev->request_queue; 2752 int request_fn_active; 2753 2754 WARN_ON_ONCE(sdev->host->use_blk_mq); 2755 2756 spin_lock_irq(q->queue_lock); 2757 request_fn_active = q->request_fn_active; 2758 spin_unlock_irq(q->queue_lock); 2759 2760 return request_fn_active; 2761 } 2762 2763 /** 2764 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2765 * @sdev: SCSI device pointer. 2766 * 2767 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2768 * invoked from scsi_request_fn() have finished. 2769 */ 2770 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2771 { 2772 WARN_ON_ONCE(sdev->host->use_blk_mq); 2773 2774 while (scsi_request_fn_active(sdev)) 2775 msleep(20); 2776 } 2777 2778 /** 2779 * scsi_device_quiesce - Block user issued commands. 2780 * @sdev: scsi device to quiesce. 2781 * 2782 * This works by trying to transition to the SDEV_QUIESCE state 2783 * (which must be a legal transition). When the device is in this 2784 * state, only special requests will be accepted, all others will 2785 * be deferred. Since special requests may also be requeued requests, 2786 * a successful return doesn't guarantee the device will be 2787 * totally quiescent. 2788 * 2789 * Must be called with user context, may sleep. 2790 * 2791 * Returns zero if unsuccessful or an error if not. 2792 */ 2793 int 2794 scsi_device_quiesce(struct scsi_device *sdev) 2795 { 2796 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2797 if (err) 2798 return err; 2799 2800 scsi_run_queue(sdev->request_queue); 2801 while (atomic_read(&sdev->device_busy)) { 2802 msleep_interruptible(200); 2803 scsi_run_queue(sdev->request_queue); 2804 } 2805 return 0; 2806 } 2807 EXPORT_SYMBOL(scsi_device_quiesce); 2808 2809 /** 2810 * scsi_device_resume - Restart user issued commands to a quiesced device. 2811 * @sdev: scsi device to resume. 2812 * 2813 * Moves the device from quiesced back to running and restarts the 2814 * queues. 2815 * 2816 * Must be called with user context, may sleep. 2817 */ 2818 void scsi_device_resume(struct scsi_device *sdev) 2819 { 2820 /* check if the device state was mutated prior to resume, and if 2821 * so assume the state is being managed elsewhere (for example 2822 * device deleted during suspend) 2823 */ 2824 if (sdev->sdev_state != SDEV_QUIESCE || 2825 scsi_device_set_state(sdev, SDEV_RUNNING)) 2826 return; 2827 scsi_run_queue(sdev->request_queue); 2828 } 2829 EXPORT_SYMBOL(scsi_device_resume); 2830 2831 static void 2832 device_quiesce_fn(struct scsi_device *sdev, void *data) 2833 { 2834 scsi_device_quiesce(sdev); 2835 } 2836 2837 void 2838 scsi_target_quiesce(struct scsi_target *starget) 2839 { 2840 starget_for_each_device(starget, NULL, device_quiesce_fn); 2841 } 2842 EXPORT_SYMBOL(scsi_target_quiesce); 2843 2844 static void 2845 device_resume_fn(struct scsi_device *sdev, void *data) 2846 { 2847 scsi_device_resume(sdev); 2848 } 2849 2850 void 2851 scsi_target_resume(struct scsi_target *starget) 2852 { 2853 starget_for_each_device(starget, NULL, device_resume_fn); 2854 } 2855 EXPORT_SYMBOL(scsi_target_resume); 2856 2857 /** 2858 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2859 * @sdev: device to block 2860 * 2861 * Block request made by scsi lld's to temporarily stop all 2862 * scsi commands on the specified device. May sleep. 2863 * 2864 * Returns zero if successful or error if not 2865 * 2866 * Notes: 2867 * This routine transitions the device to the SDEV_BLOCK state 2868 * (which must be a legal transition). When the device is in this 2869 * state, all commands are deferred until the scsi lld reenables 2870 * the device with scsi_device_unblock or device_block_tmo fires. 2871 * 2872 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2873 * scsi_internal_device_block() has blocked a SCSI device and also 2874 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2875 */ 2876 int 2877 scsi_internal_device_block(struct scsi_device *sdev) 2878 { 2879 struct request_queue *q = sdev->request_queue; 2880 unsigned long flags; 2881 int err = 0; 2882 2883 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2884 if (err) { 2885 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2886 2887 if (err) 2888 return err; 2889 } 2890 2891 /* 2892 * The device has transitioned to SDEV_BLOCK. Stop the 2893 * block layer from calling the midlayer with this device's 2894 * request queue. 2895 */ 2896 if (q->mq_ops) { 2897 blk_mq_quiesce_queue(q); 2898 } else { 2899 spin_lock_irqsave(q->queue_lock, flags); 2900 blk_stop_queue(q); 2901 spin_unlock_irqrestore(q->queue_lock, flags); 2902 scsi_wait_for_queuecommand(sdev); 2903 } 2904 2905 return 0; 2906 } 2907 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2908 2909 /** 2910 * scsi_internal_device_unblock - resume a device after a block request 2911 * @sdev: device to resume 2912 * @new_state: state to set devices to after unblocking 2913 * 2914 * Called by scsi lld's or the midlayer to restart the device queue 2915 * for the previously suspended scsi device. Called from interrupt or 2916 * normal process context. 2917 * 2918 * Returns zero if successful or error if not. 2919 * 2920 * Notes: 2921 * This routine transitions the device to the SDEV_RUNNING state 2922 * or to one of the offline states (which must be a legal transition) 2923 * allowing the midlayer to goose the queue for this device. 2924 */ 2925 int 2926 scsi_internal_device_unblock(struct scsi_device *sdev, 2927 enum scsi_device_state new_state) 2928 { 2929 struct request_queue *q = sdev->request_queue; 2930 unsigned long flags; 2931 2932 /* 2933 * Try to transition the scsi device to SDEV_RUNNING or one of the 2934 * offlined states and goose the device queue if successful. 2935 */ 2936 if ((sdev->sdev_state == SDEV_BLOCK) || 2937 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2938 sdev->sdev_state = new_state; 2939 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2940 if (new_state == SDEV_TRANSPORT_OFFLINE || 2941 new_state == SDEV_OFFLINE) 2942 sdev->sdev_state = new_state; 2943 else 2944 sdev->sdev_state = SDEV_CREATED; 2945 } else if (sdev->sdev_state != SDEV_CANCEL && 2946 sdev->sdev_state != SDEV_OFFLINE) 2947 return -EINVAL; 2948 2949 if (q->mq_ops) { 2950 blk_mq_start_stopped_hw_queues(q, false); 2951 } else { 2952 spin_lock_irqsave(q->queue_lock, flags); 2953 blk_start_queue(q); 2954 spin_unlock_irqrestore(q->queue_lock, flags); 2955 } 2956 2957 return 0; 2958 } 2959 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2960 2961 static void 2962 device_block(struct scsi_device *sdev, void *data) 2963 { 2964 scsi_internal_device_block(sdev); 2965 } 2966 2967 static int 2968 target_block(struct device *dev, void *data) 2969 { 2970 if (scsi_is_target_device(dev)) 2971 starget_for_each_device(to_scsi_target(dev), NULL, 2972 device_block); 2973 return 0; 2974 } 2975 2976 void 2977 scsi_target_block(struct device *dev) 2978 { 2979 if (scsi_is_target_device(dev)) 2980 starget_for_each_device(to_scsi_target(dev), NULL, 2981 device_block); 2982 else 2983 device_for_each_child(dev, NULL, target_block); 2984 } 2985 EXPORT_SYMBOL_GPL(scsi_target_block); 2986 2987 static void 2988 device_unblock(struct scsi_device *sdev, void *data) 2989 { 2990 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2991 } 2992 2993 static int 2994 target_unblock(struct device *dev, void *data) 2995 { 2996 if (scsi_is_target_device(dev)) 2997 starget_for_each_device(to_scsi_target(dev), data, 2998 device_unblock); 2999 return 0; 3000 } 3001 3002 void 3003 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3004 { 3005 if (scsi_is_target_device(dev)) 3006 starget_for_each_device(to_scsi_target(dev), &new_state, 3007 device_unblock); 3008 else 3009 device_for_each_child(dev, &new_state, target_unblock); 3010 } 3011 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3012 3013 /** 3014 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3015 * @sgl: scatter-gather list 3016 * @sg_count: number of segments in sg 3017 * @offset: offset in bytes into sg, on return offset into the mapped area 3018 * @len: bytes to map, on return number of bytes mapped 3019 * 3020 * Returns virtual address of the start of the mapped page 3021 */ 3022 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3023 size_t *offset, size_t *len) 3024 { 3025 int i; 3026 size_t sg_len = 0, len_complete = 0; 3027 struct scatterlist *sg; 3028 struct page *page; 3029 3030 WARN_ON(!irqs_disabled()); 3031 3032 for_each_sg(sgl, sg, sg_count, i) { 3033 len_complete = sg_len; /* Complete sg-entries */ 3034 sg_len += sg->length; 3035 if (sg_len > *offset) 3036 break; 3037 } 3038 3039 if (unlikely(i == sg_count)) { 3040 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3041 "elements %d\n", 3042 __func__, sg_len, *offset, sg_count); 3043 WARN_ON(1); 3044 return NULL; 3045 } 3046 3047 /* Offset starting from the beginning of first page in this sg-entry */ 3048 *offset = *offset - len_complete + sg->offset; 3049 3050 /* Assumption: contiguous pages can be accessed as "page + i" */ 3051 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3052 *offset &= ~PAGE_MASK; 3053 3054 /* Bytes in this sg-entry from *offset to the end of the page */ 3055 sg_len = PAGE_SIZE - *offset; 3056 if (*len > sg_len) 3057 *len = sg_len; 3058 3059 return kmap_atomic(page); 3060 } 3061 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3062 3063 /** 3064 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3065 * @virt: virtual address to be unmapped 3066 */ 3067 void scsi_kunmap_atomic_sg(void *virt) 3068 { 3069 kunmap_atomic(virt); 3070 } 3071 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3072 3073 void sdev_disable_disk_events(struct scsi_device *sdev) 3074 { 3075 atomic_inc(&sdev->disk_events_disable_depth); 3076 } 3077 EXPORT_SYMBOL(sdev_disable_disk_events); 3078 3079 void sdev_enable_disk_events(struct scsi_device *sdev) 3080 { 3081 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3082 return; 3083 atomic_dec(&sdev->disk_events_disable_depth); 3084 } 3085 EXPORT_SYMBOL(sdev_enable_disk_events); 3086 3087 /** 3088 * scsi_vpd_lun_id - return a unique device identification 3089 * @sdev: SCSI device 3090 * @id: buffer for the identification 3091 * @id_len: length of the buffer 3092 * 3093 * Copies a unique device identification into @id based 3094 * on the information in the VPD page 0x83 of the device. 3095 * The string will be formatted as a SCSI name string. 3096 * 3097 * Returns the length of the identification or error on failure. 3098 * If the identifier is longer than the supplied buffer the actual 3099 * identifier length is returned and the buffer is not zero-padded. 3100 */ 3101 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3102 { 3103 u8 cur_id_type = 0xff; 3104 u8 cur_id_size = 0; 3105 unsigned char *d, *cur_id_str; 3106 unsigned char __rcu *vpd_pg83; 3107 int id_size = -EINVAL; 3108 3109 rcu_read_lock(); 3110 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3111 if (!vpd_pg83) { 3112 rcu_read_unlock(); 3113 return -ENXIO; 3114 } 3115 3116 /* 3117 * Look for the correct descriptor. 3118 * Order of preference for lun descriptor: 3119 * - SCSI name string 3120 * - NAA IEEE Registered Extended 3121 * - EUI-64 based 16-byte 3122 * - EUI-64 based 12-byte 3123 * - NAA IEEE Registered 3124 * - NAA IEEE Extended 3125 * - T10 Vendor ID 3126 * as longer descriptors reduce the likelyhood 3127 * of identification clashes. 3128 */ 3129 3130 /* The id string must be at least 20 bytes + terminating NULL byte */ 3131 if (id_len < 21) { 3132 rcu_read_unlock(); 3133 return -EINVAL; 3134 } 3135 3136 memset(id, 0, id_len); 3137 d = vpd_pg83 + 4; 3138 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3139 /* Skip designators not referring to the LUN */ 3140 if ((d[1] & 0x30) != 0x00) 3141 goto next_desig; 3142 3143 switch (d[1] & 0xf) { 3144 case 0x1: 3145 /* T10 Vendor ID */ 3146 if (cur_id_size > d[3]) 3147 break; 3148 /* Prefer anything */ 3149 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3150 break; 3151 cur_id_size = d[3]; 3152 if (cur_id_size + 4 > id_len) 3153 cur_id_size = id_len - 4; 3154 cur_id_str = d + 4; 3155 cur_id_type = d[1] & 0xf; 3156 id_size = snprintf(id, id_len, "t10.%*pE", 3157 cur_id_size, cur_id_str); 3158 break; 3159 case 0x2: 3160 /* EUI-64 */ 3161 if (cur_id_size > d[3]) 3162 break; 3163 /* Prefer NAA IEEE Registered Extended */ 3164 if (cur_id_type == 0x3 && 3165 cur_id_size == d[3]) 3166 break; 3167 cur_id_size = d[3]; 3168 cur_id_str = d + 4; 3169 cur_id_type = d[1] & 0xf; 3170 switch (cur_id_size) { 3171 case 8: 3172 id_size = snprintf(id, id_len, 3173 "eui.%8phN", 3174 cur_id_str); 3175 break; 3176 case 12: 3177 id_size = snprintf(id, id_len, 3178 "eui.%12phN", 3179 cur_id_str); 3180 break; 3181 case 16: 3182 id_size = snprintf(id, id_len, 3183 "eui.%16phN", 3184 cur_id_str); 3185 break; 3186 default: 3187 cur_id_size = 0; 3188 break; 3189 } 3190 break; 3191 case 0x3: 3192 /* NAA */ 3193 if (cur_id_size > d[3]) 3194 break; 3195 cur_id_size = d[3]; 3196 cur_id_str = d + 4; 3197 cur_id_type = d[1] & 0xf; 3198 switch (cur_id_size) { 3199 case 8: 3200 id_size = snprintf(id, id_len, 3201 "naa.%8phN", 3202 cur_id_str); 3203 break; 3204 case 16: 3205 id_size = snprintf(id, id_len, 3206 "naa.%16phN", 3207 cur_id_str); 3208 break; 3209 default: 3210 cur_id_size = 0; 3211 break; 3212 } 3213 break; 3214 case 0x8: 3215 /* SCSI name string */ 3216 if (cur_id_size + 4 > d[3]) 3217 break; 3218 /* Prefer others for truncated descriptor */ 3219 if (cur_id_size && d[3] > id_len) 3220 break; 3221 cur_id_size = id_size = d[3]; 3222 cur_id_str = d + 4; 3223 cur_id_type = d[1] & 0xf; 3224 if (cur_id_size >= id_len) 3225 cur_id_size = id_len - 1; 3226 memcpy(id, cur_id_str, cur_id_size); 3227 /* Decrease priority for truncated descriptor */ 3228 if (cur_id_size != id_size) 3229 cur_id_size = 6; 3230 break; 3231 default: 3232 break; 3233 } 3234 next_desig: 3235 d += d[3] + 4; 3236 } 3237 rcu_read_unlock(); 3238 3239 return id_size; 3240 } 3241 EXPORT_SYMBOL(scsi_vpd_lun_id); 3242 3243 /* 3244 * scsi_vpd_tpg_id - return a target port group identifier 3245 * @sdev: SCSI device 3246 * 3247 * Returns the Target Port Group identifier from the information 3248 * froom VPD page 0x83 of the device. 3249 * 3250 * Returns the identifier or error on failure. 3251 */ 3252 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3253 { 3254 unsigned char *d; 3255 unsigned char __rcu *vpd_pg83; 3256 int group_id = -EAGAIN, rel_port = -1; 3257 3258 rcu_read_lock(); 3259 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3260 if (!vpd_pg83) { 3261 rcu_read_unlock(); 3262 return -ENXIO; 3263 } 3264 3265 d = sdev->vpd_pg83 + 4; 3266 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3267 switch (d[1] & 0xf) { 3268 case 0x4: 3269 /* Relative target port */ 3270 rel_port = get_unaligned_be16(&d[6]); 3271 break; 3272 case 0x5: 3273 /* Target port group */ 3274 group_id = get_unaligned_be16(&d[6]); 3275 break; 3276 default: 3277 break; 3278 } 3279 d += d[3] + 4; 3280 } 3281 rcu_read_unlock(); 3282 3283 if (group_id >= 0 && rel_id && rel_port != -1) 3284 *rel_id = rel_port; 3285 3286 return group_id; 3287 } 3288 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3289