xref: /linux/drivers/scsi/scsi_lib.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27 
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30 
31 
32 #define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE		32
34 
35 struct scsi_host_sg_pool {
36 	size_t		size;
37 	char		*name;
38 	kmem_cache_t	*slab;
39 	mempool_t	*pool;
40 };
41 
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45 
46 #define SP(x) { x, "sgpool-" #x }
47 struct scsi_host_sg_pool scsi_sg_pools[] = {
48 	SP(8),
49 	SP(16),
50 	SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 	SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 	SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 	SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65 
66 
67 /*
68  * Function:    scsi_insert_special_req()
69  *
70  * Purpose:     Insert pre-formed request into request queue.
71  *
72  * Arguments:   sreq	- request that is ready to be queued.
73  *              at_head	- boolean.  True if we should insert at head
74  *                        of queue, false if we should insert at tail.
75  *
76  * Lock status: Assumed that lock is not held upon entry.
77  *
78  * Returns:     Nothing
79  *
80  * Notes:       This function is called from character device and from
81  *              ioctl types of functions where the caller knows exactly
82  *              what SCSI command needs to be issued.   The idea is that
83  *              we merely inject the command into the queue (at the head
84  *              for now), and then call the queue request function to actually
85  *              process it.
86  */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89 	/*
90 	 * Because users of this function are apt to reuse requests with no
91 	 * modification, we have to sanitise the request flags here
92 	 */
93 	sreq->sr_request->flags &= ~REQ_DONTPREP;
94 	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95 		       	   at_head, sreq);
96 	return 0;
97 }
98 
99 static void scsi_run_queue(struct request_queue *q);
100 
101 /*
102  * Function:    scsi_queue_insert()
103  *
104  * Purpose:     Insert a command in the midlevel queue.
105  *
106  * Arguments:   cmd    - command that we are adding to queue.
107  *              reason - why we are inserting command to queue.
108  *
109  * Lock status: Assumed that lock is not held upon entry.
110  *
111  * Returns:     Nothing.
112  *
113  * Notes:       We do this for one of two cases.  Either the host is busy
114  *              and it cannot accept any more commands for the time being,
115  *              or the device returned QUEUE_FULL and can accept no more
116  *              commands.
117  * Notes:       This could be called either from an interrupt context or a
118  *              normal process context.
119  */
120 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct request_queue *q = device->request_queue;
125 	unsigned long flags;
126 
127 	SCSI_LOG_MLQUEUE(1,
128 		 printk("Inserting command %p into mlqueue\n", cmd));
129 
130 	/*
131 	 * Set the appropriate busy bit for the device/host.
132 	 *
133 	 * If the host/device isn't busy, assume that something actually
134 	 * completed, and that we should be able to queue a command now.
135 	 *
136 	 * Note that the prior mid-layer assumption that any host could
137 	 * always queue at least one command is now broken.  The mid-layer
138 	 * will implement a user specifiable stall (see
139 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140 	 * if a command is requeued with no other commands outstanding
141 	 * either for the device or for the host.
142 	 */
143 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
144 		host->host_blocked = host->max_host_blocked;
145 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146 		device->device_blocked = device->max_device_blocked;
147 
148 	/*
149 	 * Register the fact that we own the thing for now.
150 	 */
151 	cmd->state = SCSI_STATE_MLQUEUE;
152 	cmd->owner = SCSI_OWNER_MIDLEVEL;
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	scsi_device_unbusy(device);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue.
163 	 *
164 	 * NOTE: there is magic here about the way the queue is plugged if
165 	 * we have no outstanding commands.
166 	 *
167 	 * Although we *don't* plug the queue, we call the request
168 	 * function.  The SCSI request function detects the blocked condition
169 	 * and plugs the queue appropriately.
170          */
171 	spin_lock_irqsave(q->queue_lock, flags);
172 	blk_requeue_request(q, cmd->request);
173 	spin_unlock_irqrestore(q->queue_lock, flags);
174 
175 	scsi_run_queue(q);
176 
177 	return 0;
178 }
179 
180 /*
181  * Function:    scsi_do_req
182  *
183  * Purpose:     Queue a SCSI request
184  *
185  * Arguments:   sreq	  - command descriptor.
186  *              cmnd      - actual SCSI command to be performed.
187  *              buffer    - data buffer.
188  *              bufflen   - size of data buffer.
189  *              done      - completion function to be run.
190  *              timeout   - how long to let it run before timeout.
191  *              retries   - number of retries we allow.
192  *
193  * Lock status: No locks held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:	This function is only used for queueing requests for things
198  *		like ioctls and character device requests - this is because
199  *		we essentially just inject a request into the queue for the
200  *		device.
201  *
202  *		In order to support the scsi_device_quiesce function, we
203  *		now inject requests on the *head* of the device queue
204  *		rather than the tail.
205  */
206 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
207 		 void *buffer, unsigned bufflen,
208 		 void (*done)(struct scsi_cmnd *),
209 		 int timeout, int retries)
210 {
211 	/*
212 	 * If the upper level driver is reusing these things, then
213 	 * we should release the low-level block now.  Another one will
214 	 * be allocated later when this request is getting queued.
215 	 */
216 	__scsi_release_request(sreq);
217 
218 	/*
219 	 * Our own function scsi_done (which marks the host as not busy,
220 	 * disables the timeout counter, etc) will be called by us or by the
221 	 * scsi_hosts[host].queuecommand() function needs to also call
222 	 * the completion function for the high level driver.
223 	 */
224 	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
225 	sreq->sr_bufflen = bufflen;
226 	sreq->sr_buffer = buffer;
227 	sreq->sr_allowed = retries;
228 	sreq->sr_done = done;
229 	sreq->sr_timeout_per_command = timeout;
230 
231 	if (sreq->sr_cmd_len == 0)
232 		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
233 
234 	/*
235 	 * head injection *required* here otherwise quiesce won't work
236 	 */
237 	scsi_insert_special_req(sreq, 1);
238 }
239 EXPORT_SYMBOL(scsi_do_req);
240 
241 static void scsi_wait_done(struct scsi_cmnd *cmd)
242 {
243 	struct request *req = cmd->request;
244 	struct request_queue *q = cmd->device->request_queue;
245 	unsigned long flags;
246 
247 	req->rq_status = RQ_SCSI_DONE;	/* Busy, but indicate request done */
248 
249 	spin_lock_irqsave(q->queue_lock, flags);
250 	if (blk_rq_tagged(req))
251 		blk_queue_end_tag(q, req);
252 	spin_unlock_irqrestore(q->queue_lock, flags);
253 
254 	if (req->waiting)
255 		complete(req->waiting);
256 }
257 
258 /* This is the end routine we get to if a command was never attached
259  * to the request.  Simply complete the request without changing
260  * rq_status; this will cause a DRIVER_ERROR. */
261 static void scsi_wait_req_end_io(struct request *req)
262 {
263 	BUG_ON(!req->waiting);
264 
265 	complete(req->waiting);
266 }
267 
268 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
269 		   unsigned bufflen, int timeout, int retries)
270 {
271 	DECLARE_COMPLETION(wait);
272 
273 	sreq->sr_request->waiting = &wait;
274 	sreq->sr_request->rq_status = RQ_SCSI_BUSY;
275 	sreq->sr_request->end_io = scsi_wait_req_end_io;
276 	scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
277 			timeout, retries);
278 	wait_for_completion(&wait);
279 	sreq->sr_request->waiting = NULL;
280 	if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
281 		sreq->sr_result |= (DRIVER_ERROR << 24);
282 
283 	__scsi_release_request(sreq);
284 }
285 EXPORT_SYMBOL(scsi_wait_req);
286 
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd	- command that is ready to be queued.
293  *
294  * Returns:     Nothing
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
300 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302 	cmd->owner = SCSI_OWNER_MIDLEVEL;
303 	cmd->serial_number = 0;
304 	cmd->abort_reason = 0;
305 
306 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
307 
308 	if (cmd->cmd_len == 0)
309 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
310 
311 	/*
312 	 * We need saved copies of a number of fields - this is because
313 	 * error handling may need to overwrite these with different values
314 	 * to run different commands, and once error handling is complete,
315 	 * we will need to restore these values prior to running the actual
316 	 * command.
317 	 */
318 	cmd->old_use_sg = cmd->use_sg;
319 	cmd->old_cmd_len = cmd->cmd_len;
320 	cmd->sc_old_data_direction = cmd->sc_data_direction;
321 	cmd->old_underflow = cmd->underflow;
322 	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
323 	cmd->buffer = cmd->request_buffer;
324 	cmd->bufflen = cmd->request_bufflen;
325 	cmd->abort_reason = 0;
326 
327 	return 1;
328 }
329 
330 /*
331  * Function:   scsi_setup_cmd_retry()
332  *
333  * Purpose:    Restore the command state for a retry
334  *
335  * Arguments:  cmd	- command to be restored
336  *
337  * Returns:    Nothing
338  *
339  * Notes:      Immediately prior to retrying a command, we need
340  *             to restore certain fields that we saved above.
341  */
342 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
343 {
344 	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
345 	cmd->request_buffer = cmd->buffer;
346 	cmd->request_bufflen = cmd->bufflen;
347 	cmd->use_sg = cmd->old_use_sg;
348 	cmd->cmd_len = cmd->old_cmd_len;
349 	cmd->sc_data_direction = cmd->sc_old_data_direction;
350 	cmd->underflow = cmd->old_underflow;
351 }
352 
353 void scsi_device_unbusy(struct scsi_device *sdev)
354 {
355 	struct Scsi_Host *shost = sdev->host;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(shost->host_lock, flags);
359 	shost->host_busy--;
360 	if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
361 		     shost->host_failed))
362 		scsi_eh_wakeup(shost);
363 	spin_unlock(shost->host_lock);
364 	spin_lock(sdev->request_queue->queue_lock);
365 	sdev->device_busy--;
366 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
367 }
368 
369 /*
370  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
371  * and call blk_run_queue for all the scsi_devices on the target -
372  * including current_sdev first.
373  *
374  * Called with *no* scsi locks held.
375  */
376 static void scsi_single_lun_run(struct scsi_device *current_sdev)
377 {
378 	struct Scsi_Host *shost = current_sdev->host;
379 	struct scsi_device *sdev, *tmp;
380 	struct scsi_target *starget = scsi_target(current_sdev);
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(shost->host_lock, flags);
384 	starget->starget_sdev_user = NULL;
385 	spin_unlock_irqrestore(shost->host_lock, flags);
386 
387 	/*
388 	 * Call blk_run_queue for all LUNs on the target, starting with
389 	 * current_sdev. We race with others (to set starget_sdev_user),
390 	 * but in most cases, we will be first. Ideally, each LU on the
391 	 * target would get some limited time or requests on the target.
392 	 */
393 	blk_run_queue(current_sdev->request_queue);
394 
395 	spin_lock_irqsave(shost->host_lock, flags);
396 	if (starget->starget_sdev_user)
397 		goto out;
398 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
399 			same_target_siblings) {
400 		if (sdev == current_sdev)
401 			continue;
402 		if (scsi_device_get(sdev))
403 			continue;
404 
405 		spin_unlock_irqrestore(shost->host_lock, flags);
406 		blk_run_queue(sdev->request_queue);
407 		spin_lock_irqsave(shost->host_lock, flags);
408 
409 		scsi_device_put(sdev);
410 	}
411  out:
412 	spin_unlock_irqrestore(shost->host_lock, flags);
413 }
414 
415 /*
416  * Function:	scsi_run_queue()
417  *
418  * Purpose:	Select a proper request queue to serve next
419  *
420  * Arguments:	q	- last request's queue
421  *
422  * Returns:     Nothing
423  *
424  * Notes:	The previous command was completely finished, start
425  *		a new one if possible.
426  */
427 static void scsi_run_queue(struct request_queue *q)
428 {
429 	struct scsi_device *sdev = q->queuedata;
430 	struct Scsi_Host *shost = sdev->host;
431 	unsigned long flags;
432 
433 	if (sdev->single_lun)
434 		scsi_single_lun_run(sdev);
435 
436 	spin_lock_irqsave(shost->host_lock, flags);
437 	while (!list_empty(&shost->starved_list) &&
438 	       !shost->host_blocked && !shost->host_self_blocked &&
439 		!((shost->can_queue > 0) &&
440 		  (shost->host_busy >= shost->can_queue))) {
441 		/*
442 		 * As long as shost is accepting commands and we have
443 		 * starved queues, call blk_run_queue. scsi_request_fn
444 		 * drops the queue_lock and can add us back to the
445 		 * starved_list.
446 		 *
447 		 * host_lock protects the starved_list and starved_entry.
448 		 * scsi_request_fn must get the host_lock before checking
449 		 * or modifying starved_list or starved_entry.
450 		 */
451 		sdev = list_entry(shost->starved_list.next,
452 					  struct scsi_device, starved_entry);
453 		list_del_init(&sdev->starved_entry);
454 		spin_unlock_irqrestore(shost->host_lock, flags);
455 
456 		blk_run_queue(sdev->request_queue);
457 
458 		spin_lock_irqsave(shost->host_lock, flags);
459 		if (unlikely(!list_empty(&sdev->starved_entry)))
460 			/*
461 			 * sdev lost a race, and was put back on the
462 			 * starved list. This is unlikely but without this
463 			 * in theory we could loop forever.
464 			 */
465 			break;
466 	}
467 	spin_unlock_irqrestore(shost->host_lock, flags);
468 
469 	blk_run_queue(q);
470 }
471 
472 /*
473  * Function:	scsi_requeue_command()
474  *
475  * Purpose:	Handle post-processing of completed commands.
476  *
477  * Arguments:	q	- queue to operate on
478  *		cmd	- command that may need to be requeued.
479  *
480  * Returns:	Nothing
481  *
482  * Notes:	After command completion, there may be blocks left
483  *		over which weren't finished by the previous command
484  *		this can be for a number of reasons - the main one is
485  *		I/O errors in the middle of the request, in which case
486  *		we need to request the blocks that come after the bad
487  *		sector.
488  */
489 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
490 {
491 	unsigned long flags;
492 
493 	cmd->request->flags &= ~REQ_DONTPREP;
494 
495 	spin_lock_irqsave(q->queue_lock, flags);
496 	blk_requeue_request(q, cmd->request);
497 	spin_unlock_irqrestore(q->queue_lock, flags);
498 
499 	scsi_run_queue(q);
500 }
501 
502 void scsi_next_command(struct scsi_cmnd *cmd)
503 {
504 	struct request_queue *q = cmd->device->request_queue;
505 
506 	scsi_put_command(cmd);
507 	scsi_run_queue(q);
508 }
509 
510 void scsi_run_host_queues(struct Scsi_Host *shost)
511 {
512 	struct scsi_device *sdev;
513 
514 	shost_for_each_device(sdev, shost)
515 		scsi_run_queue(sdev->request_queue);
516 }
517 
518 /*
519  * Function:    scsi_end_request()
520  *
521  * Purpose:     Post-processing of completed commands (usually invoked at end
522  *		of upper level post-processing and scsi_io_completion).
523  *
524  * Arguments:   cmd	 - command that is complete.
525  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
526  *              bytes    - number of bytes of completed I/O
527  *		requeue  - indicates whether we should requeue leftovers.
528  *
529  * Lock status: Assumed that lock is not held upon entry.
530  *
531  * Returns:     cmd if requeue done or required, NULL otherwise
532  *
533  * Notes:       This is called for block device requests in order to
534  *              mark some number of sectors as complete.
535  *
536  *		We are guaranteeing that the request queue will be goosed
537  *		at some point during this call.
538  */
539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
540 					  int bytes, int requeue)
541 {
542 	request_queue_t *q = cmd->device->request_queue;
543 	struct request *req = cmd->request;
544 	unsigned long flags;
545 
546 	/*
547 	 * If there are blocks left over at the end, set up the command
548 	 * to queue the remainder of them.
549 	 */
550 	if (end_that_request_chunk(req, uptodate, bytes)) {
551 		int leftover = (req->hard_nr_sectors << 9);
552 
553 		if (blk_pc_request(req))
554 			leftover = req->data_len;
555 
556 		/* kill remainder if no retrys */
557 		if (!uptodate && blk_noretry_request(req))
558 			end_that_request_chunk(req, 0, leftover);
559 		else {
560 			if (requeue)
561 				/*
562 				 * Bleah.  Leftovers again.  Stick the
563 				 * leftovers in the front of the
564 				 * queue, and goose the queue again.
565 				 */
566 				scsi_requeue_command(q, cmd);
567 
568 			return cmd;
569 		}
570 	}
571 
572 	add_disk_randomness(req->rq_disk);
573 
574 	spin_lock_irqsave(q->queue_lock, flags);
575 	if (blk_rq_tagged(req))
576 		blk_queue_end_tag(q, req);
577 	end_that_request_last(req);
578 	spin_unlock_irqrestore(q->queue_lock, flags);
579 
580 	/*
581 	 * This will goose the queue request function at the end, so we don't
582 	 * need to worry about launching another command.
583 	 */
584 	scsi_next_command(cmd);
585 	return NULL;
586 }
587 
588 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
589 {
590 	struct scsi_host_sg_pool *sgp;
591 	struct scatterlist *sgl;
592 
593 	BUG_ON(!cmd->use_sg);
594 
595 	switch (cmd->use_sg) {
596 	case 1 ... 8:
597 		cmd->sglist_len = 0;
598 		break;
599 	case 9 ... 16:
600 		cmd->sglist_len = 1;
601 		break;
602 	case 17 ... 32:
603 		cmd->sglist_len = 2;
604 		break;
605 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
606 	case 33 ... 64:
607 		cmd->sglist_len = 3;
608 		break;
609 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
610 	case 65 ... 128:
611 		cmd->sglist_len = 4;
612 		break;
613 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
614 	case 129 ... 256:
615 		cmd->sglist_len = 5;
616 		break;
617 #endif
618 #endif
619 #endif
620 	default:
621 		return NULL;
622 	}
623 
624 	sgp = scsi_sg_pools + cmd->sglist_len;
625 	sgl = mempool_alloc(sgp->pool, gfp_mask);
626 	if (sgl)
627 		memset(sgl, 0, sgp->size);
628 	return sgl;
629 }
630 
631 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
632 {
633 	struct scsi_host_sg_pool *sgp;
634 
635 	BUG_ON(index > SG_MEMPOOL_NR);
636 
637 	sgp = scsi_sg_pools + index;
638 	mempool_free(sgl, sgp->pool);
639 }
640 
641 /*
642  * Function:    scsi_release_buffers()
643  *
644  * Purpose:     Completion processing for block device I/O requests.
645  *
646  * Arguments:   cmd	- command that we are bailing.
647  *
648  * Lock status: Assumed that no lock is held upon entry.
649  *
650  * Returns:     Nothing
651  *
652  * Notes:       In the event that an upper level driver rejects a
653  *		command, we must release resources allocated during
654  *		the __init_io() function.  Primarily this would involve
655  *		the scatter-gather table, and potentially any bounce
656  *		buffers.
657  */
658 static void scsi_release_buffers(struct scsi_cmnd *cmd)
659 {
660 	struct request *req = cmd->request;
661 
662 	/*
663 	 * Free up any indirection buffers we allocated for DMA purposes.
664 	 */
665 	if (cmd->use_sg)
666 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
667 	else if (cmd->request_buffer != req->buffer)
668 		kfree(cmd->request_buffer);
669 
670 	/*
671 	 * Zero these out.  They now point to freed memory, and it is
672 	 * dangerous to hang onto the pointers.
673 	 */
674 	cmd->buffer  = NULL;
675 	cmd->bufflen = 0;
676 	cmd->request_buffer = NULL;
677 	cmd->request_bufflen = 0;
678 }
679 
680 /*
681  * Function:    scsi_io_completion()
682  *
683  * Purpose:     Completion processing for block device I/O requests.
684  *
685  * Arguments:   cmd   - command that is finished.
686  *
687  * Lock status: Assumed that no lock is held upon entry.
688  *
689  * Returns:     Nothing
690  *
691  * Notes:       This function is matched in terms of capabilities to
692  *              the function that created the scatter-gather list.
693  *              In other words, if there are no bounce buffers
694  *              (the normal case for most drivers), we don't need
695  *              the logic to deal with cleaning up afterwards.
696  *
697  *		We must do one of several things here:
698  *
699  *		a) Call scsi_end_request.  This will finish off the
700  *		   specified number of sectors.  If we are done, the
701  *		   command block will be released, and the queue
702  *		   function will be goosed.  If we are not done, then
703  *		   scsi_end_request will directly goose the queue.
704  *
705  *		b) We can just use scsi_requeue_command() here.  This would
706  *		   be used if we just wanted to retry, for example.
707  */
708 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
709 			unsigned int block_bytes)
710 {
711 	int result = cmd->result;
712 	int this_count = cmd->bufflen;
713 	request_queue_t *q = cmd->device->request_queue;
714 	struct request *req = cmd->request;
715 	int clear_errors = 1;
716 	struct scsi_sense_hdr sshdr;
717 	int sense_valid = 0;
718 	int sense_deferred = 0;
719 
720 	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
721 		return;
722 
723 	/*
724 	 * Free up any indirection buffers we allocated for DMA purposes.
725 	 * For the case of a READ, we need to copy the data out of the
726 	 * bounce buffer and into the real buffer.
727 	 */
728 	if (cmd->use_sg)
729 		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
730 	else if (cmd->buffer != req->buffer) {
731 		if (rq_data_dir(req) == READ) {
732 			unsigned long flags;
733 			char *to = bio_kmap_irq(req->bio, &flags);
734 			memcpy(to, cmd->buffer, cmd->bufflen);
735 			bio_kunmap_irq(to, &flags);
736 		}
737 		kfree(cmd->buffer);
738 	}
739 
740 	if (result) {
741 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
742 		if (sense_valid)
743 			sense_deferred = scsi_sense_is_deferred(&sshdr);
744 	}
745 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
746 		req->errors = result;
747 		if (result) {
748 			clear_errors = 0;
749 			if (sense_valid && req->sense) {
750 				/*
751 				 * SG_IO wants current and deferred errors
752 				 */
753 				int len = 8 + cmd->sense_buffer[7];
754 
755 				if (len > SCSI_SENSE_BUFFERSIZE)
756 					len = SCSI_SENSE_BUFFERSIZE;
757 				memcpy(req->sense, cmd->sense_buffer,  len);
758 				req->sense_len = len;
759 			}
760 		} else
761 			req->data_len = cmd->resid;
762 	}
763 
764 	/*
765 	 * Zero these out.  They now point to freed memory, and it is
766 	 * dangerous to hang onto the pointers.
767 	 */
768 	cmd->buffer  = NULL;
769 	cmd->bufflen = 0;
770 	cmd->request_buffer = NULL;
771 	cmd->request_bufflen = 0;
772 
773 	/*
774 	 * Next deal with any sectors which we were able to correctly
775 	 * handle.
776 	 */
777 	if (good_bytes >= 0) {
778 		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
779 					      req->nr_sectors, good_bytes));
780 		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
781 
782 		if (clear_errors)
783 			req->errors = 0;
784 		/*
785 		 * If multiple sectors are requested in one buffer, then
786 		 * they will have been finished off by the first command.
787 		 * If not, then we have a multi-buffer command.
788 		 *
789 		 * If block_bytes != 0, it means we had a medium error
790 		 * of some sort, and that we want to mark some number of
791 		 * sectors as not uptodate.  Thus we want to inhibit
792 		 * requeueing right here - we will requeue down below
793 		 * when we handle the bad sectors.
794 		 */
795 		cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
796 
797 		/*
798 		 * If the command completed without error, then either finish off the
799 		 * rest of the command, or start a new one.
800 		 */
801 		if (result == 0 || cmd == NULL ) {
802 			return;
803 		}
804 	}
805 	/*
806 	 * Now, if we were good little boys and girls, Santa left us a request
807 	 * sense buffer.  We can extract information from this, so we
808 	 * can choose a block to remap, etc.
809 	 */
810 	if (sense_valid && !sense_deferred) {
811 		switch (sshdr.sense_key) {
812 		case UNIT_ATTENTION:
813 			if (cmd->device->removable) {
814 				/* detected disc change.  set a bit
815 				 * and quietly refuse further access.
816 				 */
817 				cmd->device->changed = 1;
818 				cmd = scsi_end_request(cmd, 0,
819 						this_count, 1);
820 				return;
821 			} else {
822 				/*
823 				* Must have been a power glitch, or a
824 				* bus reset.  Could not have been a
825 				* media change, so we just retry the
826 				* request and see what happens.
827 				*/
828 				scsi_requeue_command(q, cmd);
829 				return;
830 			}
831 			break;
832 		case ILLEGAL_REQUEST:
833 			/*
834 		 	* If we had an ILLEGAL REQUEST returned, then we may
835 		 	* have performed an unsupported command.  The only
836 		 	* thing this should be would be a ten byte read where
837 			* only a six byte read was supported.  Also, on a
838 			* system where READ CAPACITY failed, we may have read
839 			* past the end of the disk.
840 		 	*/
841 			if (cmd->device->use_10_for_rw &&
842 			    (cmd->cmnd[0] == READ_10 ||
843 			     cmd->cmnd[0] == WRITE_10)) {
844 				cmd->device->use_10_for_rw = 0;
845 				/*
846 				 * This will cause a retry with a 6-byte
847 				 * command.
848 				 */
849 				scsi_requeue_command(q, cmd);
850 				result = 0;
851 			} else {
852 				cmd = scsi_end_request(cmd, 0, this_count, 1);
853 				return;
854 			}
855 			break;
856 		case NOT_READY:
857 			/*
858 			 * If the device is in the process of becoming ready,
859 			 * retry.
860 			 */
861 			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
862 				scsi_requeue_command(q, cmd);
863 				return;
864 			}
865 			printk(KERN_INFO "Device %s not ready.\n",
866 			       req->rq_disk ? req->rq_disk->disk_name : "");
867 			cmd = scsi_end_request(cmd, 0, this_count, 1);
868 			return;
869 		case VOLUME_OVERFLOW:
870 			printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
871 			       cmd->device->host->host_no,
872 			       (int)cmd->device->channel,
873 			       (int)cmd->device->id, (int)cmd->device->lun);
874 			__scsi_print_command(cmd->data_cmnd);
875 			scsi_print_sense("", cmd);
876 			cmd = scsi_end_request(cmd, 0, block_bytes, 1);
877 			return;
878 		default:
879 			break;
880 		}
881 	}			/* driver byte != 0 */
882 	if (host_byte(result) == DID_RESET) {
883 		/*
884 		 * Third party bus reset or reset for error
885 		 * recovery reasons.  Just retry the request
886 		 * and see what happens.
887 		 */
888 		scsi_requeue_command(q, cmd);
889 		return;
890 	}
891 	if (result) {
892 		printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
893 		       "= 0x%x\n", cmd->device->host->host_no,
894 		       cmd->device->channel,
895 		       cmd->device->id,
896 		       cmd->device->lun, result);
897 
898 		if (driver_byte(result) & DRIVER_SENSE)
899 			scsi_print_sense("", cmd);
900 		/*
901 		 * Mark a single buffer as not uptodate.  Queue the remainder.
902 		 * We sometimes get this cruft in the event that a medium error
903 		 * isn't properly reported.
904 		 */
905 		block_bytes = req->hard_cur_sectors << 9;
906 		if (!block_bytes)
907 			block_bytes = req->data_len;
908 		cmd = scsi_end_request(cmd, 0, block_bytes, 1);
909 	}
910 }
911 EXPORT_SYMBOL(scsi_io_completion);
912 
913 /*
914  * Function:    scsi_init_io()
915  *
916  * Purpose:     SCSI I/O initialize function.
917  *
918  * Arguments:   cmd   - Command descriptor we wish to initialize
919  *
920  * Returns:     0 on success
921  *		BLKPREP_DEFER if the failure is retryable
922  *		BLKPREP_KILL if the failure is fatal
923  */
924 static int scsi_init_io(struct scsi_cmnd *cmd)
925 {
926 	struct request     *req = cmd->request;
927 	struct scatterlist *sgpnt;
928 	int		   count;
929 
930 	/*
931 	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
932 	 */
933 	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
934 		cmd->request_bufflen = req->data_len;
935 		cmd->request_buffer = req->data;
936 		req->buffer = req->data;
937 		cmd->use_sg = 0;
938 		return 0;
939 	}
940 
941 	/*
942 	 * we used to not use scatter-gather for single segment request,
943 	 * but now we do (it makes highmem I/O easier to support without
944 	 * kmapping pages)
945 	 */
946 	cmd->use_sg = req->nr_phys_segments;
947 
948 	/*
949 	 * if sg table allocation fails, requeue request later.
950 	 */
951 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
952 	if (unlikely(!sgpnt))
953 		return BLKPREP_DEFER;
954 
955 	cmd->request_buffer = (char *) sgpnt;
956 	cmd->request_bufflen = req->nr_sectors << 9;
957 	if (blk_pc_request(req))
958 		cmd->request_bufflen = req->data_len;
959 	req->buffer = NULL;
960 
961 	/*
962 	 * Next, walk the list, and fill in the addresses and sizes of
963 	 * each segment.
964 	 */
965 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
966 
967 	/*
968 	 * mapped well, send it off
969 	 */
970 	if (likely(count <= cmd->use_sg)) {
971 		cmd->use_sg = count;
972 		return 0;
973 	}
974 
975 	printk(KERN_ERR "Incorrect number of segments after building list\n");
976 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
977 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
978 			req->current_nr_sectors);
979 
980 	/* release the command and kill it */
981 	scsi_release_buffers(cmd);
982 	scsi_put_command(cmd);
983 	return BLKPREP_KILL;
984 }
985 
986 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
987 {
988 	struct scsi_device *sdev = q->queuedata;
989 	struct scsi_driver *drv;
990 
991 	if (sdev->sdev_state == SDEV_RUNNING) {
992 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
993 
994 		if (drv->prepare_flush)
995 			return drv->prepare_flush(q, rq);
996 	}
997 
998 	return 0;
999 }
1000 
1001 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1002 {
1003 	struct scsi_device *sdev = q->queuedata;
1004 	struct request *flush_rq = rq->end_io_data;
1005 	struct scsi_driver *drv;
1006 
1007 	if (flush_rq->errors) {
1008 		printk("scsi: barrier error, disabling flush support\n");
1009 		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1010 	}
1011 
1012 	if (sdev->sdev_state == SDEV_RUNNING) {
1013 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1014 		drv->end_flush(q, rq);
1015 	}
1016 }
1017 
1018 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1019 			       sector_t *error_sector)
1020 {
1021 	struct scsi_device *sdev = q->queuedata;
1022 	struct scsi_driver *drv;
1023 
1024 	if (sdev->sdev_state != SDEV_RUNNING)
1025 		return -ENXIO;
1026 
1027 	drv = *(struct scsi_driver **) disk->private_data;
1028 	if (drv->issue_flush)
1029 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1030 
1031 	return -EOPNOTSUPP;
1032 }
1033 
1034 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1035 {
1036 	struct scsi_device *sdev = q->queuedata;
1037 	struct scsi_cmnd *cmd;
1038 	int specials_only = 0;
1039 
1040 	/*
1041 	 * Just check to see if the device is online.  If it isn't, we
1042 	 * refuse to process any commands.  The device must be brought
1043 	 * online before trying any recovery commands
1044 	 */
1045 	if (unlikely(!scsi_device_online(sdev))) {
1046 		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1047 		       sdev->host->host_no, sdev->id, sdev->lun);
1048 		return BLKPREP_KILL;
1049 	}
1050 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1051 		/* OK, we're not in a running state don't prep
1052 		 * user commands */
1053 		if (sdev->sdev_state == SDEV_DEL) {
1054 			/* Device is fully deleted, no commands
1055 			 * at all allowed down */
1056 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1057 			       sdev->host->host_no, sdev->id, sdev->lun);
1058 			return BLKPREP_KILL;
1059 		}
1060 		/* OK, we only allow special commands (i.e. not
1061 		 * user initiated ones */
1062 		specials_only = sdev->sdev_state;
1063 	}
1064 
1065 	/*
1066 	 * Find the actual device driver associated with this command.
1067 	 * The SPECIAL requests are things like character device or
1068 	 * ioctls, which did not originate from ll_rw_blk.  Note that
1069 	 * the special field is also used to indicate the cmd for
1070 	 * the remainder of a partially fulfilled request that can
1071 	 * come up when there is a medium error.  We have to treat
1072 	 * these two cases differently.  We differentiate by looking
1073 	 * at request->cmd, as this tells us the real story.
1074 	 */
1075 	if (req->flags & REQ_SPECIAL) {
1076 		struct scsi_request *sreq = req->special;
1077 
1078 		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1079 			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1080 			if (unlikely(!cmd))
1081 				goto defer;
1082 			scsi_init_cmd_from_req(cmd, sreq);
1083 		} else
1084 			cmd = req->special;
1085 	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1086 
1087 		if(unlikely(specials_only)) {
1088 			if(specials_only == SDEV_QUIESCE ||
1089 					specials_only == SDEV_BLOCK)
1090 				return BLKPREP_DEFER;
1091 
1092 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1093 			       sdev->host->host_no, sdev->id, sdev->lun);
1094 			return BLKPREP_KILL;
1095 		}
1096 
1097 
1098 		/*
1099 		 * Now try and find a command block that we can use.
1100 		 */
1101 		if (!req->special) {
1102 			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1103 			if (unlikely(!cmd))
1104 				goto defer;
1105 		} else
1106 			cmd = req->special;
1107 
1108 		/* pull a tag out of the request if we have one */
1109 		cmd->tag = req->tag;
1110 	} else {
1111 		blk_dump_rq_flags(req, "SCSI bad req");
1112 		return BLKPREP_KILL;
1113 	}
1114 
1115 	/* note the overloading of req->special.  When the tag
1116 	 * is active it always means cmd.  If the tag goes
1117 	 * back for re-queueing, it may be reset */
1118 	req->special = cmd;
1119 	cmd->request = req;
1120 
1121 	/*
1122 	 * FIXME: drop the lock here because the functions below
1123 	 * expect to be called without the queue lock held.  Also,
1124 	 * previously, we dequeued the request before dropping the
1125 	 * lock.  We hope REQ_STARTED prevents anything untoward from
1126 	 * happening now.
1127 	 */
1128 	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1129 		struct scsi_driver *drv;
1130 		int ret;
1131 
1132 		/*
1133 		 * This will do a couple of things:
1134 		 *  1) Fill in the actual SCSI command.
1135 		 *  2) Fill in any other upper-level specific fields
1136 		 * (timeout).
1137 		 *
1138 		 * If this returns 0, it means that the request failed
1139 		 * (reading past end of disk, reading offline device,
1140 		 * etc).   This won't actually talk to the device, but
1141 		 * some kinds of consistency checking may cause the
1142 		 * request to be rejected immediately.
1143 		 */
1144 
1145 		/*
1146 		 * This sets up the scatter-gather table (allocating if
1147 		 * required).
1148 		 */
1149 		ret = scsi_init_io(cmd);
1150 		if (ret)	/* BLKPREP_KILL return also releases the command */
1151 			return ret;
1152 
1153 		/*
1154 		 * Initialize the actual SCSI command for this request.
1155 		 */
1156 		drv = *(struct scsi_driver **)req->rq_disk->private_data;
1157 		if (unlikely(!drv->init_command(cmd))) {
1158 			scsi_release_buffers(cmd);
1159 			scsi_put_command(cmd);
1160 			return BLKPREP_KILL;
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * The request is now prepped, no need to come back here
1166 	 */
1167 	req->flags |= REQ_DONTPREP;
1168 	return BLKPREP_OK;
1169 
1170  defer:
1171 	/* If we defer, the elv_next_request() returns NULL, but the
1172 	 * queue must be restarted, so we plug here if no returning
1173 	 * command will automatically do that. */
1174 	if (sdev->device_busy == 0)
1175 		blk_plug_device(q);
1176 	return BLKPREP_DEFER;
1177 }
1178 
1179 /*
1180  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1181  * return 0.
1182  *
1183  * Called with the queue_lock held.
1184  */
1185 static inline int scsi_dev_queue_ready(struct request_queue *q,
1186 				  struct scsi_device *sdev)
1187 {
1188 	if (sdev->device_busy >= sdev->queue_depth)
1189 		return 0;
1190 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1191 		/*
1192 		 * unblock after device_blocked iterates to zero
1193 		 */
1194 		if (--sdev->device_blocked == 0) {
1195 			SCSI_LOG_MLQUEUE(3,
1196 				printk("scsi%d (%d:%d) unblocking device at"
1197 				       " zero depth\n", sdev->host->host_no,
1198 				       sdev->id, sdev->lun));
1199 		} else {
1200 			blk_plug_device(q);
1201 			return 0;
1202 		}
1203 	}
1204 	if (sdev->device_blocked)
1205 		return 0;
1206 
1207 	return 1;
1208 }
1209 
1210 /*
1211  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1212  * return 0. We must end up running the queue again whenever 0 is
1213  * returned, else IO can hang.
1214  *
1215  * Called with host_lock held.
1216  */
1217 static inline int scsi_host_queue_ready(struct request_queue *q,
1218 				   struct Scsi_Host *shost,
1219 				   struct scsi_device *sdev)
1220 {
1221 	if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1222 		return 0;
1223 	if (shost->host_busy == 0 && shost->host_blocked) {
1224 		/*
1225 		 * unblock after host_blocked iterates to zero
1226 		 */
1227 		if (--shost->host_blocked == 0) {
1228 			SCSI_LOG_MLQUEUE(3,
1229 				printk("scsi%d unblocking host at zero depth\n",
1230 					shost->host_no));
1231 		} else {
1232 			blk_plug_device(q);
1233 			return 0;
1234 		}
1235 	}
1236 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1237 	    shost->host_blocked || shost->host_self_blocked) {
1238 		if (list_empty(&sdev->starved_entry))
1239 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1240 		return 0;
1241 	}
1242 
1243 	/* We're OK to process the command, so we can't be starved */
1244 	if (!list_empty(&sdev->starved_entry))
1245 		list_del_init(&sdev->starved_entry);
1246 
1247 	return 1;
1248 }
1249 
1250 /*
1251  * Kill requests for a dead device
1252  */
1253 static void scsi_kill_requests(request_queue_t *q)
1254 {
1255 	struct request *req;
1256 
1257 	while ((req = elv_next_request(q)) != NULL) {
1258 		blkdev_dequeue_request(req);
1259 		req->flags |= REQ_QUIET;
1260 		while (end_that_request_first(req, 0, req->nr_sectors))
1261 			;
1262 		end_that_request_last(req);
1263 	}
1264 }
1265 
1266 /*
1267  * Function:    scsi_request_fn()
1268  *
1269  * Purpose:     Main strategy routine for SCSI.
1270  *
1271  * Arguments:   q       - Pointer to actual queue.
1272  *
1273  * Returns:     Nothing
1274  *
1275  * Lock status: IO request lock assumed to be held when called.
1276  */
1277 static void scsi_request_fn(struct request_queue *q)
1278 {
1279 	struct scsi_device *sdev = q->queuedata;
1280 	struct Scsi_Host *shost;
1281 	struct scsi_cmnd *cmd;
1282 	struct request *req;
1283 
1284 	if (!sdev) {
1285 		printk("scsi: killing requests for dead queue\n");
1286 		scsi_kill_requests(q);
1287 		return;
1288 	}
1289 
1290 	if(!get_device(&sdev->sdev_gendev))
1291 		/* We must be tearing the block queue down already */
1292 		return;
1293 
1294 	/*
1295 	 * To start with, we keep looping until the queue is empty, or until
1296 	 * the host is no longer able to accept any more requests.
1297 	 */
1298 	shost = sdev->host;
1299 	while (!blk_queue_plugged(q)) {
1300 		int rtn;
1301 		/*
1302 		 * get next queueable request.  We do this early to make sure
1303 		 * that the request is fully prepared even if we cannot
1304 		 * accept it.
1305 		 */
1306 		req = elv_next_request(q);
1307 		if (!req || !scsi_dev_queue_ready(q, sdev))
1308 			break;
1309 
1310 		if (unlikely(!scsi_device_online(sdev))) {
1311 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1312 			       sdev->host->host_no, sdev->id, sdev->lun);
1313 			blkdev_dequeue_request(req);
1314 			req->flags |= REQ_QUIET;
1315 			while (end_that_request_first(req, 0, req->nr_sectors))
1316 				;
1317 			end_that_request_last(req);
1318 			continue;
1319 		}
1320 
1321 
1322 		/*
1323 		 * Remove the request from the request list.
1324 		 */
1325 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1326 			blkdev_dequeue_request(req);
1327 		sdev->device_busy++;
1328 
1329 		spin_unlock(q->queue_lock);
1330 		spin_lock(shost->host_lock);
1331 
1332 		if (!scsi_host_queue_ready(q, shost, sdev))
1333 			goto not_ready;
1334 		if (sdev->single_lun) {
1335 			if (scsi_target(sdev)->starget_sdev_user &&
1336 			    scsi_target(sdev)->starget_sdev_user != sdev)
1337 				goto not_ready;
1338 			scsi_target(sdev)->starget_sdev_user = sdev;
1339 		}
1340 		shost->host_busy++;
1341 
1342 		/*
1343 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1344 		 *		take the lock again.
1345 		 */
1346 		spin_unlock_irq(shost->host_lock);
1347 
1348 		cmd = req->special;
1349 		if (unlikely(cmd == NULL)) {
1350 			printk(KERN_CRIT "impossible request in %s.\n"
1351 					 "please mail a stack trace to "
1352 					 "linux-scsi@vger.kernel.org",
1353 					 __FUNCTION__);
1354 			BUG();
1355 		}
1356 
1357 		/*
1358 		 * Finally, initialize any error handling parameters, and set up
1359 		 * the timers for timeouts.
1360 		 */
1361 		scsi_init_cmd_errh(cmd);
1362 
1363 		/*
1364 		 * Dispatch the command to the low-level driver.
1365 		 */
1366 		rtn = scsi_dispatch_cmd(cmd);
1367 		spin_lock_irq(q->queue_lock);
1368 		if(rtn) {
1369 			/* we're refusing the command; because of
1370 			 * the way locks get dropped, we need to
1371 			 * check here if plugging is required */
1372 			if(sdev->device_busy == 0)
1373 				blk_plug_device(q);
1374 
1375 			break;
1376 		}
1377 	}
1378 
1379 	goto out;
1380 
1381  not_ready:
1382 	spin_unlock_irq(shost->host_lock);
1383 
1384 	/*
1385 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1386 	 * must return with queue_lock held.
1387 	 *
1388 	 * Decrementing device_busy without checking it is OK, as all such
1389 	 * cases (host limits or settings) should run the queue at some
1390 	 * later time.
1391 	 */
1392 	spin_lock_irq(q->queue_lock);
1393 	blk_requeue_request(q, req);
1394 	sdev->device_busy--;
1395 	if(sdev->device_busy == 0)
1396 		blk_plug_device(q);
1397  out:
1398 	/* must be careful here...if we trigger the ->remove() function
1399 	 * we cannot be holding the q lock */
1400 	spin_unlock_irq(q->queue_lock);
1401 	put_device(&sdev->sdev_gendev);
1402 	spin_lock_irq(q->queue_lock);
1403 }
1404 
1405 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1406 {
1407 	struct device *host_dev;
1408 	u64 bounce_limit = 0xffffffff;
1409 
1410 	if (shost->unchecked_isa_dma)
1411 		return BLK_BOUNCE_ISA;
1412 	/*
1413 	 * Platforms with virtual-DMA translation
1414 	 * hardware have no practical limit.
1415 	 */
1416 	if (!PCI_DMA_BUS_IS_PHYS)
1417 		return BLK_BOUNCE_ANY;
1418 
1419 	host_dev = scsi_get_device(shost);
1420 	if (host_dev && host_dev->dma_mask)
1421 		bounce_limit = *host_dev->dma_mask;
1422 
1423 	return bounce_limit;
1424 }
1425 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1426 
1427 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1428 {
1429 	struct Scsi_Host *shost = sdev->host;
1430 	struct request_queue *q;
1431 
1432 	q = blk_init_queue(scsi_request_fn, NULL);
1433 	if (!q)
1434 		return NULL;
1435 
1436 	blk_queue_prep_rq(q, scsi_prep_fn);
1437 
1438 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1439 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1440 	blk_queue_max_sectors(q, shost->max_sectors);
1441 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1442 	blk_queue_segment_boundary(q, shost->dma_boundary);
1443 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1444 
1445 	/*
1446 	 * ordered tags are superior to flush ordering
1447 	 */
1448 	if (shost->ordered_tag)
1449 		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1450 	else if (shost->ordered_flush) {
1451 		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1452 		q->prepare_flush_fn = scsi_prepare_flush_fn;
1453 		q->end_flush_fn = scsi_end_flush_fn;
1454 	}
1455 
1456 	if (!shost->use_clustering)
1457 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1458 	return q;
1459 }
1460 
1461 void scsi_free_queue(struct request_queue *q)
1462 {
1463 	blk_cleanup_queue(q);
1464 }
1465 
1466 /*
1467  * Function:    scsi_block_requests()
1468  *
1469  * Purpose:     Utility function used by low-level drivers to prevent further
1470  *		commands from being queued to the device.
1471  *
1472  * Arguments:   shost       - Host in question
1473  *
1474  * Returns:     Nothing
1475  *
1476  * Lock status: No locks are assumed held.
1477  *
1478  * Notes:       There is no timer nor any other means by which the requests
1479  *		get unblocked other than the low-level driver calling
1480  *		scsi_unblock_requests().
1481  */
1482 void scsi_block_requests(struct Scsi_Host *shost)
1483 {
1484 	shost->host_self_blocked = 1;
1485 }
1486 EXPORT_SYMBOL(scsi_block_requests);
1487 
1488 /*
1489  * Function:    scsi_unblock_requests()
1490  *
1491  * Purpose:     Utility function used by low-level drivers to allow further
1492  *		commands from being queued to the device.
1493  *
1494  * Arguments:   shost       - Host in question
1495  *
1496  * Returns:     Nothing
1497  *
1498  * Lock status: No locks are assumed held.
1499  *
1500  * Notes:       There is no timer nor any other means by which the requests
1501  *		get unblocked other than the low-level driver calling
1502  *		scsi_unblock_requests().
1503  *
1504  *		This is done as an API function so that changes to the
1505  *		internals of the scsi mid-layer won't require wholesale
1506  *		changes to drivers that use this feature.
1507  */
1508 void scsi_unblock_requests(struct Scsi_Host *shost)
1509 {
1510 	shost->host_self_blocked = 0;
1511 	scsi_run_host_queues(shost);
1512 }
1513 EXPORT_SYMBOL(scsi_unblock_requests);
1514 
1515 int __init scsi_init_queue(void)
1516 {
1517 	int i;
1518 
1519 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1520 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1521 		int size = sgp->size * sizeof(struct scatterlist);
1522 
1523 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1524 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1525 		if (!sgp->slab) {
1526 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1527 					sgp->name);
1528 		}
1529 
1530 		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1531 				mempool_alloc_slab, mempool_free_slab,
1532 				sgp->slab);
1533 		if (!sgp->pool) {
1534 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1535 					sgp->name);
1536 		}
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 void scsi_exit_queue(void)
1543 {
1544 	int i;
1545 
1546 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1547 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1548 		mempool_destroy(sgp->pool);
1549 		kmem_cache_destroy(sgp->slab);
1550 	}
1551 }
1552 /**
1553  *	__scsi_mode_sense - issue a mode sense, falling back from 10 to
1554  *		six bytes if necessary.
1555  *	@sreq:	SCSI request to fill in with the MODE_SENSE
1556  *	@dbd:	set if mode sense will allow block descriptors to be returned
1557  *	@modepage: mode page being requested
1558  *	@buffer: request buffer (may not be smaller than eight bytes)
1559  *	@len:	length of request buffer.
1560  *	@timeout: command timeout
1561  *	@retries: number of retries before failing
1562  *	@data: returns a structure abstracting the mode header data
1563  *
1564  *	Returns zero if unsuccessful, or the header offset (either 4
1565  *	or 8 depending on whether a six or ten byte command was
1566  *	issued) if successful.
1567  **/
1568 int
1569 __scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1570 		  unsigned char *buffer, int len, int timeout, int retries,
1571 		  struct scsi_mode_data *data) {
1572 	unsigned char cmd[12];
1573 	int use_10_for_ms;
1574 	int header_length;
1575 
1576 	memset(data, 0, sizeof(*data));
1577 	memset(&cmd[0], 0, 12);
1578 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1579 	cmd[2] = modepage;
1580 
1581  retry:
1582 	use_10_for_ms = sreq->sr_device->use_10_for_ms;
1583 
1584 	if (use_10_for_ms) {
1585 		if (len < 8)
1586 			len = 8;
1587 
1588 		cmd[0] = MODE_SENSE_10;
1589 		cmd[8] = len;
1590 		header_length = 8;
1591 	} else {
1592 		if (len < 4)
1593 			len = 4;
1594 
1595 		cmd[0] = MODE_SENSE;
1596 		cmd[4] = len;
1597 		header_length = 4;
1598 	}
1599 
1600 	sreq->sr_cmd_len = 0;
1601 	memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1602 	sreq->sr_data_direction = DMA_FROM_DEVICE;
1603 
1604 	memset(buffer, 0, len);
1605 
1606 	scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1607 
1608 	/* This code looks awful: what it's doing is making sure an
1609 	 * ILLEGAL REQUEST sense return identifies the actual command
1610 	 * byte as the problem.  MODE_SENSE commands can return
1611 	 * ILLEGAL REQUEST if the code page isn't supported */
1612 
1613 	if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1614 	    (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1615 		struct scsi_sense_hdr sshdr;
1616 
1617 		if (scsi_request_normalize_sense(sreq, &sshdr)) {
1618 			if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1619 			    (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1620 				/*
1621 				 * Invalid command operation code
1622 				 */
1623 				sreq->sr_device->use_10_for_ms = 0;
1624 				goto retry;
1625 			}
1626 		}
1627 	}
1628 
1629 	if(scsi_status_is_good(sreq->sr_result)) {
1630 		data->header_length = header_length;
1631 		if(use_10_for_ms) {
1632 			data->length = buffer[0]*256 + buffer[1] + 2;
1633 			data->medium_type = buffer[2];
1634 			data->device_specific = buffer[3];
1635 			data->longlba = buffer[4] & 0x01;
1636 			data->block_descriptor_length = buffer[6]*256
1637 				+ buffer[7];
1638 		} else {
1639 			data->length = buffer[0] + 1;
1640 			data->medium_type = buffer[1];
1641 			data->device_specific = buffer[2];
1642 			data->block_descriptor_length = buffer[3];
1643 		}
1644 	}
1645 
1646 	return sreq->sr_result;
1647 }
1648 EXPORT_SYMBOL(__scsi_mode_sense);
1649 
1650 /**
1651  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1652  *		six bytes if necessary.
1653  *	@sdev:	scsi device to send command to.
1654  *	@dbd:	set if mode sense will disable block descriptors in the return
1655  *	@modepage: mode page being requested
1656  *	@buffer: request buffer (may not be smaller than eight bytes)
1657  *	@len:	length of request buffer.
1658  *	@timeout: command timeout
1659  *	@retries: number of retries before failing
1660  *
1661  *	Returns zero if unsuccessful, or the header offset (either 4
1662  *	or 8 depending on whether a six or ten byte command was
1663  *	issued) if successful.
1664  **/
1665 int
1666 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1667 		unsigned char *buffer, int len, int timeout, int retries,
1668 		struct scsi_mode_data *data)
1669 {
1670 	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1671 	int ret;
1672 
1673 	if (!sreq)
1674 		return -1;
1675 
1676 	ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1677 				timeout, retries, data);
1678 
1679 	scsi_release_request(sreq);
1680 
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL(scsi_mode_sense);
1684 
1685 int
1686 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1687 {
1688 	struct scsi_request *sreq;
1689 	char cmd[] = {
1690 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1691 	};
1692 	int result;
1693 
1694 	sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1695 	if (!sreq)
1696 		return -ENOMEM;
1697 
1698 	sreq->sr_data_direction = DMA_NONE;
1699 	scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1700 
1701 	if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1702 		struct scsi_sense_hdr sshdr;
1703 
1704 		if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1705 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1706 		     (sshdr.sense_key == NOT_READY))) {
1707 			sdev->changed = 1;
1708 			sreq->sr_result = 0;
1709 		}
1710 	}
1711 	result = sreq->sr_result;
1712 	scsi_release_request(sreq);
1713 	return result;
1714 }
1715 EXPORT_SYMBOL(scsi_test_unit_ready);
1716 
1717 /**
1718  *	scsi_device_set_state - Take the given device through the device
1719  *		state model.
1720  *	@sdev:	scsi device to change the state of.
1721  *	@state:	state to change to.
1722  *
1723  *	Returns zero if unsuccessful or an error if the requested
1724  *	transition is illegal.
1725  **/
1726 int
1727 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1728 {
1729 	enum scsi_device_state oldstate = sdev->sdev_state;
1730 
1731 	if (state == oldstate)
1732 		return 0;
1733 
1734 	switch (state) {
1735 	case SDEV_CREATED:
1736 		/* There are no legal states that come back to
1737 		 * created.  This is the manually initialised start
1738 		 * state */
1739 		goto illegal;
1740 
1741 	case SDEV_RUNNING:
1742 		switch (oldstate) {
1743 		case SDEV_CREATED:
1744 		case SDEV_OFFLINE:
1745 		case SDEV_QUIESCE:
1746 		case SDEV_BLOCK:
1747 			break;
1748 		default:
1749 			goto illegal;
1750 		}
1751 		break;
1752 
1753 	case SDEV_QUIESCE:
1754 		switch (oldstate) {
1755 		case SDEV_RUNNING:
1756 		case SDEV_OFFLINE:
1757 			break;
1758 		default:
1759 			goto illegal;
1760 		}
1761 		break;
1762 
1763 	case SDEV_OFFLINE:
1764 		switch (oldstate) {
1765 		case SDEV_CREATED:
1766 		case SDEV_RUNNING:
1767 		case SDEV_QUIESCE:
1768 		case SDEV_BLOCK:
1769 			break;
1770 		default:
1771 			goto illegal;
1772 		}
1773 		break;
1774 
1775 	case SDEV_BLOCK:
1776 		switch (oldstate) {
1777 		case SDEV_CREATED:
1778 		case SDEV_RUNNING:
1779 			break;
1780 		default:
1781 			goto illegal;
1782 		}
1783 		break;
1784 
1785 	case SDEV_CANCEL:
1786 		switch (oldstate) {
1787 		case SDEV_CREATED:
1788 		case SDEV_RUNNING:
1789 		case SDEV_OFFLINE:
1790 		case SDEV_BLOCK:
1791 			break;
1792 		default:
1793 			goto illegal;
1794 		}
1795 		break;
1796 
1797 	case SDEV_DEL:
1798 		switch (oldstate) {
1799 		case SDEV_CANCEL:
1800 			break;
1801 		default:
1802 			goto illegal;
1803 		}
1804 		break;
1805 
1806 	}
1807 	sdev->sdev_state = state;
1808 	return 0;
1809 
1810  illegal:
1811 	SCSI_LOG_ERROR_RECOVERY(1,
1812 				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1813 					   "Illegal state transition %s->%s\n",
1814 					   scsi_device_state_name(oldstate),
1815 					   scsi_device_state_name(state))
1816 				);
1817 	return -EINVAL;
1818 }
1819 EXPORT_SYMBOL(scsi_device_set_state);
1820 
1821 /**
1822  *	scsi_device_quiesce - Block user issued commands.
1823  *	@sdev:	scsi device to quiesce.
1824  *
1825  *	This works by trying to transition to the SDEV_QUIESCE state
1826  *	(which must be a legal transition).  When the device is in this
1827  *	state, only special requests will be accepted, all others will
1828  *	be deferred.  Since special requests may also be requeued requests,
1829  *	a successful return doesn't guarantee the device will be
1830  *	totally quiescent.
1831  *
1832  *	Must be called with user context, may sleep.
1833  *
1834  *	Returns zero if unsuccessful or an error if not.
1835  **/
1836 int
1837 scsi_device_quiesce(struct scsi_device *sdev)
1838 {
1839 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1840 	if (err)
1841 		return err;
1842 
1843 	scsi_run_queue(sdev->request_queue);
1844 	while (sdev->device_busy) {
1845 		msleep_interruptible(200);
1846 		scsi_run_queue(sdev->request_queue);
1847 	}
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(scsi_device_quiesce);
1851 
1852 /**
1853  *	scsi_device_resume - Restart user issued commands to a quiesced device.
1854  *	@sdev:	scsi device to resume.
1855  *
1856  *	Moves the device from quiesced back to running and restarts the
1857  *	queues.
1858  *
1859  *	Must be called with user context, may sleep.
1860  **/
1861 void
1862 scsi_device_resume(struct scsi_device *sdev)
1863 {
1864 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1865 		return;
1866 	scsi_run_queue(sdev->request_queue);
1867 }
1868 EXPORT_SYMBOL(scsi_device_resume);
1869 
1870 static void
1871 device_quiesce_fn(struct scsi_device *sdev, void *data)
1872 {
1873 	scsi_device_quiesce(sdev);
1874 }
1875 
1876 void
1877 scsi_target_quiesce(struct scsi_target *starget)
1878 {
1879 	starget_for_each_device(starget, NULL, device_quiesce_fn);
1880 }
1881 EXPORT_SYMBOL(scsi_target_quiesce);
1882 
1883 static void
1884 device_resume_fn(struct scsi_device *sdev, void *data)
1885 {
1886 	scsi_device_resume(sdev);
1887 }
1888 
1889 void
1890 scsi_target_resume(struct scsi_target *starget)
1891 {
1892 	starget_for_each_device(starget, NULL, device_resume_fn);
1893 }
1894 EXPORT_SYMBOL(scsi_target_resume);
1895 
1896 /**
1897  * scsi_internal_device_block - internal function to put a device
1898  *				temporarily into the SDEV_BLOCK state
1899  * @sdev:	device to block
1900  *
1901  * Block request made by scsi lld's to temporarily stop all
1902  * scsi commands on the specified device.  Called from interrupt
1903  * or normal process context.
1904  *
1905  * Returns zero if successful or error if not
1906  *
1907  * Notes:
1908  *	This routine transitions the device to the SDEV_BLOCK state
1909  *	(which must be a legal transition).  When the device is in this
1910  *	state, all commands are deferred until the scsi lld reenables
1911  *	the device with scsi_device_unblock or device_block_tmo fires.
1912  *	This routine assumes the host_lock is held on entry.
1913  **/
1914 int
1915 scsi_internal_device_block(struct scsi_device *sdev)
1916 {
1917 	request_queue_t *q = sdev->request_queue;
1918 	unsigned long flags;
1919 	int err = 0;
1920 
1921 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
1922 	if (err)
1923 		return err;
1924 
1925 	/*
1926 	 * The device has transitioned to SDEV_BLOCK.  Stop the
1927 	 * block layer from calling the midlayer with this device's
1928 	 * request queue.
1929 	 */
1930 	spin_lock_irqsave(q->queue_lock, flags);
1931 	blk_stop_queue(q);
1932 	spin_unlock_irqrestore(q->queue_lock, flags);
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1937 
1938 /**
1939  * scsi_internal_device_unblock - resume a device after a block request
1940  * @sdev:	device to resume
1941  *
1942  * Called by scsi lld's or the midlayer to restart the device queue
1943  * for the previously suspended scsi device.  Called from interrupt or
1944  * normal process context.
1945  *
1946  * Returns zero if successful or error if not.
1947  *
1948  * Notes:
1949  *	This routine transitions the device to the SDEV_RUNNING state
1950  *	(which must be a legal transition) allowing the midlayer to
1951  *	goose the queue for this device.  This routine assumes the
1952  *	host_lock is held upon entry.
1953  **/
1954 int
1955 scsi_internal_device_unblock(struct scsi_device *sdev)
1956 {
1957 	request_queue_t *q = sdev->request_queue;
1958 	int err;
1959 	unsigned long flags;
1960 
1961 	/*
1962 	 * Try to transition the scsi device to SDEV_RUNNING
1963 	 * and goose the device queue if successful.
1964 	 */
1965 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
1966 	if (err)
1967 		return err;
1968 
1969 	spin_lock_irqsave(q->queue_lock, flags);
1970 	blk_start_queue(q);
1971 	spin_unlock_irqrestore(q->queue_lock, flags);
1972 
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1976 
1977 static void
1978 device_block(struct scsi_device *sdev, void *data)
1979 {
1980 	scsi_internal_device_block(sdev);
1981 }
1982 
1983 static int
1984 target_block(struct device *dev, void *data)
1985 {
1986 	if (scsi_is_target_device(dev))
1987 		starget_for_each_device(to_scsi_target(dev), NULL,
1988 					device_block);
1989 	return 0;
1990 }
1991 
1992 void
1993 scsi_target_block(struct device *dev)
1994 {
1995 	if (scsi_is_target_device(dev))
1996 		starget_for_each_device(to_scsi_target(dev), NULL,
1997 					device_block);
1998 	else
1999 		device_for_each_child(dev, NULL, target_block);
2000 }
2001 EXPORT_SYMBOL_GPL(scsi_target_block);
2002 
2003 static void
2004 device_unblock(struct scsi_device *sdev, void *data)
2005 {
2006 	scsi_internal_device_unblock(sdev);
2007 }
2008 
2009 static int
2010 target_unblock(struct device *dev, void *data)
2011 {
2012 	if (scsi_is_target_device(dev))
2013 		starget_for_each_device(to_scsi_target(dev), NULL,
2014 					device_unblock);
2015 	return 0;
2016 }
2017 
2018 void
2019 scsi_target_unblock(struct device *dev)
2020 {
2021 	if (scsi_is_target_device(dev))
2022 		starget_for_each_device(to_scsi_target(dev), NULL,
2023 					device_unblock);
2024 	else
2025 		device_for_each_child(dev, NULL, target_unblock);
2026 }
2027 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2028