xref: /linux/drivers/scsi/scsi_lib.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		32
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	struct kmem_cache	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	if (!rq->bio)
267 		blk_rq_bio_prep(q, rq, bio);
268 	else if (!q->back_merge_fn(q, rq, bio))
269 		return -EINVAL;
270 	else {
271 		rq->biotail->bi_next = bio;
272 		rq->biotail = bio;
273 		rq->hard_nr_sectors += bio_sectors(bio);
274 		rq->nr_sectors = rq->hard_nr_sectors;
275 	}
276 
277 	return 0;
278 }
279 
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
281 {
282 	if (bio->bi_size)
283 		return 1;
284 
285 	bio_put(bio);
286 	return 0;
287 }
288 
289 /**
290  * scsi_req_map_sg - map a scatterlist into a request
291  * @rq:		request to fill
292  * @sg:		scatterlist
293  * @nsegs:	number of elements
294  * @bufflen:	len of buffer
295  * @gfp:	memory allocation flags
296  *
297  * scsi_req_map_sg maps a scatterlist into a request so that the
298  * request can be sent to the block layer. We do not trust the scatterlist
299  * sent to use, as some ULDs use that struct to only organize the pages.
300  */
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302 			   int nsegs, unsigned bufflen, gfp_t gfp)
303 {
304 	struct request_queue *q = rq->q;
305 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 	unsigned int data_len = 0, len, bytes, off;
307 	struct page *page;
308 	struct bio *bio = NULL;
309 	int i, err, nr_vecs = 0;
310 
311 	for (i = 0; i < nsegs; i++) {
312 		page = sgl[i].page;
313 		off = sgl[i].offset;
314 		len = sgl[i].length;
315 		data_len += len;
316 
317 		while (len > 0) {
318 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
319 
320 			if (!bio) {
321 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322 				nr_pages -= nr_vecs;
323 
324 				bio = bio_alloc(gfp, nr_vecs);
325 				if (!bio) {
326 					err = -ENOMEM;
327 					goto free_bios;
328 				}
329 				bio->bi_end_io = scsi_bi_endio;
330 			}
331 
332 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
333 			    bytes) {
334 				bio_put(bio);
335 				err = -EINVAL;
336 				goto free_bios;
337 			}
338 
339 			if (bio->bi_vcnt >= nr_vecs) {
340 				err = scsi_merge_bio(rq, bio);
341 				if (err) {
342 					bio_endio(bio, bio->bi_size, 0);
343 					goto free_bios;
344 				}
345 				bio = NULL;
346 			}
347 
348 			page++;
349 			len -= bytes;
350 			off = 0;
351 		}
352 	}
353 
354 	rq->buffer = rq->data = NULL;
355 	rq->data_len = data_len;
356 	return 0;
357 
358 free_bios:
359 	while ((bio = rq->bio) != NULL) {
360 		rq->bio = bio->bi_next;
361 		/*
362 		 * call endio instead of bio_put incase it was bounced
363 		 */
364 		bio_endio(bio, bio->bi_size, 0);
365 	}
366 
367 	return err;
368 }
369 
370 /**
371  * scsi_execute_async - insert request
372  * @sdev:	scsi device
373  * @cmd:	scsi command
374  * @cmd_len:	length of scsi cdb
375  * @data_direction: data direction
376  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
377  * @bufflen:	len of buffer
378  * @use_sg:	if buffer is a scatterlist this is the number of elements
379  * @timeout:	request timeout in seconds
380  * @retries:	number of times to retry request
381  * @flags:	or into request flags
382  **/
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385 		       int use_sg, int timeout, int retries, void *privdata,
386 		       void (*done)(void *, char *, int, int), gfp_t gfp)
387 {
388 	struct request *req;
389 	struct scsi_io_context *sioc;
390 	int err = 0;
391 	int write = (data_direction == DMA_TO_DEVICE);
392 
393 	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394 	if (!sioc)
395 		return DRIVER_ERROR << 24;
396 	memset(sioc, 0, sizeof(*sioc));
397 
398 	req = blk_get_request(sdev->request_queue, write, gfp);
399 	if (!req)
400 		goto free_sense;
401 	req->cmd_type = REQ_TYPE_BLOCK_PC;
402 	req->cmd_flags |= REQ_QUIET;
403 
404 	if (use_sg)
405 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406 	else if (bufflen)
407 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
408 
409 	if (err)
410 		goto free_req;
411 
412 	req->cmd_len = cmd_len;
413 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
414 	memcpy(req->cmd, cmd, req->cmd_len);
415 	req->sense = sioc->sense;
416 	req->sense_len = 0;
417 	req->timeout = timeout;
418 	req->retries = retries;
419 	req->end_io_data = sioc;
420 
421 	sioc->data = privdata;
422 	sioc->done = done;
423 
424 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425 	return 0;
426 
427 free_req:
428 	blk_put_request(req);
429 free_sense:
430 	kmem_cache_free(scsi_io_context_cache, sioc);
431 	return DRIVER_ERROR << 24;
432 }
433 EXPORT_SYMBOL_GPL(scsi_execute_async);
434 
435 /*
436  * Function:    scsi_init_cmd_errh()
437  *
438  * Purpose:     Initialize cmd fields related to error handling.
439  *
440  * Arguments:   cmd	- command that is ready to be queued.
441  *
442  * Notes:       This function has the job of initializing a number of
443  *              fields related to error handling.   Typically this will
444  *              be called once for each command, as required.
445  */
446 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447 {
448 	cmd->serial_number = 0;
449 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450 	if (cmd->cmd_len == 0)
451 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
452 }
453 
454 void scsi_device_unbusy(struct scsi_device *sdev)
455 {
456 	struct Scsi_Host *shost = sdev->host;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(shost->host_lock, flags);
460 	shost->host_busy--;
461 	if (unlikely(scsi_host_in_recovery(shost) &&
462 		     (shost->host_failed || shost->host_eh_scheduled)))
463 		scsi_eh_wakeup(shost);
464 	spin_unlock(shost->host_lock);
465 	spin_lock(sdev->request_queue->queue_lock);
466 	sdev->device_busy--;
467 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
468 }
469 
470 /*
471  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
472  * and call blk_run_queue for all the scsi_devices on the target -
473  * including current_sdev first.
474  *
475  * Called with *no* scsi locks held.
476  */
477 static void scsi_single_lun_run(struct scsi_device *current_sdev)
478 {
479 	struct Scsi_Host *shost = current_sdev->host;
480 	struct scsi_device *sdev, *tmp;
481 	struct scsi_target *starget = scsi_target(current_sdev);
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(shost->host_lock, flags);
485 	starget->starget_sdev_user = NULL;
486 	spin_unlock_irqrestore(shost->host_lock, flags);
487 
488 	/*
489 	 * Call blk_run_queue for all LUNs on the target, starting with
490 	 * current_sdev. We race with others (to set starget_sdev_user),
491 	 * but in most cases, we will be first. Ideally, each LU on the
492 	 * target would get some limited time or requests on the target.
493 	 */
494 	blk_run_queue(current_sdev->request_queue);
495 
496 	spin_lock_irqsave(shost->host_lock, flags);
497 	if (starget->starget_sdev_user)
498 		goto out;
499 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
500 			same_target_siblings) {
501 		if (sdev == current_sdev)
502 			continue;
503 		if (scsi_device_get(sdev))
504 			continue;
505 
506 		spin_unlock_irqrestore(shost->host_lock, flags);
507 		blk_run_queue(sdev->request_queue);
508 		spin_lock_irqsave(shost->host_lock, flags);
509 
510 		scsi_device_put(sdev);
511 	}
512  out:
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:	scsi_run_queue()
518  *
519  * Purpose:	Select a proper request queue to serve next
520  *
521  * Arguments:	q	- last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:	The previous command was completely finished, start
526  *		a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 	struct Scsi_Host *shost = sdev->host;
532 	unsigned long flags;
533 
534 	if (sdev->single_lun)
535 		scsi_single_lun_run(sdev);
536 
537 	spin_lock_irqsave(shost->host_lock, flags);
538 	while (!list_empty(&shost->starved_list) &&
539 	       !shost->host_blocked && !shost->host_self_blocked &&
540 		!((shost->can_queue > 0) &&
541 		  (shost->host_busy >= shost->can_queue))) {
542 		/*
543 		 * As long as shost is accepting commands and we have
544 		 * starved queues, call blk_run_queue. scsi_request_fn
545 		 * drops the queue_lock and can add us back to the
546 		 * starved_list.
547 		 *
548 		 * host_lock protects the starved_list and starved_entry.
549 		 * scsi_request_fn must get the host_lock before checking
550 		 * or modifying starved_list or starved_entry.
551 		 */
552 		sdev = list_entry(shost->starved_list.next,
553 					  struct scsi_device, starved_entry);
554 		list_del_init(&sdev->starved_entry);
555 		spin_unlock_irqrestore(shost->host_lock, flags);
556 
557 
558 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
560 				      &sdev->request_queue->queue_flags)) {
561 			blk_run_queue(sdev->request_queue);
562 			clear_bit(QUEUE_FLAG_REENTER,
563 				  &sdev->request_queue->queue_flags);
564 		} else
565 			blk_run_queue(sdev->request_queue);
566 
567 		spin_lock_irqsave(shost->host_lock, flags);
568 		if (unlikely(!list_empty(&sdev->starved_entry)))
569 			/*
570 			 * sdev lost a race, and was put back on the
571 			 * starved list. This is unlikely but without this
572 			 * in theory we could loop forever.
573 			 */
574 			break;
575 	}
576 	spin_unlock_irqrestore(shost->host_lock, flags);
577 
578 	blk_run_queue(q);
579 }
580 
581 /*
582  * Function:	scsi_requeue_command()
583  *
584  * Purpose:	Handle post-processing of completed commands.
585  *
586  * Arguments:	q	- queue to operate on
587  *		cmd	- command that may need to be requeued.
588  *
589  * Returns:	Nothing
590  *
591  * Notes:	After command completion, there may be blocks left
592  *		over which weren't finished by the previous command
593  *		this can be for a number of reasons - the main one is
594  *		I/O errors in the middle of the request, in which case
595  *		we need to request the blocks that come after the bad
596  *		sector.
597  * Notes:	Upon return, cmd is a stale pointer.
598  */
599 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
600 {
601 	struct request *req = cmd->request;
602 	unsigned long flags;
603 
604 	scsi_unprep_request(req);
605 	spin_lock_irqsave(q->queue_lock, flags);
606 	blk_requeue_request(q, req);
607 	spin_unlock_irqrestore(q->queue_lock, flags);
608 
609 	scsi_run_queue(q);
610 }
611 
612 void scsi_next_command(struct scsi_cmnd *cmd)
613 {
614 	struct scsi_device *sdev = cmd->device;
615 	struct request_queue *q = sdev->request_queue;
616 
617 	/* need to hold a reference on the device before we let go of the cmd */
618 	get_device(&sdev->sdev_gendev);
619 
620 	scsi_put_command(cmd);
621 	scsi_run_queue(q);
622 
623 	/* ok to remove device now */
624 	put_device(&sdev->sdev_gendev);
625 }
626 
627 void scsi_run_host_queues(struct Scsi_Host *shost)
628 {
629 	struct scsi_device *sdev;
630 
631 	shost_for_each_device(sdev, shost)
632 		scsi_run_queue(sdev->request_queue);
633 }
634 
635 /*
636  * Function:    scsi_end_request()
637  *
638  * Purpose:     Post-processing of completed commands (usually invoked at end
639  *		of upper level post-processing and scsi_io_completion).
640  *
641  * Arguments:   cmd	 - command that is complete.
642  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
643  *              bytes    - number of bytes of completed I/O
644  *		requeue  - indicates whether we should requeue leftovers.
645  *
646  * Lock status: Assumed that lock is not held upon entry.
647  *
648  * Returns:     cmd if requeue required, NULL otherwise.
649  *
650  * Notes:       This is called for block device requests in order to
651  *              mark some number of sectors as complete.
652  *
653  *		We are guaranteeing that the request queue will be goosed
654  *		at some point during this call.
655  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
656  */
657 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
658 					  int bytes, int requeue)
659 {
660 	request_queue_t *q = cmd->device->request_queue;
661 	struct request *req = cmd->request;
662 	unsigned long flags;
663 
664 	/*
665 	 * If there are blocks left over at the end, set up the command
666 	 * to queue the remainder of them.
667 	 */
668 	if (end_that_request_chunk(req, uptodate, bytes)) {
669 		int leftover = (req->hard_nr_sectors << 9);
670 
671 		if (blk_pc_request(req))
672 			leftover = req->data_len;
673 
674 		/* kill remainder if no retrys */
675 		if (!uptodate && blk_noretry_request(req))
676 			end_that_request_chunk(req, 0, leftover);
677 		else {
678 			if (requeue) {
679 				/*
680 				 * Bleah.  Leftovers again.  Stick the
681 				 * leftovers in the front of the
682 				 * queue, and goose the queue again.
683 				 */
684 				scsi_requeue_command(q, cmd);
685 				cmd = NULL;
686 			}
687 			return cmd;
688 		}
689 	}
690 
691 	add_disk_randomness(req->rq_disk);
692 
693 	spin_lock_irqsave(q->queue_lock, flags);
694 	if (blk_rq_tagged(req))
695 		blk_queue_end_tag(q, req);
696 	end_that_request_last(req, uptodate);
697 	spin_unlock_irqrestore(q->queue_lock, flags);
698 
699 	/*
700 	 * This will goose the queue request function at the end, so we don't
701 	 * need to worry about launching another command.
702 	 */
703 	scsi_next_command(cmd);
704 	return NULL;
705 }
706 
707 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
708 {
709 	struct scsi_host_sg_pool *sgp;
710 	struct scatterlist *sgl;
711 
712 	BUG_ON(!cmd->use_sg);
713 
714 	switch (cmd->use_sg) {
715 	case 1 ... 8:
716 		cmd->sglist_len = 0;
717 		break;
718 	case 9 ... 16:
719 		cmd->sglist_len = 1;
720 		break;
721 	case 17 ... 32:
722 		cmd->sglist_len = 2;
723 		break;
724 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
725 	case 33 ... 64:
726 		cmd->sglist_len = 3;
727 		break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
729 	case 65 ... 128:
730 		cmd->sglist_len = 4;
731 		break;
732 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
733 	case 129 ... 256:
734 		cmd->sglist_len = 5;
735 		break;
736 #endif
737 #endif
738 #endif
739 	default:
740 		return NULL;
741 	}
742 
743 	sgp = scsi_sg_pools + cmd->sglist_len;
744 	sgl = mempool_alloc(sgp->pool, gfp_mask);
745 	return sgl;
746 }
747 
748 EXPORT_SYMBOL(scsi_alloc_sgtable);
749 
750 void scsi_free_sgtable(struct scatterlist *sgl, int index)
751 {
752 	struct scsi_host_sg_pool *sgp;
753 
754 	BUG_ON(index >= SG_MEMPOOL_NR);
755 
756 	sgp = scsi_sg_pools + index;
757 	mempool_free(sgl, sgp->pool);
758 }
759 
760 EXPORT_SYMBOL(scsi_free_sgtable);
761 
762 /*
763  * Function:    scsi_release_buffers()
764  *
765  * Purpose:     Completion processing for block device I/O requests.
766  *
767  * Arguments:   cmd	- command that we are bailing.
768  *
769  * Lock status: Assumed that no lock is held upon entry.
770  *
771  * Returns:     Nothing
772  *
773  * Notes:       In the event that an upper level driver rejects a
774  *		command, we must release resources allocated during
775  *		the __init_io() function.  Primarily this would involve
776  *		the scatter-gather table, and potentially any bounce
777  *		buffers.
778  */
779 static void scsi_release_buffers(struct scsi_cmnd *cmd)
780 {
781 	if (cmd->use_sg)
782 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
783 
784 	/*
785 	 * Zero these out.  They now point to freed memory, and it is
786 	 * dangerous to hang onto the pointers.
787 	 */
788 	cmd->request_buffer = NULL;
789 	cmd->request_bufflen = 0;
790 }
791 
792 /*
793  * Function:    scsi_io_completion()
794  *
795  * Purpose:     Completion processing for block device I/O requests.
796  *
797  * Arguments:   cmd   - command that is finished.
798  *
799  * Lock status: Assumed that no lock is held upon entry.
800  *
801  * Returns:     Nothing
802  *
803  * Notes:       This function is matched in terms of capabilities to
804  *              the function that created the scatter-gather list.
805  *              In other words, if there are no bounce buffers
806  *              (the normal case for most drivers), we don't need
807  *              the logic to deal with cleaning up afterwards.
808  *
809  *		We must do one of several things here:
810  *
811  *		a) Call scsi_end_request.  This will finish off the
812  *		   specified number of sectors.  If we are done, the
813  *		   command block will be released, and the queue
814  *		   function will be goosed.  If we are not done, then
815  *		   scsi_end_request will directly goose the queue.
816  *
817  *		b) We can just use scsi_requeue_command() here.  This would
818  *		   be used if we just wanted to retry, for example.
819  */
820 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
821 {
822 	int result = cmd->result;
823 	int this_count = cmd->request_bufflen;
824 	request_queue_t *q = cmd->device->request_queue;
825 	struct request *req = cmd->request;
826 	int clear_errors = 1;
827 	struct scsi_sense_hdr sshdr;
828 	int sense_valid = 0;
829 	int sense_deferred = 0;
830 
831 	scsi_release_buffers(cmd);
832 
833 	if (result) {
834 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
835 		if (sense_valid)
836 			sense_deferred = scsi_sense_is_deferred(&sshdr);
837 	}
838 
839 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
840 		req->errors = result;
841 		if (result) {
842 			clear_errors = 0;
843 			if (sense_valid && req->sense) {
844 				/*
845 				 * SG_IO wants current and deferred errors
846 				 */
847 				int len = 8 + cmd->sense_buffer[7];
848 
849 				if (len > SCSI_SENSE_BUFFERSIZE)
850 					len = SCSI_SENSE_BUFFERSIZE;
851 				memcpy(req->sense, cmd->sense_buffer,  len);
852 				req->sense_len = len;
853 			}
854 		} else
855 			req->data_len = cmd->resid;
856 	}
857 
858 	/*
859 	 * Next deal with any sectors which we were able to correctly
860 	 * handle.
861 	 */
862 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
863 				      "%d bytes done.\n",
864 				      req->nr_sectors, good_bytes));
865 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
866 
867 	if (clear_errors)
868 		req->errors = 0;
869 
870 	/* A number of bytes were successfully read.  If there
871 	 * are leftovers and there is some kind of error
872 	 * (result != 0), retry the rest.
873 	 */
874 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
875 		return;
876 
877 	/* good_bytes = 0, or (inclusive) there were leftovers and
878 	 * result = 0, so scsi_end_request couldn't retry.
879 	 */
880 	if (sense_valid && !sense_deferred) {
881 		switch (sshdr.sense_key) {
882 		case UNIT_ATTENTION:
883 			if (cmd->device->removable) {
884 				/* Detected disc change.  Set a bit
885 				 * and quietly refuse further access.
886 				 */
887 				cmd->device->changed = 1;
888 				scsi_end_request(cmd, 0, this_count, 1);
889 				return;
890 			} else {
891 				/* Must have been a power glitch, or a
892 				 * bus reset.  Could not have been a
893 				 * media change, so we just retry the
894 				 * request and see what happens.
895 				 */
896 				scsi_requeue_command(q, cmd);
897 				return;
898 			}
899 			break;
900 		case ILLEGAL_REQUEST:
901 			/* If we had an ILLEGAL REQUEST returned, then
902 			 * we may have performed an unsupported
903 			 * command.  The only thing this should be
904 			 * would be a ten byte read where only a six
905 			 * byte read was supported.  Also, on a system
906 			 * where READ CAPACITY failed, we may have
907 			 * read past the end of the disk.
908 			 */
909 			if ((cmd->device->use_10_for_rw &&
910 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
911 			    (cmd->cmnd[0] == READ_10 ||
912 			     cmd->cmnd[0] == WRITE_10)) {
913 				cmd->device->use_10_for_rw = 0;
914 				/* This will cause a retry with a
915 				 * 6-byte command.
916 				 */
917 				scsi_requeue_command(q, cmd);
918 				return;
919 			} else {
920 				scsi_end_request(cmd, 0, this_count, 1);
921 				return;
922 			}
923 			break;
924 		case NOT_READY:
925 			/* If the device is in the process of becoming
926 			 * ready, or has a temporary blockage, retry.
927 			 */
928 			if (sshdr.asc == 0x04) {
929 				switch (sshdr.ascq) {
930 				case 0x01: /* becoming ready */
931 				case 0x04: /* format in progress */
932 				case 0x05: /* rebuild in progress */
933 				case 0x06: /* recalculation in progress */
934 				case 0x07: /* operation in progress */
935 				case 0x08: /* Long write in progress */
936 				case 0x09: /* self test in progress */
937 					scsi_requeue_command(q, cmd);
938 					return;
939 				default:
940 					break;
941 				}
942 			}
943 			if (!(req->cmd_flags & REQ_QUIET)) {
944 				scmd_printk(KERN_INFO, cmd,
945 					    "Device not ready: ");
946 				scsi_print_sense_hdr("", &sshdr);
947 			}
948 			scsi_end_request(cmd, 0, this_count, 1);
949 			return;
950 		case VOLUME_OVERFLOW:
951 			if (!(req->cmd_flags & REQ_QUIET)) {
952 				scmd_printk(KERN_INFO, cmd,
953 					    "Volume overflow, CDB: ");
954 				__scsi_print_command(cmd->cmnd);
955 				scsi_print_sense("", cmd);
956 			}
957 			/* See SSC3rXX or current. */
958 			scsi_end_request(cmd, 0, this_count, 1);
959 			return;
960 		default:
961 			break;
962 		}
963 	}
964 	if (host_byte(result) == DID_RESET) {
965 		/* Third party bus reset or reset for error recovery
966 		 * reasons.  Just retry the request and see what
967 		 * happens.
968 		 */
969 		scsi_requeue_command(q, cmd);
970 		return;
971 	}
972 	if (result) {
973 		if (!(req->cmd_flags & REQ_QUIET)) {
974 			scmd_printk(KERN_INFO, cmd,
975 				    "SCSI error: return code = 0x%08x\n",
976 				    result);
977 			if (driver_byte(result) & DRIVER_SENSE)
978 				scsi_print_sense("", cmd);
979 		}
980 	}
981 	scsi_end_request(cmd, 0, this_count, !result);
982 }
983 EXPORT_SYMBOL(scsi_io_completion);
984 
985 /*
986  * Function:    scsi_init_io()
987  *
988  * Purpose:     SCSI I/O initialize function.
989  *
990  * Arguments:   cmd   - Command descriptor we wish to initialize
991  *
992  * Returns:     0 on success
993  *		BLKPREP_DEFER if the failure is retryable
994  *		BLKPREP_KILL if the failure is fatal
995  */
996 static int scsi_init_io(struct scsi_cmnd *cmd)
997 {
998 	struct request     *req = cmd->request;
999 	struct scatterlist *sgpnt;
1000 	int		   count;
1001 
1002 	/*
1003 	 * We used to not use scatter-gather for single segment request,
1004 	 * but now we do (it makes highmem I/O easier to support without
1005 	 * kmapping pages)
1006 	 */
1007 	cmd->use_sg = req->nr_phys_segments;
1008 
1009 	/*
1010 	 * If sg table allocation fails, requeue request later.
1011 	 */
1012 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1013 	if (unlikely(!sgpnt)) {
1014 		scsi_unprep_request(req);
1015 		return BLKPREP_DEFER;
1016 	}
1017 
1018 	req->buffer = NULL;
1019 	cmd->request_buffer = (char *) sgpnt;
1020 	if (blk_pc_request(req))
1021 		cmd->request_bufflen = req->data_len;
1022 	else
1023 		cmd->request_bufflen = req->nr_sectors << 9;
1024 
1025 	/*
1026 	 * Next, walk the list, and fill in the addresses and sizes of
1027 	 * each segment.
1028 	 */
1029 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1030 	if (likely(count <= cmd->use_sg)) {
1031 		cmd->use_sg = count;
1032 		return BLKPREP_OK;
1033 	}
1034 
1035 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1036 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1037 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1038 			req->current_nr_sectors);
1039 
1040 	/* release the command and kill it */
1041 	scsi_release_buffers(cmd);
1042 	scsi_put_command(cmd);
1043 	return BLKPREP_KILL;
1044 }
1045 
1046 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1047 			       sector_t *error_sector)
1048 {
1049 	struct scsi_device *sdev = q->queuedata;
1050 	struct scsi_driver *drv;
1051 
1052 	if (sdev->sdev_state != SDEV_RUNNING)
1053 		return -ENXIO;
1054 
1055 	drv = *(struct scsi_driver **) disk->private_data;
1056 	if (drv->issue_flush)
1057 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1058 
1059 	return -EOPNOTSUPP;
1060 }
1061 
1062 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1063 		struct request *req)
1064 {
1065 	struct scsi_cmnd *cmd;
1066 
1067 	if (!req->special) {
1068 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1069 		if (unlikely(!cmd))
1070 			return NULL;
1071 		req->special = cmd;
1072 	} else {
1073 		cmd = req->special;
1074 	}
1075 
1076 	/* pull a tag out of the request if we have one */
1077 	cmd->tag = req->tag;
1078 	cmd->request = req;
1079 
1080 	return cmd;
1081 }
1082 
1083 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1084 {
1085 	BUG_ON(!blk_pc_request(cmd->request));
1086 	/*
1087 	 * This will complete the whole command with uptodate=1 so
1088 	 * as far as the block layer is concerned the command completed
1089 	 * successfully. Since this is a REQ_BLOCK_PC command the
1090 	 * caller should check the request's errors value
1091 	 */
1092 	scsi_io_completion(cmd, cmd->request_bufflen);
1093 }
1094 
1095 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1096 {
1097 	struct scsi_cmnd *cmd;
1098 
1099 	cmd = scsi_get_cmd_from_req(sdev, req);
1100 	if (unlikely(!cmd))
1101 		return BLKPREP_DEFER;
1102 
1103 	/*
1104 	 * BLOCK_PC requests may transfer data, in which case they must
1105 	 * a bio attached to them.  Or they might contain a SCSI command
1106 	 * that does not transfer data, in which case they may optionally
1107 	 * submit a request without an attached bio.
1108 	 */
1109 	if (req->bio) {
1110 		int ret;
1111 
1112 		BUG_ON(!req->nr_phys_segments);
1113 
1114 		ret = scsi_init_io(cmd);
1115 		if (unlikely(ret))
1116 			return ret;
1117 	} else {
1118 		BUG_ON(req->data_len);
1119 		BUG_ON(req->data);
1120 
1121 		cmd->request_bufflen = 0;
1122 		cmd->request_buffer = NULL;
1123 		cmd->use_sg = 0;
1124 		req->buffer = NULL;
1125 	}
1126 
1127 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1128 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1129 	cmd->cmd_len = req->cmd_len;
1130 	if (!req->data_len)
1131 		cmd->sc_data_direction = DMA_NONE;
1132 	else if (rq_data_dir(req) == WRITE)
1133 		cmd->sc_data_direction = DMA_TO_DEVICE;
1134 	else
1135 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1136 
1137 	cmd->transfersize = req->data_len;
1138 	cmd->allowed = req->retries;
1139 	cmd->timeout_per_command = req->timeout;
1140 	cmd->done = scsi_blk_pc_done;
1141 	return BLKPREP_OK;
1142 }
1143 
1144 /*
1145  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1146  * from filesystems that still need to be translated to SCSI CDBs from
1147  * the ULD.
1148  */
1149 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1150 {
1151 	struct scsi_cmnd *cmd;
1152 	struct scsi_driver *drv;
1153 	int ret;
1154 
1155 	/*
1156 	 * Filesystem requests must transfer data.
1157 	 */
1158 	BUG_ON(!req->nr_phys_segments);
1159 
1160 	cmd = scsi_get_cmd_from_req(sdev, req);
1161 	if (unlikely(!cmd))
1162 		return BLKPREP_DEFER;
1163 
1164 	ret = scsi_init_io(cmd);
1165 	if (unlikely(ret))
1166 		return ret;
1167 
1168 	/*
1169 	 * Initialize the actual SCSI command for this request.
1170 	 */
1171 	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1172 	if (unlikely(!drv->init_command(cmd))) {
1173 		scsi_release_buffers(cmd);
1174 		scsi_put_command(cmd);
1175 		return BLKPREP_KILL;
1176 	}
1177 
1178 	return BLKPREP_OK;
1179 }
1180 
1181 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1182 {
1183 	struct scsi_device *sdev = q->queuedata;
1184 	int ret = BLKPREP_OK;
1185 
1186 	/*
1187 	 * If the device is not in running state we will reject some
1188 	 * or all commands.
1189 	 */
1190 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1191 		switch (sdev->sdev_state) {
1192 		case SDEV_OFFLINE:
1193 			/*
1194 			 * If the device is offline we refuse to process any
1195 			 * commands.  The device must be brought online
1196 			 * before trying any recovery commands.
1197 			 */
1198 			sdev_printk(KERN_ERR, sdev,
1199 				    "rejecting I/O to offline device\n");
1200 			ret = BLKPREP_KILL;
1201 			break;
1202 		case SDEV_DEL:
1203 			/*
1204 			 * If the device is fully deleted, we refuse to
1205 			 * process any commands as well.
1206 			 */
1207 			sdev_printk(KERN_ERR, sdev,
1208 				    "rejecting I/O to dead device\n");
1209 			ret = BLKPREP_KILL;
1210 			break;
1211 		case SDEV_QUIESCE:
1212 		case SDEV_BLOCK:
1213 			/*
1214 			 * If the devices is blocked we defer normal commands.
1215 			 */
1216 			if (!(req->cmd_flags & REQ_PREEMPT))
1217 				ret = BLKPREP_DEFER;
1218 			break;
1219 		default:
1220 			/*
1221 			 * For any other not fully online state we only allow
1222 			 * special commands.  In particular any user initiated
1223 			 * command is not allowed.
1224 			 */
1225 			if (!(req->cmd_flags & REQ_PREEMPT))
1226 				ret = BLKPREP_KILL;
1227 			break;
1228 		}
1229 
1230 		if (ret != BLKPREP_OK)
1231 			goto out;
1232 	}
1233 
1234 	switch (req->cmd_type) {
1235 	case REQ_TYPE_BLOCK_PC:
1236 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1237 		break;
1238 	case REQ_TYPE_FS:
1239 		ret = scsi_setup_fs_cmnd(sdev, req);
1240 		break;
1241 	default:
1242 		/*
1243 		 * All other command types are not supported.
1244 		 *
1245 		 * Note that these days the SCSI subsystem does not use
1246 		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1247 		 * (directly or via blk_insert_request) by non-SCSI drivers.
1248 		 */
1249 		blk_dump_rq_flags(req, "SCSI bad req");
1250 		ret = BLKPREP_KILL;
1251 		break;
1252 	}
1253 
1254  out:
1255 	switch (ret) {
1256 	case BLKPREP_KILL:
1257 		req->errors = DID_NO_CONNECT << 16;
1258 		break;
1259 	case BLKPREP_DEFER:
1260 		/*
1261 		 * If we defer, the elv_next_request() returns NULL, but the
1262 		 * queue must be restarted, so we plug here if no returning
1263 		 * command will automatically do that.
1264 		 */
1265 		if (sdev->device_busy == 0)
1266 			blk_plug_device(q);
1267 		break;
1268 	default:
1269 		req->cmd_flags |= REQ_DONTPREP;
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277  * return 0.
1278  *
1279  * Called with the queue_lock held.
1280  */
1281 static inline int scsi_dev_queue_ready(struct request_queue *q,
1282 				  struct scsi_device *sdev)
1283 {
1284 	if (sdev->device_busy >= sdev->queue_depth)
1285 		return 0;
1286 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1287 		/*
1288 		 * unblock after device_blocked iterates to zero
1289 		 */
1290 		if (--sdev->device_blocked == 0) {
1291 			SCSI_LOG_MLQUEUE(3,
1292 				   sdev_printk(KERN_INFO, sdev,
1293 				   "unblocking device at zero depth\n"));
1294 		} else {
1295 			blk_plug_device(q);
1296 			return 0;
1297 		}
1298 	}
1299 	if (sdev->device_blocked)
1300 		return 0;
1301 
1302 	return 1;
1303 }
1304 
1305 /*
1306  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1307  * return 0. We must end up running the queue again whenever 0 is
1308  * returned, else IO can hang.
1309  *
1310  * Called with host_lock held.
1311  */
1312 static inline int scsi_host_queue_ready(struct request_queue *q,
1313 				   struct Scsi_Host *shost,
1314 				   struct scsi_device *sdev)
1315 {
1316 	if (scsi_host_in_recovery(shost))
1317 		return 0;
1318 	if (shost->host_busy == 0 && shost->host_blocked) {
1319 		/*
1320 		 * unblock after host_blocked iterates to zero
1321 		 */
1322 		if (--shost->host_blocked == 0) {
1323 			SCSI_LOG_MLQUEUE(3,
1324 				printk("scsi%d unblocking host at zero depth\n",
1325 					shost->host_no));
1326 		} else {
1327 			blk_plug_device(q);
1328 			return 0;
1329 		}
1330 	}
1331 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1332 	    shost->host_blocked || shost->host_self_blocked) {
1333 		if (list_empty(&sdev->starved_entry))
1334 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1335 		return 0;
1336 	}
1337 
1338 	/* We're OK to process the command, so we can't be starved */
1339 	if (!list_empty(&sdev->starved_entry))
1340 		list_del_init(&sdev->starved_entry);
1341 
1342 	return 1;
1343 }
1344 
1345 /*
1346  * Kill a request for a dead device
1347  */
1348 static void scsi_kill_request(struct request *req, request_queue_t *q)
1349 {
1350 	struct scsi_cmnd *cmd = req->special;
1351 	struct scsi_device *sdev = cmd->device;
1352 	struct Scsi_Host *shost = sdev->host;
1353 
1354 	blkdev_dequeue_request(req);
1355 
1356 	if (unlikely(cmd == NULL)) {
1357 		printk(KERN_CRIT "impossible request in %s.\n",
1358 				 __FUNCTION__);
1359 		BUG();
1360 	}
1361 
1362 	scsi_init_cmd_errh(cmd);
1363 	cmd->result = DID_NO_CONNECT << 16;
1364 	atomic_inc(&cmd->device->iorequest_cnt);
1365 
1366 	/*
1367 	 * SCSI request completion path will do scsi_device_unbusy(),
1368 	 * bump busy counts.  To bump the counters, we need to dance
1369 	 * with the locks as normal issue path does.
1370 	 */
1371 	sdev->device_busy++;
1372 	spin_unlock(sdev->request_queue->queue_lock);
1373 	spin_lock(shost->host_lock);
1374 	shost->host_busy++;
1375 	spin_unlock(shost->host_lock);
1376 	spin_lock(sdev->request_queue->queue_lock);
1377 
1378 	__scsi_done(cmd);
1379 }
1380 
1381 static void scsi_softirq_done(struct request *rq)
1382 {
1383 	struct scsi_cmnd *cmd = rq->completion_data;
1384 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1385 	int disposition;
1386 
1387 	INIT_LIST_HEAD(&cmd->eh_entry);
1388 
1389 	disposition = scsi_decide_disposition(cmd);
1390 	if (disposition != SUCCESS &&
1391 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1392 		sdev_printk(KERN_ERR, cmd->device,
1393 			    "timing out command, waited %lus\n",
1394 			    wait_for/HZ);
1395 		disposition = SUCCESS;
1396 	}
1397 
1398 	scsi_log_completion(cmd, disposition);
1399 
1400 	switch (disposition) {
1401 		case SUCCESS:
1402 			scsi_finish_command(cmd);
1403 			break;
1404 		case NEEDS_RETRY:
1405 			scsi_retry_command(cmd);
1406 			break;
1407 		case ADD_TO_MLQUEUE:
1408 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1409 			break;
1410 		default:
1411 			if (!scsi_eh_scmd_add(cmd, 0))
1412 				scsi_finish_command(cmd);
1413 	}
1414 }
1415 
1416 /*
1417  * Function:    scsi_request_fn()
1418  *
1419  * Purpose:     Main strategy routine for SCSI.
1420  *
1421  * Arguments:   q       - Pointer to actual queue.
1422  *
1423  * Returns:     Nothing
1424  *
1425  * Lock status: IO request lock assumed to be held when called.
1426  */
1427 static void scsi_request_fn(struct request_queue *q)
1428 {
1429 	struct scsi_device *sdev = q->queuedata;
1430 	struct Scsi_Host *shost;
1431 	struct scsi_cmnd *cmd;
1432 	struct request *req;
1433 
1434 	if (!sdev) {
1435 		printk("scsi: killing requests for dead queue\n");
1436 		while ((req = elv_next_request(q)) != NULL)
1437 			scsi_kill_request(req, q);
1438 		return;
1439 	}
1440 
1441 	if(!get_device(&sdev->sdev_gendev))
1442 		/* We must be tearing the block queue down already */
1443 		return;
1444 
1445 	/*
1446 	 * To start with, we keep looping until the queue is empty, or until
1447 	 * the host is no longer able to accept any more requests.
1448 	 */
1449 	shost = sdev->host;
1450 	while (!blk_queue_plugged(q)) {
1451 		int rtn;
1452 		/*
1453 		 * get next queueable request.  We do this early to make sure
1454 		 * that the request is fully prepared even if we cannot
1455 		 * accept it.
1456 		 */
1457 		req = elv_next_request(q);
1458 		if (!req || !scsi_dev_queue_ready(q, sdev))
1459 			break;
1460 
1461 		if (unlikely(!scsi_device_online(sdev))) {
1462 			sdev_printk(KERN_ERR, sdev,
1463 				    "rejecting I/O to offline device\n");
1464 			scsi_kill_request(req, q);
1465 			continue;
1466 		}
1467 
1468 
1469 		/*
1470 		 * Remove the request from the request list.
1471 		 */
1472 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1473 			blkdev_dequeue_request(req);
1474 		sdev->device_busy++;
1475 
1476 		spin_unlock(q->queue_lock);
1477 		cmd = req->special;
1478 		if (unlikely(cmd == NULL)) {
1479 			printk(KERN_CRIT "impossible request in %s.\n"
1480 					 "please mail a stack trace to "
1481 					 "linux-scsi@vger.kernel.org\n",
1482 					 __FUNCTION__);
1483 			blk_dump_rq_flags(req, "foo");
1484 			BUG();
1485 		}
1486 		spin_lock(shost->host_lock);
1487 
1488 		if (!scsi_host_queue_ready(q, shost, sdev))
1489 			goto not_ready;
1490 		if (sdev->single_lun) {
1491 			if (scsi_target(sdev)->starget_sdev_user &&
1492 			    scsi_target(sdev)->starget_sdev_user != sdev)
1493 				goto not_ready;
1494 			scsi_target(sdev)->starget_sdev_user = sdev;
1495 		}
1496 		shost->host_busy++;
1497 
1498 		/*
1499 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1500 		 *		take the lock again.
1501 		 */
1502 		spin_unlock_irq(shost->host_lock);
1503 
1504 		/*
1505 		 * Finally, initialize any error handling parameters, and set up
1506 		 * the timers for timeouts.
1507 		 */
1508 		scsi_init_cmd_errh(cmd);
1509 
1510 		/*
1511 		 * Dispatch the command to the low-level driver.
1512 		 */
1513 		rtn = scsi_dispatch_cmd(cmd);
1514 		spin_lock_irq(q->queue_lock);
1515 		if(rtn) {
1516 			/* we're refusing the command; because of
1517 			 * the way locks get dropped, we need to
1518 			 * check here if plugging is required */
1519 			if(sdev->device_busy == 0)
1520 				blk_plug_device(q);
1521 
1522 			break;
1523 		}
1524 	}
1525 
1526 	goto out;
1527 
1528  not_ready:
1529 	spin_unlock_irq(shost->host_lock);
1530 
1531 	/*
1532 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1533 	 * must return with queue_lock held.
1534 	 *
1535 	 * Decrementing device_busy without checking it is OK, as all such
1536 	 * cases (host limits or settings) should run the queue at some
1537 	 * later time.
1538 	 */
1539 	spin_lock_irq(q->queue_lock);
1540 	blk_requeue_request(q, req);
1541 	sdev->device_busy--;
1542 	if(sdev->device_busy == 0)
1543 		blk_plug_device(q);
1544  out:
1545 	/* must be careful here...if we trigger the ->remove() function
1546 	 * we cannot be holding the q lock */
1547 	spin_unlock_irq(q->queue_lock);
1548 	put_device(&sdev->sdev_gendev);
1549 	spin_lock_irq(q->queue_lock);
1550 }
1551 
1552 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1553 {
1554 	struct device *host_dev;
1555 	u64 bounce_limit = 0xffffffff;
1556 
1557 	if (shost->unchecked_isa_dma)
1558 		return BLK_BOUNCE_ISA;
1559 	/*
1560 	 * Platforms with virtual-DMA translation
1561 	 * hardware have no practical limit.
1562 	 */
1563 	if (!PCI_DMA_BUS_IS_PHYS)
1564 		return BLK_BOUNCE_ANY;
1565 
1566 	host_dev = scsi_get_device(shost);
1567 	if (host_dev && host_dev->dma_mask)
1568 		bounce_limit = *host_dev->dma_mask;
1569 
1570 	return bounce_limit;
1571 }
1572 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1573 
1574 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1575 					 request_fn_proc *request_fn)
1576 {
1577 	struct request_queue *q;
1578 
1579 	q = blk_init_queue(request_fn, NULL);
1580 	if (!q)
1581 		return NULL;
1582 
1583 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1584 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1585 	blk_queue_max_sectors(q, shost->max_sectors);
1586 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1587 	blk_queue_segment_boundary(q, shost->dma_boundary);
1588 
1589 	if (!shost->use_clustering)
1590 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1591 	return q;
1592 }
1593 EXPORT_SYMBOL(__scsi_alloc_queue);
1594 
1595 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1596 {
1597 	struct request_queue *q;
1598 
1599 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1600 	if (!q)
1601 		return NULL;
1602 
1603 	blk_queue_prep_rq(q, scsi_prep_fn);
1604 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1605 	blk_queue_softirq_done(q, scsi_softirq_done);
1606 	return q;
1607 }
1608 
1609 void scsi_free_queue(struct request_queue *q)
1610 {
1611 	blk_cleanup_queue(q);
1612 }
1613 
1614 /*
1615  * Function:    scsi_block_requests()
1616  *
1617  * Purpose:     Utility function used by low-level drivers to prevent further
1618  *		commands from being queued to the device.
1619  *
1620  * Arguments:   shost       - Host in question
1621  *
1622  * Returns:     Nothing
1623  *
1624  * Lock status: No locks are assumed held.
1625  *
1626  * Notes:       There is no timer nor any other means by which the requests
1627  *		get unblocked other than the low-level driver calling
1628  *		scsi_unblock_requests().
1629  */
1630 void scsi_block_requests(struct Scsi_Host *shost)
1631 {
1632 	shost->host_self_blocked = 1;
1633 }
1634 EXPORT_SYMBOL(scsi_block_requests);
1635 
1636 /*
1637  * Function:    scsi_unblock_requests()
1638  *
1639  * Purpose:     Utility function used by low-level drivers to allow further
1640  *		commands from being queued to the device.
1641  *
1642  * Arguments:   shost       - Host in question
1643  *
1644  * Returns:     Nothing
1645  *
1646  * Lock status: No locks are assumed held.
1647  *
1648  * Notes:       There is no timer nor any other means by which the requests
1649  *		get unblocked other than the low-level driver calling
1650  *		scsi_unblock_requests().
1651  *
1652  *		This is done as an API function so that changes to the
1653  *		internals of the scsi mid-layer won't require wholesale
1654  *		changes to drivers that use this feature.
1655  */
1656 void scsi_unblock_requests(struct Scsi_Host *shost)
1657 {
1658 	shost->host_self_blocked = 0;
1659 	scsi_run_host_queues(shost);
1660 }
1661 EXPORT_SYMBOL(scsi_unblock_requests);
1662 
1663 int __init scsi_init_queue(void)
1664 {
1665 	int i;
1666 
1667 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1668 					sizeof(struct scsi_io_context),
1669 					0, 0, NULL, NULL);
1670 	if (!scsi_io_context_cache) {
1671 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1672 		return -ENOMEM;
1673 	}
1674 
1675 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1676 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1677 		int size = sgp->size * sizeof(struct scatterlist);
1678 
1679 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1680 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1681 		if (!sgp->slab) {
1682 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1683 					sgp->name);
1684 		}
1685 
1686 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1687 						     sgp->slab);
1688 		if (!sgp->pool) {
1689 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1690 					sgp->name);
1691 		}
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 void scsi_exit_queue(void)
1698 {
1699 	int i;
1700 
1701 	kmem_cache_destroy(scsi_io_context_cache);
1702 
1703 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1704 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1705 		mempool_destroy(sgp->pool);
1706 		kmem_cache_destroy(sgp->slab);
1707 	}
1708 }
1709 
1710 /**
1711  *	scsi_mode_select - issue a mode select
1712  *	@sdev:	SCSI device to be queried
1713  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1714  *	@sp:	Save page bit (0 == don't save, 1 == save)
1715  *	@modepage: mode page being requested
1716  *	@buffer: request buffer (may not be smaller than eight bytes)
1717  *	@len:	length of request buffer.
1718  *	@timeout: command timeout
1719  *	@retries: number of retries before failing
1720  *	@data: returns a structure abstracting the mode header data
1721  *	@sense: place to put sense data (or NULL if no sense to be collected).
1722  *		must be SCSI_SENSE_BUFFERSIZE big.
1723  *
1724  *	Returns zero if successful; negative error number or scsi
1725  *	status on error
1726  *
1727  */
1728 int
1729 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1730 		 unsigned char *buffer, int len, int timeout, int retries,
1731 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1732 {
1733 	unsigned char cmd[10];
1734 	unsigned char *real_buffer;
1735 	int ret;
1736 
1737 	memset(cmd, 0, sizeof(cmd));
1738 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1739 
1740 	if (sdev->use_10_for_ms) {
1741 		if (len > 65535)
1742 			return -EINVAL;
1743 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1744 		if (!real_buffer)
1745 			return -ENOMEM;
1746 		memcpy(real_buffer + 8, buffer, len);
1747 		len += 8;
1748 		real_buffer[0] = 0;
1749 		real_buffer[1] = 0;
1750 		real_buffer[2] = data->medium_type;
1751 		real_buffer[3] = data->device_specific;
1752 		real_buffer[4] = data->longlba ? 0x01 : 0;
1753 		real_buffer[5] = 0;
1754 		real_buffer[6] = data->block_descriptor_length >> 8;
1755 		real_buffer[7] = data->block_descriptor_length;
1756 
1757 		cmd[0] = MODE_SELECT_10;
1758 		cmd[7] = len >> 8;
1759 		cmd[8] = len;
1760 	} else {
1761 		if (len > 255 || data->block_descriptor_length > 255 ||
1762 		    data->longlba)
1763 			return -EINVAL;
1764 
1765 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1766 		if (!real_buffer)
1767 			return -ENOMEM;
1768 		memcpy(real_buffer + 4, buffer, len);
1769 		len += 4;
1770 		real_buffer[0] = 0;
1771 		real_buffer[1] = data->medium_type;
1772 		real_buffer[2] = data->device_specific;
1773 		real_buffer[3] = data->block_descriptor_length;
1774 
1775 
1776 		cmd[0] = MODE_SELECT;
1777 		cmd[4] = len;
1778 	}
1779 
1780 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1781 			       sshdr, timeout, retries);
1782 	kfree(real_buffer);
1783 	return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(scsi_mode_select);
1786 
1787 /**
1788  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1789  *		six bytes if necessary.
1790  *	@sdev:	SCSI device to be queried
1791  *	@dbd:	set if mode sense will allow block descriptors to be returned
1792  *	@modepage: mode page being requested
1793  *	@buffer: request buffer (may not be smaller than eight bytes)
1794  *	@len:	length of request buffer.
1795  *	@timeout: command timeout
1796  *	@retries: number of retries before failing
1797  *	@data: returns a structure abstracting the mode header data
1798  *	@sense: place to put sense data (or NULL if no sense to be collected).
1799  *		must be SCSI_SENSE_BUFFERSIZE big.
1800  *
1801  *	Returns zero if unsuccessful, or the header offset (either 4
1802  *	or 8 depending on whether a six or ten byte command was
1803  *	issued) if successful.
1804  **/
1805 int
1806 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1807 		  unsigned char *buffer, int len, int timeout, int retries,
1808 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1809 {
1810 	unsigned char cmd[12];
1811 	int use_10_for_ms;
1812 	int header_length;
1813 	int result;
1814 	struct scsi_sense_hdr my_sshdr;
1815 
1816 	memset(data, 0, sizeof(*data));
1817 	memset(&cmd[0], 0, 12);
1818 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1819 	cmd[2] = modepage;
1820 
1821 	/* caller might not be interested in sense, but we need it */
1822 	if (!sshdr)
1823 		sshdr = &my_sshdr;
1824 
1825  retry:
1826 	use_10_for_ms = sdev->use_10_for_ms;
1827 
1828 	if (use_10_for_ms) {
1829 		if (len < 8)
1830 			len = 8;
1831 
1832 		cmd[0] = MODE_SENSE_10;
1833 		cmd[8] = len;
1834 		header_length = 8;
1835 	} else {
1836 		if (len < 4)
1837 			len = 4;
1838 
1839 		cmd[0] = MODE_SENSE;
1840 		cmd[4] = len;
1841 		header_length = 4;
1842 	}
1843 
1844 	memset(buffer, 0, len);
1845 
1846 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1847 				  sshdr, timeout, retries);
1848 
1849 	/* This code looks awful: what it's doing is making sure an
1850 	 * ILLEGAL REQUEST sense return identifies the actual command
1851 	 * byte as the problem.  MODE_SENSE commands can return
1852 	 * ILLEGAL REQUEST if the code page isn't supported */
1853 
1854 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1855 	    (driver_byte(result) & DRIVER_SENSE)) {
1856 		if (scsi_sense_valid(sshdr)) {
1857 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1858 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1859 				/*
1860 				 * Invalid command operation code
1861 				 */
1862 				sdev->use_10_for_ms = 0;
1863 				goto retry;
1864 			}
1865 		}
1866 	}
1867 
1868 	if(scsi_status_is_good(result)) {
1869 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1870 			     (modepage == 6 || modepage == 8))) {
1871 			/* Initio breakage? */
1872 			header_length = 0;
1873 			data->length = 13;
1874 			data->medium_type = 0;
1875 			data->device_specific = 0;
1876 			data->longlba = 0;
1877 			data->block_descriptor_length = 0;
1878 		} else if(use_10_for_ms) {
1879 			data->length = buffer[0]*256 + buffer[1] + 2;
1880 			data->medium_type = buffer[2];
1881 			data->device_specific = buffer[3];
1882 			data->longlba = buffer[4] & 0x01;
1883 			data->block_descriptor_length = buffer[6]*256
1884 				+ buffer[7];
1885 		} else {
1886 			data->length = buffer[0] + 1;
1887 			data->medium_type = buffer[1];
1888 			data->device_specific = buffer[2];
1889 			data->block_descriptor_length = buffer[3];
1890 		}
1891 		data->header_length = header_length;
1892 	}
1893 
1894 	return result;
1895 }
1896 EXPORT_SYMBOL(scsi_mode_sense);
1897 
1898 int
1899 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1900 {
1901 	char cmd[] = {
1902 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1903 	};
1904 	struct scsi_sense_hdr sshdr;
1905 	int result;
1906 
1907 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1908 				  timeout, retries);
1909 
1910 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1911 
1912 		if ((scsi_sense_valid(&sshdr)) &&
1913 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1914 		     (sshdr.sense_key == NOT_READY))) {
1915 			sdev->changed = 1;
1916 			result = 0;
1917 		}
1918 	}
1919 	return result;
1920 }
1921 EXPORT_SYMBOL(scsi_test_unit_ready);
1922 
1923 /**
1924  *	scsi_device_set_state - Take the given device through the device
1925  *		state model.
1926  *	@sdev:	scsi device to change the state of.
1927  *	@state:	state to change to.
1928  *
1929  *	Returns zero if unsuccessful or an error if the requested
1930  *	transition is illegal.
1931  **/
1932 int
1933 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1934 {
1935 	enum scsi_device_state oldstate = sdev->sdev_state;
1936 
1937 	if (state == oldstate)
1938 		return 0;
1939 
1940 	switch (state) {
1941 	case SDEV_CREATED:
1942 		/* There are no legal states that come back to
1943 		 * created.  This is the manually initialised start
1944 		 * state */
1945 		goto illegal;
1946 
1947 	case SDEV_RUNNING:
1948 		switch (oldstate) {
1949 		case SDEV_CREATED:
1950 		case SDEV_OFFLINE:
1951 		case SDEV_QUIESCE:
1952 		case SDEV_BLOCK:
1953 			break;
1954 		default:
1955 			goto illegal;
1956 		}
1957 		break;
1958 
1959 	case SDEV_QUIESCE:
1960 		switch (oldstate) {
1961 		case SDEV_RUNNING:
1962 		case SDEV_OFFLINE:
1963 			break;
1964 		default:
1965 			goto illegal;
1966 		}
1967 		break;
1968 
1969 	case SDEV_OFFLINE:
1970 		switch (oldstate) {
1971 		case SDEV_CREATED:
1972 		case SDEV_RUNNING:
1973 		case SDEV_QUIESCE:
1974 		case SDEV_BLOCK:
1975 			break;
1976 		default:
1977 			goto illegal;
1978 		}
1979 		break;
1980 
1981 	case SDEV_BLOCK:
1982 		switch (oldstate) {
1983 		case SDEV_CREATED:
1984 		case SDEV_RUNNING:
1985 			break;
1986 		default:
1987 			goto illegal;
1988 		}
1989 		break;
1990 
1991 	case SDEV_CANCEL:
1992 		switch (oldstate) {
1993 		case SDEV_CREATED:
1994 		case SDEV_RUNNING:
1995 		case SDEV_QUIESCE:
1996 		case SDEV_OFFLINE:
1997 		case SDEV_BLOCK:
1998 			break;
1999 		default:
2000 			goto illegal;
2001 		}
2002 		break;
2003 
2004 	case SDEV_DEL:
2005 		switch (oldstate) {
2006 		case SDEV_CREATED:
2007 		case SDEV_RUNNING:
2008 		case SDEV_OFFLINE:
2009 		case SDEV_CANCEL:
2010 			break;
2011 		default:
2012 			goto illegal;
2013 		}
2014 		break;
2015 
2016 	}
2017 	sdev->sdev_state = state;
2018 	return 0;
2019 
2020  illegal:
2021 	SCSI_LOG_ERROR_RECOVERY(1,
2022 				sdev_printk(KERN_ERR, sdev,
2023 					    "Illegal state transition %s->%s\n",
2024 					    scsi_device_state_name(oldstate),
2025 					    scsi_device_state_name(state))
2026 				);
2027 	return -EINVAL;
2028 }
2029 EXPORT_SYMBOL(scsi_device_set_state);
2030 
2031 /**
2032  *	scsi_device_quiesce - Block user issued commands.
2033  *	@sdev:	scsi device to quiesce.
2034  *
2035  *	This works by trying to transition to the SDEV_QUIESCE state
2036  *	(which must be a legal transition).  When the device is in this
2037  *	state, only special requests will be accepted, all others will
2038  *	be deferred.  Since special requests may also be requeued requests,
2039  *	a successful return doesn't guarantee the device will be
2040  *	totally quiescent.
2041  *
2042  *	Must be called with user context, may sleep.
2043  *
2044  *	Returns zero if unsuccessful or an error if not.
2045  **/
2046 int
2047 scsi_device_quiesce(struct scsi_device *sdev)
2048 {
2049 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2050 	if (err)
2051 		return err;
2052 
2053 	scsi_run_queue(sdev->request_queue);
2054 	while (sdev->device_busy) {
2055 		msleep_interruptible(200);
2056 		scsi_run_queue(sdev->request_queue);
2057 	}
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL(scsi_device_quiesce);
2061 
2062 /**
2063  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2064  *	@sdev:	scsi device to resume.
2065  *
2066  *	Moves the device from quiesced back to running and restarts the
2067  *	queues.
2068  *
2069  *	Must be called with user context, may sleep.
2070  **/
2071 void
2072 scsi_device_resume(struct scsi_device *sdev)
2073 {
2074 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2075 		return;
2076 	scsi_run_queue(sdev->request_queue);
2077 }
2078 EXPORT_SYMBOL(scsi_device_resume);
2079 
2080 static void
2081 device_quiesce_fn(struct scsi_device *sdev, void *data)
2082 {
2083 	scsi_device_quiesce(sdev);
2084 }
2085 
2086 void
2087 scsi_target_quiesce(struct scsi_target *starget)
2088 {
2089 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2090 }
2091 EXPORT_SYMBOL(scsi_target_quiesce);
2092 
2093 static void
2094 device_resume_fn(struct scsi_device *sdev, void *data)
2095 {
2096 	scsi_device_resume(sdev);
2097 }
2098 
2099 void
2100 scsi_target_resume(struct scsi_target *starget)
2101 {
2102 	starget_for_each_device(starget, NULL, device_resume_fn);
2103 }
2104 EXPORT_SYMBOL(scsi_target_resume);
2105 
2106 /**
2107  * scsi_internal_device_block - internal function to put a device
2108  *				temporarily into the SDEV_BLOCK state
2109  * @sdev:	device to block
2110  *
2111  * Block request made by scsi lld's to temporarily stop all
2112  * scsi commands on the specified device.  Called from interrupt
2113  * or normal process context.
2114  *
2115  * Returns zero if successful or error if not
2116  *
2117  * Notes:
2118  *	This routine transitions the device to the SDEV_BLOCK state
2119  *	(which must be a legal transition).  When the device is in this
2120  *	state, all commands are deferred until the scsi lld reenables
2121  *	the device with scsi_device_unblock or device_block_tmo fires.
2122  *	This routine assumes the host_lock is held on entry.
2123  **/
2124 int
2125 scsi_internal_device_block(struct scsi_device *sdev)
2126 {
2127 	request_queue_t *q = sdev->request_queue;
2128 	unsigned long flags;
2129 	int err = 0;
2130 
2131 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2132 	if (err)
2133 		return err;
2134 
2135 	/*
2136 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2137 	 * block layer from calling the midlayer with this device's
2138 	 * request queue.
2139 	 */
2140 	spin_lock_irqsave(q->queue_lock, flags);
2141 	blk_stop_queue(q);
2142 	spin_unlock_irqrestore(q->queue_lock, flags);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2147 
2148 /**
2149  * scsi_internal_device_unblock - resume a device after a block request
2150  * @sdev:	device to resume
2151  *
2152  * Called by scsi lld's or the midlayer to restart the device queue
2153  * for the previously suspended scsi device.  Called from interrupt or
2154  * normal process context.
2155  *
2156  * Returns zero if successful or error if not.
2157  *
2158  * Notes:
2159  *	This routine transitions the device to the SDEV_RUNNING state
2160  *	(which must be a legal transition) allowing the midlayer to
2161  *	goose the queue for this device.  This routine assumes the
2162  *	host_lock is held upon entry.
2163  **/
2164 int
2165 scsi_internal_device_unblock(struct scsi_device *sdev)
2166 {
2167 	request_queue_t *q = sdev->request_queue;
2168 	int err;
2169 	unsigned long flags;
2170 
2171 	/*
2172 	 * Try to transition the scsi device to SDEV_RUNNING
2173 	 * and goose the device queue if successful.
2174 	 */
2175 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2176 	if (err)
2177 		return err;
2178 
2179 	spin_lock_irqsave(q->queue_lock, flags);
2180 	blk_start_queue(q);
2181 	spin_unlock_irqrestore(q->queue_lock, flags);
2182 
2183 	return 0;
2184 }
2185 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2186 
2187 static void
2188 device_block(struct scsi_device *sdev, void *data)
2189 {
2190 	scsi_internal_device_block(sdev);
2191 }
2192 
2193 static int
2194 target_block(struct device *dev, void *data)
2195 {
2196 	if (scsi_is_target_device(dev))
2197 		starget_for_each_device(to_scsi_target(dev), NULL,
2198 					device_block);
2199 	return 0;
2200 }
2201 
2202 void
2203 scsi_target_block(struct device *dev)
2204 {
2205 	if (scsi_is_target_device(dev))
2206 		starget_for_each_device(to_scsi_target(dev), NULL,
2207 					device_block);
2208 	else
2209 		device_for_each_child(dev, NULL, target_block);
2210 }
2211 EXPORT_SYMBOL_GPL(scsi_target_block);
2212 
2213 static void
2214 device_unblock(struct scsi_device *sdev, void *data)
2215 {
2216 	scsi_internal_device_unblock(sdev);
2217 }
2218 
2219 static int
2220 target_unblock(struct device *dev, void *data)
2221 {
2222 	if (scsi_is_target_device(dev))
2223 		starget_for_each_device(to_scsi_target(dev), NULL,
2224 					device_unblock);
2225 	return 0;
2226 }
2227 
2228 void
2229 scsi_target_unblock(struct device *dev)
2230 {
2231 	if (scsi_is_target_device(dev))
2232 		starget_for_each_device(to_scsi_target(dev), NULL,
2233 					device_unblock);
2234 	else
2235 		device_for_each_child(dev, NULL, target_unblock);
2236 }
2237 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2238 
2239 /**
2240  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2241  * @sg:		scatter-gather list
2242  * @sg_count:	number of segments in sg
2243  * @offset:	offset in bytes into sg, on return offset into the mapped area
2244  * @len:	bytes to map, on return number of bytes mapped
2245  *
2246  * Returns virtual address of the start of the mapped page
2247  */
2248 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2249 			  size_t *offset, size_t *len)
2250 {
2251 	int i;
2252 	size_t sg_len = 0, len_complete = 0;
2253 	struct page *page;
2254 
2255 	for (i = 0; i < sg_count; i++) {
2256 		len_complete = sg_len; /* Complete sg-entries */
2257 		sg_len += sg[i].length;
2258 		if (sg_len > *offset)
2259 			break;
2260 	}
2261 
2262 	if (unlikely(i == sg_count)) {
2263 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2264 			"elements %d\n",
2265 		       __FUNCTION__, sg_len, *offset, sg_count);
2266 		WARN_ON(1);
2267 		return NULL;
2268 	}
2269 
2270 	/* Offset starting from the beginning of first page in this sg-entry */
2271 	*offset = *offset - len_complete + sg[i].offset;
2272 
2273 	/* Assumption: contiguous pages can be accessed as "page + i" */
2274 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2275 	*offset &= ~PAGE_MASK;
2276 
2277 	/* Bytes in this sg-entry from *offset to the end of the page */
2278 	sg_len = PAGE_SIZE - *offset;
2279 	if (*len > sg_len)
2280 		*len = sg_len;
2281 
2282 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2283 }
2284 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2285 
2286 /**
2287  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2288  *			   mapped with scsi_kmap_atomic_sg
2289  * @virt:	virtual address to be unmapped
2290  */
2291 void scsi_kunmap_atomic_sg(void *virt)
2292 {
2293 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2294 }
2295 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2296