xref: /linux/drivers/scsi/scsi_lib.c (revision 5f4123be3cdb1dbd77fa9d6d2bb96bb9689a0a19)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 		host->host_blocked = host->max_host_blocked;
138 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 		device->device_blocked = device->max_device_blocked;
140 
141 	/*
142 	 * Decrement the counters, since these commands are no longer
143 	 * active on the host/device.
144 	 */
145 	scsi_device_unbusy(device);
146 
147 	/*
148 	 * Requeue this command.  It will go before all other commands
149 	 * that are already in the queue.
150 	 *
151 	 * NOTE: there is magic here about the way the queue is plugged if
152 	 * we have no outstanding commands.
153 	 *
154 	 * Although we *don't* plug the queue, we call the request
155 	 * function.  The SCSI request function detects the blocked condition
156 	 * and plugs the queue appropriately.
157          */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	scsi_run_queue(q);
163 
164 	return 0;
165 }
166 
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:	scsi device
170  * @cmd:	scsi command
171  * @data_direction: data direction
172  * @buffer:	data buffer
173  * @bufflen:	len of buffer
174  * @sense:	optional sense buffer
175  * @timeout:	request timeout in seconds
176  * @retries:	number of times to retry request
177  * @flags:	or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 	struct request *req;
187 	int write = (data_direction == DMA_TO_DEVICE);
188 	int ret = DRIVER_ERROR << 24;
189 
190 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191 
192 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193 					buffer, bufflen, __GFP_WAIT))
194 		goto out;
195 
196 	req->cmd_len = COMMAND_SIZE(cmd[0]);
197 	memcpy(req->cmd, cmd, req->cmd_len);
198 	req->sense = sense;
199 	req->sense_len = 0;
200 	req->retries = retries;
201 	req->timeout = timeout;
202 	req->cmd_type = REQ_TYPE_BLOCK_PC;
203 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204 
205 	/*
206 	 * head injection *required* here otherwise quiesce won't work
207 	 */
208 	blk_execute_rq(req->q, NULL, req, 1);
209 
210 	/*
211 	 * Some devices (USB mass-storage in particular) may transfer
212 	 * garbage data together with a residue indicating that the data
213 	 * is invalid.  Prevent the garbage from being misinterpreted
214 	 * and prevent security leaks by zeroing out the excess data.
215 	 */
216 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
217 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
218 
219 	ret = req->errors;
220  out:
221 	blk_put_request(req);
222 
223 	return ret;
224 }
225 EXPORT_SYMBOL(scsi_execute);
226 
227 
228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
229 		     int data_direction, void *buffer, unsigned bufflen,
230 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
231 {
232 	char *sense = NULL;
233 	int result;
234 
235 	if (sshdr) {
236 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
237 		if (!sense)
238 			return DRIVER_ERROR << 24;
239 	}
240 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
241 			      sense, timeout, retries, 0);
242 	if (sshdr)
243 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
244 
245 	kfree(sense);
246 	return result;
247 }
248 EXPORT_SYMBOL(scsi_execute_req);
249 
250 struct scsi_io_context {
251 	void *data;
252 	void (*done)(void *data, char *sense, int result, int resid);
253 	char sense[SCSI_SENSE_BUFFERSIZE];
254 };
255 
256 static struct kmem_cache *scsi_io_context_cache;
257 
258 static void scsi_end_async(struct request *req, int uptodate)
259 {
260 	struct scsi_io_context *sioc = req->end_io_data;
261 
262 	if (sioc->done)
263 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
264 
265 	kmem_cache_free(scsi_io_context_cache, sioc);
266 	__blk_put_request(req->q, req);
267 }
268 
269 static int scsi_merge_bio(struct request *rq, struct bio *bio)
270 {
271 	struct request_queue *q = rq->q;
272 
273 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
274 	if (rq_data_dir(rq) == WRITE)
275 		bio->bi_rw |= (1 << BIO_RW);
276 	blk_queue_bounce(q, &bio);
277 
278 	return blk_rq_append_bio(q, rq, bio);
279 }
280 
281 static void scsi_bi_endio(struct bio *bio, int error)
282 {
283 	bio_put(bio);
284 }
285 
286 /**
287  * scsi_req_map_sg - map a scatterlist into a request
288  * @rq:		request to fill
289  * @sgl:	scatterlist
290  * @nsegs:	number of elements
291  * @bufflen:	len of buffer
292  * @gfp:	memory allocation flags
293  *
294  * scsi_req_map_sg maps a scatterlist into a request so that the
295  * request can be sent to the block layer. We do not trust the scatterlist
296  * sent to use, as some ULDs use that struct to only organize the pages.
297  */
298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
299 			   int nsegs, unsigned bufflen, gfp_t gfp)
300 {
301 	struct request_queue *q = rq->q;
302 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 	unsigned int data_len = bufflen, len, bytes, off;
304 	struct scatterlist *sg;
305 	struct page *page;
306 	struct bio *bio = NULL;
307 	int i, err, nr_vecs = 0;
308 
309 	for_each_sg(sgl, sg, nsegs, i) {
310 		page = sg_page(sg);
311 		off = sg->offset;
312 		len = sg->length;
313 
314 		while (len > 0 && data_len > 0) {
315 			/*
316 			 * sg sends a scatterlist that is larger than
317 			 * the data_len it wants transferred for certain
318 			 * IO sizes
319 			 */
320 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 			bytes = min(bytes, data_len);
322 
323 			if (!bio) {
324 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325 				nr_pages -= nr_vecs;
326 
327 				bio = bio_alloc(gfp, nr_vecs);
328 				if (!bio) {
329 					err = -ENOMEM;
330 					goto free_bios;
331 				}
332 				bio->bi_end_io = scsi_bi_endio;
333 			}
334 
335 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
336 			    bytes) {
337 				bio_put(bio);
338 				err = -EINVAL;
339 				goto free_bios;
340 			}
341 
342 			if (bio->bi_vcnt >= nr_vecs) {
343 				err = scsi_merge_bio(rq, bio);
344 				if (err) {
345 					bio_endio(bio, 0);
346 					goto free_bios;
347 				}
348 				bio = NULL;
349 			}
350 
351 			page++;
352 			len -= bytes;
353 			data_len -=bytes;
354 			off = 0;
355 		}
356 	}
357 
358 	rq->buffer = rq->data = NULL;
359 	rq->data_len = bufflen;
360 	return 0;
361 
362 free_bios:
363 	while ((bio = rq->bio) != NULL) {
364 		rq->bio = bio->bi_next;
365 		/*
366 		 * call endio instead of bio_put incase it was bounced
367 		 */
368 		bio_endio(bio, 0);
369 	}
370 
371 	return err;
372 }
373 
374 /**
375  * scsi_execute_async - insert request
376  * @sdev:	scsi device
377  * @cmd:	scsi command
378  * @cmd_len:	length of scsi cdb
379  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
380  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
381  * @bufflen:	len of buffer
382  * @use_sg:	if buffer is a scatterlist this is the number of elements
383  * @timeout:	request timeout in seconds
384  * @retries:	number of times to retry request
385  * @privdata:	data passed to done()
386  * @done:	callback function when done
387  * @gfp:	memory allocation flags
388  */
389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
390 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
391 		       int use_sg, int timeout, int retries, void *privdata,
392 		       void (*done)(void *, char *, int, int), gfp_t gfp)
393 {
394 	struct request *req;
395 	struct scsi_io_context *sioc;
396 	int err = 0;
397 	int write = (data_direction == DMA_TO_DEVICE);
398 
399 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
400 	if (!sioc)
401 		return DRIVER_ERROR << 24;
402 
403 	req = blk_get_request(sdev->request_queue, write, gfp);
404 	if (!req)
405 		goto free_sense;
406 	req->cmd_type = REQ_TYPE_BLOCK_PC;
407 	req->cmd_flags |= REQ_QUIET;
408 
409 	if (use_sg)
410 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
411 	else if (bufflen)
412 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
413 
414 	if (err)
415 		goto free_req;
416 
417 	req->cmd_len = cmd_len;
418 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
419 	memcpy(req->cmd, cmd, req->cmd_len);
420 	req->sense = sioc->sense;
421 	req->sense_len = 0;
422 	req->timeout = timeout;
423 	req->retries = retries;
424 	req->end_io_data = sioc;
425 
426 	sioc->data = privdata;
427 	sioc->done = done;
428 
429 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
430 	return 0;
431 
432 free_req:
433 	blk_put_request(req);
434 free_sense:
435 	kmem_cache_free(scsi_io_context_cache, sioc);
436 	return DRIVER_ERROR << 24;
437 }
438 EXPORT_SYMBOL_GPL(scsi_execute_async);
439 
440 /*
441  * Function:    scsi_init_cmd_errh()
442  *
443  * Purpose:     Initialize cmd fields related to error handling.
444  *
445  * Arguments:   cmd	- command that is ready to be queued.
446  *
447  * Notes:       This function has the job of initializing a number of
448  *              fields related to error handling.   Typically this will
449  *              be called once for each command, as required.
450  */
451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
452 {
453 	cmd->serial_number = 0;
454 	scsi_set_resid(cmd, 0);
455 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
456 	if (cmd->cmd_len == 0)
457 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
458 }
459 
460 void scsi_device_unbusy(struct scsi_device *sdev)
461 {
462 	struct Scsi_Host *shost = sdev->host;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(shost->host_lock, flags);
466 	shost->host_busy--;
467 	if (unlikely(scsi_host_in_recovery(shost) &&
468 		     (shost->host_failed || shost->host_eh_scheduled)))
469 		scsi_eh_wakeup(shost);
470 	spin_unlock(shost->host_lock);
471 	spin_lock(sdev->request_queue->queue_lock);
472 	sdev->device_busy--;
473 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
474 }
475 
476 /*
477  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
478  * and call blk_run_queue for all the scsi_devices on the target -
479  * including current_sdev first.
480  *
481  * Called with *no* scsi locks held.
482  */
483 static void scsi_single_lun_run(struct scsi_device *current_sdev)
484 {
485 	struct Scsi_Host *shost = current_sdev->host;
486 	struct scsi_device *sdev, *tmp;
487 	struct scsi_target *starget = scsi_target(current_sdev);
488 	unsigned long flags;
489 
490 	spin_lock_irqsave(shost->host_lock, flags);
491 	starget->starget_sdev_user = NULL;
492 	spin_unlock_irqrestore(shost->host_lock, flags);
493 
494 	/*
495 	 * Call blk_run_queue for all LUNs on the target, starting with
496 	 * current_sdev. We race with others (to set starget_sdev_user),
497 	 * but in most cases, we will be first. Ideally, each LU on the
498 	 * target would get some limited time or requests on the target.
499 	 */
500 	blk_run_queue(current_sdev->request_queue);
501 
502 	spin_lock_irqsave(shost->host_lock, flags);
503 	if (starget->starget_sdev_user)
504 		goto out;
505 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
506 			same_target_siblings) {
507 		if (sdev == current_sdev)
508 			continue;
509 		if (scsi_device_get(sdev))
510 			continue;
511 
512 		spin_unlock_irqrestore(shost->host_lock, flags);
513 		blk_run_queue(sdev->request_queue);
514 		spin_lock_irqsave(shost->host_lock, flags);
515 
516 		scsi_device_put(sdev);
517 	}
518  out:
519 	spin_unlock_irqrestore(shost->host_lock, flags);
520 }
521 
522 /*
523  * Function:	scsi_run_queue()
524  *
525  * Purpose:	Select a proper request queue to serve next
526  *
527  * Arguments:	q	- last request's queue
528  *
529  * Returns:     Nothing
530  *
531  * Notes:	The previous command was completely finished, start
532  *		a new one if possible.
533  */
534 static void scsi_run_queue(struct request_queue *q)
535 {
536 	struct scsi_device *sdev = q->queuedata;
537 	struct Scsi_Host *shost = sdev->host;
538 	unsigned long flags;
539 
540 	if (scsi_target(sdev)->single_lun)
541 		scsi_single_lun_run(sdev);
542 
543 	spin_lock_irqsave(shost->host_lock, flags);
544 	while (!list_empty(&shost->starved_list) &&
545 	       !shost->host_blocked && !shost->host_self_blocked &&
546 		!((shost->can_queue > 0) &&
547 		  (shost->host_busy >= shost->can_queue))) {
548 
549 		int flagset;
550 
551 		/*
552 		 * As long as shost is accepting commands and we have
553 		 * starved queues, call blk_run_queue. scsi_request_fn
554 		 * drops the queue_lock and can add us back to the
555 		 * starved_list.
556 		 *
557 		 * host_lock protects the starved_list and starved_entry.
558 		 * scsi_request_fn must get the host_lock before checking
559 		 * or modifying starved_list or starved_entry.
560 		 */
561 		sdev = list_entry(shost->starved_list.next,
562 					  struct scsi_device, starved_entry);
563 		list_del_init(&sdev->starved_entry);
564 		spin_unlock(shost->host_lock);
565 
566 		spin_lock(sdev->request_queue->queue_lock);
567 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
568 				!test_bit(QUEUE_FLAG_REENTER,
569 					&sdev->request_queue->queue_flags);
570 		if (flagset)
571 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
572 		__blk_run_queue(sdev->request_queue);
573 		if (flagset)
574 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
575 		spin_unlock(sdev->request_queue->queue_lock);
576 
577 		spin_lock(shost->host_lock);
578 		if (unlikely(!list_empty(&sdev->starved_entry)))
579 			/*
580 			 * sdev lost a race, and was put back on the
581 			 * starved list. This is unlikely but without this
582 			 * in theory we could loop forever.
583 			 */
584 			break;
585 	}
586 	spin_unlock_irqrestore(shost->host_lock, flags);
587 
588 	blk_run_queue(q);
589 }
590 
591 /*
592  * Function:	scsi_requeue_command()
593  *
594  * Purpose:	Handle post-processing of completed commands.
595  *
596  * Arguments:	q	- queue to operate on
597  *		cmd	- command that may need to be requeued.
598  *
599  * Returns:	Nothing
600  *
601  * Notes:	After command completion, there may be blocks left
602  *		over which weren't finished by the previous command
603  *		this can be for a number of reasons - the main one is
604  *		I/O errors in the middle of the request, in which case
605  *		we need to request the blocks that come after the bad
606  *		sector.
607  * Notes:	Upon return, cmd is a stale pointer.
608  */
609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
610 {
611 	struct request *req = cmd->request;
612 	unsigned long flags;
613 
614 	scsi_unprep_request(req);
615 	spin_lock_irqsave(q->queue_lock, flags);
616 	blk_requeue_request(q, req);
617 	spin_unlock_irqrestore(q->queue_lock, flags);
618 
619 	scsi_run_queue(q);
620 }
621 
622 void scsi_next_command(struct scsi_cmnd *cmd)
623 {
624 	struct scsi_device *sdev = cmd->device;
625 	struct request_queue *q = sdev->request_queue;
626 
627 	/* need to hold a reference on the device before we let go of the cmd */
628 	get_device(&sdev->sdev_gendev);
629 
630 	scsi_put_command(cmd);
631 	scsi_run_queue(q);
632 
633 	/* ok to remove device now */
634 	put_device(&sdev->sdev_gendev);
635 }
636 
637 void scsi_run_host_queues(struct Scsi_Host *shost)
638 {
639 	struct scsi_device *sdev;
640 
641 	shost_for_each_device(sdev, shost)
642 		scsi_run_queue(sdev->request_queue);
643 }
644 
645 /*
646  * Function:    scsi_end_request()
647  *
648  * Purpose:     Post-processing of completed commands (usually invoked at end
649  *		of upper level post-processing and scsi_io_completion).
650  *
651  * Arguments:   cmd	 - command that is complete.
652  *              error    - 0 if I/O indicates success, < 0 for I/O error.
653  *              bytes    - number of bytes of completed I/O
654  *		requeue  - indicates whether we should requeue leftovers.
655  *
656  * Lock status: Assumed that lock is not held upon entry.
657  *
658  * Returns:     cmd if requeue required, NULL otherwise.
659  *
660  * Notes:       This is called for block device requests in order to
661  *              mark some number of sectors as complete.
662  *
663  *		We are guaranteeing that the request queue will be goosed
664  *		at some point during this call.
665  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
666  */
667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
668 					  int bytes, int requeue)
669 {
670 	struct request_queue *q = cmd->device->request_queue;
671 	struct request *req = cmd->request;
672 
673 	/*
674 	 * If there are blocks left over at the end, set up the command
675 	 * to queue the remainder of them.
676 	 */
677 	if (blk_end_request(req, error, bytes)) {
678 		int leftover = (req->hard_nr_sectors << 9);
679 
680 		if (blk_pc_request(req))
681 			leftover = req->data_len;
682 
683 		/* kill remainder if no retrys */
684 		if (error && blk_noretry_request(req))
685 			blk_end_request(req, error, leftover);
686 		else {
687 			if (requeue) {
688 				/*
689 				 * Bleah.  Leftovers again.  Stick the
690 				 * leftovers in the front of the
691 				 * queue, and goose the queue again.
692 				 */
693 				scsi_requeue_command(q, cmd);
694 				cmd = NULL;
695 			}
696 			return cmd;
697 		}
698 	}
699 
700 	/*
701 	 * This will goose the queue request function at the end, so we don't
702 	 * need to worry about launching another command.
703 	 */
704 	scsi_next_command(cmd);
705 	return NULL;
706 }
707 
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710 	unsigned int index;
711 
712 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
713 
714 	if (nents <= 8)
715 		index = 0;
716 	else
717 		index = get_count_order(nents) - 3;
718 
719 	return index;
720 }
721 
722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
723 {
724 	struct scsi_host_sg_pool *sgp;
725 
726 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
727 	mempool_free(sgl, sgp->pool);
728 }
729 
730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
731 {
732 	struct scsi_host_sg_pool *sgp;
733 
734 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
735 	return mempool_alloc(sgp->pool, gfp_mask);
736 }
737 
738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
739 			      gfp_t gfp_mask)
740 {
741 	int ret;
742 
743 	BUG_ON(!nents);
744 
745 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
746 			       gfp_mask, scsi_sg_alloc);
747 	if (unlikely(ret))
748 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
749 				scsi_sg_free);
750 
751 	return ret;
752 }
753 
754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
755 {
756 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
757 }
758 
759 /*
760  * Function:    scsi_release_buffers()
761  *
762  * Purpose:     Completion processing for block device I/O requests.
763  *
764  * Arguments:   cmd	- command that we are bailing.
765  *
766  * Lock status: Assumed that no lock is held upon entry.
767  *
768  * Returns:     Nothing
769  *
770  * Notes:       In the event that an upper level driver rejects a
771  *		command, we must release resources allocated during
772  *		the __init_io() function.  Primarily this would involve
773  *		the scatter-gather table, and potentially any bounce
774  *		buffers.
775  */
776 void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778 	if (cmd->sdb.table.nents)
779 		scsi_free_sgtable(&cmd->sdb);
780 
781 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
782 
783 	if (scsi_bidi_cmnd(cmd)) {
784 		struct scsi_data_buffer *bidi_sdb =
785 			cmd->request->next_rq->special;
786 		scsi_free_sgtable(bidi_sdb);
787 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
788 		cmd->request->next_rq->special = NULL;
789 	}
790 
791 	if (scsi_prot_sg_count(cmd))
792 		scsi_free_sgtable(cmd->prot_sdb);
793 }
794 EXPORT_SYMBOL(scsi_release_buffers);
795 
796 /*
797  * Bidi commands Must be complete as a whole, both sides at once.
798  * If part of the bytes were written and lld returned
799  * scsi_in()->resid and/or scsi_out()->resid this information will be left
800  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
801  * decide what to do with this information.
802  */
803 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
804 {
805 	struct request *req = cmd->request;
806 	unsigned int dlen = req->data_len;
807 	unsigned int next_dlen = req->next_rq->data_len;
808 
809 	req->data_len = scsi_out(cmd)->resid;
810 	req->next_rq->data_len = scsi_in(cmd)->resid;
811 
812 	/* The req and req->next_rq have not been completed */
813 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
814 
815 	scsi_release_buffers(cmd);
816 
817 	/*
818 	 * This will goose the queue request function at the end, so we don't
819 	 * need to worry about launching another command.
820 	 */
821 	scsi_next_command(cmd);
822 }
823 
824 /*
825  * Function:    scsi_io_completion()
826  *
827  * Purpose:     Completion processing for block device I/O requests.
828  *
829  * Arguments:   cmd   - command that is finished.
830  *
831  * Lock status: Assumed that no lock is held upon entry.
832  *
833  * Returns:     Nothing
834  *
835  * Notes:       This function is matched in terms of capabilities to
836  *              the function that created the scatter-gather list.
837  *              In other words, if there are no bounce buffers
838  *              (the normal case for most drivers), we don't need
839  *              the logic to deal with cleaning up afterwards.
840  *
841  *		We must do one of several things here:
842  *
843  *		a) Call scsi_end_request.  This will finish off the
844  *		   specified number of sectors.  If we are done, the
845  *		   command block will be released, and the queue
846  *		   function will be goosed.  If we are not done, then
847  *		   scsi_end_request will directly goose the queue.
848  *
849  *		b) We can just use scsi_requeue_command() here.  This would
850  *		   be used if we just wanted to retry, for example.
851  */
852 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
853 {
854 	int result = cmd->result;
855 	int this_count;
856 	struct request_queue *q = cmd->device->request_queue;
857 	struct request *req = cmd->request;
858 	int error = 0;
859 	struct scsi_sense_hdr sshdr;
860 	int sense_valid = 0;
861 	int sense_deferred = 0;
862 
863 	if (result) {
864 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
865 		if (sense_valid)
866 			sense_deferred = scsi_sense_is_deferred(&sshdr);
867 	}
868 
869 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
870 		req->errors = result;
871 		if (result) {
872 			if (sense_valid && req->sense) {
873 				/*
874 				 * SG_IO wants current and deferred errors
875 				 */
876 				int len = 8 + cmd->sense_buffer[7];
877 
878 				if (len > SCSI_SENSE_BUFFERSIZE)
879 					len = SCSI_SENSE_BUFFERSIZE;
880 				memcpy(req->sense, cmd->sense_buffer,  len);
881 				req->sense_len = len;
882 			}
883 			if (!sense_deferred)
884 				error = -EIO;
885 		}
886 		if (scsi_bidi_cmnd(cmd)) {
887 			/* will also release_buffers */
888 			scsi_end_bidi_request(cmd);
889 			return;
890 		}
891 		req->data_len = scsi_get_resid(cmd);
892 	}
893 
894 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
895 	scsi_release_buffers(cmd);
896 
897 	/*
898 	 * Next deal with any sectors which we were able to correctly
899 	 * handle.
900 	 */
901 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
902 				      "%d bytes done.\n",
903 				      req->nr_sectors, good_bytes));
904 
905 	/* A number of bytes were successfully read.  If there
906 	 * are leftovers and there is some kind of error
907 	 * (result != 0), retry the rest.
908 	 */
909 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
910 		return;
911 	this_count = blk_rq_bytes(req);
912 
913 	/* good_bytes = 0, or (inclusive) there were leftovers and
914 	 * result = 0, so scsi_end_request couldn't retry.
915 	 */
916 	if (sense_valid && !sense_deferred) {
917 		switch (sshdr.sense_key) {
918 		case UNIT_ATTENTION:
919 			if (cmd->device->removable) {
920 				/* Detected disc change.  Set a bit
921 				 * and quietly refuse further access.
922 				 */
923 				cmd->device->changed = 1;
924 				scsi_end_request(cmd, -EIO, this_count, 1);
925 				return;
926 			} else {
927 				/* Must have been a power glitch, or a
928 				 * bus reset.  Could not have been a
929 				 * media change, so we just retry the
930 				 * request and see what happens.
931 				 */
932 				scsi_requeue_command(q, cmd);
933 				return;
934 			}
935 			break;
936 		case ILLEGAL_REQUEST:
937 			/* If we had an ILLEGAL REQUEST returned, then
938 			 * we may have performed an unsupported
939 			 * command.  The only thing this should be
940 			 * would be a ten byte read where only a six
941 			 * byte read was supported.  Also, on a system
942 			 * where READ CAPACITY failed, we may have
943 			 * read past the end of the disk.
944 			 */
945 			if ((cmd->device->use_10_for_rw &&
946 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
947 			    (cmd->cmnd[0] == READ_10 ||
948 			     cmd->cmnd[0] == WRITE_10)) {
949 				cmd->device->use_10_for_rw = 0;
950 				/* This will cause a retry with a
951 				 * 6-byte command.
952 				 */
953 				scsi_requeue_command(q, cmd);
954 			} else if (sshdr.asc == 0x10) /* DIX */
955 				scsi_end_request(cmd, -EIO, this_count, 0);
956 			else
957 				scsi_end_request(cmd, -EIO, this_count, 1);
958 			return;
959 		case ABORTED_COMMAND:
960 			if (sshdr.asc == 0x10) { /* DIF */
961 				scsi_end_request(cmd, -EIO, this_count, 0);
962 				return;
963 			}
964 			break;
965 		case NOT_READY:
966 			/* If the device is in the process of becoming
967 			 * ready, or has a temporary blockage, retry.
968 			 */
969 			if (sshdr.asc == 0x04) {
970 				switch (sshdr.ascq) {
971 				case 0x01: /* becoming ready */
972 				case 0x04: /* format in progress */
973 				case 0x05: /* rebuild in progress */
974 				case 0x06: /* recalculation in progress */
975 				case 0x07: /* operation in progress */
976 				case 0x08: /* Long write in progress */
977 				case 0x09: /* self test in progress */
978 					scsi_requeue_command(q, cmd);
979 					return;
980 				default:
981 					break;
982 				}
983 			}
984 			if (!(req->cmd_flags & REQ_QUIET))
985 				scsi_cmd_print_sense_hdr(cmd,
986 							 "Device not ready",
987 							 &sshdr);
988 
989 			scsi_end_request(cmd, -EIO, this_count, 1);
990 			return;
991 		case VOLUME_OVERFLOW:
992 			if (!(req->cmd_flags & REQ_QUIET)) {
993 				scmd_printk(KERN_INFO, cmd,
994 					    "Volume overflow, CDB: ");
995 				__scsi_print_command(cmd->cmnd);
996 				scsi_print_sense("", cmd);
997 			}
998 			/* See SSC3rXX or current. */
999 			scsi_end_request(cmd, -EIO, this_count, 1);
1000 			return;
1001 		default:
1002 			break;
1003 		}
1004 	}
1005 	if (host_byte(result) == DID_RESET) {
1006 		/* Third party bus reset or reset for error recovery
1007 		 * reasons.  Just retry the request and see what
1008 		 * happens.
1009 		 */
1010 		scsi_requeue_command(q, cmd);
1011 		return;
1012 	}
1013 	if (result) {
1014 		if (!(req->cmd_flags & REQ_QUIET)) {
1015 			scsi_print_result(cmd);
1016 			if (driver_byte(result) & DRIVER_SENSE)
1017 				scsi_print_sense("", cmd);
1018 		}
1019 	}
1020 	scsi_end_request(cmd, -EIO, this_count, !result);
1021 }
1022 
1023 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1024 			     gfp_t gfp_mask)
1025 {
1026 	int count;
1027 
1028 	/*
1029 	 * If sg table allocation fails, requeue request later.
1030 	 */
1031 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1032 					gfp_mask))) {
1033 		return BLKPREP_DEFER;
1034 	}
1035 
1036 	req->buffer = NULL;
1037 
1038 	/*
1039 	 * Next, walk the list, and fill in the addresses and sizes of
1040 	 * each segment.
1041 	 */
1042 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043 	BUG_ON(count > sdb->table.nents);
1044 	sdb->table.nents = count;
1045 	if (blk_pc_request(req))
1046 		sdb->length = req->data_len;
1047 	else
1048 		sdb->length = req->nr_sectors << 9;
1049 	return BLKPREP_OK;
1050 }
1051 
1052 /*
1053  * Function:    scsi_init_io()
1054  *
1055  * Purpose:     SCSI I/O initialize function.
1056  *
1057  * Arguments:   cmd   - Command descriptor we wish to initialize
1058  *
1059  * Returns:     0 on success
1060  *		BLKPREP_DEFER if the failure is retryable
1061  *		BLKPREP_KILL if the failure is fatal
1062  */
1063 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1064 {
1065 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1066 	if (error)
1067 		goto err_exit;
1068 
1069 	if (blk_bidi_rq(cmd->request)) {
1070 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1071 			scsi_sdb_cache, GFP_ATOMIC);
1072 		if (!bidi_sdb) {
1073 			error = BLKPREP_DEFER;
1074 			goto err_exit;
1075 		}
1076 
1077 		cmd->request->next_rq->special = bidi_sdb;
1078 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1079 								    GFP_ATOMIC);
1080 		if (error)
1081 			goto err_exit;
1082 	}
1083 
1084 	if (blk_integrity_rq(cmd->request)) {
1085 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1086 		int ivecs, count;
1087 
1088 		BUG_ON(prot_sdb == NULL);
1089 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1090 
1091 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1092 			error = BLKPREP_DEFER;
1093 			goto err_exit;
1094 		}
1095 
1096 		count = blk_rq_map_integrity_sg(cmd->request,
1097 						prot_sdb->table.sgl);
1098 		BUG_ON(unlikely(count > ivecs));
1099 
1100 		cmd->prot_sdb = prot_sdb;
1101 		cmd->prot_sdb->table.nents = count;
1102 	}
1103 
1104 	return BLKPREP_OK ;
1105 
1106 err_exit:
1107 	scsi_release_buffers(cmd);
1108 	if (error == BLKPREP_KILL)
1109 		scsi_put_command(cmd);
1110 	else /* BLKPREP_DEFER */
1111 		scsi_unprep_request(cmd->request);
1112 
1113 	return error;
1114 }
1115 EXPORT_SYMBOL(scsi_init_io);
1116 
1117 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1118 		struct request *req)
1119 {
1120 	struct scsi_cmnd *cmd;
1121 
1122 	if (!req->special) {
1123 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1124 		if (unlikely(!cmd))
1125 			return NULL;
1126 		req->special = cmd;
1127 	} else {
1128 		cmd = req->special;
1129 	}
1130 
1131 	/* pull a tag out of the request if we have one */
1132 	cmd->tag = req->tag;
1133 	cmd->request = req;
1134 
1135 	cmd->cmnd = req->cmd;
1136 
1137 	return cmd;
1138 }
1139 
1140 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1141 {
1142 	struct scsi_cmnd *cmd;
1143 	int ret = scsi_prep_state_check(sdev, req);
1144 
1145 	if (ret != BLKPREP_OK)
1146 		return ret;
1147 
1148 	cmd = scsi_get_cmd_from_req(sdev, req);
1149 	if (unlikely(!cmd))
1150 		return BLKPREP_DEFER;
1151 
1152 	/*
1153 	 * BLOCK_PC requests may transfer data, in which case they must
1154 	 * a bio attached to them.  Or they might contain a SCSI command
1155 	 * that does not transfer data, in which case they may optionally
1156 	 * submit a request without an attached bio.
1157 	 */
1158 	if (req->bio) {
1159 		int ret;
1160 
1161 		BUG_ON(!req->nr_phys_segments);
1162 
1163 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1164 		if (unlikely(ret))
1165 			return ret;
1166 	} else {
1167 		BUG_ON(req->data_len);
1168 		BUG_ON(req->data);
1169 
1170 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1171 		req->buffer = NULL;
1172 	}
1173 
1174 	cmd->cmd_len = req->cmd_len;
1175 	if (!req->data_len)
1176 		cmd->sc_data_direction = DMA_NONE;
1177 	else if (rq_data_dir(req) == WRITE)
1178 		cmd->sc_data_direction = DMA_TO_DEVICE;
1179 	else
1180 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1181 
1182 	cmd->transfersize = req->data_len;
1183 	cmd->allowed = req->retries;
1184 	return BLKPREP_OK;
1185 }
1186 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1187 
1188 /*
1189  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1190  * from filesystems that still need to be translated to SCSI CDBs from
1191  * the ULD.
1192  */
1193 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1194 {
1195 	struct scsi_cmnd *cmd;
1196 	int ret = scsi_prep_state_check(sdev, req);
1197 
1198 	if (ret != BLKPREP_OK)
1199 		return ret;
1200 
1201 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1202 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1203 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1204 		if (ret != BLKPREP_OK)
1205 			return ret;
1206 	}
1207 
1208 	/*
1209 	 * Filesystem requests must transfer data.
1210 	 */
1211 	BUG_ON(!req->nr_phys_segments);
1212 
1213 	cmd = scsi_get_cmd_from_req(sdev, req);
1214 	if (unlikely(!cmd))
1215 		return BLKPREP_DEFER;
1216 
1217 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1218 	return scsi_init_io(cmd, GFP_ATOMIC);
1219 }
1220 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1221 
1222 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1223 {
1224 	int ret = BLKPREP_OK;
1225 
1226 	/*
1227 	 * If the device is not in running state we will reject some
1228 	 * or all commands.
1229 	 */
1230 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1231 		switch (sdev->sdev_state) {
1232 		case SDEV_OFFLINE:
1233 			/*
1234 			 * If the device is offline we refuse to process any
1235 			 * commands.  The device must be brought online
1236 			 * before trying any recovery commands.
1237 			 */
1238 			sdev_printk(KERN_ERR, sdev,
1239 				    "rejecting I/O to offline device\n");
1240 			ret = BLKPREP_KILL;
1241 			break;
1242 		case SDEV_DEL:
1243 			/*
1244 			 * If the device is fully deleted, we refuse to
1245 			 * process any commands as well.
1246 			 */
1247 			sdev_printk(KERN_ERR, sdev,
1248 				    "rejecting I/O to dead device\n");
1249 			ret = BLKPREP_KILL;
1250 			break;
1251 		case SDEV_QUIESCE:
1252 		case SDEV_BLOCK:
1253 		case SDEV_CREATED_BLOCK:
1254 			/*
1255 			 * If the devices is blocked we defer normal commands.
1256 			 */
1257 			if (!(req->cmd_flags & REQ_PREEMPT))
1258 				ret = BLKPREP_DEFER;
1259 			break;
1260 		default:
1261 			/*
1262 			 * For any other not fully online state we only allow
1263 			 * special commands.  In particular any user initiated
1264 			 * command is not allowed.
1265 			 */
1266 			if (!(req->cmd_flags & REQ_PREEMPT))
1267 				ret = BLKPREP_KILL;
1268 			break;
1269 		}
1270 	}
1271 	return ret;
1272 }
1273 EXPORT_SYMBOL(scsi_prep_state_check);
1274 
1275 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1276 {
1277 	struct scsi_device *sdev = q->queuedata;
1278 
1279 	switch (ret) {
1280 	case BLKPREP_KILL:
1281 		req->errors = DID_NO_CONNECT << 16;
1282 		/* release the command and kill it */
1283 		if (req->special) {
1284 			struct scsi_cmnd *cmd = req->special;
1285 			scsi_release_buffers(cmd);
1286 			scsi_put_command(cmd);
1287 			req->special = NULL;
1288 		}
1289 		break;
1290 	case BLKPREP_DEFER:
1291 		/*
1292 		 * If we defer, the elv_next_request() returns NULL, but the
1293 		 * queue must be restarted, so we plug here if no returning
1294 		 * command will automatically do that.
1295 		 */
1296 		if (sdev->device_busy == 0)
1297 			blk_plug_device(q);
1298 		break;
1299 	default:
1300 		req->cmd_flags |= REQ_DONTPREP;
1301 	}
1302 
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL(scsi_prep_return);
1306 
1307 int scsi_prep_fn(struct request_queue *q, struct request *req)
1308 {
1309 	struct scsi_device *sdev = q->queuedata;
1310 	int ret = BLKPREP_KILL;
1311 
1312 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1313 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1314 	return scsi_prep_return(q, req, ret);
1315 }
1316 
1317 /*
1318  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1319  * return 0.
1320  *
1321  * Called with the queue_lock held.
1322  */
1323 static inline int scsi_dev_queue_ready(struct request_queue *q,
1324 				  struct scsi_device *sdev)
1325 {
1326 	if (sdev->device_busy >= sdev->queue_depth)
1327 		return 0;
1328 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1329 		/*
1330 		 * unblock after device_blocked iterates to zero
1331 		 */
1332 		if (--sdev->device_blocked == 0) {
1333 			SCSI_LOG_MLQUEUE(3,
1334 				   sdev_printk(KERN_INFO, sdev,
1335 				   "unblocking device at zero depth\n"));
1336 		} else {
1337 			blk_plug_device(q);
1338 			return 0;
1339 		}
1340 	}
1341 	if (sdev->device_blocked)
1342 		return 0;
1343 
1344 	return 1;
1345 }
1346 
1347 /*
1348  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1349  * return 0. We must end up running the queue again whenever 0 is
1350  * returned, else IO can hang.
1351  *
1352  * Called with host_lock held.
1353  */
1354 static inline int scsi_host_queue_ready(struct request_queue *q,
1355 				   struct Scsi_Host *shost,
1356 				   struct scsi_device *sdev)
1357 {
1358 	if (scsi_host_in_recovery(shost))
1359 		return 0;
1360 	if (shost->host_busy == 0 && shost->host_blocked) {
1361 		/*
1362 		 * unblock after host_blocked iterates to zero
1363 		 */
1364 		if (--shost->host_blocked == 0) {
1365 			SCSI_LOG_MLQUEUE(3,
1366 				printk("scsi%d unblocking host at zero depth\n",
1367 					shost->host_no));
1368 		} else {
1369 			return 0;
1370 		}
1371 	}
1372 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1373 	    shost->host_blocked || shost->host_self_blocked) {
1374 		if (list_empty(&sdev->starved_entry))
1375 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376 		return 0;
1377 	}
1378 
1379 	/* We're OK to process the command, so we can't be starved */
1380 	if (!list_empty(&sdev->starved_entry))
1381 		list_del_init(&sdev->starved_entry);
1382 
1383 	return 1;
1384 }
1385 
1386 /*
1387  * Kill a request for a dead device
1388  */
1389 static void scsi_kill_request(struct request *req, struct request_queue *q)
1390 {
1391 	struct scsi_cmnd *cmd = req->special;
1392 	struct scsi_device *sdev = cmd->device;
1393 	struct Scsi_Host *shost = sdev->host;
1394 
1395 	blkdev_dequeue_request(req);
1396 
1397 	if (unlikely(cmd == NULL)) {
1398 		printk(KERN_CRIT "impossible request in %s.\n",
1399 				 __func__);
1400 		BUG();
1401 	}
1402 
1403 	scsi_init_cmd_errh(cmd);
1404 	cmd->result = DID_NO_CONNECT << 16;
1405 	atomic_inc(&cmd->device->iorequest_cnt);
1406 
1407 	/*
1408 	 * SCSI request completion path will do scsi_device_unbusy(),
1409 	 * bump busy counts.  To bump the counters, we need to dance
1410 	 * with the locks as normal issue path does.
1411 	 */
1412 	sdev->device_busy++;
1413 	spin_unlock(sdev->request_queue->queue_lock);
1414 	spin_lock(shost->host_lock);
1415 	shost->host_busy++;
1416 	spin_unlock(shost->host_lock);
1417 	spin_lock(sdev->request_queue->queue_lock);
1418 
1419 	blk_complete_request(req);
1420 }
1421 
1422 static void scsi_softirq_done(struct request *rq)
1423 {
1424 	struct scsi_cmnd *cmd = rq->special;
1425 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1426 	int disposition;
1427 
1428 	INIT_LIST_HEAD(&cmd->eh_entry);
1429 
1430 	/*
1431 	 * Set the serial numbers back to zero
1432 	 */
1433 	cmd->serial_number = 0;
1434 
1435 	atomic_inc(&cmd->device->iodone_cnt);
1436 	if (cmd->result)
1437 		atomic_inc(&cmd->device->ioerr_cnt);
1438 
1439 	disposition = scsi_decide_disposition(cmd);
1440 	if (disposition != SUCCESS &&
1441 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1442 		sdev_printk(KERN_ERR, cmd->device,
1443 			    "timing out command, waited %lus\n",
1444 			    wait_for/HZ);
1445 		disposition = SUCCESS;
1446 	}
1447 
1448 	scsi_log_completion(cmd, disposition);
1449 
1450 	switch (disposition) {
1451 		case SUCCESS:
1452 			scsi_finish_command(cmd);
1453 			break;
1454 		case NEEDS_RETRY:
1455 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1456 			break;
1457 		case ADD_TO_MLQUEUE:
1458 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1459 			break;
1460 		default:
1461 			if (!scsi_eh_scmd_add(cmd, 0))
1462 				scsi_finish_command(cmd);
1463 	}
1464 }
1465 
1466 /*
1467  * Function:    scsi_request_fn()
1468  *
1469  * Purpose:     Main strategy routine for SCSI.
1470  *
1471  * Arguments:   q       - Pointer to actual queue.
1472  *
1473  * Returns:     Nothing
1474  *
1475  * Lock status: IO request lock assumed to be held when called.
1476  */
1477 static void scsi_request_fn(struct request_queue *q)
1478 {
1479 	struct scsi_device *sdev = q->queuedata;
1480 	struct Scsi_Host *shost;
1481 	struct scsi_cmnd *cmd;
1482 	struct request *req;
1483 
1484 	if (!sdev) {
1485 		printk("scsi: killing requests for dead queue\n");
1486 		while ((req = elv_next_request(q)) != NULL)
1487 			scsi_kill_request(req, q);
1488 		return;
1489 	}
1490 
1491 	if(!get_device(&sdev->sdev_gendev))
1492 		/* We must be tearing the block queue down already */
1493 		return;
1494 
1495 	/*
1496 	 * To start with, we keep looping until the queue is empty, or until
1497 	 * the host is no longer able to accept any more requests.
1498 	 */
1499 	shost = sdev->host;
1500 	while (!blk_queue_plugged(q)) {
1501 		int rtn;
1502 		/*
1503 		 * get next queueable request.  We do this early to make sure
1504 		 * that the request is fully prepared even if we cannot
1505 		 * accept it.
1506 		 */
1507 		req = elv_next_request(q);
1508 		if (!req || !scsi_dev_queue_ready(q, sdev))
1509 			break;
1510 
1511 		if (unlikely(!scsi_device_online(sdev))) {
1512 			sdev_printk(KERN_ERR, sdev,
1513 				    "rejecting I/O to offline device\n");
1514 			scsi_kill_request(req, q);
1515 			continue;
1516 		}
1517 
1518 
1519 		/*
1520 		 * Remove the request from the request list.
1521 		 */
1522 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1523 			blkdev_dequeue_request(req);
1524 		sdev->device_busy++;
1525 
1526 		spin_unlock(q->queue_lock);
1527 		cmd = req->special;
1528 		if (unlikely(cmd == NULL)) {
1529 			printk(KERN_CRIT "impossible request in %s.\n"
1530 					 "please mail a stack trace to "
1531 					 "linux-scsi@vger.kernel.org\n",
1532 					 __func__);
1533 			blk_dump_rq_flags(req, "foo");
1534 			BUG();
1535 		}
1536 		spin_lock(shost->host_lock);
1537 
1538 		/*
1539 		 * We hit this when the driver is using a host wide
1540 		 * tag map. For device level tag maps the queue_depth check
1541 		 * in the device ready fn would prevent us from trying
1542 		 * to allocate a tag. Since the map is a shared host resource
1543 		 * we add the dev to the starved list so it eventually gets
1544 		 * a run when a tag is freed.
1545 		 */
1546 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1547 			if (list_empty(&sdev->starved_entry))
1548 				list_add_tail(&sdev->starved_entry,
1549 					      &shost->starved_list);
1550 			goto not_ready;
1551 		}
1552 
1553 		if (!scsi_host_queue_ready(q, shost, sdev))
1554 			goto not_ready;
1555 		if (scsi_target(sdev)->single_lun) {
1556 			if (scsi_target(sdev)->starget_sdev_user &&
1557 			    scsi_target(sdev)->starget_sdev_user != sdev)
1558 				goto not_ready;
1559 			scsi_target(sdev)->starget_sdev_user = sdev;
1560 		}
1561 		shost->host_busy++;
1562 
1563 		/*
1564 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1565 		 *		take the lock again.
1566 		 */
1567 		spin_unlock_irq(shost->host_lock);
1568 
1569 		/*
1570 		 * Finally, initialize any error handling parameters, and set up
1571 		 * the timers for timeouts.
1572 		 */
1573 		scsi_init_cmd_errh(cmd);
1574 
1575 		/*
1576 		 * Dispatch the command to the low-level driver.
1577 		 */
1578 		rtn = scsi_dispatch_cmd(cmd);
1579 		spin_lock_irq(q->queue_lock);
1580 		if(rtn) {
1581 			/* we're refusing the command; because of
1582 			 * the way locks get dropped, we need to
1583 			 * check here if plugging is required */
1584 			if(sdev->device_busy == 0)
1585 				blk_plug_device(q);
1586 
1587 			break;
1588 		}
1589 	}
1590 
1591 	goto out;
1592 
1593  not_ready:
1594 	spin_unlock_irq(shost->host_lock);
1595 
1596 	/*
1597 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1598 	 * must return with queue_lock held.
1599 	 *
1600 	 * Decrementing device_busy without checking it is OK, as all such
1601 	 * cases (host limits or settings) should run the queue at some
1602 	 * later time.
1603 	 */
1604 	spin_lock_irq(q->queue_lock);
1605 	blk_requeue_request(q, req);
1606 	sdev->device_busy--;
1607 	if(sdev->device_busy == 0)
1608 		blk_plug_device(q);
1609  out:
1610 	/* must be careful here...if we trigger the ->remove() function
1611 	 * we cannot be holding the q lock */
1612 	spin_unlock_irq(q->queue_lock);
1613 	put_device(&sdev->sdev_gendev);
1614 	spin_lock_irq(q->queue_lock);
1615 }
1616 
1617 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1618 {
1619 	struct device *host_dev;
1620 	u64 bounce_limit = 0xffffffff;
1621 
1622 	if (shost->unchecked_isa_dma)
1623 		return BLK_BOUNCE_ISA;
1624 	/*
1625 	 * Platforms with virtual-DMA translation
1626 	 * hardware have no practical limit.
1627 	 */
1628 	if (!PCI_DMA_BUS_IS_PHYS)
1629 		return BLK_BOUNCE_ANY;
1630 
1631 	host_dev = scsi_get_device(shost);
1632 	if (host_dev && host_dev->dma_mask)
1633 		bounce_limit = *host_dev->dma_mask;
1634 
1635 	return bounce_limit;
1636 }
1637 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1638 
1639 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1640 					 request_fn_proc *request_fn)
1641 {
1642 	struct request_queue *q;
1643 	struct device *dev = shost->shost_gendev.parent;
1644 
1645 	q = blk_init_queue(request_fn, NULL);
1646 	if (!q)
1647 		return NULL;
1648 
1649 	/*
1650 	 * this limit is imposed by hardware restrictions
1651 	 */
1652 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1653 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1654 
1655 	blk_queue_max_sectors(q, shost->max_sectors);
1656 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1657 	blk_queue_segment_boundary(q, shost->dma_boundary);
1658 	dma_set_seg_boundary(dev, shost->dma_boundary);
1659 
1660 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1661 
1662 	/* New queue, no concurrency on queue_flags */
1663 	if (!shost->use_clustering)
1664 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1665 
1666 	/*
1667 	 * set a reasonable default alignment on word boundaries: the
1668 	 * host and device may alter it using
1669 	 * blk_queue_update_dma_alignment() later.
1670 	 */
1671 	blk_queue_dma_alignment(q, 0x03);
1672 
1673 	return q;
1674 }
1675 EXPORT_SYMBOL(__scsi_alloc_queue);
1676 
1677 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1678 {
1679 	struct request_queue *q;
1680 
1681 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1682 	if (!q)
1683 		return NULL;
1684 
1685 	blk_queue_prep_rq(q, scsi_prep_fn);
1686 	blk_queue_softirq_done(q, scsi_softirq_done);
1687 	blk_queue_rq_timed_out(q, scsi_times_out);
1688 	return q;
1689 }
1690 
1691 void scsi_free_queue(struct request_queue *q)
1692 {
1693 	blk_cleanup_queue(q);
1694 }
1695 
1696 /*
1697  * Function:    scsi_block_requests()
1698  *
1699  * Purpose:     Utility function used by low-level drivers to prevent further
1700  *		commands from being queued to the device.
1701  *
1702  * Arguments:   shost       - Host in question
1703  *
1704  * Returns:     Nothing
1705  *
1706  * Lock status: No locks are assumed held.
1707  *
1708  * Notes:       There is no timer nor any other means by which the requests
1709  *		get unblocked other than the low-level driver calling
1710  *		scsi_unblock_requests().
1711  */
1712 void scsi_block_requests(struct Scsi_Host *shost)
1713 {
1714 	shost->host_self_blocked = 1;
1715 }
1716 EXPORT_SYMBOL(scsi_block_requests);
1717 
1718 /*
1719  * Function:    scsi_unblock_requests()
1720  *
1721  * Purpose:     Utility function used by low-level drivers to allow further
1722  *		commands from being queued to the device.
1723  *
1724  * Arguments:   shost       - Host in question
1725  *
1726  * Returns:     Nothing
1727  *
1728  * Lock status: No locks are assumed held.
1729  *
1730  * Notes:       There is no timer nor any other means by which the requests
1731  *		get unblocked other than the low-level driver calling
1732  *		scsi_unblock_requests().
1733  *
1734  *		This is done as an API function so that changes to the
1735  *		internals of the scsi mid-layer won't require wholesale
1736  *		changes to drivers that use this feature.
1737  */
1738 void scsi_unblock_requests(struct Scsi_Host *shost)
1739 {
1740 	shost->host_self_blocked = 0;
1741 	scsi_run_host_queues(shost);
1742 }
1743 EXPORT_SYMBOL(scsi_unblock_requests);
1744 
1745 int __init scsi_init_queue(void)
1746 {
1747 	int i;
1748 
1749 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1750 					sizeof(struct scsi_io_context),
1751 					0, 0, NULL);
1752 	if (!scsi_io_context_cache) {
1753 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1754 		return -ENOMEM;
1755 	}
1756 
1757 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1758 					   sizeof(struct scsi_data_buffer),
1759 					   0, 0, NULL);
1760 	if (!scsi_sdb_cache) {
1761 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1762 		goto cleanup_io_context;
1763 	}
1764 
1765 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767 		int size = sgp->size * sizeof(struct scatterlist);
1768 
1769 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1770 				SLAB_HWCACHE_ALIGN, NULL);
1771 		if (!sgp->slab) {
1772 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1773 					sgp->name);
1774 			goto cleanup_sdb;
1775 		}
1776 
1777 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1778 						     sgp->slab);
1779 		if (!sgp->pool) {
1780 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1781 					sgp->name);
1782 			goto cleanup_sdb;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 
1788 cleanup_sdb:
1789 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791 		if (sgp->pool)
1792 			mempool_destroy(sgp->pool);
1793 		if (sgp->slab)
1794 			kmem_cache_destroy(sgp->slab);
1795 	}
1796 	kmem_cache_destroy(scsi_sdb_cache);
1797 cleanup_io_context:
1798 	kmem_cache_destroy(scsi_io_context_cache);
1799 
1800 	return -ENOMEM;
1801 }
1802 
1803 void scsi_exit_queue(void)
1804 {
1805 	int i;
1806 
1807 	kmem_cache_destroy(scsi_io_context_cache);
1808 	kmem_cache_destroy(scsi_sdb_cache);
1809 
1810 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1811 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1812 		mempool_destroy(sgp->pool);
1813 		kmem_cache_destroy(sgp->slab);
1814 	}
1815 }
1816 
1817 /**
1818  *	scsi_mode_select - issue a mode select
1819  *	@sdev:	SCSI device to be queried
1820  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1821  *	@sp:	Save page bit (0 == don't save, 1 == save)
1822  *	@modepage: mode page being requested
1823  *	@buffer: request buffer (may not be smaller than eight bytes)
1824  *	@len:	length of request buffer.
1825  *	@timeout: command timeout
1826  *	@retries: number of retries before failing
1827  *	@data: returns a structure abstracting the mode header data
1828  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1829  *		must be SCSI_SENSE_BUFFERSIZE big.
1830  *
1831  *	Returns zero if successful; negative error number or scsi
1832  *	status on error
1833  *
1834  */
1835 int
1836 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1837 		 unsigned char *buffer, int len, int timeout, int retries,
1838 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1839 {
1840 	unsigned char cmd[10];
1841 	unsigned char *real_buffer;
1842 	int ret;
1843 
1844 	memset(cmd, 0, sizeof(cmd));
1845 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1846 
1847 	if (sdev->use_10_for_ms) {
1848 		if (len > 65535)
1849 			return -EINVAL;
1850 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1851 		if (!real_buffer)
1852 			return -ENOMEM;
1853 		memcpy(real_buffer + 8, buffer, len);
1854 		len += 8;
1855 		real_buffer[0] = 0;
1856 		real_buffer[1] = 0;
1857 		real_buffer[2] = data->medium_type;
1858 		real_buffer[3] = data->device_specific;
1859 		real_buffer[4] = data->longlba ? 0x01 : 0;
1860 		real_buffer[5] = 0;
1861 		real_buffer[6] = data->block_descriptor_length >> 8;
1862 		real_buffer[7] = data->block_descriptor_length;
1863 
1864 		cmd[0] = MODE_SELECT_10;
1865 		cmd[7] = len >> 8;
1866 		cmd[8] = len;
1867 	} else {
1868 		if (len > 255 || data->block_descriptor_length > 255 ||
1869 		    data->longlba)
1870 			return -EINVAL;
1871 
1872 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1873 		if (!real_buffer)
1874 			return -ENOMEM;
1875 		memcpy(real_buffer + 4, buffer, len);
1876 		len += 4;
1877 		real_buffer[0] = 0;
1878 		real_buffer[1] = data->medium_type;
1879 		real_buffer[2] = data->device_specific;
1880 		real_buffer[3] = data->block_descriptor_length;
1881 
1882 
1883 		cmd[0] = MODE_SELECT;
1884 		cmd[4] = len;
1885 	}
1886 
1887 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1888 			       sshdr, timeout, retries);
1889 	kfree(real_buffer);
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(scsi_mode_select);
1893 
1894 /**
1895  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1896  *	@sdev:	SCSI device to be queried
1897  *	@dbd:	set if mode sense will allow block descriptors to be returned
1898  *	@modepage: mode page being requested
1899  *	@buffer: request buffer (may not be smaller than eight bytes)
1900  *	@len:	length of request buffer.
1901  *	@timeout: command timeout
1902  *	@retries: number of retries before failing
1903  *	@data: returns a structure abstracting the mode header data
1904  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1905  *		must be SCSI_SENSE_BUFFERSIZE big.
1906  *
1907  *	Returns zero if unsuccessful, or the header offset (either 4
1908  *	or 8 depending on whether a six or ten byte command was
1909  *	issued) if successful.
1910  */
1911 int
1912 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1913 		  unsigned char *buffer, int len, int timeout, int retries,
1914 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1915 {
1916 	unsigned char cmd[12];
1917 	int use_10_for_ms;
1918 	int header_length;
1919 	int result;
1920 	struct scsi_sense_hdr my_sshdr;
1921 
1922 	memset(data, 0, sizeof(*data));
1923 	memset(&cmd[0], 0, 12);
1924 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1925 	cmd[2] = modepage;
1926 
1927 	/* caller might not be interested in sense, but we need it */
1928 	if (!sshdr)
1929 		sshdr = &my_sshdr;
1930 
1931  retry:
1932 	use_10_for_ms = sdev->use_10_for_ms;
1933 
1934 	if (use_10_for_ms) {
1935 		if (len < 8)
1936 			len = 8;
1937 
1938 		cmd[0] = MODE_SENSE_10;
1939 		cmd[8] = len;
1940 		header_length = 8;
1941 	} else {
1942 		if (len < 4)
1943 			len = 4;
1944 
1945 		cmd[0] = MODE_SENSE;
1946 		cmd[4] = len;
1947 		header_length = 4;
1948 	}
1949 
1950 	memset(buffer, 0, len);
1951 
1952 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1953 				  sshdr, timeout, retries);
1954 
1955 	/* This code looks awful: what it's doing is making sure an
1956 	 * ILLEGAL REQUEST sense return identifies the actual command
1957 	 * byte as the problem.  MODE_SENSE commands can return
1958 	 * ILLEGAL REQUEST if the code page isn't supported */
1959 
1960 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1961 	    (driver_byte(result) & DRIVER_SENSE)) {
1962 		if (scsi_sense_valid(sshdr)) {
1963 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1964 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1965 				/*
1966 				 * Invalid command operation code
1967 				 */
1968 				sdev->use_10_for_ms = 0;
1969 				goto retry;
1970 			}
1971 		}
1972 	}
1973 
1974 	if(scsi_status_is_good(result)) {
1975 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1976 			     (modepage == 6 || modepage == 8))) {
1977 			/* Initio breakage? */
1978 			header_length = 0;
1979 			data->length = 13;
1980 			data->medium_type = 0;
1981 			data->device_specific = 0;
1982 			data->longlba = 0;
1983 			data->block_descriptor_length = 0;
1984 		} else if(use_10_for_ms) {
1985 			data->length = buffer[0]*256 + buffer[1] + 2;
1986 			data->medium_type = buffer[2];
1987 			data->device_specific = buffer[3];
1988 			data->longlba = buffer[4] & 0x01;
1989 			data->block_descriptor_length = buffer[6]*256
1990 				+ buffer[7];
1991 		} else {
1992 			data->length = buffer[0] + 1;
1993 			data->medium_type = buffer[1];
1994 			data->device_specific = buffer[2];
1995 			data->block_descriptor_length = buffer[3];
1996 		}
1997 		data->header_length = header_length;
1998 	}
1999 
2000 	return result;
2001 }
2002 EXPORT_SYMBOL(scsi_mode_sense);
2003 
2004 /**
2005  *	scsi_test_unit_ready - test if unit is ready
2006  *	@sdev:	scsi device to change the state of.
2007  *	@timeout: command timeout
2008  *	@retries: number of retries before failing
2009  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2010  *		returning sense. Make sure that this is cleared before passing
2011  *		in.
2012  *
2013  *	Returns zero if unsuccessful or an error if TUR failed.  For
2014  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2015  *	translated to success, with the ->changed flag updated.
2016  **/
2017 int
2018 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2019 		     struct scsi_sense_hdr *sshdr_external)
2020 {
2021 	char cmd[] = {
2022 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2023 	};
2024 	struct scsi_sense_hdr *sshdr;
2025 	int result;
2026 
2027 	if (!sshdr_external)
2028 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2029 	else
2030 		sshdr = sshdr_external;
2031 
2032 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2033 	do {
2034 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2035 					  timeout, retries);
2036 	} while ((driver_byte(result) & DRIVER_SENSE) &&
2037 		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2038 		 --retries);
2039 
2040 	if (!sshdr)
2041 		/* could not allocate sense buffer, so can't process it */
2042 		return result;
2043 
2044 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2045 
2046 		if ((scsi_sense_valid(sshdr)) &&
2047 		    ((sshdr->sense_key == UNIT_ATTENTION) ||
2048 		     (sshdr->sense_key == NOT_READY))) {
2049 			sdev->changed = 1;
2050 			result = 0;
2051 		}
2052 	}
2053 	if (!sshdr_external)
2054 		kfree(sshdr);
2055 	return result;
2056 }
2057 EXPORT_SYMBOL(scsi_test_unit_ready);
2058 
2059 /**
2060  *	scsi_device_set_state - Take the given device through the device state model.
2061  *	@sdev:	scsi device to change the state of.
2062  *	@state:	state to change to.
2063  *
2064  *	Returns zero if unsuccessful or an error if the requested
2065  *	transition is illegal.
2066  */
2067 int
2068 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2069 {
2070 	enum scsi_device_state oldstate = sdev->sdev_state;
2071 
2072 	if (state == oldstate)
2073 		return 0;
2074 
2075 	switch (state) {
2076 	case SDEV_CREATED:
2077 		switch (oldstate) {
2078 		case SDEV_CREATED_BLOCK:
2079 			break;
2080 		default:
2081 			goto illegal;
2082 		}
2083 		break;
2084 
2085 	case SDEV_RUNNING:
2086 		switch (oldstate) {
2087 		case SDEV_CREATED:
2088 		case SDEV_OFFLINE:
2089 		case SDEV_QUIESCE:
2090 		case SDEV_BLOCK:
2091 			break;
2092 		default:
2093 			goto illegal;
2094 		}
2095 		break;
2096 
2097 	case SDEV_QUIESCE:
2098 		switch (oldstate) {
2099 		case SDEV_RUNNING:
2100 		case SDEV_OFFLINE:
2101 			break;
2102 		default:
2103 			goto illegal;
2104 		}
2105 		break;
2106 
2107 	case SDEV_OFFLINE:
2108 		switch (oldstate) {
2109 		case SDEV_CREATED:
2110 		case SDEV_RUNNING:
2111 		case SDEV_QUIESCE:
2112 		case SDEV_BLOCK:
2113 			break;
2114 		default:
2115 			goto illegal;
2116 		}
2117 		break;
2118 
2119 	case SDEV_BLOCK:
2120 		switch (oldstate) {
2121 		case SDEV_RUNNING:
2122 		case SDEV_CREATED_BLOCK:
2123 			break;
2124 		default:
2125 			goto illegal;
2126 		}
2127 		break;
2128 
2129 	case SDEV_CREATED_BLOCK:
2130 		switch (oldstate) {
2131 		case SDEV_CREATED:
2132 			break;
2133 		default:
2134 			goto illegal;
2135 		}
2136 		break;
2137 
2138 	case SDEV_CANCEL:
2139 		switch (oldstate) {
2140 		case SDEV_CREATED:
2141 		case SDEV_RUNNING:
2142 		case SDEV_QUIESCE:
2143 		case SDEV_OFFLINE:
2144 		case SDEV_BLOCK:
2145 			break;
2146 		default:
2147 			goto illegal;
2148 		}
2149 		break;
2150 
2151 	case SDEV_DEL:
2152 		switch (oldstate) {
2153 		case SDEV_CREATED:
2154 		case SDEV_RUNNING:
2155 		case SDEV_OFFLINE:
2156 		case SDEV_CANCEL:
2157 			break;
2158 		default:
2159 			goto illegal;
2160 		}
2161 		break;
2162 
2163 	}
2164 	sdev->sdev_state = state;
2165 	return 0;
2166 
2167  illegal:
2168 	SCSI_LOG_ERROR_RECOVERY(1,
2169 				sdev_printk(KERN_ERR, sdev,
2170 					    "Illegal state transition %s->%s\n",
2171 					    scsi_device_state_name(oldstate),
2172 					    scsi_device_state_name(state))
2173 				);
2174 	return -EINVAL;
2175 }
2176 EXPORT_SYMBOL(scsi_device_set_state);
2177 
2178 /**
2179  * 	sdev_evt_emit - emit a single SCSI device uevent
2180  *	@sdev: associated SCSI device
2181  *	@evt: event to emit
2182  *
2183  *	Send a single uevent (scsi_event) to the associated scsi_device.
2184  */
2185 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2186 {
2187 	int idx = 0;
2188 	char *envp[3];
2189 
2190 	switch (evt->evt_type) {
2191 	case SDEV_EVT_MEDIA_CHANGE:
2192 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2193 		break;
2194 
2195 	default:
2196 		/* do nothing */
2197 		break;
2198 	}
2199 
2200 	envp[idx++] = NULL;
2201 
2202 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2203 }
2204 
2205 /**
2206  * 	sdev_evt_thread - send a uevent for each scsi event
2207  *	@work: work struct for scsi_device
2208  *
2209  *	Dispatch queued events to their associated scsi_device kobjects
2210  *	as uevents.
2211  */
2212 void scsi_evt_thread(struct work_struct *work)
2213 {
2214 	struct scsi_device *sdev;
2215 	LIST_HEAD(event_list);
2216 
2217 	sdev = container_of(work, struct scsi_device, event_work);
2218 
2219 	while (1) {
2220 		struct scsi_event *evt;
2221 		struct list_head *this, *tmp;
2222 		unsigned long flags;
2223 
2224 		spin_lock_irqsave(&sdev->list_lock, flags);
2225 		list_splice_init(&sdev->event_list, &event_list);
2226 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2227 
2228 		if (list_empty(&event_list))
2229 			break;
2230 
2231 		list_for_each_safe(this, tmp, &event_list) {
2232 			evt = list_entry(this, struct scsi_event, node);
2233 			list_del(&evt->node);
2234 			scsi_evt_emit(sdev, evt);
2235 			kfree(evt);
2236 		}
2237 	}
2238 }
2239 
2240 /**
2241  * 	sdev_evt_send - send asserted event to uevent thread
2242  *	@sdev: scsi_device event occurred on
2243  *	@evt: event to send
2244  *
2245  *	Assert scsi device event asynchronously.
2246  */
2247 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2248 {
2249 	unsigned long flags;
2250 
2251 #if 0
2252 	/* FIXME: currently this check eliminates all media change events
2253 	 * for polled devices.  Need to update to discriminate between AN
2254 	 * and polled events */
2255 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2256 		kfree(evt);
2257 		return;
2258 	}
2259 #endif
2260 
2261 	spin_lock_irqsave(&sdev->list_lock, flags);
2262 	list_add_tail(&evt->node, &sdev->event_list);
2263 	schedule_work(&sdev->event_work);
2264 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2265 }
2266 EXPORT_SYMBOL_GPL(sdev_evt_send);
2267 
2268 /**
2269  * 	sdev_evt_alloc - allocate a new scsi event
2270  *	@evt_type: type of event to allocate
2271  *	@gfpflags: GFP flags for allocation
2272  *
2273  *	Allocates and returns a new scsi_event.
2274  */
2275 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2276 				  gfp_t gfpflags)
2277 {
2278 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2279 	if (!evt)
2280 		return NULL;
2281 
2282 	evt->evt_type = evt_type;
2283 	INIT_LIST_HEAD(&evt->node);
2284 
2285 	/* evt_type-specific initialization, if any */
2286 	switch (evt_type) {
2287 	case SDEV_EVT_MEDIA_CHANGE:
2288 	default:
2289 		/* do nothing */
2290 		break;
2291 	}
2292 
2293 	return evt;
2294 }
2295 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2296 
2297 /**
2298  * 	sdev_evt_send_simple - send asserted event to uevent thread
2299  *	@sdev: scsi_device event occurred on
2300  *	@evt_type: type of event to send
2301  *	@gfpflags: GFP flags for allocation
2302  *
2303  *	Assert scsi device event asynchronously, given an event type.
2304  */
2305 void sdev_evt_send_simple(struct scsi_device *sdev,
2306 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2307 {
2308 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2309 	if (!evt) {
2310 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2311 			    evt_type);
2312 		return;
2313 	}
2314 
2315 	sdev_evt_send(sdev, evt);
2316 }
2317 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2318 
2319 /**
2320  *	scsi_device_quiesce - Block user issued commands.
2321  *	@sdev:	scsi device to quiesce.
2322  *
2323  *	This works by trying to transition to the SDEV_QUIESCE state
2324  *	(which must be a legal transition).  When the device is in this
2325  *	state, only special requests will be accepted, all others will
2326  *	be deferred.  Since special requests may also be requeued requests,
2327  *	a successful return doesn't guarantee the device will be
2328  *	totally quiescent.
2329  *
2330  *	Must be called with user context, may sleep.
2331  *
2332  *	Returns zero if unsuccessful or an error if not.
2333  */
2334 int
2335 scsi_device_quiesce(struct scsi_device *sdev)
2336 {
2337 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2338 	if (err)
2339 		return err;
2340 
2341 	scsi_run_queue(sdev->request_queue);
2342 	while (sdev->device_busy) {
2343 		msleep_interruptible(200);
2344 		scsi_run_queue(sdev->request_queue);
2345 	}
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(scsi_device_quiesce);
2349 
2350 /**
2351  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2352  *	@sdev:	scsi device to resume.
2353  *
2354  *	Moves the device from quiesced back to running and restarts the
2355  *	queues.
2356  *
2357  *	Must be called with user context, may sleep.
2358  */
2359 void
2360 scsi_device_resume(struct scsi_device *sdev)
2361 {
2362 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2363 		return;
2364 	scsi_run_queue(sdev->request_queue);
2365 }
2366 EXPORT_SYMBOL(scsi_device_resume);
2367 
2368 static void
2369 device_quiesce_fn(struct scsi_device *sdev, void *data)
2370 {
2371 	scsi_device_quiesce(sdev);
2372 }
2373 
2374 void
2375 scsi_target_quiesce(struct scsi_target *starget)
2376 {
2377 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2378 }
2379 EXPORT_SYMBOL(scsi_target_quiesce);
2380 
2381 static void
2382 device_resume_fn(struct scsi_device *sdev, void *data)
2383 {
2384 	scsi_device_resume(sdev);
2385 }
2386 
2387 void
2388 scsi_target_resume(struct scsi_target *starget)
2389 {
2390 	starget_for_each_device(starget, NULL, device_resume_fn);
2391 }
2392 EXPORT_SYMBOL(scsi_target_resume);
2393 
2394 /**
2395  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2396  * @sdev:	device to block
2397  *
2398  * Block request made by scsi lld's to temporarily stop all
2399  * scsi commands on the specified device.  Called from interrupt
2400  * or normal process context.
2401  *
2402  * Returns zero if successful or error if not
2403  *
2404  * Notes:
2405  *	This routine transitions the device to the SDEV_BLOCK state
2406  *	(which must be a legal transition).  When the device is in this
2407  *	state, all commands are deferred until the scsi lld reenables
2408  *	the device with scsi_device_unblock or device_block_tmo fires.
2409  *	This routine assumes the host_lock is held on entry.
2410  */
2411 int
2412 scsi_internal_device_block(struct scsi_device *sdev)
2413 {
2414 	struct request_queue *q = sdev->request_queue;
2415 	unsigned long flags;
2416 	int err = 0;
2417 
2418 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2419 	if (err) {
2420 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2421 
2422 		if (err)
2423 			return err;
2424 	}
2425 
2426 	/*
2427 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2428 	 * block layer from calling the midlayer with this device's
2429 	 * request queue.
2430 	 */
2431 	spin_lock_irqsave(q->queue_lock, flags);
2432 	blk_stop_queue(q);
2433 	spin_unlock_irqrestore(q->queue_lock, flags);
2434 
2435 	return 0;
2436 }
2437 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2438 
2439 /**
2440  * scsi_internal_device_unblock - resume a device after a block request
2441  * @sdev:	device to resume
2442  *
2443  * Called by scsi lld's or the midlayer to restart the device queue
2444  * for the previously suspended scsi device.  Called from interrupt or
2445  * normal process context.
2446  *
2447  * Returns zero if successful or error if not.
2448  *
2449  * Notes:
2450  *	This routine transitions the device to the SDEV_RUNNING state
2451  *	(which must be a legal transition) allowing the midlayer to
2452  *	goose the queue for this device.  This routine assumes the
2453  *	host_lock is held upon entry.
2454  */
2455 int
2456 scsi_internal_device_unblock(struct scsi_device *sdev)
2457 {
2458 	struct request_queue *q = sdev->request_queue;
2459 	int err;
2460 	unsigned long flags;
2461 
2462 	/*
2463 	 * Try to transition the scsi device to SDEV_RUNNING
2464 	 * and goose the device queue if successful.
2465 	 */
2466 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2467 	if (err) {
2468 		err = scsi_device_set_state(sdev, SDEV_CREATED);
2469 
2470 		if (err)
2471 			return err;
2472 	}
2473 
2474 	spin_lock_irqsave(q->queue_lock, flags);
2475 	blk_start_queue(q);
2476 	spin_unlock_irqrestore(q->queue_lock, flags);
2477 
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2481 
2482 static void
2483 device_block(struct scsi_device *sdev, void *data)
2484 {
2485 	scsi_internal_device_block(sdev);
2486 }
2487 
2488 static int
2489 target_block(struct device *dev, void *data)
2490 {
2491 	if (scsi_is_target_device(dev))
2492 		starget_for_each_device(to_scsi_target(dev), NULL,
2493 					device_block);
2494 	return 0;
2495 }
2496 
2497 void
2498 scsi_target_block(struct device *dev)
2499 {
2500 	if (scsi_is_target_device(dev))
2501 		starget_for_each_device(to_scsi_target(dev), NULL,
2502 					device_block);
2503 	else
2504 		device_for_each_child(dev, NULL, target_block);
2505 }
2506 EXPORT_SYMBOL_GPL(scsi_target_block);
2507 
2508 static void
2509 device_unblock(struct scsi_device *sdev, void *data)
2510 {
2511 	scsi_internal_device_unblock(sdev);
2512 }
2513 
2514 static int
2515 target_unblock(struct device *dev, void *data)
2516 {
2517 	if (scsi_is_target_device(dev))
2518 		starget_for_each_device(to_scsi_target(dev), NULL,
2519 					device_unblock);
2520 	return 0;
2521 }
2522 
2523 void
2524 scsi_target_unblock(struct device *dev)
2525 {
2526 	if (scsi_is_target_device(dev))
2527 		starget_for_each_device(to_scsi_target(dev), NULL,
2528 					device_unblock);
2529 	else
2530 		device_for_each_child(dev, NULL, target_unblock);
2531 }
2532 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2533 
2534 /**
2535  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2536  * @sgl:	scatter-gather list
2537  * @sg_count:	number of segments in sg
2538  * @offset:	offset in bytes into sg, on return offset into the mapped area
2539  * @len:	bytes to map, on return number of bytes mapped
2540  *
2541  * Returns virtual address of the start of the mapped page
2542  */
2543 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2544 			  size_t *offset, size_t *len)
2545 {
2546 	int i;
2547 	size_t sg_len = 0, len_complete = 0;
2548 	struct scatterlist *sg;
2549 	struct page *page;
2550 
2551 	WARN_ON(!irqs_disabled());
2552 
2553 	for_each_sg(sgl, sg, sg_count, i) {
2554 		len_complete = sg_len; /* Complete sg-entries */
2555 		sg_len += sg->length;
2556 		if (sg_len > *offset)
2557 			break;
2558 	}
2559 
2560 	if (unlikely(i == sg_count)) {
2561 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2562 			"elements %d\n",
2563 		       __func__, sg_len, *offset, sg_count);
2564 		WARN_ON(1);
2565 		return NULL;
2566 	}
2567 
2568 	/* Offset starting from the beginning of first page in this sg-entry */
2569 	*offset = *offset - len_complete + sg->offset;
2570 
2571 	/* Assumption: contiguous pages can be accessed as "page + i" */
2572 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2573 	*offset &= ~PAGE_MASK;
2574 
2575 	/* Bytes in this sg-entry from *offset to the end of the page */
2576 	sg_len = PAGE_SIZE - *offset;
2577 	if (*len > sg_len)
2578 		*len = sg_len;
2579 
2580 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2581 }
2582 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2583 
2584 /**
2585  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2586  * @virt:	virtual address to be unmapped
2587  */
2588 void scsi_kunmap_atomic_sg(void *virt)
2589 {
2590 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2591 }
2592 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2593