1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /* 95 * Function: scsi_queue_insert() 96 * 97 * Purpose: Insert a command in the midlevel queue. 98 * 99 * Arguments: cmd - command that we are adding to queue. 100 * reason - why we are inserting command to queue. 101 * 102 * Lock status: Assumed that lock is not held upon entry. 103 * 104 * Returns: Nothing. 105 * 106 * Notes: We do this for one of two cases. Either the host is busy 107 * and it cannot accept any more commands for the time being, 108 * or the device returned QUEUE_FULL and can accept no more 109 * commands. 110 * Notes: This could be called either from an interrupt context or a 111 * normal process context. 112 */ 113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 114 { 115 struct Scsi_Host *host = cmd->device->host; 116 struct scsi_device *device = cmd->device; 117 struct request_queue *q = device->request_queue; 118 unsigned long flags; 119 120 SCSI_LOG_MLQUEUE(1, 121 printk("Inserting command %p into mlqueue\n", cmd)); 122 123 /* 124 * Set the appropriate busy bit for the device/host. 125 * 126 * If the host/device isn't busy, assume that something actually 127 * completed, and that we should be able to queue a command now. 128 * 129 * Note that the prior mid-layer assumption that any host could 130 * always queue at least one command is now broken. The mid-layer 131 * will implement a user specifiable stall (see 132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 133 * if a command is requeued with no other commands outstanding 134 * either for the device or for the host. 135 */ 136 if (reason == SCSI_MLQUEUE_HOST_BUSY) 137 host->host_blocked = host->max_host_blocked; 138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY) 139 device->device_blocked = device->max_device_blocked; 140 141 /* 142 * Decrement the counters, since these commands are no longer 143 * active on the host/device. 144 */ 145 scsi_device_unbusy(device); 146 147 /* 148 * Requeue this command. It will go before all other commands 149 * that are already in the queue. 150 * 151 * NOTE: there is magic here about the way the queue is plugged if 152 * we have no outstanding commands. 153 * 154 * Although we *don't* plug the queue, we call the request 155 * function. The SCSI request function detects the blocked condition 156 * and plugs the queue appropriately. 157 */ 158 spin_lock_irqsave(q->queue_lock, flags); 159 blk_requeue_request(q, cmd->request); 160 spin_unlock_irqrestore(q->queue_lock, flags); 161 162 scsi_run_queue(q); 163 164 return 0; 165 } 166 167 /** 168 * scsi_execute - insert request and wait for the result 169 * @sdev: scsi device 170 * @cmd: scsi command 171 * @data_direction: data direction 172 * @buffer: data buffer 173 * @bufflen: len of buffer 174 * @sense: optional sense buffer 175 * @timeout: request timeout in seconds 176 * @retries: number of times to retry request 177 * @flags: or into request flags; 178 * 179 * returns the req->errors value which is the scsi_cmnd result 180 * field. 181 */ 182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 183 int data_direction, void *buffer, unsigned bufflen, 184 unsigned char *sense, int timeout, int retries, int flags) 185 { 186 struct request *req; 187 int write = (data_direction == DMA_TO_DEVICE); 188 int ret = DRIVER_ERROR << 24; 189 190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 191 192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 193 buffer, bufflen, __GFP_WAIT)) 194 goto out; 195 196 req->cmd_len = COMMAND_SIZE(cmd[0]); 197 memcpy(req->cmd, cmd, req->cmd_len); 198 req->sense = sense; 199 req->sense_len = 0; 200 req->retries = retries; 201 req->timeout = timeout; 202 req->cmd_type = REQ_TYPE_BLOCK_PC; 203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 204 205 /* 206 * head injection *required* here otherwise quiesce won't work 207 */ 208 blk_execute_rq(req->q, NULL, req, 1); 209 210 /* 211 * Some devices (USB mass-storage in particular) may transfer 212 * garbage data together with a residue indicating that the data 213 * is invalid. Prevent the garbage from being misinterpreted 214 * and prevent security leaks by zeroing out the excess data. 215 */ 216 if (unlikely(req->data_len > 0 && req->data_len <= bufflen)) 217 memset(buffer + (bufflen - req->data_len), 0, req->data_len); 218 219 ret = req->errors; 220 out: 221 blk_put_request(req); 222 223 return ret; 224 } 225 EXPORT_SYMBOL(scsi_execute); 226 227 228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 229 int data_direction, void *buffer, unsigned bufflen, 230 struct scsi_sense_hdr *sshdr, int timeout, int retries) 231 { 232 char *sense = NULL; 233 int result; 234 235 if (sshdr) { 236 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 237 if (!sense) 238 return DRIVER_ERROR << 24; 239 } 240 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 241 sense, timeout, retries, 0); 242 if (sshdr) 243 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 244 245 kfree(sense); 246 return result; 247 } 248 EXPORT_SYMBOL(scsi_execute_req); 249 250 struct scsi_io_context { 251 void *data; 252 void (*done)(void *data, char *sense, int result, int resid); 253 char sense[SCSI_SENSE_BUFFERSIZE]; 254 }; 255 256 static struct kmem_cache *scsi_io_context_cache; 257 258 static void scsi_end_async(struct request *req, int uptodate) 259 { 260 struct scsi_io_context *sioc = req->end_io_data; 261 262 if (sioc->done) 263 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 264 265 kmem_cache_free(scsi_io_context_cache, sioc); 266 __blk_put_request(req->q, req); 267 } 268 269 static int scsi_merge_bio(struct request *rq, struct bio *bio) 270 { 271 struct request_queue *q = rq->q; 272 273 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 274 if (rq_data_dir(rq) == WRITE) 275 bio->bi_rw |= (1 << BIO_RW); 276 blk_queue_bounce(q, &bio); 277 278 return blk_rq_append_bio(q, rq, bio); 279 } 280 281 static void scsi_bi_endio(struct bio *bio, int error) 282 { 283 bio_put(bio); 284 } 285 286 /** 287 * scsi_req_map_sg - map a scatterlist into a request 288 * @rq: request to fill 289 * @sgl: scatterlist 290 * @nsegs: number of elements 291 * @bufflen: len of buffer 292 * @gfp: memory allocation flags 293 * 294 * scsi_req_map_sg maps a scatterlist into a request so that the 295 * request can be sent to the block layer. We do not trust the scatterlist 296 * sent to use, as some ULDs use that struct to only organize the pages. 297 */ 298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 299 int nsegs, unsigned bufflen, gfp_t gfp) 300 { 301 struct request_queue *q = rq->q; 302 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 303 unsigned int data_len = bufflen, len, bytes, off; 304 struct scatterlist *sg; 305 struct page *page; 306 struct bio *bio = NULL; 307 int i, err, nr_vecs = 0; 308 309 for_each_sg(sgl, sg, nsegs, i) { 310 page = sg_page(sg); 311 off = sg->offset; 312 len = sg->length; 313 314 while (len > 0 && data_len > 0) { 315 /* 316 * sg sends a scatterlist that is larger than 317 * the data_len it wants transferred for certain 318 * IO sizes 319 */ 320 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 321 bytes = min(bytes, data_len); 322 323 if (!bio) { 324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 325 nr_pages -= nr_vecs; 326 327 bio = bio_alloc(gfp, nr_vecs); 328 if (!bio) { 329 err = -ENOMEM; 330 goto free_bios; 331 } 332 bio->bi_end_io = scsi_bi_endio; 333 } 334 335 if (bio_add_pc_page(q, bio, page, bytes, off) != 336 bytes) { 337 bio_put(bio); 338 err = -EINVAL; 339 goto free_bios; 340 } 341 342 if (bio->bi_vcnt >= nr_vecs) { 343 err = scsi_merge_bio(rq, bio); 344 if (err) { 345 bio_endio(bio, 0); 346 goto free_bios; 347 } 348 bio = NULL; 349 } 350 351 page++; 352 len -= bytes; 353 data_len -=bytes; 354 off = 0; 355 } 356 } 357 358 rq->buffer = rq->data = NULL; 359 rq->data_len = bufflen; 360 return 0; 361 362 free_bios: 363 while ((bio = rq->bio) != NULL) { 364 rq->bio = bio->bi_next; 365 /* 366 * call endio instead of bio_put incase it was bounced 367 */ 368 bio_endio(bio, 0); 369 } 370 371 return err; 372 } 373 374 /** 375 * scsi_execute_async - insert request 376 * @sdev: scsi device 377 * @cmd: scsi command 378 * @cmd_len: length of scsi cdb 379 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE 380 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 381 * @bufflen: len of buffer 382 * @use_sg: if buffer is a scatterlist this is the number of elements 383 * @timeout: request timeout in seconds 384 * @retries: number of times to retry request 385 * @privdata: data passed to done() 386 * @done: callback function when done 387 * @gfp: memory allocation flags 388 */ 389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 390 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 391 int use_sg, int timeout, int retries, void *privdata, 392 void (*done)(void *, char *, int, int), gfp_t gfp) 393 { 394 struct request *req; 395 struct scsi_io_context *sioc; 396 int err = 0; 397 int write = (data_direction == DMA_TO_DEVICE); 398 399 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 400 if (!sioc) 401 return DRIVER_ERROR << 24; 402 403 req = blk_get_request(sdev->request_queue, write, gfp); 404 if (!req) 405 goto free_sense; 406 req->cmd_type = REQ_TYPE_BLOCK_PC; 407 req->cmd_flags |= REQ_QUIET; 408 409 if (use_sg) 410 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 411 else if (bufflen) 412 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 413 414 if (err) 415 goto free_req; 416 417 req->cmd_len = cmd_len; 418 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 419 memcpy(req->cmd, cmd, req->cmd_len); 420 req->sense = sioc->sense; 421 req->sense_len = 0; 422 req->timeout = timeout; 423 req->retries = retries; 424 req->end_io_data = sioc; 425 426 sioc->data = privdata; 427 sioc->done = done; 428 429 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 430 return 0; 431 432 free_req: 433 blk_put_request(req); 434 free_sense: 435 kmem_cache_free(scsi_io_context_cache, sioc); 436 return DRIVER_ERROR << 24; 437 } 438 EXPORT_SYMBOL_GPL(scsi_execute_async); 439 440 /* 441 * Function: scsi_init_cmd_errh() 442 * 443 * Purpose: Initialize cmd fields related to error handling. 444 * 445 * Arguments: cmd - command that is ready to be queued. 446 * 447 * Notes: This function has the job of initializing a number of 448 * fields related to error handling. Typically this will 449 * be called once for each command, as required. 450 */ 451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 452 { 453 cmd->serial_number = 0; 454 scsi_set_resid(cmd, 0); 455 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 456 if (cmd->cmd_len == 0) 457 cmd->cmd_len = scsi_command_size(cmd->cmnd); 458 } 459 460 void scsi_device_unbusy(struct scsi_device *sdev) 461 { 462 struct Scsi_Host *shost = sdev->host; 463 unsigned long flags; 464 465 spin_lock_irqsave(shost->host_lock, flags); 466 shost->host_busy--; 467 if (unlikely(scsi_host_in_recovery(shost) && 468 (shost->host_failed || shost->host_eh_scheduled))) 469 scsi_eh_wakeup(shost); 470 spin_unlock(shost->host_lock); 471 spin_lock(sdev->request_queue->queue_lock); 472 sdev->device_busy--; 473 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 474 } 475 476 /* 477 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 478 * and call blk_run_queue for all the scsi_devices on the target - 479 * including current_sdev first. 480 * 481 * Called with *no* scsi locks held. 482 */ 483 static void scsi_single_lun_run(struct scsi_device *current_sdev) 484 { 485 struct Scsi_Host *shost = current_sdev->host; 486 struct scsi_device *sdev, *tmp; 487 struct scsi_target *starget = scsi_target(current_sdev); 488 unsigned long flags; 489 490 spin_lock_irqsave(shost->host_lock, flags); 491 starget->starget_sdev_user = NULL; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 /* 495 * Call blk_run_queue for all LUNs on the target, starting with 496 * current_sdev. We race with others (to set starget_sdev_user), 497 * but in most cases, we will be first. Ideally, each LU on the 498 * target would get some limited time or requests on the target. 499 */ 500 blk_run_queue(current_sdev->request_queue); 501 502 spin_lock_irqsave(shost->host_lock, flags); 503 if (starget->starget_sdev_user) 504 goto out; 505 list_for_each_entry_safe(sdev, tmp, &starget->devices, 506 same_target_siblings) { 507 if (sdev == current_sdev) 508 continue; 509 if (scsi_device_get(sdev)) 510 continue; 511 512 spin_unlock_irqrestore(shost->host_lock, flags); 513 blk_run_queue(sdev->request_queue); 514 spin_lock_irqsave(shost->host_lock, flags); 515 516 scsi_device_put(sdev); 517 } 518 out: 519 spin_unlock_irqrestore(shost->host_lock, flags); 520 } 521 522 /* 523 * Function: scsi_run_queue() 524 * 525 * Purpose: Select a proper request queue to serve next 526 * 527 * Arguments: q - last request's queue 528 * 529 * Returns: Nothing 530 * 531 * Notes: The previous command was completely finished, start 532 * a new one if possible. 533 */ 534 static void scsi_run_queue(struct request_queue *q) 535 { 536 struct scsi_device *sdev = q->queuedata; 537 struct Scsi_Host *shost = sdev->host; 538 unsigned long flags; 539 540 if (scsi_target(sdev)->single_lun) 541 scsi_single_lun_run(sdev); 542 543 spin_lock_irqsave(shost->host_lock, flags); 544 while (!list_empty(&shost->starved_list) && 545 !shost->host_blocked && !shost->host_self_blocked && 546 !((shost->can_queue > 0) && 547 (shost->host_busy >= shost->can_queue))) { 548 549 int flagset; 550 551 /* 552 * As long as shost is accepting commands and we have 553 * starved queues, call blk_run_queue. scsi_request_fn 554 * drops the queue_lock and can add us back to the 555 * starved_list. 556 * 557 * host_lock protects the starved_list and starved_entry. 558 * scsi_request_fn must get the host_lock before checking 559 * or modifying starved_list or starved_entry. 560 */ 561 sdev = list_entry(shost->starved_list.next, 562 struct scsi_device, starved_entry); 563 list_del_init(&sdev->starved_entry); 564 spin_unlock(shost->host_lock); 565 566 spin_lock(sdev->request_queue->queue_lock); 567 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 568 !test_bit(QUEUE_FLAG_REENTER, 569 &sdev->request_queue->queue_flags); 570 if (flagset) 571 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 572 __blk_run_queue(sdev->request_queue); 573 if (flagset) 574 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 575 spin_unlock(sdev->request_queue->queue_lock); 576 577 spin_lock(shost->host_lock); 578 if (unlikely(!list_empty(&sdev->starved_entry))) 579 /* 580 * sdev lost a race, and was put back on the 581 * starved list. This is unlikely but without this 582 * in theory we could loop forever. 583 */ 584 break; 585 } 586 spin_unlock_irqrestore(shost->host_lock, flags); 587 588 blk_run_queue(q); 589 } 590 591 /* 592 * Function: scsi_requeue_command() 593 * 594 * Purpose: Handle post-processing of completed commands. 595 * 596 * Arguments: q - queue to operate on 597 * cmd - command that may need to be requeued. 598 * 599 * Returns: Nothing 600 * 601 * Notes: After command completion, there may be blocks left 602 * over which weren't finished by the previous command 603 * this can be for a number of reasons - the main one is 604 * I/O errors in the middle of the request, in which case 605 * we need to request the blocks that come after the bad 606 * sector. 607 * Notes: Upon return, cmd is a stale pointer. 608 */ 609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 610 { 611 struct request *req = cmd->request; 612 unsigned long flags; 613 614 scsi_unprep_request(req); 615 spin_lock_irqsave(q->queue_lock, flags); 616 blk_requeue_request(q, req); 617 spin_unlock_irqrestore(q->queue_lock, flags); 618 619 scsi_run_queue(q); 620 } 621 622 void scsi_next_command(struct scsi_cmnd *cmd) 623 { 624 struct scsi_device *sdev = cmd->device; 625 struct request_queue *q = sdev->request_queue; 626 627 /* need to hold a reference on the device before we let go of the cmd */ 628 get_device(&sdev->sdev_gendev); 629 630 scsi_put_command(cmd); 631 scsi_run_queue(q); 632 633 /* ok to remove device now */ 634 put_device(&sdev->sdev_gendev); 635 } 636 637 void scsi_run_host_queues(struct Scsi_Host *shost) 638 { 639 struct scsi_device *sdev; 640 641 shost_for_each_device(sdev, shost) 642 scsi_run_queue(sdev->request_queue); 643 } 644 645 /* 646 * Function: scsi_end_request() 647 * 648 * Purpose: Post-processing of completed commands (usually invoked at end 649 * of upper level post-processing and scsi_io_completion). 650 * 651 * Arguments: cmd - command that is complete. 652 * error - 0 if I/O indicates success, < 0 for I/O error. 653 * bytes - number of bytes of completed I/O 654 * requeue - indicates whether we should requeue leftovers. 655 * 656 * Lock status: Assumed that lock is not held upon entry. 657 * 658 * Returns: cmd if requeue required, NULL otherwise. 659 * 660 * Notes: This is called for block device requests in order to 661 * mark some number of sectors as complete. 662 * 663 * We are guaranteeing that the request queue will be goosed 664 * at some point during this call. 665 * Notes: If cmd was requeued, upon return it will be a stale pointer. 666 */ 667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 668 int bytes, int requeue) 669 { 670 struct request_queue *q = cmd->device->request_queue; 671 struct request *req = cmd->request; 672 673 /* 674 * If there are blocks left over at the end, set up the command 675 * to queue the remainder of them. 676 */ 677 if (blk_end_request(req, error, bytes)) { 678 int leftover = (req->hard_nr_sectors << 9); 679 680 if (blk_pc_request(req)) 681 leftover = req->data_len; 682 683 /* kill remainder if no retrys */ 684 if (error && blk_noretry_request(req)) 685 blk_end_request(req, error, leftover); 686 else { 687 if (requeue) { 688 /* 689 * Bleah. Leftovers again. Stick the 690 * leftovers in the front of the 691 * queue, and goose the queue again. 692 */ 693 scsi_requeue_command(q, cmd); 694 cmd = NULL; 695 } 696 return cmd; 697 } 698 } 699 700 /* 701 * This will goose the queue request function at the end, so we don't 702 * need to worry about launching another command. 703 */ 704 scsi_next_command(cmd); 705 return NULL; 706 } 707 708 static inline unsigned int scsi_sgtable_index(unsigned short nents) 709 { 710 unsigned int index; 711 712 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 713 714 if (nents <= 8) 715 index = 0; 716 else 717 index = get_count_order(nents) - 3; 718 719 return index; 720 } 721 722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 723 { 724 struct scsi_host_sg_pool *sgp; 725 726 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 727 mempool_free(sgl, sgp->pool); 728 } 729 730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 731 { 732 struct scsi_host_sg_pool *sgp; 733 734 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 735 return mempool_alloc(sgp->pool, gfp_mask); 736 } 737 738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 739 gfp_t gfp_mask) 740 { 741 int ret; 742 743 BUG_ON(!nents); 744 745 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 746 gfp_mask, scsi_sg_alloc); 747 if (unlikely(ret)) 748 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 749 scsi_sg_free); 750 751 return ret; 752 } 753 754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 755 { 756 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 757 } 758 759 /* 760 * Function: scsi_release_buffers() 761 * 762 * Purpose: Completion processing for block device I/O requests. 763 * 764 * Arguments: cmd - command that we are bailing. 765 * 766 * Lock status: Assumed that no lock is held upon entry. 767 * 768 * Returns: Nothing 769 * 770 * Notes: In the event that an upper level driver rejects a 771 * command, we must release resources allocated during 772 * the __init_io() function. Primarily this would involve 773 * the scatter-gather table, and potentially any bounce 774 * buffers. 775 */ 776 void scsi_release_buffers(struct scsi_cmnd *cmd) 777 { 778 if (cmd->sdb.table.nents) 779 scsi_free_sgtable(&cmd->sdb); 780 781 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 782 783 if (scsi_bidi_cmnd(cmd)) { 784 struct scsi_data_buffer *bidi_sdb = 785 cmd->request->next_rq->special; 786 scsi_free_sgtable(bidi_sdb); 787 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 788 cmd->request->next_rq->special = NULL; 789 } 790 791 if (scsi_prot_sg_count(cmd)) 792 scsi_free_sgtable(cmd->prot_sdb); 793 } 794 EXPORT_SYMBOL(scsi_release_buffers); 795 796 /* 797 * Bidi commands Must be complete as a whole, both sides at once. 798 * If part of the bytes were written and lld returned 799 * scsi_in()->resid and/or scsi_out()->resid this information will be left 800 * in req->data_len and req->next_rq->data_len. The upper-layer driver can 801 * decide what to do with this information. 802 */ 803 static void scsi_end_bidi_request(struct scsi_cmnd *cmd) 804 { 805 struct request *req = cmd->request; 806 unsigned int dlen = req->data_len; 807 unsigned int next_dlen = req->next_rq->data_len; 808 809 req->data_len = scsi_out(cmd)->resid; 810 req->next_rq->data_len = scsi_in(cmd)->resid; 811 812 /* The req and req->next_rq have not been completed */ 813 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen)); 814 815 scsi_release_buffers(cmd); 816 817 /* 818 * This will goose the queue request function at the end, so we don't 819 * need to worry about launching another command. 820 */ 821 scsi_next_command(cmd); 822 } 823 824 /* 825 * Function: scsi_io_completion() 826 * 827 * Purpose: Completion processing for block device I/O requests. 828 * 829 * Arguments: cmd - command that is finished. 830 * 831 * Lock status: Assumed that no lock is held upon entry. 832 * 833 * Returns: Nothing 834 * 835 * Notes: This function is matched in terms of capabilities to 836 * the function that created the scatter-gather list. 837 * In other words, if there are no bounce buffers 838 * (the normal case for most drivers), we don't need 839 * the logic to deal with cleaning up afterwards. 840 * 841 * We must do one of several things here: 842 * 843 * a) Call scsi_end_request. This will finish off the 844 * specified number of sectors. If we are done, the 845 * command block will be released, and the queue 846 * function will be goosed. If we are not done, then 847 * scsi_end_request will directly goose the queue. 848 * 849 * b) We can just use scsi_requeue_command() here. This would 850 * be used if we just wanted to retry, for example. 851 */ 852 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 853 { 854 int result = cmd->result; 855 int this_count; 856 struct request_queue *q = cmd->device->request_queue; 857 struct request *req = cmd->request; 858 int error = 0; 859 struct scsi_sense_hdr sshdr; 860 int sense_valid = 0; 861 int sense_deferred = 0; 862 863 if (result) { 864 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 865 if (sense_valid) 866 sense_deferred = scsi_sense_is_deferred(&sshdr); 867 } 868 869 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 870 req->errors = result; 871 if (result) { 872 if (sense_valid && req->sense) { 873 /* 874 * SG_IO wants current and deferred errors 875 */ 876 int len = 8 + cmd->sense_buffer[7]; 877 878 if (len > SCSI_SENSE_BUFFERSIZE) 879 len = SCSI_SENSE_BUFFERSIZE; 880 memcpy(req->sense, cmd->sense_buffer, len); 881 req->sense_len = len; 882 } 883 if (!sense_deferred) 884 error = -EIO; 885 } 886 if (scsi_bidi_cmnd(cmd)) { 887 /* will also release_buffers */ 888 scsi_end_bidi_request(cmd); 889 return; 890 } 891 req->data_len = scsi_get_resid(cmd); 892 } 893 894 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 895 scsi_release_buffers(cmd); 896 897 /* 898 * Next deal with any sectors which we were able to correctly 899 * handle. 900 */ 901 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 902 "%d bytes done.\n", 903 req->nr_sectors, good_bytes)); 904 905 /* A number of bytes were successfully read. If there 906 * are leftovers and there is some kind of error 907 * (result != 0), retry the rest. 908 */ 909 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 910 return; 911 this_count = blk_rq_bytes(req); 912 913 /* good_bytes = 0, or (inclusive) there were leftovers and 914 * result = 0, so scsi_end_request couldn't retry. 915 */ 916 if (sense_valid && !sense_deferred) { 917 switch (sshdr.sense_key) { 918 case UNIT_ATTENTION: 919 if (cmd->device->removable) { 920 /* Detected disc change. Set a bit 921 * and quietly refuse further access. 922 */ 923 cmd->device->changed = 1; 924 scsi_end_request(cmd, -EIO, this_count, 1); 925 return; 926 } else { 927 /* Must have been a power glitch, or a 928 * bus reset. Could not have been a 929 * media change, so we just retry the 930 * request and see what happens. 931 */ 932 scsi_requeue_command(q, cmd); 933 return; 934 } 935 break; 936 case ILLEGAL_REQUEST: 937 /* If we had an ILLEGAL REQUEST returned, then 938 * we may have performed an unsupported 939 * command. The only thing this should be 940 * would be a ten byte read where only a six 941 * byte read was supported. Also, on a system 942 * where READ CAPACITY failed, we may have 943 * read past the end of the disk. 944 */ 945 if ((cmd->device->use_10_for_rw && 946 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 947 (cmd->cmnd[0] == READ_10 || 948 cmd->cmnd[0] == WRITE_10)) { 949 cmd->device->use_10_for_rw = 0; 950 /* This will cause a retry with a 951 * 6-byte command. 952 */ 953 scsi_requeue_command(q, cmd); 954 } else if (sshdr.asc == 0x10) /* DIX */ 955 scsi_end_request(cmd, -EIO, this_count, 0); 956 else 957 scsi_end_request(cmd, -EIO, this_count, 1); 958 return; 959 case ABORTED_COMMAND: 960 if (sshdr.asc == 0x10) { /* DIF */ 961 scsi_end_request(cmd, -EIO, this_count, 0); 962 return; 963 } 964 break; 965 case NOT_READY: 966 /* If the device is in the process of becoming 967 * ready, or has a temporary blockage, retry. 968 */ 969 if (sshdr.asc == 0x04) { 970 switch (sshdr.ascq) { 971 case 0x01: /* becoming ready */ 972 case 0x04: /* format in progress */ 973 case 0x05: /* rebuild in progress */ 974 case 0x06: /* recalculation in progress */ 975 case 0x07: /* operation in progress */ 976 case 0x08: /* Long write in progress */ 977 case 0x09: /* self test in progress */ 978 scsi_requeue_command(q, cmd); 979 return; 980 default: 981 break; 982 } 983 } 984 if (!(req->cmd_flags & REQ_QUIET)) 985 scsi_cmd_print_sense_hdr(cmd, 986 "Device not ready", 987 &sshdr); 988 989 scsi_end_request(cmd, -EIO, this_count, 1); 990 return; 991 case VOLUME_OVERFLOW: 992 if (!(req->cmd_flags & REQ_QUIET)) { 993 scmd_printk(KERN_INFO, cmd, 994 "Volume overflow, CDB: "); 995 __scsi_print_command(cmd->cmnd); 996 scsi_print_sense("", cmd); 997 } 998 /* See SSC3rXX or current. */ 999 scsi_end_request(cmd, -EIO, this_count, 1); 1000 return; 1001 default: 1002 break; 1003 } 1004 } 1005 if (host_byte(result) == DID_RESET) { 1006 /* Third party bus reset or reset for error recovery 1007 * reasons. Just retry the request and see what 1008 * happens. 1009 */ 1010 scsi_requeue_command(q, cmd); 1011 return; 1012 } 1013 if (result) { 1014 if (!(req->cmd_flags & REQ_QUIET)) { 1015 scsi_print_result(cmd); 1016 if (driver_byte(result) & DRIVER_SENSE) 1017 scsi_print_sense("", cmd); 1018 } 1019 } 1020 scsi_end_request(cmd, -EIO, this_count, !result); 1021 } 1022 1023 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1024 gfp_t gfp_mask) 1025 { 1026 int count; 1027 1028 /* 1029 * If sg table allocation fails, requeue request later. 1030 */ 1031 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1032 gfp_mask))) { 1033 return BLKPREP_DEFER; 1034 } 1035 1036 req->buffer = NULL; 1037 1038 /* 1039 * Next, walk the list, and fill in the addresses and sizes of 1040 * each segment. 1041 */ 1042 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1043 BUG_ON(count > sdb->table.nents); 1044 sdb->table.nents = count; 1045 if (blk_pc_request(req)) 1046 sdb->length = req->data_len; 1047 else 1048 sdb->length = req->nr_sectors << 9; 1049 return BLKPREP_OK; 1050 } 1051 1052 /* 1053 * Function: scsi_init_io() 1054 * 1055 * Purpose: SCSI I/O initialize function. 1056 * 1057 * Arguments: cmd - Command descriptor we wish to initialize 1058 * 1059 * Returns: 0 on success 1060 * BLKPREP_DEFER if the failure is retryable 1061 * BLKPREP_KILL if the failure is fatal 1062 */ 1063 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1064 { 1065 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 1066 if (error) 1067 goto err_exit; 1068 1069 if (blk_bidi_rq(cmd->request)) { 1070 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1071 scsi_sdb_cache, GFP_ATOMIC); 1072 if (!bidi_sdb) { 1073 error = BLKPREP_DEFER; 1074 goto err_exit; 1075 } 1076 1077 cmd->request->next_rq->special = bidi_sdb; 1078 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 1079 GFP_ATOMIC); 1080 if (error) 1081 goto err_exit; 1082 } 1083 1084 if (blk_integrity_rq(cmd->request)) { 1085 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1086 int ivecs, count; 1087 1088 BUG_ON(prot_sdb == NULL); 1089 ivecs = blk_rq_count_integrity_sg(cmd->request); 1090 1091 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1092 error = BLKPREP_DEFER; 1093 goto err_exit; 1094 } 1095 1096 count = blk_rq_map_integrity_sg(cmd->request, 1097 prot_sdb->table.sgl); 1098 BUG_ON(unlikely(count > ivecs)); 1099 1100 cmd->prot_sdb = prot_sdb; 1101 cmd->prot_sdb->table.nents = count; 1102 } 1103 1104 return BLKPREP_OK ; 1105 1106 err_exit: 1107 scsi_release_buffers(cmd); 1108 if (error == BLKPREP_KILL) 1109 scsi_put_command(cmd); 1110 else /* BLKPREP_DEFER */ 1111 scsi_unprep_request(cmd->request); 1112 1113 return error; 1114 } 1115 EXPORT_SYMBOL(scsi_init_io); 1116 1117 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1118 struct request *req) 1119 { 1120 struct scsi_cmnd *cmd; 1121 1122 if (!req->special) { 1123 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1124 if (unlikely(!cmd)) 1125 return NULL; 1126 req->special = cmd; 1127 } else { 1128 cmd = req->special; 1129 } 1130 1131 /* pull a tag out of the request if we have one */ 1132 cmd->tag = req->tag; 1133 cmd->request = req; 1134 1135 cmd->cmnd = req->cmd; 1136 1137 return cmd; 1138 } 1139 1140 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1141 { 1142 struct scsi_cmnd *cmd; 1143 int ret = scsi_prep_state_check(sdev, req); 1144 1145 if (ret != BLKPREP_OK) 1146 return ret; 1147 1148 cmd = scsi_get_cmd_from_req(sdev, req); 1149 if (unlikely(!cmd)) 1150 return BLKPREP_DEFER; 1151 1152 /* 1153 * BLOCK_PC requests may transfer data, in which case they must 1154 * a bio attached to them. Or they might contain a SCSI command 1155 * that does not transfer data, in which case they may optionally 1156 * submit a request without an attached bio. 1157 */ 1158 if (req->bio) { 1159 int ret; 1160 1161 BUG_ON(!req->nr_phys_segments); 1162 1163 ret = scsi_init_io(cmd, GFP_ATOMIC); 1164 if (unlikely(ret)) 1165 return ret; 1166 } else { 1167 BUG_ON(req->data_len); 1168 BUG_ON(req->data); 1169 1170 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1171 req->buffer = NULL; 1172 } 1173 1174 cmd->cmd_len = req->cmd_len; 1175 if (!req->data_len) 1176 cmd->sc_data_direction = DMA_NONE; 1177 else if (rq_data_dir(req) == WRITE) 1178 cmd->sc_data_direction = DMA_TO_DEVICE; 1179 else 1180 cmd->sc_data_direction = DMA_FROM_DEVICE; 1181 1182 cmd->transfersize = req->data_len; 1183 cmd->allowed = req->retries; 1184 return BLKPREP_OK; 1185 } 1186 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1187 1188 /* 1189 * Setup a REQ_TYPE_FS command. These are simple read/write request 1190 * from filesystems that still need to be translated to SCSI CDBs from 1191 * the ULD. 1192 */ 1193 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1194 { 1195 struct scsi_cmnd *cmd; 1196 int ret = scsi_prep_state_check(sdev, req); 1197 1198 if (ret != BLKPREP_OK) 1199 return ret; 1200 1201 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1202 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1203 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1204 if (ret != BLKPREP_OK) 1205 return ret; 1206 } 1207 1208 /* 1209 * Filesystem requests must transfer data. 1210 */ 1211 BUG_ON(!req->nr_phys_segments); 1212 1213 cmd = scsi_get_cmd_from_req(sdev, req); 1214 if (unlikely(!cmd)) 1215 return BLKPREP_DEFER; 1216 1217 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1218 return scsi_init_io(cmd, GFP_ATOMIC); 1219 } 1220 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1221 1222 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1223 { 1224 int ret = BLKPREP_OK; 1225 1226 /* 1227 * If the device is not in running state we will reject some 1228 * or all commands. 1229 */ 1230 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1231 switch (sdev->sdev_state) { 1232 case SDEV_OFFLINE: 1233 /* 1234 * If the device is offline we refuse to process any 1235 * commands. The device must be brought online 1236 * before trying any recovery commands. 1237 */ 1238 sdev_printk(KERN_ERR, sdev, 1239 "rejecting I/O to offline device\n"); 1240 ret = BLKPREP_KILL; 1241 break; 1242 case SDEV_DEL: 1243 /* 1244 * If the device is fully deleted, we refuse to 1245 * process any commands as well. 1246 */ 1247 sdev_printk(KERN_ERR, sdev, 1248 "rejecting I/O to dead device\n"); 1249 ret = BLKPREP_KILL; 1250 break; 1251 case SDEV_QUIESCE: 1252 case SDEV_BLOCK: 1253 case SDEV_CREATED_BLOCK: 1254 /* 1255 * If the devices is blocked we defer normal commands. 1256 */ 1257 if (!(req->cmd_flags & REQ_PREEMPT)) 1258 ret = BLKPREP_DEFER; 1259 break; 1260 default: 1261 /* 1262 * For any other not fully online state we only allow 1263 * special commands. In particular any user initiated 1264 * command is not allowed. 1265 */ 1266 if (!(req->cmd_flags & REQ_PREEMPT)) 1267 ret = BLKPREP_KILL; 1268 break; 1269 } 1270 } 1271 return ret; 1272 } 1273 EXPORT_SYMBOL(scsi_prep_state_check); 1274 1275 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1276 { 1277 struct scsi_device *sdev = q->queuedata; 1278 1279 switch (ret) { 1280 case BLKPREP_KILL: 1281 req->errors = DID_NO_CONNECT << 16; 1282 /* release the command and kill it */ 1283 if (req->special) { 1284 struct scsi_cmnd *cmd = req->special; 1285 scsi_release_buffers(cmd); 1286 scsi_put_command(cmd); 1287 req->special = NULL; 1288 } 1289 break; 1290 case BLKPREP_DEFER: 1291 /* 1292 * If we defer, the elv_next_request() returns NULL, but the 1293 * queue must be restarted, so we plug here if no returning 1294 * command will automatically do that. 1295 */ 1296 if (sdev->device_busy == 0) 1297 blk_plug_device(q); 1298 break; 1299 default: 1300 req->cmd_flags |= REQ_DONTPREP; 1301 } 1302 1303 return ret; 1304 } 1305 EXPORT_SYMBOL(scsi_prep_return); 1306 1307 int scsi_prep_fn(struct request_queue *q, struct request *req) 1308 { 1309 struct scsi_device *sdev = q->queuedata; 1310 int ret = BLKPREP_KILL; 1311 1312 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1313 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1314 return scsi_prep_return(q, req, ret); 1315 } 1316 1317 /* 1318 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1319 * return 0. 1320 * 1321 * Called with the queue_lock held. 1322 */ 1323 static inline int scsi_dev_queue_ready(struct request_queue *q, 1324 struct scsi_device *sdev) 1325 { 1326 if (sdev->device_busy >= sdev->queue_depth) 1327 return 0; 1328 if (sdev->device_busy == 0 && sdev->device_blocked) { 1329 /* 1330 * unblock after device_blocked iterates to zero 1331 */ 1332 if (--sdev->device_blocked == 0) { 1333 SCSI_LOG_MLQUEUE(3, 1334 sdev_printk(KERN_INFO, sdev, 1335 "unblocking device at zero depth\n")); 1336 } else { 1337 blk_plug_device(q); 1338 return 0; 1339 } 1340 } 1341 if (sdev->device_blocked) 1342 return 0; 1343 1344 return 1; 1345 } 1346 1347 /* 1348 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1349 * return 0. We must end up running the queue again whenever 0 is 1350 * returned, else IO can hang. 1351 * 1352 * Called with host_lock held. 1353 */ 1354 static inline int scsi_host_queue_ready(struct request_queue *q, 1355 struct Scsi_Host *shost, 1356 struct scsi_device *sdev) 1357 { 1358 if (scsi_host_in_recovery(shost)) 1359 return 0; 1360 if (shost->host_busy == 0 && shost->host_blocked) { 1361 /* 1362 * unblock after host_blocked iterates to zero 1363 */ 1364 if (--shost->host_blocked == 0) { 1365 SCSI_LOG_MLQUEUE(3, 1366 printk("scsi%d unblocking host at zero depth\n", 1367 shost->host_no)); 1368 } else { 1369 return 0; 1370 } 1371 } 1372 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 1373 shost->host_blocked || shost->host_self_blocked) { 1374 if (list_empty(&sdev->starved_entry)) 1375 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1376 return 0; 1377 } 1378 1379 /* We're OK to process the command, so we can't be starved */ 1380 if (!list_empty(&sdev->starved_entry)) 1381 list_del_init(&sdev->starved_entry); 1382 1383 return 1; 1384 } 1385 1386 /* 1387 * Kill a request for a dead device 1388 */ 1389 static void scsi_kill_request(struct request *req, struct request_queue *q) 1390 { 1391 struct scsi_cmnd *cmd = req->special; 1392 struct scsi_device *sdev = cmd->device; 1393 struct Scsi_Host *shost = sdev->host; 1394 1395 blkdev_dequeue_request(req); 1396 1397 if (unlikely(cmd == NULL)) { 1398 printk(KERN_CRIT "impossible request in %s.\n", 1399 __func__); 1400 BUG(); 1401 } 1402 1403 scsi_init_cmd_errh(cmd); 1404 cmd->result = DID_NO_CONNECT << 16; 1405 atomic_inc(&cmd->device->iorequest_cnt); 1406 1407 /* 1408 * SCSI request completion path will do scsi_device_unbusy(), 1409 * bump busy counts. To bump the counters, we need to dance 1410 * with the locks as normal issue path does. 1411 */ 1412 sdev->device_busy++; 1413 spin_unlock(sdev->request_queue->queue_lock); 1414 spin_lock(shost->host_lock); 1415 shost->host_busy++; 1416 spin_unlock(shost->host_lock); 1417 spin_lock(sdev->request_queue->queue_lock); 1418 1419 blk_complete_request(req); 1420 } 1421 1422 static void scsi_softirq_done(struct request *rq) 1423 { 1424 struct scsi_cmnd *cmd = rq->special; 1425 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1426 int disposition; 1427 1428 INIT_LIST_HEAD(&cmd->eh_entry); 1429 1430 /* 1431 * Set the serial numbers back to zero 1432 */ 1433 cmd->serial_number = 0; 1434 1435 atomic_inc(&cmd->device->iodone_cnt); 1436 if (cmd->result) 1437 atomic_inc(&cmd->device->ioerr_cnt); 1438 1439 disposition = scsi_decide_disposition(cmd); 1440 if (disposition != SUCCESS && 1441 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1442 sdev_printk(KERN_ERR, cmd->device, 1443 "timing out command, waited %lus\n", 1444 wait_for/HZ); 1445 disposition = SUCCESS; 1446 } 1447 1448 scsi_log_completion(cmd, disposition); 1449 1450 switch (disposition) { 1451 case SUCCESS: 1452 scsi_finish_command(cmd); 1453 break; 1454 case NEEDS_RETRY: 1455 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1456 break; 1457 case ADD_TO_MLQUEUE: 1458 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1459 break; 1460 default: 1461 if (!scsi_eh_scmd_add(cmd, 0)) 1462 scsi_finish_command(cmd); 1463 } 1464 } 1465 1466 /* 1467 * Function: scsi_request_fn() 1468 * 1469 * Purpose: Main strategy routine for SCSI. 1470 * 1471 * Arguments: q - Pointer to actual queue. 1472 * 1473 * Returns: Nothing 1474 * 1475 * Lock status: IO request lock assumed to be held when called. 1476 */ 1477 static void scsi_request_fn(struct request_queue *q) 1478 { 1479 struct scsi_device *sdev = q->queuedata; 1480 struct Scsi_Host *shost; 1481 struct scsi_cmnd *cmd; 1482 struct request *req; 1483 1484 if (!sdev) { 1485 printk("scsi: killing requests for dead queue\n"); 1486 while ((req = elv_next_request(q)) != NULL) 1487 scsi_kill_request(req, q); 1488 return; 1489 } 1490 1491 if(!get_device(&sdev->sdev_gendev)) 1492 /* We must be tearing the block queue down already */ 1493 return; 1494 1495 /* 1496 * To start with, we keep looping until the queue is empty, or until 1497 * the host is no longer able to accept any more requests. 1498 */ 1499 shost = sdev->host; 1500 while (!blk_queue_plugged(q)) { 1501 int rtn; 1502 /* 1503 * get next queueable request. We do this early to make sure 1504 * that the request is fully prepared even if we cannot 1505 * accept it. 1506 */ 1507 req = elv_next_request(q); 1508 if (!req || !scsi_dev_queue_ready(q, sdev)) 1509 break; 1510 1511 if (unlikely(!scsi_device_online(sdev))) { 1512 sdev_printk(KERN_ERR, sdev, 1513 "rejecting I/O to offline device\n"); 1514 scsi_kill_request(req, q); 1515 continue; 1516 } 1517 1518 1519 /* 1520 * Remove the request from the request list. 1521 */ 1522 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1523 blkdev_dequeue_request(req); 1524 sdev->device_busy++; 1525 1526 spin_unlock(q->queue_lock); 1527 cmd = req->special; 1528 if (unlikely(cmd == NULL)) { 1529 printk(KERN_CRIT "impossible request in %s.\n" 1530 "please mail a stack trace to " 1531 "linux-scsi@vger.kernel.org\n", 1532 __func__); 1533 blk_dump_rq_flags(req, "foo"); 1534 BUG(); 1535 } 1536 spin_lock(shost->host_lock); 1537 1538 /* 1539 * We hit this when the driver is using a host wide 1540 * tag map. For device level tag maps the queue_depth check 1541 * in the device ready fn would prevent us from trying 1542 * to allocate a tag. Since the map is a shared host resource 1543 * we add the dev to the starved list so it eventually gets 1544 * a run when a tag is freed. 1545 */ 1546 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1547 if (list_empty(&sdev->starved_entry)) 1548 list_add_tail(&sdev->starved_entry, 1549 &shost->starved_list); 1550 goto not_ready; 1551 } 1552 1553 if (!scsi_host_queue_ready(q, shost, sdev)) 1554 goto not_ready; 1555 if (scsi_target(sdev)->single_lun) { 1556 if (scsi_target(sdev)->starget_sdev_user && 1557 scsi_target(sdev)->starget_sdev_user != sdev) 1558 goto not_ready; 1559 scsi_target(sdev)->starget_sdev_user = sdev; 1560 } 1561 shost->host_busy++; 1562 1563 /* 1564 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1565 * take the lock again. 1566 */ 1567 spin_unlock_irq(shost->host_lock); 1568 1569 /* 1570 * Finally, initialize any error handling parameters, and set up 1571 * the timers for timeouts. 1572 */ 1573 scsi_init_cmd_errh(cmd); 1574 1575 /* 1576 * Dispatch the command to the low-level driver. 1577 */ 1578 rtn = scsi_dispatch_cmd(cmd); 1579 spin_lock_irq(q->queue_lock); 1580 if(rtn) { 1581 /* we're refusing the command; because of 1582 * the way locks get dropped, we need to 1583 * check here if plugging is required */ 1584 if(sdev->device_busy == 0) 1585 blk_plug_device(q); 1586 1587 break; 1588 } 1589 } 1590 1591 goto out; 1592 1593 not_ready: 1594 spin_unlock_irq(shost->host_lock); 1595 1596 /* 1597 * lock q, handle tag, requeue req, and decrement device_busy. We 1598 * must return with queue_lock held. 1599 * 1600 * Decrementing device_busy without checking it is OK, as all such 1601 * cases (host limits or settings) should run the queue at some 1602 * later time. 1603 */ 1604 spin_lock_irq(q->queue_lock); 1605 blk_requeue_request(q, req); 1606 sdev->device_busy--; 1607 if(sdev->device_busy == 0) 1608 blk_plug_device(q); 1609 out: 1610 /* must be careful here...if we trigger the ->remove() function 1611 * we cannot be holding the q lock */ 1612 spin_unlock_irq(q->queue_lock); 1613 put_device(&sdev->sdev_gendev); 1614 spin_lock_irq(q->queue_lock); 1615 } 1616 1617 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1618 { 1619 struct device *host_dev; 1620 u64 bounce_limit = 0xffffffff; 1621 1622 if (shost->unchecked_isa_dma) 1623 return BLK_BOUNCE_ISA; 1624 /* 1625 * Platforms with virtual-DMA translation 1626 * hardware have no practical limit. 1627 */ 1628 if (!PCI_DMA_BUS_IS_PHYS) 1629 return BLK_BOUNCE_ANY; 1630 1631 host_dev = scsi_get_device(shost); 1632 if (host_dev && host_dev->dma_mask) 1633 bounce_limit = *host_dev->dma_mask; 1634 1635 return bounce_limit; 1636 } 1637 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1638 1639 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1640 request_fn_proc *request_fn) 1641 { 1642 struct request_queue *q; 1643 struct device *dev = shost->shost_gendev.parent; 1644 1645 q = blk_init_queue(request_fn, NULL); 1646 if (!q) 1647 return NULL; 1648 1649 /* 1650 * this limit is imposed by hardware restrictions 1651 */ 1652 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1653 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1654 1655 blk_queue_max_sectors(q, shost->max_sectors); 1656 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1657 blk_queue_segment_boundary(q, shost->dma_boundary); 1658 dma_set_seg_boundary(dev, shost->dma_boundary); 1659 1660 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1661 1662 /* New queue, no concurrency on queue_flags */ 1663 if (!shost->use_clustering) 1664 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1665 1666 /* 1667 * set a reasonable default alignment on word boundaries: the 1668 * host and device may alter it using 1669 * blk_queue_update_dma_alignment() later. 1670 */ 1671 blk_queue_dma_alignment(q, 0x03); 1672 1673 return q; 1674 } 1675 EXPORT_SYMBOL(__scsi_alloc_queue); 1676 1677 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1678 { 1679 struct request_queue *q; 1680 1681 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1682 if (!q) 1683 return NULL; 1684 1685 blk_queue_prep_rq(q, scsi_prep_fn); 1686 blk_queue_softirq_done(q, scsi_softirq_done); 1687 blk_queue_rq_timed_out(q, scsi_times_out); 1688 return q; 1689 } 1690 1691 void scsi_free_queue(struct request_queue *q) 1692 { 1693 blk_cleanup_queue(q); 1694 } 1695 1696 /* 1697 * Function: scsi_block_requests() 1698 * 1699 * Purpose: Utility function used by low-level drivers to prevent further 1700 * commands from being queued to the device. 1701 * 1702 * Arguments: shost - Host in question 1703 * 1704 * Returns: Nothing 1705 * 1706 * Lock status: No locks are assumed held. 1707 * 1708 * Notes: There is no timer nor any other means by which the requests 1709 * get unblocked other than the low-level driver calling 1710 * scsi_unblock_requests(). 1711 */ 1712 void scsi_block_requests(struct Scsi_Host *shost) 1713 { 1714 shost->host_self_blocked = 1; 1715 } 1716 EXPORT_SYMBOL(scsi_block_requests); 1717 1718 /* 1719 * Function: scsi_unblock_requests() 1720 * 1721 * Purpose: Utility function used by low-level drivers to allow further 1722 * commands from being queued to the device. 1723 * 1724 * Arguments: shost - Host in question 1725 * 1726 * Returns: Nothing 1727 * 1728 * Lock status: No locks are assumed held. 1729 * 1730 * Notes: There is no timer nor any other means by which the requests 1731 * get unblocked other than the low-level driver calling 1732 * scsi_unblock_requests(). 1733 * 1734 * This is done as an API function so that changes to the 1735 * internals of the scsi mid-layer won't require wholesale 1736 * changes to drivers that use this feature. 1737 */ 1738 void scsi_unblock_requests(struct Scsi_Host *shost) 1739 { 1740 shost->host_self_blocked = 0; 1741 scsi_run_host_queues(shost); 1742 } 1743 EXPORT_SYMBOL(scsi_unblock_requests); 1744 1745 int __init scsi_init_queue(void) 1746 { 1747 int i; 1748 1749 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1750 sizeof(struct scsi_io_context), 1751 0, 0, NULL); 1752 if (!scsi_io_context_cache) { 1753 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1754 return -ENOMEM; 1755 } 1756 1757 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1758 sizeof(struct scsi_data_buffer), 1759 0, 0, NULL); 1760 if (!scsi_sdb_cache) { 1761 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1762 goto cleanup_io_context; 1763 } 1764 1765 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1766 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1767 int size = sgp->size * sizeof(struct scatterlist); 1768 1769 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1770 SLAB_HWCACHE_ALIGN, NULL); 1771 if (!sgp->slab) { 1772 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1773 sgp->name); 1774 goto cleanup_sdb; 1775 } 1776 1777 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1778 sgp->slab); 1779 if (!sgp->pool) { 1780 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1781 sgp->name); 1782 goto cleanup_sdb; 1783 } 1784 } 1785 1786 return 0; 1787 1788 cleanup_sdb: 1789 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1790 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1791 if (sgp->pool) 1792 mempool_destroy(sgp->pool); 1793 if (sgp->slab) 1794 kmem_cache_destroy(sgp->slab); 1795 } 1796 kmem_cache_destroy(scsi_sdb_cache); 1797 cleanup_io_context: 1798 kmem_cache_destroy(scsi_io_context_cache); 1799 1800 return -ENOMEM; 1801 } 1802 1803 void scsi_exit_queue(void) 1804 { 1805 int i; 1806 1807 kmem_cache_destroy(scsi_io_context_cache); 1808 kmem_cache_destroy(scsi_sdb_cache); 1809 1810 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1811 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1812 mempool_destroy(sgp->pool); 1813 kmem_cache_destroy(sgp->slab); 1814 } 1815 } 1816 1817 /** 1818 * scsi_mode_select - issue a mode select 1819 * @sdev: SCSI device to be queried 1820 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1821 * @sp: Save page bit (0 == don't save, 1 == save) 1822 * @modepage: mode page being requested 1823 * @buffer: request buffer (may not be smaller than eight bytes) 1824 * @len: length of request buffer. 1825 * @timeout: command timeout 1826 * @retries: number of retries before failing 1827 * @data: returns a structure abstracting the mode header data 1828 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1829 * must be SCSI_SENSE_BUFFERSIZE big. 1830 * 1831 * Returns zero if successful; negative error number or scsi 1832 * status on error 1833 * 1834 */ 1835 int 1836 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1837 unsigned char *buffer, int len, int timeout, int retries, 1838 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1839 { 1840 unsigned char cmd[10]; 1841 unsigned char *real_buffer; 1842 int ret; 1843 1844 memset(cmd, 0, sizeof(cmd)); 1845 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1846 1847 if (sdev->use_10_for_ms) { 1848 if (len > 65535) 1849 return -EINVAL; 1850 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1851 if (!real_buffer) 1852 return -ENOMEM; 1853 memcpy(real_buffer + 8, buffer, len); 1854 len += 8; 1855 real_buffer[0] = 0; 1856 real_buffer[1] = 0; 1857 real_buffer[2] = data->medium_type; 1858 real_buffer[3] = data->device_specific; 1859 real_buffer[4] = data->longlba ? 0x01 : 0; 1860 real_buffer[5] = 0; 1861 real_buffer[6] = data->block_descriptor_length >> 8; 1862 real_buffer[7] = data->block_descriptor_length; 1863 1864 cmd[0] = MODE_SELECT_10; 1865 cmd[7] = len >> 8; 1866 cmd[8] = len; 1867 } else { 1868 if (len > 255 || data->block_descriptor_length > 255 || 1869 data->longlba) 1870 return -EINVAL; 1871 1872 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1873 if (!real_buffer) 1874 return -ENOMEM; 1875 memcpy(real_buffer + 4, buffer, len); 1876 len += 4; 1877 real_buffer[0] = 0; 1878 real_buffer[1] = data->medium_type; 1879 real_buffer[2] = data->device_specific; 1880 real_buffer[3] = data->block_descriptor_length; 1881 1882 1883 cmd[0] = MODE_SELECT; 1884 cmd[4] = len; 1885 } 1886 1887 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1888 sshdr, timeout, retries); 1889 kfree(real_buffer); 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(scsi_mode_select); 1893 1894 /** 1895 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1896 * @sdev: SCSI device to be queried 1897 * @dbd: set if mode sense will allow block descriptors to be returned 1898 * @modepage: mode page being requested 1899 * @buffer: request buffer (may not be smaller than eight bytes) 1900 * @len: length of request buffer. 1901 * @timeout: command timeout 1902 * @retries: number of retries before failing 1903 * @data: returns a structure abstracting the mode header data 1904 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1905 * must be SCSI_SENSE_BUFFERSIZE big. 1906 * 1907 * Returns zero if unsuccessful, or the header offset (either 4 1908 * or 8 depending on whether a six or ten byte command was 1909 * issued) if successful. 1910 */ 1911 int 1912 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1913 unsigned char *buffer, int len, int timeout, int retries, 1914 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1915 { 1916 unsigned char cmd[12]; 1917 int use_10_for_ms; 1918 int header_length; 1919 int result; 1920 struct scsi_sense_hdr my_sshdr; 1921 1922 memset(data, 0, sizeof(*data)); 1923 memset(&cmd[0], 0, 12); 1924 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1925 cmd[2] = modepage; 1926 1927 /* caller might not be interested in sense, but we need it */ 1928 if (!sshdr) 1929 sshdr = &my_sshdr; 1930 1931 retry: 1932 use_10_for_ms = sdev->use_10_for_ms; 1933 1934 if (use_10_for_ms) { 1935 if (len < 8) 1936 len = 8; 1937 1938 cmd[0] = MODE_SENSE_10; 1939 cmd[8] = len; 1940 header_length = 8; 1941 } else { 1942 if (len < 4) 1943 len = 4; 1944 1945 cmd[0] = MODE_SENSE; 1946 cmd[4] = len; 1947 header_length = 4; 1948 } 1949 1950 memset(buffer, 0, len); 1951 1952 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1953 sshdr, timeout, retries); 1954 1955 /* This code looks awful: what it's doing is making sure an 1956 * ILLEGAL REQUEST sense return identifies the actual command 1957 * byte as the problem. MODE_SENSE commands can return 1958 * ILLEGAL REQUEST if the code page isn't supported */ 1959 1960 if (use_10_for_ms && !scsi_status_is_good(result) && 1961 (driver_byte(result) & DRIVER_SENSE)) { 1962 if (scsi_sense_valid(sshdr)) { 1963 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1964 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1965 /* 1966 * Invalid command operation code 1967 */ 1968 sdev->use_10_for_ms = 0; 1969 goto retry; 1970 } 1971 } 1972 } 1973 1974 if(scsi_status_is_good(result)) { 1975 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1976 (modepage == 6 || modepage == 8))) { 1977 /* Initio breakage? */ 1978 header_length = 0; 1979 data->length = 13; 1980 data->medium_type = 0; 1981 data->device_specific = 0; 1982 data->longlba = 0; 1983 data->block_descriptor_length = 0; 1984 } else if(use_10_for_ms) { 1985 data->length = buffer[0]*256 + buffer[1] + 2; 1986 data->medium_type = buffer[2]; 1987 data->device_specific = buffer[3]; 1988 data->longlba = buffer[4] & 0x01; 1989 data->block_descriptor_length = buffer[6]*256 1990 + buffer[7]; 1991 } else { 1992 data->length = buffer[0] + 1; 1993 data->medium_type = buffer[1]; 1994 data->device_specific = buffer[2]; 1995 data->block_descriptor_length = buffer[3]; 1996 } 1997 data->header_length = header_length; 1998 } 1999 2000 return result; 2001 } 2002 EXPORT_SYMBOL(scsi_mode_sense); 2003 2004 /** 2005 * scsi_test_unit_ready - test if unit is ready 2006 * @sdev: scsi device to change the state of. 2007 * @timeout: command timeout 2008 * @retries: number of retries before failing 2009 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2010 * returning sense. Make sure that this is cleared before passing 2011 * in. 2012 * 2013 * Returns zero if unsuccessful or an error if TUR failed. For 2014 * removable media, a return of NOT_READY or UNIT_ATTENTION is 2015 * translated to success, with the ->changed flag updated. 2016 **/ 2017 int 2018 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2019 struct scsi_sense_hdr *sshdr_external) 2020 { 2021 char cmd[] = { 2022 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2023 }; 2024 struct scsi_sense_hdr *sshdr; 2025 int result; 2026 2027 if (!sshdr_external) 2028 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2029 else 2030 sshdr = sshdr_external; 2031 2032 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2033 do { 2034 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2035 timeout, retries); 2036 } while ((driver_byte(result) & DRIVER_SENSE) && 2037 sshdr && sshdr->sense_key == UNIT_ATTENTION && 2038 --retries); 2039 2040 if (!sshdr) 2041 /* could not allocate sense buffer, so can't process it */ 2042 return result; 2043 2044 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) { 2045 2046 if ((scsi_sense_valid(sshdr)) && 2047 ((sshdr->sense_key == UNIT_ATTENTION) || 2048 (sshdr->sense_key == NOT_READY))) { 2049 sdev->changed = 1; 2050 result = 0; 2051 } 2052 } 2053 if (!sshdr_external) 2054 kfree(sshdr); 2055 return result; 2056 } 2057 EXPORT_SYMBOL(scsi_test_unit_ready); 2058 2059 /** 2060 * scsi_device_set_state - Take the given device through the device state model. 2061 * @sdev: scsi device to change the state of. 2062 * @state: state to change to. 2063 * 2064 * Returns zero if unsuccessful or an error if the requested 2065 * transition is illegal. 2066 */ 2067 int 2068 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2069 { 2070 enum scsi_device_state oldstate = sdev->sdev_state; 2071 2072 if (state == oldstate) 2073 return 0; 2074 2075 switch (state) { 2076 case SDEV_CREATED: 2077 switch (oldstate) { 2078 case SDEV_CREATED_BLOCK: 2079 break; 2080 default: 2081 goto illegal; 2082 } 2083 break; 2084 2085 case SDEV_RUNNING: 2086 switch (oldstate) { 2087 case SDEV_CREATED: 2088 case SDEV_OFFLINE: 2089 case SDEV_QUIESCE: 2090 case SDEV_BLOCK: 2091 break; 2092 default: 2093 goto illegal; 2094 } 2095 break; 2096 2097 case SDEV_QUIESCE: 2098 switch (oldstate) { 2099 case SDEV_RUNNING: 2100 case SDEV_OFFLINE: 2101 break; 2102 default: 2103 goto illegal; 2104 } 2105 break; 2106 2107 case SDEV_OFFLINE: 2108 switch (oldstate) { 2109 case SDEV_CREATED: 2110 case SDEV_RUNNING: 2111 case SDEV_QUIESCE: 2112 case SDEV_BLOCK: 2113 break; 2114 default: 2115 goto illegal; 2116 } 2117 break; 2118 2119 case SDEV_BLOCK: 2120 switch (oldstate) { 2121 case SDEV_RUNNING: 2122 case SDEV_CREATED_BLOCK: 2123 break; 2124 default: 2125 goto illegal; 2126 } 2127 break; 2128 2129 case SDEV_CREATED_BLOCK: 2130 switch (oldstate) { 2131 case SDEV_CREATED: 2132 break; 2133 default: 2134 goto illegal; 2135 } 2136 break; 2137 2138 case SDEV_CANCEL: 2139 switch (oldstate) { 2140 case SDEV_CREATED: 2141 case SDEV_RUNNING: 2142 case SDEV_QUIESCE: 2143 case SDEV_OFFLINE: 2144 case SDEV_BLOCK: 2145 break; 2146 default: 2147 goto illegal; 2148 } 2149 break; 2150 2151 case SDEV_DEL: 2152 switch (oldstate) { 2153 case SDEV_CREATED: 2154 case SDEV_RUNNING: 2155 case SDEV_OFFLINE: 2156 case SDEV_CANCEL: 2157 break; 2158 default: 2159 goto illegal; 2160 } 2161 break; 2162 2163 } 2164 sdev->sdev_state = state; 2165 return 0; 2166 2167 illegal: 2168 SCSI_LOG_ERROR_RECOVERY(1, 2169 sdev_printk(KERN_ERR, sdev, 2170 "Illegal state transition %s->%s\n", 2171 scsi_device_state_name(oldstate), 2172 scsi_device_state_name(state)) 2173 ); 2174 return -EINVAL; 2175 } 2176 EXPORT_SYMBOL(scsi_device_set_state); 2177 2178 /** 2179 * sdev_evt_emit - emit a single SCSI device uevent 2180 * @sdev: associated SCSI device 2181 * @evt: event to emit 2182 * 2183 * Send a single uevent (scsi_event) to the associated scsi_device. 2184 */ 2185 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2186 { 2187 int idx = 0; 2188 char *envp[3]; 2189 2190 switch (evt->evt_type) { 2191 case SDEV_EVT_MEDIA_CHANGE: 2192 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2193 break; 2194 2195 default: 2196 /* do nothing */ 2197 break; 2198 } 2199 2200 envp[idx++] = NULL; 2201 2202 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2203 } 2204 2205 /** 2206 * sdev_evt_thread - send a uevent for each scsi event 2207 * @work: work struct for scsi_device 2208 * 2209 * Dispatch queued events to their associated scsi_device kobjects 2210 * as uevents. 2211 */ 2212 void scsi_evt_thread(struct work_struct *work) 2213 { 2214 struct scsi_device *sdev; 2215 LIST_HEAD(event_list); 2216 2217 sdev = container_of(work, struct scsi_device, event_work); 2218 2219 while (1) { 2220 struct scsi_event *evt; 2221 struct list_head *this, *tmp; 2222 unsigned long flags; 2223 2224 spin_lock_irqsave(&sdev->list_lock, flags); 2225 list_splice_init(&sdev->event_list, &event_list); 2226 spin_unlock_irqrestore(&sdev->list_lock, flags); 2227 2228 if (list_empty(&event_list)) 2229 break; 2230 2231 list_for_each_safe(this, tmp, &event_list) { 2232 evt = list_entry(this, struct scsi_event, node); 2233 list_del(&evt->node); 2234 scsi_evt_emit(sdev, evt); 2235 kfree(evt); 2236 } 2237 } 2238 } 2239 2240 /** 2241 * sdev_evt_send - send asserted event to uevent thread 2242 * @sdev: scsi_device event occurred on 2243 * @evt: event to send 2244 * 2245 * Assert scsi device event asynchronously. 2246 */ 2247 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2248 { 2249 unsigned long flags; 2250 2251 #if 0 2252 /* FIXME: currently this check eliminates all media change events 2253 * for polled devices. Need to update to discriminate between AN 2254 * and polled events */ 2255 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2256 kfree(evt); 2257 return; 2258 } 2259 #endif 2260 2261 spin_lock_irqsave(&sdev->list_lock, flags); 2262 list_add_tail(&evt->node, &sdev->event_list); 2263 schedule_work(&sdev->event_work); 2264 spin_unlock_irqrestore(&sdev->list_lock, flags); 2265 } 2266 EXPORT_SYMBOL_GPL(sdev_evt_send); 2267 2268 /** 2269 * sdev_evt_alloc - allocate a new scsi event 2270 * @evt_type: type of event to allocate 2271 * @gfpflags: GFP flags for allocation 2272 * 2273 * Allocates and returns a new scsi_event. 2274 */ 2275 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2276 gfp_t gfpflags) 2277 { 2278 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2279 if (!evt) 2280 return NULL; 2281 2282 evt->evt_type = evt_type; 2283 INIT_LIST_HEAD(&evt->node); 2284 2285 /* evt_type-specific initialization, if any */ 2286 switch (evt_type) { 2287 case SDEV_EVT_MEDIA_CHANGE: 2288 default: 2289 /* do nothing */ 2290 break; 2291 } 2292 2293 return evt; 2294 } 2295 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2296 2297 /** 2298 * sdev_evt_send_simple - send asserted event to uevent thread 2299 * @sdev: scsi_device event occurred on 2300 * @evt_type: type of event to send 2301 * @gfpflags: GFP flags for allocation 2302 * 2303 * Assert scsi device event asynchronously, given an event type. 2304 */ 2305 void sdev_evt_send_simple(struct scsi_device *sdev, 2306 enum scsi_device_event evt_type, gfp_t gfpflags) 2307 { 2308 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2309 if (!evt) { 2310 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2311 evt_type); 2312 return; 2313 } 2314 2315 sdev_evt_send(sdev, evt); 2316 } 2317 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2318 2319 /** 2320 * scsi_device_quiesce - Block user issued commands. 2321 * @sdev: scsi device to quiesce. 2322 * 2323 * This works by trying to transition to the SDEV_QUIESCE state 2324 * (which must be a legal transition). When the device is in this 2325 * state, only special requests will be accepted, all others will 2326 * be deferred. Since special requests may also be requeued requests, 2327 * a successful return doesn't guarantee the device will be 2328 * totally quiescent. 2329 * 2330 * Must be called with user context, may sleep. 2331 * 2332 * Returns zero if unsuccessful or an error if not. 2333 */ 2334 int 2335 scsi_device_quiesce(struct scsi_device *sdev) 2336 { 2337 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2338 if (err) 2339 return err; 2340 2341 scsi_run_queue(sdev->request_queue); 2342 while (sdev->device_busy) { 2343 msleep_interruptible(200); 2344 scsi_run_queue(sdev->request_queue); 2345 } 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(scsi_device_quiesce); 2349 2350 /** 2351 * scsi_device_resume - Restart user issued commands to a quiesced device. 2352 * @sdev: scsi device to resume. 2353 * 2354 * Moves the device from quiesced back to running and restarts the 2355 * queues. 2356 * 2357 * Must be called with user context, may sleep. 2358 */ 2359 void 2360 scsi_device_resume(struct scsi_device *sdev) 2361 { 2362 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2363 return; 2364 scsi_run_queue(sdev->request_queue); 2365 } 2366 EXPORT_SYMBOL(scsi_device_resume); 2367 2368 static void 2369 device_quiesce_fn(struct scsi_device *sdev, void *data) 2370 { 2371 scsi_device_quiesce(sdev); 2372 } 2373 2374 void 2375 scsi_target_quiesce(struct scsi_target *starget) 2376 { 2377 starget_for_each_device(starget, NULL, device_quiesce_fn); 2378 } 2379 EXPORT_SYMBOL(scsi_target_quiesce); 2380 2381 static void 2382 device_resume_fn(struct scsi_device *sdev, void *data) 2383 { 2384 scsi_device_resume(sdev); 2385 } 2386 2387 void 2388 scsi_target_resume(struct scsi_target *starget) 2389 { 2390 starget_for_each_device(starget, NULL, device_resume_fn); 2391 } 2392 EXPORT_SYMBOL(scsi_target_resume); 2393 2394 /** 2395 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2396 * @sdev: device to block 2397 * 2398 * Block request made by scsi lld's to temporarily stop all 2399 * scsi commands on the specified device. Called from interrupt 2400 * or normal process context. 2401 * 2402 * Returns zero if successful or error if not 2403 * 2404 * Notes: 2405 * This routine transitions the device to the SDEV_BLOCK state 2406 * (which must be a legal transition). When the device is in this 2407 * state, all commands are deferred until the scsi lld reenables 2408 * the device with scsi_device_unblock or device_block_tmo fires. 2409 * This routine assumes the host_lock is held on entry. 2410 */ 2411 int 2412 scsi_internal_device_block(struct scsi_device *sdev) 2413 { 2414 struct request_queue *q = sdev->request_queue; 2415 unsigned long flags; 2416 int err = 0; 2417 2418 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2419 if (err) { 2420 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2421 2422 if (err) 2423 return err; 2424 } 2425 2426 /* 2427 * The device has transitioned to SDEV_BLOCK. Stop the 2428 * block layer from calling the midlayer with this device's 2429 * request queue. 2430 */ 2431 spin_lock_irqsave(q->queue_lock, flags); 2432 blk_stop_queue(q); 2433 spin_unlock_irqrestore(q->queue_lock, flags); 2434 2435 return 0; 2436 } 2437 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2438 2439 /** 2440 * scsi_internal_device_unblock - resume a device after a block request 2441 * @sdev: device to resume 2442 * 2443 * Called by scsi lld's or the midlayer to restart the device queue 2444 * for the previously suspended scsi device. Called from interrupt or 2445 * normal process context. 2446 * 2447 * Returns zero if successful or error if not. 2448 * 2449 * Notes: 2450 * This routine transitions the device to the SDEV_RUNNING state 2451 * (which must be a legal transition) allowing the midlayer to 2452 * goose the queue for this device. This routine assumes the 2453 * host_lock is held upon entry. 2454 */ 2455 int 2456 scsi_internal_device_unblock(struct scsi_device *sdev) 2457 { 2458 struct request_queue *q = sdev->request_queue; 2459 int err; 2460 unsigned long flags; 2461 2462 /* 2463 * Try to transition the scsi device to SDEV_RUNNING 2464 * and goose the device queue if successful. 2465 */ 2466 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2467 if (err) { 2468 err = scsi_device_set_state(sdev, SDEV_CREATED); 2469 2470 if (err) 2471 return err; 2472 } 2473 2474 spin_lock_irqsave(q->queue_lock, flags); 2475 blk_start_queue(q); 2476 spin_unlock_irqrestore(q->queue_lock, flags); 2477 2478 return 0; 2479 } 2480 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2481 2482 static void 2483 device_block(struct scsi_device *sdev, void *data) 2484 { 2485 scsi_internal_device_block(sdev); 2486 } 2487 2488 static int 2489 target_block(struct device *dev, void *data) 2490 { 2491 if (scsi_is_target_device(dev)) 2492 starget_for_each_device(to_scsi_target(dev), NULL, 2493 device_block); 2494 return 0; 2495 } 2496 2497 void 2498 scsi_target_block(struct device *dev) 2499 { 2500 if (scsi_is_target_device(dev)) 2501 starget_for_each_device(to_scsi_target(dev), NULL, 2502 device_block); 2503 else 2504 device_for_each_child(dev, NULL, target_block); 2505 } 2506 EXPORT_SYMBOL_GPL(scsi_target_block); 2507 2508 static void 2509 device_unblock(struct scsi_device *sdev, void *data) 2510 { 2511 scsi_internal_device_unblock(sdev); 2512 } 2513 2514 static int 2515 target_unblock(struct device *dev, void *data) 2516 { 2517 if (scsi_is_target_device(dev)) 2518 starget_for_each_device(to_scsi_target(dev), NULL, 2519 device_unblock); 2520 return 0; 2521 } 2522 2523 void 2524 scsi_target_unblock(struct device *dev) 2525 { 2526 if (scsi_is_target_device(dev)) 2527 starget_for_each_device(to_scsi_target(dev), NULL, 2528 device_unblock); 2529 else 2530 device_for_each_child(dev, NULL, target_unblock); 2531 } 2532 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2533 2534 /** 2535 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2536 * @sgl: scatter-gather list 2537 * @sg_count: number of segments in sg 2538 * @offset: offset in bytes into sg, on return offset into the mapped area 2539 * @len: bytes to map, on return number of bytes mapped 2540 * 2541 * Returns virtual address of the start of the mapped page 2542 */ 2543 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2544 size_t *offset, size_t *len) 2545 { 2546 int i; 2547 size_t sg_len = 0, len_complete = 0; 2548 struct scatterlist *sg; 2549 struct page *page; 2550 2551 WARN_ON(!irqs_disabled()); 2552 2553 for_each_sg(sgl, sg, sg_count, i) { 2554 len_complete = sg_len; /* Complete sg-entries */ 2555 sg_len += sg->length; 2556 if (sg_len > *offset) 2557 break; 2558 } 2559 2560 if (unlikely(i == sg_count)) { 2561 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2562 "elements %d\n", 2563 __func__, sg_len, *offset, sg_count); 2564 WARN_ON(1); 2565 return NULL; 2566 } 2567 2568 /* Offset starting from the beginning of first page in this sg-entry */ 2569 *offset = *offset - len_complete + sg->offset; 2570 2571 /* Assumption: contiguous pages can be accessed as "page + i" */ 2572 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2573 *offset &= ~PAGE_MASK; 2574 2575 /* Bytes in this sg-entry from *offset to the end of the page */ 2576 sg_len = PAGE_SIZE - *offset; 2577 if (*len > sg_len) 2578 *len = sg_len; 2579 2580 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2581 } 2582 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2583 2584 /** 2585 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2586 * @virt: virtual address to be unmapped 2587 */ 2588 void scsi_kunmap_atomic_sg(void *virt) 2589 { 2590 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2591 } 2592 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2593