xref: /linux/drivers/scsi/scsi_lib.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 /*
671  * Function:    scsi_io_completion()
672  *
673  * Purpose:     Completion processing for block device I/O requests.
674  *
675  * Arguments:   cmd   - command that is finished.
676  *
677  * Lock status: Assumed that no lock is held upon entry.
678  *
679  * Returns:     Nothing
680  *
681  * Notes:       This function is matched in terms of capabilities to
682  *              the function that created the scatter-gather list.
683  *              In other words, if there are no bounce buffers
684  *              (the normal case for most drivers), we don't need
685  *              the logic to deal with cleaning up afterwards.
686  *
687  *		We must call scsi_end_request().  This will finish off
688  *		the specified number of sectors.  If we are done, the
689  *		command block will be released and the queue function
690  *		will be goosed.  If we are not done then we have to
691  *		figure out what to do next:
692  *
693  *		a) We can call scsi_requeue_command().  The request
694  *		   will be unprepared and put back on the queue.  Then
695  *		   a new command will be created for it.  This should
696  *		   be used if we made forward progress, or if we want
697  *		   to switch from READ(10) to READ(6) for example.
698  *
699  *		b) We can call scsi_queue_insert().  The request will
700  *		   be put back on the queue and retried using the same
701  *		   command as before, possibly after a delay.
702  *
703  *		c) We can call blk_end_request() with -EIO to fail
704  *		   the remainder of the request.
705  */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708 	int result = cmd->result;
709 	struct request_queue *q = cmd->device->request_queue;
710 	struct request *req = cmd->request;
711 	int error = 0;
712 	struct scsi_sense_hdr sshdr;
713 	int sense_valid = 0;
714 	int sense_deferred = 0;
715 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 	      ACTION_DELAYED_RETRY} action;
717 	char *description = NULL;
718 
719 	if (result) {
720 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 		if (sense_valid)
722 			sense_deferred = scsi_sense_is_deferred(&sshdr);
723 	}
724 
725 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
726 		req->errors = result;
727 		if (result) {
728 			if (sense_valid && req->sense) {
729 				/*
730 				 * SG_IO wants current and deferred errors
731 				 */
732 				int len = 8 + cmd->sense_buffer[7];
733 
734 				if (len > SCSI_SENSE_BUFFERSIZE)
735 					len = SCSI_SENSE_BUFFERSIZE;
736 				memcpy(req->sense, cmd->sense_buffer,  len);
737 				req->sense_len = len;
738 			}
739 			if (!sense_deferred)
740 				error = -EIO;
741 		}
742 
743 		req->resid_len = scsi_get_resid(cmd);
744 
745 		if (scsi_bidi_cmnd(cmd)) {
746 			/*
747 			 * Bidi commands Must be complete as a whole,
748 			 * both sides at once.
749 			 */
750 			req->next_rq->resid_len = scsi_in(cmd)->resid;
751 
752 			blk_end_request_all(req, 0);
753 
754 			scsi_release_buffers(cmd);
755 			scsi_next_command(cmd);
756 			return;
757 		}
758 	}
759 
760 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
761 
762 	/*
763 	 * Next deal with any sectors which we were able to correctly
764 	 * handle.
765 	 */
766 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
767 				      "%d bytes done.\n",
768 				      blk_rq_sectors(req), good_bytes));
769 
770 	/*
771 	 * Recovered errors need reporting, but they're always treated
772 	 * as success, so fiddle the result code here.  For BLOCK_PC
773 	 * we already took a copy of the original into rq->errors which
774 	 * is what gets returned to the user
775 	 */
776 	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
777 		if (!(req->cmd_flags & REQ_QUIET))
778 			scsi_print_sense("", cmd);
779 		result = 0;
780 		/* BLOCK_PC may have set error */
781 		error = 0;
782 	}
783 
784 	/*
785 	 * A number of bytes were successfully read.  If there
786 	 * are leftovers and there is some kind of error
787 	 * (result != 0), retry the rest.
788 	 */
789 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
790 		return;
791 
792 	error = -EIO;
793 
794 	if (host_byte(result) == DID_RESET) {
795 		/* Third party bus reset or reset for error recovery
796 		 * reasons.  Just retry the command and see what
797 		 * happens.
798 		 */
799 		action = ACTION_RETRY;
800 	} else if (sense_valid && !sense_deferred) {
801 		switch (sshdr.sense_key) {
802 		case UNIT_ATTENTION:
803 			if (cmd->device->removable) {
804 				/* Detected disc change.  Set a bit
805 				 * and quietly refuse further access.
806 				 */
807 				cmd->device->changed = 1;
808 				description = "Media Changed";
809 				action = ACTION_FAIL;
810 			} else {
811 				/* Must have been a power glitch, or a
812 				 * bus reset.  Could not have been a
813 				 * media change, so we just retry the
814 				 * command and see what happens.
815 				 */
816 				action = ACTION_RETRY;
817 			}
818 			break;
819 		case ILLEGAL_REQUEST:
820 			/* If we had an ILLEGAL REQUEST returned, then
821 			 * we may have performed an unsupported
822 			 * command.  The only thing this should be
823 			 * would be a ten byte read where only a six
824 			 * byte read was supported.  Also, on a system
825 			 * where READ CAPACITY failed, we may have
826 			 * read past the end of the disk.
827 			 */
828 			if ((cmd->device->use_10_for_rw &&
829 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
830 			    (cmd->cmnd[0] == READ_10 ||
831 			     cmd->cmnd[0] == WRITE_10)) {
832 				/* This will issue a new 6-byte command. */
833 				cmd->device->use_10_for_rw = 0;
834 				action = ACTION_REPREP;
835 			} else if (sshdr.asc == 0x10) /* DIX */ {
836 				description = "Host Data Integrity Failure";
837 				action = ACTION_FAIL;
838 				error = -EILSEQ;
839 			} else
840 				action = ACTION_FAIL;
841 			break;
842 		case ABORTED_COMMAND:
843 			action = ACTION_FAIL;
844 			if (sshdr.asc == 0x10) { /* DIF */
845 				description = "Target Data Integrity Failure";
846 				error = -EILSEQ;
847 			}
848 			break;
849 		case NOT_READY:
850 			/* If the device is in the process of becoming
851 			 * ready, or has a temporary blockage, retry.
852 			 */
853 			if (sshdr.asc == 0x04) {
854 				switch (sshdr.ascq) {
855 				case 0x01: /* becoming ready */
856 				case 0x04: /* format in progress */
857 				case 0x05: /* rebuild in progress */
858 				case 0x06: /* recalculation in progress */
859 				case 0x07: /* operation in progress */
860 				case 0x08: /* Long write in progress */
861 				case 0x09: /* self test in progress */
862 					action = ACTION_DELAYED_RETRY;
863 					break;
864 				default:
865 					description = "Device not ready";
866 					action = ACTION_FAIL;
867 					break;
868 				}
869 			} else {
870 				description = "Device not ready";
871 				action = ACTION_FAIL;
872 			}
873 			break;
874 		case VOLUME_OVERFLOW:
875 			/* See SSC3rXX or current. */
876 			action = ACTION_FAIL;
877 			break;
878 		default:
879 			description = "Unhandled sense code";
880 			action = ACTION_FAIL;
881 			break;
882 		}
883 	} else {
884 		description = "Unhandled error code";
885 		action = ACTION_FAIL;
886 	}
887 
888 	switch (action) {
889 	case ACTION_FAIL:
890 		/* Give up and fail the remainder of the request */
891 		scsi_release_buffers(cmd);
892 		if (!(req->cmd_flags & REQ_QUIET)) {
893 			if (description)
894 				scmd_printk(KERN_INFO, cmd, "%s\n",
895 					    description);
896 			scsi_print_result(cmd);
897 			if (driver_byte(result) & DRIVER_SENSE)
898 				scsi_print_sense("", cmd);
899 		}
900 		blk_end_request_all(req, -EIO);
901 		scsi_next_command(cmd);
902 		break;
903 	case ACTION_REPREP:
904 		/* Unprep the request and put it back at the head of the queue.
905 		 * A new command will be prepared and issued.
906 		 */
907 		scsi_release_buffers(cmd);
908 		scsi_requeue_command(q, cmd);
909 		break;
910 	case ACTION_RETRY:
911 		/* Retry the same command immediately */
912 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
913 		break;
914 	case ACTION_DELAYED_RETRY:
915 		/* Retry the same command after a delay */
916 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
917 		break;
918 	}
919 }
920 
921 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
922 			     gfp_t gfp_mask)
923 {
924 	int count;
925 
926 	/*
927 	 * If sg table allocation fails, requeue request later.
928 	 */
929 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
930 					gfp_mask))) {
931 		return BLKPREP_DEFER;
932 	}
933 
934 	req->buffer = NULL;
935 
936 	/*
937 	 * Next, walk the list, and fill in the addresses and sizes of
938 	 * each segment.
939 	 */
940 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
941 	BUG_ON(count > sdb->table.nents);
942 	sdb->table.nents = count;
943 	sdb->length = blk_rq_bytes(req);
944 	return BLKPREP_OK;
945 }
946 
947 /*
948  * Function:    scsi_init_io()
949  *
950  * Purpose:     SCSI I/O initialize function.
951  *
952  * Arguments:   cmd   - Command descriptor we wish to initialize
953  *
954  * Returns:     0 on success
955  *		BLKPREP_DEFER if the failure is retryable
956  *		BLKPREP_KILL if the failure is fatal
957  */
958 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
959 {
960 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
961 	if (error)
962 		goto err_exit;
963 
964 	if (blk_bidi_rq(cmd->request)) {
965 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
966 			scsi_sdb_cache, GFP_ATOMIC);
967 		if (!bidi_sdb) {
968 			error = BLKPREP_DEFER;
969 			goto err_exit;
970 		}
971 
972 		cmd->request->next_rq->special = bidi_sdb;
973 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
974 								    GFP_ATOMIC);
975 		if (error)
976 			goto err_exit;
977 	}
978 
979 	if (blk_integrity_rq(cmd->request)) {
980 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
981 		int ivecs, count;
982 
983 		BUG_ON(prot_sdb == NULL);
984 		ivecs = blk_rq_count_integrity_sg(cmd->request);
985 
986 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
987 			error = BLKPREP_DEFER;
988 			goto err_exit;
989 		}
990 
991 		count = blk_rq_map_integrity_sg(cmd->request,
992 						prot_sdb->table.sgl);
993 		BUG_ON(unlikely(count > ivecs));
994 
995 		cmd->prot_sdb = prot_sdb;
996 		cmd->prot_sdb->table.nents = count;
997 	}
998 
999 	return BLKPREP_OK ;
1000 
1001 err_exit:
1002 	scsi_release_buffers(cmd);
1003 	if (error == BLKPREP_KILL)
1004 		scsi_put_command(cmd);
1005 	else /* BLKPREP_DEFER */
1006 		scsi_unprep_request(cmd->request);
1007 
1008 	return error;
1009 }
1010 EXPORT_SYMBOL(scsi_init_io);
1011 
1012 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1013 		struct request *req)
1014 {
1015 	struct scsi_cmnd *cmd;
1016 
1017 	if (!req->special) {
1018 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1019 		if (unlikely(!cmd))
1020 			return NULL;
1021 		req->special = cmd;
1022 	} else {
1023 		cmd = req->special;
1024 	}
1025 
1026 	/* pull a tag out of the request if we have one */
1027 	cmd->tag = req->tag;
1028 	cmd->request = req;
1029 
1030 	cmd->cmnd = req->cmd;
1031 
1032 	return cmd;
1033 }
1034 
1035 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1036 {
1037 	struct scsi_cmnd *cmd;
1038 	int ret = scsi_prep_state_check(sdev, req);
1039 
1040 	if (ret != BLKPREP_OK)
1041 		return ret;
1042 
1043 	cmd = scsi_get_cmd_from_req(sdev, req);
1044 	if (unlikely(!cmd))
1045 		return BLKPREP_DEFER;
1046 
1047 	/*
1048 	 * BLOCK_PC requests may transfer data, in which case they must
1049 	 * a bio attached to them.  Or they might contain a SCSI command
1050 	 * that does not transfer data, in which case they may optionally
1051 	 * submit a request without an attached bio.
1052 	 */
1053 	if (req->bio) {
1054 		int ret;
1055 
1056 		BUG_ON(!req->nr_phys_segments);
1057 
1058 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1059 		if (unlikely(ret))
1060 			return ret;
1061 	} else {
1062 		BUG_ON(blk_rq_bytes(req));
1063 
1064 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1065 		req->buffer = NULL;
1066 	}
1067 
1068 	cmd->cmd_len = req->cmd_len;
1069 	if (!blk_rq_bytes(req))
1070 		cmd->sc_data_direction = DMA_NONE;
1071 	else if (rq_data_dir(req) == WRITE)
1072 		cmd->sc_data_direction = DMA_TO_DEVICE;
1073 	else
1074 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1075 
1076 	cmd->transfersize = blk_rq_bytes(req);
1077 	cmd->allowed = req->retries;
1078 	return BLKPREP_OK;
1079 }
1080 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1081 
1082 /*
1083  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1084  * from filesystems that still need to be translated to SCSI CDBs from
1085  * the ULD.
1086  */
1087 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1088 {
1089 	struct scsi_cmnd *cmd;
1090 	int ret = scsi_prep_state_check(sdev, req);
1091 
1092 	if (ret != BLKPREP_OK)
1093 		return ret;
1094 
1095 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1096 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1097 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1098 		if (ret != BLKPREP_OK)
1099 			return ret;
1100 	}
1101 
1102 	/*
1103 	 * Filesystem requests must transfer data.
1104 	 */
1105 	BUG_ON(!req->nr_phys_segments);
1106 
1107 	cmd = scsi_get_cmd_from_req(sdev, req);
1108 	if (unlikely(!cmd))
1109 		return BLKPREP_DEFER;
1110 
1111 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1112 	return scsi_init_io(cmd, GFP_ATOMIC);
1113 }
1114 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1115 
1116 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1117 {
1118 	int ret = BLKPREP_OK;
1119 
1120 	/*
1121 	 * If the device is not in running state we will reject some
1122 	 * or all commands.
1123 	 */
1124 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1125 		switch (sdev->sdev_state) {
1126 		case SDEV_OFFLINE:
1127 			/*
1128 			 * If the device is offline we refuse to process any
1129 			 * commands.  The device must be brought online
1130 			 * before trying any recovery commands.
1131 			 */
1132 			sdev_printk(KERN_ERR, sdev,
1133 				    "rejecting I/O to offline device\n");
1134 			ret = BLKPREP_KILL;
1135 			break;
1136 		case SDEV_DEL:
1137 			/*
1138 			 * If the device is fully deleted, we refuse to
1139 			 * process any commands as well.
1140 			 */
1141 			sdev_printk(KERN_ERR, sdev,
1142 				    "rejecting I/O to dead device\n");
1143 			ret = BLKPREP_KILL;
1144 			break;
1145 		case SDEV_QUIESCE:
1146 		case SDEV_BLOCK:
1147 		case SDEV_CREATED_BLOCK:
1148 			/*
1149 			 * If the devices is blocked we defer normal commands.
1150 			 */
1151 			if (!(req->cmd_flags & REQ_PREEMPT))
1152 				ret = BLKPREP_DEFER;
1153 			break;
1154 		default:
1155 			/*
1156 			 * For any other not fully online state we only allow
1157 			 * special commands.  In particular any user initiated
1158 			 * command is not allowed.
1159 			 */
1160 			if (!(req->cmd_flags & REQ_PREEMPT))
1161 				ret = BLKPREP_KILL;
1162 			break;
1163 		}
1164 	}
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL(scsi_prep_state_check);
1168 
1169 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1170 {
1171 	struct scsi_device *sdev = q->queuedata;
1172 
1173 	switch (ret) {
1174 	case BLKPREP_KILL:
1175 		req->errors = DID_NO_CONNECT << 16;
1176 		/* release the command and kill it */
1177 		if (req->special) {
1178 			struct scsi_cmnd *cmd = req->special;
1179 			scsi_release_buffers(cmd);
1180 			scsi_put_command(cmd);
1181 			req->special = NULL;
1182 		}
1183 		break;
1184 	case BLKPREP_DEFER:
1185 		/*
1186 		 * If we defer, the blk_peek_request() returns NULL, but the
1187 		 * queue must be restarted, so we plug here if no returning
1188 		 * command will automatically do that.
1189 		 */
1190 		if (sdev->device_busy == 0)
1191 			blk_plug_device(q);
1192 		break;
1193 	default:
1194 		req->cmd_flags |= REQ_DONTPREP;
1195 	}
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(scsi_prep_return);
1200 
1201 int scsi_prep_fn(struct request_queue *q, struct request *req)
1202 {
1203 	struct scsi_device *sdev = q->queuedata;
1204 	int ret = BLKPREP_KILL;
1205 
1206 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1207 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1208 	return scsi_prep_return(q, req, ret);
1209 }
1210 EXPORT_SYMBOL(scsi_prep_fn);
1211 
1212 /*
1213  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1214  * return 0.
1215  *
1216  * Called with the queue_lock held.
1217  */
1218 static inline int scsi_dev_queue_ready(struct request_queue *q,
1219 				  struct scsi_device *sdev)
1220 {
1221 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1222 		/*
1223 		 * unblock after device_blocked iterates to zero
1224 		 */
1225 		if (--sdev->device_blocked == 0) {
1226 			SCSI_LOG_MLQUEUE(3,
1227 				   sdev_printk(KERN_INFO, sdev,
1228 				   "unblocking device at zero depth\n"));
1229 		} else {
1230 			blk_plug_device(q);
1231 			return 0;
1232 		}
1233 	}
1234 	if (scsi_device_is_busy(sdev))
1235 		return 0;
1236 
1237 	return 1;
1238 }
1239 
1240 
1241 /*
1242  * scsi_target_queue_ready: checks if there we can send commands to target
1243  * @sdev: scsi device on starget to check.
1244  *
1245  * Called with the host lock held.
1246  */
1247 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1248 					   struct scsi_device *sdev)
1249 {
1250 	struct scsi_target *starget = scsi_target(sdev);
1251 
1252 	if (starget->single_lun) {
1253 		if (starget->starget_sdev_user &&
1254 		    starget->starget_sdev_user != sdev)
1255 			return 0;
1256 		starget->starget_sdev_user = sdev;
1257 	}
1258 
1259 	if (starget->target_busy == 0 && starget->target_blocked) {
1260 		/*
1261 		 * unblock after target_blocked iterates to zero
1262 		 */
1263 		if (--starget->target_blocked == 0) {
1264 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1265 					 "unblocking target at zero depth\n"));
1266 		} else
1267 			return 0;
1268 	}
1269 
1270 	if (scsi_target_is_busy(starget)) {
1271 		if (list_empty(&sdev->starved_entry)) {
1272 			list_add_tail(&sdev->starved_entry,
1273 				      &shost->starved_list);
1274 			return 0;
1275 		}
1276 	}
1277 
1278 	/* We're OK to process the command, so we can't be starved */
1279 	if (!list_empty(&sdev->starved_entry))
1280 		list_del_init(&sdev->starved_entry);
1281 	return 1;
1282 }
1283 
1284 /*
1285  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1286  * return 0. We must end up running the queue again whenever 0 is
1287  * returned, else IO can hang.
1288  *
1289  * Called with host_lock held.
1290  */
1291 static inline int scsi_host_queue_ready(struct request_queue *q,
1292 				   struct Scsi_Host *shost,
1293 				   struct scsi_device *sdev)
1294 {
1295 	if (scsi_host_in_recovery(shost))
1296 		return 0;
1297 	if (shost->host_busy == 0 && shost->host_blocked) {
1298 		/*
1299 		 * unblock after host_blocked iterates to zero
1300 		 */
1301 		if (--shost->host_blocked == 0) {
1302 			SCSI_LOG_MLQUEUE(3,
1303 				printk("scsi%d unblocking host at zero depth\n",
1304 					shost->host_no));
1305 		} else {
1306 			return 0;
1307 		}
1308 	}
1309 	if (scsi_host_is_busy(shost)) {
1310 		if (list_empty(&sdev->starved_entry))
1311 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1312 		return 0;
1313 	}
1314 
1315 	/* We're OK to process the command, so we can't be starved */
1316 	if (!list_empty(&sdev->starved_entry))
1317 		list_del_init(&sdev->starved_entry);
1318 
1319 	return 1;
1320 }
1321 
1322 /*
1323  * Busy state exporting function for request stacking drivers.
1324  *
1325  * For efficiency, no lock is taken to check the busy state of
1326  * shost/starget/sdev, since the returned value is not guaranteed and
1327  * may be changed after request stacking drivers call the function,
1328  * regardless of taking lock or not.
1329  *
1330  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1331  * (e.g. !sdev), scsi needs to return 'not busy'.
1332  * Otherwise, request stacking drivers may hold requests forever.
1333  */
1334 static int scsi_lld_busy(struct request_queue *q)
1335 {
1336 	struct scsi_device *sdev = q->queuedata;
1337 	struct Scsi_Host *shost;
1338 	struct scsi_target *starget;
1339 
1340 	if (!sdev)
1341 		return 0;
1342 
1343 	shost = sdev->host;
1344 	starget = scsi_target(sdev);
1345 
1346 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1347 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1348 		return 1;
1349 
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Kill a request for a dead device
1355  */
1356 static void scsi_kill_request(struct request *req, struct request_queue *q)
1357 {
1358 	struct scsi_cmnd *cmd = req->special;
1359 	struct scsi_device *sdev = cmd->device;
1360 	struct scsi_target *starget = scsi_target(sdev);
1361 	struct Scsi_Host *shost = sdev->host;
1362 
1363 	blk_start_request(req);
1364 
1365 	if (unlikely(cmd == NULL)) {
1366 		printk(KERN_CRIT "impossible request in %s.\n",
1367 				 __func__);
1368 		BUG();
1369 	}
1370 
1371 	scsi_init_cmd_errh(cmd);
1372 	cmd->result = DID_NO_CONNECT << 16;
1373 	atomic_inc(&cmd->device->iorequest_cnt);
1374 
1375 	/*
1376 	 * SCSI request completion path will do scsi_device_unbusy(),
1377 	 * bump busy counts.  To bump the counters, we need to dance
1378 	 * with the locks as normal issue path does.
1379 	 */
1380 	sdev->device_busy++;
1381 	spin_unlock(sdev->request_queue->queue_lock);
1382 	spin_lock(shost->host_lock);
1383 	shost->host_busy++;
1384 	starget->target_busy++;
1385 	spin_unlock(shost->host_lock);
1386 	spin_lock(sdev->request_queue->queue_lock);
1387 
1388 	blk_complete_request(req);
1389 }
1390 
1391 static void scsi_softirq_done(struct request *rq)
1392 {
1393 	struct scsi_cmnd *cmd = rq->special;
1394 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1395 	int disposition;
1396 
1397 	INIT_LIST_HEAD(&cmd->eh_entry);
1398 
1399 	/*
1400 	 * Set the serial numbers back to zero
1401 	 */
1402 	cmd->serial_number = 0;
1403 
1404 	atomic_inc(&cmd->device->iodone_cnt);
1405 	if (cmd->result)
1406 		atomic_inc(&cmd->device->ioerr_cnt);
1407 
1408 	disposition = scsi_decide_disposition(cmd);
1409 	if (disposition != SUCCESS &&
1410 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1411 		sdev_printk(KERN_ERR, cmd->device,
1412 			    "timing out command, waited %lus\n",
1413 			    wait_for/HZ);
1414 		disposition = SUCCESS;
1415 	}
1416 
1417 	scsi_log_completion(cmd, disposition);
1418 
1419 	switch (disposition) {
1420 		case SUCCESS:
1421 			scsi_finish_command(cmd);
1422 			break;
1423 		case NEEDS_RETRY:
1424 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1425 			break;
1426 		case ADD_TO_MLQUEUE:
1427 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1428 			break;
1429 		default:
1430 			if (!scsi_eh_scmd_add(cmd, 0))
1431 				scsi_finish_command(cmd);
1432 	}
1433 }
1434 
1435 /*
1436  * Function:    scsi_request_fn()
1437  *
1438  * Purpose:     Main strategy routine for SCSI.
1439  *
1440  * Arguments:   q       - Pointer to actual queue.
1441  *
1442  * Returns:     Nothing
1443  *
1444  * Lock status: IO request lock assumed to be held when called.
1445  */
1446 static void scsi_request_fn(struct request_queue *q)
1447 {
1448 	struct scsi_device *sdev = q->queuedata;
1449 	struct Scsi_Host *shost;
1450 	struct scsi_cmnd *cmd;
1451 	struct request *req;
1452 
1453 	if (!sdev) {
1454 		printk("scsi: killing requests for dead queue\n");
1455 		while ((req = blk_peek_request(q)) != NULL)
1456 			scsi_kill_request(req, q);
1457 		return;
1458 	}
1459 
1460 	if(!get_device(&sdev->sdev_gendev))
1461 		/* We must be tearing the block queue down already */
1462 		return;
1463 
1464 	/*
1465 	 * To start with, we keep looping until the queue is empty, or until
1466 	 * the host is no longer able to accept any more requests.
1467 	 */
1468 	shost = sdev->host;
1469 	while (!blk_queue_plugged(q)) {
1470 		int rtn;
1471 		/*
1472 		 * get next queueable request.  We do this early to make sure
1473 		 * that the request is fully prepared even if we cannot
1474 		 * accept it.
1475 		 */
1476 		req = blk_peek_request(q);
1477 		if (!req || !scsi_dev_queue_ready(q, sdev))
1478 			break;
1479 
1480 		if (unlikely(!scsi_device_online(sdev))) {
1481 			sdev_printk(KERN_ERR, sdev,
1482 				    "rejecting I/O to offline device\n");
1483 			scsi_kill_request(req, q);
1484 			continue;
1485 		}
1486 
1487 
1488 		/*
1489 		 * Remove the request from the request list.
1490 		 */
1491 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1492 			blk_start_request(req);
1493 		sdev->device_busy++;
1494 
1495 		spin_unlock(q->queue_lock);
1496 		cmd = req->special;
1497 		if (unlikely(cmd == NULL)) {
1498 			printk(KERN_CRIT "impossible request in %s.\n"
1499 					 "please mail a stack trace to "
1500 					 "linux-scsi@vger.kernel.org\n",
1501 					 __func__);
1502 			blk_dump_rq_flags(req, "foo");
1503 			BUG();
1504 		}
1505 		spin_lock(shost->host_lock);
1506 
1507 		/*
1508 		 * We hit this when the driver is using a host wide
1509 		 * tag map. For device level tag maps the queue_depth check
1510 		 * in the device ready fn would prevent us from trying
1511 		 * to allocate a tag. Since the map is a shared host resource
1512 		 * we add the dev to the starved list so it eventually gets
1513 		 * a run when a tag is freed.
1514 		 */
1515 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1516 			if (list_empty(&sdev->starved_entry))
1517 				list_add_tail(&sdev->starved_entry,
1518 					      &shost->starved_list);
1519 			goto not_ready;
1520 		}
1521 
1522 		if (!scsi_target_queue_ready(shost, sdev))
1523 			goto not_ready;
1524 
1525 		if (!scsi_host_queue_ready(q, shost, sdev))
1526 			goto not_ready;
1527 
1528 		scsi_target(sdev)->target_busy++;
1529 		shost->host_busy++;
1530 
1531 		/*
1532 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1533 		 *		take the lock again.
1534 		 */
1535 		spin_unlock_irq(shost->host_lock);
1536 
1537 		/*
1538 		 * Finally, initialize any error handling parameters, and set up
1539 		 * the timers for timeouts.
1540 		 */
1541 		scsi_init_cmd_errh(cmd);
1542 
1543 		/*
1544 		 * Dispatch the command to the low-level driver.
1545 		 */
1546 		rtn = scsi_dispatch_cmd(cmd);
1547 		spin_lock_irq(q->queue_lock);
1548 		if(rtn) {
1549 			/* we're refusing the command; because of
1550 			 * the way locks get dropped, we need to
1551 			 * check here if plugging is required */
1552 			if(sdev->device_busy == 0)
1553 				blk_plug_device(q);
1554 
1555 			break;
1556 		}
1557 	}
1558 
1559 	goto out;
1560 
1561  not_ready:
1562 	spin_unlock_irq(shost->host_lock);
1563 
1564 	/*
1565 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1566 	 * must return with queue_lock held.
1567 	 *
1568 	 * Decrementing device_busy without checking it is OK, as all such
1569 	 * cases (host limits or settings) should run the queue at some
1570 	 * later time.
1571 	 */
1572 	spin_lock_irq(q->queue_lock);
1573 	blk_requeue_request(q, req);
1574 	sdev->device_busy--;
1575 	if(sdev->device_busy == 0)
1576 		blk_plug_device(q);
1577  out:
1578 	/* must be careful here...if we trigger the ->remove() function
1579 	 * we cannot be holding the q lock */
1580 	spin_unlock_irq(q->queue_lock);
1581 	put_device(&sdev->sdev_gendev);
1582 	spin_lock_irq(q->queue_lock);
1583 }
1584 
1585 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1586 {
1587 	struct device *host_dev;
1588 	u64 bounce_limit = 0xffffffff;
1589 
1590 	if (shost->unchecked_isa_dma)
1591 		return BLK_BOUNCE_ISA;
1592 	/*
1593 	 * Platforms with virtual-DMA translation
1594 	 * hardware have no practical limit.
1595 	 */
1596 	if (!PCI_DMA_BUS_IS_PHYS)
1597 		return BLK_BOUNCE_ANY;
1598 
1599 	host_dev = scsi_get_device(shost);
1600 	if (host_dev && host_dev->dma_mask)
1601 		bounce_limit = *host_dev->dma_mask;
1602 
1603 	return bounce_limit;
1604 }
1605 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1606 
1607 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1608 					 request_fn_proc *request_fn)
1609 {
1610 	struct request_queue *q;
1611 	struct device *dev = shost->shost_gendev.parent;
1612 
1613 	q = blk_init_queue(request_fn, NULL);
1614 	if (!q)
1615 		return NULL;
1616 
1617 	/*
1618 	 * this limit is imposed by hardware restrictions
1619 	 */
1620 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1621 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1622 
1623 	blk_queue_max_sectors(q, shost->max_sectors);
1624 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1625 	blk_queue_segment_boundary(q, shost->dma_boundary);
1626 	dma_set_seg_boundary(dev, shost->dma_boundary);
1627 
1628 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1629 
1630 	/* New queue, no concurrency on queue_flags */
1631 	if (!shost->use_clustering)
1632 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1633 
1634 	/*
1635 	 * set a reasonable default alignment on word boundaries: the
1636 	 * host and device may alter it using
1637 	 * blk_queue_update_dma_alignment() later.
1638 	 */
1639 	blk_queue_dma_alignment(q, 0x03);
1640 
1641 	return q;
1642 }
1643 EXPORT_SYMBOL(__scsi_alloc_queue);
1644 
1645 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1646 {
1647 	struct request_queue *q;
1648 
1649 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1650 	if (!q)
1651 		return NULL;
1652 
1653 	blk_queue_prep_rq(q, scsi_prep_fn);
1654 	blk_queue_softirq_done(q, scsi_softirq_done);
1655 	blk_queue_rq_timed_out(q, scsi_times_out);
1656 	blk_queue_lld_busy(q, scsi_lld_busy);
1657 	return q;
1658 }
1659 
1660 void scsi_free_queue(struct request_queue *q)
1661 {
1662 	blk_cleanup_queue(q);
1663 }
1664 
1665 /*
1666  * Function:    scsi_block_requests()
1667  *
1668  * Purpose:     Utility function used by low-level drivers to prevent further
1669  *		commands from being queued to the device.
1670  *
1671  * Arguments:   shost       - Host in question
1672  *
1673  * Returns:     Nothing
1674  *
1675  * Lock status: No locks are assumed held.
1676  *
1677  * Notes:       There is no timer nor any other means by which the requests
1678  *		get unblocked other than the low-level driver calling
1679  *		scsi_unblock_requests().
1680  */
1681 void scsi_block_requests(struct Scsi_Host *shost)
1682 {
1683 	shost->host_self_blocked = 1;
1684 }
1685 EXPORT_SYMBOL(scsi_block_requests);
1686 
1687 /*
1688  * Function:    scsi_unblock_requests()
1689  *
1690  * Purpose:     Utility function used by low-level drivers to allow further
1691  *		commands from being queued to the device.
1692  *
1693  * Arguments:   shost       - Host in question
1694  *
1695  * Returns:     Nothing
1696  *
1697  * Lock status: No locks are assumed held.
1698  *
1699  * Notes:       There is no timer nor any other means by which the requests
1700  *		get unblocked other than the low-level driver calling
1701  *		scsi_unblock_requests().
1702  *
1703  *		This is done as an API function so that changes to the
1704  *		internals of the scsi mid-layer won't require wholesale
1705  *		changes to drivers that use this feature.
1706  */
1707 void scsi_unblock_requests(struct Scsi_Host *shost)
1708 {
1709 	shost->host_self_blocked = 0;
1710 	scsi_run_host_queues(shost);
1711 }
1712 EXPORT_SYMBOL(scsi_unblock_requests);
1713 
1714 int __init scsi_init_queue(void)
1715 {
1716 	int i;
1717 
1718 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1719 					   sizeof(struct scsi_data_buffer),
1720 					   0, 0, NULL);
1721 	if (!scsi_sdb_cache) {
1722 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1723 		return -ENOMEM;
1724 	}
1725 
1726 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1727 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1728 		int size = sgp->size * sizeof(struct scatterlist);
1729 
1730 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1731 				SLAB_HWCACHE_ALIGN, NULL);
1732 		if (!sgp->slab) {
1733 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1734 					sgp->name);
1735 			goto cleanup_sdb;
1736 		}
1737 
1738 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1739 						     sgp->slab);
1740 		if (!sgp->pool) {
1741 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1742 					sgp->name);
1743 			goto cleanup_sdb;
1744 		}
1745 	}
1746 
1747 	return 0;
1748 
1749 cleanup_sdb:
1750 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1751 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1752 		if (sgp->pool)
1753 			mempool_destroy(sgp->pool);
1754 		if (sgp->slab)
1755 			kmem_cache_destroy(sgp->slab);
1756 	}
1757 	kmem_cache_destroy(scsi_sdb_cache);
1758 
1759 	return -ENOMEM;
1760 }
1761 
1762 void scsi_exit_queue(void)
1763 {
1764 	int i;
1765 
1766 	kmem_cache_destroy(scsi_sdb_cache);
1767 
1768 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1769 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1770 		mempool_destroy(sgp->pool);
1771 		kmem_cache_destroy(sgp->slab);
1772 	}
1773 }
1774 
1775 /**
1776  *	scsi_mode_select - issue a mode select
1777  *	@sdev:	SCSI device to be queried
1778  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1779  *	@sp:	Save page bit (0 == don't save, 1 == save)
1780  *	@modepage: mode page being requested
1781  *	@buffer: request buffer (may not be smaller than eight bytes)
1782  *	@len:	length of request buffer.
1783  *	@timeout: command timeout
1784  *	@retries: number of retries before failing
1785  *	@data: returns a structure abstracting the mode header data
1786  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1787  *		must be SCSI_SENSE_BUFFERSIZE big.
1788  *
1789  *	Returns zero if successful; negative error number or scsi
1790  *	status on error
1791  *
1792  */
1793 int
1794 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1795 		 unsigned char *buffer, int len, int timeout, int retries,
1796 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1797 {
1798 	unsigned char cmd[10];
1799 	unsigned char *real_buffer;
1800 	int ret;
1801 
1802 	memset(cmd, 0, sizeof(cmd));
1803 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1804 
1805 	if (sdev->use_10_for_ms) {
1806 		if (len > 65535)
1807 			return -EINVAL;
1808 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1809 		if (!real_buffer)
1810 			return -ENOMEM;
1811 		memcpy(real_buffer + 8, buffer, len);
1812 		len += 8;
1813 		real_buffer[0] = 0;
1814 		real_buffer[1] = 0;
1815 		real_buffer[2] = data->medium_type;
1816 		real_buffer[3] = data->device_specific;
1817 		real_buffer[4] = data->longlba ? 0x01 : 0;
1818 		real_buffer[5] = 0;
1819 		real_buffer[6] = data->block_descriptor_length >> 8;
1820 		real_buffer[7] = data->block_descriptor_length;
1821 
1822 		cmd[0] = MODE_SELECT_10;
1823 		cmd[7] = len >> 8;
1824 		cmd[8] = len;
1825 	} else {
1826 		if (len > 255 || data->block_descriptor_length > 255 ||
1827 		    data->longlba)
1828 			return -EINVAL;
1829 
1830 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1831 		if (!real_buffer)
1832 			return -ENOMEM;
1833 		memcpy(real_buffer + 4, buffer, len);
1834 		len += 4;
1835 		real_buffer[0] = 0;
1836 		real_buffer[1] = data->medium_type;
1837 		real_buffer[2] = data->device_specific;
1838 		real_buffer[3] = data->block_descriptor_length;
1839 
1840 
1841 		cmd[0] = MODE_SELECT;
1842 		cmd[4] = len;
1843 	}
1844 
1845 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1846 			       sshdr, timeout, retries, NULL);
1847 	kfree(real_buffer);
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(scsi_mode_select);
1851 
1852 /**
1853  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1854  *	@sdev:	SCSI device to be queried
1855  *	@dbd:	set if mode sense will allow block descriptors to be returned
1856  *	@modepage: mode page being requested
1857  *	@buffer: request buffer (may not be smaller than eight bytes)
1858  *	@len:	length of request buffer.
1859  *	@timeout: command timeout
1860  *	@retries: number of retries before failing
1861  *	@data: returns a structure abstracting the mode header data
1862  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1863  *		must be SCSI_SENSE_BUFFERSIZE big.
1864  *
1865  *	Returns zero if unsuccessful, or the header offset (either 4
1866  *	or 8 depending on whether a six or ten byte command was
1867  *	issued) if successful.
1868  */
1869 int
1870 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1871 		  unsigned char *buffer, int len, int timeout, int retries,
1872 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1873 {
1874 	unsigned char cmd[12];
1875 	int use_10_for_ms;
1876 	int header_length;
1877 	int result;
1878 	struct scsi_sense_hdr my_sshdr;
1879 
1880 	memset(data, 0, sizeof(*data));
1881 	memset(&cmd[0], 0, 12);
1882 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1883 	cmd[2] = modepage;
1884 
1885 	/* caller might not be interested in sense, but we need it */
1886 	if (!sshdr)
1887 		sshdr = &my_sshdr;
1888 
1889  retry:
1890 	use_10_for_ms = sdev->use_10_for_ms;
1891 
1892 	if (use_10_for_ms) {
1893 		if (len < 8)
1894 			len = 8;
1895 
1896 		cmd[0] = MODE_SENSE_10;
1897 		cmd[8] = len;
1898 		header_length = 8;
1899 	} else {
1900 		if (len < 4)
1901 			len = 4;
1902 
1903 		cmd[0] = MODE_SENSE;
1904 		cmd[4] = len;
1905 		header_length = 4;
1906 	}
1907 
1908 	memset(buffer, 0, len);
1909 
1910 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1911 				  sshdr, timeout, retries, NULL);
1912 
1913 	/* This code looks awful: what it's doing is making sure an
1914 	 * ILLEGAL REQUEST sense return identifies the actual command
1915 	 * byte as the problem.  MODE_SENSE commands can return
1916 	 * ILLEGAL REQUEST if the code page isn't supported */
1917 
1918 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1919 	    (driver_byte(result) & DRIVER_SENSE)) {
1920 		if (scsi_sense_valid(sshdr)) {
1921 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1922 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1923 				/*
1924 				 * Invalid command operation code
1925 				 */
1926 				sdev->use_10_for_ms = 0;
1927 				goto retry;
1928 			}
1929 		}
1930 	}
1931 
1932 	if(scsi_status_is_good(result)) {
1933 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1934 			     (modepage == 6 || modepage == 8))) {
1935 			/* Initio breakage? */
1936 			header_length = 0;
1937 			data->length = 13;
1938 			data->medium_type = 0;
1939 			data->device_specific = 0;
1940 			data->longlba = 0;
1941 			data->block_descriptor_length = 0;
1942 		} else if(use_10_for_ms) {
1943 			data->length = buffer[0]*256 + buffer[1] + 2;
1944 			data->medium_type = buffer[2];
1945 			data->device_specific = buffer[3];
1946 			data->longlba = buffer[4] & 0x01;
1947 			data->block_descriptor_length = buffer[6]*256
1948 				+ buffer[7];
1949 		} else {
1950 			data->length = buffer[0] + 1;
1951 			data->medium_type = buffer[1];
1952 			data->device_specific = buffer[2];
1953 			data->block_descriptor_length = buffer[3];
1954 		}
1955 		data->header_length = header_length;
1956 	}
1957 
1958 	return result;
1959 }
1960 EXPORT_SYMBOL(scsi_mode_sense);
1961 
1962 /**
1963  *	scsi_test_unit_ready - test if unit is ready
1964  *	@sdev:	scsi device to change the state of.
1965  *	@timeout: command timeout
1966  *	@retries: number of retries before failing
1967  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1968  *		returning sense. Make sure that this is cleared before passing
1969  *		in.
1970  *
1971  *	Returns zero if unsuccessful or an error if TUR failed.  For
1972  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1973  *	translated to success, with the ->changed flag updated.
1974  **/
1975 int
1976 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1977 		     struct scsi_sense_hdr *sshdr_external)
1978 {
1979 	char cmd[] = {
1980 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1981 	};
1982 	struct scsi_sense_hdr *sshdr;
1983 	int result;
1984 
1985 	if (!sshdr_external)
1986 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1987 	else
1988 		sshdr = sshdr_external;
1989 
1990 	/* try to eat the UNIT_ATTENTION if there are enough retries */
1991 	do {
1992 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1993 					  timeout, retries, NULL);
1994 		if (sdev->removable && scsi_sense_valid(sshdr) &&
1995 		    sshdr->sense_key == UNIT_ATTENTION)
1996 			sdev->changed = 1;
1997 	} while (scsi_sense_valid(sshdr) &&
1998 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
1999 
2000 	if (!sshdr)
2001 		/* could not allocate sense buffer, so can't process it */
2002 		return result;
2003 
2004 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2005 	    (sshdr->sense_key == UNIT_ATTENTION ||
2006 	     sshdr->sense_key == NOT_READY)) {
2007 		sdev->changed = 1;
2008 		result = 0;
2009 	}
2010 	if (!sshdr_external)
2011 		kfree(sshdr);
2012 	return result;
2013 }
2014 EXPORT_SYMBOL(scsi_test_unit_ready);
2015 
2016 /**
2017  *	scsi_device_set_state - Take the given device through the device state model.
2018  *	@sdev:	scsi device to change the state of.
2019  *	@state:	state to change to.
2020  *
2021  *	Returns zero if unsuccessful or an error if the requested
2022  *	transition is illegal.
2023  */
2024 int
2025 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2026 {
2027 	enum scsi_device_state oldstate = sdev->sdev_state;
2028 
2029 	if (state == oldstate)
2030 		return 0;
2031 
2032 	switch (state) {
2033 	case SDEV_CREATED:
2034 		switch (oldstate) {
2035 		case SDEV_CREATED_BLOCK:
2036 			break;
2037 		default:
2038 			goto illegal;
2039 		}
2040 		break;
2041 
2042 	case SDEV_RUNNING:
2043 		switch (oldstate) {
2044 		case SDEV_CREATED:
2045 		case SDEV_OFFLINE:
2046 		case SDEV_QUIESCE:
2047 		case SDEV_BLOCK:
2048 			break;
2049 		default:
2050 			goto illegal;
2051 		}
2052 		break;
2053 
2054 	case SDEV_QUIESCE:
2055 		switch (oldstate) {
2056 		case SDEV_RUNNING:
2057 		case SDEV_OFFLINE:
2058 			break;
2059 		default:
2060 			goto illegal;
2061 		}
2062 		break;
2063 
2064 	case SDEV_OFFLINE:
2065 		switch (oldstate) {
2066 		case SDEV_CREATED:
2067 		case SDEV_RUNNING:
2068 		case SDEV_QUIESCE:
2069 		case SDEV_BLOCK:
2070 			break;
2071 		default:
2072 			goto illegal;
2073 		}
2074 		break;
2075 
2076 	case SDEV_BLOCK:
2077 		switch (oldstate) {
2078 		case SDEV_RUNNING:
2079 		case SDEV_CREATED_BLOCK:
2080 			break;
2081 		default:
2082 			goto illegal;
2083 		}
2084 		break;
2085 
2086 	case SDEV_CREATED_BLOCK:
2087 		switch (oldstate) {
2088 		case SDEV_CREATED:
2089 			break;
2090 		default:
2091 			goto illegal;
2092 		}
2093 		break;
2094 
2095 	case SDEV_CANCEL:
2096 		switch (oldstate) {
2097 		case SDEV_CREATED:
2098 		case SDEV_RUNNING:
2099 		case SDEV_QUIESCE:
2100 		case SDEV_OFFLINE:
2101 		case SDEV_BLOCK:
2102 			break;
2103 		default:
2104 			goto illegal;
2105 		}
2106 		break;
2107 
2108 	case SDEV_DEL:
2109 		switch (oldstate) {
2110 		case SDEV_CREATED:
2111 		case SDEV_RUNNING:
2112 		case SDEV_OFFLINE:
2113 		case SDEV_CANCEL:
2114 			break;
2115 		default:
2116 			goto illegal;
2117 		}
2118 		break;
2119 
2120 	}
2121 	sdev->sdev_state = state;
2122 	return 0;
2123 
2124  illegal:
2125 	SCSI_LOG_ERROR_RECOVERY(1,
2126 				sdev_printk(KERN_ERR, sdev,
2127 					    "Illegal state transition %s->%s\n",
2128 					    scsi_device_state_name(oldstate),
2129 					    scsi_device_state_name(state))
2130 				);
2131 	return -EINVAL;
2132 }
2133 EXPORT_SYMBOL(scsi_device_set_state);
2134 
2135 /**
2136  * 	sdev_evt_emit - emit a single SCSI device uevent
2137  *	@sdev: associated SCSI device
2138  *	@evt: event to emit
2139  *
2140  *	Send a single uevent (scsi_event) to the associated scsi_device.
2141  */
2142 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2143 {
2144 	int idx = 0;
2145 	char *envp[3];
2146 
2147 	switch (evt->evt_type) {
2148 	case SDEV_EVT_MEDIA_CHANGE:
2149 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2150 		break;
2151 
2152 	default:
2153 		/* do nothing */
2154 		break;
2155 	}
2156 
2157 	envp[idx++] = NULL;
2158 
2159 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2160 }
2161 
2162 /**
2163  * 	sdev_evt_thread - send a uevent for each scsi event
2164  *	@work: work struct for scsi_device
2165  *
2166  *	Dispatch queued events to their associated scsi_device kobjects
2167  *	as uevents.
2168  */
2169 void scsi_evt_thread(struct work_struct *work)
2170 {
2171 	struct scsi_device *sdev;
2172 	LIST_HEAD(event_list);
2173 
2174 	sdev = container_of(work, struct scsi_device, event_work);
2175 
2176 	while (1) {
2177 		struct scsi_event *evt;
2178 		struct list_head *this, *tmp;
2179 		unsigned long flags;
2180 
2181 		spin_lock_irqsave(&sdev->list_lock, flags);
2182 		list_splice_init(&sdev->event_list, &event_list);
2183 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2184 
2185 		if (list_empty(&event_list))
2186 			break;
2187 
2188 		list_for_each_safe(this, tmp, &event_list) {
2189 			evt = list_entry(this, struct scsi_event, node);
2190 			list_del(&evt->node);
2191 			scsi_evt_emit(sdev, evt);
2192 			kfree(evt);
2193 		}
2194 	}
2195 }
2196 
2197 /**
2198  * 	sdev_evt_send - send asserted event to uevent thread
2199  *	@sdev: scsi_device event occurred on
2200  *	@evt: event to send
2201  *
2202  *	Assert scsi device event asynchronously.
2203  */
2204 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2205 {
2206 	unsigned long flags;
2207 
2208 #if 0
2209 	/* FIXME: currently this check eliminates all media change events
2210 	 * for polled devices.  Need to update to discriminate between AN
2211 	 * and polled events */
2212 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2213 		kfree(evt);
2214 		return;
2215 	}
2216 #endif
2217 
2218 	spin_lock_irqsave(&sdev->list_lock, flags);
2219 	list_add_tail(&evt->node, &sdev->event_list);
2220 	schedule_work(&sdev->event_work);
2221 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2222 }
2223 EXPORT_SYMBOL_GPL(sdev_evt_send);
2224 
2225 /**
2226  * 	sdev_evt_alloc - allocate a new scsi event
2227  *	@evt_type: type of event to allocate
2228  *	@gfpflags: GFP flags for allocation
2229  *
2230  *	Allocates and returns a new scsi_event.
2231  */
2232 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2233 				  gfp_t gfpflags)
2234 {
2235 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2236 	if (!evt)
2237 		return NULL;
2238 
2239 	evt->evt_type = evt_type;
2240 	INIT_LIST_HEAD(&evt->node);
2241 
2242 	/* evt_type-specific initialization, if any */
2243 	switch (evt_type) {
2244 	case SDEV_EVT_MEDIA_CHANGE:
2245 	default:
2246 		/* do nothing */
2247 		break;
2248 	}
2249 
2250 	return evt;
2251 }
2252 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2253 
2254 /**
2255  * 	sdev_evt_send_simple - send asserted event to uevent thread
2256  *	@sdev: scsi_device event occurred on
2257  *	@evt_type: type of event to send
2258  *	@gfpflags: GFP flags for allocation
2259  *
2260  *	Assert scsi device event asynchronously, given an event type.
2261  */
2262 void sdev_evt_send_simple(struct scsi_device *sdev,
2263 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2264 {
2265 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2266 	if (!evt) {
2267 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2268 			    evt_type);
2269 		return;
2270 	}
2271 
2272 	sdev_evt_send(sdev, evt);
2273 }
2274 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2275 
2276 /**
2277  *	scsi_device_quiesce - Block user issued commands.
2278  *	@sdev:	scsi device to quiesce.
2279  *
2280  *	This works by trying to transition to the SDEV_QUIESCE state
2281  *	(which must be a legal transition).  When the device is in this
2282  *	state, only special requests will be accepted, all others will
2283  *	be deferred.  Since special requests may also be requeued requests,
2284  *	a successful return doesn't guarantee the device will be
2285  *	totally quiescent.
2286  *
2287  *	Must be called with user context, may sleep.
2288  *
2289  *	Returns zero if unsuccessful or an error if not.
2290  */
2291 int
2292 scsi_device_quiesce(struct scsi_device *sdev)
2293 {
2294 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2295 	if (err)
2296 		return err;
2297 
2298 	scsi_run_queue(sdev->request_queue);
2299 	while (sdev->device_busy) {
2300 		msleep_interruptible(200);
2301 		scsi_run_queue(sdev->request_queue);
2302 	}
2303 	return 0;
2304 }
2305 EXPORT_SYMBOL(scsi_device_quiesce);
2306 
2307 /**
2308  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2309  *	@sdev:	scsi device to resume.
2310  *
2311  *	Moves the device from quiesced back to running and restarts the
2312  *	queues.
2313  *
2314  *	Must be called with user context, may sleep.
2315  */
2316 void
2317 scsi_device_resume(struct scsi_device *sdev)
2318 {
2319 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2320 		return;
2321 	scsi_run_queue(sdev->request_queue);
2322 }
2323 EXPORT_SYMBOL(scsi_device_resume);
2324 
2325 static void
2326 device_quiesce_fn(struct scsi_device *sdev, void *data)
2327 {
2328 	scsi_device_quiesce(sdev);
2329 }
2330 
2331 void
2332 scsi_target_quiesce(struct scsi_target *starget)
2333 {
2334 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2335 }
2336 EXPORT_SYMBOL(scsi_target_quiesce);
2337 
2338 static void
2339 device_resume_fn(struct scsi_device *sdev, void *data)
2340 {
2341 	scsi_device_resume(sdev);
2342 }
2343 
2344 void
2345 scsi_target_resume(struct scsi_target *starget)
2346 {
2347 	starget_for_each_device(starget, NULL, device_resume_fn);
2348 }
2349 EXPORT_SYMBOL(scsi_target_resume);
2350 
2351 /**
2352  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2353  * @sdev:	device to block
2354  *
2355  * Block request made by scsi lld's to temporarily stop all
2356  * scsi commands on the specified device.  Called from interrupt
2357  * or normal process context.
2358  *
2359  * Returns zero if successful or error if not
2360  *
2361  * Notes:
2362  *	This routine transitions the device to the SDEV_BLOCK state
2363  *	(which must be a legal transition).  When the device is in this
2364  *	state, all commands are deferred until the scsi lld reenables
2365  *	the device with scsi_device_unblock or device_block_tmo fires.
2366  *	This routine assumes the host_lock is held on entry.
2367  */
2368 int
2369 scsi_internal_device_block(struct scsi_device *sdev)
2370 {
2371 	struct request_queue *q = sdev->request_queue;
2372 	unsigned long flags;
2373 	int err = 0;
2374 
2375 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2376 	if (err) {
2377 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2378 
2379 		if (err)
2380 			return err;
2381 	}
2382 
2383 	/*
2384 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2385 	 * block layer from calling the midlayer with this device's
2386 	 * request queue.
2387 	 */
2388 	spin_lock_irqsave(q->queue_lock, flags);
2389 	blk_stop_queue(q);
2390 	spin_unlock_irqrestore(q->queue_lock, flags);
2391 
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2395 
2396 /**
2397  * scsi_internal_device_unblock - resume a device after a block request
2398  * @sdev:	device to resume
2399  *
2400  * Called by scsi lld's or the midlayer to restart the device queue
2401  * for the previously suspended scsi device.  Called from interrupt or
2402  * normal process context.
2403  *
2404  * Returns zero if successful or error if not.
2405  *
2406  * Notes:
2407  *	This routine transitions the device to the SDEV_RUNNING state
2408  *	(which must be a legal transition) allowing the midlayer to
2409  *	goose the queue for this device.  This routine assumes the
2410  *	host_lock is held upon entry.
2411  */
2412 int
2413 scsi_internal_device_unblock(struct scsi_device *sdev)
2414 {
2415 	struct request_queue *q = sdev->request_queue;
2416 	unsigned long flags;
2417 
2418 	/*
2419 	 * Try to transition the scsi device to SDEV_RUNNING
2420 	 * and goose the device queue if successful.
2421 	 */
2422 	if (sdev->sdev_state == SDEV_BLOCK)
2423 		sdev->sdev_state = SDEV_RUNNING;
2424 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2425 		sdev->sdev_state = SDEV_CREATED;
2426 	else
2427 		return -EINVAL;
2428 
2429 	spin_lock_irqsave(q->queue_lock, flags);
2430 	blk_start_queue(q);
2431 	spin_unlock_irqrestore(q->queue_lock, flags);
2432 
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2436 
2437 static void
2438 device_block(struct scsi_device *sdev, void *data)
2439 {
2440 	scsi_internal_device_block(sdev);
2441 }
2442 
2443 static int
2444 target_block(struct device *dev, void *data)
2445 {
2446 	if (scsi_is_target_device(dev))
2447 		starget_for_each_device(to_scsi_target(dev), NULL,
2448 					device_block);
2449 	return 0;
2450 }
2451 
2452 void
2453 scsi_target_block(struct device *dev)
2454 {
2455 	if (scsi_is_target_device(dev))
2456 		starget_for_each_device(to_scsi_target(dev), NULL,
2457 					device_block);
2458 	else
2459 		device_for_each_child(dev, NULL, target_block);
2460 }
2461 EXPORT_SYMBOL_GPL(scsi_target_block);
2462 
2463 static void
2464 device_unblock(struct scsi_device *sdev, void *data)
2465 {
2466 	scsi_internal_device_unblock(sdev);
2467 }
2468 
2469 static int
2470 target_unblock(struct device *dev, void *data)
2471 {
2472 	if (scsi_is_target_device(dev))
2473 		starget_for_each_device(to_scsi_target(dev), NULL,
2474 					device_unblock);
2475 	return 0;
2476 }
2477 
2478 void
2479 scsi_target_unblock(struct device *dev)
2480 {
2481 	if (scsi_is_target_device(dev))
2482 		starget_for_each_device(to_scsi_target(dev), NULL,
2483 					device_unblock);
2484 	else
2485 		device_for_each_child(dev, NULL, target_unblock);
2486 }
2487 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2488 
2489 /**
2490  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2491  * @sgl:	scatter-gather list
2492  * @sg_count:	number of segments in sg
2493  * @offset:	offset in bytes into sg, on return offset into the mapped area
2494  * @len:	bytes to map, on return number of bytes mapped
2495  *
2496  * Returns virtual address of the start of the mapped page
2497  */
2498 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2499 			  size_t *offset, size_t *len)
2500 {
2501 	int i;
2502 	size_t sg_len = 0, len_complete = 0;
2503 	struct scatterlist *sg;
2504 	struct page *page;
2505 
2506 	WARN_ON(!irqs_disabled());
2507 
2508 	for_each_sg(sgl, sg, sg_count, i) {
2509 		len_complete = sg_len; /* Complete sg-entries */
2510 		sg_len += sg->length;
2511 		if (sg_len > *offset)
2512 			break;
2513 	}
2514 
2515 	if (unlikely(i == sg_count)) {
2516 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2517 			"elements %d\n",
2518 		       __func__, sg_len, *offset, sg_count);
2519 		WARN_ON(1);
2520 		return NULL;
2521 	}
2522 
2523 	/* Offset starting from the beginning of first page in this sg-entry */
2524 	*offset = *offset - len_complete + sg->offset;
2525 
2526 	/* Assumption: contiguous pages can be accessed as "page + i" */
2527 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2528 	*offset &= ~PAGE_MASK;
2529 
2530 	/* Bytes in this sg-entry from *offset to the end of the page */
2531 	sg_len = PAGE_SIZE - *offset;
2532 	if (*len > sg_len)
2533 		*len = sg_len;
2534 
2535 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2536 }
2537 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2538 
2539 /**
2540  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2541  * @virt:	virtual address to be unmapped
2542  */
2543 void scsi_kunmap_atomic_sg(void *virt)
2544 {
2545 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2546 }
2547 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2548