1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 blk_end_request_all(req, 0); 753 754 scsi_release_buffers(cmd); 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 761 762 /* 763 * Next deal with any sectors which we were able to correctly 764 * handle. 765 */ 766 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 767 "%d bytes done.\n", 768 blk_rq_sectors(req), good_bytes)); 769 770 /* 771 * Recovered errors need reporting, but they're always treated 772 * as success, so fiddle the result code here. For BLOCK_PC 773 * we already took a copy of the original into rq->errors which 774 * is what gets returned to the user 775 */ 776 if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) { 777 if (!(req->cmd_flags & REQ_QUIET)) 778 scsi_print_sense("", cmd); 779 result = 0; 780 /* BLOCK_PC may have set error */ 781 error = 0; 782 } 783 784 /* 785 * A number of bytes were successfully read. If there 786 * are leftovers and there is some kind of error 787 * (result != 0), retry the rest. 788 */ 789 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 790 return; 791 792 error = -EIO; 793 794 if (host_byte(result) == DID_RESET) { 795 /* Third party bus reset or reset for error recovery 796 * reasons. Just retry the command and see what 797 * happens. 798 */ 799 action = ACTION_RETRY; 800 } else if (sense_valid && !sense_deferred) { 801 switch (sshdr.sense_key) { 802 case UNIT_ATTENTION: 803 if (cmd->device->removable) { 804 /* Detected disc change. Set a bit 805 * and quietly refuse further access. 806 */ 807 cmd->device->changed = 1; 808 description = "Media Changed"; 809 action = ACTION_FAIL; 810 } else { 811 /* Must have been a power glitch, or a 812 * bus reset. Could not have been a 813 * media change, so we just retry the 814 * command and see what happens. 815 */ 816 action = ACTION_RETRY; 817 } 818 break; 819 case ILLEGAL_REQUEST: 820 /* If we had an ILLEGAL REQUEST returned, then 821 * we may have performed an unsupported 822 * command. The only thing this should be 823 * would be a ten byte read where only a six 824 * byte read was supported. Also, on a system 825 * where READ CAPACITY failed, we may have 826 * read past the end of the disk. 827 */ 828 if ((cmd->device->use_10_for_rw && 829 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 830 (cmd->cmnd[0] == READ_10 || 831 cmd->cmnd[0] == WRITE_10)) { 832 /* This will issue a new 6-byte command. */ 833 cmd->device->use_10_for_rw = 0; 834 action = ACTION_REPREP; 835 } else if (sshdr.asc == 0x10) /* DIX */ { 836 description = "Host Data Integrity Failure"; 837 action = ACTION_FAIL; 838 error = -EILSEQ; 839 } else 840 action = ACTION_FAIL; 841 break; 842 case ABORTED_COMMAND: 843 action = ACTION_FAIL; 844 if (sshdr.asc == 0x10) { /* DIF */ 845 description = "Target Data Integrity Failure"; 846 error = -EILSEQ; 847 } 848 break; 849 case NOT_READY: 850 /* If the device is in the process of becoming 851 * ready, or has a temporary blockage, retry. 852 */ 853 if (sshdr.asc == 0x04) { 854 switch (sshdr.ascq) { 855 case 0x01: /* becoming ready */ 856 case 0x04: /* format in progress */ 857 case 0x05: /* rebuild in progress */ 858 case 0x06: /* recalculation in progress */ 859 case 0x07: /* operation in progress */ 860 case 0x08: /* Long write in progress */ 861 case 0x09: /* self test in progress */ 862 action = ACTION_DELAYED_RETRY; 863 break; 864 default: 865 description = "Device not ready"; 866 action = ACTION_FAIL; 867 break; 868 } 869 } else { 870 description = "Device not ready"; 871 action = ACTION_FAIL; 872 } 873 break; 874 case VOLUME_OVERFLOW: 875 /* See SSC3rXX or current. */ 876 action = ACTION_FAIL; 877 break; 878 default: 879 description = "Unhandled sense code"; 880 action = ACTION_FAIL; 881 break; 882 } 883 } else { 884 description = "Unhandled error code"; 885 action = ACTION_FAIL; 886 } 887 888 switch (action) { 889 case ACTION_FAIL: 890 /* Give up and fail the remainder of the request */ 891 scsi_release_buffers(cmd); 892 if (!(req->cmd_flags & REQ_QUIET)) { 893 if (description) 894 scmd_printk(KERN_INFO, cmd, "%s\n", 895 description); 896 scsi_print_result(cmd); 897 if (driver_byte(result) & DRIVER_SENSE) 898 scsi_print_sense("", cmd); 899 } 900 blk_end_request_all(req, -EIO); 901 scsi_next_command(cmd); 902 break; 903 case ACTION_REPREP: 904 /* Unprep the request and put it back at the head of the queue. 905 * A new command will be prepared and issued. 906 */ 907 scsi_release_buffers(cmd); 908 scsi_requeue_command(q, cmd); 909 break; 910 case ACTION_RETRY: 911 /* Retry the same command immediately */ 912 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 913 break; 914 case ACTION_DELAYED_RETRY: 915 /* Retry the same command after a delay */ 916 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 917 break; 918 } 919 } 920 921 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 922 gfp_t gfp_mask) 923 { 924 int count; 925 926 /* 927 * If sg table allocation fails, requeue request later. 928 */ 929 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 930 gfp_mask))) { 931 return BLKPREP_DEFER; 932 } 933 934 req->buffer = NULL; 935 936 /* 937 * Next, walk the list, and fill in the addresses and sizes of 938 * each segment. 939 */ 940 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 941 BUG_ON(count > sdb->table.nents); 942 sdb->table.nents = count; 943 sdb->length = blk_rq_bytes(req); 944 return BLKPREP_OK; 945 } 946 947 /* 948 * Function: scsi_init_io() 949 * 950 * Purpose: SCSI I/O initialize function. 951 * 952 * Arguments: cmd - Command descriptor we wish to initialize 953 * 954 * Returns: 0 on success 955 * BLKPREP_DEFER if the failure is retryable 956 * BLKPREP_KILL if the failure is fatal 957 */ 958 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 959 { 960 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 961 if (error) 962 goto err_exit; 963 964 if (blk_bidi_rq(cmd->request)) { 965 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 966 scsi_sdb_cache, GFP_ATOMIC); 967 if (!bidi_sdb) { 968 error = BLKPREP_DEFER; 969 goto err_exit; 970 } 971 972 cmd->request->next_rq->special = bidi_sdb; 973 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 974 GFP_ATOMIC); 975 if (error) 976 goto err_exit; 977 } 978 979 if (blk_integrity_rq(cmd->request)) { 980 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 981 int ivecs, count; 982 983 BUG_ON(prot_sdb == NULL); 984 ivecs = blk_rq_count_integrity_sg(cmd->request); 985 986 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 987 error = BLKPREP_DEFER; 988 goto err_exit; 989 } 990 991 count = blk_rq_map_integrity_sg(cmd->request, 992 prot_sdb->table.sgl); 993 BUG_ON(unlikely(count > ivecs)); 994 995 cmd->prot_sdb = prot_sdb; 996 cmd->prot_sdb->table.nents = count; 997 } 998 999 return BLKPREP_OK ; 1000 1001 err_exit: 1002 scsi_release_buffers(cmd); 1003 if (error == BLKPREP_KILL) 1004 scsi_put_command(cmd); 1005 else /* BLKPREP_DEFER */ 1006 scsi_unprep_request(cmd->request); 1007 1008 return error; 1009 } 1010 EXPORT_SYMBOL(scsi_init_io); 1011 1012 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1013 struct request *req) 1014 { 1015 struct scsi_cmnd *cmd; 1016 1017 if (!req->special) { 1018 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1019 if (unlikely(!cmd)) 1020 return NULL; 1021 req->special = cmd; 1022 } else { 1023 cmd = req->special; 1024 } 1025 1026 /* pull a tag out of the request if we have one */ 1027 cmd->tag = req->tag; 1028 cmd->request = req; 1029 1030 cmd->cmnd = req->cmd; 1031 1032 return cmd; 1033 } 1034 1035 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1036 { 1037 struct scsi_cmnd *cmd; 1038 int ret = scsi_prep_state_check(sdev, req); 1039 1040 if (ret != BLKPREP_OK) 1041 return ret; 1042 1043 cmd = scsi_get_cmd_from_req(sdev, req); 1044 if (unlikely(!cmd)) 1045 return BLKPREP_DEFER; 1046 1047 /* 1048 * BLOCK_PC requests may transfer data, in which case they must 1049 * a bio attached to them. Or they might contain a SCSI command 1050 * that does not transfer data, in which case they may optionally 1051 * submit a request without an attached bio. 1052 */ 1053 if (req->bio) { 1054 int ret; 1055 1056 BUG_ON(!req->nr_phys_segments); 1057 1058 ret = scsi_init_io(cmd, GFP_ATOMIC); 1059 if (unlikely(ret)) 1060 return ret; 1061 } else { 1062 BUG_ON(blk_rq_bytes(req)); 1063 1064 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1065 req->buffer = NULL; 1066 } 1067 1068 cmd->cmd_len = req->cmd_len; 1069 if (!blk_rq_bytes(req)) 1070 cmd->sc_data_direction = DMA_NONE; 1071 else if (rq_data_dir(req) == WRITE) 1072 cmd->sc_data_direction = DMA_TO_DEVICE; 1073 else 1074 cmd->sc_data_direction = DMA_FROM_DEVICE; 1075 1076 cmd->transfersize = blk_rq_bytes(req); 1077 cmd->allowed = req->retries; 1078 return BLKPREP_OK; 1079 } 1080 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1081 1082 /* 1083 * Setup a REQ_TYPE_FS command. These are simple read/write request 1084 * from filesystems that still need to be translated to SCSI CDBs from 1085 * the ULD. 1086 */ 1087 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1088 { 1089 struct scsi_cmnd *cmd; 1090 int ret = scsi_prep_state_check(sdev, req); 1091 1092 if (ret != BLKPREP_OK) 1093 return ret; 1094 1095 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1096 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1097 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1098 if (ret != BLKPREP_OK) 1099 return ret; 1100 } 1101 1102 /* 1103 * Filesystem requests must transfer data. 1104 */ 1105 BUG_ON(!req->nr_phys_segments); 1106 1107 cmd = scsi_get_cmd_from_req(sdev, req); 1108 if (unlikely(!cmd)) 1109 return BLKPREP_DEFER; 1110 1111 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1112 return scsi_init_io(cmd, GFP_ATOMIC); 1113 } 1114 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1115 1116 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1117 { 1118 int ret = BLKPREP_OK; 1119 1120 /* 1121 * If the device is not in running state we will reject some 1122 * or all commands. 1123 */ 1124 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1125 switch (sdev->sdev_state) { 1126 case SDEV_OFFLINE: 1127 /* 1128 * If the device is offline we refuse to process any 1129 * commands. The device must be brought online 1130 * before trying any recovery commands. 1131 */ 1132 sdev_printk(KERN_ERR, sdev, 1133 "rejecting I/O to offline device\n"); 1134 ret = BLKPREP_KILL; 1135 break; 1136 case SDEV_DEL: 1137 /* 1138 * If the device is fully deleted, we refuse to 1139 * process any commands as well. 1140 */ 1141 sdev_printk(KERN_ERR, sdev, 1142 "rejecting I/O to dead device\n"); 1143 ret = BLKPREP_KILL; 1144 break; 1145 case SDEV_QUIESCE: 1146 case SDEV_BLOCK: 1147 case SDEV_CREATED_BLOCK: 1148 /* 1149 * If the devices is blocked we defer normal commands. 1150 */ 1151 if (!(req->cmd_flags & REQ_PREEMPT)) 1152 ret = BLKPREP_DEFER; 1153 break; 1154 default: 1155 /* 1156 * For any other not fully online state we only allow 1157 * special commands. In particular any user initiated 1158 * command is not allowed. 1159 */ 1160 if (!(req->cmd_flags & REQ_PREEMPT)) 1161 ret = BLKPREP_KILL; 1162 break; 1163 } 1164 } 1165 return ret; 1166 } 1167 EXPORT_SYMBOL(scsi_prep_state_check); 1168 1169 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1170 { 1171 struct scsi_device *sdev = q->queuedata; 1172 1173 switch (ret) { 1174 case BLKPREP_KILL: 1175 req->errors = DID_NO_CONNECT << 16; 1176 /* release the command and kill it */ 1177 if (req->special) { 1178 struct scsi_cmnd *cmd = req->special; 1179 scsi_release_buffers(cmd); 1180 scsi_put_command(cmd); 1181 req->special = NULL; 1182 } 1183 break; 1184 case BLKPREP_DEFER: 1185 /* 1186 * If we defer, the blk_peek_request() returns NULL, but the 1187 * queue must be restarted, so we plug here if no returning 1188 * command will automatically do that. 1189 */ 1190 if (sdev->device_busy == 0) 1191 blk_plug_device(q); 1192 break; 1193 default: 1194 req->cmd_flags |= REQ_DONTPREP; 1195 } 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(scsi_prep_return); 1200 1201 int scsi_prep_fn(struct request_queue *q, struct request *req) 1202 { 1203 struct scsi_device *sdev = q->queuedata; 1204 int ret = BLKPREP_KILL; 1205 1206 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1207 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1208 return scsi_prep_return(q, req, ret); 1209 } 1210 EXPORT_SYMBOL(scsi_prep_fn); 1211 1212 /* 1213 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1214 * return 0. 1215 * 1216 * Called with the queue_lock held. 1217 */ 1218 static inline int scsi_dev_queue_ready(struct request_queue *q, 1219 struct scsi_device *sdev) 1220 { 1221 if (sdev->device_busy == 0 && sdev->device_blocked) { 1222 /* 1223 * unblock after device_blocked iterates to zero 1224 */ 1225 if (--sdev->device_blocked == 0) { 1226 SCSI_LOG_MLQUEUE(3, 1227 sdev_printk(KERN_INFO, sdev, 1228 "unblocking device at zero depth\n")); 1229 } else { 1230 blk_plug_device(q); 1231 return 0; 1232 } 1233 } 1234 if (scsi_device_is_busy(sdev)) 1235 return 0; 1236 1237 return 1; 1238 } 1239 1240 1241 /* 1242 * scsi_target_queue_ready: checks if there we can send commands to target 1243 * @sdev: scsi device on starget to check. 1244 * 1245 * Called with the host lock held. 1246 */ 1247 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1248 struct scsi_device *sdev) 1249 { 1250 struct scsi_target *starget = scsi_target(sdev); 1251 1252 if (starget->single_lun) { 1253 if (starget->starget_sdev_user && 1254 starget->starget_sdev_user != sdev) 1255 return 0; 1256 starget->starget_sdev_user = sdev; 1257 } 1258 1259 if (starget->target_busy == 0 && starget->target_blocked) { 1260 /* 1261 * unblock after target_blocked iterates to zero 1262 */ 1263 if (--starget->target_blocked == 0) { 1264 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1265 "unblocking target at zero depth\n")); 1266 } else 1267 return 0; 1268 } 1269 1270 if (scsi_target_is_busy(starget)) { 1271 if (list_empty(&sdev->starved_entry)) { 1272 list_add_tail(&sdev->starved_entry, 1273 &shost->starved_list); 1274 return 0; 1275 } 1276 } 1277 1278 /* We're OK to process the command, so we can't be starved */ 1279 if (!list_empty(&sdev->starved_entry)) 1280 list_del_init(&sdev->starved_entry); 1281 return 1; 1282 } 1283 1284 /* 1285 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1286 * return 0. We must end up running the queue again whenever 0 is 1287 * returned, else IO can hang. 1288 * 1289 * Called with host_lock held. 1290 */ 1291 static inline int scsi_host_queue_ready(struct request_queue *q, 1292 struct Scsi_Host *shost, 1293 struct scsi_device *sdev) 1294 { 1295 if (scsi_host_in_recovery(shost)) 1296 return 0; 1297 if (shost->host_busy == 0 && shost->host_blocked) { 1298 /* 1299 * unblock after host_blocked iterates to zero 1300 */ 1301 if (--shost->host_blocked == 0) { 1302 SCSI_LOG_MLQUEUE(3, 1303 printk("scsi%d unblocking host at zero depth\n", 1304 shost->host_no)); 1305 } else { 1306 return 0; 1307 } 1308 } 1309 if (scsi_host_is_busy(shost)) { 1310 if (list_empty(&sdev->starved_entry)) 1311 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1312 return 0; 1313 } 1314 1315 /* We're OK to process the command, so we can't be starved */ 1316 if (!list_empty(&sdev->starved_entry)) 1317 list_del_init(&sdev->starved_entry); 1318 1319 return 1; 1320 } 1321 1322 /* 1323 * Busy state exporting function for request stacking drivers. 1324 * 1325 * For efficiency, no lock is taken to check the busy state of 1326 * shost/starget/sdev, since the returned value is not guaranteed and 1327 * may be changed after request stacking drivers call the function, 1328 * regardless of taking lock or not. 1329 * 1330 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1331 * (e.g. !sdev), scsi needs to return 'not busy'. 1332 * Otherwise, request stacking drivers may hold requests forever. 1333 */ 1334 static int scsi_lld_busy(struct request_queue *q) 1335 { 1336 struct scsi_device *sdev = q->queuedata; 1337 struct Scsi_Host *shost; 1338 struct scsi_target *starget; 1339 1340 if (!sdev) 1341 return 0; 1342 1343 shost = sdev->host; 1344 starget = scsi_target(sdev); 1345 1346 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1347 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1348 return 1; 1349 1350 return 0; 1351 } 1352 1353 /* 1354 * Kill a request for a dead device 1355 */ 1356 static void scsi_kill_request(struct request *req, struct request_queue *q) 1357 { 1358 struct scsi_cmnd *cmd = req->special; 1359 struct scsi_device *sdev = cmd->device; 1360 struct scsi_target *starget = scsi_target(sdev); 1361 struct Scsi_Host *shost = sdev->host; 1362 1363 blk_start_request(req); 1364 1365 if (unlikely(cmd == NULL)) { 1366 printk(KERN_CRIT "impossible request in %s.\n", 1367 __func__); 1368 BUG(); 1369 } 1370 1371 scsi_init_cmd_errh(cmd); 1372 cmd->result = DID_NO_CONNECT << 16; 1373 atomic_inc(&cmd->device->iorequest_cnt); 1374 1375 /* 1376 * SCSI request completion path will do scsi_device_unbusy(), 1377 * bump busy counts. To bump the counters, we need to dance 1378 * with the locks as normal issue path does. 1379 */ 1380 sdev->device_busy++; 1381 spin_unlock(sdev->request_queue->queue_lock); 1382 spin_lock(shost->host_lock); 1383 shost->host_busy++; 1384 starget->target_busy++; 1385 spin_unlock(shost->host_lock); 1386 spin_lock(sdev->request_queue->queue_lock); 1387 1388 blk_complete_request(req); 1389 } 1390 1391 static void scsi_softirq_done(struct request *rq) 1392 { 1393 struct scsi_cmnd *cmd = rq->special; 1394 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1395 int disposition; 1396 1397 INIT_LIST_HEAD(&cmd->eh_entry); 1398 1399 /* 1400 * Set the serial numbers back to zero 1401 */ 1402 cmd->serial_number = 0; 1403 1404 atomic_inc(&cmd->device->iodone_cnt); 1405 if (cmd->result) 1406 atomic_inc(&cmd->device->ioerr_cnt); 1407 1408 disposition = scsi_decide_disposition(cmd); 1409 if (disposition != SUCCESS && 1410 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1411 sdev_printk(KERN_ERR, cmd->device, 1412 "timing out command, waited %lus\n", 1413 wait_for/HZ); 1414 disposition = SUCCESS; 1415 } 1416 1417 scsi_log_completion(cmd, disposition); 1418 1419 switch (disposition) { 1420 case SUCCESS: 1421 scsi_finish_command(cmd); 1422 break; 1423 case NEEDS_RETRY: 1424 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1425 break; 1426 case ADD_TO_MLQUEUE: 1427 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1428 break; 1429 default: 1430 if (!scsi_eh_scmd_add(cmd, 0)) 1431 scsi_finish_command(cmd); 1432 } 1433 } 1434 1435 /* 1436 * Function: scsi_request_fn() 1437 * 1438 * Purpose: Main strategy routine for SCSI. 1439 * 1440 * Arguments: q - Pointer to actual queue. 1441 * 1442 * Returns: Nothing 1443 * 1444 * Lock status: IO request lock assumed to be held when called. 1445 */ 1446 static void scsi_request_fn(struct request_queue *q) 1447 { 1448 struct scsi_device *sdev = q->queuedata; 1449 struct Scsi_Host *shost; 1450 struct scsi_cmnd *cmd; 1451 struct request *req; 1452 1453 if (!sdev) { 1454 printk("scsi: killing requests for dead queue\n"); 1455 while ((req = blk_peek_request(q)) != NULL) 1456 scsi_kill_request(req, q); 1457 return; 1458 } 1459 1460 if(!get_device(&sdev->sdev_gendev)) 1461 /* We must be tearing the block queue down already */ 1462 return; 1463 1464 /* 1465 * To start with, we keep looping until the queue is empty, or until 1466 * the host is no longer able to accept any more requests. 1467 */ 1468 shost = sdev->host; 1469 while (!blk_queue_plugged(q)) { 1470 int rtn; 1471 /* 1472 * get next queueable request. We do this early to make sure 1473 * that the request is fully prepared even if we cannot 1474 * accept it. 1475 */ 1476 req = blk_peek_request(q); 1477 if (!req || !scsi_dev_queue_ready(q, sdev)) 1478 break; 1479 1480 if (unlikely(!scsi_device_online(sdev))) { 1481 sdev_printk(KERN_ERR, sdev, 1482 "rejecting I/O to offline device\n"); 1483 scsi_kill_request(req, q); 1484 continue; 1485 } 1486 1487 1488 /* 1489 * Remove the request from the request list. 1490 */ 1491 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1492 blk_start_request(req); 1493 sdev->device_busy++; 1494 1495 spin_unlock(q->queue_lock); 1496 cmd = req->special; 1497 if (unlikely(cmd == NULL)) { 1498 printk(KERN_CRIT "impossible request in %s.\n" 1499 "please mail a stack trace to " 1500 "linux-scsi@vger.kernel.org\n", 1501 __func__); 1502 blk_dump_rq_flags(req, "foo"); 1503 BUG(); 1504 } 1505 spin_lock(shost->host_lock); 1506 1507 /* 1508 * We hit this when the driver is using a host wide 1509 * tag map. For device level tag maps the queue_depth check 1510 * in the device ready fn would prevent us from trying 1511 * to allocate a tag. Since the map is a shared host resource 1512 * we add the dev to the starved list so it eventually gets 1513 * a run when a tag is freed. 1514 */ 1515 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1516 if (list_empty(&sdev->starved_entry)) 1517 list_add_tail(&sdev->starved_entry, 1518 &shost->starved_list); 1519 goto not_ready; 1520 } 1521 1522 if (!scsi_target_queue_ready(shost, sdev)) 1523 goto not_ready; 1524 1525 if (!scsi_host_queue_ready(q, shost, sdev)) 1526 goto not_ready; 1527 1528 scsi_target(sdev)->target_busy++; 1529 shost->host_busy++; 1530 1531 /* 1532 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1533 * take the lock again. 1534 */ 1535 spin_unlock_irq(shost->host_lock); 1536 1537 /* 1538 * Finally, initialize any error handling parameters, and set up 1539 * the timers for timeouts. 1540 */ 1541 scsi_init_cmd_errh(cmd); 1542 1543 /* 1544 * Dispatch the command to the low-level driver. 1545 */ 1546 rtn = scsi_dispatch_cmd(cmd); 1547 spin_lock_irq(q->queue_lock); 1548 if(rtn) { 1549 /* we're refusing the command; because of 1550 * the way locks get dropped, we need to 1551 * check here if plugging is required */ 1552 if(sdev->device_busy == 0) 1553 blk_plug_device(q); 1554 1555 break; 1556 } 1557 } 1558 1559 goto out; 1560 1561 not_ready: 1562 spin_unlock_irq(shost->host_lock); 1563 1564 /* 1565 * lock q, handle tag, requeue req, and decrement device_busy. We 1566 * must return with queue_lock held. 1567 * 1568 * Decrementing device_busy without checking it is OK, as all such 1569 * cases (host limits or settings) should run the queue at some 1570 * later time. 1571 */ 1572 spin_lock_irq(q->queue_lock); 1573 blk_requeue_request(q, req); 1574 sdev->device_busy--; 1575 if(sdev->device_busy == 0) 1576 blk_plug_device(q); 1577 out: 1578 /* must be careful here...if we trigger the ->remove() function 1579 * we cannot be holding the q lock */ 1580 spin_unlock_irq(q->queue_lock); 1581 put_device(&sdev->sdev_gendev); 1582 spin_lock_irq(q->queue_lock); 1583 } 1584 1585 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1586 { 1587 struct device *host_dev; 1588 u64 bounce_limit = 0xffffffff; 1589 1590 if (shost->unchecked_isa_dma) 1591 return BLK_BOUNCE_ISA; 1592 /* 1593 * Platforms with virtual-DMA translation 1594 * hardware have no practical limit. 1595 */ 1596 if (!PCI_DMA_BUS_IS_PHYS) 1597 return BLK_BOUNCE_ANY; 1598 1599 host_dev = scsi_get_device(shost); 1600 if (host_dev && host_dev->dma_mask) 1601 bounce_limit = *host_dev->dma_mask; 1602 1603 return bounce_limit; 1604 } 1605 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1606 1607 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1608 request_fn_proc *request_fn) 1609 { 1610 struct request_queue *q; 1611 struct device *dev = shost->shost_gendev.parent; 1612 1613 q = blk_init_queue(request_fn, NULL); 1614 if (!q) 1615 return NULL; 1616 1617 /* 1618 * this limit is imposed by hardware restrictions 1619 */ 1620 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1621 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1622 1623 blk_queue_max_sectors(q, shost->max_sectors); 1624 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1625 blk_queue_segment_boundary(q, shost->dma_boundary); 1626 dma_set_seg_boundary(dev, shost->dma_boundary); 1627 1628 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1629 1630 /* New queue, no concurrency on queue_flags */ 1631 if (!shost->use_clustering) 1632 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1633 1634 /* 1635 * set a reasonable default alignment on word boundaries: the 1636 * host and device may alter it using 1637 * blk_queue_update_dma_alignment() later. 1638 */ 1639 blk_queue_dma_alignment(q, 0x03); 1640 1641 return q; 1642 } 1643 EXPORT_SYMBOL(__scsi_alloc_queue); 1644 1645 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1646 { 1647 struct request_queue *q; 1648 1649 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1650 if (!q) 1651 return NULL; 1652 1653 blk_queue_prep_rq(q, scsi_prep_fn); 1654 blk_queue_softirq_done(q, scsi_softirq_done); 1655 blk_queue_rq_timed_out(q, scsi_times_out); 1656 blk_queue_lld_busy(q, scsi_lld_busy); 1657 return q; 1658 } 1659 1660 void scsi_free_queue(struct request_queue *q) 1661 { 1662 blk_cleanup_queue(q); 1663 } 1664 1665 /* 1666 * Function: scsi_block_requests() 1667 * 1668 * Purpose: Utility function used by low-level drivers to prevent further 1669 * commands from being queued to the device. 1670 * 1671 * Arguments: shost - Host in question 1672 * 1673 * Returns: Nothing 1674 * 1675 * Lock status: No locks are assumed held. 1676 * 1677 * Notes: There is no timer nor any other means by which the requests 1678 * get unblocked other than the low-level driver calling 1679 * scsi_unblock_requests(). 1680 */ 1681 void scsi_block_requests(struct Scsi_Host *shost) 1682 { 1683 shost->host_self_blocked = 1; 1684 } 1685 EXPORT_SYMBOL(scsi_block_requests); 1686 1687 /* 1688 * Function: scsi_unblock_requests() 1689 * 1690 * Purpose: Utility function used by low-level drivers to allow further 1691 * commands from being queued to the device. 1692 * 1693 * Arguments: shost - Host in question 1694 * 1695 * Returns: Nothing 1696 * 1697 * Lock status: No locks are assumed held. 1698 * 1699 * Notes: There is no timer nor any other means by which the requests 1700 * get unblocked other than the low-level driver calling 1701 * scsi_unblock_requests(). 1702 * 1703 * This is done as an API function so that changes to the 1704 * internals of the scsi mid-layer won't require wholesale 1705 * changes to drivers that use this feature. 1706 */ 1707 void scsi_unblock_requests(struct Scsi_Host *shost) 1708 { 1709 shost->host_self_blocked = 0; 1710 scsi_run_host_queues(shost); 1711 } 1712 EXPORT_SYMBOL(scsi_unblock_requests); 1713 1714 int __init scsi_init_queue(void) 1715 { 1716 int i; 1717 1718 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1719 sizeof(struct scsi_data_buffer), 1720 0, 0, NULL); 1721 if (!scsi_sdb_cache) { 1722 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1723 return -ENOMEM; 1724 } 1725 1726 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1727 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1728 int size = sgp->size * sizeof(struct scatterlist); 1729 1730 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1731 SLAB_HWCACHE_ALIGN, NULL); 1732 if (!sgp->slab) { 1733 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1734 sgp->name); 1735 goto cleanup_sdb; 1736 } 1737 1738 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1739 sgp->slab); 1740 if (!sgp->pool) { 1741 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1742 sgp->name); 1743 goto cleanup_sdb; 1744 } 1745 } 1746 1747 return 0; 1748 1749 cleanup_sdb: 1750 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1751 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1752 if (sgp->pool) 1753 mempool_destroy(sgp->pool); 1754 if (sgp->slab) 1755 kmem_cache_destroy(sgp->slab); 1756 } 1757 kmem_cache_destroy(scsi_sdb_cache); 1758 1759 return -ENOMEM; 1760 } 1761 1762 void scsi_exit_queue(void) 1763 { 1764 int i; 1765 1766 kmem_cache_destroy(scsi_sdb_cache); 1767 1768 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1769 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1770 mempool_destroy(sgp->pool); 1771 kmem_cache_destroy(sgp->slab); 1772 } 1773 } 1774 1775 /** 1776 * scsi_mode_select - issue a mode select 1777 * @sdev: SCSI device to be queried 1778 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1779 * @sp: Save page bit (0 == don't save, 1 == save) 1780 * @modepage: mode page being requested 1781 * @buffer: request buffer (may not be smaller than eight bytes) 1782 * @len: length of request buffer. 1783 * @timeout: command timeout 1784 * @retries: number of retries before failing 1785 * @data: returns a structure abstracting the mode header data 1786 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1787 * must be SCSI_SENSE_BUFFERSIZE big. 1788 * 1789 * Returns zero if successful; negative error number or scsi 1790 * status on error 1791 * 1792 */ 1793 int 1794 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1795 unsigned char *buffer, int len, int timeout, int retries, 1796 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1797 { 1798 unsigned char cmd[10]; 1799 unsigned char *real_buffer; 1800 int ret; 1801 1802 memset(cmd, 0, sizeof(cmd)); 1803 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1804 1805 if (sdev->use_10_for_ms) { 1806 if (len > 65535) 1807 return -EINVAL; 1808 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1809 if (!real_buffer) 1810 return -ENOMEM; 1811 memcpy(real_buffer + 8, buffer, len); 1812 len += 8; 1813 real_buffer[0] = 0; 1814 real_buffer[1] = 0; 1815 real_buffer[2] = data->medium_type; 1816 real_buffer[3] = data->device_specific; 1817 real_buffer[4] = data->longlba ? 0x01 : 0; 1818 real_buffer[5] = 0; 1819 real_buffer[6] = data->block_descriptor_length >> 8; 1820 real_buffer[7] = data->block_descriptor_length; 1821 1822 cmd[0] = MODE_SELECT_10; 1823 cmd[7] = len >> 8; 1824 cmd[8] = len; 1825 } else { 1826 if (len > 255 || data->block_descriptor_length > 255 || 1827 data->longlba) 1828 return -EINVAL; 1829 1830 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1831 if (!real_buffer) 1832 return -ENOMEM; 1833 memcpy(real_buffer + 4, buffer, len); 1834 len += 4; 1835 real_buffer[0] = 0; 1836 real_buffer[1] = data->medium_type; 1837 real_buffer[2] = data->device_specific; 1838 real_buffer[3] = data->block_descriptor_length; 1839 1840 1841 cmd[0] = MODE_SELECT; 1842 cmd[4] = len; 1843 } 1844 1845 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1846 sshdr, timeout, retries, NULL); 1847 kfree(real_buffer); 1848 return ret; 1849 } 1850 EXPORT_SYMBOL_GPL(scsi_mode_select); 1851 1852 /** 1853 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1854 * @sdev: SCSI device to be queried 1855 * @dbd: set if mode sense will allow block descriptors to be returned 1856 * @modepage: mode page being requested 1857 * @buffer: request buffer (may not be smaller than eight bytes) 1858 * @len: length of request buffer. 1859 * @timeout: command timeout 1860 * @retries: number of retries before failing 1861 * @data: returns a structure abstracting the mode header data 1862 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1863 * must be SCSI_SENSE_BUFFERSIZE big. 1864 * 1865 * Returns zero if unsuccessful, or the header offset (either 4 1866 * or 8 depending on whether a six or ten byte command was 1867 * issued) if successful. 1868 */ 1869 int 1870 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1871 unsigned char *buffer, int len, int timeout, int retries, 1872 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1873 { 1874 unsigned char cmd[12]; 1875 int use_10_for_ms; 1876 int header_length; 1877 int result; 1878 struct scsi_sense_hdr my_sshdr; 1879 1880 memset(data, 0, sizeof(*data)); 1881 memset(&cmd[0], 0, 12); 1882 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1883 cmd[2] = modepage; 1884 1885 /* caller might not be interested in sense, but we need it */ 1886 if (!sshdr) 1887 sshdr = &my_sshdr; 1888 1889 retry: 1890 use_10_for_ms = sdev->use_10_for_ms; 1891 1892 if (use_10_for_ms) { 1893 if (len < 8) 1894 len = 8; 1895 1896 cmd[0] = MODE_SENSE_10; 1897 cmd[8] = len; 1898 header_length = 8; 1899 } else { 1900 if (len < 4) 1901 len = 4; 1902 1903 cmd[0] = MODE_SENSE; 1904 cmd[4] = len; 1905 header_length = 4; 1906 } 1907 1908 memset(buffer, 0, len); 1909 1910 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1911 sshdr, timeout, retries, NULL); 1912 1913 /* This code looks awful: what it's doing is making sure an 1914 * ILLEGAL REQUEST sense return identifies the actual command 1915 * byte as the problem. MODE_SENSE commands can return 1916 * ILLEGAL REQUEST if the code page isn't supported */ 1917 1918 if (use_10_for_ms && !scsi_status_is_good(result) && 1919 (driver_byte(result) & DRIVER_SENSE)) { 1920 if (scsi_sense_valid(sshdr)) { 1921 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1922 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1923 /* 1924 * Invalid command operation code 1925 */ 1926 sdev->use_10_for_ms = 0; 1927 goto retry; 1928 } 1929 } 1930 } 1931 1932 if(scsi_status_is_good(result)) { 1933 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1934 (modepage == 6 || modepage == 8))) { 1935 /* Initio breakage? */ 1936 header_length = 0; 1937 data->length = 13; 1938 data->medium_type = 0; 1939 data->device_specific = 0; 1940 data->longlba = 0; 1941 data->block_descriptor_length = 0; 1942 } else if(use_10_for_ms) { 1943 data->length = buffer[0]*256 + buffer[1] + 2; 1944 data->medium_type = buffer[2]; 1945 data->device_specific = buffer[3]; 1946 data->longlba = buffer[4] & 0x01; 1947 data->block_descriptor_length = buffer[6]*256 1948 + buffer[7]; 1949 } else { 1950 data->length = buffer[0] + 1; 1951 data->medium_type = buffer[1]; 1952 data->device_specific = buffer[2]; 1953 data->block_descriptor_length = buffer[3]; 1954 } 1955 data->header_length = header_length; 1956 } 1957 1958 return result; 1959 } 1960 EXPORT_SYMBOL(scsi_mode_sense); 1961 1962 /** 1963 * scsi_test_unit_ready - test if unit is ready 1964 * @sdev: scsi device to change the state of. 1965 * @timeout: command timeout 1966 * @retries: number of retries before failing 1967 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1968 * returning sense. Make sure that this is cleared before passing 1969 * in. 1970 * 1971 * Returns zero if unsuccessful or an error if TUR failed. For 1972 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1973 * translated to success, with the ->changed flag updated. 1974 **/ 1975 int 1976 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1977 struct scsi_sense_hdr *sshdr_external) 1978 { 1979 char cmd[] = { 1980 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1981 }; 1982 struct scsi_sense_hdr *sshdr; 1983 int result; 1984 1985 if (!sshdr_external) 1986 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1987 else 1988 sshdr = sshdr_external; 1989 1990 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1991 do { 1992 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 1993 timeout, retries, NULL); 1994 if (sdev->removable && scsi_sense_valid(sshdr) && 1995 sshdr->sense_key == UNIT_ATTENTION) 1996 sdev->changed = 1; 1997 } while (scsi_sense_valid(sshdr) && 1998 sshdr->sense_key == UNIT_ATTENTION && --retries); 1999 2000 if (!sshdr) 2001 /* could not allocate sense buffer, so can't process it */ 2002 return result; 2003 2004 if (sdev->removable && scsi_sense_valid(sshdr) && 2005 (sshdr->sense_key == UNIT_ATTENTION || 2006 sshdr->sense_key == NOT_READY)) { 2007 sdev->changed = 1; 2008 result = 0; 2009 } 2010 if (!sshdr_external) 2011 kfree(sshdr); 2012 return result; 2013 } 2014 EXPORT_SYMBOL(scsi_test_unit_ready); 2015 2016 /** 2017 * scsi_device_set_state - Take the given device through the device state model. 2018 * @sdev: scsi device to change the state of. 2019 * @state: state to change to. 2020 * 2021 * Returns zero if unsuccessful or an error if the requested 2022 * transition is illegal. 2023 */ 2024 int 2025 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2026 { 2027 enum scsi_device_state oldstate = sdev->sdev_state; 2028 2029 if (state == oldstate) 2030 return 0; 2031 2032 switch (state) { 2033 case SDEV_CREATED: 2034 switch (oldstate) { 2035 case SDEV_CREATED_BLOCK: 2036 break; 2037 default: 2038 goto illegal; 2039 } 2040 break; 2041 2042 case SDEV_RUNNING: 2043 switch (oldstate) { 2044 case SDEV_CREATED: 2045 case SDEV_OFFLINE: 2046 case SDEV_QUIESCE: 2047 case SDEV_BLOCK: 2048 break; 2049 default: 2050 goto illegal; 2051 } 2052 break; 2053 2054 case SDEV_QUIESCE: 2055 switch (oldstate) { 2056 case SDEV_RUNNING: 2057 case SDEV_OFFLINE: 2058 break; 2059 default: 2060 goto illegal; 2061 } 2062 break; 2063 2064 case SDEV_OFFLINE: 2065 switch (oldstate) { 2066 case SDEV_CREATED: 2067 case SDEV_RUNNING: 2068 case SDEV_QUIESCE: 2069 case SDEV_BLOCK: 2070 break; 2071 default: 2072 goto illegal; 2073 } 2074 break; 2075 2076 case SDEV_BLOCK: 2077 switch (oldstate) { 2078 case SDEV_RUNNING: 2079 case SDEV_CREATED_BLOCK: 2080 break; 2081 default: 2082 goto illegal; 2083 } 2084 break; 2085 2086 case SDEV_CREATED_BLOCK: 2087 switch (oldstate) { 2088 case SDEV_CREATED: 2089 break; 2090 default: 2091 goto illegal; 2092 } 2093 break; 2094 2095 case SDEV_CANCEL: 2096 switch (oldstate) { 2097 case SDEV_CREATED: 2098 case SDEV_RUNNING: 2099 case SDEV_QUIESCE: 2100 case SDEV_OFFLINE: 2101 case SDEV_BLOCK: 2102 break; 2103 default: 2104 goto illegal; 2105 } 2106 break; 2107 2108 case SDEV_DEL: 2109 switch (oldstate) { 2110 case SDEV_CREATED: 2111 case SDEV_RUNNING: 2112 case SDEV_OFFLINE: 2113 case SDEV_CANCEL: 2114 break; 2115 default: 2116 goto illegal; 2117 } 2118 break; 2119 2120 } 2121 sdev->sdev_state = state; 2122 return 0; 2123 2124 illegal: 2125 SCSI_LOG_ERROR_RECOVERY(1, 2126 sdev_printk(KERN_ERR, sdev, 2127 "Illegal state transition %s->%s\n", 2128 scsi_device_state_name(oldstate), 2129 scsi_device_state_name(state)) 2130 ); 2131 return -EINVAL; 2132 } 2133 EXPORT_SYMBOL(scsi_device_set_state); 2134 2135 /** 2136 * sdev_evt_emit - emit a single SCSI device uevent 2137 * @sdev: associated SCSI device 2138 * @evt: event to emit 2139 * 2140 * Send a single uevent (scsi_event) to the associated scsi_device. 2141 */ 2142 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2143 { 2144 int idx = 0; 2145 char *envp[3]; 2146 2147 switch (evt->evt_type) { 2148 case SDEV_EVT_MEDIA_CHANGE: 2149 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2150 break; 2151 2152 default: 2153 /* do nothing */ 2154 break; 2155 } 2156 2157 envp[idx++] = NULL; 2158 2159 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2160 } 2161 2162 /** 2163 * sdev_evt_thread - send a uevent for each scsi event 2164 * @work: work struct for scsi_device 2165 * 2166 * Dispatch queued events to their associated scsi_device kobjects 2167 * as uevents. 2168 */ 2169 void scsi_evt_thread(struct work_struct *work) 2170 { 2171 struct scsi_device *sdev; 2172 LIST_HEAD(event_list); 2173 2174 sdev = container_of(work, struct scsi_device, event_work); 2175 2176 while (1) { 2177 struct scsi_event *evt; 2178 struct list_head *this, *tmp; 2179 unsigned long flags; 2180 2181 spin_lock_irqsave(&sdev->list_lock, flags); 2182 list_splice_init(&sdev->event_list, &event_list); 2183 spin_unlock_irqrestore(&sdev->list_lock, flags); 2184 2185 if (list_empty(&event_list)) 2186 break; 2187 2188 list_for_each_safe(this, tmp, &event_list) { 2189 evt = list_entry(this, struct scsi_event, node); 2190 list_del(&evt->node); 2191 scsi_evt_emit(sdev, evt); 2192 kfree(evt); 2193 } 2194 } 2195 } 2196 2197 /** 2198 * sdev_evt_send - send asserted event to uevent thread 2199 * @sdev: scsi_device event occurred on 2200 * @evt: event to send 2201 * 2202 * Assert scsi device event asynchronously. 2203 */ 2204 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2205 { 2206 unsigned long flags; 2207 2208 #if 0 2209 /* FIXME: currently this check eliminates all media change events 2210 * for polled devices. Need to update to discriminate between AN 2211 * and polled events */ 2212 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2213 kfree(evt); 2214 return; 2215 } 2216 #endif 2217 2218 spin_lock_irqsave(&sdev->list_lock, flags); 2219 list_add_tail(&evt->node, &sdev->event_list); 2220 schedule_work(&sdev->event_work); 2221 spin_unlock_irqrestore(&sdev->list_lock, flags); 2222 } 2223 EXPORT_SYMBOL_GPL(sdev_evt_send); 2224 2225 /** 2226 * sdev_evt_alloc - allocate a new scsi event 2227 * @evt_type: type of event to allocate 2228 * @gfpflags: GFP flags for allocation 2229 * 2230 * Allocates and returns a new scsi_event. 2231 */ 2232 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2233 gfp_t gfpflags) 2234 { 2235 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2236 if (!evt) 2237 return NULL; 2238 2239 evt->evt_type = evt_type; 2240 INIT_LIST_HEAD(&evt->node); 2241 2242 /* evt_type-specific initialization, if any */ 2243 switch (evt_type) { 2244 case SDEV_EVT_MEDIA_CHANGE: 2245 default: 2246 /* do nothing */ 2247 break; 2248 } 2249 2250 return evt; 2251 } 2252 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2253 2254 /** 2255 * sdev_evt_send_simple - send asserted event to uevent thread 2256 * @sdev: scsi_device event occurred on 2257 * @evt_type: type of event to send 2258 * @gfpflags: GFP flags for allocation 2259 * 2260 * Assert scsi device event asynchronously, given an event type. 2261 */ 2262 void sdev_evt_send_simple(struct scsi_device *sdev, 2263 enum scsi_device_event evt_type, gfp_t gfpflags) 2264 { 2265 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2266 if (!evt) { 2267 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2268 evt_type); 2269 return; 2270 } 2271 2272 sdev_evt_send(sdev, evt); 2273 } 2274 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2275 2276 /** 2277 * scsi_device_quiesce - Block user issued commands. 2278 * @sdev: scsi device to quiesce. 2279 * 2280 * This works by trying to transition to the SDEV_QUIESCE state 2281 * (which must be a legal transition). When the device is in this 2282 * state, only special requests will be accepted, all others will 2283 * be deferred. Since special requests may also be requeued requests, 2284 * a successful return doesn't guarantee the device will be 2285 * totally quiescent. 2286 * 2287 * Must be called with user context, may sleep. 2288 * 2289 * Returns zero if unsuccessful or an error if not. 2290 */ 2291 int 2292 scsi_device_quiesce(struct scsi_device *sdev) 2293 { 2294 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2295 if (err) 2296 return err; 2297 2298 scsi_run_queue(sdev->request_queue); 2299 while (sdev->device_busy) { 2300 msleep_interruptible(200); 2301 scsi_run_queue(sdev->request_queue); 2302 } 2303 return 0; 2304 } 2305 EXPORT_SYMBOL(scsi_device_quiesce); 2306 2307 /** 2308 * scsi_device_resume - Restart user issued commands to a quiesced device. 2309 * @sdev: scsi device to resume. 2310 * 2311 * Moves the device from quiesced back to running and restarts the 2312 * queues. 2313 * 2314 * Must be called with user context, may sleep. 2315 */ 2316 void 2317 scsi_device_resume(struct scsi_device *sdev) 2318 { 2319 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2320 return; 2321 scsi_run_queue(sdev->request_queue); 2322 } 2323 EXPORT_SYMBOL(scsi_device_resume); 2324 2325 static void 2326 device_quiesce_fn(struct scsi_device *sdev, void *data) 2327 { 2328 scsi_device_quiesce(sdev); 2329 } 2330 2331 void 2332 scsi_target_quiesce(struct scsi_target *starget) 2333 { 2334 starget_for_each_device(starget, NULL, device_quiesce_fn); 2335 } 2336 EXPORT_SYMBOL(scsi_target_quiesce); 2337 2338 static void 2339 device_resume_fn(struct scsi_device *sdev, void *data) 2340 { 2341 scsi_device_resume(sdev); 2342 } 2343 2344 void 2345 scsi_target_resume(struct scsi_target *starget) 2346 { 2347 starget_for_each_device(starget, NULL, device_resume_fn); 2348 } 2349 EXPORT_SYMBOL(scsi_target_resume); 2350 2351 /** 2352 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2353 * @sdev: device to block 2354 * 2355 * Block request made by scsi lld's to temporarily stop all 2356 * scsi commands on the specified device. Called from interrupt 2357 * or normal process context. 2358 * 2359 * Returns zero if successful or error if not 2360 * 2361 * Notes: 2362 * This routine transitions the device to the SDEV_BLOCK state 2363 * (which must be a legal transition). When the device is in this 2364 * state, all commands are deferred until the scsi lld reenables 2365 * the device with scsi_device_unblock or device_block_tmo fires. 2366 * This routine assumes the host_lock is held on entry. 2367 */ 2368 int 2369 scsi_internal_device_block(struct scsi_device *sdev) 2370 { 2371 struct request_queue *q = sdev->request_queue; 2372 unsigned long flags; 2373 int err = 0; 2374 2375 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2376 if (err) { 2377 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2378 2379 if (err) 2380 return err; 2381 } 2382 2383 /* 2384 * The device has transitioned to SDEV_BLOCK. Stop the 2385 * block layer from calling the midlayer with this device's 2386 * request queue. 2387 */ 2388 spin_lock_irqsave(q->queue_lock, flags); 2389 blk_stop_queue(q); 2390 spin_unlock_irqrestore(q->queue_lock, flags); 2391 2392 return 0; 2393 } 2394 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2395 2396 /** 2397 * scsi_internal_device_unblock - resume a device after a block request 2398 * @sdev: device to resume 2399 * 2400 * Called by scsi lld's or the midlayer to restart the device queue 2401 * for the previously suspended scsi device. Called from interrupt or 2402 * normal process context. 2403 * 2404 * Returns zero if successful or error if not. 2405 * 2406 * Notes: 2407 * This routine transitions the device to the SDEV_RUNNING state 2408 * (which must be a legal transition) allowing the midlayer to 2409 * goose the queue for this device. This routine assumes the 2410 * host_lock is held upon entry. 2411 */ 2412 int 2413 scsi_internal_device_unblock(struct scsi_device *sdev) 2414 { 2415 struct request_queue *q = sdev->request_queue; 2416 unsigned long flags; 2417 2418 /* 2419 * Try to transition the scsi device to SDEV_RUNNING 2420 * and goose the device queue if successful. 2421 */ 2422 if (sdev->sdev_state == SDEV_BLOCK) 2423 sdev->sdev_state = SDEV_RUNNING; 2424 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2425 sdev->sdev_state = SDEV_CREATED; 2426 else 2427 return -EINVAL; 2428 2429 spin_lock_irqsave(q->queue_lock, flags); 2430 blk_start_queue(q); 2431 spin_unlock_irqrestore(q->queue_lock, flags); 2432 2433 return 0; 2434 } 2435 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2436 2437 static void 2438 device_block(struct scsi_device *sdev, void *data) 2439 { 2440 scsi_internal_device_block(sdev); 2441 } 2442 2443 static int 2444 target_block(struct device *dev, void *data) 2445 { 2446 if (scsi_is_target_device(dev)) 2447 starget_for_each_device(to_scsi_target(dev), NULL, 2448 device_block); 2449 return 0; 2450 } 2451 2452 void 2453 scsi_target_block(struct device *dev) 2454 { 2455 if (scsi_is_target_device(dev)) 2456 starget_for_each_device(to_scsi_target(dev), NULL, 2457 device_block); 2458 else 2459 device_for_each_child(dev, NULL, target_block); 2460 } 2461 EXPORT_SYMBOL_GPL(scsi_target_block); 2462 2463 static void 2464 device_unblock(struct scsi_device *sdev, void *data) 2465 { 2466 scsi_internal_device_unblock(sdev); 2467 } 2468 2469 static int 2470 target_unblock(struct device *dev, void *data) 2471 { 2472 if (scsi_is_target_device(dev)) 2473 starget_for_each_device(to_scsi_target(dev), NULL, 2474 device_unblock); 2475 return 0; 2476 } 2477 2478 void 2479 scsi_target_unblock(struct device *dev) 2480 { 2481 if (scsi_is_target_device(dev)) 2482 starget_for_each_device(to_scsi_target(dev), NULL, 2483 device_unblock); 2484 else 2485 device_for_each_child(dev, NULL, target_unblock); 2486 } 2487 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2488 2489 /** 2490 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2491 * @sgl: scatter-gather list 2492 * @sg_count: number of segments in sg 2493 * @offset: offset in bytes into sg, on return offset into the mapped area 2494 * @len: bytes to map, on return number of bytes mapped 2495 * 2496 * Returns virtual address of the start of the mapped page 2497 */ 2498 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2499 size_t *offset, size_t *len) 2500 { 2501 int i; 2502 size_t sg_len = 0, len_complete = 0; 2503 struct scatterlist *sg; 2504 struct page *page; 2505 2506 WARN_ON(!irqs_disabled()); 2507 2508 for_each_sg(sgl, sg, sg_count, i) { 2509 len_complete = sg_len; /* Complete sg-entries */ 2510 sg_len += sg->length; 2511 if (sg_len > *offset) 2512 break; 2513 } 2514 2515 if (unlikely(i == sg_count)) { 2516 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2517 "elements %d\n", 2518 __func__, sg_len, *offset, sg_count); 2519 WARN_ON(1); 2520 return NULL; 2521 } 2522 2523 /* Offset starting from the beginning of first page in this sg-entry */ 2524 *offset = *offset - len_complete + sg->offset; 2525 2526 /* Assumption: contiguous pages can be accessed as "page + i" */ 2527 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2528 *offset &= ~PAGE_MASK; 2529 2530 /* Bytes in this sg-entry from *offset to the end of the page */ 2531 sg_len = PAGE_SIZE - *offset; 2532 if (*len > sg_len) 2533 *len = sg_len; 2534 2535 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2536 } 2537 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2538 2539 /** 2540 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2541 * @virt: virtual address to be unmapped 2542 */ 2543 void scsi_kunmap_atomic_sg(void *virt) 2544 { 2545 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2546 } 2547 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2548