xref: /linux/drivers/scsi/scsi_lib.c (revision 5027ec19f1049a07df5b0a37b1f462514cf2724b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 /**
188  * scsi_execute_cmd - insert request and wait for the result
189  * @sdev:	scsi_device
190  * @cmd:	scsi command
191  * @opf:	block layer request cmd_flags
192  * @buffer:	data buffer
193  * @bufflen:	len of buffer
194  * @timeout:	request timeout in HZ
195  * @retries:	number of times to retry request
196  * @args:	Optional args. See struct definition for field descriptions
197  *
198  * Returns the scsi_cmnd result field if a command was executed, or a negative
199  * Linux error code if we didn't get that far.
200  */
201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
203 		     int timeout, int retries,
204 		     const struct scsi_exec_args *args)
205 {
206 	static const struct scsi_exec_args default_args;
207 	struct request *req;
208 	struct scsi_cmnd *scmd;
209 	int ret;
210 
211 	if (!args)
212 		args = &default_args;
213 	else if (WARN_ON_ONCE(args->sense &&
214 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 		return -EINVAL;
216 
217 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218 	if (IS_ERR(req))
219 		return PTR_ERR(req);
220 
221 	if (bufflen) {
222 		ret = blk_rq_map_kern(sdev->request_queue, req,
223 				      buffer, bufflen, GFP_NOIO);
224 		if (ret)
225 			goto out;
226 	}
227 	scmd = blk_mq_rq_to_pdu(req);
228 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 	scmd->allowed = retries;
231 	scmd->flags |= args->scmd_flags;
232 	req->timeout = timeout;
233 	req->rq_flags |= RQF_QUIET;
234 
235 	/*
236 	 * head injection *required* here otherwise quiesce won't work
237 	 */
238 	blk_execute_rq(req, true);
239 
240 	/*
241 	 * Some devices (USB mass-storage in particular) may transfer
242 	 * garbage data together with a residue indicating that the data
243 	 * is invalid.  Prevent the garbage from being misinterpreted
244 	 * and prevent security leaks by zeroing out the excess data.
245 	 */
246 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248 
249 	if (args->resid)
250 		*args->resid = scmd->resid_len;
251 	if (args->sense)
252 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 	if (args->sshdr)
254 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255 				     args->sshdr);
256 
257 	ret = scmd->result;
258  out:
259 	blk_mq_free_request(req);
260 
261 	return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264 
265 /*
266  * Wake up the error handler if necessary. Avoid as follows that the error
267  * handler is not woken up if host in-flight requests number ==
268  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269  * with an RCU read lock in this function to ensure that this function in
270  * its entirety either finishes before scsi_eh_scmd_add() increases the
271  * host_failed counter or that it notices the shost state change made by
272  * scsi_eh_scmd_add().
273  */
274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276 	unsigned long flags;
277 
278 	rcu_read_lock();
279 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 	if (unlikely(scsi_host_in_recovery(shost))) {
281 		spin_lock_irqsave(shost->host_lock, flags);
282 		if (shost->host_failed || shost->host_eh_scheduled)
283 			scsi_eh_wakeup(shost);
284 		spin_unlock_irqrestore(shost->host_lock, flags);
285 	}
286 	rcu_read_unlock();
287 }
288 
289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
290 {
291 	struct Scsi_Host *shost = sdev->host;
292 	struct scsi_target *starget = scsi_target(sdev);
293 
294 	scsi_dec_host_busy(shost, cmd);
295 
296 	if (starget->can_queue > 0)
297 		atomic_dec(&starget->target_busy);
298 
299 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
300 	cmd->budget_token = -1;
301 }
302 
303 /*
304  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
305  * interrupts disabled.
306  */
307 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
308 {
309 	struct scsi_device *current_sdev = data;
310 
311 	if (sdev != current_sdev)
312 		blk_mq_run_hw_queues(sdev->request_queue, true);
313 }
314 
315 /*
316  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
317  * and call blk_run_queue for all the scsi_devices on the target -
318  * including current_sdev first.
319  *
320  * Called with *no* scsi locks held.
321  */
322 static void scsi_single_lun_run(struct scsi_device *current_sdev)
323 {
324 	struct Scsi_Host *shost = current_sdev->host;
325 	struct scsi_target *starget = scsi_target(current_sdev);
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(shost->host_lock, flags);
329 	starget->starget_sdev_user = NULL;
330 	spin_unlock_irqrestore(shost->host_lock, flags);
331 
332 	/*
333 	 * Call blk_run_queue for all LUNs on the target, starting with
334 	 * current_sdev. We race with others (to set starget_sdev_user),
335 	 * but in most cases, we will be first. Ideally, each LU on the
336 	 * target would get some limited time or requests on the target.
337 	 */
338 	blk_mq_run_hw_queues(current_sdev->request_queue,
339 			     shost->queuecommand_may_block);
340 
341 	spin_lock_irqsave(shost->host_lock, flags);
342 	if (!starget->starget_sdev_user)
343 		__starget_for_each_device(starget, current_sdev,
344 					  scsi_kick_sdev_queue);
345 	spin_unlock_irqrestore(shost->host_lock, flags);
346 }
347 
348 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
349 {
350 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
351 		return true;
352 	if (atomic_read(&sdev->device_blocked) > 0)
353 		return true;
354 	return false;
355 }
356 
357 static inline bool scsi_target_is_busy(struct scsi_target *starget)
358 {
359 	if (starget->can_queue > 0) {
360 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
361 			return true;
362 		if (atomic_read(&starget->target_blocked) > 0)
363 			return true;
364 	}
365 	return false;
366 }
367 
368 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
369 {
370 	if (atomic_read(&shost->host_blocked) > 0)
371 		return true;
372 	if (shost->host_self_blocked)
373 		return true;
374 	return false;
375 }
376 
377 static void scsi_starved_list_run(struct Scsi_Host *shost)
378 {
379 	LIST_HEAD(starved_list);
380 	struct scsi_device *sdev;
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(shost->host_lock, flags);
384 	list_splice_init(&shost->starved_list, &starved_list);
385 
386 	while (!list_empty(&starved_list)) {
387 		struct request_queue *slq;
388 
389 		/*
390 		 * As long as shost is accepting commands and we have
391 		 * starved queues, call blk_run_queue. scsi_request_fn
392 		 * drops the queue_lock and can add us back to the
393 		 * starved_list.
394 		 *
395 		 * host_lock protects the starved_list and starved_entry.
396 		 * scsi_request_fn must get the host_lock before checking
397 		 * or modifying starved_list or starved_entry.
398 		 */
399 		if (scsi_host_is_busy(shost))
400 			break;
401 
402 		sdev = list_entry(starved_list.next,
403 				  struct scsi_device, starved_entry);
404 		list_del_init(&sdev->starved_entry);
405 		if (scsi_target_is_busy(scsi_target(sdev))) {
406 			list_move_tail(&sdev->starved_entry,
407 				       &shost->starved_list);
408 			continue;
409 		}
410 
411 		/*
412 		 * Once we drop the host lock, a racing scsi_remove_device()
413 		 * call may remove the sdev from the starved list and destroy
414 		 * it and the queue.  Mitigate by taking a reference to the
415 		 * queue and never touching the sdev again after we drop the
416 		 * host lock.  Note: if __scsi_remove_device() invokes
417 		 * blk_mq_destroy_queue() before the queue is run from this
418 		 * function then blk_run_queue() will return immediately since
419 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
420 		 */
421 		slq = sdev->request_queue;
422 		if (!blk_get_queue(slq))
423 			continue;
424 		spin_unlock_irqrestore(shost->host_lock, flags);
425 
426 		blk_mq_run_hw_queues(slq, false);
427 		blk_put_queue(slq);
428 
429 		spin_lock_irqsave(shost->host_lock, flags);
430 	}
431 	/* put any unprocessed entries back */
432 	list_splice(&starved_list, &shost->starved_list);
433 	spin_unlock_irqrestore(shost->host_lock, flags);
434 }
435 
436 /**
437  * scsi_run_queue - Select a proper request queue to serve next.
438  * @q:  last request's queue
439  *
440  * The previous command was completely finished, start a new one if possible.
441  */
442 static void scsi_run_queue(struct request_queue *q)
443 {
444 	struct scsi_device *sdev = q->queuedata;
445 
446 	if (scsi_target(sdev)->single_lun)
447 		scsi_single_lun_run(sdev);
448 	if (!list_empty(&sdev->host->starved_list))
449 		scsi_starved_list_run(sdev->host);
450 
451 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
452 	blk_mq_kick_requeue_list(q);
453 }
454 
455 void scsi_requeue_run_queue(struct work_struct *work)
456 {
457 	struct scsi_device *sdev;
458 	struct request_queue *q;
459 
460 	sdev = container_of(work, struct scsi_device, requeue_work);
461 	q = sdev->request_queue;
462 	scsi_run_queue(q);
463 }
464 
465 void scsi_run_host_queues(struct Scsi_Host *shost)
466 {
467 	struct scsi_device *sdev;
468 
469 	shost_for_each_device(sdev, shost)
470 		scsi_run_queue(sdev->request_queue);
471 }
472 
473 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
474 {
475 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
476 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
477 
478 		if (drv->uninit_command)
479 			drv->uninit_command(cmd);
480 	}
481 }
482 
483 void scsi_free_sgtables(struct scsi_cmnd *cmd)
484 {
485 	if (cmd->sdb.table.nents)
486 		sg_free_table_chained(&cmd->sdb.table,
487 				SCSI_INLINE_SG_CNT);
488 	if (scsi_prot_sg_count(cmd))
489 		sg_free_table_chained(&cmd->prot_sdb->table,
490 				SCSI_INLINE_PROT_SG_CNT);
491 }
492 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
493 
494 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
495 {
496 	scsi_free_sgtables(cmd);
497 	scsi_uninit_cmd(cmd);
498 }
499 
500 static void scsi_run_queue_async(struct scsi_device *sdev)
501 {
502 	if (scsi_host_in_recovery(sdev->host))
503 		return;
504 
505 	if (scsi_target(sdev)->single_lun ||
506 	    !list_empty(&sdev->host->starved_list)) {
507 		kblockd_schedule_work(&sdev->requeue_work);
508 	} else {
509 		/*
510 		 * smp_mb() present in sbitmap_queue_clear() or implied in
511 		 * .end_io is for ordering writing .device_busy in
512 		 * scsi_device_unbusy() and reading sdev->restarts.
513 		 */
514 		int old = atomic_read(&sdev->restarts);
515 
516 		/*
517 		 * ->restarts has to be kept as non-zero if new budget
518 		 *  contention occurs.
519 		 *
520 		 *  No need to run queue when either another re-run
521 		 *  queue wins in updating ->restarts or a new budget
522 		 *  contention occurs.
523 		 */
524 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
525 			blk_mq_run_hw_queues(sdev->request_queue, true);
526 	}
527 }
528 
529 /* Returns false when no more bytes to process, true if there are more */
530 static bool scsi_end_request(struct request *req, blk_status_t error,
531 		unsigned int bytes)
532 {
533 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
534 	struct scsi_device *sdev = cmd->device;
535 	struct request_queue *q = sdev->request_queue;
536 
537 	if (blk_update_request(req, error, bytes))
538 		return true;
539 
540 	// XXX:
541 	if (blk_queue_add_random(q))
542 		add_disk_randomness(req->q->disk);
543 
544 	if (!blk_rq_is_passthrough(req)) {
545 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
546 		cmd->flags &= ~SCMD_INITIALIZED;
547 	}
548 
549 	/*
550 	 * Calling rcu_barrier() is not necessary here because the
551 	 * SCSI error handler guarantees that the function called by
552 	 * call_rcu() has been called before scsi_end_request() is
553 	 * called.
554 	 */
555 	destroy_rcu_head(&cmd->rcu);
556 
557 	/*
558 	 * In the MQ case the command gets freed by __blk_mq_end_request,
559 	 * so we have to do all cleanup that depends on it earlier.
560 	 *
561 	 * We also can't kick the queues from irq context, so we
562 	 * will have to defer it to a workqueue.
563 	 */
564 	scsi_mq_uninit_cmd(cmd);
565 
566 	/*
567 	 * queue is still alive, so grab the ref for preventing it
568 	 * from being cleaned up during running queue.
569 	 */
570 	percpu_ref_get(&q->q_usage_counter);
571 
572 	__blk_mq_end_request(req, error);
573 
574 	scsi_run_queue_async(sdev);
575 
576 	percpu_ref_put(&q->q_usage_counter);
577 	return false;
578 }
579 
580 /**
581  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
582  * @result:	scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value.
585  */
586 static blk_status_t scsi_result_to_blk_status(int result)
587 {
588 	/*
589 	 * Check the scsi-ml byte first in case we converted a host or status
590 	 * byte.
591 	 */
592 	switch (scsi_ml_byte(result)) {
593 	case SCSIML_STAT_OK:
594 		break;
595 	case SCSIML_STAT_RESV_CONFLICT:
596 		return BLK_STS_RESV_CONFLICT;
597 	case SCSIML_STAT_NOSPC:
598 		return BLK_STS_NOSPC;
599 	case SCSIML_STAT_MED_ERROR:
600 		return BLK_STS_MEDIUM;
601 	case SCSIML_STAT_TGT_FAILURE:
602 		return BLK_STS_TARGET;
603 	case SCSIML_STAT_DL_TIMEOUT:
604 		return BLK_STS_DURATION_LIMIT;
605 	}
606 
607 	switch (host_byte(result)) {
608 	case DID_OK:
609 		if (scsi_status_is_good(result))
610 			return BLK_STS_OK;
611 		return BLK_STS_IOERR;
612 	case DID_TRANSPORT_FAILFAST:
613 	case DID_TRANSPORT_MARGINAL:
614 		return BLK_STS_TRANSPORT;
615 	default:
616 		return BLK_STS_IOERR;
617 	}
618 }
619 
620 /**
621  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
622  * @rq: request to examine
623  *
624  * Description:
625  *     A request could be merge of IOs which require different failure
626  *     handling.  This function determines the number of bytes which
627  *     can be failed from the beginning of the request without
628  *     crossing into area which need to be retried further.
629  *
630  * Return:
631  *     The number of bytes to fail.
632  */
633 static unsigned int scsi_rq_err_bytes(const struct request *rq)
634 {
635 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
636 	unsigned int bytes = 0;
637 	struct bio *bio;
638 
639 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
640 		return blk_rq_bytes(rq);
641 
642 	/*
643 	 * Currently the only 'mixing' which can happen is between
644 	 * different fastfail types.  We can safely fail portions
645 	 * which have all the failfast bits that the first one has -
646 	 * the ones which are at least as eager to fail as the first
647 	 * one.
648 	 */
649 	for (bio = rq->bio; bio; bio = bio->bi_next) {
650 		if ((bio->bi_opf & ff) != ff)
651 			break;
652 		bytes += bio->bi_iter.bi_size;
653 	}
654 
655 	/* this could lead to infinite loop */
656 	BUG_ON(blk_rq_bytes(rq) && !bytes);
657 	return bytes;
658 }
659 
660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661 {
662 	struct request *req = scsi_cmd_to_rq(cmd);
663 	unsigned long wait_for;
664 
665 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666 		return false;
667 
668 	wait_for = (cmd->allowed + 1) * req->timeout;
669 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671 			    wait_for/HZ);
672 		return true;
673 	}
674 	return false;
675 }
676 
677 /*
678  * When ALUA transition state is returned, reprep the cmd to
679  * use the ALUA handler's transition timeout. Delay the reprep
680  * 1 sec to avoid aggressive retries of the target in that
681  * state.
682  */
683 #define ALUA_TRANSITION_REPREP_DELAY	1000
684 
685 /* Helper for scsi_io_completion() when special action required. */
686 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
687 {
688 	struct request *req = scsi_cmd_to_rq(cmd);
689 	int level = 0;
690 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
691 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
692 	struct scsi_sense_hdr sshdr;
693 	bool sense_valid;
694 	bool sense_current = true;      /* false implies "deferred sense" */
695 	blk_status_t blk_stat;
696 
697 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
698 	if (sense_valid)
699 		sense_current = !scsi_sense_is_deferred(&sshdr);
700 
701 	blk_stat = scsi_result_to_blk_status(result);
702 
703 	if (host_byte(result) == DID_RESET) {
704 		/* Third party bus reset or reset for error recovery
705 		 * reasons.  Just retry the command and see what
706 		 * happens.
707 		 */
708 		action = ACTION_RETRY;
709 	} else if (sense_valid && sense_current) {
710 		switch (sshdr.sense_key) {
711 		case UNIT_ATTENTION:
712 			if (cmd->device->removable) {
713 				/* Detected disc change.  Set a bit
714 				 * and quietly refuse further access.
715 				 */
716 				cmd->device->changed = 1;
717 				action = ACTION_FAIL;
718 			} else {
719 				/* Must have been a power glitch, or a
720 				 * bus reset.  Could not have been a
721 				 * media change, so we just retry the
722 				 * command and see what happens.
723 				 */
724 				action = ACTION_RETRY;
725 			}
726 			break;
727 		case ILLEGAL_REQUEST:
728 			/* If we had an ILLEGAL REQUEST returned, then
729 			 * we may have performed an unsupported
730 			 * command.  The only thing this should be
731 			 * would be a ten byte read where only a six
732 			 * byte read was supported.  Also, on a system
733 			 * where READ CAPACITY failed, we may have
734 			 * read past the end of the disk.
735 			 */
736 			if ((cmd->device->use_10_for_rw &&
737 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
738 			    (cmd->cmnd[0] == READ_10 ||
739 			     cmd->cmnd[0] == WRITE_10)) {
740 				/* This will issue a new 6-byte command. */
741 				cmd->device->use_10_for_rw = 0;
742 				action = ACTION_REPREP;
743 			} else if (sshdr.asc == 0x10) /* DIX */ {
744 				action = ACTION_FAIL;
745 				blk_stat = BLK_STS_PROTECTION;
746 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
747 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
748 				action = ACTION_FAIL;
749 				blk_stat = BLK_STS_TARGET;
750 			} else
751 				action = ACTION_FAIL;
752 			break;
753 		case ABORTED_COMMAND:
754 			action = ACTION_FAIL;
755 			if (sshdr.asc == 0x10) /* DIF */
756 				blk_stat = BLK_STS_PROTECTION;
757 			break;
758 		case NOT_READY:
759 			/* If the device is in the process of becoming
760 			 * ready, or has a temporary blockage, retry.
761 			 */
762 			if (sshdr.asc == 0x04) {
763 				switch (sshdr.ascq) {
764 				case 0x01: /* becoming ready */
765 				case 0x04: /* format in progress */
766 				case 0x05: /* rebuild in progress */
767 				case 0x06: /* recalculation in progress */
768 				case 0x07: /* operation in progress */
769 				case 0x08: /* Long write in progress */
770 				case 0x09: /* self test in progress */
771 				case 0x11: /* notify (enable spinup) required */
772 				case 0x14: /* space allocation in progress */
773 				case 0x1a: /* start stop unit in progress */
774 				case 0x1b: /* sanitize in progress */
775 				case 0x1d: /* configuration in progress */
776 				case 0x24: /* depopulation in progress */
777 				case 0x25: /* depopulation restore in progress */
778 					action = ACTION_DELAYED_RETRY;
779 					break;
780 				case 0x0a: /* ALUA state transition */
781 					action = ACTION_DELAYED_REPREP;
782 					break;
783 				default:
784 					action = ACTION_FAIL;
785 					break;
786 				}
787 			} else
788 				action = ACTION_FAIL;
789 			break;
790 		case VOLUME_OVERFLOW:
791 			/* See SSC3rXX or current. */
792 			action = ACTION_FAIL;
793 			break;
794 		case DATA_PROTECT:
795 			action = ACTION_FAIL;
796 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
797 			    (sshdr.asc == 0x55 &&
798 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
799 				/* Insufficient zone resources */
800 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
801 			}
802 			break;
803 		case COMPLETED:
804 			fallthrough;
805 		default:
806 			action = ACTION_FAIL;
807 			break;
808 		}
809 	} else
810 		action = ACTION_FAIL;
811 
812 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
813 		action = ACTION_FAIL;
814 
815 	switch (action) {
816 	case ACTION_FAIL:
817 		/* Give up and fail the remainder of the request */
818 		if (!(req->rq_flags & RQF_QUIET)) {
819 			static DEFINE_RATELIMIT_STATE(_rs,
820 					DEFAULT_RATELIMIT_INTERVAL,
821 					DEFAULT_RATELIMIT_BURST);
822 
823 			if (unlikely(scsi_logging_level))
824 				level =
825 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
826 						    SCSI_LOG_MLCOMPLETE_BITS);
827 
828 			/*
829 			 * if logging is enabled the failure will be printed
830 			 * in scsi_log_completion(), so avoid duplicate messages
831 			 */
832 			if (!level && __ratelimit(&_rs)) {
833 				scsi_print_result(cmd, NULL, FAILED);
834 				if (sense_valid)
835 					scsi_print_sense(cmd);
836 				scsi_print_command(cmd);
837 			}
838 		}
839 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
840 			return;
841 		fallthrough;
842 	case ACTION_REPREP:
843 		scsi_mq_requeue_cmd(cmd, 0);
844 		break;
845 	case ACTION_DELAYED_REPREP:
846 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
847 		break;
848 	case ACTION_RETRY:
849 		/* Retry the same command immediately */
850 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
851 		break;
852 	case ACTION_DELAYED_RETRY:
853 		/* Retry the same command after a delay */
854 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
855 		break;
856 	}
857 }
858 
859 /*
860  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
861  * new result that may suppress further error checking. Also modifies
862  * *blk_statp in some cases.
863  */
864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
865 					blk_status_t *blk_statp)
866 {
867 	bool sense_valid;
868 	bool sense_current = true;	/* false implies "deferred sense" */
869 	struct request *req = scsi_cmd_to_rq(cmd);
870 	struct scsi_sense_hdr sshdr;
871 
872 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
873 	if (sense_valid)
874 		sense_current = !scsi_sense_is_deferred(&sshdr);
875 
876 	if (blk_rq_is_passthrough(req)) {
877 		if (sense_valid) {
878 			/*
879 			 * SG_IO wants current and deferred errors
880 			 */
881 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
882 					     SCSI_SENSE_BUFFERSIZE);
883 		}
884 		if (sense_current)
885 			*blk_statp = scsi_result_to_blk_status(result);
886 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
887 		/*
888 		 * Flush commands do not transfers any data, and thus cannot use
889 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
890 		 * This sets *blk_statp explicitly for the problem case.
891 		 */
892 		*blk_statp = scsi_result_to_blk_status(result);
893 	}
894 	/*
895 	 * Recovered errors need reporting, but they're always treated as
896 	 * success, so fiddle the result code here.  For passthrough requests
897 	 * we already took a copy of the original into sreq->result which
898 	 * is what gets returned to the user
899 	 */
900 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
901 		bool do_print = true;
902 		/*
903 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
904 		 * skip print since caller wants ATA registers. Only occurs
905 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
906 		 */
907 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
908 			do_print = false;
909 		else if (req->rq_flags & RQF_QUIET)
910 			do_print = false;
911 		if (do_print)
912 			scsi_print_sense(cmd);
913 		result = 0;
914 		/* for passthrough, *blk_statp may be set */
915 		*blk_statp = BLK_STS_OK;
916 	}
917 	/*
918 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
919 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
920 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
921 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
922 	 * intermediate statuses (both obsolete in SAM-4) as good.
923 	 */
924 	if ((result & 0xff) && scsi_status_is_good(result)) {
925 		result = 0;
926 		*blk_statp = BLK_STS_OK;
927 	}
928 	return result;
929 }
930 
931 /**
932  * scsi_io_completion - Completion processing for SCSI commands.
933  * @cmd:	command that is finished.
934  * @good_bytes:	number of processed bytes.
935  *
936  * We will finish off the specified number of sectors. If we are done, the
937  * command block will be released and the queue function will be goosed. If we
938  * are not done then we have to figure out what to do next:
939  *
940  *   a) We can call scsi_mq_requeue_cmd().  The request will be
941  *	unprepared and put back on the queue.  Then a new command will
942  *	be created for it.  This should be used if we made forward
943  *	progress, or if we want to switch from READ(10) to READ(6) for
944  *	example.
945  *
946  *   b) We can call scsi_io_completion_action().  The request will be
947  *	put back on the queue and retried using the same command as
948  *	before, possibly after a delay.
949  *
950  *   c) We can call scsi_end_request() with blk_stat other than
951  *	BLK_STS_OK, to fail the remainder of the request.
952  */
953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
954 {
955 	int result = cmd->result;
956 	struct request *req = scsi_cmd_to_rq(cmd);
957 	blk_status_t blk_stat = BLK_STS_OK;
958 
959 	if (unlikely(result))	/* a nz result may or may not be an error */
960 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
961 
962 	/*
963 	 * Next deal with any sectors which we were able to correctly
964 	 * handle.
965 	 */
966 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
967 		"%u sectors total, %d bytes done.\n",
968 		blk_rq_sectors(req), good_bytes));
969 
970 	/*
971 	 * Failed, zero length commands always need to drop down
972 	 * to retry code. Fast path should return in this block.
973 	 */
974 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
975 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
976 			return; /* no bytes remaining */
977 	}
978 
979 	/* Kill remainder if no retries. */
980 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
981 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
982 			WARN_ONCE(true,
983 			    "Bytes remaining after failed, no-retry command");
984 		return;
985 	}
986 
987 	/*
988 	 * If there had been no error, but we have leftover bytes in the
989 	 * request just queue the command up again.
990 	 */
991 	if (likely(result == 0))
992 		scsi_mq_requeue_cmd(cmd, 0);
993 	else
994 		scsi_io_completion_action(cmd, result);
995 }
996 
997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
998 		struct request *rq)
999 {
1000 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1001 	       !op_is_write(req_op(rq)) &&
1002 	       sdev->host->hostt->dma_need_drain(rq);
1003 }
1004 
1005 /**
1006  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1007  * @cmd: SCSI command data structure to initialize.
1008  *
1009  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1010  * for @cmd.
1011  *
1012  * Returns:
1013  * * BLK_STS_OK       - on success
1014  * * BLK_STS_RESOURCE - if the failure is retryable
1015  * * BLK_STS_IOERR    - if the failure is fatal
1016  */
1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1018 {
1019 	struct scsi_device *sdev = cmd->device;
1020 	struct request *rq = scsi_cmd_to_rq(cmd);
1021 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1022 	struct scatterlist *last_sg = NULL;
1023 	blk_status_t ret;
1024 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1025 	int count;
1026 
1027 	if (WARN_ON_ONCE(!nr_segs))
1028 		return BLK_STS_IOERR;
1029 
1030 	/*
1031 	 * Make sure there is space for the drain.  The driver must adjust
1032 	 * max_hw_segments to be prepared for this.
1033 	 */
1034 	if (need_drain)
1035 		nr_segs++;
1036 
1037 	/*
1038 	 * If sg table allocation fails, requeue request later.
1039 	 */
1040 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1041 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1042 		return BLK_STS_RESOURCE;
1043 
1044 	/*
1045 	 * Next, walk the list, and fill in the addresses and sizes of
1046 	 * each segment.
1047 	 */
1048 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1049 
1050 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1051 		unsigned int pad_len =
1052 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1053 
1054 		last_sg->length += pad_len;
1055 		cmd->extra_len += pad_len;
1056 	}
1057 
1058 	if (need_drain) {
1059 		sg_unmark_end(last_sg);
1060 		last_sg = sg_next(last_sg);
1061 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1062 		sg_mark_end(last_sg);
1063 
1064 		cmd->extra_len += sdev->dma_drain_len;
1065 		count++;
1066 	}
1067 
1068 	BUG_ON(count > cmd->sdb.table.nents);
1069 	cmd->sdb.table.nents = count;
1070 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1071 
1072 	if (blk_integrity_rq(rq)) {
1073 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 		int ivecs;
1075 
1076 		if (WARN_ON_ONCE(!prot_sdb)) {
1077 			/*
1078 			 * This can happen if someone (e.g. multipath)
1079 			 * queues a command to a device on an adapter
1080 			 * that does not support DIX.
1081 			 */
1082 			ret = BLK_STS_IOERR;
1083 			goto out_free_sgtables;
1084 		}
1085 
1086 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1087 
1088 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1089 				prot_sdb->table.sgl,
1090 				SCSI_INLINE_PROT_SG_CNT)) {
1091 			ret = BLK_STS_RESOURCE;
1092 			goto out_free_sgtables;
1093 		}
1094 
1095 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1096 						prot_sdb->table.sgl);
1097 		BUG_ON(count > ivecs);
1098 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1099 
1100 		cmd->prot_sdb = prot_sdb;
1101 		cmd->prot_sdb->table.nents = count;
1102 	}
1103 
1104 	return BLK_STS_OK;
1105 out_free_sgtables:
1106 	scsi_free_sgtables(cmd);
1107 	return ret;
1108 }
1109 EXPORT_SYMBOL(scsi_alloc_sgtables);
1110 
1111 /**
1112  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1113  * @rq: Request associated with the SCSI command to be initialized.
1114  *
1115  * This function initializes the members of struct scsi_cmnd that must be
1116  * initialized before request processing starts and that won't be
1117  * reinitialized if a SCSI command is requeued.
1118  */
1119 static void scsi_initialize_rq(struct request *rq)
1120 {
1121 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1122 
1123 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1124 	cmd->cmd_len = MAX_COMMAND_SIZE;
1125 	cmd->sense_len = 0;
1126 	init_rcu_head(&cmd->rcu);
1127 	cmd->jiffies_at_alloc = jiffies;
1128 	cmd->retries = 0;
1129 }
1130 
1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1132 				   blk_mq_req_flags_t flags)
1133 {
1134 	struct request *rq;
1135 
1136 	rq = blk_mq_alloc_request(q, opf, flags);
1137 	if (!IS_ERR(rq))
1138 		scsi_initialize_rq(rq);
1139 	return rq;
1140 }
1141 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1142 
1143 /*
1144  * Only called when the request isn't completed by SCSI, and not freed by
1145  * SCSI
1146  */
1147 static void scsi_cleanup_rq(struct request *rq)
1148 {
1149 	if (rq->rq_flags & RQF_DONTPREP) {
1150 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1151 		rq->rq_flags &= ~RQF_DONTPREP;
1152 	}
1153 }
1154 
1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1157 {
1158 	struct request *rq = scsi_cmd_to_rq(cmd);
1159 
1160 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1161 		cmd->flags |= SCMD_INITIALIZED;
1162 		scsi_initialize_rq(rq);
1163 	}
1164 
1165 	cmd->device = dev;
1166 	INIT_LIST_HEAD(&cmd->eh_entry);
1167 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 }
1169 
1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1171 		struct request *req)
1172 {
1173 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1174 
1175 	/*
1176 	 * Passthrough requests may transfer data, in which case they must
1177 	 * a bio attached to them.  Or they might contain a SCSI command
1178 	 * that does not transfer data, in which case they may optionally
1179 	 * submit a request without an attached bio.
1180 	 */
1181 	if (req->bio) {
1182 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1183 		if (unlikely(ret != BLK_STS_OK))
1184 			return ret;
1185 	} else {
1186 		BUG_ON(blk_rq_bytes(req));
1187 
1188 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1189 	}
1190 
1191 	cmd->transfersize = blk_rq_bytes(req);
1192 	return BLK_STS_OK;
1193 }
1194 
1195 static blk_status_t
1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1197 {
1198 	switch (sdev->sdev_state) {
1199 	case SDEV_CREATED:
1200 		return BLK_STS_OK;
1201 	case SDEV_OFFLINE:
1202 	case SDEV_TRANSPORT_OFFLINE:
1203 		/*
1204 		 * If the device is offline we refuse to process any
1205 		 * commands.  The device must be brought online
1206 		 * before trying any recovery commands.
1207 		 */
1208 		if (!sdev->offline_already) {
1209 			sdev->offline_already = true;
1210 			sdev_printk(KERN_ERR, sdev,
1211 				    "rejecting I/O to offline device\n");
1212 		}
1213 		return BLK_STS_IOERR;
1214 	case SDEV_DEL:
1215 		/*
1216 		 * If the device is fully deleted, we refuse to
1217 		 * process any commands as well.
1218 		 */
1219 		sdev_printk(KERN_ERR, sdev,
1220 			    "rejecting I/O to dead device\n");
1221 		return BLK_STS_IOERR;
1222 	case SDEV_BLOCK:
1223 	case SDEV_CREATED_BLOCK:
1224 		return BLK_STS_RESOURCE;
1225 	case SDEV_QUIESCE:
1226 		/*
1227 		 * If the device is blocked we only accept power management
1228 		 * commands.
1229 		 */
1230 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1231 			return BLK_STS_RESOURCE;
1232 		return BLK_STS_OK;
1233 	default:
1234 		/*
1235 		 * For any other not fully online state we only allow
1236 		 * power management commands.
1237 		 */
1238 		if (req && !(req->rq_flags & RQF_PM))
1239 			return BLK_STS_OFFLINE;
1240 		return BLK_STS_OK;
1241 	}
1242 }
1243 
1244 /*
1245  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1246  * and return the token else return -1.
1247  */
1248 static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 				  struct scsi_device *sdev)
1250 {
1251 	int token;
1252 
1253 	token = sbitmap_get(&sdev->budget_map);
1254 	if (token < 0)
1255 		return -1;
1256 
1257 	if (!atomic_read(&sdev->device_blocked))
1258 		return token;
1259 
1260 	/*
1261 	 * Only unblock if no other commands are pending and
1262 	 * if device_blocked has decreased to zero
1263 	 */
1264 	if (scsi_device_busy(sdev) > 1 ||
1265 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1266 		sbitmap_put(&sdev->budget_map, token);
1267 		return -1;
1268 	}
1269 
1270 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1271 			 "unblocking device at zero depth\n"));
1272 
1273 	return token;
1274 }
1275 
1276 /*
1277  * scsi_target_queue_ready: checks if there we can send commands to target
1278  * @sdev: scsi device on starget to check.
1279  */
1280 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1281 					   struct scsi_device *sdev)
1282 {
1283 	struct scsi_target *starget = scsi_target(sdev);
1284 	unsigned int busy;
1285 
1286 	if (starget->single_lun) {
1287 		spin_lock_irq(shost->host_lock);
1288 		if (starget->starget_sdev_user &&
1289 		    starget->starget_sdev_user != sdev) {
1290 			spin_unlock_irq(shost->host_lock);
1291 			return 0;
1292 		}
1293 		starget->starget_sdev_user = sdev;
1294 		spin_unlock_irq(shost->host_lock);
1295 	}
1296 
1297 	if (starget->can_queue <= 0)
1298 		return 1;
1299 
1300 	busy = atomic_inc_return(&starget->target_busy) - 1;
1301 	if (atomic_read(&starget->target_blocked) > 0) {
1302 		if (busy)
1303 			goto starved;
1304 
1305 		/*
1306 		 * unblock after target_blocked iterates to zero
1307 		 */
1308 		if (atomic_dec_return(&starget->target_blocked) > 0)
1309 			goto out_dec;
1310 
1311 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1312 				 "unblocking target at zero depth\n"));
1313 	}
1314 
1315 	if (busy >= starget->can_queue)
1316 		goto starved;
1317 
1318 	return 1;
1319 
1320 starved:
1321 	spin_lock_irq(shost->host_lock);
1322 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1323 	spin_unlock_irq(shost->host_lock);
1324 out_dec:
1325 	if (starget->can_queue > 0)
1326 		atomic_dec(&starget->target_busy);
1327 	return 0;
1328 }
1329 
1330 /*
1331  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332  * return 0. We must end up running the queue again whenever 0 is
1333  * returned, else IO can hang.
1334  */
1335 static inline int scsi_host_queue_ready(struct request_queue *q,
1336 				   struct Scsi_Host *shost,
1337 				   struct scsi_device *sdev,
1338 				   struct scsi_cmnd *cmd)
1339 {
1340 	if (atomic_read(&shost->host_blocked) > 0) {
1341 		if (scsi_host_busy(shost) > 0)
1342 			goto starved;
1343 
1344 		/*
1345 		 * unblock after host_blocked iterates to zero
1346 		 */
1347 		if (atomic_dec_return(&shost->host_blocked) > 0)
1348 			goto out_dec;
1349 
1350 		SCSI_LOG_MLQUEUE(3,
1351 			shost_printk(KERN_INFO, shost,
1352 				     "unblocking host at zero depth\n"));
1353 	}
1354 
1355 	if (shost->host_self_blocked)
1356 		goto starved;
1357 
1358 	/* We're OK to process the command, so we can't be starved */
1359 	if (!list_empty(&sdev->starved_entry)) {
1360 		spin_lock_irq(shost->host_lock);
1361 		if (!list_empty(&sdev->starved_entry))
1362 			list_del_init(&sdev->starved_entry);
1363 		spin_unlock_irq(shost->host_lock);
1364 	}
1365 
1366 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1367 
1368 	return 1;
1369 
1370 starved:
1371 	spin_lock_irq(shost->host_lock);
1372 	if (list_empty(&sdev->starved_entry))
1373 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1374 	spin_unlock_irq(shost->host_lock);
1375 out_dec:
1376 	scsi_dec_host_busy(shost, cmd);
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Busy state exporting function for request stacking drivers.
1382  *
1383  * For efficiency, no lock is taken to check the busy state of
1384  * shost/starget/sdev, since the returned value is not guaranteed and
1385  * may be changed after request stacking drivers call the function,
1386  * regardless of taking lock or not.
1387  *
1388  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1389  * needs to return 'not busy'. Otherwise, request stacking drivers
1390  * may hold requests forever.
1391  */
1392 static bool scsi_mq_lld_busy(struct request_queue *q)
1393 {
1394 	struct scsi_device *sdev = q->queuedata;
1395 	struct Scsi_Host *shost;
1396 
1397 	if (blk_queue_dying(q))
1398 		return false;
1399 
1400 	shost = sdev->host;
1401 
1402 	/*
1403 	 * Ignore host/starget busy state.
1404 	 * Since block layer does not have a concept of fairness across
1405 	 * multiple queues, congestion of host/starget needs to be handled
1406 	 * in SCSI layer.
1407 	 */
1408 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1409 		return true;
1410 
1411 	return false;
1412 }
1413 
1414 /*
1415  * Block layer request completion callback. May be called from interrupt
1416  * context.
1417  */
1418 static void scsi_complete(struct request *rq)
1419 {
1420 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1421 	enum scsi_disposition disposition;
1422 
1423 	INIT_LIST_HEAD(&cmd->eh_entry);
1424 
1425 	atomic_inc(&cmd->device->iodone_cnt);
1426 	if (cmd->result)
1427 		atomic_inc(&cmd->device->ioerr_cnt);
1428 
1429 	disposition = scsi_decide_disposition(cmd);
1430 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1431 		disposition = SUCCESS;
1432 
1433 	scsi_log_completion(cmd, disposition);
1434 
1435 	switch (disposition) {
1436 	case SUCCESS:
1437 		scsi_finish_command(cmd);
1438 		break;
1439 	case NEEDS_RETRY:
1440 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1441 		break;
1442 	case ADD_TO_MLQUEUE:
1443 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1444 		break;
1445 	default:
1446 		scsi_eh_scmd_add(cmd);
1447 		break;
1448 	}
1449 }
1450 
1451 /**
1452  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1453  * @cmd: command block we are dispatching.
1454  *
1455  * Return: nonzero return request was rejected and device's queue needs to be
1456  * plugged.
1457  */
1458 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1459 {
1460 	struct Scsi_Host *host = cmd->device->host;
1461 	int rtn = 0;
1462 
1463 	atomic_inc(&cmd->device->iorequest_cnt);
1464 
1465 	/* check if the device is still usable */
1466 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1467 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1468 		 * returns an immediate error upwards, and signals
1469 		 * that the device is no longer present */
1470 		cmd->result = DID_NO_CONNECT << 16;
1471 		goto done;
1472 	}
1473 
1474 	/* Check to see if the scsi lld made this device blocked. */
1475 	if (unlikely(scsi_device_blocked(cmd->device))) {
1476 		/*
1477 		 * in blocked state, the command is just put back on
1478 		 * the device queue.  The suspend state has already
1479 		 * blocked the queue so future requests should not
1480 		 * occur until the device transitions out of the
1481 		 * suspend state.
1482 		 */
1483 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1484 			"queuecommand : device blocked\n"));
1485 		atomic_dec(&cmd->device->iorequest_cnt);
1486 		return SCSI_MLQUEUE_DEVICE_BUSY;
1487 	}
1488 
1489 	/* Store the LUN value in cmnd, if needed. */
1490 	if (cmd->device->lun_in_cdb)
1491 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1492 			       (cmd->device->lun << 5 & 0xe0);
1493 
1494 	scsi_log_send(cmd);
1495 
1496 	/*
1497 	 * Before we queue this command, check if the command
1498 	 * length exceeds what the host adapter can handle.
1499 	 */
1500 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1501 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1502 			       "queuecommand : command too long. "
1503 			       "cdb_size=%d host->max_cmd_len=%d\n",
1504 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1505 		cmd->result = (DID_ABORT << 16);
1506 		goto done;
1507 	}
1508 
1509 	if (unlikely(host->shost_state == SHOST_DEL)) {
1510 		cmd->result = (DID_NO_CONNECT << 16);
1511 		goto done;
1512 
1513 	}
1514 
1515 	trace_scsi_dispatch_cmd_start(cmd);
1516 	rtn = host->hostt->queuecommand(host, cmd);
1517 	if (rtn) {
1518 		atomic_dec(&cmd->device->iorequest_cnt);
1519 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523 
1524 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525 			"queuecommand : request rejected\n"));
1526 	}
1527 
1528 	return rtn;
1529  done:
1530 	scsi_done(cmd);
1531 	return 0;
1532 }
1533 
1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536 {
1537 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538 		sizeof(struct scatterlist);
1539 }
1540 
1541 static blk_status_t scsi_prepare_cmd(struct request *req)
1542 {
1543 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544 	struct scsi_device *sdev = req->q->queuedata;
1545 	struct Scsi_Host *shost = sdev->host;
1546 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547 	struct scatterlist *sg;
1548 
1549 	scsi_init_command(sdev, cmd);
1550 
1551 	cmd->eh_eflags = 0;
1552 	cmd->prot_type = 0;
1553 	cmd->prot_flags = 0;
1554 	cmd->submitter = 0;
1555 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556 	cmd->underflow = 0;
1557 	cmd->transfersize = 0;
1558 	cmd->host_scribble = NULL;
1559 	cmd->result = 0;
1560 	cmd->extra_len = 0;
1561 	cmd->state = 0;
1562 	if (in_flight)
1563 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564 
1565 	/*
1566 	 * Only clear the driver-private command data if the LLD does not supply
1567 	 * a function to initialize that data.
1568 	 */
1569 	if (!shost->hostt->init_cmd_priv)
1570 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1571 
1572 	cmd->prot_op = SCSI_PROT_NORMAL;
1573 	if (blk_rq_bytes(req))
1574 		cmd->sc_data_direction = rq_dma_dir(req);
1575 	else
1576 		cmd->sc_data_direction = DMA_NONE;
1577 
1578 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579 	cmd->sdb.table.sgl = sg;
1580 
1581 	if (scsi_host_get_prot(shost)) {
1582 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1583 
1584 		cmd->prot_sdb->table.sgl =
1585 			(struct scatterlist *)(cmd->prot_sdb + 1);
1586 	}
1587 
1588 	/*
1589 	 * Special handling for passthrough commands, which don't go to the ULP
1590 	 * at all:
1591 	 */
1592 	if (blk_rq_is_passthrough(req))
1593 		return scsi_setup_scsi_cmnd(sdev, req);
1594 
1595 	if (sdev->handler && sdev->handler->prep_fn) {
1596 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597 
1598 		if (ret != BLK_STS_OK)
1599 			return ret;
1600 	}
1601 
1602 	/* Usually overridden by the ULP */
1603 	cmd->allowed = 0;
1604 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606 }
1607 
1608 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609 {
1610 	struct request *req = scsi_cmd_to_rq(cmd);
1611 
1612 	switch (cmd->submitter) {
1613 	case SUBMITTED_BY_BLOCK_LAYER:
1614 		break;
1615 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616 		return scsi_eh_done(cmd);
1617 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618 		return;
1619 	}
1620 
1621 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622 		return;
1623 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624 		return;
1625 	trace_scsi_dispatch_cmd_done(cmd);
1626 
1627 	if (complete_directly)
1628 		blk_mq_complete_request_direct(req, scsi_complete);
1629 	else
1630 		blk_mq_complete_request(req);
1631 }
1632 
1633 void scsi_done(struct scsi_cmnd *cmd)
1634 {
1635 	scsi_done_internal(cmd, false);
1636 }
1637 EXPORT_SYMBOL(scsi_done);
1638 
1639 void scsi_done_direct(struct scsi_cmnd *cmd)
1640 {
1641 	scsi_done_internal(cmd, true);
1642 }
1643 EXPORT_SYMBOL(scsi_done_direct);
1644 
1645 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646 {
1647 	struct scsi_device *sdev = q->queuedata;
1648 
1649 	sbitmap_put(&sdev->budget_map, budget_token);
1650 }
1651 
1652 /*
1653  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654  * not change behaviour from the previous unplug mechanism, experimentation
1655  * may prove this needs changing.
1656  */
1657 #define SCSI_QUEUE_DELAY 3
1658 
1659 static int scsi_mq_get_budget(struct request_queue *q)
1660 {
1661 	struct scsi_device *sdev = q->queuedata;
1662 	int token = scsi_dev_queue_ready(q, sdev);
1663 
1664 	if (token >= 0)
1665 		return token;
1666 
1667 	atomic_inc(&sdev->restarts);
1668 
1669 	/*
1670 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671 	 * .restarts must be incremented before .device_busy is read because the
1672 	 * code in scsi_run_queue_async() depends on the order of these operations.
1673 	 */
1674 	smp_mb__after_atomic();
1675 
1676 	/*
1677 	 * If all in-flight requests originated from this LUN are completed
1678 	 * before reading .device_busy, sdev->device_busy will be observed as
1679 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680 	 * soon. Otherwise, completion of one of these requests will observe
1681 	 * the .restarts flag, and the request queue will be run for handling
1682 	 * this request, see scsi_end_request().
1683 	 */
1684 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1685 				!scsi_device_blocked(sdev)))
1686 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1687 	return -1;
1688 }
1689 
1690 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691 {
1692 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693 
1694 	cmd->budget_token = token;
1695 }
1696 
1697 static int scsi_mq_get_rq_budget_token(struct request *req)
1698 {
1699 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700 
1701 	return cmd->budget_token;
1702 }
1703 
1704 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705 			 const struct blk_mq_queue_data *bd)
1706 {
1707 	struct request *req = bd->rq;
1708 	struct request_queue *q = req->q;
1709 	struct scsi_device *sdev = q->queuedata;
1710 	struct Scsi_Host *shost = sdev->host;
1711 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1712 	blk_status_t ret;
1713 	int reason;
1714 
1715 	WARN_ON_ONCE(cmd->budget_token < 0);
1716 
1717 	/*
1718 	 * If the device is not in running state we will reject some or all
1719 	 * commands.
1720 	 */
1721 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722 		ret = scsi_device_state_check(sdev, req);
1723 		if (ret != BLK_STS_OK)
1724 			goto out_put_budget;
1725 	}
1726 
1727 	ret = BLK_STS_RESOURCE;
1728 	if (!scsi_target_queue_ready(shost, sdev))
1729 		goto out_put_budget;
1730 	if (unlikely(scsi_host_in_recovery(shost))) {
1731 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732 			ret = BLK_STS_OFFLINE;
1733 		goto out_dec_target_busy;
1734 	}
1735 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736 		goto out_dec_target_busy;
1737 
1738 	if (!(req->rq_flags & RQF_DONTPREP)) {
1739 		ret = scsi_prepare_cmd(req);
1740 		if (ret != BLK_STS_OK)
1741 			goto out_dec_host_busy;
1742 		req->rq_flags |= RQF_DONTPREP;
1743 	} else {
1744 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1745 	}
1746 
1747 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1748 	if (sdev->simple_tags)
1749 		cmd->flags |= SCMD_TAGGED;
1750 	if (bd->last)
1751 		cmd->flags |= SCMD_LAST;
1752 
1753 	scsi_set_resid(cmd, 0);
1754 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756 
1757 	blk_mq_start_request(req);
1758 	reason = scsi_dispatch_cmd(cmd);
1759 	if (reason) {
1760 		scsi_set_blocked(cmd, reason);
1761 		ret = BLK_STS_RESOURCE;
1762 		goto out_dec_host_busy;
1763 	}
1764 
1765 	return BLK_STS_OK;
1766 
1767 out_dec_host_busy:
1768 	scsi_dec_host_busy(shost, cmd);
1769 out_dec_target_busy:
1770 	if (scsi_target(sdev)->can_queue > 0)
1771 		atomic_dec(&scsi_target(sdev)->target_busy);
1772 out_put_budget:
1773 	scsi_mq_put_budget(q, cmd->budget_token);
1774 	cmd->budget_token = -1;
1775 	switch (ret) {
1776 	case BLK_STS_OK:
1777 		break;
1778 	case BLK_STS_RESOURCE:
1779 	case BLK_STS_ZONE_RESOURCE:
1780 		if (scsi_device_blocked(sdev))
1781 			ret = BLK_STS_DEV_RESOURCE;
1782 		break;
1783 	case BLK_STS_AGAIN:
1784 		cmd->result = DID_BUS_BUSY << 16;
1785 		if (req->rq_flags & RQF_DONTPREP)
1786 			scsi_mq_uninit_cmd(cmd);
1787 		break;
1788 	default:
1789 		if (unlikely(!scsi_device_online(sdev)))
1790 			cmd->result = DID_NO_CONNECT << 16;
1791 		else
1792 			cmd->result = DID_ERROR << 16;
1793 		/*
1794 		 * Make sure to release all allocated resources when
1795 		 * we hit an error, as we will never see this command
1796 		 * again.
1797 		 */
1798 		if (req->rq_flags & RQF_DONTPREP)
1799 			scsi_mq_uninit_cmd(cmd);
1800 		scsi_run_queue_async(sdev);
1801 		break;
1802 	}
1803 	return ret;
1804 }
1805 
1806 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1807 				unsigned int hctx_idx, unsigned int numa_node)
1808 {
1809 	struct Scsi_Host *shost = set->driver_data;
1810 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1811 	struct scatterlist *sg;
1812 	int ret = 0;
1813 
1814 	cmd->sense_buffer =
1815 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1816 	if (!cmd->sense_buffer)
1817 		return -ENOMEM;
1818 
1819 	if (scsi_host_get_prot(shost)) {
1820 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1821 			shost->hostt->cmd_size;
1822 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1823 	}
1824 
1825 	if (shost->hostt->init_cmd_priv) {
1826 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1827 		if (ret < 0)
1828 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1829 	}
1830 
1831 	return ret;
1832 }
1833 
1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1835 				 unsigned int hctx_idx)
1836 {
1837 	struct Scsi_Host *shost = set->driver_data;
1838 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1839 
1840 	if (shost->hostt->exit_cmd_priv)
1841 		shost->hostt->exit_cmd_priv(shost, cmd);
1842 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1843 }
1844 
1845 
1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1847 {
1848 	struct Scsi_Host *shost = hctx->driver_data;
1849 
1850 	if (shost->hostt->mq_poll)
1851 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1852 
1853 	return 0;
1854 }
1855 
1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1857 			  unsigned int hctx_idx)
1858 {
1859 	struct Scsi_Host *shost = data;
1860 
1861 	hctx->driver_data = shost;
1862 	return 0;
1863 }
1864 
1865 static void scsi_map_queues(struct blk_mq_tag_set *set)
1866 {
1867 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1868 
1869 	if (shost->hostt->map_queues)
1870 		return shost->hostt->map_queues(shost);
1871 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1872 }
1873 
1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1875 {
1876 	struct device *dev = shost->dma_dev;
1877 
1878 	/*
1879 	 * this limit is imposed by hardware restrictions
1880 	 */
1881 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1882 					SG_MAX_SEGMENTS));
1883 
1884 	if (scsi_host_prot_dma(shost)) {
1885 		shost->sg_prot_tablesize =
1886 			min_not_zero(shost->sg_prot_tablesize,
1887 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1888 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1889 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1890 	}
1891 
1892 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1893 	blk_queue_segment_boundary(q, shost->dma_boundary);
1894 	dma_set_seg_boundary(dev, shost->dma_boundary);
1895 
1896 	blk_queue_max_segment_size(q, shost->max_segment_size);
1897 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1898 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1899 
1900 	/*
1901 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1902 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1903 	 * which is set by the platform.
1904 	 *
1905 	 * Devices that require a bigger alignment can increase it later.
1906 	 */
1907 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1908 }
1909 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1910 
1911 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1912 	.get_budget	= scsi_mq_get_budget,
1913 	.put_budget	= scsi_mq_put_budget,
1914 	.queue_rq	= scsi_queue_rq,
1915 	.complete	= scsi_complete,
1916 	.timeout	= scsi_timeout,
1917 #ifdef CONFIG_BLK_DEBUG_FS
1918 	.show_rq	= scsi_show_rq,
1919 #endif
1920 	.init_request	= scsi_mq_init_request,
1921 	.exit_request	= scsi_mq_exit_request,
1922 	.cleanup_rq	= scsi_cleanup_rq,
1923 	.busy		= scsi_mq_lld_busy,
1924 	.map_queues	= scsi_map_queues,
1925 	.init_hctx	= scsi_init_hctx,
1926 	.poll		= scsi_mq_poll,
1927 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1928 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1929 };
1930 
1931 
1932 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1933 {
1934 	struct Scsi_Host *shost = hctx->driver_data;
1935 
1936 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1937 }
1938 
1939 static const struct blk_mq_ops scsi_mq_ops = {
1940 	.get_budget	= scsi_mq_get_budget,
1941 	.put_budget	= scsi_mq_put_budget,
1942 	.queue_rq	= scsi_queue_rq,
1943 	.commit_rqs	= scsi_commit_rqs,
1944 	.complete	= scsi_complete,
1945 	.timeout	= scsi_timeout,
1946 #ifdef CONFIG_BLK_DEBUG_FS
1947 	.show_rq	= scsi_show_rq,
1948 #endif
1949 	.init_request	= scsi_mq_init_request,
1950 	.exit_request	= scsi_mq_exit_request,
1951 	.cleanup_rq	= scsi_cleanup_rq,
1952 	.busy		= scsi_mq_lld_busy,
1953 	.map_queues	= scsi_map_queues,
1954 	.init_hctx	= scsi_init_hctx,
1955 	.poll		= scsi_mq_poll,
1956 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1957 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1958 };
1959 
1960 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1961 {
1962 	unsigned int cmd_size, sgl_size;
1963 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1964 
1965 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1966 				scsi_mq_inline_sgl_size(shost));
1967 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1968 	if (scsi_host_get_prot(shost))
1969 		cmd_size += sizeof(struct scsi_data_buffer) +
1970 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1971 
1972 	memset(tag_set, 0, sizeof(*tag_set));
1973 	if (shost->hostt->commit_rqs)
1974 		tag_set->ops = &scsi_mq_ops;
1975 	else
1976 		tag_set->ops = &scsi_mq_ops_no_commit;
1977 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1978 	tag_set->nr_maps = shost->nr_maps ? : 1;
1979 	tag_set->queue_depth = shost->can_queue;
1980 	tag_set->cmd_size = cmd_size;
1981 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1982 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1983 	tag_set->flags |=
1984 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1985 	if (shost->queuecommand_may_block)
1986 		tag_set->flags |= BLK_MQ_F_BLOCKING;
1987 	tag_set->driver_data = shost;
1988 	if (shost->host_tagset)
1989 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1990 
1991 	return blk_mq_alloc_tag_set(tag_set);
1992 }
1993 
1994 void scsi_mq_free_tags(struct kref *kref)
1995 {
1996 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1997 					       tagset_refcnt);
1998 
1999 	blk_mq_free_tag_set(&shost->tag_set);
2000 	complete(&shost->tagset_freed);
2001 }
2002 
2003 /**
2004  * scsi_device_from_queue - return sdev associated with a request_queue
2005  * @q: The request queue to return the sdev from
2006  *
2007  * Return the sdev associated with a request queue or NULL if the
2008  * request_queue does not reference a SCSI device.
2009  */
2010 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2011 {
2012 	struct scsi_device *sdev = NULL;
2013 
2014 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2015 	    q->mq_ops == &scsi_mq_ops)
2016 		sdev = q->queuedata;
2017 	if (!sdev || !get_device(&sdev->sdev_gendev))
2018 		sdev = NULL;
2019 
2020 	return sdev;
2021 }
2022 /*
2023  * pktcdvd should have been integrated into the SCSI layers, but for historical
2024  * reasons like the old IDE driver it isn't.  This export allows it to safely
2025  * probe if a given device is a SCSI one and only attach to that.
2026  */
2027 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2028 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2029 #endif
2030 
2031 /**
2032  * scsi_block_requests - Utility function used by low-level drivers to prevent
2033  * further commands from being queued to the device.
2034  * @shost:  host in question
2035  *
2036  * There is no timer nor any other means by which the requests get unblocked
2037  * other than the low-level driver calling scsi_unblock_requests().
2038  */
2039 void scsi_block_requests(struct Scsi_Host *shost)
2040 {
2041 	shost->host_self_blocked = 1;
2042 }
2043 EXPORT_SYMBOL(scsi_block_requests);
2044 
2045 /**
2046  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2047  * further commands to be queued to the device.
2048  * @shost:  host in question
2049  *
2050  * There is no timer nor any other means by which the requests get unblocked
2051  * other than the low-level driver calling scsi_unblock_requests(). This is done
2052  * as an API function so that changes to the internals of the scsi mid-layer
2053  * won't require wholesale changes to drivers that use this feature.
2054  */
2055 void scsi_unblock_requests(struct Scsi_Host *shost)
2056 {
2057 	shost->host_self_blocked = 0;
2058 	scsi_run_host_queues(shost);
2059 }
2060 EXPORT_SYMBOL(scsi_unblock_requests);
2061 
2062 void scsi_exit_queue(void)
2063 {
2064 	kmem_cache_destroy(scsi_sense_cache);
2065 }
2066 
2067 /**
2068  *	scsi_mode_select - issue a mode select
2069  *	@sdev:	SCSI device to be queried
2070  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2071  *	@sp:	Save page bit (0 == don't save, 1 == save)
2072  *	@buffer: request buffer (may not be smaller than eight bytes)
2073  *	@len:	length of request buffer.
2074  *	@timeout: command timeout
2075  *	@retries: number of retries before failing
2076  *	@data: returns a structure abstracting the mode header data
2077  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2078  *		must be SCSI_SENSE_BUFFERSIZE big.
2079  *
2080  *	Returns zero if successful; negative error number or scsi
2081  *	status on error
2082  *
2083  */
2084 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2085 		     unsigned char *buffer, int len, int timeout, int retries,
2086 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2087 {
2088 	unsigned char cmd[10];
2089 	unsigned char *real_buffer;
2090 	const struct scsi_exec_args exec_args = {
2091 		.sshdr = sshdr,
2092 	};
2093 	int ret;
2094 
2095 	memset(cmd, 0, sizeof(cmd));
2096 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2097 
2098 	/*
2099 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2100 	 * and the mode select header cannot fit within the maximumm 255 bytes
2101 	 * of the MODE SELECT(6) command.
2102 	 */
2103 	if (sdev->use_10_for_ms ||
2104 	    len + 4 > 255 ||
2105 	    data->block_descriptor_length > 255) {
2106 		if (len > 65535 - 8)
2107 			return -EINVAL;
2108 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2109 		if (!real_buffer)
2110 			return -ENOMEM;
2111 		memcpy(real_buffer + 8, buffer, len);
2112 		len += 8;
2113 		real_buffer[0] = 0;
2114 		real_buffer[1] = 0;
2115 		real_buffer[2] = data->medium_type;
2116 		real_buffer[3] = data->device_specific;
2117 		real_buffer[4] = data->longlba ? 0x01 : 0;
2118 		real_buffer[5] = 0;
2119 		put_unaligned_be16(data->block_descriptor_length,
2120 				   &real_buffer[6]);
2121 
2122 		cmd[0] = MODE_SELECT_10;
2123 		put_unaligned_be16(len, &cmd[7]);
2124 	} else {
2125 		if (data->longlba)
2126 			return -EINVAL;
2127 
2128 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2129 		if (!real_buffer)
2130 			return -ENOMEM;
2131 		memcpy(real_buffer + 4, buffer, len);
2132 		len += 4;
2133 		real_buffer[0] = 0;
2134 		real_buffer[1] = data->medium_type;
2135 		real_buffer[2] = data->device_specific;
2136 		real_buffer[3] = data->block_descriptor_length;
2137 
2138 		cmd[0] = MODE_SELECT;
2139 		cmd[4] = len;
2140 	}
2141 
2142 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2143 			       timeout, retries, &exec_args);
2144 	kfree(real_buffer);
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(scsi_mode_select);
2148 
2149 /**
2150  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2151  *	@sdev:	SCSI device to be queried
2152  *	@dbd:	set to prevent mode sense from returning block descriptors
2153  *	@modepage: mode page being requested
2154  *	@subpage: sub-page of the mode page being requested
2155  *	@buffer: request buffer (may not be smaller than eight bytes)
2156  *	@len:	length of request buffer.
2157  *	@timeout: command timeout
2158  *	@retries: number of retries before failing
2159  *	@data: returns a structure abstracting the mode header data
2160  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2161  *		must be SCSI_SENSE_BUFFERSIZE big.
2162  *
2163  *	Returns zero if successful, or a negative error number on failure
2164  */
2165 int
2166 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2167 		  unsigned char *buffer, int len, int timeout, int retries,
2168 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2169 {
2170 	unsigned char cmd[12];
2171 	int use_10_for_ms;
2172 	int header_length;
2173 	int result, retry_count = retries;
2174 	struct scsi_sense_hdr my_sshdr;
2175 	const struct scsi_exec_args exec_args = {
2176 		/* caller might not be interested in sense, but we need it */
2177 		.sshdr = sshdr ? : &my_sshdr,
2178 	};
2179 
2180 	memset(data, 0, sizeof(*data));
2181 	memset(&cmd[0], 0, 12);
2182 
2183 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2184 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2185 	cmd[2] = modepage;
2186 	cmd[3] = subpage;
2187 
2188 	sshdr = exec_args.sshdr;
2189 
2190  retry:
2191 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2192 
2193 	if (use_10_for_ms) {
2194 		if (len < 8 || len > 65535)
2195 			return -EINVAL;
2196 
2197 		cmd[0] = MODE_SENSE_10;
2198 		put_unaligned_be16(len, &cmd[7]);
2199 		header_length = 8;
2200 	} else {
2201 		if (len < 4)
2202 			return -EINVAL;
2203 
2204 		cmd[0] = MODE_SENSE;
2205 		cmd[4] = len;
2206 		header_length = 4;
2207 	}
2208 
2209 	memset(buffer, 0, len);
2210 
2211 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2212 				  timeout, retries, &exec_args);
2213 	if (result < 0)
2214 		return result;
2215 
2216 	/* This code looks awful: what it's doing is making sure an
2217 	 * ILLEGAL REQUEST sense return identifies the actual command
2218 	 * byte as the problem.  MODE_SENSE commands can return
2219 	 * ILLEGAL REQUEST if the code page isn't supported */
2220 
2221 	if (!scsi_status_is_good(result)) {
2222 		if (scsi_sense_valid(sshdr)) {
2223 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2224 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2225 				/*
2226 				 * Invalid command operation code: retry using
2227 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2228 				 * request, except if the request mode page is
2229 				 * too large for MODE SENSE single byte
2230 				 * allocation length field.
2231 				 */
2232 				if (use_10_for_ms) {
2233 					if (len > 255)
2234 						return -EIO;
2235 					sdev->use_10_for_ms = 0;
2236 					goto retry;
2237 				}
2238 			}
2239 			if (scsi_status_is_check_condition(result) &&
2240 			    sshdr->sense_key == UNIT_ATTENTION &&
2241 			    retry_count) {
2242 				retry_count--;
2243 				goto retry;
2244 			}
2245 		}
2246 		return -EIO;
2247 	}
2248 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2249 		     (modepage == 6 || modepage == 8))) {
2250 		/* Initio breakage? */
2251 		header_length = 0;
2252 		data->length = 13;
2253 		data->medium_type = 0;
2254 		data->device_specific = 0;
2255 		data->longlba = 0;
2256 		data->block_descriptor_length = 0;
2257 	} else if (use_10_for_ms) {
2258 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2259 		data->medium_type = buffer[2];
2260 		data->device_specific = buffer[3];
2261 		data->longlba = buffer[4] & 0x01;
2262 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2263 	} else {
2264 		data->length = buffer[0] + 1;
2265 		data->medium_type = buffer[1];
2266 		data->device_specific = buffer[2];
2267 		data->block_descriptor_length = buffer[3];
2268 	}
2269 	data->header_length = header_length;
2270 
2271 	return 0;
2272 }
2273 EXPORT_SYMBOL(scsi_mode_sense);
2274 
2275 /**
2276  *	scsi_test_unit_ready - test if unit is ready
2277  *	@sdev:	scsi device to change the state of.
2278  *	@timeout: command timeout
2279  *	@retries: number of retries before failing
2280  *	@sshdr: outpout pointer for decoded sense information.
2281  *
2282  *	Returns zero if unsuccessful or an error if TUR failed.  For
2283  *	removable media, UNIT_ATTENTION sets ->changed flag.
2284  **/
2285 int
2286 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2287 		     struct scsi_sense_hdr *sshdr)
2288 {
2289 	char cmd[] = {
2290 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2291 	};
2292 	const struct scsi_exec_args exec_args = {
2293 		.sshdr = sshdr,
2294 	};
2295 	int result;
2296 
2297 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2298 	do {
2299 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2300 					  timeout, 1, &exec_args);
2301 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2302 		    sshdr->sense_key == UNIT_ATTENTION)
2303 			sdev->changed = 1;
2304 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2305 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2306 
2307 	return result;
2308 }
2309 EXPORT_SYMBOL(scsi_test_unit_ready);
2310 
2311 /**
2312  *	scsi_device_set_state - Take the given device through the device state model.
2313  *	@sdev:	scsi device to change the state of.
2314  *	@state:	state to change to.
2315  *
2316  *	Returns zero if successful or an error if the requested
2317  *	transition is illegal.
2318  */
2319 int
2320 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2321 {
2322 	enum scsi_device_state oldstate = sdev->sdev_state;
2323 
2324 	if (state == oldstate)
2325 		return 0;
2326 
2327 	switch (state) {
2328 	case SDEV_CREATED:
2329 		switch (oldstate) {
2330 		case SDEV_CREATED_BLOCK:
2331 			break;
2332 		default:
2333 			goto illegal;
2334 		}
2335 		break;
2336 
2337 	case SDEV_RUNNING:
2338 		switch (oldstate) {
2339 		case SDEV_CREATED:
2340 		case SDEV_OFFLINE:
2341 		case SDEV_TRANSPORT_OFFLINE:
2342 		case SDEV_QUIESCE:
2343 		case SDEV_BLOCK:
2344 			break;
2345 		default:
2346 			goto illegal;
2347 		}
2348 		break;
2349 
2350 	case SDEV_QUIESCE:
2351 		switch (oldstate) {
2352 		case SDEV_RUNNING:
2353 		case SDEV_OFFLINE:
2354 		case SDEV_TRANSPORT_OFFLINE:
2355 			break;
2356 		default:
2357 			goto illegal;
2358 		}
2359 		break;
2360 
2361 	case SDEV_OFFLINE:
2362 	case SDEV_TRANSPORT_OFFLINE:
2363 		switch (oldstate) {
2364 		case SDEV_CREATED:
2365 		case SDEV_RUNNING:
2366 		case SDEV_QUIESCE:
2367 		case SDEV_BLOCK:
2368 			break;
2369 		default:
2370 			goto illegal;
2371 		}
2372 		break;
2373 
2374 	case SDEV_BLOCK:
2375 		switch (oldstate) {
2376 		case SDEV_RUNNING:
2377 		case SDEV_CREATED_BLOCK:
2378 		case SDEV_QUIESCE:
2379 		case SDEV_OFFLINE:
2380 			break;
2381 		default:
2382 			goto illegal;
2383 		}
2384 		break;
2385 
2386 	case SDEV_CREATED_BLOCK:
2387 		switch (oldstate) {
2388 		case SDEV_CREATED:
2389 			break;
2390 		default:
2391 			goto illegal;
2392 		}
2393 		break;
2394 
2395 	case SDEV_CANCEL:
2396 		switch (oldstate) {
2397 		case SDEV_CREATED:
2398 		case SDEV_RUNNING:
2399 		case SDEV_QUIESCE:
2400 		case SDEV_OFFLINE:
2401 		case SDEV_TRANSPORT_OFFLINE:
2402 			break;
2403 		default:
2404 			goto illegal;
2405 		}
2406 		break;
2407 
2408 	case SDEV_DEL:
2409 		switch (oldstate) {
2410 		case SDEV_CREATED:
2411 		case SDEV_RUNNING:
2412 		case SDEV_OFFLINE:
2413 		case SDEV_TRANSPORT_OFFLINE:
2414 		case SDEV_CANCEL:
2415 		case SDEV_BLOCK:
2416 		case SDEV_CREATED_BLOCK:
2417 			break;
2418 		default:
2419 			goto illegal;
2420 		}
2421 		break;
2422 
2423 	}
2424 	sdev->offline_already = false;
2425 	sdev->sdev_state = state;
2426 	return 0;
2427 
2428  illegal:
2429 	SCSI_LOG_ERROR_RECOVERY(1,
2430 				sdev_printk(KERN_ERR, sdev,
2431 					    "Illegal state transition %s->%s",
2432 					    scsi_device_state_name(oldstate),
2433 					    scsi_device_state_name(state))
2434 				);
2435 	return -EINVAL;
2436 }
2437 EXPORT_SYMBOL(scsi_device_set_state);
2438 
2439 /**
2440  *	scsi_evt_emit - emit a single SCSI device uevent
2441  *	@sdev: associated SCSI device
2442  *	@evt: event to emit
2443  *
2444  *	Send a single uevent (scsi_event) to the associated scsi_device.
2445  */
2446 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2447 {
2448 	int idx = 0;
2449 	char *envp[3];
2450 
2451 	switch (evt->evt_type) {
2452 	case SDEV_EVT_MEDIA_CHANGE:
2453 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2454 		break;
2455 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2456 		scsi_rescan_device(sdev);
2457 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2458 		break;
2459 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2460 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2461 		break;
2462 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2463 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2464 		break;
2465 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2466 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2467 		break;
2468 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2469 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2470 		break;
2471 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2472 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2473 		break;
2474 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2475 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2476 		break;
2477 	default:
2478 		/* do nothing */
2479 		break;
2480 	}
2481 
2482 	envp[idx++] = NULL;
2483 
2484 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2485 }
2486 
2487 /**
2488  *	scsi_evt_thread - send a uevent for each scsi event
2489  *	@work: work struct for scsi_device
2490  *
2491  *	Dispatch queued events to their associated scsi_device kobjects
2492  *	as uevents.
2493  */
2494 void scsi_evt_thread(struct work_struct *work)
2495 {
2496 	struct scsi_device *sdev;
2497 	enum scsi_device_event evt_type;
2498 	LIST_HEAD(event_list);
2499 
2500 	sdev = container_of(work, struct scsi_device, event_work);
2501 
2502 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2503 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2504 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2505 
2506 	while (1) {
2507 		struct scsi_event *evt;
2508 		struct list_head *this, *tmp;
2509 		unsigned long flags;
2510 
2511 		spin_lock_irqsave(&sdev->list_lock, flags);
2512 		list_splice_init(&sdev->event_list, &event_list);
2513 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2514 
2515 		if (list_empty(&event_list))
2516 			break;
2517 
2518 		list_for_each_safe(this, tmp, &event_list) {
2519 			evt = list_entry(this, struct scsi_event, node);
2520 			list_del(&evt->node);
2521 			scsi_evt_emit(sdev, evt);
2522 			kfree(evt);
2523 		}
2524 	}
2525 }
2526 
2527 /**
2528  * 	sdev_evt_send - send asserted event to uevent thread
2529  *	@sdev: scsi_device event occurred on
2530  *	@evt: event to send
2531  *
2532  *	Assert scsi device event asynchronously.
2533  */
2534 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2535 {
2536 	unsigned long flags;
2537 
2538 #if 0
2539 	/* FIXME: currently this check eliminates all media change events
2540 	 * for polled devices.  Need to update to discriminate between AN
2541 	 * and polled events */
2542 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2543 		kfree(evt);
2544 		return;
2545 	}
2546 #endif
2547 
2548 	spin_lock_irqsave(&sdev->list_lock, flags);
2549 	list_add_tail(&evt->node, &sdev->event_list);
2550 	schedule_work(&sdev->event_work);
2551 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2552 }
2553 EXPORT_SYMBOL_GPL(sdev_evt_send);
2554 
2555 /**
2556  * 	sdev_evt_alloc - allocate a new scsi event
2557  *	@evt_type: type of event to allocate
2558  *	@gfpflags: GFP flags for allocation
2559  *
2560  *	Allocates and returns a new scsi_event.
2561  */
2562 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2563 				  gfp_t gfpflags)
2564 {
2565 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2566 	if (!evt)
2567 		return NULL;
2568 
2569 	evt->evt_type = evt_type;
2570 	INIT_LIST_HEAD(&evt->node);
2571 
2572 	/* evt_type-specific initialization, if any */
2573 	switch (evt_type) {
2574 	case SDEV_EVT_MEDIA_CHANGE:
2575 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2576 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2577 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2579 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2580 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2581 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2582 	default:
2583 		/* do nothing */
2584 		break;
2585 	}
2586 
2587 	return evt;
2588 }
2589 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2590 
2591 /**
2592  * 	sdev_evt_send_simple - send asserted event to uevent thread
2593  *	@sdev: scsi_device event occurred on
2594  *	@evt_type: type of event to send
2595  *	@gfpflags: GFP flags for allocation
2596  *
2597  *	Assert scsi device event asynchronously, given an event type.
2598  */
2599 void sdev_evt_send_simple(struct scsi_device *sdev,
2600 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2601 {
2602 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2603 	if (!evt) {
2604 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2605 			    evt_type);
2606 		return;
2607 	}
2608 
2609 	sdev_evt_send(sdev, evt);
2610 }
2611 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2612 
2613 /**
2614  *	scsi_device_quiesce - Block all commands except power management.
2615  *	@sdev:	scsi device to quiesce.
2616  *
2617  *	This works by trying to transition to the SDEV_QUIESCE state
2618  *	(which must be a legal transition).  When the device is in this
2619  *	state, only power management requests will be accepted, all others will
2620  *	be deferred.
2621  *
2622  *	Must be called with user context, may sleep.
2623  *
2624  *	Returns zero if unsuccessful or an error if not.
2625  */
2626 int
2627 scsi_device_quiesce(struct scsi_device *sdev)
2628 {
2629 	struct request_queue *q = sdev->request_queue;
2630 	int err;
2631 
2632 	/*
2633 	 * It is allowed to call scsi_device_quiesce() multiple times from
2634 	 * the same context but concurrent scsi_device_quiesce() calls are
2635 	 * not allowed.
2636 	 */
2637 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2638 
2639 	if (sdev->quiesced_by == current)
2640 		return 0;
2641 
2642 	blk_set_pm_only(q);
2643 
2644 	blk_mq_freeze_queue(q);
2645 	/*
2646 	 * Ensure that the effect of blk_set_pm_only() will be visible
2647 	 * for percpu_ref_tryget() callers that occur after the queue
2648 	 * unfreeze even if the queue was already frozen before this function
2649 	 * was called. See also https://lwn.net/Articles/573497/.
2650 	 */
2651 	synchronize_rcu();
2652 	blk_mq_unfreeze_queue(q);
2653 
2654 	mutex_lock(&sdev->state_mutex);
2655 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2656 	if (err == 0)
2657 		sdev->quiesced_by = current;
2658 	else
2659 		blk_clear_pm_only(q);
2660 	mutex_unlock(&sdev->state_mutex);
2661 
2662 	return err;
2663 }
2664 EXPORT_SYMBOL(scsi_device_quiesce);
2665 
2666 /**
2667  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2668  *	@sdev:	scsi device to resume.
2669  *
2670  *	Moves the device from quiesced back to running and restarts the
2671  *	queues.
2672  *
2673  *	Must be called with user context, may sleep.
2674  */
2675 void scsi_device_resume(struct scsi_device *sdev)
2676 {
2677 	/* check if the device state was mutated prior to resume, and if
2678 	 * so assume the state is being managed elsewhere (for example
2679 	 * device deleted during suspend)
2680 	 */
2681 	mutex_lock(&sdev->state_mutex);
2682 	if (sdev->sdev_state == SDEV_QUIESCE)
2683 		scsi_device_set_state(sdev, SDEV_RUNNING);
2684 	if (sdev->quiesced_by) {
2685 		sdev->quiesced_by = NULL;
2686 		blk_clear_pm_only(sdev->request_queue);
2687 	}
2688 	mutex_unlock(&sdev->state_mutex);
2689 }
2690 EXPORT_SYMBOL(scsi_device_resume);
2691 
2692 static void
2693 device_quiesce_fn(struct scsi_device *sdev, void *data)
2694 {
2695 	scsi_device_quiesce(sdev);
2696 }
2697 
2698 void
2699 scsi_target_quiesce(struct scsi_target *starget)
2700 {
2701 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2702 }
2703 EXPORT_SYMBOL(scsi_target_quiesce);
2704 
2705 static void
2706 device_resume_fn(struct scsi_device *sdev, void *data)
2707 {
2708 	scsi_device_resume(sdev);
2709 }
2710 
2711 void
2712 scsi_target_resume(struct scsi_target *starget)
2713 {
2714 	starget_for_each_device(starget, NULL, device_resume_fn);
2715 }
2716 EXPORT_SYMBOL(scsi_target_resume);
2717 
2718 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2719 {
2720 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2721 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2722 
2723 	return 0;
2724 }
2725 
2726 void scsi_start_queue(struct scsi_device *sdev)
2727 {
2728 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2729 		blk_mq_unquiesce_queue(sdev->request_queue);
2730 }
2731 
2732 static void scsi_stop_queue(struct scsi_device *sdev)
2733 {
2734 	/*
2735 	 * The atomic variable of ->queue_stopped covers that
2736 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2737 	 *
2738 	 * The caller needs to wait until quiesce is done.
2739 	 */
2740 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2741 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2742 }
2743 
2744 /**
2745  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2746  * @sdev: device to block
2747  *
2748  * Pause SCSI command processing on the specified device. Does not sleep.
2749  *
2750  * Returns zero if successful or a negative error code upon failure.
2751  *
2752  * Notes:
2753  * This routine transitions the device to the SDEV_BLOCK state (which must be
2754  * a legal transition). When the device is in this state, command processing
2755  * is paused until the device leaves the SDEV_BLOCK state. See also
2756  * scsi_internal_device_unblock_nowait().
2757  */
2758 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2759 {
2760 	int ret = __scsi_internal_device_block_nowait(sdev);
2761 
2762 	/*
2763 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2764 	 * block layer from calling the midlayer with this device's
2765 	 * request queue.
2766 	 */
2767 	if (!ret)
2768 		scsi_stop_queue(sdev);
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2772 
2773 /**
2774  * scsi_device_block - try to transition to the SDEV_BLOCK state
2775  * @sdev: device to block
2776  * @data: dummy argument, ignored
2777  *
2778  * Pause SCSI command processing on the specified device. Callers must wait
2779  * until all ongoing scsi_queue_rq() calls have finished after this function
2780  * returns.
2781  *
2782  * Note:
2783  * This routine transitions the device to the SDEV_BLOCK state (which must be
2784  * a legal transition). When the device is in this state, command processing
2785  * is paused until the device leaves the SDEV_BLOCK state. See also
2786  * scsi_internal_device_unblock().
2787  */
2788 static void scsi_device_block(struct scsi_device *sdev, void *data)
2789 {
2790 	int err;
2791 	enum scsi_device_state state;
2792 
2793 	mutex_lock(&sdev->state_mutex);
2794 	err = __scsi_internal_device_block_nowait(sdev);
2795 	state = sdev->sdev_state;
2796 	if (err == 0)
2797 		/*
2798 		 * scsi_stop_queue() must be called with the state_mutex
2799 		 * held. Otherwise a simultaneous scsi_start_queue() call
2800 		 * might unquiesce the queue before we quiesce it.
2801 		 */
2802 		scsi_stop_queue(sdev);
2803 
2804 	mutex_unlock(&sdev->state_mutex);
2805 
2806 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2807 		  __func__, dev_name(&sdev->sdev_gendev), state);
2808 }
2809 
2810 /**
2811  * scsi_internal_device_unblock_nowait - resume a device after a block request
2812  * @sdev:	device to resume
2813  * @new_state:	state to set the device to after unblocking
2814  *
2815  * Restart the device queue for a previously suspended SCSI device. Does not
2816  * sleep.
2817  *
2818  * Returns zero if successful or a negative error code upon failure.
2819  *
2820  * Notes:
2821  * This routine transitions the device to the SDEV_RUNNING state or to one of
2822  * the offline states (which must be a legal transition) allowing the midlayer
2823  * to goose the queue for this device.
2824  */
2825 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2826 					enum scsi_device_state new_state)
2827 {
2828 	switch (new_state) {
2829 	case SDEV_RUNNING:
2830 	case SDEV_TRANSPORT_OFFLINE:
2831 		break;
2832 	default:
2833 		return -EINVAL;
2834 	}
2835 
2836 	/*
2837 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2838 	 * offlined states and goose the device queue if successful.
2839 	 */
2840 	switch (sdev->sdev_state) {
2841 	case SDEV_BLOCK:
2842 	case SDEV_TRANSPORT_OFFLINE:
2843 		sdev->sdev_state = new_state;
2844 		break;
2845 	case SDEV_CREATED_BLOCK:
2846 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2847 		    new_state == SDEV_OFFLINE)
2848 			sdev->sdev_state = new_state;
2849 		else
2850 			sdev->sdev_state = SDEV_CREATED;
2851 		break;
2852 	case SDEV_CANCEL:
2853 	case SDEV_OFFLINE:
2854 		break;
2855 	default:
2856 		return -EINVAL;
2857 	}
2858 	scsi_start_queue(sdev);
2859 
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2863 
2864 /**
2865  * scsi_internal_device_unblock - resume a device after a block request
2866  * @sdev:	device to resume
2867  * @new_state:	state to set the device to after unblocking
2868  *
2869  * Restart the device queue for a previously suspended SCSI device. May sleep.
2870  *
2871  * Returns zero if successful or a negative error code upon failure.
2872  *
2873  * Notes:
2874  * This routine transitions the device to the SDEV_RUNNING state or to one of
2875  * the offline states (which must be a legal transition) allowing the midlayer
2876  * to goose the queue for this device.
2877  */
2878 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2879 					enum scsi_device_state new_state)
2880 {
2881 	int ret;
2882 
2883 	mutex_lock(&sdev->state_mutex);
2884 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2885 	mutex_unlock(&sdev->state_mutex);
2886 
2887 	return ret;
2888 }
2889 
2890 static int
2891 target_block(struct device *dev, void *data)
2892 {
2893 	if (scsi_is_target_device(dev))
2894 		starget_for_each_device(to_scsi_target(dev), NULL,
2895 					scsi_device_block);
2896 	return 0;
2897 }
2898 
2899 /**
2900  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2901  * @dev: a parent device of one or more scsi_target devices
2902  * @shost: the Scsi_Host to which this device belongs
2903  *
2904  * Iterate over all children of @dev, which should be scsi_target devices,
2905  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2906  * ongoing scsi_queue_rq() calls to finish. May sleep.
2907  *
2908  * Note:
2909  * @dev must not itself be a scsi_target device.
2910  */
2911 void
2912 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2913 {
2914 	WARN_ON_ONCE(scsi_is_target_device(dev));
2915 	device_for_each_child(dev, NULL, target_block);
2916 	blk_mq_wait_quiesce_done(&shost->tag_set);
2917 }
2918 EXPORT_SYMBOL_GPL(scsi_block_targets);
2919 
2920 static void
2921 device_unblock(struct scsi_device *sdev, void *data)
2922 {
2923 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2924 }
2925 
2926 static int
2927 target_unblock(struct device *dev, void *data)
2928 {
2929 	if (scsi_is_target_device(dev))
2930 		starget_for_each_device(to_scsi_target(dev), data,
2931 					device_unblock);
2932 	return 0;
2933 }
2934 
2935 void
2936 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2937 {
2938 	if (scsi_is_target_device(dev))
2939 		starget_for_each_device(to_scsi_target(dev), &new_state,
2940 					device_unblock);
2941 	else
2942 		device_for_each_child(dev, &new_state, target_unblock);
2943 }
2944 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2945 
2946 /**
2947  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2948  * @shost: device to block
2949  *
2950  * Pause SCSI command processing for all logical units associated with the SCSI
2951  * host and wait until pending scsi_queue_rq() calls have finished.
2952  *
2953  * Returns zero if successful or a negative error code upon failure.
2954  */
2955 int
2956 scsi_host_block(struct Scsi_Host *shost)
2957 {
2958 	struct scsi_device *sdev;
2959 	int ret;
2960 
2961 	/*
2962 	 * Call scsi_internal_device_block_nowait so we can avoid
2963 	 * calling synchronize_rcu() for each LUN.
2964 	 */
2965 	shost_for_each_device(sdev, shost) {
2966 		mutex_lock(&sdev->state_mutex);
2967 		ret = scsi_internal_device_block_nowait(sdev);
2968 		mutex_unlock(&sdev->state_mutex);
2969 		if (ret) {
2970 			scsi_device_put(sdev);
2971 			return ret;
2972 		}
2973 	}
2974 
2975 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
2976 	blk_mq_wait_quiesce_done(&shost->tag_set);
2977 
2978 	return 0;
2979 }
2980 EXPORT_SYMBOL_GPL(scsi_host_block);
2981 
2982 int
2983 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2984 {
2985 	struct scsi_device *sdev;
2986 	int ret = 0;
2987 
2988 	shost_for_each_device(sdev, shost) {
2989 		ret = scsi_internal_device_unblock(sdev, new_state);
2990 		if (ret) {
2991 			scsi_device_put(sdev);
2992 			break;
2993 		}
2994 	}
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2998 
2999 /**
3000  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3001  * @sgl:	scatter-gather list
3002  * @sg_count:	number of segments in sg
3003  * @offset:	offset in bytes into sg, on return offset into the mapped area
3004  * @len:	bytes to map, on return number of bytes mapped
3005  *
3006  * Returns virtual address of the start of the mapped page
3007  */
3008 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3009 			  size_t *offset, size_t *len)
3010 {
3011 	int i;
3012 	size_t sg_len = 0, len_complete = 0;
3013 	struct scatterlist *sg;
3014 	struct page *page;
3015 
3016 	WARN_ON(!irqs_disabled());
3017 
3018 	for_each_sg(sgl, sg, sg_count, i) {
3019 		len_complete = sg_len; /* Complete sg-entries */
3020 		sg_len += sg->length;
3021 		if (sg_len > *offset)
3022 			break;
3023 	}
3024 
3025 	if (unlikely(i == sg_count)) {
3026 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3027 			"elements %d\n",
3028 		       __func__, sg_len, *offset, sg_count);
3029 		WARN_ON(1);
3030 		return NULL;
3031 	}
3032 
3033 	/* Offset starting from the beginning of first page in this sg-entry */
3034 	*offset = *offset - len_complete + sg->offset;
3035 
3036 	/* Assumption: contiguous pages can be accessed as "page + i" */
3037 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3038 	*offset &= ~PAGE_MASK;
3039 
3040 	/* Bytes in this sg-entry from *offset to the end of the page */
3041 	sg_len = PAGE_SIZE - *offset;
3042 	if (*len > sg_len)
3043 		*len = sg_len;
3044 
3045 	return kmap_atomic(page);
3046 }
3047 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3048 
3049 /**
3050  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3051  * @virt:	virtual address to be unmapped
3052  */
3053 void scsi_kunmap_atomic_sg(void *virt)
3054 {
3055 	kunmap_atomic(virt);
3056 }
3057 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3058 
3059 void sdev_disable_disk_events(struct scsi_device *sdev)
3060 {
3061 	atomic_inc(&sdev->disk_events_disable_depth);
3062 }
3063 EXPORT_SYMBOL(sdev_disable_disk_events);
3064 
3065 void sdev_enable_disk_events(struct scsi_device *sdev)
3066 {
3067 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3068 		return;
3069 	atomic_dec(&sdev->disk_events_disable_depth);
3070 }
3071 EXPORT_SYMBOL(sdev_enable_disk_events);
3072 
3073 static unsigned char designator_prio(const unsigned char *d)
3074 {
3075 	if (d[1] & 0x30)
3076 		/* not associated with LUN */
3077 		return 0;
3078 
3079 	if (d[3] == 0)
3080 		/* invalid length */
3081 		return 0;
3082 
3083 	/*
3084 	 * Order of preference for lun descriptor:
3085 	 * - SCSI name string
3086 	 * - NAA IEEE Registered Extended
3087 	 * - EUI-64 based 16-byte
3088 	 * - EUI-64 based 12-byte
3089 	 * - NAA IEEE Registered
3090 	 * - NAA IEEE Extended
3091 	 * - EUI-64 based 8-byte
3092 	 * - SCSI name string (truncated)
3093 	 * - T10 Vendor ID
3094 	 * as longer descriptors reduce the likelyhood
3095 	 * of identification clashes.
3096 	 */
3097 
3098 	switch (d[1] & 0xf) {
3099 	case 8:
3100 		/* SCSI name string, variable-length UTF-8 */
3101 		return 9;
3102 	case 3:
3103 		switch (d[4] >> 4) {
3104 		case 6:
3105 			/* NAA registered extended */
3106 			return 8;
3107 		case 5:
3108 			/* NAA registered */
3109 			return 5;
3110 		case 4:
3111 			/* NAA extended */
3112 			return 4;
3113 		case 3:
3114 			/* NAA locally assigned */
3115 			return 1;
3116 		default:
3117 			break;
3118 		}
3119 		break;
3120 	case 2:
3121 		switch (d[3]) {
3122 		case 16:
3123 			/* EUI64-based, 16 byte */
3124 			return 7;
3125 		case 12:
3126 			/* EUI64-based, 12 byte */
3127 			return 6;
3128 		case 8:
3129 			/* EUI64-based, 8 byte */
3130 			return 3;
3131 		default:
3132 			break;
3133 		}
3134 		break;
3135 	case 1:
3136 		/* T10 vendor ID */
3137 		return 1;
3138 	default:
3139 		break;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /**
3146  * scsi_vpd_lun_id - return a unique device identification
3147  * @sdev: SCSI device
3148  * @id:   buffer for the identification
3149  * @id_len:  length of the buffer
3150  *
3151  * Copies a unique device identification into @id based
3152  * on the information in the VPD page 0x83 of the device.
3153  * The string will be formatted as a SCSI name string.
3154  *
3155  * Returns the length of the identification or error on failure.
3156  * If the identifier is longer than the supplied buffer the actual
3157  * identifier length is returned and the buffer is not zero-padded.
3158  */
3159 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3160 {
3161 	u8 cur_id_prio = 0;
3162 	u8 cur_id_size = 0;
3163 	const unsigned char *d, *cur_id_str;
3164 	const struct scsi_vpd *vpd_pg83;
3165 	int id_size = -EINVAL;
3166 
3167 	rcu_read_lock();
3168 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3169 	if (!vpd_pg83) {
3170 		rcu_read_unlock();
3171 		return -ENXIO;
3172 	}
3173 
3174 	/* The id string must be at least 20 bytes + terminating NULL byte */
3175 	if (id_len < 21) {
3176 		rcu_read_unlock();
3177 		return -EINVAL;
3178 	}
3179 
3180 	memset(id, 0, id_len);
3181 	for (d = vpd_pg83->data + 4;
3182 	     d < vpd_pg83->data + vpd_pg83->len;
3183 	     d += d[3] + 4) {
3184 		u8 prio = designator_prio(d);
3185 
3186 		if (prio == 0 || cur_id_prio > prio)
3187 			continue;
3188 
3189 		switch (d[1] & 0xf) {
3190 		case 0x1:
3191 			/* T10 Vendor ID */
3192 			if (cur_id_size > d[3])
3193 				break;
3194 			cur_id_prio = prio;
3195 			cur_id_size = d[3];
3196 			if (cur_id_size + 4 > id_len)
3197 				cur_id_size = id_len - 4;
3198 			cur_id_str = d + 4;
3199 			id_size = snprintf(id, id_len, "t10.%*pE",
3200 					   cur_id_size, cur_id_str);
3201 			break;
3202 		case 0x2:
3203 			/* EUI-64 */
3204 			cur_id_prio = prio;
3205 			cur_id_size = d[3];
3206 			cur_id_str = d + 4;
3207 			switch (cur_id_size) {
3208 			case 8:
3209 				id_size = snprintf(id, id_len,
3210 						   "eui.%8phN",
3211 						   cur_id_str);
3212 				break;
3213 			case 12:
3214 				id_size = snprintf(id, id_len,
3215 						   "eui.%12phN",
3216 						   cur_id_str);
3217 				break;
3218 			case 16:
3219 				id_size = snprintf(id, id_len,
3220 						   "eui.%16phN",
3221 						   cur_id_str);
3222 				break;
3223 			default:
3224 				break;
3225 			}
3226 			break;
3227 		case 0x3:
3228 			/* NAA */
3229 			cur_id_prio = prio;
3230 			cur_id_size = d[3];
3231 			cur_id_str = d + 4;
3232 			switch (cur_id_size) {
3233 			case 8:
3234 				id_size = snprintf(id, id_len,
3235 						   "naa.%8phN",
3236 						   cur_id_str);
3237 				break;
3238 			case 16:
3239 				id_size = snprintf(id, id_len,
3240 						   "naa.%16phN",
3241 						   cur_id_str);
3242 				break;
3243 			default:
3244 				break;
3245 			}
3246 			break;
3247 		case 0x8:
3248 			/* SCSI name string */
3249 			if (cur_id_size > d[3])
3250 				break;
3251 			/* Prefer others for truncated descriptor */
3252 			if (d[3] > id_len) {
3253 				prio = 2;
3254 				if (cur_id_prio > prio)
3255 					break;
3256 			}
3257 			cur_id_prio = prio;
3258 			cur_id_size = id_size = d[3];
3259 			cur_id_str = d + 4;
3260 			if (cur_id_size >= id_len)
3261 				cur_id_size = id_len - 1;
3262 			memcpy(id, cur_id_str, cur_id_size);
3263 			break;
3264 		default:
3265 			break;
3266 		}
3267 	}
3268 	rcu_read_unlock();
3269 
3270 	return id_size;
3271 }
3272 EXPORT_SYMBOL(scsi_vpd_lun_id);
3273 
3274 /*
3275  * scsi_vpd_tpg_id - return a target port group identifier
3276  * @sdev: SCSI device
3277  *
3278  * Returns the Target Port Group identifier from the information
3279  * froom VPD page 0x83 of the device.
3280  *
3281  * Returns the identifier or error on failure.
3282  */
3283 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3284 {
3285 	const unsigned char *d;
3286 	const struct scsi_vpd *vpd_pg83;
3287 	int group_id = -EAGAIN, rel_port = -1;
3288 
3289 	rcu_read_lock();
3290 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3291 	if (!vpd_pg83) {
3292 		rcu_read_unlock();
3293 		return -ENXIO;
3294 	}
3295 
3296 	d = vpd_pg83->data + 4;
3297 	while (d < vpd_pg83->data + vpd_pg83->len) {
3298 		switch (d[1] & 0xf) {
3299 		case 0x4:
3300 			/* Relative target port */
3301 			rel_port = get_unaligned_be16(&d[6]);
3302 			break;
3303 		case 0x5:
3304 			/* Target port group */
3305 			group_id = get_unaligned_be16(&d[6]);
3306 			break;
3307 		default:
3308 			break;
3309 		}
3310 		d += d[3] + 4;
3311 	}
3312 	rcu_read_unlock();
3313 
3314 	if (group_id >= 0 && rel_id && rel_port != -1)
3315 		*rel_id = rel_port;
3316 
3317 	return group_id;
3318 }
3319 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3320 
3321 /**
3322  * scsi_build_sense - build sense data for a command
3323  * @scmd:	scsi command for which the sense should be formatted
3324  * @desc:	Sense format (non-zero == descriptor format,
3325  *              0 == fixed format)
3326  * @key:	Sense key
3327  * @asc:	Additional sense code
3328  * @ascq:	Additional sense code qualifier
3329  *
3330  **/
3331 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3332 {
3333 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3334 	scmd->result = SAM_STAT_CHECK_CONDITION;
3335 }
3336 EXPORT_SYMBOL_GPL(scsi_build_sense);
3337