1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 if (msecs) { 126 blk_mq_requeue_request(rq, false); 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } else 129 blk_mq_requeue_request(rq, true); 130 } 131 132 /** 133 * __scsi_queue_insert - private queue insertion 134 * @cmd: The SCSI command being requeued 135 * @reason: The reason for the requeue 136 * @unbusy: Whether the queue should be unbusied 137 * 138 * This is a private queue insertion. The public interface 139 * scsi_queue_insert() always assumes the queue should be unbusied 140 * because it's always called before the completion. This function is 141 * for a requeue after completion, which should only occur in this 142 * file. 143 */ 144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 145 { 146 struct scsi_device *device = cmd->device; 147 148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 149 "Inserting command %p into mlqueue\n", cmd)); 150 151 scsi_set_blocked(cmd, reason); 152 153 /* 154 * Decrement the counters, since these commands are no longer 155 * active on the host/device. 156 */ 157 if (unbusy) 158 scsi_device_unbusy(device, cmd); 159 160 /* 161 * Requeue this command. It will go before all other commands 162 * that are already in the queue. Schedule requeue work under 163 * lock such that the kblockd_schedule_work() call happens 164 * before blk_mq_destroy_queue() finishes. 165 */ 166 cmd->result = 0; 167 168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 189 /** 190 * __scsi_execute - insert request and wait for the result 191 * @sdev: scsi device 192 * @cmd: scsi command 193 * @data_direction: data direction 194 * @buffer: data buffer 195 * @bufflen: len of buffer 196 * @sense: optional sense buffer 197 * @sshdr: optional decoded sense header 198 * @timeout: request timeout in HZ 199 * @retries: number of times to retry request 200 * @flags: flags for ->cmd_flags 201 * @rq_flags: flags for ->rq_flags 202 * @resid: optional residual length 203 * 204 * Returns the scsi_cmnd result field if a command was executed, or a negative 205 * Linux error code if we didn't get that far. 206 */ 207 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 208 int data_direction, void *buffer, unsigned bufflen, 209 unsigned char *sense, struct scsi_sense_hdr *sshdr, 210 int timeout, int retries, blk_opf_t flags, 211 req_flags_t rq_flags, int *resid) 212 { 213 struct request *req; 214 struct scsi_cmnd *scmd; 215 int ret; 216 217 req = scsi_alloc_request(sdev->request_queue, 218 data_direction == DMA_TO_DEVICE ? 219 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 220 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 221 if (IS_ERR(req)) 222 return PTR_ERR(req); 223 224 if (bufflen) { 225 ret = blk_rq_map_kern(sdev->request_queue, req, 226 buffer, bufflen, GFP_NOIO); 227 if (ret) 228 goto out; 229 } 230 scmd = blk_mq_rq_to_pdu(req); 231 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 232 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 233 scmd->allowed = retries; 234 req->timeout = timeout; 235 req->cmd_flags |= flags; 236 req->rq_flags |= rq_flags | RQF_QUIET; 237 238 /* 239 * head injection *required* here otherwise quiesce won't work 240 */ 241 blk_execute_rq(req, true); 242 243 /* 244 * Some devices (USB mass-storage in particular) may transfer 245 * garbage data together with a residue indicating that the data 246 * is invalid. Prevent the garbage from being misinterpreted 247 * and prevent security leaks by zeroing out the excess data. 248 */ 249 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 250 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 251 252 if (resid) 253 *resid = scmd->resid_len; 254 if (sense && scmd->sense_len) 255 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 256 if (sshdr) 257 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 258 sshdr); 259 ret = scmd->result; 260 out: 261 blk_mq_free_request(req); 262 263 return ret; 264 } 265 EXPORT_SYMBOL(__scsi_execute); 266 267 /* 268 * Wake up the error handler if necessary. Avoid as follows that the error 269 * handler is not woken up if host in-flight requests number == 270 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 271 * with an RCU read lock in this function to ensure that this function in 272 * its entirety either finishes before scsi_eh_scmd_add() increases the 273 * host_failed counter or that it notices the shost state change made by 274 * scsi_eh_scmd_add(). 275 */ 276 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 277 { 278 unsigned long flags; 279 280 rcu_read_lock(); 281 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 282 if (unlikely(scsi_host_in_recovery(shost))) { 283 spin_lock_irqsave(shost->host_lock, flags); 284 if (shost->host_failed || shost->host_eh_scheduled) 285 scsi_eh_wakeup(shost); 286 spin_unlock_irqrestore(shost->host_lock, flags); 287 } 288 rcu_read_unlock(); 289 } 290 291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 292 { 293 struct Scsi_Host *shost = sdev->host; 294 struct scsi_target *starget = scsi_target(sdev); 295 296 scsi_dec_host_busy(shost, cmd); 297 298 if (starget->can_queue > 0) 299 atomic_dec(&starget->target_busy); 300 301 sbitmap_put(&sdev->budget_map, cmd->budget_token); 302 cmd->budget_token = -1; 303 } 304 305 static void scsi_kick_queue(struct request_queue *q) 306 { 307 blk_mq_run_hw_queues(q, false); 308 } 309 310 /* 311 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 312 * interrupts disabled. 313 */ 314 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 315 { 316 struct scsi_device *current_sdev = data; 317 318 if (sdev != current_sdev) 319 blk_mq_run_hw_queues(sdev->request_queue, true); 320 } 321 322 /* 323 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 324 * and call blk_run_queue for all the scsi_devices on the target - 325 * including current_sdev first. 326 * 327 * Called with *no* scsi locks held. 328 */ 329 static void scsi_single_lun_run(struct scsi_device *current_sdev) 330 { 331 struct Scsi_Host *shost = current_sdev->host; 332 struct scsi_target *starget = scsi_target(current_sdev); 333 unsigned long flags; 334 335 spin_lock_irqsave(shost->host_lock, flags); 336 starget->starget_sdev_user = NULL; 337 spin_unlock_irqrestore(shost->host_lock, flags); 338 339 /* 340 * Call blk_run_queue for all LUNs on the target, starting with 341 * current_sdev. We race with others (to set starget_sdev_user), 342 * but in most cases, we will be first. Ideally, each LU on the 343 * target would get some limited time or requests on the target. 344 */ 345 scsi_kick_queue(current_sdev->request_queue); 346 347 spin_lock_irqsave(shost->host_lock, flags); 348 if (!starget->starget_sdev_user) 349 __starget_for_each_device(starget, current_sdev, 350 scsi_kick_sdev_queue); 351 spin_unlock_irqrestore(shost->host_lock, flags); 352 } 353 354 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 355 { 356 if (scsi_device_busy(sdev) >= sdev->queue_depth) 357 return true; 358 if (atomic_read(&sdev->device_blocked) > 0) 359 return true; 360 return false; 361 } 362 363 static inline bool scsi_target_is_busy(struct scsi_target *starget) 364 { 365 if (starget->can_queue > 0) { 366 if (atomic_read(&starget->target_busy) >= starget->can_queue) 367 return true; 368 if (atomic_read(&starget->target_blocked) > 0) 369 return true; 370 } 371 return false; 372 } 373 374 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 375 { 376 if (atomic_read(&shost->host_blocked) > 0) 377 return true; 378 if (shost->host_self_blocked) 379 return true; 380 return false; 381 } 382 383 static void scsi_starved_list_run(struct Scsi_Host *shost) 384 { 385 LIST_HEAD(starved_list); 386 struct scsi_device *sdev; 387 unsigned long flags; 388 389 spin_lock_irqsave(shost->host_lock, flags); 390 list_splice_init(&shost->starved_list, &starved_list); 391 392 while (!list_empty(&starved_list)) { 393 struct request_queue *slq; 394 395 /* 396 * As long as shost is accepting commands and we have 397 * starved queues, call blk_run_queue. scsi_request_fn 398 * drops the queue_lock and can add us back to the 399 * starved_list. 400 * 401 * host_lock protects the starved_list and starved_entry. 402 * scsi_request_fn must get the host_lock before checking 403 * or modifying starved_list or starved_entry. 404 */ 405 if (scsi_host_is_busy(shost)) 406 break; 407 408 sdev = list_entry(starved_list.next, 409 struct scsi_device, starved_entry); 410 list_del_init(&sdev->starved_entry); 411 if (scsi_target_is_busy(scsi_target(sdev))) { 412 list_move_tail(&sdev->starved_entry, 413 &shost->starved_list); 414 continue; 415 } 416 417 /* 418 * Once we drop the host lock, a racing scsi_remove_device() 419 * call may remove the sdev from the starved list and destroy 420 * it and the queue. Mitigate by taking a reference to the 421 * queue and never touching the sdev again after we drop the 422 * host lock. Note: if __scsi_remove_device() invokes 423 * blk_mq_destroy_queue() before the queue is run from this 424 * function then blk_run_queue() will return immediately since 425 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 426 */ 427 slq = sdev->request_queue; 428 if (!blk_get_queue(slq)) 429 continue; 430 spin_unlock_irqrestore(shost->host_lock, flags); 431 432 scsi_kick_queue(slq); 433 blk_put_queue(slq); 434 435 spin_lock_irqsave(shost->host_lock, flags); 436 } 437 /* put any unprocessed entries back */ 438 list_splice(&starved_list, &shost->starved_list); 439 spin_unlock_irqrestore(shost->host_lock, flags); 440 } 441 442 /** 443 * scsi_run_queue - Select a proper request queue to serve next. 444 * @q: last request's queue 445 * 446 * The previous command was completely finished, start a new one if possible. 447 */ 448 static void scsi_run_queue(struct request_queue *q) 449 { 450 struct scsi_device *sdev = q->queuedata; 451 452 if (scsi_target(sdev)->single_lun) 453 scsi_single_lun_run(sdev); 454 if (!list_empty(&sdev->host->starved_list)) 455 scsi_starved_list_run(sdev->host); 456 457 blk_mq_run_hw_queues(q, false); 458 } 459 460 void scsi_requeue_run_queue(struct work_struct *work) 461 { 462 struct scsi_device *sdev; 463 struct request_queue *q; 464 465 sdev = container_of(work, struct scsi_device, requeue_work); 466 q = sdev->request_queue; 467 scsi_run_queue(q); 468 } 469 470 void scsi_run_host_queues(struct Scsi_Host *shost) 471 { 472 struct scsi_device *sdev; 473 474 shost_for_each_device(sdev, shost) 475 scsi_run_queue(sdev->request_queue); 476 } 477 478 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 479 { 480 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 481 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 482 483 if (drv->uninit_command) 484 drv->uninit_command(cmd); 485 } 486 } 487 488 void scsi_free_sgtables(struct scsi_cmnd *cmd) 489 { 490 if (cmd->sdb.table.nents) 491 sg_free_table_chained(&cmd->sdb.table, 492 SCSI_INLINE_SG_CNT); 493 if (scsi_prot_sg_count(cmd)) 494 sg_free_table_chained(&cmd->prot_sdb->table, 495 SCSI_INLINE_PROT_SG_CNT); 496 } 497 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 498 499 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 500 { 501 scsi_free_sgtables(cmd); 502 scsi_uninit_cmd(cmd); 503 } 504 505 static void scsi_run_queue_async(struct scsi_device *sdev) 506 { 507 if (scsi_target(sdev)->single_lun || 508 !list_empty(&sdev->host->starved_list)) { 509 kblockd_schedule_work(&sdev->requeue_work); 510 } else { 511 /* 512 * smp_mb() present in sbitmap_queue_clear() or implied in 513 * .end_io is for ordering writing .device_busy in 514 * scsi_device_unbusy() and reading sdev->restarts. 515 */ 516 int old = atomic_read(&sdev->restarts); 517 518 /* 519 * ->restarts has to be kept as non-zero if new budget 520 * contention occurs. 521 * 522 * No need to run queue when either another re-run 523 * queue wins in updating ->restarts or a new budget 524 * contention occurs. 525 */ 526 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 527 blk_mq_run_hw_queues(sdev->request_queue, true); 528 } 529 } 530 531 /* Returns false when no more bytes to process, true if there are more */ 532 static bool scsi_end_request(struct request *req, blk_status_t error, 533 unsigned int bytes) 534 { 535 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 536 struct scsi_device *sdev = cmd->device; 537 struct request_queue *q = sdev->request_queue; 538 539 if (blk_update_request(req, error, bytes)) 540 return true; 541 542 // XXX: 543 if (blk_queue_add_random(q)) 544 add_disk_randomness(req->q->disk); 545 546 if (!blk_rq_is_passthrough(req)) { 547 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 548 cmd->flags &= ~SCMD_INITIALIZED; 549 } 550 551 /* 552 * Calling rcu_barrier() is not necessary here because the 553 * SCSI error handler guarantees that the function called by 554 * call_rcu() has been called before scsi_end_request() is 555 * called. 556 */ 557 destroy_rcu_head(&cmd->rcu); 558 559 /* 560 * In the MQ case the command gets freed by __blk_mq_end_request, 561 * so we have to do all cleanup that depends on it earlier. 562 * 563 * We also can't kick the queues from irq context, so we 564 * will have to defer it to a workqueue. 565 */ 566 scsi_mq_uninit_cmd(cmd); 567 568 /* 569 * queue is still alive, so grab the ref for preventing it 570 * from being cleaned up during running queue. 571 */ 572 percpu_ref_get(&q->q_usage_counter); 573 574 __blk_mq_end_request(req, error); 575 576 scsi_run_queue_async(sdev); 577 578 percpu_ref_put(&q->q_usage_counter); 579 return false; 580 } 581 582 static inline u8 get_scsi_ml_byte(int result) 583 { 584 return (result >> 8) & 0xff; 585 } 586 587 /** 588 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 589 * @result: scsi error code 590 * 591 * Translate a SCSI result code into a blk_status_t value. 592 */ 593 static blk_status_t scsi_result_to_blk_status(int result) 594 { 595 /* 596 * Check the scsi-ml byte first in case we converted a host or status 597 * byte. 598 */ 599 switch (get_scsi_ml_byte(result)) { 600 case SCSIML_STAT_OK: 601 break; 602 case SCSIML_STAT_RESV_CONFLICT: 603 return BLK_STS_NEXUS; 604 case SCSIML_STAT_NOSPC: 605 return BLK_STS_NOSPC; 606 case SCSIML_STAT_MED_ERROR: 607 return BLK_STS_MEDIUM; 608 case SCSIML_STAT_TGT_FAILURE: 609 return BLK_STS_TARGET; 610 } 611 612 switch (host_byte(result)) { 613 case DID_OK: 614 if (scsi_status_is_good(result)) 615 return BLK_STS_OK; 616 return BLK_STS_IOERR; 617 case DID_TRANSPORT_FAILFAST: 618 case DID_TRANSPORT_MARGINAL: 619 return BLK_STS_TRANSPORT; 620 default: 621 return BLK_STS_IOERR; 622 } 623 } 624 625 /** 626 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 627 * @rq: request to examine 628 * 629 * Description: 630 * A request could be merge of IOs which require different failure 631 * handling. This function determines the number of bytes which 632 * can be failed from the beginning of the request without 633 * crossing into area which need to be retried further. 634 * 635 * Return: 636 * The number of bytes to fail. 637 */ 638 static unsigned int scsi_rq_err_bytes(const struct request *rq) 639 { 640 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 641 unsigned int bytes = 0; 642 struct bio *bio; 643 644 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 645 return blk_rq_bytes(rq); 646 647 /* 648 * Currently the only 'mixing' which can happen is between 649 * different fastfail types. We can safely fail portions 650 * which have all the failfast bits that the first one has - 651 * the ones which are at least as eager to fail as the first 652 * one. 653 */ 654 for (bio = rq->bio; bio; bio = bio->bi_next) { 655 if ((bio->bi_opf & ff) != ff) 656 break; 657 bytes += bio->bi_iter.bi_size; 658 } 659 660 /* this could lead to infinite loop */ 661 BUG_ON(blk_rq_bytes(rq) && !bytes); 662 return bytes; 663 } 664 665 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 666 { 667 struct request *req = scsi_cmd_to_rq(cmd); 668 unsigned long wait_for; 669 670 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 671 return false; 672 673 wait_for = (cmd->allowed + 1) * req->timeout; 674 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 675 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 676 wait_for/HZ); 677 return true; 678 } 679 return false; 680 } 681 682 /* 683 * When ALUA transition state is returned, reprep the cmd to 684 * use the ALUA handler's transition timeout. Delay the reprep 685 * 1 sec to avoid aggressive retries of the target in that 686 * state. 687 */ 688 #define ALUA_TRANSITION_REPREP_DELAY 1000 689 690 /* Helper for scsi_io_completion() when special action required. */ 691 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 692 { 693 struct request *req = scsi_cmd_to_rq(cmd); 694 int level = 0; 695 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 696 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 697 struct scsi_sense_hdr sshdr; 698 bool sense_valid; 699 bool sense_current = true; /* false implies "deferred sense" */ 700 blk_status_t blk_stat; 701 702 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 703 if (sense_valid) 704 sense_current = !scsi_sense_is_deferred(&sshdr); 705 706 blk_stat = scsi_result_to_blk_status(result); 707 708 if (host_byte(result) == DID_RESET) { 709 /* Third party bus reset or reset for error recovery 710 * reasons. Just retry the command and see what 711 * happens. 712 */ 713 action = ACTION_RETRY; 714 } else if (sense_valid && sense_current) { 715 switch (sshdr.sense_key) { 716 case UNIT_ATTENTION: 717 if (cmd->device->removable) { 718 /* Detected disc change. Set a bit 719 * and quietly refuse further access. 720 */ 721 cmd->device->changed = 1; 722 action = ACTION_FAIL; 723 } else { 724 /* Must have been a power glitch, or a 725 * bus reset. Could not have been a 726 * media change, so we just retry the 727 * command and see what happens. 728 */ 729 action = ACTION_RETRY; 730 } 731 break; 732 case ILLEGAL_REQUEST: 733 /* If we had an ILLEGAL REQUEST returned, then 734 * we may have performed an unsupported 735 * command. The only thing this should be 736 * would be a ten byte read where only a six 737 * byte read was supported. Also, on a system 738 * where READ CAPACITY failed, we may have 739 * read past the end of the disk. 740 */ 741 if ((cmd->device->use_10_for_rw && 742 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 743 (cmd->cmnd[0] == READ_10 || 744 cmd->cmnd[0] == WRITE_10)) { 745 /* This will issue a new 6-byte command. */ 746 cmd->device->use_10_for_rw = 0; 747 action = ACTION_REPREP; 748 } else if (sshdr.asc == 0x10) /* DIX */ { 749 action = ACTION_FAIL; 750 blk_stat = BLK_STS_PROTECTION; 751 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 752 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 753 action = ACTION_FAIL; 754 blk_stat = BLK_STS_TARGET; 755 } else 756 action = ACTION_FAIL; 757 break; 758 case ABORTED_COMMAND: 759 action = ACTION_FAIL; 760 if (sshdr.asc == 0x10) /* DIF */ 761 blk_stat = BLK_STS_PROTECTION; 762 break; 763 case NOT_READY: 764 /* If the device is in the process of becoming 765 * ready, or has a temporary blockage, retry. 766 */ 767 if (sshdr.asc == 0x04) { 768 switch (sshdr.ascq) { 769 case 0x01: /* becoming ready */ 770 case 0x04: /* format in progress */ 771 case 0x05: /* rebuild in progress */ 772 case 0x06: /* recalculation in progress */ 773 case 0x07: /* operation in progress */ 774 case 0x08: /* Long write in progress */ 775 case 0x09: /* self test in progress */ 776 case 0x11: /* notify (enable spinup) required */ 777 case 0x14: /* space allocation in progress */ 778 case 0x1a: /* start stop unit in progress */ 779 case 0x1b: /* sanitize in progress */ 780 case 0x1d: /* configuration in progress */ 781 case 0x24: /* depopulation in progress */ 782 action = ACTION_DELAYED_RETRY; 783 break; 784 case 0x0a: /* ALUA state transition */ 785 action = ACTION_DELAYED_REPREP; 786 break; 787 default: 788 action = ACTION_FAIL; 789 break; 790 } 791 } else 792 action = ACTION_FAIL; 793 break; 794 case VOLUME_OVERFLOW: 795 /* See SSC3rXX or current. */ 796 action = ACTION_FAIL; 797 break; 798 case DATA_PROTECT: 799 action = ACTION_FAIL; 800 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 801 (sshdr.asc == 0x55 && 802 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 803 /* Insufficient zone resources */ 804 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 805 } 806 break; 807 default: 808 action = ACTION_FAIL; 809 break; 810 } 811 } else 812 action = ACTION_FAIL; 813 814 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 815 action = ACTION_FAIL; 816 817 switch (action) { 818 case ACTION_FAIL: 819 /* Give up and fail the remainder of the request */ 820 if (!(req->rq_flags & RQF_QUIET)) { 821 static DEFINE_RATELIMIT_STATE(_rs, 822 DEFAULT_RATELIMIT_INTERVAL, 823 DEFAULT_RATELIMIT_BURST); 824 825 if (unlikely(scsi_logging_level)) 826 level = 827 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 828 SCSI_LOG_MLCOMPLETE_BITS); 829 830 /* 831 * if logging is enabled the failure will be printed 832 * in scsi_log_completion(), so avoid duplicate messages 833 */ 834 if (!level && __ratelimit(&_rs)) { 835 scsi_print_result(cmd, NULL, FAILED); 836 if (sense_valid) 837 scsi_print_sense(cmd); 838 scsi_print_command(cmd); 839 } 840 } 841 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 842 return; 843 fallthrough; 844 case ACTION_REPREP: 845 scsi_mq_requeue_cmd(cmd, 0); 846 break; 847 case ACTION_DELAYED_REPREP: 848 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 849 break; 850 case ACTION_RETRY: 851 /* Retry the same command immediately */ 852 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 853 break; 854 case ACTION_DELAYED_RETRY: 855 /* Retry the same command after a delay */ 856 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 857 break; 858 } 859 } 860 861 /* 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 863 * new result that may suppress further error checking. Also modifies 864 * *blk_statp in some cases. 865 */ 866 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 867 blk_status_t *blk_statp) 868 { 869 bool sense_valid; 870 bool sense_current = true; /* false implies "deferred sense" */ 871 struct request *req = scsi_cmd_to_rq(cmd); 872 struct scsi_sense_hdr sshdr; 873 874 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 875 if (sense_valid) 876 sense_current = !scsi_sense_is_deferred(&sshdr); 877 878 if (blk_rq_is_passthrough(req)) { 879 if (sense_valid) { 880 /* 881 * SG_IO wants current and deferred errors 882 */ 883 cmd->sense_len = min(8 + cmd->sense_buffer[7], 884 SCSI_SENSE_BUFFERSIZE); 885 } 886 if (sense_current) 887 *blk_statp = scsi_result_to_blk_status(result); 888 } else if (blk_rq_bytes(req) == 0 && sense_current) { 889 /* 890 * Flush commands do not transfers any data, and thus cannot use 891 * good_bytes != blk_rq_bytes(req) as the signal for an error. 892 * This sets *blk_statp explicitly for the problem case. 893 */ 894 *blk_statp = scsi_result_to_blk_status(result); 895 } 896 /* 897 * Recovered errors need reporting, but they're always treated as 898 * success, so fiddle the result code here. For passthrough requests 899 * we already took a copy of the original into sreq->result which 900 * is what gets returned to the user 901 */ 902 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 903 bool do_print = true; 904 /* 905 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 906 * skip print since caller wants ATA registers. Only occurs 907 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 908 */ 909 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 910 do_print = false; 911 else if (req->rq_flags & RQF_QUIET) 912 do_print = false; 913 if (do_print) 914 scsi_print_sense(cmd); 915 result = 0; 916 /* for passthrough, *blk_statp may be set */ 917 *blk_statp = BLK_STS_OK; 918 } 919 /* 920 * Another corner case: the SCSI status byte is non-zero but 'good'. 921 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 922 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 923 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 924 * intermediate statuses (both obsolete in SAM-4) as good. 925 */ 926 if ((result & 0xff) && scsi_status_is_good(result)) { 927 result = 0; 928 *blk_statp = BLK_STS_OK; 929 } 930 return result; 931 } 932 933 /** 934 * scsi_io_completion - Completion processing for SCSI commands. 935 * @cmd: command that is finished. 936 * @good_bytes: number of processed bytes. 937 * 938 * We will finish off the specified number of sectors. If we are done, the 939 * command block will be released and the queue function will be goosed. If we 940 * are not done then we have to figure out what to do next: 941 * 942 * a) We can call scsi_mq_requeue_cmd(). The request will be 943 * unprepared and put back on the queue. Then a new command will 944 * be created for it. This should be used if we made forward 945 * progress, or if we want to switch from READ(10) to READ(6) for 946 * example. 947 * 948 * b) We can call scsi_io_completion_action(). The request will be 949 * put back on the queue and retried using the same command as 950 * before, possibly after a delay. 951 * 952 * c) We can call scsi_end_request() with blk_stat other than 953 * BLK_STS_OK, to fail the remainder of the request. 954 */ 955 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 956 { 957 int result = cmd->result; 958 struct request *req = scsi_cmd_to_rq(cmd); 959 blk_status_t blk_stat = BLK_STS_OK; 960 961 if (unlikely(result)) /* a nz result may or may not be an error */ 962 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 963 964 /* 965 * Next deal with any sectors which we were able to correctly 966 * handle. 967 */ 968 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 969 "%u sectors total, %d bytes done.\n", 970 blk_rq_sectors(req), good_bytes)); 971 972 /* 973 * Failed, zero length commands always need to drop down 974 * to retry code. Fast path should return in this block. 975 */ 976 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 977 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 978 return; /* no bytes remaining */ 979 } 980 981 /* Kill remainder if no retries. */ 982 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 983 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 984 WARN_ONCE(true, 985 "Bytes remaining after failed, no-retry command"); 986 return; 987 } 988 989 /* 990 * If there had been no error, but we have leftover bytes in the 991 * request just queue the command up again. 992 */ 993 if (likely(result == 0)) 994 scsi_mq_requeue_cmd(cmd, 0); 995 else 996 scsi_io_completion_action(cmd, result); 997 } 998 999 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1000 struct request *rq) 1001 { 1002 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1003 !op_is_write(req_op(rq)) && 1004 sdev->host->hostt->dma_need_drain(rq); 1005 } 1006 1007 /** 1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1009 * @cmd: SCSI command data structure to initialize. 1010 * 1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1012 * for @cmd. 1013 * 1014 * Returns: 1015 * * BLK_STS_OK - on success 1016 * * BLK_STS_RESOURCE - if the failure is retryable 1017 * * BLK_STS_IOERR - if the failure is fatal 1018 */ 1019 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1020 { 1021 struct scsi_device *sdev = cmd->device; 1022 struct request *rq = scsi_cmd_to_rq(cmd); 1023 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1024 struct scatterlist *last_sg = NULL; 1025 blk_status_t ret; 1026 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1027 int count; 1028 1029 if (WARN_ON_ONCE(!nr_segs)) 1030 return BLK_STS_IOERR; 1031 1032 /* 1033 * Make sure there is space for the drain. The driver must adjust 1034 * max_hw_segments to be prepared for this. 1035 */ 1036 if (need_drain) 1037 nr_segs++; 1038 1039 /* 1040 * If sg table allocation fails, requeue request later. 1041 */ 1042 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1043 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1044 return BLK_STS_RESOURCE; 1045 1046 /* 1047 * Next, walk the list, and fill in the addresses and sizes of 1048 * each segment. 1049 */ 1050 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1051 1052 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1053 unsigned int pad_len = 1054 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1055 1056 last_sg->length += pad_len; 1057 cmd->extra_len += pad_len; 1058 } 1059 1060 if (need_drain) { 1061 sg_unmark_end(last_sg); 1062 last_sg = sg_next(last_sg); 1063 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1064 sg_mark_end(last_sg); 1065 1066 cmd->extra_len += sdev->dma_drain_len; 1067 count++; 1068 } 1069 1070 BUG_ON(count > cmd->sdb.table.nents); 1071 cmd->sdb.table.nents = count; 1072 cmd->sdb.length = blk_rq_payload_bytes(rq); 1073 1074 if (blk_integrity_rq(rq)) { 1075 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1076 int ivecs; 1077 1078 if (WARN_ON_ONCE(!prot_sdb)) { 1079 /* 1080 * This can happen if someone (e.g. multipath) 1081 * queues a command to a device on an adapter 1082 * that does not support DIX. 1083 */ 1084 ret = BLK_STS_IOERR; 1085 goto out_free_sgtables; 1086 } 1087 1088 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1089 1090 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1091 prot_sdb->table.sgl, 1092 SCSI_INLINE_PROT_SG_CNT)) { 1093 ret = BLK_STS_RESOURCE; 1094 goto out_free_sgtables; 1095 } 1096 1097 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1098 prot_sdb->table.sgl); 1099 BUG_ON(count > ivecs); 1100 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1101 1102 cmd->prot_sdb = prot_sdb; 1103 cmd->prot_sdb->table.nents = count; 1104 } 1105 1106 return BLK_STS_OK; 1107 out_free_sgtables: 1108 scsi_free_sgtables(cmd); 1109 return ret; 1110 } 1111 EXPORT_SYMBOL(scsi_alloc_sgtables); 1112 1113 /** 1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1115 * @rq: Request associated with the SCSI command to be initialized. 1116 * 1117 * This function initializes the members of struct scsi_cmnd that must be 1118 * initialized before request processing starts and that won't be 1119 * reinitialized if a SCSI command is requeued. 1120 */ 1121 static void scsi_initialize_rq(struct request *rq) 1122 { 1123 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1124 1125 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1126 cmd->cmd_len = MAX_COMMAND_SIZE; 1127 cmd->sense_len = 0; 1128 init_rcu_head(&cmd->rcu); 1129 cmd->jiffies_at_alloc = jiffies; 1130 cmd->retries = 0; 1131 } 1132 1133 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1134 blk_mq_req_flags_t flags) 1135 { 1136 struct request *rq; 1137 1138 rq = blk_mq_alloc_request(q, opf, flags); 1139 if (!IS_ERR(rq)) 1140 scsi_initialize_rq(rq); 1141 return rq; 1142 } 1143 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1144 1145 /* 1146 * Only called when the request isn't completed by SCSI, and not freed by 1147 * SCSI 1148 */ 1149 static void scsi_cleanup_rq(struct request *rq) 1150 { 1151 if (rq->rq_flags & RQF_DONTPREP) { 1152 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1153 rq->rq_flags &= ~RQF_DONTPREP; 1154 } 1155 } 1156 1157 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1158 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1159 { 1160 struct request *rq = scsi_cmd_to_rq(cmd); 1161 1162 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1163 cmd->flags |= SCMD_INITIALIZED; 1164 scsi_initialize_rq(rq); 1165 } 1166 1167 cmd->device = dev; 1168 INIT_LIST_HEAD(&cmd->eh_entry); 1169 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1170 } 1171 1172 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1173 struct request *req) 1174 { 1175 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1176 1177 /* 1178 * Passthrough requests may transfer data, in which case they must 1179 * a bio attached to them. Or they might contain a SCSI command 1180 * that does not transfer data, in which case they may optionally 1181 * submit a request without an attached bio. 1182 */ 1183 if (req->bio) { 1184 blk_status_t ret = scsi_alloc_sgtables(cmd); 1185 if (unlikely(ret != BLK_STS_OK)) 1186 return ret; 1187 } else { 1188 BUG_ON(blk_rq_bytes(req)); 1189 1190 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1191 } 1192 1193 cmd->transfersize = blk_rq_bytes(req); 1194 return BLK_STS_OK; 1195 } 1196 1197 static blk_status_t 1198 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1199 { 1200 switch (sdev->sdev_state) { 1201 case SDEV_CREATED: 1202 return BLK_STS_OK; 1203 case SDEV_OFFLINE: 1204 case SDEV_TRANSPORT_OFFLINE: 1205 /* 1206 * If the device is offline we refuse to process any 1207 * commands. The device must be brought online 1208 * before trying any recovery commands. 1209 */ 1210 if (!sdev->offline_already) { 1211 sdev->offline_already = true; 1212 sdev_printk(KERN_ERR, sdev, 1213 "rejecting I/O to offline device\n"); 1214 } 1215 return BLK_STS_IOERR; 1216 case SDEV_DEL: 1217 /* 1218 * If the device is fully deleted, we refuse to 1219 * process any commands as well. 1220 */ 1221 sdev_printk(KERN_ERR, sdev, 1222 "rejecting I/O to dead device\n"); 1223 return BLK_STS_IOERR; 1224 case SDEV_BLOCK: 1225 case SDEV_CREATED_BLOCK: 1226 return BLK_STS_RESOURCE; 1227 case SDEV_QUIESCE: 1228 /* 1229 * If the device is blocked we only accept power management 1230 * commands. 1231 */ 1232 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1233 return BLK_STS_RESOURCE; 1234 return BLK_STS_OK; 1235 default: 1236 /* 1237 * For any other not fully online state we only allow 1238 * power management commands. 1239 */ 1240 if (req && !(req->rq_flags & RQF_PM)) 1241 return BLK_STS_OFFLINE; 1242 return BLK_STS_OK; 1243 } 1244 } 1245 1246 /* 1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1248 * and return the token else return -1. 1249 */ 1250 static inline int scsi_dev_queue_ready(struct request_queue *q, 1251 struct scsi_device *sdev) 1252 { 1253 int token; 1254 1255 token = sbitmap_get(&sdev->budget_map); 1256 if (atomic_read(&sdev->device_blocked)) { 1257 if (token < 0) 1258 goto out; 1259 1260 if (scsi_device_busy(sdev) > 1) 1261 goto out_dec; 1262 1263 /* 1264 * unblock after device_blocked iterates to zero 1265 */ 1266 if (atomic_dec_return(&sdev->device_blocked) > 0) 1267 goto out_dec; 1268 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1269 "unblocking device at zero depth\n")); 1270 } 1271 1272 return token; 1273 out_dec: 1274 if (token >= 0) 1275 sbitmap_put(&sdev->budget_map, token); 1276 out: 1277 return -1; 1278 } 1279 1280 /* 1281 * scsi_target_queue_ready: checks if there we can send commands to target 1282 * @sdev: scsi device on starget to check. 1283 */ 1284 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1285 struct scsi_device *sdev) 1286 { 1287 struct scsi_target *starget = scsi_target(sdev); 1288 unsigned int busy; 1289 1290 if (starget->single_lun) { 1291 spin_lock_irq(shost->host_lock); 1292 if (starget->starget_sdev_user && 1293 starget->starget_sdev_user != sdev) { 1294 spin_unlock_irq(shost->host_lock); 1295 return 0; 1296 } 1297 starget->starget_sdev_user = sdev; 1298 spin_unlock_irq(shost->host_lock); 1299 } 1300 1301 if (starget->can_queue <= 0) 1302 return 1; 1303 1304 busy = atomic_inc_return(&starget->target_busy) - 1; 1305 if (atomic_read(&starget->target_blocked) > 0) { 1306 if (busy) 1307 goto starved; 1308 1309 /* 1310 * unblock after target_blocked iterates to zero 1311 */ 1312 if (atomic_dec_return(&starget->target_blocked) > 0) 1313 goto out_dec; 1314 1315 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1316 "unblocking target at zero depth\n")); 1317 } 1318 1319 if (busy >= starget->can_queue) 1320 goto starved; 1321 1322 return 1; 1323 1324 starved: 1325 spin_lock_irq(shost->host_lock); 1326 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1327 spin_unlock_irq(shost->host_lock); 1328 out_dec: 1329 if (starget->can_queue > 0) 1330 atomic_dec(&starget->target_busy); 1331 return 0; 1332 } 1333 1334 /* 1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1336 * return 0. We must end up running the queue again whenever 0 is 1337 * returned, else IO can hang. 1338 */ 1339 static inline int scsi_host_queue_ready(struct request_queue *q, 1340 struct Scsi_Host *shost, 1341 struct scsi_device *sdev, 1342 struct scsi_cmnd *cmd) 1343 { 1344 if (atomic_read(&shost->host_blocked) > 0) { 1345 if (scsi_host_busy(shost) > 0) 1346 goto starved; 1347 1348 /* 1349 * unblock after host_blocked iterates to zero 1350 */ 1351 if (atomic_dec_return(&shost->host_blocked) > 0) 1352 goto out_dec; 1353 1354 SCSI_LOG_MLQUEUE(3, 1355 shost_printk(KERN_INFO, shost, 1356 "unblocking host at zero depth\n")); 1357 } 1358 1359 if (shost->host_self_blocked) 1360 goto starved; 1361 1362 /* We're OK to process the command, so we can't be starved */ 1363 if (!list_empty(&sdev->starved_entry)) { 1364 spin_lock_irq(shost->host_lock); 1365 if (!list_empty(&sdev->starved_entry)) 1366 list_del_init(&sdev->starved_entry); 1367 spin_unlock_irq(shost->host_lock); 1368 } 1369 1370 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1371 1372 return 1; 1373 1374 starved: 1375 spin_lock_irq(shost->host_lock); 1376 if (list_empty(&sdev->starved_entry)) 1377 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1378 spin_unlock_irq(shost->host_lock); 1379 out_dec: 1380 scsi_dec_host_busy(shost, cmd); 1381 return 0; 1382 } 1383 1384 /* 1385 * Busy state exporting function for request stacking drivers. 1386 * 1387 * For efficiency, no lock is taken to check the busy state of 1388 * shost/starget/sdev, since the returned value is not guaranteed and 1389 * may be changed after request stacking drivers call the function, 1390 * regardless of taking lock or not. 1391 * 1392 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1393 * needs to return 'not busy'. Otherwise, request stacking drivers 1394 * may hold requests forever. 1395 */ 1396 static bool scsi_mq_lld_busy(struct request_queue *q) 1397 { 1398 struct scsi_device *sdev = q->queuedata; 1399 struct Scsi_Host *shost; 1400 1401 if (blk_queue_dying(q)) 1402 return false; 1403 1404 shost = sdev->host; 1405 1406 /* 1407 * Ignore host/starget busy state. 1408 * Since block layer does not have a concept of fairness across 1409 * multiple queues, congestion of host/starget needs to be handled 1410 * in SCSI layer. 1411 */ 1412 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1413 return true; 1414 1415 return false; 1416 } 1417 1418 /* 1419 * Block layer request completion callback. May be called from interrupt 1420 * context. 1421 */ 1422 static void scsi_complete(struct request *rq) 1423 { 1424 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1425 enum scsi_disposition disposition; 1426 1427 INIT_LIST_HEAD(&cmd->eh_entry); 1428 1429 atomic_inc(&cmd->device->iodone_cnt); 1430 if (cmd->result) 1431 atomic_inc(&cmd->device->ioerr_cnt); 1432 1433 disposition = scsi_decide_disposition(cmd); 1434 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1435 disposition = SUCCESS; 1436 1437 scsi_log_completion(cmd, disposition); 1438 1439 switch (disposition) { 1440 case SUCCESS: 1441 scsi_finish_command(cmd); 1442 break; 1443 case NEEDS_RETRY: 1444 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1445 break; 1446 case ADD_TO_MLQUEUE: 1447 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1448 break; 1449 default: 1450 scsi_eh_scmd_add(cmd); 1451 break; 1452 } 1453 } 1454 1455 /** 1456 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1457 * @cmd: command block we are dispatching. 1458 * 1459 * Return: nonzero return request was rejected and device's queue needs to be 1460 * plugged. 1461 */ 1462 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1463 { 1464 struct Scsi_Host *host = cmd->device->host; 1465 int rtn = 0; 1466 1467 /* check if the device is still usable */ 1468 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1469 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1470 * returns an immediate error upwards, and signals 1471 * that the device is no longer present */ 1472 cmd->result = DID_NO_CONNECT << 16; 1473 goto done; 1474 } 1475 1476 /* Check to see if the scsi lld made this device blocked. */ 1477 if (unlikely(scsi_device_blocked(cmd->device))) { 1478 /* 1479 * in blocked state, the command is just put back on 1480 * the device queue. The suspend state has already 1481 * blocked the queue so future requests should not 1482 * occur until the device transitions out of the 1483 * suspend state. 1484 */ 1485 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1486 "queuecommand : device blocked\n")); 1487 return SCSI_MLQUEUE_DEVICE_BUSY; 1488 } 1489 1490 /* Store the LUN value in cmnd, if needed. */ 1491 if (cmd->device->lun_in_cdb) 1492 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1493 (cmd->device->lun << 5 & 0xe0); 1494 1495 scsi_log_send(cmd); 1496 1497 /* 1498 * Before we queue this command, check if the command 1499 * length exceeds what the host adapter can handle. 1500 */ 1501 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1502 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1503 "queuecommand : command too long. " 1504 "cdb_size=%d host->max_cmd_len=%d\n", 1505 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1506 cmd->result = (DID_ABORT << 16); 1507 goto done; 1508 } 1509 1510 if (unlikely(host->shost_state == SHOST_DEL)) { 1511 cmd->result = (DID_NO_CONNECT << 16); 1512 goto done; 1513 1514 } 1515 1516 trace_scsi_dispatch_cmd_start(cmd); 1517 rtn = host->hostt->queuecommand(host, cmd); 1518 if (rtn) { 1519 trace_scsi_dispatch_cmd_error(cmd, rtn); 1520 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1521 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1522 rtn = SCSI_MLQUEUE_HOST_BUSY; 1523 1524 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1525 "queuecommand : request rejected\n")); 1526 } 1527 1528 return rtn; 1529 done: 1530 scsi_done(cmd); 1531 return 0; 1532 } 1533 1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1536 { 1537 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1538 sizeof(struct scatterlist); 1539 } 1540 1541 static blk_status_t scsi_prepare_cmd(struct request *req) 1542 { 1543 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1544 struct scsi_device *sdev = req->q->queuedata; 1545 struct Scsi_Host *shost = sdev->host; 1546 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1547 struct scatterlist *sg; 1548 1549 scsi_init_command(sdev, cmd); 1550 1551 cmd->eh_eflags = 0; 1552 cmd->prot_type = 0; 1553 cmd->prot_flags = 0; 1554 cmd->submitter = 0; 1555 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1556 cmd->underflow = 0; 1557 cmd->transfersize = 0; 1558 cmd->host_scribble = NULL; 1559 cmd->result = 0; 1560 cmd->extra_len = 0; 1561 cmd->state = 0; 1562 if (in_flight) 1563 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1564 1565 /* 1566 * Only clear the driver-private command data if the LLD does not supply 1567 * a function to initialize that data. 1568 */ 1569 if (!shost->hostt->init_cmd_priv) 1570 memset(cmd + 1, 0, shost->hostt->cmd_size); 1571 1572 cmd->prot_op = SCSI_PROT_NORMAL; 1573 if (blk_rq_bytes(req)) 1574 cmd->sc_data_direction = rq_dma_dir(req); 1575 else 1576 cmd->sc_data_direction = DMA_NONE; 1577 1578 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1579 cmd->sdb.table.sgl = sg; 1580 1581 if (scsi_host_get_prot(shost)) { 1582 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1583 1584 cmd->prot_sdb->table.sgl = 1585 (struct scatterlist *)(cmd->prot_sdb + 1); 1586 } 1587 1588 /* 1589 * Special handling for passthrough commands, which don't go to the ULP 1590 * at all: 1591 */ 1592 if (blk_rq_is_passthrough(req)) 1593 return scsi_setup_scsi_cmnd(sdev, req); 1594 1595 if (sdev->handler && sdev->handler->prep_fn) { 1596 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1597 1598 if (ret != BLK_STS_OK) 1599 return ret; 1600 } 1601 1602 /* Usually overridden by the ULP */ 1603 cmd->allowed = 0; 1604 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1605 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1606 } 1607 1608 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1609 { 1610 struct request *req = scsi_cmd_to_rq(cmd); 1611 1612 switch (cmd->submitter) { 1613 case SUBMITTED_BY_BLOCK_LAYER: 1614 break; 1615 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1616 return scsi_eh_done(cmd); 1617 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1618 return; 1619 } 1620 1621 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1622 return; 1623 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1624 return; 1625 trace_scsi_dispatch_cmd_done(cmd); 1626 1627 if (complete_directly) 1628 blk_mq_complete_request_direct(req, scsi_complete); 1629 else 1630 blk_mq_complete_request(req); 1631 } 1632 1633 void scsi_done(struct scsi_cmnd *cmd) 1634 { 1635 scsi_done_internal(cmd, false); 1636 } 1637 EXPORT_SYMBOL(scsi_done); 1638 1639 void scsi_done_direct(struct scsi_cmnd *cmd) 1640 { 1641 scsi_done_internal(cmd, true); 1642 } 1643 EXPORT_SYMBOL(scsi_done_direct); 1644 1645 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1646 { 1647 struct scsi_device *sdev = q->queuedata; 1648 1649 sbitmap_put(&sdev->budget_map, budget_token); 1650 } 1651 1652 /* 1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1654 * not change behaviour from the previous unplug mechanism, experimentation 1655 * may prove this needs changing. 1656 */ 1657 #define SCSI_QUEUE_DELAY 3 1658 1659 static int scsi_mq_get_budget(struct request_queue *q) 1660 { 1661 struct scsi_device *sdev = q->queuedata; 1662 int token = scsi_dev_queue_ready(q, sdev); 1663 1664 if (token >= 0) 1665 return token; 1666 1667 atomic_inc(&sdev->restarts); 1668 1669 /* 1670 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1671 * .restarts must be incremented before .device_busy is read because the 1672 * code in scsi_run_queue_async() depends on the order of these operations. 1673 */ 1674 smp_mb__after_atomic(); 1675 1676 /* 1677 * If all in-flight requests originated from this LUN are completed 1678 * before reading .device_busy, sdev->device_busy will be observed as 1679 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1680 * soon. Otherwise, completion of one of these requests will observe 1681 * the .restarts flag, and the request queue will be run for handling 1682 * this request, see scsi_end_request(). 1683 */ 1684 if (unlikely(scsi_device_busy(sdev) == 0 && 1685 !scsi_device_blocked(sdev))) 1686 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1687 return -1; 1688 } 1689 1690 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1691 { 1692 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1693 1694 cmd->budget_token = token; 1695 } 1696 1697 static int scsi_mq_get_rq_budget_token(struct request *req) 1698 { 1699 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1700 1701 return cmd->budget_token; 1702 } 1703 1704 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1705 const struct blk_mq_queue_data *bd) 1706 { 1707 struct request *req = bd->rq; 1708 struct request_queue *q = req->q; 1709 struct scsi_device *sdev = q->queuedata; 1710 struct Scsi_Host *shost = sdev->host; 1711 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1712 blk_status_t ret; 1713 int reason; 1714 1715 WARN_ON_ONCE(cmd->budget_token < 0); 1716 1717 /* 1718 * If the device is not in running state we will reject some or all 1719 * commands. 1720 */ 1721 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1722 ret = scsi_device_state_check(sdev, req); 1723 if (ret != BLK_STS_OK) 1724 goto out_put_budget; 1725 } 1726 1727 ret = BLK_STS_RESOURCE; 1728 if (!scsi_target_queue_ready(shost, sdev)) 1729 goto out_put_budget; 1730 if (unlikely(scsi_host_in_recovery(shost))) { 1731 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1732 ret = BLK_STS_OFFLINE; 1733 goto out_dec_target_busy; 1734 } 1735 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1736 goto out_dec_target_busy; 1737 1738 if (!(req->rq_flags & RQF_DONTPREP)) { 1739 ret = scsi_prepare_cmd(req); 1740 if (ret != BLK_STS_OK) 1741 goto out_dec_host_busy; 1742 req->rq_flags |= RQF_DONTPREP; 1743 } else { 1744 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1745 } 1746 1747 cmd->flags &= SCMD_PRESERVED_FLAGS; 1748 if (sdev->simple_tags) 1749 cmd->flags |= SCMD_TAGGED; 1750 if (bd->last) 1751 cmd->flags |= SCMD_LAST; 1752 1753 scsi_set_resid(cmd, 0); 1754 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1755 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1756 1757 blk_mq_start_request(req); 1758 reason = scsi_dispatch_cmd(cmd); 1759 if (reason) { 1760 scsi_set_blocked(cmd, reason); 1761 ret = BLK_STS_RESOURCE; 1762 goto out_dec_host_busy; 1763 } 1764 1765 atomic_inc(&cmd->device->iorequest_cnt); 1766 return BLK_STS_OK; 1767 1768 out_dec_host_busy: 1769 scsi_dec_host_busy(shost, cmd); 1770 out_dec_target_busy: 1771 if (scsi_target(sdev)->can_queue > 0) 1772 atomic_dec(&scsi_target(sdev)->target_busy); 1773 out_put_budget: 1774 scsi_mq_put_budget(q, cmd->budget_token); 1775 cmd->budget_token = -1; 1776 switch (ret) { 1777 case BLK_STS_OK: 1778 break; 1779 case BLK_STS_RESOURCE: 1780 case BLK_STS_ZONE_RESOURCE: 1781 if (scsi_device_blocked(sdev)) 1782 ret = BLK_STS_DEV_RESOURCE; 1783 break; 1784 case BLK_STS_AGAIN: 1785 cmd->result = DID_BUS_BUSY << 16; 1786 if (req->rq_flags & RQF_DONTPREP) 1787 scsi_mq_uninit_cmd(cmd); 1788 break; 1789 default: 1790 if (unlikely(!scsi_device_online(sdev))) 1791 cmd->result = DID_NO_CONNECT << 16; 1792 else 1793 cmd->result = DID_ERROR << 16; 1794 /* 1795 * Make sure to release all allocated resources when 1796 * we hit an error, as we will never see this command 1797 * again. 1798 */ 1799 if (req->rq_flags & RQF_DONTPREP) 1800 scsi_mq_uninit_cmd(cmd); 1801 scsi_run_queue_async(sdev); 1802 break; 1803 } 1804 return ret; 1805 } 1806 1807 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1808 unsigned int hctx_idx, unsigned int numa_node) 1809 { 1810 struct Scsi_Host *shost = set->driver_data; 1811 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1812 struct scatterlist *sg; 1813 int ret = 0; 1814 1815 cmd->sense_buffer = 1816 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1817 if (!cmd->sense_buffer) 1818 return -ENOMEM; 1819 1820 if (scsi_host_get_prot(shost)) { 1821 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1822 shost->hostt->cmd_size; 1823 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1824 } 1825 1826 if (shost->hostt->init_cmd_priv) { 1827 ret = shost->hostt->init_cmd_priv(shost, cmd); 1828 if (ret < 0) 1829 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1830 } 1831 1832 return ret; 1833 } 1834 1835 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1836 unsigned int hctx_idx) 1837 { 1838 struct Scsi_Host *shost = set->driver_data; 1839 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1840 1841 if (shost->hostt->exit_cmd_priv) 1842 shost->hostt->exit_cmd_priv(shost, cmd); 1843 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1844 } 1845 1846 1847 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1848 { 1849 struct Scsi_Host *shost = hctx->driver_data; 1850 1851 if (shost->hostt->mq_poll) 1852 return shost->hostt->mq_poll(shost, hctx->queue_num); 1853 1854 return 0; 1855 } 1856 1857 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1858 unsigned int hctx_idx) 1859 { 1860 struct Scsi_Host *shost = data; 1861 1862 hctx->driver_data = shost; 1863 return 0; 1864 } 1865 1866 static void scsi_map_queues(struct blk_mq_tag_set *set) 1867 { 1868 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1869 1870 if (shost->hostt->map_queues) 1871 return shost->hostt->map_queues(shost); 1872 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1873 } 1874 1875 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1876 { 1877 struct device *dev = shost->dma_dev; 1878 1879 /* 1880 * this limit is imposed by hardware restrictions 1881 */ 1882 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1883 SG_MAX_SEGMENTS)); 1884 1885 if (scsi_host_prot_dma(shost)) { 1886 shost->sg_prot_tablesize = 1887 min_not_zero(shost->sg_prot_tablesize, 1888 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1889 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1890 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1891 } 1892 1893 blk_queue_max_hw_sectors(q, shost->max_sectors); 1894 blk_queue_segment_boundary(q, shost->dma_boundary); 1895 dma_set_seg_boundary(dev, shost->dma_boundary); 1896 1897 blk_queue_max_segment_size(q, shost->max_segment_size); 1898 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1899 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1900 1901 /* 1902 * Set a reasonable default alignment: The larger of 32-byte (dword), 1903 * which is a common minimum for HBAs, and the minimum DMA alignment, 1904 * which is set by the platform. 1905 * 1906 * Devices that require a bigger alignment can increase it later. 1907 */ 1908 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1909 } 1910 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1911 1912 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1913 .get_budget = scsi_mq_get_budget, 1914 .put_budget = scsi_mq_put_budget, 1915 .queue_rq = scsi_queue_rq, 1916 .complete = scsi_complete, 1917 .timeout = scsi_timeout, 1918 #ifdef CONFIG_BLK_DEBUG_FS 1919 .show_rq = scsi_show_rq, 1920 #endif 1921 .init_request = scsi_mq_init_request, 1922 .exit_request = scsi_mq_exit_request, 1923 .cleanup_rq = scsi_cleanup_rq, 1924 .busy = scsi_mq_lld_busy, 1925 .map_queues = scsi_map_queues, 1926 .init_hctx = scsi_init_hctx, 1927 .poll = scsi_mq_poll, 1928 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1929 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1930 }; 1931 1932 1933 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1934 { 1935 struct Scsi_Host *shost = hctx->driver_data; 1936 1937 shost->hostt->commit_rqs(shost, hctx->queue_num); 1938 } 1939 1940 static const struct blk_mq_ops scsi_mq_ops = { 1941 .get_budget = scsi_mq_get_budget, 1942 .put_budget = scsi_mq_put_budget, 1943 .queue_rq = scsi_queue_rq, 1944 .commit_rqs = scsi_commit_rqs, 1945 .complete = scsi_complete, 1946 .timeout = scsi_timeout, 1947 #ifdef CONFIG_BLK_DEBUG_FS 1948 .show_rq = scsi_show_rq, 1949 #endif 1950 .init_request = scsi_mq_init_request, 1951 .exit_request = scsi_mq_exit_request, 1952 .cleanup_rq = scsi_cleanup_rq, 1953 .busy = scsi_mq_lld_busy, 1954 .map_queues = scsi_map_queues, 1955 .init_hctx = scsi_init_hctx, 1956 .poll = scsi_mq_poll, 1957 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1958 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1959 }; 1960 1961 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1962 { 1963 unsigned int cmd_size, sgl_size; 1964 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1965 1966 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1967 scsi_mq_inline_sgl_size(shost)); 1968 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1969 if (scsi_host_get_prot(shost)) 1970 cmd_size += sizeof(struct scsi_data_buffer) + 1971 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1972 1973 memset(tag_set, 0, sizeof(*tag_set)); 1974 if (shost->hostt->commit_rqs) 1975 tag_set->ops = &scsi_mq_ops; 1976 else 1977 tag_set->ops = &scsi_mq_ops_no_commit; 1978 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1979 tag_set->nr_maps = shost->nr_maps ? : 1; 1980 tag_set->queue_depth = shost->can_queue; 1981 tag_set->cmd_size = cmd_size; 1982 tag_set->numa_node = dev_to_node(shost->dma_dev); 1983 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1984 tag_set->flags |= 1985 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1986 tag_set->driver_data = shost; 1987 if (shost->host_tagset) 1988 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1989 1990 return blk_mq_alloc_tag_set(tag_set); 1991 } 1992 1993 void scsi_mq_free_tags(struct kref *kref) 1994 { 1995 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1996 tagset_refcnt); 1997 1998 blk_mq_free_tag_set(&shost->tag_set); 1999 complete(&shost->tagset_freed); 2000 } 2001 2002 /** 2003 * scsi_device_from_queue - return sdev associated with a request_queue 2004 * @q: The request queue to return the sdev from 2005 * 2006 * Return the sdev associated with a request queue or NULL if the 2007 * request_queue does not reference a SCSI device. 2008 */ 2009 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2010 { 2011 struct scsi_device *sdev = NULL; 2012 2013 if (q->mq_ops == &scsi_mq_ops_no_commit || 2014 q->mq_ops == &scsi_mq_ops) 2015 sdev = q->queuedata; 2016 if (!sdev || !get_device(&sdev->sdev_gendev)) 2017 sdev = NULL; 2018 2019 return sdev; 2020 } 2021 /* 2022 * pktcdvd should have been integrated into the SCSI layers, but for historical 2023 * reasons like the old IDE driver it isn't. This export allows it to safely 2024 * probe if a given device is a SCSI one and only attach to that. 2025 */ 2026 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2027 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2028 #endif 2029 2030 /** 2031 * scsi_block_requests - Utility function used by low-level drivers to prevent 2032 * further commands from being queued to the device. 2033 * @shost: host in question 2034 * 2035 * There is no timer nor any other means by which the requests get unblocked 2036 * other than the low-level driver calling scsi_unblock_requests(). 2037 */ 2038 void scsi_block_requests(struct Scsi_Host *shost) 2039 { 2040 shost->host_self_blocked = 1; 2041 } 2042 EXPORT_SYMBOL(scsi_block_requests); 2043 2044 /** 2045 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2046 * further commands to be queued to the device. 2047 * @shost: host in question 2048 * 2049 * There is no timer nor any other means by which the requests get unblocked 2050 * other than the low-level driver calling scsi_unblock_requests(). This is done 2051 * as an API function so that changes to the internals of the scsi mid-layer 2052 * won't require wholesale changes to drivers that use this feature. 2053 */ 2054 void scsi_unblock_requests(struct Scsi_Host *shost) 2055 { 2056 shost->host_self_blocked = 0; 2057 scsi_run_host_queues(shost); 2058 } 2059 EXPORT_SYMBOL(scsi_unblock_requests); 2060 2061 void scsi_exit_queue(void) 2062 { 2063 kmem_cache_destroy(scsi_sense_cache); 2064 } 2065 2066 /** 2067 * scsi_mode_select - issue a mode select 2068 * @sdev: SCSI device to be queried 2069 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2070 * @sp: Save page bit (0 == don't save, 1 == save) 2071 * @buffer: request buffer (may not be smaller than eight bytes) 2072 * @len: length of request buffer. 2073 * @timeout: command timeout 2074 * @retries: number of retries before failing 2075 * @data: returns a structure abstracting the mode header data 2076 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2077 * must be SCSI_SENSE_BUFFERSIZE big. 2078 * 2079 * Returns zero if successful; negative error number or scsi 2080 * status on error 2081 * 2082 */ 2083 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2084 unsigned char *buffer, int len, int timeout, int retries, 2085 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2086 { 2087 unsigned char cmd[10]; 2088 unsigned char *real_buffer; 2089 int ret; 2090 2091 memset(cmd, 0, sizeof(cmd)); 2092 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2093 2094 /* 2095 * Use MODE SELECT(10) if the device asked for it or if the mode page 2096 * and the mode select header cannot fit within the maximumm 255 bytes 2097 * of the MODE SELECT(6) command. 2098 */ 2099 if (sdev->use_10_for_ms || 2100 len + 4 > 255 || 2101 data->block_descriptor_length > 255) { 2102 if (len > 65535 - 8) 2103 return -EINVAL; 2104 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2105 if (!real_buffer) 2106 return -ENOMEM; 2107 memcpy(real_buffer + 8, buffer, len); 2108 len += 8; 2109 real_buffer[0] = 0; 2110 real_buffer[1] = 0; 2111 real_buffer[2] = data->medium_type; 2112 real_buffer[3] = data->device_specific; 2113 real_buffer[4] = data->longlba ? 0x01 : 0; 2114 real_buffer[5] = 0; 2115 put_unaligned_be16(data->block_descriptor_length, 2116 &real_buffer[6]); 2117 2118 cmd[0] = MODE_SELECT_10; 2119 put_unaligned_be16(len, &cmd[7]); 2120 } else { 2121 if (data->longlba) 2122 return -EINVAL; 2123 2124 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2125 if (!real_buffer) 2126 return -ENOMEM; 2127 memcpy(real_buffer + 4, buffer, len); 2128 len += 4; 2129 real_buffer[0] = 0; 2130 real_buffer[1] = data->medium_type; 2131 real_buffer[2] = data->device_specific; 2132 real_buffer[3] = data->block_descriptor_length; 2133 2134 cmd[0] = MODE_SELECT; 2135 cmd[4] = len; 2136 } 2137 2138 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2139 sshdr, timeout, retries, NULL); 2140 kfree(real_buffer); 2141 return ret; 2142 } 2143 EXPORT_SYMBOL_GPL(scsi_mode_select); 2144 2145 /** 2146 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2147 * @sdev: SCSI device to be queried 2148 * @dbd: set to prevent mode sense from returning block descriptors 2149 * @modepage: mode page being requested 2150 * @buffer: request buffer (may not be smaller than eight bytes) 2151 * @len: length of request buffer. 2152 * @timeout: command timeout 2153 * @retries: number of retries before failing 2154 * @data: returns a structure abstracting the mode header data 2155 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2156 * must be SCSI_SENSE_BUFFERSIZE big. 2157 * 2158 * Returns zero if successful, or a negative error number on failure 2159 */ 2160 int 2161 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2162 unsigned char *buffer, int len, int timeout, int retries, 2163 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2164 { 2165 unsigned char cmd[12]; 2166 int use_10_for_ms; 2167 int header_length; 2168 int result, retry_count = retries; 2169 struct scsi_sense_hdr my_sshdr; 2170 2171 memset(data, 0, sizeof(*data)); 2172 memset(&cmd[0], 0, 12); 2173 2174 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2175 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2176 cmd[2] = modepage; 2177 2178 /* caller might not be interested in sense, but we need it */ 2179 if (!sshdr) 2180 sshdr = &my_sshdr; 2181 2182 retry: 2183 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2184 2185 if (use_10_for_ms) { 2186 if (len < 8 || len > 65535) 2187 return -EINVAL; 2188 2189 cmd[0] = MODE_SENSE_10; 2190 put_unaligned_be16(len, &cmd[7]); 2191 header_length = 8; 2192 } else { 2193 if (len < 4) 2194 return -EINVAL; 2195 2196 cmd[0] = MODE_SENSE; 2197 cmd[4] = len; 2198 header_length = 4; 2199 } 2200 2201 memset(buffer, 0, len); 2202 2203 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2204 sshdr, timeout, retries, NULL); 2205 if (result < 0) 2206 return result; 2207 2208 /* This code looks awful: what it's doing is making sure an 2209 * ILLEGAL REQUEST sense return identifies the actual command 2210 * byte as the problem. MODE_SENSE commands can return 2211 * ILLEGAL REQUEST if the code page isn't supported */ 2212 2213 if (!scsi_status_is_good(result)) { 2214 if (scsi_sense_valid(sshdr)) { 2215 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2216 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2217 /* 2218 * Invalid command operation code: retry using 2219 * MODE SENSE(6) if this was a MODE SENSE(10) 2220 * request, except if the request mode page is 2221 * too large for MODE SENSE single byte 2222 * allocation length field. 2223 */ 2224 if (use_10_for_ms) { 2225 if (len > 255) 2226 return -EIO; 2227 sdev->use_10_for_ms = 0; 2228 goto retry; 2229 } 2230 } 2231 if (scsi_status_is_check_condition(result) && 2232 sshdr->sense_key == UNIT_ATTENTION && 2233 retry_count) { 2234 retry_count--; 2235 goto retry; 2236 } 2237 } 2238 return -EIO; 2239 } 2240 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2241 (modepage == 6 || modepage == 8))) { 2242 /* Initio breakage? */ 2243 header_length = 0; 2244 data->length = 13; 2245 data->medium_type = 0; 2246 data->device_specific = 0; 2247 data->longlba = 0; 2248 data->block_descriptor_length = 0; 2249 } else if (use_10_for_ms) { 2250 data->length = get_unaligned_be16(&buffer[0]) + 2; 2251 data->medium_type = buffer[2]; 2252 data->device_specific = buffer[3]; 2253 data->longlba = buffer[4] & 0x01; 2254 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2255 } else { 2256 data->length = buffer[0] + 1; 2257 data->medium_type = buffer[1]; 2258 data->device_specific = buffer[2]; 2259 data->block_descriptor_length = buffer[3]; 2260 } 2261 data->header_length = header_length; 2262 2263 return 0; 2264 } 2265 EXPORT_SYMBOL(scsi_mode_sense); 2266 2267 /** 2268 * scsi_test_unit_ready - test if unit is ready 2269 * @sdev: scsi device to change the state of. 2270 * @timeout: command timeout 2271 * @retries: number of retries before failing 2272 * @sshdr: outpout pointer for decoded sense information. 2273 * 2274 * Returns zero if unsuccessful or an error if TUR failed. For 2275 * removable media, UNIT_ATTENTION sets ->changed flag. 2276 **/ 2277 int 2278 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2279 struct scsi_sense_hdr *sshdr) 2280 { 2281 char cmd[] = { 2282 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2283 }; 2284 int result; 2285 2286 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2287 do { 2288 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2289 timeout, 1, NULL); 2290 if (sdev->removable && scsi_sense_valid(sshdr) && 2291 sshdr->sense_key == UNIT_ATTENTION) 2292 sdev->changed = 1; 2293 } while (scsi_sense_valid(sshdr) && 2294 sshdr->sense_key == UNIT_ATTENTION && --retries); 2295 2296 return result; 2297 } 2298 EXPORT_SYMBOL(scsi_test_unit_ready); 2299 2300 /** 2301 * scsi_device_set_state - Take the given device through the device state model. 2302 * @sdev: scsi device to change the state of. 2303 * @state: state to change to. 2304 * 2305 * Returns zero if successful or an error if the requested 2306 * transition is illegal. 2307 */ 2308 int 2309 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2310 { 2311 enum scsi_device_state oldstate = sdev->sdev_state; 2312 2313 if (state == oldstate) 2314 return 0; 2315 2316 switch (state) { 2317 case SDEV_CREATED: 2318 switch (oldstate) { 2319 case SDEV_CREATED_BLOCK: 2320 break; 2321 default: 2322 goto illegal; 2323 } 2324 break; 2325 2326 case SDEV_RUNNING: 2327 switch (oldstate) { 2328 case SDEV_CREATED: 2329 case SDEV_OFFLINE: 2330 case SDEV_TRANSPORT_OFFLINE: 2331 case SDEV_QUIESCE: 2332 case SDEV_BLOCK: 2333 break; 2334 default: 2335 goto illegal; 2336 } 2337 break; 2338 2339 case SDEV_QUIESCE: 2340 switch (oldstate) { 2341 case SDEV_RUNNING: 2342 case SDEV_OFFLINE: 2343 case SDEV_TRANSPORT_OFFLINE: 2344 break; 2345 default: 2346 goto illegal; 2347 } 2348 break; 2349 2350 case SDEV_OFFLINE: 2351 case SDEV_TRANSPORT_OFFLINE: 2352 switch (oldstate) { 2353 case SDEV_CREATED: 2354 case SDEV_RUNNING: 2355 case SDEV_QUIESCE: 2356 case SDEV_BLOCK: 2357 break; 2358 default: 2359 goto illegal; 2360 } 2361 break; 2362 2363 case SDEV_BLOCK: 2364 switch (oldstate) { 2365 case SDEV_RUNNING: 2366 case SDEV_CREATED_BLOCK: 2367 case SDEV_QUIESCE: 2368 case SDEV_OFFLINE: 2369 break; 2370 default: 2371 goto illegal; 2372 } 2373 break; 2374 2375 case SDEV_CREATED_BLOCK: 2376 switch (oldstate) { 2377 case SDEV_CREATED: 2378 break; 2379 default: 2380 goto illegal; 2381 } 2382 break; 2383 2384 case SDEV_CANCEL: 2385 switch (oldstate) { 2386 case SDEV_CREATED: 2387 case SDEV_RUNNING: 2388 case SDEV_QUIESCE: 2389 case SDEV_OFFLINE: 2390 case SDEV_TRANSPORT_OFFLINE: 2391 break; 2392 default: 2393 goto illegal; 2394 } 2395 break; 2396 2397 case SDEV_DEL: 2398 switch (oldstate) { 2399 case SDEV_CREATED: 2400 case SDEV_RUNNING: 2401 case SDEV_OFFLINE: 2402 case SDEV_TRANSPORT_OFFLINE: 2403 case SDEV_CANCEL: 2404 case SDEV_BLOCK: 2405 case SDEV_CREATED_BLOCK: 2406 break; 2407 default: 2408 goto illegal; 2409 } 2410 break; 2411 2412 } 2413 sdev->offline_already = false; 2414 sdev->sdev_state = state; 2415 return 0; 2416 2417 illegal: 2418 SCSI_LOG_ERROR_RECOVERY(1, 2419 sdev_printk(KERN_ERR, sdev, 2420 "Illegal state transition %s->%s", 2421 scsi_device_state_name(oldstate), 2422 scsi_device_state_name(state)) 2423 ); 2424 return -EINVAL; 2425 } 2426 EXPORT_SYMBOL(scsi_device_set_state); 2427 2428 /** 2429 * scsi_evt_emit - emit a single SCSI device uevent 2430 * @sdev: associated SCSI device 2431 * @evt: event to emit 2432 * 2433 * Send a single uevent (scsi_event) to the associated scsi_device. 2434 */ 2435 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2436 { 2437 int idx = 0; 2438 char *envp[3]; 2439 2440 switch (evt->evt_type) { 2441 case SDEV_EVT_MEDIA_CHANGE: 2442 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2443 break; 2444 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2445 scsi_rescan_device(&sdev->sdev_gendev); 2446 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2447 break; 2448 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2449 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2450 break; 2451 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2452 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2453 break; 2454 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2455 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2456 break; 2457 case SDEV_EVT_LUN_CHANGE_REPORTED: 2458 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2459 break; 2460 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2461 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2462 break; 2463 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2464 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2465 break; 2466 default: 2467 /* do nothing */ 2468 break; 2469 } 2470 2471 envp[idx++] = NULL; 2472 2473 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2474 } 2475 2476 /** 2477 * scsi_evt_thread - send a uevent for each scsi event 2478 * @work: work struct for scsi_device 2479 * 2480 * Dispatch queued events to their associated scsi_device kobjects 2481 * as uevents. 2482 */ 2483 void scsi_evt_thread(struct work_struct *work) 2484 { 2485 struct scsi_device *sdev; 2486 enum scsi_device_event evt_type; 2487 LIST_HEAD(event_list); 2488 2489 sdev = container_of(work, struct scsi_device, event_work); 2490 2491 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2492 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2493 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2494 2495 while (1) { 2496 struct scsi_event *evt; 2497 struct list_head *this, *tmp; 2498 unsigned long flags; 2499 2500 spin_lock_irqsave(&sdev->list_lock, flags); 2501 list_splice_init(&sdev->event_list, &event_list); 2502 spin_unlock_irqrestore(&sdev->list_lock, flags); 2503 2504 if (list_empty(&event_list)) 2505 break; 2506 2507 list_for_each_safe(this, tmp, &event_list) { 2508 evt = list_entry(this, struct scsi_event, node); 2509 list_del(&evt->node); 2510 scsi_evt_emit(sdev, evt); 2511 kfree(evt); 2512 } 2513 } 2514 } 2515 2516 /** 2517 * sdev_evt_send - send asserted event to uevent thread 2518 * @sdev: scsi_device event occurred on 2519 * @evt: event to send 2520 * 2521 * Assert scsi device event asynchronously. 2522 */ 2523 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2524 { 2525 unsigned long flags; 2526 2527 #if 0 2528 /* FIXME: currently this check eliminates all media change events 2529 * for polled devices. Need to update to discriminate between AN 2530 * and polled events */ 2531 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2532 kfree(evt); 2533 return; 2534 } 2535 #endif 2536 2537 spin_lock_irqsave(&sdev->list_lock, flags); 2538 list_add_tail(&evt->node, &sdev->event_list); 2539 schedule_work(&sdev->event_work); 2540 spin_unlock_irqrestore(&sdev->list_lock, flags); 2541 } 2542 EXPORT_SYMBOL_GPL(sdev_evt_send); 2543 2544 /** 2545 * sdev_evt_alloc - allocate a new scsi event 2546 * @evt_type: type of event to allocate 2547 * @gfpflags: GFP flags for allocation 2548 * 2549 * Allocates and returns a new scsi_event. 2550 */ 2551 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2552 gfp_t gfpflags) 2553 { 2554 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2555 if (!evt) 2556 return NULL; 2557 2558 evt->evt_type = evt_type; 2559 INIT_LIST_HEAD(&evt->node); 2560 2561 /* evt_type-specific initialization, if any */ 2562 switch (evt_type) { 2563 case SDEV_EVT_MEDIA_CHANGE: 2564 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2565 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2566 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2567 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2568 case SDEV_EVT_LUN_CHANGE_REPORTED: 2569 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2570 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2571 default: 2572 /* do nothing */ 2573 break; 2574 } 2575 2576 return evt; 2577 } 2578 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2579 2580 /** 2581 * sdev_evt_send_simple - send asserted event to uevent thread 2582 * @sdev: scsi_device event occurred on 2583 * @evt_type: type of event to send 2584 * @gfpflags: GFP flags for allocation 2585 * 2586 * Assert scsi device event asynchronously, given an event type. 2587 */ 2588 void sdev_evt_send_simple(struct scsi_device *sdev, 2589 enum scsi_device_event evt_type, gfp_t gfpflags) 2590 { 2591 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2592 if (!evt) { 2593 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2594 evt_type); 2595 return; 2596 } 2597 2598 sdev_evt_send(sdev, evt); 2599 } 2600 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2601 2602 /** 2603 * scsi_device_quiesce - Block all commands except power management. 2604 * @sdev: scsi device to quiesce. 2605 * 2606 * This works by trying to transition to the SDEV_QUIESCE state 2607 * (which must be a legal transition). When the device is in this 2608 * state, only power management requests will be accepted, all others will 2609 * be deferred. 2610 * 2611 * Must be called with user context, may sleep. 2612 * 2613 * Returns zero if unsuccessful or an error if not. 2614 */ 2615 int 2616 scsi_device_quiesce(struct scsi_device *sdev) 2617 { 2618 struct request_queue *q = sdev->request_queue; 2619 int err; 2620 2621 /* 2622 * It is allowed to call scsi_device_quiesce() multiple times from 2623 * the same context but concurrent scsi_device_quiesce() calls are 2624 * not allowed. 2625 */ 2626 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2627 2628 if (sdev->quiesced_by == current) 2629 return 0; 2630 2631 blk_set_pm_only(q); 2632 2633 blk_mq_freeze_queue(q); 2634 /* 2635 * Ensure that the effect of blk_set_pm_only() will be visible 2636 * for percpu_ref_tryget() callers that occur after the queue 2637 * unfreeze even if the queue was already frozen before this function 2638 * was called. See also https://lwn.net/Articles/573497/. 2639 */ 2640 synchronize_rcu(); 2641 blk_mq_unfreeze_queue(q); 2642 2643 mutex_lock(&sdev->state_mutex); 2644 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2645 if (err == 0) 2646 sdev->quiesced_by = current; 2647 else 2648 blk_clear_pm_only(q); 2649 mutex_unlock(&sdev->state_mutex); 2650 2651 return err; 2652 } 2653 EXPORT_SYMBOL(scsi_device_quiesce); 2654 2655 /** 2656 * scsi_device_resume - Restart user issued commands to a quiesced device. 2657 * @sdev: scsi device to resume. 2658 * 2659 * Moves the device from quiesced back to running and restarts the 2660 * queues. 2661 * 2662 * Must be called with user context, may sleep. 2663 */ 2664 void scsi_device_resume(struct scsi_device *sdev) 2665 { 2666 /* check if the device state was mutated prior to resume, and if 2667 * so assume the state is being managed elsewhere (for example 2668 * device deleted during suspend) 2669 */ 2670 mutex_lock(&sdev->state_mutex); 2671 if (sdev->sdev_state == SDEV_QUIESCE) 2672 scsi_device_set_state(sdev, SDEV_RUNNING); 2673 if (sdev->quiesced_by) { 2674 sdev->quiesced_by = NULL; 2675 blk_clear_pm_only(sdev->request_queue); 2676 } 2677 mutex_unlock(&sdev->state_mutex); 2678 } 2679 EXPORT_SYMBOL(scsi_device_resume); 2680 2681 static void 2682 device_quiesce_fn(struct scsi_device *sdev, void *data) 2683 { 2684 scsi_device_quiesce(sdev); 2685 } 2686 2687 void 2688 scsi_target_quiesce(struct scsi_target *starget) 2689 { 2690 starget_for_each_device(starget, NULL, device_quiesce_fn); 2691 } 2692 EXPORT_SYMBOL(scsi_target_quiesce); 2693 2694 static void 2695 device_resume_fn(struct scsi_device *sdev, void *data) 2696 { 2697 scsi_device_resume(sdev); 2698 } 2699 2700 void 2701 scsi_target_resume(struct scsi_target *starget) 2702 { 2703 starget_for_each_device(starget, NULL, device_resume_fn); 2704 } 2705 EXPORT_SYMBOL(scsi_target_resume); 2706 2707 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2708 { 2709 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2710 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2711 2712 return 0; 2713 } 2714 2715 void scsi_start_queue(struct scsi_device *sdev) 2716 { 2717 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2718 blk_mq_unquiesce_queue(sdev->request_queue); 2719 } 2720 2721 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2722 { 2723 /* 2724 * The atomic variable of ->queue_stopped covers that 2725 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2726 * 2727 * However, we still need to wait until quiesce is done 2728 * in case that queue has been stopped. 2729 */ 2730 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2731 if (nowait) 2732 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2733 else 2734 blk_mq_quiesce_queue(sdev->request_queue); 2735 } else { 2736 if (!nowait) 2737 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set); 2738 } 2739 } 2740 2741 /** 2742 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2743 * @sdev: device to block 2744 * 2745 * Pause SCSI command processing on the specified device. Does not sleep. 2746 * 2747 * Returns zero if successful or a negative error code upon failure. 2748 * 2749 * Notes: 2750 * This routine transitions the device to the SDEV_BLOCK state (which must be 2751 * a legal transition). When the device is in this state, command processing 2752 * is paused until the device leaves the SDEV_BLOCK state. See also 2753 * scsi_internal_device_unblock_nowait(). 2754 */ 2755 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2756 { 2757 int ret = __scsi_internal_device_block_nowait(sdev); 2758 2759 /* 2760 * The device has transitioned to SDEV_BLOCK. Stop the 2761 * block layer from calling the midlayer with this device's 2762 * request queue. 2763 */ 2764 if (!ret) 2765 scsi_stop_queue(sdev, true); 2766 return ret; 2767 } 2768 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2769 2770 /** 2771 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2772 * @sdev: device to block 2773 * 2774 * Pause SCSI command processing on the specified device and wait until all 2775 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2776 * 2777 * Returns zero if successful or a negative error code upon failure. 2778 * 2779 * Note: 2780 * This routine transitions the device to the SDEV_BLOCK state (which must be 2781 * a legal transition). When the device is in this state, command processing 2782 * is paused until the device leaves the SDEV_BLOCK state. See also 2783 * scsi_internal_device_unblock(). 2784 */ 2785 static int scsi_internal_device_block(struct scsi_device *sdev) 2786 { 2787 int err; 2788 2789 mutex_lock(&sdev->state_mutex); 2790 err = __scsi_internal_device_block_nowait(sdev); 2791 if (err == 0) 2792 scsi_stop_queue(sdev, false); 2793 mutex_unlock(&sdev->state_mutex); 2794 2795 return err; 2796 } 2797 2798 /** 2799 * scsi_internal_device_unblock_nowait - resume a device after a block request 2800 * @sdev: device to resume 2801 * @new_state: state to set the device to after unblocking 2802 * 2803 * Restart the device queue for a previously suspended SCSI device. Does not 2804 * sleep. 2805 * 2806 * Returns zero if successful or a negative error code upon failure. 2807 * 2808 * Notes: 2809 * This routine transitions the device to the SDEV_RUNNING state or to one of 2810 * the offline states (which must be a legal transition) allowing the midlayer 2811 * to goose the queue for this device. 2812 */ 2813 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2814 enum scsi_device_state new_state) 2815 { 2816 switch (new_state) { 2817 case SDEV_RUNNING: 2818 case SDEV_TRANSPORT_OFFLINE: 2819 break; 2820 default: 2821 return -EINVAL; 2822 } 2823 2824 /* 2825 * Try to transition the scsi device to SDEV_RUNNING or one of the 2826 * offlined states and goose the device queue if successful. 2827 */ 2828 switch (sdev->sdev_state) { 2829 case SDEV_BLOCK: 2830 case SDEV_TRANSPORT_OFFLINE: 2831 sdev->sdev_state = new_state; 2832 break; 2833 case SDEV_CREATED_BLOCK: 2834 if (new_state == SDEV_TRANSPORT_OFFLINE || 2835 new_state == SDEV_OFFLINE) 2836 sdev->sdev_state = new_state; 2837 else 2838 sdev->sdev_state = SDEV_CREATED; 2839 break; 2840 case SDEV_CANCEL: 2841 case SDEV_OFFLINE: 2842 break; 2843 default: 2844 return -EINVAL; 2845 } 2846 scsi_start_queue(sdev); 2847 2848 return 0; 2849 } 2850 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2851 2852 /** 2853 * scsi_internal_device_unblock - resume a device after a block request 2854 * @sdev: device to resume 2855 * @new_state: state to set the device to after unblocking 2856 * 2857 * Restart the device queue for a previously suspended SCSI device. May sleep. 2858 * 2859 * Returns zero if successful or a negative error code upon failure. 2860 * 2861 * Notes: 2862 * This routine transitions the device to the SDEV_RUNNING state or to one of 2863 * the offline states (which must be a legal transition) allowing the midlayer 2864 * to goose the queue for this device. 2865 */ 2866 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2867 enum scsi_device_state new_state) 2868 { 2869 int ret; 2870 2871 mutex_lock(&sdev->state_mutex); 2872 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2873 mutex_unlock(&sdev->state_mutex); 2874 2875 return ret; 2876 } 2877 2878 static void 2879 device_block(struct scsi_device *sdev, void *data) 2880 { 2881 int ret; 2882 2883 ret = scsi_internal_device_block(sdev); 2884 2885 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2886 dev_name(&sdev->sdev_gendev), ret); 2887 } 2888 2889 static int 2890 target_block(struct device *dev, void *data) 2891 { 2892 if (scsi_is_target_device(dev)) 2893 starget_for_each_device(to_scsi_target(dev), NULL, 2894 device_block); 2895 return 0; 2896 } 2897 2898 void 2899 scsi_target_block(struct device *dev) 2900 { 2901 if (scsi_is_target_device(dev)) 2902 starget_for_each_device(to_scsi_target(dev), NULL, 2903 device_block); 2904 else 2905 device_for_each_child(dev, NULL, target_block); 2906 } 2907 EXPORT_SYMBOL_GPL(scsi_target_block); 2908 2909 static void 2910 device_unblock(struct scsi_device *sdev, void *data) 2911 { 2912 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2913 } 2914 2915 static int 2916 target_unblock(struct device *dev, void *data) 2917 { 2918 if (scsi_is_target_device(dev)) 2919 starget_for_each_device(to_scsi_target(dev), data, 2920 device_unblock); 2921 return 0; 2922 } 2923 2924 void 2925 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2926 { 2927 if (scsi_is_target_device(dev)) 2928 starget_for_each_device(to_scsi_target(dev), &new_state, 2929 device_unblock); 2930 else 2931 device_for_each_child(dev, &new_state, target_unblock); 2932 } 2933 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2934 2935 int 2936 scsi_host_block(struct Scsi_Host *shost) 2937 { 2938 struct scsi_device *sdev; 2939 int ret = 0; 2940 2941 /* 2942 * Call scsi_internal_device_block_nowait so we can avoid 2943 * calling synchronize_rcu() for each LUN. 2944 */ 2945 shost_for_each_device(sdev, shost) { 2946 mutex_lock(&sdev->state_mutex); 2947 ret = scsi_internal_device_block_nowait(sdev); 2948 mutex_unlock(&sdev->state_mutex); 2949 if (ret) { 2950 scsi_device_put(sdev); 2951 break; 2952 } 2953 } 2954 2955 /* 2956 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2957 * calling synchronize_rcu() once is enough. 2958 */ 2959 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2960 2961 if (!ret) 2962 synchronize_rcu(); 2963 2964 return ret; 2965 } 2966 EXPORT_SYMBOL_GPL(scsi_host_block); 2967 2968 int 2969 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2970 { 2971 struct scsi_device *sdev; 2972 int ret = 0; 2973 2974 shost_for_each_device(sdev, shost) { 2975 ret = scsi_internal_device_unblock(sdev, new_state); 2976 if (ret) { 2977 scsi_device_put(sdev); 2978 break; 2979 } 2980 } 2981 return ret; 2982 } 2983 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2984 2985 /** 2986 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2987 * @sgl: scatter-gather list 2988 * @sg_count: number of segments in sg 2989 * @offset: offset in bytes into sg, on return offset into the mapped area 2990 * @len: bytes to map, on return number of bytes mapped 2991 * 2992 * Returns virtual address of the start of the mapped page 2993 */ 2994 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2995 size_t *offset, size_t *len) 2996 { 2997 int i; 2998 size_t sg_len = 0, len_complete = 0; 2999 struct scatterlist *sg; 3000 struct page *page; 3001 3002 WARN_ON(!irqs_disabled()); 3003 3004 for_each_sg(sgl, sg, sg_count, i) { 3005 len_complete = sg_len; /* Complete sg-entries */ 3006 sg_len += sg->length; 3007 if (sg_len > *offset) 3008 break; 3009 } 3010 3011 if (unlikely(i == sg_count)) { 3012 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3013 "elements %d\n", 3014 __func__, sg_len, *offset, sg_count); 3015 WARN_ON(1); 3016 return NULL; 3017 } 3018 3019 /* Offset starting from the beginning of first page in this sg-entry */ 3020 *offset = *offset - len_complete + sg->offset; 3021 3022 /* Assumption: contiguous pages can be accessed as "page + i" */ 3023 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3024 *offset &= ~PAGE_MASK; 3025 3026 /* Bytes in this sg-entry from *offset to the end of the page */ 3027 sg_len = PAGE_SIZE - *offset; 3028 if (*len > sg_len) 3029 *len = sg_len; 3030 3031 return kmap_atomic(page); 3032 } 3033 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3034 3035 /** 3036 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3037 * @virt: virtual address to be unmapped 3038 */ 3039 void scsi_kunmap_atomic_sg(void *virt) 3040 { 3041 kunmap_atomic(virt); 3042 } 3043 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3044 3045 void sdev_disable_disk_events(struct scsi_device *sdev) 3046 { 3047 atomic_inc(&sdev->disk_events_disable_depth); 3048 } 3049 EXPORT_SYMBOL(sdev_disable_disk_events); 3050 3051 void sdev_enable_disk_events(struct scsi_device *sdev) 3052 { 3053 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3054 return; 3055 atomic_dec(&sdev->disk_events_disable_depth); 3056 } 3057 EXPORT_SYMBOL(sdev_enable_disk_events); 3058 3059 static unsigned char designator_prio(const unsigned char *d) 3060 { 3061 if (d[1] & 0x30) 3062 /* not associated with LUN */ 3063 return 0; 3064 3065 if (d[3] == 0) 3066 /* invalid length */ 3067 return 0; 3068 3069 /* 3070 * Order of preference for lun descriptor: 3071 * - SCSI name string 3072 * - NAA IEEE Registered Extended 3073 * - EUI-64 based 16-byte 3074 * - EUI-64 based 12-byte 3075 * - NAA IEEE Registered 3076 * - NAA IEEE Extended 3077 * - EUI-64 based 8-byte 3078 * - SCSI name string (truncated) 3079 * - T10 Vendor ID 3080 * as longer descriptors reduce the likelyhood 3081 * of identification clashes. 3082 */ 3083 3084 switch (d[1] & 0xf) { 3085 case 8: 3086 /* SCSI name string, variable-length UTF-8 */ 3087 return 9; 3088 case 3: 3089 switch (d[4] >> 4) { 3090 case 6: 3091 /* NAA registered extended */ 3092 return 8; 3093 case 5: 3094 /* NAA registered */ 3095 return 5; 3096 case 4: 3097 /* NAA extended */ 3098 return 4; 3099 case 3: 3100 /* NAA locally assigned */ 3101 return 1; 3102 default: 3103 break; 3104 } 3105 break; 3106 case 2: 3107 switch (d[3]) { 3108 case 16: 3109 /* EUI64-based, 16 byte */ 3110 return 7; 3111 case 12: 3112 /* EUI64-based, 12 byte */ 3113 return 6; 3114 case 8: 3115 /* EUI64-based, 8 byte */ 3116 return 3; 3117 default: 3118 break; 3119 } 3120 break; 3121 case 1: 3122 /* T10 vendor ID */ 3123 return 1; 3124 default: 3125 break; 3126 } 3127 3128 return 0; 3129 } 3130 3131 /** 3132 * scsi_vpd_lun_id - return a unique device identification 3133 * @sdev: SCSI device 3134 * @id: buffer for the identification 3135 * @id_len: length of the buffer 3136 * 3137 * Copies a unique device identification into @id based 3138 * on the information in the VPD page 0x83 of the device. 3139 * The string will be formatted as a SCSI name string. 3140 * 3141 * Returns the length of the identification or error on failure. 3142 * If the identifier is longer than the supplied buffer the actual 3143 * identifier length is returned and the buffer is not zero-padded. 3144 */ 3145 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3146 { 3147 u8 cur_id_prio = 0; 3148 u8 cur_id_size = 0; 3149 const unsigned char *d, *cur_id_str; 3150 const struct scsi_vpd *vpd_pg83; 3151 int id_size = -EINVAL; 3152 3153 rcu_read_lock(); 3154 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3155 if (!vpd_pg83) { 3156 rcu_read_unlock(); 3157 return -ENXIO; 3158 } 3159 3160 /* The id string must be at least 20 bytes + terminating NULL byte */ 3161 if (id_len < 21) { 3162 rcu_read_unlock(); 3163 return -EINVAL; 3164 } 3165 3166 memset(id, 0, id_len); 3167 for (d = vpd_pg83->data + 4; 3168 d < vpd_pg83->data + vpd_pg83->len; 3169 d += d[3] + 4) { 3170 u8 prio = designator_prio(d); 3171 3172 if (prio == 0 || cur_id_prio > prio) 3173 continue; 3174 3175 switch (d[1] & 0xf) { 3176 case 0x1: 3177 /* T10 Vendor ID */ 3178 if (cur_id_size > d[3]) 3179 break; 3180 cur_id_prio = prio; 3181 cur_id_size = d[3]; 3182 if (cur_id_size + 4 > id_len) 3183 cur_id_size = id_len - 4; 3184 cur_id_str = d + 4; 3185 id_size = snprintf(id, id_len, "t10.%*pE", 3186 cur_id_size, cur_id_str); 3187 break; 3188 case 0x2: 3189 /* EUI-64 */ 3190 cur_id_prio = prio; 3191 cur_id_size = d[3]; 3192 cur_id_str = d + 4; 3193 switch (cur_id_size) { 3194 case 8: 3195 id_size = snprintf(id, id_len, 3196 "eui.%8phN", 3197 cur_id_str); 3198 break; 3199 case 12: 3200 id_size = snprintf(id, id_len, 3201 "eui.%12phN", 3202 cur_id_str); 3203 break; 3204 case 16: 3205 id_size = snprintf(id, id_len, 3206 "eui.%16phN", 3207 cur_id_str); 3208 break; 3209 default: 3210 break; 3211 } 3212 break; 3213 case 0x3: 3214 /* NAA */ 3215 cur_id_prio = prio; 3216 cur_id_size = d[3]; 3217 cur_id_str = d + 4; 3218 switch (cur_id_size) { 3219 case 8: 3220 id_size = snprintf(id, id_len, 3221 "naa.%8phN", 3222 cur_id_str); 3223 break; 3224 case 16: 3225 id_size = snprintf(id, id_len, 3226 "naa.%16phN", 3227 cur_id_str); 3228 break; 3229 default: 3230 break; 3231 } 3232 break; 3233 case 0x8: 3234 /* SCSI name string */ 3235 if (cur_id_size > d[3]) 3236 break; 3237 /* Prefer others for truncated descriptor */ 3238 if (d[3] > id_len) { 3239 prio = 2; 3240 if (cur_id_prio > prio) 3241 break; 3242 } 3243 cur_id_prio = prio; 3244 cur_id_size = id_size = d[3]; 3245 cur_id_str = d + 4; 3246 if (cur_id_size >= id_len) 3247 cur_id_size = id_len - 1; 3248 memcpy(id, cur_id_str, cur_id_size); 3249 break; 3250 default: 3251 break; 3252 } 3253 } 3254 rcu_read_unlock(); 3255 3256 return id_size; 3257 } 3258 EXPORT_SYMBOL(scsi_vpd_lun_id); 3259 3260 /* 3261 * scsi_vpd_tpg_id - return a target port group identifier 3262 * @sdev: SCSI device 3263 * 3264 * Returns the Target Port Group identifier from the information 3265 * froom VPD page 0x83 of the device. 3266 * 3267 * Returns the identifier or error on failure. 3268 */ 3269 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3270 { 3271 const unsigned char *d; 3272 const struct scsi_vpd *vpd_pg83; 3273 int group_id = -EAGAIN, rel_port = -1; 3274 3275 rcu_read_lock(); 3276 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3277 if (!vpd_pg83) { 3278 rcu_read_unlock(); 3279 return -ENXIO; 3280 } 3281 3282 d = vpd_pg83->data + 4; 3283 while (d < vpd_pg83->data + vpd_pg83->len) { 3284 switch (d[1] & 0xf) { 3285 case 0x4: 3286 /* Relative target port */ 3287 rel_port = get_unaligned_be16(&d[6]); 3288 break; 3289 case 0x5: 3290 /* Target port group */ 3291 group_id = get_unaligned_be16(&d[6]); 3292 break; 3293 default: 3294 break; 3295 } 3296 d += d[3] + 4; 3297 } 3298 rcu_read_unlock(); 3299 3300 if (group_id >= 0 && rel_id && rel_port != -1) 3301 *rel_id = rel_port; 3302 3303 return group_id; 3304 } 3305 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3306 3307 /** 3308 * scsi_build_sense - build sense data for a command 3309 * @scmd: scsi command for which the sense should be formatted 3310 * @desc: Sense format (non-zero == descriptor format, 3311 * 0 == fixed format) 3312 * @key: Sense key 3313 * @asc: Additional sense code 3314 * @ascq: Additional sense code qualifier 3315 * 3316 **/ 3317 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3318 { 3319 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3320 scmd->result = SAM_STAT_CHECK_CONDITION; 3321 } 3322 EXPORT_SYMBOL_GPL(scsi_build_sense); 3323