xref: /linux/drivers/scsi/scsi_lib.c (revision 464a00c9e0ad45e3f42ff6ea705491a356df818e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	if (cmd->request->rq_flags & RQF_DONTPREP) {
123 		cmd->request->rq_flags &= ~RQF_DONTPREP;
124 		scsi_mq_uninit_cmd(cmd);
125 	} else {
126 		WARN_ON_ONCE(true);
127 	}
128 	blk_mq_requeue_request(cmd->request, true);
129 }
130 
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
144 {
145 	struct scsi_device *device = cmd->device;
146 
147 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 		"Inserting command %p into mlqueue\n", cmd));
149 
150 	scsi_set_blocked(cmd, reason);
151 
152 	/*
153 	 * Decrement the counters, since these commands are no longer
154 	 * active on the host/device.
155 	 */
156 	if (unbusy)
157 		scsi_device_unbusy(device, cmd);
158 
159 	/*
160 	 * Requeue this command.  It will go before all other commands
161 	 * that are already in the queue. Schedule requeue work under
162 	 * lock such that the kblockd_schedule_work() call happens
163 	 * before blk_cleanup_queue() finishes.
164 	 */
165 	cmd->result = 0;
166 
167 	blk_mq_requeue_request(cmd->request, true);
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 
188 /**
189  * __scsi_execute - insert request and wait for the result
190  * @sdev:	scsi device
191  * @cmd:	scsi command
192  * @data_direction: data direction
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @sense:	optional sense buffer
196  * @sshdr:	optional decoded sense header
197  * @timeout:	request timeout in seconds
198  * @retries:	number of times to retry request
199  * @flags:	flags for ->cmd_flags
200  * @rq_flags:	flags for ->rq_flags
201  * @resid:	optional residual length
202  *
203  * Returns the scsi_cmnd result field if a command was executed, or a negative
204  * Linux error code if we didn't get that far.
205  */
206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
209 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	struct scsi_request *rq;
214 	int ret;
215 
216 	req = blk_get_request(sdev->request_queue,
217 			data_direction == DMA_TO_DEVICE ?
218 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
219 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
220 	if (IS_ERR(req))
221 		return PTR_ERR(req);
222 
223 	rq = scsi_req(req);
224 
225 	if (bufflen) {
226 		ret = blk_rq_map_kern(sdev->request_queue, req,
227 				      buffer, bufflen, GFP_NOIO);
228 		if (ret)
229 			goto out;
230 	}
231 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
232 	memcpy(rq->cmd, cmd, rq->cmd_len);
233 	rq->retries = retries;
234 	req->timeout = timeout;
235 	req->cmd_flags |= flags;
236 	req->rq_flags |= rq_flags | RQF_QUIET;
237 
238 	/*
239 	 * head injection *required* here otherwise quiesce won't work
240 	 */
241 	blk_execute_rq(NULL, req, 1);
242 
243 	/*
244 	 * Some devices (USB mass-storage in particular) may transfer
245 	 * garbage data together with a residue indicating that the data
246 	 * is invalid.  Prevent the garbage from being misinterpreted
247 	 * and prevent security leaks by zeroing out the excess data.
248 	 */
249 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
250 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
251 
252 	if (resid)
253 		*resid = rq->resid_len;
254 	if (sense && rq->sense_len)
255 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
256 	if (sshdr)
257 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
258 	ret = rq->result;
259  out:
260 	blk_put_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(__scsi_execute);
265 
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 	unsigned long flags;
278 
279 	rcu_read_lock();
280 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 	if (unlikely(scsi_host_in_recovery(shost))) {
282 		spin_lock_irqsave(shost->host_lock, flags);
283 		if (shost->host_failed || shost->host_eh_scheduled)
284 			scsi_eh_wakeup(shost);
285 		spin_unlock_irqrestore(shost->host_lock, flags);
286 	}
287 	rcu_read_unlock();
288 }
289 
290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292 	struct Scsi_Host *shost = sdev->host;
293 	struct scsi_target *starget = scsi_target(sdev);
294 
295 	scsi_dec_host_busy(shost, cmd);
296 
297 	if (starget->can_queue > 0)
298 		atomic_dec(&starget->target_busy);
299 
300 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
301 	cmd->budget_token = -1;
302 }
303 
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 	blk_mq_run_hw_queues(q, false);
307 }
308 
309 /*
310  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
311  * and call blk_run_queue for all the scsi_devices on the target -
312  * including current_sdev first.
313  *
314  * Called with *no* scsi locks held.
315  */
316 static void scsi_single_lun_run(struct scsi_device *current_sdev)
317 {
318 	struct Scsi_Host *shost = current_sdev->host;
319 	struct scsi_device *sdev, *tmp;
320 	struct scsi_target *starget = scsi_target(current_sdev);
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	starget->starget_sdev_user = NULL;
325 	spin_unlock_irqrestore(shost->host_lock, flags);
326 
327 	/*
328 	 * Call blk_run_queue for all LUNs on the target, starting with
329 	 * current_sdev. We race with others (to set starget_sdev_user),
330 	 * but in most cases, we will be first. Ideally, each LU on the
331 	 * target would get some limited time or requests on the target.
332 	 */
333 	scsi_kick_queue(current_sdev->request_queue);
334 
335 	spin_lock_irqsave(shost->host_lock, flags);
336 	if (starget->starget_sdev_user)
337 		goto out;
338 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
339 			same_target_siblings) {
340 		if (sdev == current_sdev)
341 			continue;
342 		if (scsi_device_get(sdev))
343 			continue;
344 
345 		spin_unlock_irqrestore(shost->host_lock, flags);
346 		scsi_kick_queue(sdev->request_queue);
347 		spin_lock_irqsave(shost->host_lock, flags);
348 
349 		scsi_device_put(sdev);
350 	}
351  out:
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 }
354 
355 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
356 {
357 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
358 		return true;
359 	if (atomic_read(&sdev->device_blocked) > 0)
360 		return true;
361 	return false;
362 }
363 
364 static inline bool scsi_target_is_busy(struct scsi_target *starget)
365 {
366 	if (starget->can_queue > 0) {
367 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
368 			return true;
369 		if (atomic_read(&starget->target_blocked) > 0)
370 			return true;
371 	}
372 	return false;
373 }
374 
375 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
376 {
377 	if (atomic_read(&shost->host_blocked) > 0)
378 		return true;
379 	if (shost->host_self_blocked)
380 		return true;
381 	return false;
382 }
383 
384 static void scsi_starved_list_run(struct Scsi_Host *shost)
385 {
386 	LIST_HEAD(starved_list);
387 	struct scsi_device *sdev;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(shost->host_lock, flags);
391 	list_splice_init(&shost->starved_list, &starved_list);
392 
393 	while (!list_empty(&starved_list)) {
394 		struct request_queue *slq;
395 
396 		/*
397 		 * As long as shost is accepting commands and we have
398 		 * starved queues, call blk_run_queue. scsi_request_fn
399 		 * drops the queue_lock and can add us back to the
400 		 * starved_list.
401 		 *
402 		 * host_lock protects the starved_list and starved_entry.
403 		 * scsi_request_fn must get the host_lock before checking
404 		 * or modifying starved_list or starved_entry.
405 		 */
406 		if (scsi_host_is_busy(shost))
407 			break;
408 
409 		sdev = list_entry(starved_list.next,
410 				  struct scsi_device, starved_entry);
411 		list_del_init(&sdev->starved_entry);
412 		if (scsi_target_is_busy(scsi_target(sdev))) {
413 			list_move_tail(&sdev->starved_entry,
414 				       &shost->starved_list);
415 			continue;
416 		}
417 
418 		/*
419 		 * Once we drop the host lock, a racing scsi_remove_device()
420 		 * call may remove the sdev from the starved list and destroy
421 		 * it and the queue.  Mitigate by taking a reference to the
422 		 * queue and never touching the sdev again after we drop the
423 		 * host lock.  Note: if __scsi_remove_device() invokes
424 		 * blk_cleanup_queue() before the queue is run from this
425 		 * function then blk_run_queue() will return immediately since
426 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
427 		 */
428 		slq = sdev->request_queue;
429 		if (!blk_get_queue(slq))
430 			continue;
431 		spin_unlock_irqrestore(shost->host_lock, flags);
432 
433 		scsi_kick_queue(slq);
434 		blk_put_queue(slq);
435 
436 		spin_lock_irqsave(shost->host_lock, flags);
437 	}
438 	/* put any unprocessed entries back */
439 	list_splice(&starved_list, &shost->starved_list);
440 	spin_unlock_irqrestore(shost->host_lock, flags);
441 }
442 
443 /**
444  * scsi_run_queue - Select a proper request queue to serve next.
445  * @q:  last request's queue
446  *
447  * The previous command was completely finished, start a new one if possible.
448  */
449 static void scsi_run_queue(struct request_queue *q)
450 {
451 	struct scsi_device *sdev = q->queuedata;
452 
453 	if (scsi_target(sdev)->single_lun)
454 		scsi_single_lun_run(sdev);
455 	if (!list_empty(&sdev->host->starved_list))
456 		scsi_starved_list_run(sdev->host);
457 
458 	blk_mq_run_hw_queues(q, false);
459 }
460 
461 void scsi_requeue_run_queue(struct work_struct *work)
462 {
463 	struct scsi_device *sdev;
464 	struct request_queue *q;
465 
466 	sdev = container_of(work, struct scsi_device, requeue_work);
467 	q = sdev->request_queue;
468 	scsi_run_queue(q);
469 }
470 
471 void scsi_run_host_queues(struct Scsi_Host *shost)
472 {
473 	struct scsi_device *sdev;
474 
475 	shost_for_each_device(sdev, shost)
476 		scsi_run_queue(sdev->request_queue);
477 }
478 
479 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
480 {
481 	if (!blk_rq_is_passthrough(cmd->request)) {
482 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
483 
484 		if (drv->uninit_command)
485 			drv->uninit_command(cmd);
486 	}
487 }
488 
489 void scsi_free_sgtables(struct scsi_cmnd *cmd)
490 {
491 	if (cmd->sdb.table.nents)
492 		sg_free_table_chained(&cmd->sdb.table,
493 				SCSI_INLINE_SG_CNT);
494 	if (scsi_prot_sg_count(cmd))
495 		sg_free_table_chained(&cmd->prot_sdb->table,
496 				SCSI_INLINE_PROT_SG_CNT);
497 }
498 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
499 
500 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
501 {
502 	scsi_free_sgtables(cmd);
503 	scsi_uninit_cmd(cmd);
504 }
505 
506 static void scsi_run_queue_async(struct scsi_device *sdev)
507 {
508 	if (scsi_target(sdev)->single_lun ||
509 	    !list_empty(&sdev->host->starved_list)) {
510 		kblockd_schedule_work(&sdev->requeue_work);
511 	} else {
512 		/*
513 		 * smp_mb() present in sbitmap_queue_clear() or implied in
514 		 * .end_io is for ordering writing .device_busy in
515 		 * scsi_device_unbusy() and reading sdev->restarts.
516 		 */
517 		int old = atomic_read(&sdev->restarts);
518 
519 		/*
520 		 * ->restarts has to be kept as non-zero if new budget
521 		 *  contention occurs.
522 		 *
523 		 *  No need to run queue when either another re-run
524 		 *  queue wins in updating ->restarts or a new budget
525 		 *  contention occurs.
526 		 */
527 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
528 			blk_mq_run_hw_queues(sdev->request_queue, true);
529 	}
530 }
531 
532 /* Returns false when no more bytes to process, true if there are more */
533 static bool scsi_end_request(struct request *req, blk_status_t error,
534 		unsigned int bytes)
535 {
536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
537 	struct scsi_device *sdev = cmd->device;
538 	struct request_queue *q = sdev->request_queue;
539 
540 	if (blk_update_request(req, error, bytes))
541 		return true;
542 
543 	if (blk_queue_add_random(q))
544 		add_disk_randomness(req->rq_disk);
545 
546 	if (!blk_rq_is_scsi(req)) {
547 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 		cmd->flags &= ~SCMD_INITIALIZED;
549 	}
550 
551 	/*
552 	 * Calling rcu_barrier() is not necessary here because the
553 	 * SCSI error handler guarantees that the function called by
554 	 * call_rcu() has been called before scsi_end_request() is
555 	 * called.
556 	 */
557 	destroy_rcu_head(&cmd->rcu);
558 
559 	/*
560 	 * In the MQ case the command gets freed by __blk_mq_end_request,
561 	 * so we have to do all cleanup that depends on it earlier.
562 	 *
563 	 * We also can't kick the queues from irq context, so we
564 	 * will have to defer it to a workqueue.
565 	 */
566 	scsi_mq_uninit_cmd(cmd);
567 
568 	/*
569 	 * queue is still alive, so grab the ref for preventing it
570 	 * from being cleaned up during running queue.
571 	 */
572 	percpu_ref_get(&q->q_usage_counter);
573 
574 	__blk_mq_end_request(req, error);
575 
576 	scsi_run_queue_async(sdev);
577 
578 	percpu_ref_put(&q->q_usage_counter);
579 	return false;
580 }
581 
582 /**
583  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584  * @cmd:	SCSI command
585  * @result:	scsi error code
586  *
587  * Translate a SCSI result code into a blk_status_t value. May reset the host
588  * byte of @cmd->result.
589  */
590 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
591 {
592 	switch (host_byte(result)) {
593 	case DID_OK:
594 		/*
595 		 * Also check the other bytes than the status byte in result
596 		 */
597 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
598 			return BLK_STS_OK;
599 		return BLK_STS_IOERR;
600 	case DID_TRANSPORT_FAILFAST:
601 	case DID_TRANSPORT_MARGINAL:
602 		return BLK_STS_TRANSPORT;
603 	case DID_TARGET_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_TARGET;
606 	case DID_NEXUS_FAILURE:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_NEXUS;
609 	case DID_ALLOC_FAILURE:
610 		set_host_byte(cmd, DID_OK);
611 		return BLK_STS_NOSPC;
612 	case DID_MEDIUM_ERROR:
613 		set_host_byte(cmd, DID_OK);
614 		return BLK_STS_MEDIUM;
615 	default:
616 		return BLK_STS_IOERR;
617 	}
618 }
619 
620 /* Helper for scsi_io_completion() when "reprep" action required. */
621 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
622 				      struct request_queue *q)
623 {
624 	/* A new command will be prepared and issued. */
625 	scsi_mq_requeue_cmd(cmd);
626 }
627 
628 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
629 {
630 	struct request *req = cmd->request;
631 	unsigned long wait_for;
632 
633 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
634 		return false;
635 
636 	wait_for = (cmd->allowed + 1) * req->timeout;
637 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
638 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
639 			    wait_for/HZ);
640 		return true;
641 	}
642 	return false;
643 }
644 
645 /* Helper for scsi_io_completion() when special action required. */
646 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
647 {
648 	struct request_queue *q = cmd->device->request_queue;
649 	struct request *req = cmd->request;
650 	int level = 0;
651 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
652 	      ACTION_DELAYED_RETRY} action;
653 	struct scsi_sense_hdr sshdr;
654 	bool sense_valid;
655 	bool sense_current = true;      /* false implies "deferred sense" */
656 	blk_status_t blk_stat;
657 
658 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
659 	if (sense_valid)
660 		sense_current = !scsi_sense_is_deferred(&sshdr);
661 
662 	blk_stat = scsi_result_to_blk_status(cmd, result);
663 
664 	if (host_byte(result) == DID_RESET) {
665 		/* Third party bus reset or reset for error recovery
666 		 * reasons.  Just retry the command and see what
667 		 * happens.
668 		 */
669 		action = ACTION_RETRY;
670 	} else if (sense_valid && sense_current) {
671 		switch (sshdr.sense_key) {
672 		case UNIT_ATTENTION:
673 			if (cmd->device->removable) {
674 				/* Detected disc change.  Set a bit
675 				 * and quietly refuse further access.
676 				 */
677 				cmd->device->changed = 1;
678 				action = ACTION_FAIL;
679 			} else {
680 				/* Must have been a power glitch, or a
681 				 * bus reset.  Could not have been a
682 				 * media change, so we just retry the
683 				 * command and see what happens.
684 				 */
685 				action = ACTION_RETRY;
686 			}
687 			break;
688 		case ILLEGAL_REQUEST:
689 			/* If we had an ILLEGAL REQUEST returned, then
690 			 * we may have performed an unsupported
691 			 * command.  The only thing this should be
692 			 * would be a ten byte read where only a six
693 			 * byte read was supported.  Also, on a system
694 			 * where READ CAPACITY failed, we may have
695 			 * read past the end of the disk.
696 			 */
697 			if ((cmd->device->use_10_for_rw &&
698 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
699 			    (cmd->cmnd[0] == READ_10 ||
700 			     cmd->cmnd[0] == WRITE_10)) {
701 				/* This will issue a new 6-byte command. */
702 				cmd->device->use_10_for_rw = 0;
703 				action = ACTION_REPREP;
704 			} else if (sshdr.asc == 0x10) /* DIX */ {
705 				action = ACTION_FAIL;
706 				blk_stat = BLK_STS_PROTECTION;
707 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
708 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
709 				action = ACTION_FAIL;
710 				blk_stat = BLK_STS_TARGET;
711 			} else
712 				action = ACTION_FAIL;
713 			break;
714 		case ABORTED_COMMAND:
715 			action = ACTION_FAIL;
716 			if (sshdr.asc == 0x10) /* DIF */
717 				blk_stat = BLK_STS_PROTECTION;
718 			break;
719 		case NOT_READY:
720 			/* If the device is in the process of becoming
721 			 * ready, or has a temporary blockage, retry.
722 			 */
723 			if (sshdr.asc == 0x04) {
724 				switch (sshdr.ascq) {
725 				case 0x01: /* becoming ready */
726 				case 0x04: /* format in progress */
727 				case 0x05: /* rebuild in progress */
728 				case 0x06: /* recalculation in progress */
729 				case 0x07: /* operation in progress */
730 				case 0x08: /* Long write in progress */
731 				case 0x09: /* self test in progress */
732 				case 0x14: /* space allocation in progress */
733 				case 0x1a: /* start stop unit in progress */
734 				case 0x1b: /* sanitize in progress */
735 				case 0x1d: /* configuration in progress */
736 				case 0x24: /* depopulation in progress */
737 					action = ACTION_DELAYED_RETRY;
738 					break;
739 				case 0x0a: /* ALUA state transition */
740 					blk_stat = BLK_STS_AGAIN;
741 					fallthrough;
742 				default:
743 					action = ACTION_FAIL;
744 					break;
745 				}
746 			} else
747 				action = ACTION_FAIL;
748 			break;
749 		case VOLUME_OVERFLOW:
750 			/* See SSC3rXX or current. */
751 			action = ACTION_FAIL;
752 			break;
753 		case DATA_PROTECT:
754 			action = ACTION_FAIL;
755 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
756 			    (sshdr.asc == 0x55 &&
757 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
758 				/* Insufficient zone resources */
759 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
760 			}
761 			break;
762 		default:
763 			action = ACTION_FAIL;
764 			break;
765 		}
766 	} else
767 		action = ACTION_FAIL;
768 
769 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
770 		action = ACTION_FAIL;
771 
772 	switch (action) {
773 	case ACTION_FAIL:
774 		/* Give up and fail the remainder of the request */
775 		if (!(req->rq_flags & RQF_QUIET)) {
776 			static DEFINE_RATELIMIT_STATE(_rs,
777 					DEFAULT_RATELIMIT_INTERVAL,
778 					DEFAULT_RATELIMIT_BURST);
779 
780 			if (unlikely(scsi_logging_level))
781 				level =
782 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 						    SCSI_LOG_MLCOMPLETE_BITS);
784 
785 			/*
786 			 * if logging is enabled the failure will be printed
787 			 * in scsi_log_completion(), so avoid duplicate messages
788 			 */
789 			if (!level && __ratelimit(&_rs)) {
790 				scsi_print_result(cmd, NULL, FAILED);
791 				if (sense_valid)
792 					scsi_print_sense(cmd);
793 				scsi_print_command(cmd);
794 			}
795 		}
796 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 			return;
798 		fallthrough;
799 	case ACTION_REPREP:
800 		scsi_io_completion_reprep(cmd, q);
801 		break;
802 	case ACTION_RETRY:
803 		/* Retry the same command immediately */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 		break;
806 	case ACTION_DELAYED_RETRY:
807 		/* Retry the same command after a delay */
808 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 		break;
810 	}
811 }
812 
813 /*
814  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815  * new result that may suppress further error checking. Also modifies
816  * *blk_statp in some cases.
817  */
818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 					blk_status_t *blk_statp)
820 {
821 	bool sense_valid;
822 	bool sense_current = true;	/* false implies "deferred sense" */
823 	struct request *req = cmd->request;
824 	struct scsi_sense_hdr sshdr;
825 
826 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 	if (sense_valid)
828 		sense_current = !scsi_sense_is_deferred(&sshdr);
829 
830 	if (blk_rq_is_passthrough(req)) {
831 		if (sense_valid) {
832 			/*
833 			 * SG_IO wants current and deferred errors
834 			 */
835 			scsi_req(req)->sense_len =
836 				min(8 + cmd->sense_buffer[7],
837 				    SCSI_SENSE_BUFFERSIZE);
838 		}
839 		if (sense_current)
840 			*blk_statp = scsi_result_to_blk_status(cmd, result);
841 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets *blk_statp explicitly for the problem case.
846 		 */
847 		*blk_statp = scsi_result_to_blk_status(cmd, result);
848 	}
849 	/*
850 	 * Recovered errors need reporting, but they're always treated as
851 	 * success, so fiddle the result code here.  For passthrough requests
852 	 * we already took a copy of the original into sreq->result which
853 	 * is what gets returned to the user
854 	 */
855 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 		bool do_print = true;
857 		/*
858 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 		 * skip print since caller wants ATA registers. Only occurs
860 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 		 */
862 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 			do_print = false;
864 		else if (req->rq_flags & RQF_QUIET)
865 			do_print = false;
866 		if (do_print)
867 			scsi_print_sense(cmd);
868 		result = 0;
869 		/* for passthrough, *blk_statp may be set */
870 		*blk_statp = BLK_STS_OK;
871 	}
872 	/*
873 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 	 * intermediate statuses (both obsolete in SAM-4) as good.
878 	 */
879 	if (status_byte(result) && scsi_status_is_good(result)) {
880 		result = 0;
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	return result;
884 }
885 
886 /**
887  * scsi_io_completion - Completion processing for SCSI commands.
888  * @cmd:	command that is finished.
889  * @good_bytes:	number of processed bytes.
890  *
891  * We will finish off the specified number of sectors. If we are done, the
892  * command block will be released and the queue function will be goosed. If we
893  * are not done then we have to figure out what to do next:
894  *
895  *   a) We can call scsi_io_completion_reprep().  The request will be
896  *	unprepared and put back on the queue.  Then a new command will
897  *	be created for it.  This should be used if we made forward
898  *	progress, or if we want to switch from READ(10) to READ(6) for
899  *	example.
900  *
901  *   b) We can call scsi_io_completion_action().  The request will be
902  *	put back on the queue and retried using the same command as
903  *	before, possibly after a delay.
904  *
905  *   c) We can call scsi_end_request() with blk_stat other than
906  *	BLK_STS_OK, to fail the remainder of the request.
907  */
908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 	int result = cmd->result;
911 	struct request_queue *q = cmd->device->request_queue;
912 	struct request *req = cmd->request;
913 	blk_status_t blk_stat = BLK_STS_OK;
914 
915 	if (unlikely(result))	/* a nz result may or may not be an error */
916 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917 
918 	if (unlikely(blk_rq_is_passthrough(req))) {
919 		/*
920 		 * scsi_result_to_blk_status may have reset the host_byte
921 		 */
922 		scsi_req(req)->result = cmd->result;
923 	}
924 
925 	/*
926 	 * Next deal with any sectors which we were able to correctly
927 	 * handle.
928 	 */
929 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 		"%u sectors total, %d bytes done.\n",
931 		blk_rq_sectors(req), good_bytes));
932 
933 	/*
934 	 * Failed, zero length commands always need to drop down
935 	 * to retry code. Fast path should return in this block.
936 	 */
937 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 			return; /* no bytes remaining */
940 	}
941 
942 	/* Kill remainder if no retries. */
943 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 			WARN_ONCE(true,
946 			    "Bytes remaining after failed, no-retry command");
947 		return;
948 	}
949 
950 	/*
951 	 * If there had been no error, but we have leftover bytes in the
952 	 * requeues just queue the command up again.
953 	 */
954 	if (likely(result == 0))
955 		scsi_io_completion_reprep(cmd, q);
956 	else
957 		scsi_io_completion_action(cmd, result);
958 }
959 
960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 		struct request *rq)
962 {
963 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 	       !op_is_write(req_op(rq)) &&
965 	       sdev->host->hostt->dma_need_drain(rq);
966 }
967 
968 /**
969  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
970  * @cmd: SCSI command data structure to initialize.
971  *
972  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
973  * for @cmd.
974  *
975  * Returns:
976  * * BLK_STS_OK       - on success
977  * * BLK_STS_RESOURCE - if the failure is retryable
978  * * BLK_STS_IOERR    - if the failure is fatal
979  */
980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
981 {
982 	struct scsi_device *sdev = cmd->device;
983 	struct request *rq = cmd->request;
984 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
985 	struct scatterlist *last_sg = NULL;
986 	blk_status_t ret;
987 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
988 	int count;
989 
990 	if (WARN_ON_ONCE(!nr_segs))
991 		return BLK_STS_IOERR;
992 
993 	/*
994 	 * Make sure there is space for the drain.  The driver must adjust
995 	 * max_hw_segments to be prepared for this.
996 	 */
997 	if (need_drain)
998 		nr_segs++;
999 
1000 	/*
1001 	 * If sg table allocation fails, requeue request later.
1002 	 */
1003 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1004 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1005 		return BLK_STS_RESOURCE;
1006 
1007 	/*
1008 	 * Next, walk the list, and fill in the addresses and sizes of
1009 	 * each segment.
1010 	 */
1011 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1012 
1013 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1014 		unsigned int pad_len =
1015 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1016 
1017 		last_sg->length += pad_len;
1018 		cmd->extra_len += pad_len;
1019 	}
1020 
1021 	if (need_drain) {
1022 		sg_unmark_end(last_sg);
1023 		last_sg = sg_next(last_sg);
1024 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1025 		sg_mark_end(last_sg);
1026 
1027 		cmd->extra_len += sdev->dma_drain_len;
1028 		count++;
1029 	}
1030 
1031 	BUG_ON(count > cmd->sdb.table.nents);
1032 	cmd->sdb.table.nents = count;
1033 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1034 
1035 	if (blk_integrity_rq(rq)) {
1036 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 		int ivecs;
1038 
1039 		if (WARN_ON_ONCE(!prot_sdb)) {
1040 			/*
1041 			 * This can happen if someone (e.g. multipath)
1042 			 * queues a command to a device on an adapter
1043 			 * that does not support DIX.
1044 			 */
1045 			ret = BLK_STS_IOERR;
1046 			goto out_free_sgtables;
1047 		}
1048 
1049 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1050 
1051 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1052 				prot_sdb->table.sgl,
1053 				SCSI_INLINE_PROT_SG_CNT)) {
1054 			ret = BLK_STS_RESOURCE;
1055 			goto out_free_sgtables;
1056 		}
1057 
1058 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1059 						prot_sdb->table.sgl);
1060 		BUG_ON(count > ivecs);
1061 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1062 
1063 		cmd->prot_sdb = prot_sdb;
1064 		cmd->prot_sdb->table.nents = count;
1065 	}
1066 
1067 	return BLK_STS_OK;
1068 out_free_sgtables:
1069 	scsi_free_sgtables(cmd);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(scsi_alloc_sgtables);
1073 
1074 /**
1075  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1076  * @rq: Request associated with the SCSI command to be initialized.
1077  *
1078  * This function initializes the members of struct scsi_cmnd that must be
1079  * initialized before request processing starts and that won't be
1080  * reinitialized if a SCSI command is requeued.
1081  *
1082  * Called from inside blk_get_request() for pass-through requests and from
1083  * inside scsi_init_command() for filesystem requests.
1084  */
1085 static void scsi_initialize_rq(struct request *rq)
1086 {
1087 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1088 
1089 	scsi_req_init(&cmd->req);
1090 	init_rcu_head(&cmd->rcu);
1091 	cmd->jiffies_at_alloc = jiffies;
1092 	cmd->retries = 0;
1093 }
1094 
1095 /*
1096  * Only called when the request isn't completed by SCSI, and not freed by
1097  * SCSI
1098  */
1099 static void scsi_cleanup_rq(struct request *rq)
1100 {
1101 	if (rq->rq_flags & RQF_DONTPREP) {
1102 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1103 		rq->rq_flags &= ~RQF_DONTPREP;
1104 	}
1105 }
1106 
1107 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1108 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1109 {
1110 	void *buf = cmd->sense_buffer;
1111 	void *prot = cmd->prot_sdb;
1112 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1113 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1114 	unsigned long jiffies_at_alloc;
1115 	int retries, to_clear;
1116 	bool in_flight;
1117 	int budget_token = cmd->budget_token;
1118 
1119 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1120 		flags |= SCMD_INITIALIZED;
1121 		scsi_initialize_rq(rq);
1122 	}
1123 
1124 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1125 	retries = cmd->retries;
1126 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1127 	/*
1128 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1129 	 * the driver-private command data if the LLD does not supply a
1130 	 * function to initialize that data.
1131 	 */
1132 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1133 	if (!dev->host->hostt->init_cmd_priv)
1134 		to_clear += dev->host->hostt->cmd_size;
1135 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1136 
1137 	cmd->device = dev;
1138 	cmd->sense_buffer = buf;
1139 	cmd->prot_sdb = prot;
1140 	cmd->flags = flags;
1141 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1142 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1143 	cmd->retries = retries;
1144 	if (in_flight)
1145 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1146 	cmd->budget_token = budget_token;
1147 
1148 }
1149 
1150 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1151 		struct request *req)
1152 {
1153 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1154 
1155 	/*
1156 	 * Passthrough requests may transfer data, in which case they must
1157 	 * a bio attached to them.  Or they might contain a SCSI command
1158 	 * that does not transfer data, in which case they may optionally
1159 	 * submit a request without an attached bio.
1160 	 */
1161 	if (req->bio) {
1162 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1163 		if (unlikely(ret != BLK_STS_OK))
1164 			return ret;
1165 	} else {
1166 		BUG_ON(blk_rq_bytes(req));
1167 
1168 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1169 	}
1170 
1171 	cmd->cmd_len = scsi_req(req)->cmd_len;
1172 	if (cmd->cmd_len == 0)
1173 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1174 	cmd->cmnd = scsi_req(req)->cmd;
1175 	cmd->transfersize = blk_rq_bytes(req);
1176 	cmd->allowed = scsi_req(req)->retries;
1177 	return BLK_STS_OK;
1178 }
1179 
1180 static blk_status_t
1181 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1182 {
1183 	switch (sdev->sdev_state) {
1184 	case SDEV_CREATED:
1185 		return BLK_STS_OK;
1186 	case SDEV_OFFLINE:
1187 	case SDEV_TRANSPORT_OFFLINE:
1188 		/*
1189 		 * If the device is offline we refuse to process any
1190 		 * commands.  The device must be brought online
1191 		 * before trying any recovery commands.
1192 		 */
1193 		if (!sdev->offline_already) {
1194 			sdev->offline_already = true;
1195 			sdev_printk(KERN_ERR, sdev,
1196 				    "rejecting I/O to offline device\n");
1197 		}
1198 		return BLK_STS_IOERR;
1199 	case SDEV_DEL:
1200 		/*
1201 		 * If the device is fully deleted, we refuse to
1202 		 * process any commands as well.
1203 		 */
1204 		sdev_printk(KERN_ERR, sdev,
1205 			    "rejecting I/O to dead device\n");
1206 		return BLK_STS_IOERR;
1207 	case SDEV_BLOCK:
1208 	case SDEV_CREATED_BLOCK:
1209 		return BLK_STS_RESOURCE;
1210 	case SDEV_QUIESCE:
1211 		/*
1212 		 * If the device is blocked we only accept power management
1213 		 * commands.
1214 		 */
1215 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1216 			return BLK_STS_RESOURCE;
1217 		return BLK_STS_OK;
1218 	default:
1219 		/*
1220 		 * For any other not fully online state we only allow
1221 		 * power management commands.
1222 		 */
1223 		if (req && !(req->rq_flags & RQF_PM))
1224 			return BLK_STS_IOERR;
1225 		return BLK_STS_OK;
1226 	}
1227 }
1228 
1229 /*
1230  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1231  * and return the token else return -1.
1232  */
1233 static inline int scsi_dev_queue_ready(struct request_queue *q,
1234 				  struct scsi_device *sdev)
1235 {
1236 	int token;
1237 
1238 	token = sbitmap_get(&sdev->budget_map);
1239 	if (atomic_read(&sdev->device_blocked)) {
1240 		if (token < 0)
1241 			goto out;
1242 
1243 		if (scsi_device_busy(sdev) > 1)
1244 			goto out_dec;
1245 
1246 		/*
1247 		 * unblock after device_blocked iterates to zero
1248 		 */
1249 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1250 			goto out_dec;
1251 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1252 				   "unblocking device at zero depth\n"));
1253 	}
1254 
1255 	return token;
1256 out_dec:
1257 	if (token >= 0)
1258 		sbitmap_put(&sdev->budget_map, token);
1259 out:
1260 	return -1;
1261 }
1262 
1263 /*
1264  * scsi_target_queue_ready: checks if there we can send commands to target
1265  * @sdev: scsi device on starget to check.
1266  */
1267 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1268 					   struct scsi_device *sdev)
1269 {
1270 	struct scsi_target *starget = scsi_target(sdev);
1271 	unsigned int busy;
1272 
1273 	if (starget->single_lun) {
1274 		spin_lock_irq(shost->host_lock);
1275 		if (starget->starget_sdev_user &&
1276 		    starget->starget_sdev_user != sdev) {
1277 			spin_unlock_irq(shost->host_lock);
1278 			return 0;
1279 		}
1280 		starget->starget_sdev_user = sdev;
1281 		spin_unlock_irq(shost->host_lock);
1282 	}
1283 
1284 	if (starget->can_queue <= 0)
1285 		return 1;
1286 
1287 	busy = atomic_inc_return(&starget->target_busy) - 1;
1288 	if (atomic_read(&starget->target_blocked) > 0) {
1289 		if (busy)
1290 			goto starved;
1291 
1292 		/*
1293 		 * unblock after target_blocked iterates to zero
1294 		 */
1295 		if (atomic_dec_return(&starget->target_blocked) > 0)
1296 			goto out_dec;
1297 
1298 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1299 				 "unblocking target at zero depth\n"));
1300 	}
1301 
1302 	if (busy >= starget->can_queue)
1303 		goto starved;
1304 
1305 	return 1;
1306 
1307 starved:
1308 	spin_lock_irq(shost->host_lock);
1309 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1310 	spin_unlock_irq(shost->host_lock);
1311 out_dec:
1312 	if (starget->can_queue > 0)
1313 		atomic_dec(&starget->target_busy);
1314 	return 0;
1315 }
1316 
1317 /*
1318  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1319  * return 0. We must end up running the queue again whenever 0 is
1320  * returned, else IO can hang.
1321  */
1322 static inline int scsi_host_queue_ready(struct request_queue *q,
1323 				   struct Scsi_Host *shost,
1324 				   struct scsi_device *sdev,
1325 				   struct scsi_cmnd *cmd)
1326 {
1327 	if (scsi_host_in_recovery(shost))
1328 		return 0;
1329 
1330 	if (atomic_read(&shost->host_blocked) > 0) {
1331 		if (scsi_host_busy(shost) > 0)
1332 			goto starved;
1333 
1334 		/*
1335 		 * unblock after host_blocked iterates to zero
1336 		 */
1337 		if (atomic_dec_return(&shost->host_blocked) > 0)
1338 			goto out_dec;
1339 
1340 		SCSI_LOG_MLQUEUE(3,
1341 			shost_printk(KERN_INFO, shost,
1342 				     "unblocking host at zero depth\n"));
1343 	}
1344 
1345 	if (shost->host_self_blocked)
1346 		goto starved;
1347 
1348 	/* We're OK to process the command, so we can't be starved */
1349 	if (!list_empty(&sdev->starved_entry)) {
1350 		spin_lock_irq(shost->host_lock);
1351 		if (!list_empty(&sdev->starved_entry))
1352 			list_del_init(&sdev->starved_entry);
1353 		spin_unlock_irq(shost->host_lock);
1354 	}
1355 
1356 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1357 
1358 	return 1;
1359 
1360 starved:
1361 	spin_lock_irq(shost->host_lock);
1362 	if (list_empty(&sdev->starved_entry))
1363 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1364 	spin_unlock_irq(shost->host_lock);
1365 out_dec:
1366 	scsi_dec_host_busy(shost, cmd);
1367 	return 0;
1368 }
1369 
1370 /*
1371  * Busy state exporting function for request stacking drivers.
1372  *
1373  * For efficiency, no lock is taken to check the busy state of
1374  * shost/starget/sdev, since the returned value is not guaranteed and
1375  * may be changed after request stacking drivers call the function,
1376  * regardless of taking lock or not.
1377  *
1378  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1379  * needs to return 'not busy'. Otherwise, request stacking drivers
1380  * may hold requests forever.
1381  */
1382 static bool scsi_mq_lld_busy(struct request_queue *q)
1383 {
1384 	struct scsi_device *sdev = q->queuedata;
1385 	struct Scsi_Host *shost;
1386 
1387 	if (blk_queue_dying(q))
1388 		return false;
1389 
1390 	shost = sdev->host;
1391 
1392 	/*
1393 	 * Ignore host/starget busy state.
1394 	 * Since block layer does not have a concept of fairness across
1395 	 * multiple queues, congestion of host/starget needs to be handled
1396 	 * in SCSI layer.
1397 	 */
1398 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1399 		return true;
1400 
1401 	return false;
1402 }
1403 
1404 /*
1405  * Block layer request completion callback. May be called from interrupt
1406  * context.
1407  */
1408 static void scsi_complete(struct request *rq)
1409 {
1410 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1411 	enum scsi_disposition disposition;
1412 
1413 	INIT_LIST_HEAD(&cmd->eh_entry);
1414 
1415 	atomic_inc(&cmd->device->iodone_cnt);
1416 	if (cmd->result)
1417 		atomic_inc(&cmd->device->ioerr_cnt);
1418 
1419 	disposition = scsi_decide_disposition(cmd);
1420 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1421 		disposition = SUCCESS;
1422 
1423 	scsi_log_completion(cmd, disposition);
1424 
1425 	switch (disposition) {
1426 	case SUCCESS:
1427 		scsi_finish_command(cmd);
1428 		break;
1429 	case NEEDS_RETRY:
1430 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1431 		break;
1432 	case ADD_TO_MLQUEUE:
1433 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1434 		break;
1435 	default:
1436 		scsi_eh_scmd_add(cmd);
1437 		break;
1438 	}
1439 }
1440 
1441 /**
1442  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1443  * @cmd: command block we are dispatching.
1444  *
1445  * Return: nonzero return request was rejected and device's queue needs to be
1446  * plugged.
1447  */
1448 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1449 {
1450 	struct Scsi_Host *host = cmd->device->host;
1451 	int rtn = 0;
1452 
1453 	atomic_inc(&cmd->device->iorequest_cnt);
1454 
1455 	/* check if the device is still usable */
1456 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1457 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1458 		 * returns an immediate error upwards, and signals
1459 		 * that the device is no longer present */
1460 		cmd->result = DID_NO_CONNECT << 16;
1461 		goto done;
1462 	}
1463 
1464 	/* Check to see if the scsi lld made this device blocked. */
1465 	if (unlikely(scsi_device_blocked(cmd->device))) {
1466 		/*
1467 		 * in blocked state, the command is just put back on
1468 		 * the device queue.  The suspend state has already
1469 		 * blocked the queue so future requests should not
1470 		 * occur until the device transitions out of the
1471 		 * suspend state.
1472 		 */
1473 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1474 			"queuecommand : device blocked\n"));
1475 		return SCSI_MLQUEUE_DEVICE_BUSY;
1476 	}
1477 
1478 	/* Store the LUN value in cmnd, if needed. */
1479 	if (cmd->device->lun_in_cdb)
1480 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1481 			       (cmd->device->lun << 5 & 0xe0);
1482 
1483 	scsi_log_send(cmd);
1484 
1485 	/*
1486 	 * Before we queue this command, check if the command
1487 	 * length exceeds what the host adapter can handle.
1488 	 */
1489 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1490 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1491 			       "queuecommand : command too long. "
1492 			       "cdb_size=%d host->max_cmd_len=%d\n",
1493 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1494 		cmd->result = (DID_ABORT << 16);
1495 		goto done;
1496 	}
1497 
1498 	if (unlikely(host->shost_state == SHOST_DEL)) {
1499 		cmd->result = (DID_NO_CONNECT << 16);
1500 		goto done;
1501 
1502 	}
1503 
1504 	trace_scsi_dispatch_cmd_start(cmd);
1505 	rtn = host->hostt->queuecommand(host, cmd);
1506 	if (rtn) {
1507 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1508 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1509 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1510 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1511 
1512 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1513 			"queuecommand : request rejected\n"));
1514 	}
1515 
1516 	return rtn;
1517  done:
1518 	cmd->scsi_done(cmd);
1519 	return 0;
1520 }
1521 
1522 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1523 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1524 {
1525 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1526 		sizeof(struct scatterlist);
1527 }
1528 
1529 static blk_status_t scsi_prepare_cmd(struct request *req)
1530 {
1531 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1532 	struct scsi_device *sdev = req->q->queuedata;
1533 	struct Scsi_Host *shost = sdev->host;
1534 	struct scatterlist *sg;
1535 
1536 	scsi_init_command(sdev, cmd);
1537 
1538 	cmd->request = req;
1539 	cmd->tag = req->tag;
1540 	cmd->prot_op = SCSI_PROT_NORMAL;
1541 	if (blk_rq_bytes(req))
1542 		cmd->sc_data_direction = rq_dma_dir(req);
1543 	else
1544 		cmd->sc_data_direction = DMA_NONE;
1545 
1546 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1547 	cmd->sdb.table.sgl = sg;
1548 
1549 	if (scsi_host_get_prot(shost)) {
1550 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1551 
1552 		cmd->prot_sdb->table.sgl =
1553 			(struct scatterlist *)(cmd->prot_sdb + 1);
1554 	}
1555 
1556 	/*
1557 	 * Special handling for passthrough commands, which don't go to the ULP
1558 	 * at all:
1559 	 */
1560 	if (blk_rq_is_scsi(req))
1561 		return scsi_setup_scsi_cmnd(sdev, req);
1562 
1563 	if (sdev->handler && sdev->handler->prep_fn) {
1564 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1565 
1566 		if (ret != BLK_STS_OK)
1567 			return ret;
1568 	}
1569 
1570 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1571 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1572 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1573 }
1574 
1575 static void scsi_mq_done(struct scsi_cmnd *cmd)
1576 {
1577 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1578 		return;
1579 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1580 		return;
1581 	trace_scsi_dispatch_cmd_done(cmd);
1582 	blk_mq_complete_request(cmd->request);
1583 }
1584 
1585 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1586 {
1587 	struct scsi_device *sdev = q->queuedata;
1588 
1589 	sbitmap_put(&sdev->budget_map, budget_token);
1590 }
1591 
1592 static int scsi_mq_get_budget(struct request_queue *q)
1593 {
1594 	struct scsi_device *sdev = q->queuedata;
1595 	int token = scsi_dev_queue_ready(q, sdev);
1596 
1597 	if (token >= 0)
1598 		return token;
1599 
1600 	atomic_inc(&sdev->restarts);
1601 
1602 	/*
1603 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1604 	 * .restarts must be incremented before .device_busy is read because the
1605 	 * code in scsi_run_queue_async() depends on the order of these operations.
1606 	 */
1607 	smp_mb__after_atomic();
1608 
1609 	/*
1610 	 * If all in-flight requests originated from this LUN are completed
1611 	 * before reading .device_busy, sdev->device_busy will be observed as
1612 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1613 	 * soon. Otherwise, completion of one of these requests will observe
1614 	 * the .restarts flag, and the request queue will be run for handling
1615 	 * this request, see scsi_end_request().
1616 	 */
1617 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1618 				!scsi_device_blocked(sdev)))
1619 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1620 	return -1;
1621 }
1622 
1623 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1624 {
1625 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1626 
1627 	cmd->budget_token = token;
1628 }
1629 
1630 static int scsi_mq_get_rq_budget_token(struct request *req)
1631 {
1632 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1633 
1634 	return cmd->budget_token;
1635 }
1636 
1637 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1638 			 const struct blk_mq_queue_data *bd)
1639 {
1640 	struct request *req = bd->rq;
1641 	struct request_queue *q = req->q;
1642 	struct scsi_device *sdev = q->queuedata;
1643 	struct Scsi_Host *shost = sdev->host;
1644 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1645 	blk_status_t ret;
1646 	int reason;
1647 
1648 	WARN_ON_ONCE(cmd->budget_token < 0);
1649 
1650 	/*
1651 	 * If the device is not in running state we will reject some or all
1652 	 * commands.
1653 	 */
1654 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1655 		ret = scsi_device_state_check(sdev, req);
1656 		if (ret != BLK_STS_OK)
1657 			goto out_put_budget;
1658 	}
1659 
1660 	ret = BLK_STS_RESOURCE;
1661 	if (!scsi_target_queue_ready(shost, sdev))
1662 		goto out_put_budget;
1663 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1664 		goto out_dec_target_busy;
1665 
1666 	if (!(req->rq_flags & RQF_DONTPREP)) {
1667 		ret = scsi_prepare_cmd(req);
1668 		if (ret != BLK_STS_OK)
1669 			goto out_dec_host_busy;
1670 		req->rq_flags |= RQF_DONTPREP;
1671 	} else {
1672 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1673 	}
1674 
1675 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1676 	if (sdev->simple_tags)
1677 		cmd->flags |= SCMD_TAGGED;
1678 	if (bd->last)
1679 		cmd->flags |= SCMD_LAST;
1680 
1681 	scsi_set_resid(cmd, 0);
1682 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1683 	cmd->scsi_done = scsi_mq_done;
1684 
1685 	blk_mq_start_request(req);
1686 	reason = scsi_dispatch_cmd(cmd);
1687 	if (reason) {
1688 		scsi_set_blocked(cmd, reason);
1689 		ret = BLK_STS_RESOURCE;
1690 		goto out_dec_host_busy;
1691 	}
1692 
1693 	return BLK_STS_OK;
1694 
1695 out_dec_host_busy:
1696 	scsi_dec_host_busy(shost, cmd);
1697 out_dec_target_busy:
1698 	if (scsi_target(sdev)->can_queue > 0)
1699 		atomic_dec(&scsi_target(sdev)->target_busy);
1700 out_put_budget:
1701 	scsi_mq_put_budget(q, cmd->budget_token);
1702 	cmd->budget_token = -1;
1703 	switch (ret) {
1704 	case BLK_STS_OK:
1705 		break;
1706 	case BLK_STS_RESOURCE:
1707 	case BLK_STS_ZONE_RESOURCE:
1708 		if (scsi_device_blocked(sdev))
1709 			ret = BLK_STS_DEV_RESOURCE;
1710 		break;
1711 	case BLK_STS_AGAIN:
1712 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1713 		if (req->rq_flags & RQF_DONTPREP)
1714 			scsi_mq_uninit_cmd(cmd);
1715 		break;
1716 	default:
1717 		if (unlikely(!scsi_device_online(sdev)))
1718 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1719 		else
1720 			scsi_req(req)->result = DID_ERROR << 16;
1721 		/*
1722 		 * Make sure to release all allocated resources when
1723 		 * we hit an error, as we will never see this command
1724 		 * again.
1725 		 */
1726 		if (req->rq_flags & RQF_DONTPREP)
1727 			scsi_mq_uninit_cmd(cmd);
1728 		scsi_run_queue_async(sdev);
1729 		break;
1730 	}
1731 	return ret;
1732 }
1733 
1734 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1735 		bool reserved)
1736 {
1737 	if (reserved)
1738 		return BLK_EH_RESET_TIMER;
1739 	return scsi_times_out(req);
1740 }
1741 
1742 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1743 				unsigned int hctx_idx, unsigned int numa_node)
1744 {
1745 	struct Scsi_Host *shost = set->driver_data;
1746 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1747 	struct scatterlist *sg;
1748 	int ret = 0;
1749 
1750 	cmd->sense_buffer =
1751 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1752 	if (!cmd->sense_buffer)
1753 		return -ENOMEM;
1754 	cmd->req.sense = cmd->sense_buffer;
1755 
1756 	if (scsi_host_get_prot(shost)) {
1757 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1758 			shost->hostt->cmd_size;
1759 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1760 	}
1761 
1762 	if (shost->hostt->init_cmd_priv) {
1763 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1764 		if (ret < 0)
1765 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1766 	}
1767 
1768 	return ret;
1769 }
1770 
1771 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1772 				 unsigned int hctx_idx)
1773 {
1774 	struct Scsi_Host *shost = set->driver_data;
1775 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1776 
1777 	if (shost->hostt->exit_cmd_priv)
1778 		shost->hostt->exit_cmd_priv(shost, cmd);
1779 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1780 }
1781 
1782 
1783 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1784 {
1785 	struct Scsi_Host *shost = hctx->driver_data;
1786 
1787 	if (shost->hostt->mq_poll)
1788 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1789 
1790 	return 0;
1791 }
1792 
1793 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1794 			  unsigned int hctx_idx)
1795 {
1796 	struct Scsi_Host *shost = data;
1797 
1798 	hctx->driver_data = shost;
1799 	return 0;
1800 }
1801 
1802 static int scsi_map_queues(struct blk_mq_tag_set *set)
1803 {
1804 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1805 
1806 	if (shost->hostt->map_queues)
1807 		return shost->hostt->map_queues(shost);
1808 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1809 }
1810 
1811 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1812 {
1813 	struct device *dev = shost->dma_dev;
1814 
1815 	/*
1816 	 * this limit is imposed by hardware restrictions
1817 	 */
1818 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1819 					SG_MAX_SEGMENTS));
1820 
1821 	if (scsi_host_prot_dma(shost)) {
1822 		shost->sg_prot_tablesize =
1823 			min_not_zero(shost->sg_prot_tablesize,
1824 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1825 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1826 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1827 	}
1828 
1829 	if (dev->dma_mask) {
1830 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1831 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1832 	}
1833 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1834 	blk_queue_segment_boundary(q, shost->dma_boundary);
1835 	dma_set_seg_boundary(dev, shost->dma_boundary);
1836 
1837 	blk_queue_max_segment_size(q, shost->max_segment_size);
1838 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1839 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1840 
1841 	/*
1842 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1843 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1844 	 * which is set by the platform.
1845 	 *
1846 	 * Devices that require a bigger alignment can increase it later.
1847 	 */
1848 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1849 }
1850 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1851 
1852 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1853 	.get_budget	= scsi_mq_get_budget,
1854 	.put_budget	= scsi_mq_put_budget,
1855 	.queue_rq	= scsi_queue_rq,
1856 	.complete	= scsi_complete,
1857 	.timeout	= scsi_timeout,
1858 #ifdef CONFIG_BLK_DEBUG_FS
1859 	.show_rq	= scsi_show_rq,
1860 #endif
1861 	.init_request	= scsi_mq_init_request,
1862 	.exit_request	= scsi_mq_exit_request,
1863 	.initialize_rq_fn = scsi_initialize_rq,
1864 	.cleanup_rq	= scsi_cleanup_rq,
1865 	.busy		= scsi_mq_lld_busy,
1866 	.map_queues	= scsi_map_queues,
1867 	.init_hctx	= scsi_init_hctx,
1868 	.poll		= scsi_mq_poll,
1869 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1870 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1871 };
1872 
1873 
1874 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1875 {
1876 	struct Scsi_Host *shost = hctx->driver_data;
1877 
1878 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1879 }
1880 
1881 static const struct blk_mq_ops scsi_mq_ops = {
1882 	.get_budget	= scsi_mq_get_budget,
1883 	.put_budget	= scsi_mq_put_budget,
1884 	.queue_rq	= scsi_queue_rq,
1885 	.commit_rqs	= scsi_commit_rqs,
1886 	.complete	= scsi_complete,
1887 	.timeout	= scsi_timeout,
1888 #ifdef CONFIG_BLK_DEBUG_FS
1889 	.show_rq	= scsi_show_rq,
1890 #endif
1891 	.init_request	= scsi_mq_init_request,
1892 	.exit_request	= scsi_mq_exit_request,
1893 	.initialize_rq_fn = scsi_initialize_rq,
1894 	.cleanup_rq	= scsi_cleanup_rq,
1895 	.busy		= scsi_mq_lld_busy,
1896 	.map_queues	= scsi_map_queues,
1897 	.init_hctx	= scsi_init_hctx,
1898 	.poll		= scsi_mq_poll,
1899 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1900 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1901 };
1902 
1903 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1904 {
1905 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1906 	if (IS_ERR(sdev->request_queue))
1907 		return NULL;
1908 
1909 	sdev->request_queue->queuedata = sdev;
1910 	__scsi_init_queue(sdev->host, sdev->request_queue);
1911 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1912 	return sdev->request_queue;
1913 }
1914 
1915 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1916 {
1917 	unsigned int cmd_size, sgl_size;
1918 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1919 
1920 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1921 				scsi_mq_inline_sgl_size(shost));
1922 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1923 	if (scsi_host_get_prot(shost))
1924 		cmd_size += sizeof(struct scsi_data_buffer) +
1925 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1926 
1927 	memset(tag_set, 0, sizeof(*tag_set));
1928 	if (shost->hostt->commit_rqs)
1929 		tag_set->ops = &scsi_mq_ops;
1930 	else
1931 		tag_set->ops = &scsi_mq_ops_no_commit;
1932 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1933 	tag_set->nr_maps = shost->nr_maps ? : 1;
1934 	tag_set->queue_depth = shost->can_queue;
1935 	tag_set->cmd_size = cmd_size;
1936 	tag_set->numa_node = NUMA_NO_NODE;
1937 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1938 	tag_set->flags |=
1939 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1940 	tag_set->driver_data = shost;
1941 	if (shost->host_tagset)
1942 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1943 
1944 	return blk_mq_alloc_tag_set(tag_set);
1945 }
1946 
1947 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1948 {
1949 	blk_mq_free_tag_set(&shost->tag_set);
1950 }
1951 
1952 /**
1953  * scsi_device_from_queue - return sdev associated with a request_queue
1954  * @q: The request queue to return the sdev from
1955  *
1956  * Return the sdev associated with a request queue or NULL if the
1957  * request_queue does not reference a SCSI device.
1958  */
1959 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1960 {
1961 	struct scsi_device *sdev = NULL;
1962 
1963 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1964 	    q->mq_ops == &scsi_mq_ops)
1965 		sdev = q->queuedata;
1966 	if (!sdev || !get_device(&sdev->sdev_gendev))
1967 		sdev = NULL;
1968 
1969 	return sdev;
1970 }
1971 
1972 /**
1973  * scsi_block_requests - Utility function used by low-level drivers to prevent
1974  * further commands from being queued to the device.
1975  * @shost:  host in question
1976  *
1977  * There is no timer nor any other means by which the requests get unblocked
1978  * other than the low-level driver calling scsi_unblock_requests().
1979  */
1980 void scsi_block_requests(struct Scsi_Host *shost)
1981 {
1982 	shost->host_self_blocked = 1;
1983 }
1984 EXPORT_SYMBOL(scsi_block_requests);
1985 
1986 /**
1987  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1988  * further commands to be queued to the device.
1989  * @shost:  host in question
1990  *
1991  * There is no timer nor any other means by which the requests get unblocked
1992  * other than the low-level driver calling scsi_unblock_requests(). This is done
1993  * as an API function so that changes to the internals of the scsi mid-layer
1994  * won't require wholesale changes to drivers that use this feature.
1995  */
1996 void scsi_unblock_requests(struct Scsi_Host *shost)
1997 {
1998 	shost->host_self_blocked = 0;
1999 	scsi_run_host_queues(shost);
2000 }
2001 EXPORT_SYMBOL(scsi_unblock_requests);
2002 
2003 void scsi_exit_queue(void)
2004 {
2005 	kmem_cache_destroy(scsi_sense_cache);
2006 }
2007 
2008 /**
2009  *	scsi_mode_select - issue a mode select
2010  *	@sdev:	SCSI device to be queried
2011  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2012  *	@sp:	Save page bit (0 == don't save, 1 == save)
2013  *	@modepage: mode page being requested
2014  *	@buffer: request buffer (may not be smaller than eight bytes)
2015  *	@len:	length of request buffer.
2016  *	@timeout: command timeout
2017  *	@retries: number of retries before failing
2018  *	@data: returns a structure abstracting the mode header data
2019  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2020  *		must be SCSI_SENSE_BUFFERSIZE big.
2021  *
2022  *	Returns zero if successful; negative error number or scsi
2023  *	status on error
2024  *
2025  */
2026 int
2027 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2028 		 unsigned char *buffer, int len, int timeout, int retries,
2029 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2030 {
2031 	unsigned char cmd[10];
2032 	unsigned char *real_buffer;
2033 	int ret;
2034 
2035 	memset(cmd, 0, sizeof(cmd));
2036 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2037 
2038 	if (sdev->use_10_for_ms) {
2039 		if (len > 65535)
2040 			return -EINVAL;
2041 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2042 		if (!real_buffer)
2043 			return -ENOMEM;
2044 		memcpy(real_buffer + 8, buffer, len);
2045 		len += 8;
2046 		real_buffer[0] = 0;
2047 		real_buffer[1] = 0;
2048 		real_buffer[2] = data->medium_type;
2049 		real_buffer[3] = data->device_specific;
2050 		real_buffer[4] = data->longlba ? 0x01 : 0;
2051 		real_buffer[5] = 0;
2052 		real_buffer[6] = data->block_descriptor_length >> 8;
2053 		real_buffer[7] = data->block_descriptor_length;
2054 
2055 		cmd[0] = MODE_SELECT_10;
2056 		cmd[7] = len >> 8;
2057 		cmd[8] = len;
2058 	} else {
2059 		if (len > 255 || data->block_descriptor_length > 255 ||
2060 		    data->longlba)
2061 			return -EINVAL;
2062 
2063 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2064 		if (!real_buffer)
2065 			return -ENOMEM;
2066 		memcpy(real_buffer + 4, buffer, len);
2067 		len += 4;
2068 		real_buffer[0] = 0;
2069 		real_buffer[1] = data->medium_type;
2070 		real_buffer[2] = data->device_specific;
2071 		real_buffer[3] = data->block_descriptor_length;
2072 
2073 		cmd[0] = MODE_SELECT;
2074 		cmd[4] = len;
2075 	}
2076 
2077 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2078 			       sshdr, timeout, retries, NULL);
2079 	kfree(real_buffer);
2080 	return ret;
2081 }
2082 EXPORT_SYMBOL_GPL(scsi_mode_select);
2083 
2084 /**
2085  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2086  *	@sdev:	SCSI device to be queried
2087  *	@dbd:	set if mode sense will allow block descriptors to be returned
2088  *	@modepage: mode page being requested
2089  *	@buffer: request buffer (may not be smaller than eight bytes)
2090  *	@len:	length of request buffer.
2091  *	@timeout: command timeout
2092  *	@retries: number of retries before failing
2093  *	@data: returns a structure abstracting the mode header data
2094  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2095  *		must be SCSI_SENSE_BUFFERSIZE big.
2096  *
2097  *	Returns zero if successful, or a negative error number on failure
2098  */
2099 int
2100 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101 		  unsigned char *buffer, int len, int timeout, int retries,
2102 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103 {
2104 	unsigned char cmd[12];
2105 	int use_10_for_ms;
2106 	int header_length;
2107 	int result, retry_count = retries;
2108 	struct scsi_sense_hdr my_sshdr;
2109 
2110 	memset(data, 0, sizeof(*data));
2111 	memset(&cmd[0], 0, 12);
2112 
2113 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2114 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2115 	cmd[2] = modepage;
2116 
2117 	/* caller might not be interested in sense, but we need it */
2118 	if (!sshdr)
2119 		sshdr = &my_sshdr;
2120 
2121  retry:
2122 	use_10_for_ms = sdev->use_10_for_ms;
2123 
2124 	if (use_10_for_ms) {
2125 		if (len < 8)
2126 			len = 8;
2127 
2128 		cmd[0] = MODE_SENSE_10;
2129 		cmd[8] = len;
2130 		header_length = 8;
2131 	} else {
2132 		if (len < 4)
2133 			len = 4;
2134 
2135 		cmd[0] = MODE_SENSE;
2136 		cmd[4] = len;
2137 		header_length = 4;
2138 	}
2139 
2140 	memset(buffer, 0, len);
2141 
2142 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2143 				  sshdr, timeout, retries, NULL);
2144 	if (result < 0)
2145 		return result;
2146 
2147 	/* This code looks awful: what it's doing is making sure an
2148 	 * ILLEGAL REQUEST sense return identifies the actual command
2149 	 * byte as the problem.  MODE_SENSE commands can return
2150 	 * ILLEGAL REQUEST if the code page isn't supported */
2151 
2152 	if (!scsi_status_is_good(result)) {
2153 		if (scsi_sense_valid(sshdr)) {
2154 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2155 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2156 				/*
2157 				 * Invalid command operation code
2158 				 */
2159 				if (use_10_for_ms) {
2160 					sdev->use_10_for_ms = 0;
2161 					goto retry;
2162 				}
2163 			}
2164 			if (scsi_status_is_check_condition(result) &&
2165 			    sshdr->sense_key == UNIT_ATTENTION &&
2166 			    retry_count) {
2167 				retry_count--;
2168 				goto retry;
2169 			}
2170 		}
2171 		return -EIO;
2172 	}
2173 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2174 		     (modepage == 6 || modepage == 8))) {
2175 		/* Initio breakage? */
2176 		header_length = 0;
2177 		data->length = 13;
2178 		data->medium_type = 0;
2179 		data->device_specific = 0;
2180 		data->longlba = 0;
2181 		data->block_descriptor_length = 0;
2182 	} else if (use_10_for_ms) {
2183 		data->length = buffer[0]*256 + buffer[1] + 2;
2184 		data->medium_type = buffer[2];
2185 		data->device_specific = buffer[3];
2186 		data->longlba = buffer[4] & 0x01;
2187 		data->block_descriptor_length = buffer[6]*256
2188 			+ buffer[7];
2189 	} else {
2190 		data->length = buffer[0] + 1;
2191 		data->medium_type = buffer[1];
2192 		data->device_specific = buffer[2];
2193 		data->block_descriptor_length = buffer[3];
2194 	}
2195 	data->header_length = header_length;
2196 
2197 	return 0;
2198 }
2199 EXPORT_SYMBOL(scsi_mode_sense);
2200 
2201 /**
2202  *	scsi_test_unit_ready - test if unit is ready
2203  *	@sdev:	scsi device to change the state of.
2204  *	@timeout: command timeout
2205  *	@retries: number of retries before failing
2206  *	@sshdr: outpout pointer for decoded sense information.
2207  *
2208  *	Returns zero if unsuccessful or an error if TUR failed.  For
2209  *	removable media, UNIT_ATTENTION sets ->changed flag.
2210  **/
2211 int
2212 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2213 		     struct scsi_sense_hdr *sshdr)
2214 {
2215 	char cmd[] = {
2216 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2217 	};
2218 	int result;
2219 
2220 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2221 	do {
2222 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2223 					  timeout, 1, NULL);
2224 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2225 		    sshdr->sense_key == UNIT_ATTENTION)
2226 			sdev->changed = 1;
2227 	} while (scsi_sense_valid(sshdr) &&
2228 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2229 
2230 	return result;
2231 }
2232 EXPORT_SYMBOL(scsi_test_unit_ready);
2233 
2234 /**
2235  *	scsi_device_set_state - Take the given device through the device state model.
2236  *	@sdev:	scsi device to change the state of.
2237  *	@state:	state to change to.
2238  *
2239  *	Returns zero if successful or an error if the requested
2240  *	transition is illegal.
2241  */
2242 int
2243 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2244 {
2245 	enum scsi_device_state oldstate = sdev->sdev_state;
2246 
2247 	if (state == oldstate)
2248 		return 0;
2249 
2250 	switch (state) {
2251 	case SDEV_CREATED:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED_BLOCK:
2254 			break;
2255 		default:
2256 			goto illegal;
2257 		}
2258 		break;
2259 
2260 	case SDEV_RUNNING:
2261 		switch (oldstate) {
2262 		case SDEV_CREATED:
2263 		case SDEV_OFFLINE:
2264 		case SDEV_TRANSPORT_OFFLINE:
2265 		case SDEV_QUIESCE:
2266 		case SDEV_BLOCK:
2267 			break;
2268 		default:
2269 			goto illegal;
2270 		}
2271 		break;
2272 
2273 	case SDEV_QUIESCE:
2274 		switch (oldstate) {
2275 		case SDEV_RUNNING:
2276 		case SDEV_OFFLINE:
2277 		case SDEV_TRANSPORT_OFFLINE:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_OFFLINE:
2285 	case SDEV_TRANSPORT_OFFLINE:
2286 		switch (oldstate) {
2287 		case SDEV_CREATED:
2288 		case SDEV_RUNNING:
2289 		case SDEV_QUIESCE:
2290 		case SDEV_BLOCK:
2291 			break;
2292 		default:
2293 			goto illegal;
2294 		}
2295 		break;
2296 
2297 	case SDEV_BLOCK:
2298 		switch (oldstate) {
2299 		case SDEV_RUNNING:
2300 		case SDEV_CREATED_BLOCK:
2301 		case SDEV_QUIESCE:
2302 		case SDEV_OFFLINE:
2303 			break;
2304 		default:
2305 			goto illegal;
2306 		}
2307 		break;
2308 
2309 	case SDEV_CREATED_BLOCK:
2310 		switch (oldstate) {
2311 		case SDEV_CREATED:
2312 			break;
2313 		default:
2314 			goto illegal;
2315 		}
2316 		break;
2317 
2318 	case SDEV_CANCEL:
2319 		switch (oldstate) {
2320 		case SDEV_CREATED:
2321 		case SDEV_RUNNING:
2322 		case SDEV_QUIESCE:
2323 		case SDEV_OFFLINE:
2324 		case SDEV_TRANSPORT_OFFLINE:
2325 			break;
2326 		default:
2327 			goto illegal;
2328 		}
2329 		break;
2330 
2331 	case SDEV_DEL:
2332 		switch (oldstate) {
2333 		case SDEV_CREATED:
2334 		case SDEV_RUNNING:
2335 		case SDEV_OFFLINE:
2336 		case SDEV_TRANSPORT_OFFLINE:
2337 		case SDEV_CANCEL:
2338 		case SDEV_BLOCK:
2339 		case SDEV_CREATED_BLOCK:
2340 			break;
2341 		default:
2342 			goto illegal;
2343 		}
2344 		break;
2345 
2346 	}
2347 	sdev->offline_already = false;
2348 	sdev->sdev_state = state;
2349 	return 0;
2350 
2351  illegal:
2352 	SCSI_LOG_ERROR_RECOVERY(1,
2353 				sdev_printk(KERN_ERR, sdev,
2354 					    "Illegal state transition %s->%s",
2355 					    scsi_device_state_name(oldstate),
2356 					    scsi_device_state_name(state))
2357 				);
2358 	return -EINVAL;
2359 }
2360 EXPORT_SYMBOL(scsi_device_set_state);
2361 
2362 /**
2363  *	scsi_evt_emit - emit a single SCSI device uevent
2364  *	@sdev: associated SCSI device
2365  *	@evt: event to emit
2366  *
2367  *	Send a single uevent (scsi_event) to the associated scsi_device.
2368  */
2369 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2370 {
2371 	int idx = 0;
2372 	char *envp[3];
2373 
2374 	switch (evt->evt_type) {
2375 	case SDEV_EVT_MEDIA_CHANGE:
2376 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2377 		break;
2378 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2379 		scsi_rescan_device(&sdev->sdev_gendev);
2380 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2381 		break;
2382 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2383 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2384 		break;
2385 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2386 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2387 		break;
2388 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2389 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2390 		break;
2391 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2392 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2393 		break;
2394 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2395 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2396 		break;
2397 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2398 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2399 		break;
2400 	default:
2401 		/* do nothing */
2402 		break;
2403 	}
2404 
2405 	envp[idx++] = NULL;
2406 
2407 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2408 }
2409 
2410 /**
2411  *	scsi_evt_thread - send a uevent for each scsi event
2412  *	@work: work struct for scsi_device
2413  *
2414  *	Dispatch queued events to their associated scsi_device kobjects
2415  *	as uevents.
2416  */
2417 void scsi_evt_thread(struct work_struct *work)
2418 {
2419 	struct scsi_device *sdev;
2420 	enum scsi_device_event evt_type;
2421 	LIST_HEAD(event_list);
2422 
2423 	sdev = container_of(work, struct scsi_device, event_work);
2424 
2425 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2426 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2427 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2428 
2429 	while (1) {
2430 		struct scsi_event *evt;
2431 		struct list_head *this, *tmp;
2432 		unsigned long flags;
2433 
2434 		spin_lock_irqsave(&sdev->list_lock, flags);
2435 		list_splice_init(&sdev->event_list, &event_list);
2436 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2437 
2438 		if (list_empty(&event_list))
2439 			break;
2440 
2441 		list_for_each_safe(this, tmp, &event_list) {
2442 			evt = list_entry(this, struct scsi_event, node);
2443 			list_del(&evt->node);
2444 			scsi_evt_emit(sdev, evt);
2445 			kfree(evt);
2446 		}
2447 	}
2448 }
2449 
2450 /**
2451  * 	sdev_evt_send - send asserted event to uevent thread
2452  *	@sdev: scsi_device event occurred on
2453  *	@evt: event to send
2454  *
2455  *	Assert scsi device event asynchronously.
2456  */
2457 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2458 {
2459 	unsigned long flags;
2460 
2461 #if 0
2462 	/* FIXME: currently this check eliminates all media change events
2463 	 * for polled devices.  Need to update to discriminate between AN
2464 	 * and polled events */
2465 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2466 		kfree(evt);
2467 		return;
2468 	}
2469 #endif
2470 
2471 	spin_lock_irqsave(&sdev->list_lock, flags);
2472 	list_add_tail(&evt->node, &sdev->event_list);
2473 	schedule_work(&sdev->event_work);
2474 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2475 }
2476 EXPORT_SYMBOL_GPL(sdev_evt_send);
2477 
2478 /**
2479  * 	sdev_evt_alloc - allocate a new scsi event
2480  *	@evt_type: type of event to allocate
2481  *	@gfpflags: GFP flags for allocation
2482  *
2483  *	Allocates and returns a new scsi_event.
2484  */
2485 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2486 				  gfp_t gfpflags)
2487 {
2488 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2489 	if (!evt)
2490 		return NULL;
2491 
2492 	evt->evt_type = evt_type;
2493 	INIT_LIST_HEAD(&evt->node);
2494 
2495 	/* evt_type-specific initialization, if any */
2496 	switch (evt_type) {
2497 	case SDEV_EVT_MEDIA_CHANGE:
2498 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2499 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2500 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2501 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2502 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2503 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2504 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2505 	default:
2506 		/* do nothing */
2507 		break;
2508 	}
2509 
2510 	return evt;
2511 }
2512 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2513 
2514 /**
2515  * 	sdev_evt_send_simple - send asserted event to uevent thread
2516  *	@sdev: scsi_device event occurred on
2517  *	@evt_type: type of event to send
2518  *	@gfpflags: GFP flags for allocation
2519  *
2520  *	Assert scsi device event asynchronously, given an event type.
2521  */
2522 void sdev_evt_send_simple(struct scsi_device *sdev,
2523 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2524 {
2525 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2526 	if (!evt) {
2527 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2528 			    evt_type);
2529 		return;
2530 	}
2531 
2532 	sdev_evt_send(sdev, evt);
2533 }
2534 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2535 
2536 /**
2537  *	scsi_device_quiesce - Block all commands except power management.
2538  *	@sdev:	scsi device to quiesce.
2539  *
2540  *	This works by trying to transition to the SDEV_QUIESCE state
2541  *	(which must be a legal transition).  When the device is in this
2542  *	state, only power management requests will be accepted, all others will
2543  *	be deferred.
2544  *
2545  *	Must be called with user context, may sleep.
2546  *
2547  *	Returns zero if unsuccessful or an error if not.
2548  */
2549 int
2550 scsi_device_quiesce(struct scsi_device *sdev)
2551 {
2552 	struct request_queue *q = sdev->request_queue;
2553 	int err;
2554 
2555 	/*
2556 	 * It is allowed to call scsi_device_quiesce() multiple times from
2557 	 * the same context but concurrent scsi_device_quiesce() calls are
2558 	 * not allowed.
2559 	 */
2560 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2561 
2562 	if (sdev->quiesced_by == current)
2563 		return 0;
2564 
2565 	blk_set_pm_only(q);
2566 
2567 	blk_mq_freeze_queue(q);
2568 	/*
2569 	 * Ensure that the effect of blk_set_pm_only() will be visible
2570 	 * for percpu_ref_tryget() callers that occur after the queue
2571 	 * unfreeze even if the queue was already frozen before this function
2572 	 * was called. See also https://lwn.net/Articles/573497/.
2573 	 */
2574 	synchronize_rcu();
2575 	blk_mq_unfreeze_queue(q);
2576 
2577 	mutex_lock(&sdev->state_mutex);
2578 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2579 	if (err == 0)
2580 		sdev->quiesced_by = current;
2581 	else
2582 		blk_clear_pm_only(q);
2583 	mutex_unlock(&sdev->state_mutex);
2584 
2585 	return err;
2586 }
2587 EXPORT_SYMBOL(scsi_device_quiesce);
2588 
2589 /**
2590  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2591  *	@sdev:	scsi device to resume.
2592  *
2593  *	Moves the device from quiesced back to running and restarts the
2594  *	queues.
2595  *
2596  *	Must be called with user context, may sleep.
2597  */
2598 void scsi_device_resume(struct scsi_device *sdev)
2599 {
2600 	/* check if the device state was mutated prior to resume, and if
2601 	 * so assume the state is being managed elsewhere (for example
2602 	 * device deleted during suspend)
2603 	 */
2604 	mutex_lock(&sdev->state_mutex);
2605 	if (sdev->sdev_state == SDEV_QUIESCE)
2606 		scsi_device_set_state(sdev, SDEV_RUNNING);
2607 	if (sdev->quiesced_by) {
2608 		sdev->quiesced_by = NULL;
2609 		blk_clear_pm_only(sdev->request_queue);
2610 	}
2611 	mutex_unlock(&sdev->state_mutex);
2612 }
2613 EXPORT_SYMBOL(scsi_device_resume);
2614 
2615 static void
2616 device_quiesce_fn(struct scsi_device *sdev, void *data)
2617 {
2618 	scsi_device_quiesce(sdev);
2619 }
2620 
2621 void
2622 scsi_target_quiesce(struct scsi_target *starget)
2623 {
2624 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2625 }
2626 EXPORT_SYMBOL(scsi_target_quiesce);
2627 
2628 static void
2629 device_resume_fn(struct scsi_device *sdev, void *data)
2630 {
2631 	scsi_device_resume(sdev);
2632 }
2633 
2634 void
2635 scsi_target_resume(struct scsi_target *starget)
2636 {
2637 	starget_for_each_device(starget, NULL, device_resume_fn);
2638 }
2639 EXPORT_SYMBOL(scsi_target_resume);
2640 
2641 /**
2642  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2643  * @sdev: device to block
2644  *
2645  * Pause SCSI command processing on the specified device. Does not sleep.
2646  *
2647  * Returns zero if successful or a negative error code upon failure.
2648  *
2649  * Notes:
2650  * This routine transitions the device to the SDEV_BLOCK state (which must be
2651  * a legal transition). When the device is in this state, command processing
2652  * is paused until the device leaves the SDEV_BLOCK state. See also
2653  * scsi_internal_device_unblock_nowait().
2654  */
2655 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2656 {
2657 	struct request_queue *q = sdev->request_queue;
2658 	int err = 0;
2659 
2660 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2661 	if (err) {
2662 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2663 
2664 		if (err)
2665 			return err;
2666 	}
2667 
2668 	/*
2669 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2670 	 * block layer from calling the midlayer with this device's
2671 	 * request queue.
2672 	 */
2673 	blk_mq_quiesce_queue_nowait(q);
2674 	return 0;
2675 }
2676 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2677 
2678 /**
2679  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2680  * @sdev: device to block
2681  *
2682  * Pause SCSI command processing on the specified device and wait until all
2683  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2684  *
2685  * Returns zero if successful or a negative error code upon failure.
2686  *
2687  * Note:
2688  * This routine transitions the device to the SDEV_BLOCK state (which must be
2689  * a legal transition). When the device is in this state, command processing
2690  * is paused until the device leaves the SDEV_BLOCK state. See also
2691  * scsi_internal_device_unblock().
2692  */
2693 static int scsi_internal_device_block(struct scsi_device *sdev)
2694 {
2695 	struct request_queue *q = sdev->request_queue;
2696 	int err;
2697 
2698 	mutex_lock(&sdev->state_mutex);
2699 	err = scsi_internal_device_block_nowait(sdev);
2700 	if (err == 0)
2701 		blk_mq_quiesce_queue(q);
2702 	mutex_unlock(&sdev->state_mutex);
2703 
2704 	return err;
2705 }
2706 
2707 void scsi_start_queue(struct scsi_device *sdev)
2708 {
2709 	struct request_queue *q = sdev->request_queue;
2710 
2711 	blk_mq_unquiesce_queue(q);
2712 }
2713 
2714 /**
2715  * scsi_internal_device_unblock_nowait - resume a device after a block request
2716  * @sdev:	device to resume
2717  * @new_state:	state to set the device to after unblocking
2718  *
2719  * Restart the device queue for a previously suspended SCSI device. Does not
2720  * sleep.
2721  *
2722  * Returns zero if successful or a negative error code upon failure.
2723  *
2724  * Notes:
2725  * This routine transitions the device to the SDEV_RUNNING state or to one of
2726  * the offline states (which must be a legal transition) allowing the midlayer
2727  * to goose the queue for this device.
2728  */
2729 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2730 					enum scsi_device_state new_state)
2731 {
2732 	switch (new_state) {
2733 	case SDEV_RUNNING:
2734 	case SDEV_TRANSPORT_OFFLINE:
2735 		break;
2736 	default:
2737 		return -EINVAL;
2738 	}
2739 
2740 	/*
2741 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2742 	 * offlined states and goose the device queue if successful.
2743 	 */
2744 	switch (sdev->sdev_state) {
2745 	case SDEV_BLOCK:
2746 	case SDEV_TRANSPORT_OFFLINE:
2747 		sdev->sdev_state = new_state;
2748 		break;
2749 	case SDEV_CREATED_BLOCK:
2750 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2751 		    new_state == SDEV_OFFLINE)
2752 			sdev->sdev_state = new_state;
2753 		else
2754 			sdev->sdev_state = SDEV_CREATED;
2755 		break;
2756 	case SDEV_CANCEL:
2757 	case SDEV_OFFLINE:
2758 		break;
2759 	default:
2760 		return -EINVAL;
2761 	}
2762 	scsi_start_queue(sdev);
2763 
2764 	return 0;
2765 }
2766 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2767 
2768 /**
2769  * scsi_internal_device_unblock - resume a device after a block request
2770  * @sdev:	device to resume
2771  * @new_state:	state to set the device to after unblocking
2772  *
2773  * Restart the device queue for a previously suspended SCSI device. May sleep.
2774  *
2775  * Returns zero if successful or a negative error code upon failure.
2776  *
2777  * Notes:
2778  * This routine transitions the device to the SDEV_RUNNING state or to one of
2779  * the offline states (which must be a legal transition) allowing the midlayer
2780  * to goose the queue for this device.
2781  */
2782 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2783 					enum scsi_device_state new_state)
2784 {
2785 	int ret;
2786 
2787 	mutex_lock(&sdev->state_mutex);
2788 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2789 	mutex_unlock(&sdev->state_mutex);
2790 
2791 	return ret;
2792 }
2793 
2794 static void
2795 device_block(struct scsi_device *sdev, void *data)
2796 {
2797 	int ret;
2798 
2799 	ret = scsi_internal_device_block(sdev);
2800 
2801 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2802 		  dev_name(&sdev->sdev_gendev), ret);
2803 }
2804 
2805 static int
2806 target_block(struct device *dev, void *data)
2807 {
2808 	if (scsi_is_target_device(dev))
2809 		starget_for_each_device(to_scsi_target(dev), NULL,
2810 					device_block);
2811 	return 0;
2812 }
2813 
2814 void
2815 scsi_target_block(struct device *dev)
2816 {
2817 	if (scsi_is_target_device(dev))
2818 		starget_for_each_device(to_scsi_target(dev), NULL,
2819 					device_block);
2820 	else
2821 		device_for_each_child(dev, NULL, target_block);
2822 }
2823 EXPORT_SYMBOL_GPL(scsi_target_block);
2824 
2825 static void
2826 device_unblock(struct scsi_device *sdev, void *data)
2827 {
2828 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2829 }
2830 
2831 static int
2832 target_unblock(struct device *dev, void *data)
2833 {
2834 	if (scsi_is_target_device(dev))
2835 		starget_for_each_device(to_scsi_target(dev), data,
2836 					device_unblock);
2837 	return 0;
2838 }
2839 
2840 void
2841 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2842 {
2843 	if (scsi_is_target_device(dev))
2844 		starget_for_each_device(to_scsi_target(dev), &new_state,
2845 					device_unblock);
2846 	else
2847 		device_for_each_child(dev, &new_state, target_unblock);
2848 }
2849 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2850 
2851 int
2852 scsi_host_block(struct Scsi_Host *shost)
2853 {
2854 	struct scsi_device *sdev;
2855 	int ret = 0;
2856 
2857 	/*
2858 	 * Call scsi_internal_device_block_nowait so we can avoid
2859 	 * calling synchronize_rcu() for each LUN.
2860 	 */
2861 	shost_for_each_device(sdev, shost) {
2862 		mutex_lock(&sdev->state_mutex);
2863 		ret = scsi_internal_device_block_nowait(sdev);
2864 		mutex_unlock(&sdev->state_mutex);
2865 		if (ret) {
2866 			scsi_device_put(sdev);
2867 			break;
2868 		}
2869 	}
2870 
2871 	/*
2872 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2873 	 * calling synchronize_rcu() once is enough.
2874 	 */
2875 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2876 
2877 	if (!ret)
2878 		synchronize_rcu();
2879 
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(scsi_host_block);
2883 
2884 int
2885 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2886 {
2887 	struct scsi_device *sdev;
2888 	int ret = 0;
2889 
2890 	shost_for_each_device(sdev, shost) {
2891 		ret = scsi_internal_device_unblock(sdev, new_state);
2892 		if (ret) {
2893 			scsi_device_put(sdev);
2894 			break;
2895 		}
2896 	}
2897 	return ret;
2898 }
2899 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2900 
2901 /**
2902  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2903  * @sgl:	scatter-gather list
2904  * @sg_count:	number of segments in sg
2905  * @offset:	offset in bytes into sg, on return offset into the mapped area
2906  * @len:	bytes to map, on return number of bytes mapped
2907  *
2908  * Returns virtual address of the start of the mapped page
2909  */
2910 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2911 			  size_t *offset, size_t *len)
2912 {
2913 	int i;
2914 	size_t sg_len = 0, len_complete = 0;
2915 	struct scatterlist *sg;
2916 	struct page *page;
2917 
2918 	WARN_ON(!irqs_disabled());
2919 
2920 	for_each_sg(sgl, sg, sg_count, i) {
2921 		len_complete = sg_len; /* Complete sg-entries */
2922 		sg_len += sg->length;
2923 		if (sg_len > *offset)
2924 			break;
2925 	}
2926 
2927 	if (unlikely(i == sg_count)) {
2928 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2929 			"elements %d\n",
2930 		       __func__, sg_len, *offset, sg_count);
2931 		WARN_ON(1);
2932 		return NULL;
2933 	}
2934 
2935 	/* Offset starting from the beginning of first page in this sg-entry */
2936 	*offset = *offset - len_complete + sg->offset;
2937 
2938 	/* Assumption: contiguous pages can be accessed as "page + i" */
2939 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2940 	*offset &= ~PAGE_MASK;
2941 
2942 	/* Bytes in this sg-entry from *offset to the end of the page */
2943 	sg_len = PAGE_SIZE - *offset;
2944 	if (*len > sg_len)
2945 		*len = sg_len;
2946 
2947 	return kmap_atomic(page);
2948 }
2949 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2950 
2951 /**
2952  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2953  * @virt:	virtual address to be unmapped
2954  */
2955 void scsi_kunmap_atomic_sg(void *virt)
2956 {
2957 	kunmap_atomic(virt);
2958 }
2959 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2960 
2961 void sdev_disable_disk_events(struct scsi_device *sdev)
2962 {
2963 	atomic_inc(&sdev->disk_events_disable_depth);
2964 }
2965 EXPORT_SYMBOL(sdev_disable_disk_events);
2966 
2967 void sdev_enable_disk_events(struct scsi_device *sdev)
2968 {
2969 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2970 		return;
2971 	atomic_dec(&sdev->disk_events_disable_depth);
2972 }
2973 EXPORT_SYMBOL(sdev_enable_disk_events);
2974 
2975 static unsigned char designator_prio(const unsigned char *d)
2976 {
2977 	if (d[1] & 0x30)
2978 		/* not associated with LUN */
2979 		return 0;
2980 
2981 	if (d[3] == 0)
2982 		/* invalid length */
2983 		return 0;
2984 
2985 	/*
2986 	 * Order of preference for lun descriptor:
2987 	 * - SCSI name string
2988 	 * - NAA IEEE Registered Extended
2989 	 * - EUI-64 based 16-byte
2990 	 * - EUI-64 based 12-byte
2991 	 * - NAA IEEE Registered
2992 	 * - NAA IEEE Extended
2993 	 * - EUI-64 based 8-byte
2994 	 * - SCSI name string (truncated)
2995 	 * - T10 Vendor ID
2996 	 * as longer descriptors reduce the likelyhood
2997 	 * of identification clashes.
2998 	 */
2999 
3000 	switch (d[1] & 0xf) {
3001 	case 8:
3002 		/* SCSI name string, variable-length UTF-8 */
3003 		return 9;
3004 	case 3:
3005 		switch (d[4] >> 4) {
3006 		case 6:
3007 			/* NAA registered extended */
3008 			return 8;
3009 		case 5:
3010 			/* NAA registered */
3011 			return 5;
3012 		case 4:
3013 			/* NAA extended */
3014 			return 4;
3015 		case 3:
3016 			/* NAA locally assigned */
3017 			return 1;
3018 		default:
3019 			break;
3020 		}
3021 		break;
3022 	case 2:
3023 		switch (d[3]) {
3024 		case 16:
3025 			/* EUI64-based, 16 byte */
3026 			return 7;
3027 		case 12:
3028 			/* EUI64-based, 12 byte */
3029 			return 6;
3030 		case 8:
3031 			/* EUI64-based, 8 byte */
3032 			return 3;
3033 		default:
3034 			break;
3035 		}
3036 		break;
3037 	case 1:
3038 		/* T10 vendor ID */
3039 		return 1;
3040 	default:
3041 		break;
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 /**
3048  * scsi_vpd_lun_id - return a unique device identification
3049  * @sdev: SCSI device
3050  * @id:   buffer for the identification
3051  * @id_len:  length of the buffer
3052  *
3053  * Copies a unique device identification into @id based
3054  * on the information in the VPD page 0x83 of the device.
3055  * The string will be formatted as a SCSI name string.
3056  *
3057  * Returns the length of the identification or error on failure.
3058  * If the identifier is longer than the supplied buffer the actual
3059  * identifier length is returned and the buffer is not zero-padded.
3060  */
3061 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3062 {
3063 	u8 cur_id_prio = 0;
3064 	u8 cur_id_size = 0;
3065 	const unsigned char *d, *cur_id_str;
3066 	const struct scsi_vpd *vpd_pg83;
3067 	int id_size = -EINVAL;
3068 
3069 	rcu_read_lock();
3070 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3071 	if (!vpd_pg83) {
3072 		rcu_read_unlock();
3073 		return -ENXIO;
3074 	}
3075 
3076 	/* The id string must be at least 20 bytes + terminating NULL byte */
3077 	if (id_len < 21) {
3078 		rcu_read_unlock();
3079 		return -EINVAL;
3080 	}
3081 
3082 	memset(id, 0, id_len);
3083 	for (d = vpd_pg83->data + 4;
3084 	     d < vpd_pg83->data + vpd_pg83->len;
3085 	     d += d[3] + 4) {
3086 		u8 prio = designator_prio(d);
3087 
3088 		if (prio == 0 || cur_id_prio > prio)
3089 			continue;
3090 
3091 		switch (d[1] & 0xf) {
3092 		case 0x1:
3093 			/* T10 Vendor ID */
3094 			if (cur_id_size > d[3])
3095 				break;
3096 			cur_id_prio = prio;
3097 			cur_id_size = d[3];
3098 			if (cur_id_size + 4 > id_len)
3099 				cur_id_size = id_len - 4;
3100 			cur_id_str = d + 4;
3101 			id_size = snprintf(id, id_len, "t10.%*pE",
3102 					   cur_id_size, cur_id_str);
3103 			break;
3104 		case 0x2:
3105 			/* EUI-64 */
3106 			cur_id_prio = prio;
3107 			cur_id_size = d[3];
3108 			cur_id_str = d + 4;
3109 			switch (cur_id_size) {
3110 			case 8:
3111 				id_size = snprintf(id, id_len,
3112 						   "eui.%8phN",
3113 						   cur_id_str);
3114 				break;
3115 			case 12:
3116 				id_size = snprintf(id, id_len,
3117 						   "eui.%12phN",
3118 						   cur_id_str);
3119 				break;
3120 			case 16:
3121 				id_size = snprintf(id, id_len,
3122 						   "eui.%16phN",
3123 						   cur_id_str);
3124 				break;
3125 			default:
3126 				break;
3127 			}
3128 			break;
3129 		case 0x3:
3130 			/* NAA */
3131 			cur_id_prio = prio;
3132 			cur_id_size = d[3];
3133 			cur_id_str = d + 4;
3134 			switch (cur_id_size) {
3135 			case 8:
3136 				id_size = snprintf(id, id_len,
3137 						   "naa.%8phN",
3138 						   cur_id_str);
3139 				break;
3140 			case 16:
3141 				id_size = snprintf(id, id_len,
3142 						   "naa.%16phN",
3143 						   cur_id_str);
3144 				break;
3145 			default:
3146 				break;
3147 			}
3148 			break;
3149 		case 0x8:
3150 			/* SCSI name string */
3151 			if (cur_id_size > d[3])
3152 				break;
3153 			/* Prefer others for truncated descriptor */
3154 			if (d[3] > id_len) {
3155 				prio = 2;
3156 				if (cur_id_prio > prio)
3157 					break;
3158 			}
3159 			cur_id_prio = prio;
3160 			cur_id_size = id_size = d[3];
3161 			cur_id_str = d + 4;
3162 			if (cur_id_size >= id_len)
3163 				cur_id_size = id_len - 1;
3164 			memcpy(id, cur_id_str, cur_id_size);
3165 			break;
3166 		default:
3167 			break;
3168 		}
3169 	}
3170 	rcu_read_unlock();
3171 
3172 	return id_size;
3173 }
3174 EXPORT_SYMBOL(scsi_vpd_lun_id);
3175 
3176 /*
3177  * scsi_vpd_tpg_id - return a target port group identifier
3178  * @sdev: SCSI device
3179  *
3180  * Returns the Target Port Group identifier from the information
3181  * froom VPD page 0x83 of the device.
3182  *
3183  * Returns the identifier or error on failure.
3184  */
3185 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3186 {
3187 	const unsigned char *d;
3188 	const struct scsi_vpd *vpd_pg83;
3189 	int group_id = -EAGAIN, rel_port = -1;
3190 
3191 	rcu_read_lock();
3192 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3193 	if (!vpd_pg83) {
3194 		rcu_read_unlock();
3195 		return -ENXIO;
3196 	}
3197 
3198 	d = vpd_pg83->data + 4;
3199 	while (d < vpd_pg83->data + vpd_pg83->len) {
3200 		switch (d[1] & 0xf) {
3201 		case 0x4:
3202 			/* Relative target port */
3203 			rel_port = get_unaligned_be16(&d[6]);
3204 			break;
3205 		case 0x5:
3206 			/* Target port group */
3207 			group_id = get_unaligned_be16(&d[6]);
3208 			break;
3209 		default:
3210 			break;
3211 		}
3212 		d += d[3] + 4;
3213 	}
3214 	rcu_read_unlock();
3215 
3216 	if (group_id >= 0 && rel_id && rel_port != -1)
3217 		*rel_id = rel_port;
3218 
3219 	return group_id;
3220 }
3221 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3222 
3223 /**
3224  * scsi_build_sense - build sense data for a command
3225  * @scmd:	scsi command for which the sense should be formatted
3226  * @desc:	Sense format (non-zero == descriptor format,
3227  *              0 == fixed format)
3228  * @key:	Sense key
3229  * @asc:	Additional sense code
3230  * @ascq:	Additional sense code qualifier
3231  *
3232  **/
3233 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3234 {
3235 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3236 	scmd->result = SAM_STAT_CHECK_CONDITION;
3237 }
3238 EXPORT_SYMBOL_GPL(scsi_build_sense);
3239