xref: /linux/drivers/scsi/scsi_lib.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		2
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	struct kmem_cache	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	return blk_rq_append_bio(q, rq, bio);
267 }
268 
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271 	bio_put(bio);
272 }
273 
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:		request to fill
277  * @sg:		scatterlist
278  * @nsegs:	number of elements
279  * @bufflen:	len of buffer
280  * @gfp:	memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 			   int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289 	struct request_queue *q = rq->q;
290 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 	unsigned int data_len = bufflen, len, bytes, off;
292 	struct page *page;
293 	struct bio *bio = NULL;
294 	int i, err, nr_vecs = 0;
295 
296 	for (i = 0; i < nsegs; i++) {
297 		page = sgl[i].page;
298 		off = sgl[i].offset;
299 		len = sgl[i].length;
300 
301 		while (len > 0 && data_len > 0) {
302 			/*
303 			 * sg sends a scatterlist that is larger than
304 			 * the data_len it wants transferred for certain
305 			 * IO sizes
306 			 */
307 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
308 			bytes = min(bytes, data_len);
309 
310 			if (!bio) {
311 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
312 				nr_pages -= nr_vecs;
313 
314 				bio = bio_alloc(gfp, nr_vecs);
315 				if (!bio) {
316 					err = -ENOMEM;
317 					goto free_bios;
318 				}
319 				bio->bi_end_io = scsi_bi_endio;
320 			}
321 
322 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
323 			    bytes) {
324 				bio_put(bio);
325 				err = -EINVAL;
326 				goto free_bios;
327 			}
328 
329 			if (bio->bi_vcnt >= nr_vecs) {
330 				err = scsi_merge_bio(rq, bio);
331 				if (err) {
332 					bio_endio(bio, 0);
333 					goto free_bios;
334 				}
335 				bio = NULL;
336 			}
337 
338 			page++;
339 			len -= bytes;
340 			data_len -=bytes;
341 			off = 0;
342 		}
343 	}
344 
345 	rq->buffer = rq->data = NULL;
346 	rq->data_len = bufflen;
347 	return 0;
348 
349 free_bios:
350 	while ((bio = rq->bio) != NULL) {
351 		rq->bio = bio->bi_next;
352 		/*
353 		 * call endio instead of bio_put incase it was bounced
354 		 */
355 		bio_endio(bio, 0);
356 	}
357 
358 	return err;
359 }
360 
361 /**
362  * scsi_execute_async - insert request
363  * @sdev:	scsi device
364  * @cmd:	scsi command
365  * @cmd_len:	length of scsi cdb
366  * @data_direction: data direction
367  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
368  * @bufflen:	len of buffer
369  * @use_sg:	if buffer is a scatterlist this is the number of elements
370  * @timeout:	request timeout in seconds
371  * @retries:	number of times to retry request
372  * @flags:	or into request flags
373  **/
374 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
375 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
376 		       int use_sg, int timeout, int retries, void *privdata,
377 		       void (*done)(void *, char *, int, int), gfp_t gfp)
378 {
379 	struct request *req;
380 	struct scsi_io_context *sioc;
381 	int err = 0;
382 	int write = (data_direction == DMA_TO_DEVICE);
383 
384 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
385 	if (!sioc)
386 		return DRIVER_ERROR << 24;
387 
388 	req = blk_get_request(sdev->request_queue, write, gfp);
389 	if (!req)
390 		goto free_sense;
391 	req->cmd_type = REQ_TYPE_BLOCK_PC;
392 	req->cmd_flags |= REQ_QUIET;
393 
394 	if (use_sg)
395 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
396 	else if (bufflen)
397 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
398 
399 	if (err)
400 		goto free_req;
401 
402 	req->cmd_len = cmd_len;
403 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
404 	memcpy(req->cmd, cmd, req->cmd_len);
405 	req->sense = sioc->sense;
406 	req->sense_len = 0;
407 	req->timeout = timeout;
408 	req->retries = retries;
409 	req->end_io_data = sioc;
410 
411 	sioc->data = privdata;
412 	sioc->done = done;
413 
414 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
415 	return 0;
416 
417 free_req:
418 	blk_put_request(req);
419 free_sense:
420 	kmem_cache_free(scsi_io_context_cache, sioc);
421 	return DRIVER_ERROR << 24;
422 }
423 EXPORT_SYMBOL_GPL(scsi_execute_async);
424 
425 /*
426  * Function:    scsi_init_cmd_errh()
427  *
428  * Purpose:     Initialize cmd fields related to error handling.
429  *
430  * Arguments:   cmd	- command that is ready to be queued.
431  *
432  * Notes:       This function has the job of initializing a number of
433  *              fields related to error handling.   Typically this will
434  *              be called once for each command, as required.
435  */
436 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
437 {
438 	cmd->serial_number = 0;
439 	cmd->resid = 0;
440 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
441 	if (cmd->cmd_len == 0)
442 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
443 }
444 
445 void scsi_device_unbusy(struct scsi_device *sdev)
446 {
447 	struct Scsi_Host *shost = sdev->host;
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(shost->host_lock, flags);
451 	shost->host_busy--;
452 	if (unlikely(scsi_host_in_recovery(shost) &&
453 		     (shost->host_failed || shost->host_eh_scheduled)))
454 		scsi_eh_wakeup(shost);
455 	spin_unlock(shost->host_lock);
456 	spin_lock(sdev->request_queue->queue_lock);
457 	sdev->device_busy--;
458 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
459 }
460 
461 /*
462  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
463  * and call blk_run_queue for all the scsi_devices on the target -
464  * including current_sdev first.
465  *
466  * Called with *no* scsi locks held.
467  */
468 static void scsi_single_lun_run(struct scsi_device *current_sdev)
469 {
470 	struct Scsi_Host *shost = current_sdev->host;
471 	struct scsi_device *sdev, *tmp;
472 	struct scsi_target *starget = scsi_target(current_sdev);
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(shost->host_lock, flags);
476 	starget->starget_sdev_user = NULL;
477 	spin_unlock_irqrestore(shost->host_lock, flags);
478 
479 	/*
480 	 * Call blk_run_queue for all LUNs on the target, starting with
481 	 * current_sdev. We race with others (to set starget_sdev_user),
482 	 * but in most cases, we will be first. Ideally, each LU on the
483 	 * target would get some limited time or requests on the target.
484 	 */
485 	blk_run_queue(current_sdev->request_queue);
486 
487 	spin_lock_irqsave(shost->host_lock, flags);
488 	if (starget->starget_sdev_user)
489 		goto out;
490 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
491 			same_target_siblings) {
492 		if (sdev == current_sdev)
493 			continue;
494 		if (scsi_device_get(sdev))
495 			continue;
496 
497 		spin_unlock_irqrestore(shost->host_lock, flags);
498 		blk_run_queue(sdev->request_queue);
499 		spin_lock_irqsave(shost->host_lock, flags);
500 
501 		scsi_device_put(sdev);
502 	}
503  out:
504 	spin_unlock_irqrestore(shost->host_lock, flags);
505 }
506 
507 /*
508  * Function:	scsi_run_queue()
509  *
510  * Purpose:	Select a proper request queue to serve next
511  *
512  * Arguments:	q	- last request's queue
513  *
514  * Returns:     Nothing
515  *
516  * Notes:	The previous command was completely finished, start
517  *		a new one if possible.
518  */
519 static void scsi_run_queue(struct request_queue *q)
520 {
521 	struct scsi_device *sdev = q->queuedata;
522 	struct Scsi_Host *shost = sdev->host;
523 	unsigned long flags;
524 
525 	if (sdev->single_lun)
526 		scsi_single_lun_run(sdev);
527 
528 	spin_lock_irqsave(shost->host_lock, flags);
529 	while (!list_empty(&shost->starved_list) &&
530 	       !shost->host_blocked && !shost->host_self_blocked &&
531 		!((shost->can_queue > 0) &&
532 		  (shost->host_busy >= shost->can_queue))) {
533 		/*
534 		 * As long as shost is accepting commands and we have
535 		 * starved queues, call blk_run_queue. scsi_request_fn
536 		 * drops the queue_lock and can add us back to the
537 		 * starved_list.
538 		 *
539 		 * host_lock protects the starved_list and starved_entry.
540 		 * scsi_request_fn must get the host_lock before checking
541 		 * or modifying starved_list or starved_entry.
542 		 */
543 		sdev = list_entry(shost->starved_list.next,
544 					  struct scsi_device, starved_entry);
545 		list_del_init(&sdev->starved_entry);
546 		spin_unlock_irqrestore(shost->host_lock, flags);
547 
548 
549 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
550 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
551 				      &sdev->request_queue->queue_flags)) {
552 			blk_run_queue(sdev->request_queue);
553 			clear_bit(QUEUE_FLAG_REENTER,
554 				  &sdev->request_queue->queue_flags);
555 		} else
556 			blk_run_queue(sdev->request_queue);
557 
558 		spin_lock_irqsave(shost->host_lock, flags);
559 		if (unlikely(!list_empty(&sdev->starved_entry)))
560 			/*
561 			 * sdev lost a race, and was put back on the
562 			 * starved list. This is unlikely but without this
563 			 * in theory we could loop forever.
564 			 */
565 			break;
566 	}
567 	spin_unlock_irqrestore(shost->host_lock, flags);
568 
569 	blk_run_queue(q);
570 }
571 
572 /*
573  * Function:	scsi_requeue_command()
574  *
575  * Purpose:	Handle post-processing of completed commands.
576  *
577  * Arguments:	q	- queue to operate on
578  *		cmd	- command that may need to be requeued.
579  *
580  * Returns:	Nothing
581  *
582  * Notes:	After command completion, there may be blocks left
583  *		over which weren't finished by the previous command
584  *		this can be for a number of reasons - the main one is
585  *		I/O errors in the middle of the request, in which case
586  *		we need to request the blocks that come after the bad
587  *		sector.
588  * Notes:	Upon return, cmd is a stale pointer.
589  */
590 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
591 {
592 	struct request *req = cmd->request;
593 	unsigned long flags;
594 
595 	scsi_unprep_request(req);
596 	spin_lock_irqsave(q->queue_lock, flags);
597 	blk_requeue_request(q, req);
598 	spin_unlock_irqrestore(q->queue_lock, flags);
599 
600 	scsi_run_queue(q);
601 }
602 
603 void scsi_next_command(struct scsi_cmnd *cmd)
604 {
605 	struct scsi_device *sdev = cmd->device;
606 	struct request_queue *q = sdev->request_queue;
607 
608 	/* need to hold a reference on the device before we let go of the cmd */
609 	get_device(&sdev->sdev_gendev);
610 
611 	scsi_put_command(cmd);
612 	scsi_run_queue(q);
613 
614 	/* ok to remove device now */
615 	put_device(&sdev->sdev_gendev);
616 }
617 
618 void scsi_run_host_queues(struct Scsi_Host *shost)
619 {
620 	struct scsi_device *sdev;
621 
622 	shost_for_each_device(sdev, shost)
623 		scsi_run_queue(sdev->request_queue);
624 }
625 
626 /*
627  * Function:    scsi_end_request()
628  *
629  * Purpose:     Post-processing of completed commands (usually invoked at end
630  *		of upper level post-processing and scsi_io_completion).
631  *
632  * Arguments:   cmd	 - command that is complete.
633  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
634  *              bytes    - number of bytes of completed I/O
635  *		requeue  - indicates whether we should requeue leftovers.
636  *
637  * Lock status: Assumed that lock is not held upon entry.
638  *
639  * Returns:     cmd if requeue required, NULL otherwise.
640  *
641  * Notes:       This is called for block device requests in order to
642  *              mark some number of sectors as complete.
643  *
644  *		We are guaranteeing that the request queue will be goosed
645  *		at some point during this call.
646  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
647  */
648 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
649 					  int bytes, int requeue)
650 {
651 	struct request_queue *q = cmd->device->request_queue;
652 	struct request *req = cmd->request;
653 	unsigned long flags;
654 
655 	/*
656 	 * If there are blocks left over at the end, set up the command
657 	 * to queue the remainder of them.
658 	 */
659 	if (end_that_request_chunk(req, uptodate, bytes)) {
660 		int leftover = (req->hard_nr_sectors << 9);
661 
662 		if (blk_pc_request(req))
663 			leftover = req->data_len;
664 
665 		/* kill remainder if no retrys */
666 		if (!uptodate && blk_noretry_request(req))
667 			end_that_request_chunk(req, 0, leftover);
668 		else {
669 			if (requeue) {
670 				/*
671 				 * Bleah.  Leftovers again.  Stick the
672 				 * leftovers in the front of the
673 				 * queue, and goose the queue again.
674 				 */
675 				scsi_requeue_command(q, cmd);
676 				cmd = NULL;
677 			}
678 			return cmd;
679 		}
680 	}
681 
682 	add_disk_randomness(req->rq_disk);
683 
684 	spin_lock_irqsave(q->queue_lock, flags);
685 	if (blk_rq_tagged(req))
686 		blk_queue_end_tag(q, req);
687 	end_that_request_last(req, uptodate);
688 	spin_unlock_irqrestore(q->queue_lock, flags);
689 
690 	/*
691 	 * This will goose the queue request function at the end, so we don't
692 	 * need to worry about launching another command.
693 	 */
694 	scsi_next_command(cmd);
695 	return NULL;
696 }
697 
698 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
699 {
700 	struct scsi_host_sg_pool *sgp;
701 	struct scatterlist *sgl;
702 
703 	BUG_ON(!cmd->use_sg);
704 
705 	switch (cmd->use_sg) {
706 	case 1 ... 8:
707 		cmd->sglist_len = 0;
708 		break;
709 	case 9 ... 16:
710 		cmd->sglist_len = 1;
711 		break;
712 	case 17 ... 32:
713 		cmd->sglist_len = 2;
714 		break;
715 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
716 	case 33 ... 64:
717 		cmd->sglist_len = 3;
718 		break;
719 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
720 	case 65 ... 128:
721 		cmd->sglist_len = 4;
722 		break;
723 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
724 	case 129 ... 256:
725 		cmd->sglist_len = 5;
726 		break;
727 #endif
728 #endif
729 #endif
730 	default:
731 		return NULL;
732 	}
733 
734 	sgp = scsi_sg_pools + cmd->sglist_len;
735 	sgl = mempool_alloc(sgp->pool, gfp_mask);
736 	return sgl;
737 }
738 
739 EXPORT_SYMBOL(scsi_alloc_sgtable);
740 
741 void scsi_free_sgtable(struct scatterlist *sgl, int index)
742 {
743 	struct scsi_host_sg_pool *sgp;
744 
745 	BUG_ON(index >= SG_MEMPOOL_NR);
746 
747 	sgp = scsi_sg_pools + index;
748 	mempool_free(sgl, sgp->pool);
749 }
750 
751 EXPORT_SYMBOL(scsi_free_sgtable);
752 
753 /*
754  * Function:    scsi_release_buffers()
755  *
756  * Purpose:     Completion processing for block device I/O requests.
757  *
758  * Arguments:   cmd	- command that we are bailing.
759  *
760  * Lock status: Assumed that no lock is held upon entry.
761  *
762  * Returns:     Nothing
763  *
764  * Notes:       In the event that an upper level driver rejects a
765  *		command, we must release resources allocated during
766  *		the __init_io() function.  Primarily this would involve
767  *		the scatter-gather table, and potentially any bounce
768  *		buffers.
769  */
770 static void scsi_release_buffers(struct scsi_cmnd *cmd)
771 {
772 	if (cmd->use_sg)
773 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
774 
775 	/*
776 	 * Zero these out.  They now point to freed memory, and it is
777 	 * dangerous to hang onto the pointers.
778 	 */
779 	cmd->request_buffer = NULL;
780 	cmd->request_bufflen = 0;
781 }
782 
783 /*
784  * Function:    scsi_io_completion()
785  *
786  * Purpose:     Completion processing for block device I/O requests.
787  *
788  * Arguments:   cmd   - command that is finished.
789  *
790  * Lock status: Assumed that no lock is held upon entry.
791  *
792  * Returns:     Nothing
793  *
794  * Notes:       This function is matched in terms of capabilities to
795  *              the function that created the scatter-gather list.
796  *              In other words, if there are no bounce buffers
797  *              (the normal case for most drivers), we don't need
798  *              the logic to deal with cleaning up afterwards.
799  *
800  *		We must do one of several things here:
801  *
802  *		a) Call scsi_end_request.  This will finish off the
803  *		   specified number of sectors.  If we are done, the
804  *		   command block will be released, and the queue
805  *		   function will be goosed.  If we are not done, then
806  *		   scsi_end_request will directly goose the queue.
807  *
808  *		b) We can just use scsi_requeue_command() here.  This would
809  *		   be used if we just wanted to retry, for example.
810  */
811 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
812 {
813 	int result = cmd->result;
814 	int this_count = cmd->request_bufflen;
815 	struct request_queue *q = cmd->device->request_queue;
816 	struct request *req = cmd->request;
817 	int clear_errors = 1;
818 	struct scsi_sense_hdr sshdr;
819 	int sense_valid = 0;
820 	int sense_deferred = 0;
821 
822 	scsi_release_buffers(cmd);
823 
824 	if (result) {
825 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
826 		if (sense_valid)
827 			sense_deferred = scsi_sense_is_deferred(&sshdr);
828 	}
829 
830 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
831 		req->errors = result;
832 		if (result) {
833 			clear_errors = 0;
834 			if (sense_valid && req->sense) {
835 				/*
836 				 * SG_IO wants current and deferred errors
837 				 */
838 				int len = 8 + cmd->sense_buffer[7];
839 
840 				if (len > SCSI_SENSE_BUFFERSIZE)
841 					len = SCSI_SENSE_BUFFERSIZE;
842 				memcpy(req->sense, cmd->sense_buffer,  len);
843 				req->sense_len = len;
844 			}
845 		}
846 		req->data_len = cmd->resid;
847 	}
848 
849 	/*
850 	 * Next deal with any sectors which we were able to correctly
851 	 * handle.
852 	 */
853 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
854 				      "%d bytes done.\n",
855 				      req->nr_sectors, good_bytes));
856 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
857 
858 	if (clear_errors)
859 		req->errors = 0;
860 
861 	/* A number of bytes were successfully read.  If there
862 	 * are leftovers and there is some kind of error
863 	 * (result != 0), retry the rest.
864 	 */
865 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
866 		return;
867 
868 	/* good_bytes = 0, or (inclusive) there were leftovers and
869 	 * result = 0, so scsi_end_request couldn't retry.
870 	 */
871 	if (sense_valid && !sense_deferred) {
872 		switch (sshdr.sense_key) {
873 		case UNIT_ATTENTION:
874 			if (cmd->device->removable) {
875 				/* Detected disc change.  Set a bit
876 				 * and quietly refuse further access.
877 				 */
878 				cmd->device->changed = 1;
879 				scsi_end_request(cmd, 0, this_count, 1);
880 				return;
881 			} else {
882 				/* Must have been a power glitch, or a
883 				 * bus reset.  Could not have been a
884 				 * media change, so we just retry the
885 				 * request and see what happens.
886 				 */
887 				scsi_requeue_command(q, cmd);
888 				return;
889 			}
890 			break;
891 		case ILLEGAL_REQUEST:
892 			/* If we had an ILLEGAL REQUEST returned, then
893 			 * we may have performed an unsupported
894 			 * command.  The only thing this should be
895 			 * would be a ten byte read where only a six
896 			 * byte read was supported.  Also, on a system
897 			 * where READ CAPACITY failed, we may have
898 			 * read past the end of the disk.
899 			 */
900 			if ((cmd->device->use_10_for_rw &&
901 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
902 			    (cmd->cmnd[0] == READ_10 ||
903 			     cmd->cmnd[0] == WRITE_10)) {
904 				cmd->device->use_10_for_rw = 0;
905 				/* This will cause a retry with a
906 				 * 6-byte command.
907 				 */
908 				scsi_requeue_command(q, cmd);
909 				return;
910 			} else {
911 				scsi_end_request(cmd, 0, this_count, 1);
912 				return;
913 			}
914 			break;
915 		case NOT_READY:
916 			/* If the device is in the process of becoming
917 			 * ready, or has a temporary blockage, retry.
918 			 */
919 			if (sshdr.asc == 0x04) {
920 				switch (sshdr.ascq) {
921 				case 0x01: /* becoming ready */
922 				case 0x04: /* format in progress */
923 				case 0x05: /* rebuild in progress */
924 				case 0x06: /* recalculation in progress */
925 				case 0x07: /* operation in progress */
926 				case 0x08: /* Long write in progress */
927 				case 0x09: /* self test in progress */
928 					scsi_requeue_command(q, cmd);
929 					return;
930 				default:
931 					break;
932 				}
933 			}
934 			if (!(req->cmd_flags & REQ_QUIET))
935 				scsi_cmd_print_sense_hdr(cmd,
936 							 "Device not ready",
937 							 &sshdr);
938 
939 			scsi_end_request(cmd, 0, this_count, 1);
940 			return;
941 		case VOLUME_OVERFLOW:
942 			if (!(req->cmd_flags & REQ_QUIET)) {
943 				scmd_printk(KERN_INFO, cmd,
944 					    "Volume overflow, CDB: ");
945 				__scsi_print_command(cmd->cmnd);
946 				scsi_print_sense("", cmd);
947 			}
948 			/* See SSC3rXX or current. */
949 			scsi_end_request(cmd, 0, this_count, 1);
950 			return;
951 		default:
952 			break;
953 		}
954 	}
955 	if (host_byte(result) == DID_RESET) {
956 		/* Third party bus reset or reset for error recovery
957 		 * reasons.  Just retry the request and see what
958 		 * happens.
959 		 */
960 		scsi_requeue_command(q, cmd);
961 		return;
962 	}
963 	if (result) {
964 		if (!(req->cmd_flags & REQ_QUIET)) {
965 			scsi_print_result(cmd);
966 			if (driver_byte(result) & DRIVER_SENSE)
967 				scsi_print_sense("", cmd);
968 		}
969 	}
970 	scsi_end_request(cmd, 0, this_count, !result);
971 }
972 
973 /*
974  * Function:    scsi_init_io()
975  *
976  * Purpose:     SCSI I/O initialize function.
977  *
978  * Arguments:   cmd   - Command descriptor we wish to initialize
979  *
980  * Returns:     0 on success
981  *		BLKPREP_DEFER if the failure is retryable
982  *		BLKPREP_KILL if the failure is fatal
983  */
984 static int scsi_init_io(struct scsi_cmnd *cmd)
985 {
986 	struct request     *req = cmd->request;
987 	struct scatterlist *sgpnt;
988 	int		   count;
989 
990 	/*
991 	 * We used to not use scatter-gather for single segment request,
992 	 * but now we do (it makes highmem I/O easier to support without
993 	 * kmapping pages)
994 	 */
995 	cmd->use_sg = req->nr_phys_segments;
996 
997 	/*
998 	 * If sg table allocation fails, requeue request later.
999 	 */
1000 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1001 	if (unlikely(!sgpnt)) {
1002 		scsi_unprep_request(req);
1003 		return BLKPREP_DEFER;
1004 	}
1005 
1006 	req->buffer = NULL;
1007 	cmd->request_buffer = (char *) sgpnt;
1008 	if (blk_pc_request(req))
1009 		cmd->request_bufflen = req->data_len;
1010 	else
1011 		cmd->request_bufflen = req->nr_sectors << 9;
1012 
1013 	/*
1014 	 * Next, walk the list, and fill in the addresses and sizes of
1015 	 * each segment.
1016 	 */
1017 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1018 	if (likely(count <= cmd->use_sg)) {
1019 		cmd->use_sg = count;
1020 		return BLKPREP_OK;
1021 	}
1022 
1023 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1024 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1025 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1026 			req->current_nr_sectors);
1027 
1028 	return BLKPREP_KILL;
1029 }
1030 
1031 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1032 		struct request *req)
1033 {
1034 	struct scsi_cmnd *cmd;
1035 
1036 	if (!req->special) {
1037 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1038 		if (unlikely(!cmd))
1039 			return NULL;
1040 		req->special = cmd;
1041 	} else {
1042 		cmd = req->special;
1043 	}
1044 
1045 	/* pull a tag out of the request if we have one */
1046 	cmd->tag = req->tag;
1047 	cmd->request = req;
1048 
1049 	return cmd;
1050 }
1051 
1052 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1053 {
1054 	struct scsi_cmnd *cmd;
1055 	int ret = scsi_prep_state_check(sdev, req);
1056 
1057 	if (ret != BLKPREP_OK)
1058 		return ret;
1059 
1060 	cmd = scsi_get_cmd_from_req(sdev, req);
1061 	if (unlikely(!cmd))
1062 		return BLKPREP_DEFER;
1063 
1064 	/*
1065 	 * BLOCK_PC requests may transfer data, in which case they must
1066 	 * a bio attached to them.  Or they might contain a SCSI command
1067 	 * that does not transfer data, in which case they may optionally
1068 	 * submit a request without an attached bio.
1069 	 */
1070 	if (req->bio) {
1071 		int ret;
1072 
1073 		BUG_ON(!req->nr_phys_segments);
1074 
1075 		ret = scsi_init_io(cmd);
1076 		if (unlikely(ret))
1077 			return ret;
1078 	} else {
1079 		BUG_ON(req->data_len);
1080 		BUG_ON(req->data);
1081 
1082 		cmd->request_bufflen = 0;
1083 		cmd->request_buffer = NULL;
1084 		cmd->use_sg = 0;
1085 		req->buffer = NULL;
1086 	}
1087 
1088 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1089 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1090 	cmd->cmd_len = req->cmd_len;
1091 	if (!req->data_len)
1092 		cmd->sc_data_direction = DMA_NONE;
1093 	else if (rq_data_dir(req) == WRITE)
1094 		cmd->sc_data_direction = DMA_TO_DEVICE;
1095 	else
1096 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1097 
1098 	cmd->transfersize = req->data_len;
1099 	cmd->allowed = req->retries;
1100 	cmd->timeout_per_command = req->timeout;
1101 	return BLKPREP_OK;
1102 }
1103 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1104 
1105 /*
1106  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1107  * from filesystems that still need to be translated to SCSI CDBs from
1108  * the ULD.
1109  */
1110 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1111 {
1112 	struct scsi_cmnd *cmd;
1113 	int ret = scsi_prep_state_check(sdev, req);
1114 
1115 	if (ret != BLKPREP_OK)
1116 		return ret;
1117 	/*
1118 	 * Filesystem requests must transfer data.
1119 	 */
1120 	BUG_ON(!req->nr_phys_segments);
1121 
1122 	cmd = scsi_get_cmd_from_req(sdev, req);
1123 	if (unlikely(!cmd))
1124 		return BLKPREP_DEFER;
1125 
1126 	return scsi_init_io(cmd);
1127 }
1128 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1129 
1130 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1131 {
1132 	int ret = BLKPREP_OK;
1133 
1134 	/*
1135 	 * If the device is not in running state we will reject some
1136 	 * or all commands.
1137 	 */
1138 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1139 		switch (sdev->sdev_state) {
1140 		case SDEV_OFFLINE:
1141 			/*
1142 			 * If the device is offline we refuse to process any
1143 			 * commands.  The device must be brought online
1144 			 * before trying any recovery commands.
1145 			 */
1146 			sdev_printk(KERN_ERR, sdev,
1147 				    "rejecting I/O to offline device\n");
1148 			ret = BLKPREP_KILL;
1149 			break;
1150 		case SDEV_DEL:
1151 			/*
1152 			 * If the device is fully deleted, we refuse to
1153 			 * process any commands as well.
1154 			 */
1155 			sdev_printk(KERN_ERR, sdev,
1156 				    "rejecting I/O to dead device\n");
1157 			ret = BLKPREP_KILL;
1158 			break;
1159 		case SDEV_QUIESCE:
1160 		case SDEV_BLOCK:
1161 			/*
1162 			 * If the devices is blocked we defer normal commands.
1163 			 */
1164 			if (!(req->cmd_flags & REQ_PREEMPT))
1165 				ret = BLKPREP_DEFER;
1166 			break;
1167 		default:
1168 			/*
1169 			 * For any other not fully online state we only allow
1170 			 * special commands.  In particular any user initiated
1171 			 * command is not allowed.
1172 			 */
1173 			if (!(req->cmd_flags & REQ_PREEMPT))
1174 				ret = BLKPREP_KILL;
1175 			break;
1176 		}
1177 	}
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL(scsi_prep_state_check);
1181 
1182 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1183 {
1184 	struct scsi_device *sdev = q->queuedata;
1185 
1186 	switch (ret) {
1187 	case BLKPREP_KILL:
1188 		req->errors = DID_NO_CONNECT << 16;
1189 		/* release the command and kill it */
1190 		if (req->special) {
1191 			struct scsi_cmnd *cmd = req->special;
1192 			scsi_release_buffers(cmd);
1193 			scsi_put_command(cmd);
1194 			req->special = NULL;
1195 		}
1196 		break;
1197 	case BLKPREP_DEFER:
1198 		/*
1199 		 * If we defer, the elv_next_request() returns NULL, but the
1200 		 * queue must be restarted, so we plug here if no returning
1201 		 * command will automatically do that.
1202 		 */
1203 		if (sdev->device_busy == 0)
1204 			blk_plug_device(q);
1205 		break;
1206 	default:
1207 		req->cmd_flags |= REQ_DONTPREP;
1208 	}
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(scsi_prep_return);
1213 
1214 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1215 {
1216 	struct scsi_device *sdev = q->queuedata;
1217 	int ret = BLKPREP_KILL;
1218 
1219 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1220 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1221 	return scsi_prep_return(q, req, ret);
1222 }
1223 
1224 /*
1225  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1226  * return 0.
1227  *
1228  * Called with the queue_lock held.
1229  */
1230 static inline int scsi_dev_queue_ready(struct request_queue *q,
1231 				  struct scsi_device *sdev)
1232 {
1233 	if (sdev->device_busy >= sdev->queue_depth)
1234 		return 0;
1235 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1236 		/*
1237 		 * unblock after device_blocked iterates to zero
1238 		 */
1239 		if (--sdev->device_blocked == 0) {
1240 			SCSI_LOG_MLQUEUE(3,
1241 				   sdev_printk(KERN_INFO, sdev,
1242 				   "unblocking device at zero depth\n"));
1243 		} else {
1244 			blk_plug_device(q);
1245 			return 0;
1246 		}
1247 	}
1248 	if (sdev->device_blocked)
1249 		return 0;
1250 
1251 	return 1;
1252 }
1253 
1254 /*
1255  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1256  * return 0. We must end up running the queue again whenever 0 is
1257  * returned, else IO can hang.
1258  *
1259  * Called with host_lock held.
1260  */
1261 static inline int scsi_host_queue_ready(struct request_queue *q,
1262 				   struct Scsi_Host *shost,
1263 				   struct scsi_device *sdev)
1264 {
1265 	if (scsi_host_in_recovery(shost))
1266 		return 0;
1267 	if (shost->host_busy == 0 && shost->host_blocked) {
1268 		/*
1269 		 * unblock after host_blocked iterates to zero
1270 		 */
1271 		if (--shost->host_blocked == 0) {
1272 			SCSI_LOG_MLQUEUE(3,
1273 				printk("scsi%d unblocking host at zero depth\n",
1274 					shost->host_no));
1275 		} else {
1276 			blk_plug_device(q);
1277 			return 0;
1278 		}
1279 	}
1280 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1281 	    shost->host_blocked || shost->host_self_blocked) {
1282 		if (list_empty(&sdev->starved_entry))
1283 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1284 		return 0;
1285 	}
1286 
1287 	/* We're OK to process the command, so we can't be starved */
1288 	if (!list_empty(&sdev->starved_entry))
1289 		list_del_init(&sdev->starved_entry);
1290 
1291 	return 1;
1292 }
1293 
1294 /*
1295  * Kill a request for a dead device
1296  */
1297 static void scsi_kill_request(struct request *req, struct request_queue *q)
1298 {
1299 	struct scsi_cmnd *cmd = req->special;
1300 	struct scsi_device *sdev = cmd->device;
1301 	struct Scsi_Host *shost = sdev->host;
1302 
1303 	blkdev_dequeue_request(req);
1304 
1305 	if (unlikely(cmd == NULL)) {
1306 		printk(KERN_CRIT "impossible request in %s.\n",
1307 				 __FUNCTION__);
1308 		BUG();
1309 	}
1310 
1311 	scsi_init_cmd_errh(cmd);
1312 	cmd->result = DID_NO_CONNECT << 16;
1313 	atomic_inc(&cmd->device->iorequest_cnt);
1314 
1315 	/*
1316 	 * SCSI request completion path will do scsi_device_unbusy(),
1317 	 * bump busy counts.  To bump the counters, we need to dance
1318 	 * with the locks as normal issue path does.
1319 	 */
1320 	sdev->device_busy++;
1321 	spin_unlock(sdev->request_queue->queue_lock);
1322 	spin_lock(shost->host_lock);
1323 	shost->host_busy++;
1324 	spin_unlock(shost->host_lock);
1325 	spin_lock(sdev->request_queue->queue_lock);
1326 
1327 	__scsi_done(cmd);
1328 }
1329 
1330 static void scsi_softirq_done(struct request *rq)
1331 {
1332 	struct scsi_cmnd *cmd = rq->completion_data;
1333 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1334 	int disposition;
1335 
1336 	INIT_LIST_HEAD(&cmd->eh_entry);
1337 
1338 	disposition = scsi_decide_disposition(cmd);
1339 	if (disposition != SUCCESS &&
1340 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1341 		sdev_printk(KERN_ERR, cmd->device,
1342 			    "timing out command, waited %lus\n",
1343 			    wait_for/HZ);
1344 		disposition = SUCCESS;
1345 	}
1346 
1347 	scsi_log_completion(cmd, disposition);
1348 
1349 	switch (disposition) {
1350 		case SUCCESS:
1351 			scsi_finish_command(cmd);
1352 			break;
1353 		case NEEDS_RETRY:
1354 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1355 			break;
1356 		case ADD_TO_MLQUEUE:
1357 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1358 			break;
1359 		default:
1360 			if (!scsi_eh_scmd_add(cmd, 0))
1361 				scsi_finish_command(cmd);
1362 	}
1363 }
1364 
1365 /*
1366  * Function:    scsi_request_fn()
1367  *
1368  * Purpose:     Main strategy routine for SCSI.
1369  *
1370  * Arguments:   q       - Pointer to actual queue.
1371  *
1372  * Returns:     Nothing
1373  *
1374  * Lock status: IO request lock assumed to be held when called.
1375  */
1376 static void scsi_request_fn(struct request_queue *q)
1377 {
1378 	struct scsi_device *sdev = q->queuedata;
1379 	struct Scsi_Host *shost;
1380 	struct scsi_cmnd *cmd;
1381 	struct request *req;
1382 
1383 	if (!sdev) {
1384 		printk("scsi: killing requests for dead queue\n");
1385 		while ((req = elv_next_request(q)) != NULL)
1386 			scsi_kill_request(req, q);
1387 		return;
1388 	}
1389 
1390 	if(!get_device(&sdev->sdev_gendev))
1391 		/* We must be tearing the block queue down already */
1392 		return;
1393 
1394 	/*
1395 	 * To start with, we keep looping until the queue is empty, or until
1396 	 * the host is no longer able to accept any more requests.
1397 	 */
1398 	shost = sdev->host;
1399 	while (!blk_queue_plugged(q)) {
1400 		int rtn;
1401 		/*
1402 		 * get next queueable request.  We do this early to make sure
1403 		 * that the request is fully prepared even if we cannot
1404 		 * accept it.
1405 		 */
1406 		req = elv_next_request(q);
1407 		if (!req || !scsi_dev_queue_ready(q, sdev))
1408 			break;
1409 
1410 		if (unlikely(!scsi_device_online(sdev))) {
1411 			sdev_printk(KERN_ERR, sdev,
1412 				    "rejecting I/O to offline device\n");
1413 			scsi_kill_request(req, q);
1414 			continue;
1415 		}
1416 
1417 
1418 		/*
1419 		 * Remove the request from the request list.
1420 		 */
1421 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1422 			blkdev_dequeue_request(req);
1423 		sdev->device_busy++;
1424 
1425 		spin_unlock(q->queue_lock);
1426 		cmd = req->special;
1427 		if (unlikely(cmd == NULL)) {
1428 			printk(KERN_CRIT "impossible request in %s.\n"
1429 					 "please mail a stack trace to "
1430 					 "linux-scsi@vger.kernel.org\n",
1431 					 __FUNCTION__);
1432 			blk_dump_rq_flags(req, "foo");
1433 			BUG();
1434 		}
1435 		spin_lock(shost->host_lock);
1436 
1437 		if (!scsi_host_queue_ready(q, shost, sdev))
1438 			goto not_ready;
1439 		if (sdev->single_lun) {
1440 			if (scsi_target(sdev)->starget_sdev_user &&
1441 			    scsi_target(sdev)->starget_sdev_user != sdev)
1442 				goto not_ready;
1443 			scsi_target(sdev)->starget_sdev_user = sdev;
1444 		}
1445 		shost->host_busy++;
1446 
1447 		/*
1448 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1449 		 *		take the lock again.
1450 		 */
1451 		spin_unlock_irq(shost->host_lock);
1452 
1453 		/*
1454 		 * Finally, initialize any error handling parameters, and set up
1455 		 * the timers for timeouts.
1456 		 */
1457 		scsi_init_cmd_errh(cmd);
1458 
1459 		/*
1460 		 * Dispatch the command to the low-level driver.
1461 		 */
1462 		rtn = scsi_dispatch_cmd(cmd);
1463 		spin_lock_irq(q->queue_lock);
1464 		if(rtn) {
1465 			/* we're refusing the command; because of
1466 			 * the way locks get dropped, we need to
1467 			 * check here if plugging is required */
1468 			if(sdev->device_busy == 0)
1469 				blk_plug_device(q);
1470 
1471 			break;
1472 		}
1473 	}
1474 
1475 	goto out;
1476 
1477  not_ready:
1478 	spin_unlock_irq(shost->host_lock);
1479 
1480 	/*
1481 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1482 	 * must return with queue_lock held.
1483 	 *
1484 	 * Decrementing device_busy without checking it is OK, as all such
1485 	 * cases (host limits or settings) should run the queue at some
1486 	 * later time.
1487 	 */
1488 	spin_lock_irq(q->queue_lock);
1489 	blk_requeue_request(q, req);
1490 	sdev->device_busy--;
1491 	if(sdev->device_busy == 0)
1492 		blk_plug_device(q);
1493  out:
1494 	/* must be careful here...if we trigger the ->remove() function
1495 	 * we cannot be holding the q lock */
1496 	spin_unlock_irq(q->queue_lock);
1497 	put_device(&sdev->sdev_gendev);
1498 	spin_lock_irq(q->queue_lock);
1499 }
1500 
1501 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1502 {
1503 	struct device *host_dev;
1504 	u64 bounce_limit = 0xffffffff;
1505 
1506 	if (shost->unchecked_isa_dma)
1507 		return BLK_BOUNCE_ISA;
1508 	/*
1509 	 * Platforms with virtual-DMA translation
1510 	 * hardware have no practical limit.
1511 	 */
1512 	if (!PCI_DMA_BUS_IS_PHYS)
1513 		return BLK_BOUNCE_ANY;
1514 
1515 	host_dev = scsi_get_device(shost);
1516 	if (host_dev && host_dev->dma_mask)
1517 		bounce_limit = *host_dev->dma_mask;
1518 
1519 	return bounce_limit;
1520 }
1521 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1522 
1523 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1524 					 request_fn_proc *request_fn)
1525 {
1526 	struct request_queue *q;
1527 
1528 	q = blk_init_queue(request_fn, NULL);
1529 	if (!q)
1530 		return NULL;
1531 
1532 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1533 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1534 	blk_queue_max_sectors(q, shost->max_sectors);
1535 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1536 	blk_queue_segment_boundary(q, shost->dma_boundary);
1537 
1538 	if (!shost->use_clustering)
1539 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1540 	return q;
1541 }
1542 EXPORT_SYMBOL(__scsi_alloc_queue);
1543 
1544 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1545 {
1546 	struct request_queue *q;
1547 
1548 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1549 	if (!q)
1550 		return NULL;
1551 
1552 	blk_queue_prep_rq(q, scsi_prep_fn);
1553 	blk_queue_softirq_done(q, scsi_softirq_done);
1554 	return q;
1555 }
1556 
1557 void scsi_free_queue(struct request_queue *q)
1558 {
1559 	blk_cleanup_queue(q);
1560 }
1561 
1562 /*
1563  * Function:    scsi_block_requests()
1564  *
1565  * Purpose:     Utility function used by low-level drivers to prevent further
1566  *		commands from being queued to the device.
1567  *
1568  * Arguments:   shost       - Host in question
1569  *
1570  * Returns:     Nothing
1571  *
1572  * Lock status: No locks are assumed held.
1573  *
1574  * Notes:       There is no timer nor any other means by which the requests
1575  *		get unblocked other than the low-level driver calling
1576  *		scsi_unblock_requests().
1577  */
1578 void scsi_block_requests(struct Scsi_Host *shost)
1579 {
1580 	shost->host_self_blocked = 1;
1581 }
1582 EXPORT_SYMBOL(scsi_block_requests);
1583 
1584 /*
1585  * Function:    scsi_unblock_requests()
1586  *
1587  * Purpose:     Utility function used by low-level drivers to allow further
1588  *		commands from being queued to the device.
1589  *
1590  * Arguments:   shost       - Host in question
1591  *
1592  * Returns:     Nothing
1593  *
1594  * Lock status: No locks are assumed held.
1595  *
1596  * Notes:       There is no timer nor any other means by which the requests
1597  *		get unblocked other than the low-level driver calling
1598  *		scsi_unblock_requests().
1599  *
1600  *		This is done as an API function so that changes to the
1601  *		internals of the scsi mid-layer won't require wholesale
1602  *		changes to drivers that use this feature.
1603  */
1604 void scsi_unblock_requests(struct Scsi_Host *shost)
1605 {
1606 	shost->host_self_blocked = 0;
1607 	scsi_run_host_queues(shost);
1608 }
1609 EXPORT_SYMBOL(scsi_unblock_requests);
1610 
1611 int __init scsi_init_queue(void)
1612 {
1613 	int i;
1614 
1615 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1616 					sizeof(struct scsi_io_context),
1617 					0, 0, NULL);
1618 	if (!scsi_io_context_cache) {
1619 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1620 		return -ENOMEM;
1621 	}
1622 
1623 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1624 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1625 		int size = sgp->size * sizeof(struct scatterlist);
1626 
1627 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1628 				SLAB_HWCACHE_ALIGN, NULL);
1629 		if (!sgp->slab) {
1630 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1631 					sgp->name);
1632 		}
1633 
1634 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1635 						     sgp->slab);
1636 		if (!sgp->pool) {
1637 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1638 					sgp->name);
1639 		}
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 void scsi_exit_queue(void)
1646 {
1647 	int i;
1648 
1649 	kmem_cache_destroy(scsi_io_context_cache);
1650 
1651 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1652 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1653 		mempool_destroy(sgp->pool);
1654 		kmem_cache_destroy(sgp->slab);
1655 	}
1656 }
1657 
1658 /**
1659  *	scsi_mode_select - issue a mode select
1660  *	@sdev:	SCSI device to be queried
1661  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1662  *	@sp:	Save page bit (0 == don't save, 1 == save)
1663  *	@modepage: mode page being requested
1664  *	@buffer: request buffer (may not be smaller than eight bytes)
1665  *	@len:	length of request buffer.
1666  *	@timeout: command timeout
1667  *	@retries: number of retries before failing
1668  *	@data: returns a structure abstracting the mode header data
1669  *	@sense: place to put sense data (or NULL if no sense to be collected).
1670  *		must be SCSI_SENSE_BUFFERSIZE big.
1671  *
1672  *	Returns zero if successful; negative error number or scsi
1673  *	status on error
1674  *
1675  */
1676 int
1677 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1678 		 unsigned char *buffer, int len, int timeout, int retries,
1679 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1680 {
1681 	unsigned char cmd[10];
1682 	unsigned char *real_buffer;
1683 	int ret;
1684 
1685 	memset(cmd, 0, sizeof(cmd));
1686 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1687 
1688 	if (sdev->use_10_for_ms) {
1689 		if (len > 65535)
1690 			return -EINVAL;
1691 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1692 		if (!real_buffer)
1693 			return -ENOMEM;
1694 		memcpy(real_buffer + 8, buffer, len);
1695 		len += 8;
1696 		real_buffer[0] = 0;
1697 		real_buffer[1] = 0;
1698 		real_buffer[2] = data->medium_type;
1699 		real_buffer[3] = data->device_specific;
1700 		real_buffer[4] = data->longlba ? 0x01 : 0;
1701 		real_buffer[5] = 0;
1702 		real_buffer[6] = data->block_descriptor_length >> 8;
1703 		real_buffer[7] = data->block_descriptor_length;
1704 
1705 		cmd[0] = MODE_SELECT_10;
1706 		cmd[7] = len >> 8;
1707 		cmd[8] = len;
1708 	} else {
1709 		if (len > 255 || data->block_descriptor_length > 255 ||
1710 		    data->longlba)
1711 			return -EINVAL;
1712 
1713 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1714 		if (!real_buffer)
1715 			return -ENOMEM;
1716 		memcpy(real_buffer + 4, buffer, len);
1717 		len += 4;
1718 		real_buffer[0] = 0;
1719 		real_buffer[1] = data->medium_type;
1720 		real_buffer[2] = data->device_specific;
1721 		real_buffer[3] = data->block_descriptor_length;
1722 
1723 
1724 		cmd[0] = MODE_SELECT;
1725 		cmd[4] = len;
1726 	}
1727 
1728 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1729 			       sshdr, timeout, retries);
1730 	kfree(real_buffer);
1731 	return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(scsi_mode_select);
1734 
1735 /**
1736  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1737  *		six bytes if necessary.
1738  *	@sdev:	SCSI device to be queried
1739  *	@dbd:	set if mode sense will allow block descriptors to be returned
1740  *	@modepage: mode page being requested
1741  *	@buffer: request buffer (may not be smaller than eight bytes)
1742  *	@len:	length of request buffer.
1743  *	@timeout: command timeout
1744  *	@retries: number of retries before failing
1745  *	@data: returns a structure abstracting the mode header data
1746  *	@sense: place to put sense data (or NULL if no sense to be collected).
1747  *		must be SCSI_SENSE_BUFFERSIZE big.
1748  *
1749  *	Returns zero if unsuccessful, or the header offset (either 4
1750  *	or 8 depending on whether a six or ten byte command was
1751  *	issued) if successful.
1752  **/
1753 int
1754 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1755 		  unsigned char *buffer, int len, int timeout, int retries,
1756 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1757 {
1758 	unsigned char cmd[12];
1759 	int use_10_for_ms;
1760 	int header_length;
1761 	int result;
1762 	struct scsi_sense_hdr my_sshdr;
1763 
1764 	memset(data, 0, sizeof(*data));
1765 	memset(&cmd[0], 0, 12);
1766 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1767 	cmd[2] = modepage;
1768 
1769 	/* caller might not be interested in sense, but we need it */
1770 	if (!sshdr)
1771 		sshdr = &my_sshdr;
1772 
1773  retry:
1774 	use_10_for_ms = sdev->use_10_for_ms;
1775 
1776 	if (use_10_for_ms) {
1777 		if (len < 8)
1778 			len = 8;
1779 
1780 		cmd[0] = MODE_SENSE_10;
1781 		cmd[8] = len;
1782 		header_length = 8;
1783 	} else {
1784 		if (len < 4)
1785 			len = 4;
1786 
1787 		cmd[0] = MODE_SENSE;
1788 		cmd[4] = len;
1789 		header_length = 4;
1790 	}
1791 
1792 	memset(buffer, 0, len);
1793 
1794 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1795 				  sshdr, timeout, retries);
1796 
1797 	/* This code looks awful: what it's doing is making sure an
1798 	 * ILLEGAL REQUEST sense return identifies the actual command
1799 	 * byte as the problem.  MODE_SENSE commands can return
1800 	 * ILLEGAL REQUEST if the code page isn't supported */
1801 
1802 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1803 	    (driver_byte(result) & DRIVER_SENSE)) {
1804 		if (scsi_sense_valid(sshdr)) {
1805 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1806 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1807 				/*
1808 				 * Invalid command operation code
1809 				 */
1810 				sdev->use_10_for_ms = 0;
1811 				goto retry;
1812 			}
1813 		}
1814 	}
1815 
1816 	if(scsi_status_is_good(result)) {
1817 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1818 			     (modepage == 6 || modepage == 8))) {
1819 			/* Initio breakage? */
1820 			header_length = 0;
1821 			data->length = 13;
1822 			data->medium_type = 0;
1823 			data->device_specific = 0;
1824 			data->longlba = 0;
1825 			data->block_descriptor_length = 0;
1826 		} else if(use_10_for_ms) {
1827 			data->length = buffer[0]*256 + buffer[1] + 2;
1828 			data->medium_type = buffer[2];
1829 			data->device_specific = buffer[3];
1830 			data->longlba = buffer[4] & 0x01;
1831 			data->block_descriptor_length = buffer[6]*256
1832 				+ buffer[7];
1833 		} else {
1834 			data->length = buffer[0] + 1;
1835 			data->medium_type = buffer[1];
1836 			data->device_specific = buffer[2];
1837 			data->block_descriptor_length = buffer[3];
1838 		}
1839 		data->header_length = header_length;
1840 	}
1841 
1842 	return result;
1843 }
1844 EXPORT_SYMBOL(scsi_mode_sense);
1845 
1846 int
1847 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1848 {
1849 	char cmd[] = {
1850 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1851 	};
1852 	struct scsi_sense_hdr sshdr;
1853 	int result;
1854 
1855 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1856 				  timeout, retries);
1857 
1858 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1859 
1860 		if ((scsi_sense_valid(&sshdr)) &&
1861 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1862 		     (sshdr.sense_key == NOT_READY))) {
1863 			sdev->changed = 1;
1864 			result = 0;
1865 		}
1866 	}
1867 	return result;
1868 }
1869 EXPORT_SYMBOL(scsi_test_unit_ready);
1870 
1871 /**
1872  *	scsi_device_set_state - Take the given device through the device
1873  *		state model.
1874  *	@sdev:	scsi device to change the state of.
1875  *	@state:	state to change to.
1876  *
1877  *	Returns zero if unsuccessful or an error if the requested
1878  *	transition is illegal.
1879  **/
1880 int
1881 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1882 {
1883 	enum scsi_device_state oldstate = sdev->sdev_state;
1884 
1885 	if (state == oldstate)
1886 		return 0;
1887 
1888 	switch (state) {
1889 	case SDEV_CREATED:
1890 		/* There are no legal states that come back to
1891 		 * created.  This is the manually initialised start
1892 		 * state */
1893 		goto illegal;
1894 
1895 	case SDEV_RUNNING:
1896 		switch (oldstate) {
1897 		case SDEV_CREATED:
1898 		case SDEV_OFFLINE:
1899 		case SDEV_QUIESCE:
1900 		case SDEV_BLOCK:
1901 			break;
1902 		default:
1903 			goto illegal;
1904 		}
1905 		break;
1906 
1907 	case SDEV_QUIESCE:
1908 		switch (oldstate) {
1909 		case SDEV_RUNNING:
1910 		case SDEV_OFFLINE:
1911 			break;
1912 		default:
1913 			goto illegal;
1914 		}
1915 		break;
1916 
1917 	case SDEV_OFFLINE:
1918 		switch (oldstate) {
1919 		case SDEV_CREATED:
1920 		case SDEV_RUNNING:
1921 		case SDEV_QUIESCE:
1922 		case SDEV_BLOCK:
1923 			break;
1924 		default:
1925 			goto illegal;
1926 		}
1927 		break;
1928 
1929 	case SDEV_BLOCK:
1930 		switch (oldstate) {
1931 		case SDEV_CREATED:
1932 		case SDEV_RUNNING:
1933 			break;
1934 		default:
1935 			goto illegal;
1936 		}
1937 		break;
1938 
1939 	case SDEV_CANCEL:
1940 		switch (oldstate) {
1941 		case SDEV_CREATED:
1942 		case SDEV_RUNNING:
1943 		case SDEV_QUIESCE:
1944 		case SDEV_OFFLINE:
1945 		case SDEV_BLOCK:
1946 			break;
1947 		default:
1948 			goto illegal;
1949 		}
1950 		break;
1951 
1952 	case SDEV_DEL:
1953 		switch (oldstate) {
1954 		case SDEV_CREATED:
1955 		case SDEV_RUNNING:
1956 		case SDEV_OFFLINE:
1957 		case SDEV_CANCEL:
1958 			break;
1959 		default:
1960 			goto illegal;
1961 		}
1962 		break;
1963 
1964 	}
1965 	sdev->sdev_state = state;
1966 	return 0;
1967 
1968  illegal:
1969 	SCSI_LOG_ERROR_RECOVERY(1,
1970 				sdev_printk(KERN_ERR, sdev,
1971 					    "Illegal state transition %s->%s\n",
1972 					    scsi_device_state_name(oldstate),
1973 					    scsi_device_state_name(state))
1974 				);
1975 	return -EINVAL;
1976 }
1977 EXPORT_SYMBOL(scsi_device_set_state);
1978 
1979 /**
1980  *	scsi_device_quiesce - Block user issued commands.
1981  *	@sdev:	scsi device to quiesce.
1982  *
1983  *	This works by trying to transition to the SDEV_QUIESCE state
1984  *	(which must be a legal transition).  When the device is in this
1985  *	state, only special requests will be accepted, all others will
1986  *	be deferred.  Since special requests may also be requeued requests,
1987  *	a successful return doesn't guarantee the device will be
1988  *	totally quiescent.
1989  *
1990  *	Must be called with user context, may sleep.
1991  *
1992  *	Returns zero if unsuccessful or an error if not.
1993  **/
1994 int
1995 scsi_device_quiesce(struct scsi_device *sdev)
1996 {
1997 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1998 	if (err)
1999 		return err;
2000 
2001 	scsi_run_queue(sdev->request_queue);
2002 	while (sdev->device_busy) {
2003 		msleep_interruptible(200);
2004 		scsi_run_queue(sdev->request_queue);
2005 	}
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(scsi_device_quiesce);
2009 
2010 /**
2011  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2012  *	@sdev:	scsi device to resume.
2013  *
2014  *	Moves the device from quiesced back to running and restarts the
2015  *	queues.
2016  *
2017  *	Must be called with user context, may sleep.
2018  **/
2019 void
2020 scsi_device_resume(struct scsi_device *sdev)
2021 {
2022 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2023 		return;
2024 	scsi_run_queue(sdev->request_queue);
2025 }
2026 EXPORT_SYMBOL(scsi_device_resume);
2027 
2028 static void
2029 device_quiesce_fn(struct scsi_device *sdev, void *data)
2030 {
2031 	scsi_device_quiesce(sdev);
2032 }
2033 
2034 void
2035 scsi_target_quiesce(struct scsi_target *starget)
2036 {
2037 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2038 }
2039 EXPORT_SYMBOL(scsi_target_quiesce);
2040 
2041 static void
2042 device_resume_fn(struct scsi_device *sdev, void *data)
2043 {
2044 	scsi_device_resume(sdev);
2045 }
2046 
2047 void
2048 scsi_target_resume(struct scsi_target *starget)
2049 {
2050 	starget_for_each_device(starget, NULL, device_resume_fn);
2051 }
2052 EXPORT_SYMBOL(scsi_target_resume);
2053 
2054 /**
2055  * scsi_internal_device_block - internal function to put a device
2056  *				temporarily into the SDEV_BLOCK state
2057  * @sdev:	device to block
2058  *
2059  * Block request made by scsi lld's to temporarily stop all
2060  * scsi commands on the specified device.  Called from interrupt
2061  * or normal process context.
2062  *
2063  * Returns zero if successful or error if not
2064  *
2065  * Notes:
2066  *	This routine transitions the device to the SDEV_BLOCK state
2067  *	(which must be a legal transition).  When the device is in this
2068  *	state, all commands are deferred until the scsi lld reenables
2069  *	the device with scsi_device_unblock or device_block_tmo fires.
2070  *	This routine assumes the host_lock is held on entry.
2071  **/
2072 int
2073 scsi_internal_device_block(struct scsi_device *sdev)
2074 {
2075 	struct request_queue *q = sdev->request_queue;
2076 	unsigned long flags;
2077 	int err = 0;
2078 
2079 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2080 	if (err)
2081 		return err;
2082 
2083 	/*
2084 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2085 	 * block layer from calling the midlayer with this device's
2086 	 * request queue.
2087 	 */
2088 	spin_lock_irqsave(q->queue_lock, flags);
2089 	blk_stop_queue(q);
2090 	spin_unlock_irqrestore(q->queue_lock, flags);
2091 
2092 	return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2095 
2096 /**
2097  * scsi_internal_device_unblock - resume a device after a block request
2098  * @sdev:	device to resume
2099  *
2100  * Called by scsi lld's or the midlayer to restart the device queue
2101  * for the previously suspended scsi device.  Called from interrupt or
2102  * normal process context.
2103  *
2104  * Returns zero if successful or error if not.
2105  *
2106  * Notes:
2107  *	This routine transitions the device to the SDEV_RUNNING state
2108  *	(which must be a legal transition) allowing the midlayer to
2109  *	goose the queue for this device.  This routine assumes the
2110  *	host_lock is held upon entry.
2111  **/
2112 int
2113 scsi_internal_device_unblock(struct scsi_device *sdev)
2114 {
2115 	struct request_queue *q = sdev->request_queue;
2116 	int err;
2117 	unsigned long flags;
2118 
2119 	/*
2120 	 * Try to transition the scsi device to SDEV_RUNNING
2121 	 * and goose the device queue if successful.
2122 	 */
2123 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2124 	if (err)
2125 		return err;
2126 
2127 	spin_lock_irqsave(q->queue_lock, flags);
2128 	blk_start_queue(q);
2129 	spin_unlock_irqrestore(q->queue_lock, flags);
2130 
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2134 
2135 static void
2136 device_block(struct scsi_device *sdev, void *data)
2137 {
2138 	scsi_internal_device_block(sdev);
2139 }
2140 
2141 static int
2142 target_block(struct device *dev, void *data)
2143 {
2144 	if (scsi_is_target_device(dev))
2145 		starget_for_each_device(to_scsi_target(dev), NULL,
2146 					device_block);
2147 	return 0;
2148 }
2149 
2150 void
2151 scsi_target_block(struct device *dev)
2152 {
2153 	if (scsi_is_target_device(dev))
2154 		starget_for_each_device(to_scsi_target(dev), NULL,
2155 					device_block);
2156 	else
2157 		device_for_each_child(dev, NULL, target_block);
2158 }
2159 EXPORT_SYMBOL_GPL(scsi_target_block);
2160 
2161 static void
2162 device_unblock(struct scsi_device *sdev, void *data)
2163 {
2164 	scsi_internal_device_unblock(sdev);
2165 }
2166 
2167 static int
2168 target_unblock(struct device *dev, void *data)
2169 {
2170 	if (scsi_is_target_device(dev))
2171 		starget_for_each_device(to_scsi_target(dev), NULL,
2172 					device_unblock);
2173 	return 0;
2174 }
2175 
2176 void
2177 scsi_target_unblock(struct device *dev)
2178 {
2179 	if (scsi_is_target_device(dev))
2180 		starget_for_each_device(to_scsi_target(dev), NULL,
2181 					device_unblock);
2182 	else
2183 		device_for_each_child(dev, NULL, target_unblock);
2184 }
2185 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2186 
2187 /**
2188  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2189  * @sg:		scatter-gather list
2190  * @sg_count:	number of segments in sg
2191  * @offset:	offset in bytes into sg, on return offset into the mapped area
2192  * @len:	bytes to map, on return number of bytes mapped
2193  *
2194  * Returns virtual address of the start of the mapped page
2195  */
2196 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2197 			  size_t *offset, size_t *len)
2198 {
2199 	int i;
2200 	size_t sg_len = 0, len_complete = 0;
2201 	struct page *page;
2202 
2203 	WARN_ON(!irqs_disabled());
2204 
2205 	for (i = 0; i < sg_count; i++) {
2206 		len_complete = sg_len; /* Complete sg-entries */
2207 		sg_len += sg[i].length;
2208 		if (sg_len > *offset)
2209 			break;
2210 	}
2211 
2212 	if (unlikely(i == sg_count)) {
2213 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2214 			"elements %d\n",
2215 		       __FUNCTION__, sg_len, *offset, sg_count);
2216 		WARN_ON(1);
2217 		return NULL;
2218 	}
2219 
2220 	/* Offset starting from the beginning of first page in this sg-entry */
2221 	*offset = *offset - len_complete + sg[i].offset;
2222 
2223 	/* Assumption: contiguous pages can be accessed as "page + i" */
2224 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2225 	*offset &= ~PAGE_MASK;
2226 
2227 	/* Bytes in this sg-entry from *offset to the end of the page */
2228 	sg_len = PAGE_SIZE - *offset;
2229 	if (*len > sg_len)
2230 		*len = sg_len;
2231 
2232 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2233 }
2234 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2235 
2236 /**
2237  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2238  *			   mapped with scsi_kmap_atomic_sg
2239  * @virt:	virtual address to be unmapped
2240  */
2241 void scsi_kunmap_atomic_sg(void *virt)
2242 {
2243 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2244 }
2245 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2246