xref: /linux/drivers/scsi/scsi_lib.c (revision 3a8ab79eae4500e6ac618a92a90cee63d6e804a8)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 /*
71  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72  * not change behaviour from the previous unplug mechanism, experimentation
73  * may prove this needs changing.
74  */
75 #define SCSI_QUEUE_DELAY	3
76 
77 static void scsi_run_queue(struct request_queue *q);
78 
79 /*
80  * Function:	scsi_unprep_request()
81  *
82  * Purpose:	Remove all preparation done for a request, including its
83  *		associated scsi_cmnd, so that it can be requeued.
84  *
85  * Arguments:	req	- request to unprepare
86  *
87  * Lock status:	Assumed that no locks are held upon entry.
88  *
89  * Returns:	Nothing.
90  */
91 static void scsi_unprep_request(struct request *req)
92 {
93 	struct scsi_cmnd *cmd = req->special;
94 
95 	blk_unprep_request(req);
96 	req->special = NULL;
97 
98 	scsi_put_command(cmd);
99 }
100 
101 /**
102  * __scsi_queue_insert - private queue insertion
103  * @cmd: The SCSI command being requeued
104  * @reason:  The reason for the requeue
105  * @unbusy: Whether the queue should be unbusied
106  *
107  * This is a private queue insertion.  The public interface
108  * scsi_queue_insert() always assumes the queue should be unbusied
109  * because it's always called before the completion.  This function is
110  * for a requeue after completion, which should only occur in this
111  * file.
112  */
113 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct scsi_target *starget = scsi_target(device);
118 	struct request_queue *q = device->request_queue;
119 	unsigned long flags;
120 
121 	SCSI_LOG_MLQUEUE(1,
122 		 printk("Inserting command %p into mlqueue\n", cmd));
123 
124 	/*
125 	 * Set the appropriate busy bit for the device/host.
126 	 *
127 	 * If the host/device isn't busy, assume that something actually
128 	 * completed, and that we should be able to queue a command now.
129 	 *
130 	 * Note that the prior mid-layer assumption that any host could
131 	 * always queue at least one command is now broken.  The mid-layer
132 	 * will implement a user specifiable stall (see
133 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 	 * if a command is requeued with no other commands outstanding
135 	 * either for the device or for the host.
136 	 */
137 	switch (reason) {
138 	case SCSI_MLQUEUE_HOST_BUSY:
139 		host->host_blocked = host->max_host_blocked;
140 		break;
141 	case SCSI_MLQUEUE_DEVICE_BUSY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	if (unbusy)
154 		scsi_device_unbusy(device);
155 
156 	/*
157 	 * Requeue this command.  It will go before all other commands
158 	 * that are already in the queue.
159 	 */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	/* if the device is dead, sdev will be NULL, so no queue to run */
408 	if (!sdev)
409 		return;
410 
411 	shost = sdev->host;
412 	if (scsi_target(sdev)->single_lun)
413 		scsi_single_lun_run(sdev);
414 
415 	spin_lock_irqsave(shost->host_lock, flags);
416 	list_splice_init(&shost->starved_list, &starved_list);
417 
418 	while (!list_empty(&starved_list)) {
419 		/*
420 		 * As long as shost is accepting commands and we have
421 		 * starved queues, call blk_run_queue. scsi_request_fn
422 		 * drops the queue_lock and can add us back to the
423 		 * starved_list.
424 		 *
425 		 * host_lock protects the starved_list and starved_entry.
426 		 * scsi_request_fn must get the host_lock before checking
427 		 * or modifying starved_list or starved_entry.
428 		 */
429 		if (scsi_host_is_busy(shost))
430 			break;
431 
432 		sdev = list_entry(starved_list.next,
433 				  struct scsi_device, starved_entry);
434 		list_del_init(&sdev->starved_entry);
435 		if (scsi_target_is_busy(scsi_target(sdev))) {
436 			list_move_tail(&sdev->starved_entry,
437 				       &shost->starved_list);
438 			continue;
439 		}
440 
441 		blk_run_queue_async(sdev->request_queue);
442 	}
443 	/* put any unprocessed entries back */
444 	list_splice(&starved_list, &shost->starved_list);
445 	spin_unlock_irqrestore(shost->host_lock, flags);
446 
447 	blk_run_queue(q);
448 }
449 
450 /*
451  * Function:	scsi_requeue_command()
452  *
453  * Purpose:	Handle post-processing of completed commands.
454  *
455  * Arguments:	q	- queue to operate on
456  *		cmd	- command that may need to be requeued.
457  *
458  * Returns:	Nothing
459  *
460  * Notes:	After command completion, there may be blocks left
461  *		over which weren't finished by the previous command
462  *		this can be for a number of reasons - the main one is
463  *		I/O errors in the middle of the request, in which case
464  *		we need to request the blocks that come after the bad
465  *		sector.
466  * Notes:	Upon return, cmd is a stale pointer.
467  */
468 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
469 {
470 	struct request *req = cmd->request;
471 	unsigned long flags;
472 
473 	spin_lock_irqsave(q->queue_lock, flags);
474 	scsi_unprep_request(req);
475 	blk_requeue_request(q, req);
476 	spin_unlock_irqrestore(q->queue_lock, flags);
477 
478 	scsi_run_queue(q);
479 }
480 
481 void scsi_next_command(struct scsi_cmnd *cmd)
482 {
483 	struct scsi_device *sdev = cmd->device;
484 	struct request_queue *q = sdev->request_queue;
485 
486 	/* need to hold a reference on the device before we let go of the cmd */
487 	get_device(&sdev->sdev_gendev);
488 
489 	scsi_put_command(cmd);
490 	scsi_run_queue(q);
491 
492 	/* ok to remove device now */
493 	put_device(&sdev->sdev_gendev);
494 }
495 
496 void scsi_run_host_queues(struct Scsi_Host *shost)
497 {
498 	struct scsi_device *sdev;
499 
500 	shost_for_each_device(sdev, shost)
501 		scsi_run_queue(sdev->request_queue);
502 }
503 
504 static void __scsi_release_buffers(struct scsi_cmnd *, int);
505 
506 /*
507  * Function:    scsi_end_request()
508  *
509  * Purpose:     Post-processing of completed commands (usually invoked at end
510  *		of upper level post-processing and scsi_io_completion).
511  *
512  * Arguments:   cmd	 - command that is complete.
513  *              error    - 0 if I/O indicates success, < 0 for I/O error.
514  *              bytes    - number of bytes of completed I/O
515  *		requeue  - indicates whether we should requeue leftovers.
516  *
517  * Lock status: Assumed that lock is not held upon entry.
518  *
519  * Returns:     cmd if requeue required, NULL otherwise.
520  *
521  * Notes:       This is called for block device requests in order to
522  *              mark some number of sectors as complete.
523  *
524  *		We are guaranteeing that the request queue will be goosed
525  *		at some point during this call.
526  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
527  */
528 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
529 					  int bytes, int requeue)
530 {
531 	struct request_queue *q = cmd->device->request_queue;
532 	struct request *req = cmd->request;
533 
534 	/*
535 	 * If there are blocks left over at the end, set up the command
536 	 * to queue the remainder of them.
537 	 */
538 	if (blk_end_request(req, error, bytes)) {
539 		/* kill remainder if no retrys */
540 		if (error && scsi_noretry_cmd(cmd))
541 			blk_end_request_all(req, error);
542 		else {
543 			if (requeue) {
544 				/*
545 				 * Bleah.  Leftovers again.  Stick the
546 				 * leftovers in the front of the
547 				 * queue, and goose the queue again.
548 				 */
549 				scsi_release_buffers(cmd);
550 				scsi_requeue_command(q, cmd);
551 				cmd = NULL;
552 			}
553 			return cmd;
554 		}
555 	}
556 
557 	/*
558 	 * This will goose the queue request function at the end, so we don't
559 	 * need to worry about launching another command.
560 	 */
561 	__scsi_release_buffers(cmd, 0);
562 	scsi_next_command(cmd);
563 	return NULL;
564 }
565 
566 static inline unsigned int scsi_sgtable_index(unsigned short nents)
567 {
568 	unsigned int index;
569 
570 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
571 
572 	if (nents <= 8)
573 		index = 0;
574 	else
575 		index = get_count_order(nents) - 3;
576 
577 	return index;
578 }
579 
580 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
581 {
582 	struct scsi_host_sg_pool *sgp;
583 
584 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
585 	mempool_free(sgl, sgp->pool);
586 }
587 
588 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
589 {
590 	struct scsi_host_sg_pool *sgp;
591 
592 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
593 	return mempool_alloc(sgp->pool, gfp_mask);
594 }
595 
596 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
597 			      gfp_t gfp_mask)
598 {
599 	int ret;
600 
601 	BUG_ON(!nents);
602 
603 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
604 			       gfp_mask, scsi_sg_alloc);
605 	if (unlikely(ret))
606 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
607 				scsi_sg_free);
608 
609 	return ret;
610 }
611 
612 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
613 {
614 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
615 }
616 
617 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
618 {
619 
620 	if (cmd->sdb.table.nents)
621 		scsi_free_sgtable(&cmd->sdb);
622 
623 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
624 
625 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
626 		struct scsi_data_buffer *bidi_sdb =
627 			cmd->request->next_rq->special;
628 		scsi_free_sgtable(bidi_sdb);
629 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
630 		cmd->request->next_rq->special = NULL;
631 	}
632 
633 	if (scsi_prot_sg_count(cmd))
634 		scsi_free_sgtable(cmd->prot_sdb);
635 }
636 
637 /*
638  * Function:    scsi_release_buffers()
639  *
640  * Purpose:     Completion processing for block device I/O requests.
641  *
642  * Arguments:   cmd	- command that we are bailing.
643  *
644  * Lock status: Assumed that no lock is held upon entry.
645  *
646  * Returns:     Nothing
647  *
648  * Notes:       In the event that an upper level driver rejects a
649  *		command, we must release resources allocated during
650  *		the __init_io() function.  Primarily this would involve
651  *		the scatter-gather table, and potentially any bounce
652  *		buffers.
653  */
654 void scsi_release_buffers(struct scsi_cmnd *cmd)
655 {
656 	__scsi_release_buffers(cmd, 1);
657 }
658 EXPORT_SYMBOL(scsi_release_buffers);
659 
660 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
661 {
662 	int error = 0;
663 
664 	switch(host_byte(result)) {
665 	case DID_TRANSPORT_FAILFAST:
666 		error = -ENOLINK;
667 		break;
668 	case DID_TARGET_FAILURE:
669 		cmd->result |= (DID_OK << 16);
670 		error = -EREMOTEIO;
671 		break;
672 	case DID_NEXUS_FAILURE:
673 		cmd->result |= (DID_OK << 16);
674 		error = -EBADE;
675 		break;
676 	default:
677 		error = -EIO;
678 		break;
679 	}
680 
681 	return error;
682 }
683 
684 /*
685  * Function:    scsi_io_completion()
686  *
687  * Purpose:     Completion processing for block device I/O requests.
688  *
689  * Arguments:   cmd   - command that is finished.
690  *
691  * Lock status: Assumed that no lock is held upon entry.
692  *
693  * Returns:     Nothing
694  *
695  * Notes:       This function is matched in terms of capabilities to
696  *              the function that created the scatter-gather list.
697  *              In other words, if there are no bounce buffers
698  *              (the normal case for most drivers), we don't need
699  *              the logic to deal with cleaning up afterwards.
700  *
701  *		We must call scsi_end_request().  This will finish off
702  *		the specified number of sectors.  If we are done, the
703  *		command block will be released and the queue function
704  *		will be goosed.  If we are not done then we have to
705  *		figure out what to do next:
706  *
707  *		a) We can call scsi_requeue_command().  The request
708  *		   will be unprepared and put back on the queue.  Then
709  *		   a new command will be created for it.  This should
710  *		   be used if we made forward progress, or if we want
711  *		   to switch from READ(10) to READ(6) for example.
712  *
713  *		b) We can call scsi_queue_insert().  The request will
714  *		   be put back on the queue and retried using the same
715  *		   command as before, possibly after a delay.
716  *
717  *		c) We can call blk_end_request() with -EIO to fail
718  *		   the remainder of the request.
719  */
720 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
721 {
722 	int result = cmd->result;
723 	struct request_queue *q = cmd->device->request_queue;
724 	struct request *req = cmd->request;
725 	int error = 0;
726 	struct scsi_sense_hdr sshdr;
727 	int sense_valid = 0;
728 	int sense_deferred = 0;
729 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
730 	      ACTION_DELAYED_RETRY} action;
731 	char *description = NULL;
732 
733 	if (result) {
734 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
735 		if (sense_valid)
736 			sense_deferred = scsi_sense_is_deferred(&sshdr);
737 	}
738 
739 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
740 		req->errors = result;
741 		if (result) {
742 			if (sense_valid && req->sense) {
743 				/*
744 				 * SG_IO wants current and deferred errors
745 				 */
746 				int len = 8 + cmd->sense_buffer[7];
747 
748 				if (len > SCSI_SENSE_BUFFERSIZE)
749 					len = SCSI_SENSE_BUFFERSIZE;
750 				memcpy(req->sense, cmd->sense_buffer,  len);
751 				req->sense_len = len;
752 			}
753 			if (!sense_deferred)
754 				error = __scsi_error_from_host_byte(cmd, result);
755 		}
756 
757 		req->resid_len = scsi_get_resid(cmd);
758 
759 		if (scsi_bidi_cmnd(cmd)) {
760 			/*
761 			 * Bidi commands Must be complete as a whole,
762 			 * both sides at once.
763 			 */
764 			req->next_rq->resid_len = scsi_in(cmd)->resid;
765 
766 			scsi_release_buffers(cmd);
767 			blk_end_request_all(req, 0);
768 
769 			scsi_next_command(cmd);
770 			return;
771 		}
772 	}
773 
774 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
775 	BUG_ON(blk_bidi_rq(req));
776 
777 	/*
778 	 * Next deal with any sectors which we were able to correctly
779 	 * handle.
780 	 */
781 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
782 				      "%d bytes done.\n",
783 				      blk_rq_sectors(req), good_bytes));
784 
785 	/*
786 	 * Recovered errors need reporting, but they're always treated
787 	 * as success, so fiddle the result code here.  For BLOCK_PC
788 	 * we already took a copy of the original into rq->errors which
789 	 * is what gets returned to the user
790 	 */
791 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
792 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
793 		 * print since caller wants ATA registers. Only occurs on
794 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
795 		 */
796 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
797 			;
798 		else if (!(req->cmd_flags & REQ_QUIET))
799 			scsi_print_sense("", cmd);
800 		result = 0;
801 		/* BLOCK_PC may have set error */
802 		error = 0;
803 	}
804 
805 	/*
806 	 * A number of bytes were successfully read.  If there
807 	 * are leftovers and there is some kind of error
808 	 * (result != 0), retry the rest.
809 	 */
810 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
811 		return;
812 
813 	error = __scsi_error_from_host_byte(cmd, result);
814 
815 	if (host_byte(result) == DID_RESET) {
816 		/* Third party bus reset or reset for error recovery
817 		 * reasons.  Just retry the command and see what
818 		 * happens.
819 		 */
820 		action = ACTION_RETRY;
821 	} else if (sense_valid && !sense_deferred) {
822 		switch (sshdr.sense_key) {
823 		case UNIT_ATTENTION:
824 			if (cmd->device->removable) {
825 				/* Detected disc change.  Set a bit
826 				 * and quietly refuse further access.
827 				 */
828 				cmd->device->changed = 1;
829 				description = "Media Changed";
830 				action = ACTION_FAIL;
831 			} else {
832 				/* Must have been a power glitch, or a
833 				 * bus reset.  Could not have been a
834 				 * media change, so we just retry the
835 				 * command and see what happens.
836 				 */
837 				action = ACTION_RETRY;
838 			}
839 			break;
840 		case ILLEGAL_REQUEST:
841 			/* If we had an ILLEGAL REQUEST returned, then
842 			 * we may have performed an unsupported
843 			 * command.  The only thing this should be
844 			 * would be a ten byte read where only a six
845 			 * byte read was supported.  Also, on a system
846 			 * where READ CAPACITY failed, we may have
847 			 * read past the end of the disk.
848 			 */
849 			if ((cmd->device->use_10_for_rw &&
850 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
851 			    (cmd->cmnd[0] == READ_10 ||
852 			     cmd->cmnd[0] == WRITE_10)) {
853 				/* This will issue a new 6-byte command. */
854 				cmd->device->use_10_for_rw = 0;
855 				action = ACTION_REPREP;
856 			} else if (sshdr.asc == 0x10) /* DIX */ {
857 				description = "Host Data Integrity Failure";
858 				action = ACTION_FAIL;
859 				error = -EILSEQ;
860 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
861 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
862 				   (cmd->cmnd[0] == UNMAP ||
863 				    cmd->cmnd[0] == WRITE_SAME_16 ||
864 				    cmd->cmnd[0] == WRITE_SAME)) {
865 				description = "Discard failure";
866 				action = ACTION_FAIL;
867 			} else
868 				action = ACTION_FAIL;
869 			break;
870 		case ABORTED_COMMAND:
871 			action = ACTION_FAIL;
872 			if (sshdr.asc == 0x10) { /* DIF */
873 				description = "Target Data Integrity Failure";
874 				error = -EILSEQ;
875 			}
876 			break;
877 		case NOT_READY:
878 			/* If the device is in the process of becoming
879 			 * ready, or has a temporary blockage, retry.
880 			 */
881 			if (sshdr.asc == 0x04) {
882 				switch (sshdr.ascq) {
883 				case 0x01: /* becoming ready */
884 				case 0x04: /* format in progress */
885 				case 0x05: /* rebuild in progress */
886 				case 0x06: /* recalculation in progress */
887 				case 0x07: /* operation in progress */
888 				case 0x08: /* Long write in progress */
889 				case 0x09: /* self test in progress */
890 				case 0x14: /* space allocation in progress */
891 					action = ACTION_DELAYED_RETRY;
892 					break;
893 				default:
894 					description = "Device not ready";
895 					action = ACTION_FAIL;
896 					break;
897 				}
898 			} else {
899 				description = "Device not ready";
900 				action = ACTION_FAIL;
901 			}
902 			break;
903 		case VOLUME_OVERFLOW:
904 			/* See SSC3rXX or current. */
905 			action = ACTION_FAIL;
906 			break;
907 		default:
908 			description = "Unhandled sense code";
909 			action = ACTION_FAIL;
910 			break;
911 		}
912 	} else {
913 		description = "Unhandled error code";
914 		action = ACTION_FAIL;
915 	}
916 
917 	switch (action) {
918 	case ACTION_FAIL:
919 		/* Give up and fail the remainder of the request */
920 		scsi_release_buffers(cmd);
921 		if (!(req->cmd_flags & REQ_QUIET)) {
922 			if (description)
923 				scmd_printk(KERN_INFO, cmd, "%s\n",
924 					    description);
925 			scsi_print_result(cmd);
926 			if (driver_byte(result) & DRIVER_SENSE)
927 				scsi_print_sense("", cmd);
928 			scsi_print_command(cmd);
929 		}
930 		if (blk_end_request_err(req, error))
931 			scsi_requeue_command(q, cmd);
932 		else
933 			scsi_next_command(cmd);
934 		break;
935 	case ACTION_REPREP:
936 		/* Unprep the request and put it back at the head of the queue.
937 		 * A new command will be prepared and issued.
938 		 */
939 		scsi_release_buffers(cmd);
940 		scsi_requeue_command(q, cmd);
941 		break;
942 	case ACTION_RETRY:
943 		/* Retry the same command immediately */
944 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
945 		break;
946 	case ACTION_DELAYED_RETRY:
947 		/* Retry the same command after a delay */
948 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
949 		break;
950 	}
951 }
952 
953 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
954 			     gfp_t gfp_mask)
955 {
956 	int count;
957 
958 	/*
959 	 * If sg table allocation fails, requeue request later.
960 	 */
961 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
962 					gfp_mask))) {
963 		return BLKPREP_DEFER;
964 	}
965 
966 	req->buffer = NULL;
967 
968 	/*
969 	 * Next, walk the list, and fill in the addresses and sizes of
970 	 * each segment.
971 	 */
972 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
973 	BUG_ON(count > sdb->table.nents);
974 	sdb->table.nents = count;
975 	sdb->length = blk_rq_bytes(req);
976 	return BLKPREP_OK;
977 }
978 
979 /*
980  * Function:    scsi_init_io()
981  *
982  * Purpose:     SCSI I/O initialize function.
983  *
984  * Arguments:   cmd   - Command descriptor we wish to initialize
985  *
986  * Returns:     0 on success
987  *		BLKPREP_DEFER if the failure is retryable
988  *		BLKPREP_KILL if the failure is fatal
989  */
990 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
991 {
992 	struct request *rq = cmd->request;
993 
994 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
995 	if (error)
996 		goto err_exit;
997 
998 	if (blk_bidi_rq(rq)) {
999 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1000 			scsi_sdb_cache, GFP_ATOMIC);
1001 		if (!bidi_sdb) {
1002 			error = BLKPREP_DEFER;
1003 			goto err_exit;
1004 		}
1005 
1006 		rq->next_rq->special = bidi_sdb;
1007 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1008 		if (error)
1009 			goto err_exit;
1010 	}
1011 
1012 	if (blk_integrity_rq(rq)) {
1013 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1014 		int ivecs, count;
1015 
1016 		BUG_ON(prot_sdb == NULL);
1017 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1018 
1019 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1020 			error = BLKPREP_DEFER;
1021 			goto err_exit;
1022 		}
1023 
1024 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1025 						prot_sdb->table.sgl);
1026 		BUG_ON(unlikely(count > ivecs));
1027 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1028 
1029 		cmd->prot_sdb = prot_sdb;
1030 		cmd->prot_sdb->table.nents = count;
1031 	}
1032 
1033 	return BLKPREP_OK ;
1034 
1035 err_exit:
1036 	scsi_release_buffers(cmd);
1037 	cmd->request->special = NULL;
1038 	scsi_put_command(cmd);
1039 	return error;
1040 }
1041 EXPORT_SYMBOL(scsi_init_io);
1042 
1043 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1044 		struct request *req)
1045 {
1046 	struct scsi_cmnd *cmd;
1047 
1048 	if (!req->special) {
1049 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1050 		if (unlikely(!cmd))
1051 			return NULL;
1052 		req->special = cmd;
1053 	} else {
1054 		cmd = req->special;
1055 	}
1056 
1057 	/* pull a tag out of the request if we have one */
1058 	cmd->tag = req->tag;
1059 	cmd->request = req;
1060 
1061 	cmd->cmnd = req->cmd;
1062 	cmd->prot_op = SCSI_PROT_NORMAL;
1063 
1064 	return cmd;
1065 }
1066 
1067 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1068 {
1069 	struct scsi_cmnd *cmd;
1070 	int ret = scsi_prep_state_check(sdev, req);
1071 
1072 	if (ret != BLKPREP_OK)
1073 		return ret;
1074 
1075 	cmd = scsi_get_cmd_from_req(sdev, req);
1076 	if (unlikely(!cmd))
1077 		return BLKPREP_DEFER;
1078 
1079 	/*
1080 	 * BLOCK_PC requests may transfer data, in which case they must
1081 	 * a bio attached to them.  Or they might contain a SCSI command
1082 	 * that does not transfer data, in which case they may optionally
1083 	 * submit a request without an attached bio.
1084 	 */
1085 	if (req->bio) {
1086 		int ret;
1087 
1088 		BUG_ON(!req->nr_phys_segments);
1089 
1090 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1091 		if (unlikely(ret))
1092 			return ret;
1093 	} else {
1094 		BUG_ON(blk_rq_bytes(req));
1095 
1096 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1097 		req->buffer = NULL;
1098 	}
1099 
1100 	cmd->cmd_len = req->cmd_len;
1101 	if (!blk_rq_bytes(req))
1102 		cmd->sc_data_direction = DMA_NONE;
1103 	else if (rq_data_dir(req) == WRITE)
1104 		cmd->sc_data_direction = DMA_TO_DEVICE;
1105 	else
1106 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1107 
1108 	cmd->transfersize = blk_rq_bytes(req);
1109 	cmd->allowed = req->retries;
1110 	return BLKPREP_OK;
1111 }
1112 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1113 
1114 /*
1115  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1116  * from filesystems that still need to be translated to SCSI CDBs from
1117  * the ULD.
1118  */
1119 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1120 {
1121 	struct scsi_cmnd *cmd;
1122 	int ret = scsi_prep_state_check(sdev, req);
1123 
1124 	if (ret != BLKPREP_OK)
1125 		return ret;
1126 
1127 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1128 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1129 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1130 		if (ret != BLKPREP_OK)
1131 			return ret;
1132 	}
1133 
1134 	/*
1135 	 * Filesystem requests must transfer data.
1136 	 */
1137 	BUG_ON(!req->nr_phys_segments);
1138 
1139 	cmd = scsi_get_cmd_from_req(sdev, req);
1140 	if (unlikely(!cmd))
1141 		return BLKPREP_DEFER;
1142 
1143 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1144 	return scsi_init_io(cmd, GFP_ATOMIC);
1145 }
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1147 
1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1149 {
1150 	int ret = BLKPREP_OK;
1151 
1152 	/*
1153 	 * If the device is not in running state we will reject some
1154 	 * or all commands.
1155 	 */
1156 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1157 		switch (sdev->sdev_state) {
1158 		case SDEV_OFFLINE:
1159 			/*
1160 			 * If the device is offline we refuse to process any
1161 			 * commands.  The device must be brought online
1162 			 * before trying any recovery commands.
1163 			 */
1164 			sdev_printk(KERN_ERR, sdev,
1165 				    "rejecting I/O to offline device\n");
1166 			ret = BLKPREP_KILL;
1167 			break;
1168 		case SDEV_DEL:
1169 			/*
1170 			 * If the device is fully deleted, we refuse to
1171 			 * process any commands as well.
1172 			 */
1173 			sdev_printk(KERN_ERR, sdev,
1174 				    "rejecting I/O to dead device\n");
1175 			ret = BLKPREP_KILL;
1176 			break;
1177 		case SDEV_QUIESCE:
1178 		case SDEV_BLOCK:
1179 		case SDEV_CREATED_BLOCK:
1180 			/*
1181 			 * If the devices is blocked we defer normal commands.
1182 			 */
1183 			if (!(req->cmd_flags & REQ_PREEMPT))
1184 				ret = BLKPREP_DEFER;
1185 			break;
1186 		default:
1187 			/*
1188 			 * For any other not fully online state we only allow
1189 			 * special commands.  In particular any user initiated
1190 			 * command is not allowed.
1191 			 */
1192 			if (!(req->cmd_flags & REQ_PREEMPT))
1193 				ret = BLKPREP_KILL;
1194 			break;
1195 		}
1196 	}
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(scsi_prep_state_check);
1200 
1201 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1202 {
1203 	struct scsi_device *sdev = q->queuedata;
1204 
1205 	switch (ret) {
1206 	case BLKPREP_KILL:
1207 		req->errors = DID_NO_CONNECT << 16;
1208 		/* release the command and kill it */
1209 		if (req->special) {
1210 			struct scsi_cmnd *cmd = req->special;
1211 			scsi_release_buffers(cmd);
1212 			scsi_put_command(cmd);
1213 			req->special = NULL;
1214 		}
1215 		break;
1216 	case BLKPREP_DEFER:
1217 		/*
1218 		 * If we defer, the blk_peek_request() returns NULL, but the
1219 		 * queue must be restarted, so we schedule a callback to happen
1220 		 * shortly.
1221 		 */
1222 		if (sdev->device_busy == 0)
1223 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1224 		break;
1225 	default:
1226 		req->cmd_flags |= REQ_DONTPREP;
1227 	}
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(scsi_prep_return);
1232 
1233 int scsi_prep_fn(struct request_queue *q, struct request *req)
1234 {
1235 	struct scsi_device *sdev = q->queuedata;
1236 	int ret = BLKPREP_KILL;
1237 
1238 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1239 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1240 	return scsi_prep_return(q, req, ret);
1241 }
1242 EXPORT_SYMBOL(scsi_prep_fn);
1243 
1244 /*
1245  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1246  * return 0.
1247  *
1248  * Called with the queue_lock held.
1249  */
1250 static inline int scsi_dev_queue_ready(struct request_queue *q,
1251 				  struct scsi_device *sdev)
1252 {
1253 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1254 		/*
1255 		 * unblock after device_blocked iterates to zero
1256 		 */
1257 		if (--sdev->device_blocked == 0) {
1258 			SCSI_LOG_MLQUEUE(3,
1259 				   sdev_printk(KERN_INFO, sdev,
1260 				   "unblocking device at zero depth\n"));
1261 		} else {
1262 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1263 			return 0;
1264 		}
1265 	}
1266 	if (scsi_device_is_busy(sdev))
1267 		return 0;
1268 
1269 	return 1;
1270 }
1271 
1272 
1273 /*
1274  * scsi_target_queue_ready: checks if there we can send commands to target
1275  * @sdev: scsi device on starget to check.
1276  *
1277  * Called with the host lock held.
1278  */
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280 					   struct scsi_device *sdev)
1281 {
1282 	struct scsi_target *starget = scsi_target(sdev);
1283 
1284 	if (starget->single_lun) {
1285 		if (starget->starget_sdev_user &&
1286 		    starget->starget_sdev_user != sdev)
1287 			return 0;
1288 		starget->starget_sdev_user = sdev;
1289 	}
1290 
1291 	if (starget->target_busy == 0 && starget->target_blocked) {
1292 		/*
1293 		 * unblock after target_blocked iterates to zero
1294 		 */
1295 		if (--starget->target_blocked == 0) {
1296 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1297 					 "unblocking target at zero depth\n"));
1298 		} else
1299 			return 0;
1300 	}
1301 
1302 	if (scsi_target_is_busy(starget)) {
1303 		if (list_empty(&sdev->starved_entry))
1304 			list_add_tail(&sdev->starved_entry,
1305 				      &shost->starved_list);
1306 		return 0;
1307 	}
1308 
1309 	/* We're OK to process the command, so we can't be starved */
1310 	if (!list_empty(&sdev->starved_entry))
1311 		list_del_init(&sdev->starved_entry);
1312 	return 1;
1313 }
1314 
1315 /*
1316  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317  * return 0. We must end up running the queue again whenever 0 is
1318  * returned, else IO can hang.
1319  *
1320  * Called with host_lock held.
1321  */
1322 static inline int scsi_host_queue_ready(struct request_queue *q,
1323 				   struct Scsi_Host *shost,
1324 				   struct scsi_device *sdev)
1325 {
1326 	if (scsi_host_in_recovery(shost))
1327 		return 0;
1328 	if (shost->host_busy == 0 && shost->host_blocked) {
1329 		/*
1330 		 * unblock after host_blocked iterates to zero
1331 		 */
1332 		if (--shost->host_blocked == 0) {
1333 			SCSI_LOG_MLQUEUE(3,
1334 				printk("scsi%d unblocking host at zero depth\n",
1335 					shost->host_no));
1336 		} else {
1337 			return 0;
1338 		}
1339 	}
1340 	if (scsi_host_is_busy(shost)) {
1341 		if (list_empty(&sdev->starved_entry))
1342 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1343 		return 0;
1344 	}
1345 
1346 	/* We're OK to process the command, so we can't be starved */
1347 	if (!list_empty(&sdev->starved_entry))
1348 		list_del_init(&sdev->starved_entry);
1349 
1350 	return 1;
1351 }
1352 
1353 /*
1354  * Busy state exporting function for request stacking drivers.
1355  *
1356  * For efficiency, no lock is taken to check the busy state of
1357  * shost/starget/sdev, since the returned value is not guaranteed and
1358  * may be changed after request stacking drivers call the function,
1359  * regardless of taking lock or not.
1360  *
1361  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1362  * (e.g. !sdev), scsi needs to return 'not busy'.
1363  * Otherwise, request stacking drivers may hold requests forever.
1364  */
1365 static int scsi_lld_busy(struct request_queue *q)
1366 {
1367 	struct scsi_device *sdev = q->queuedata;
1368 	struct Scsi_Host *shost;
1369 	struct scsi_target *starget;
1370 
1371 	if (!sdev)
1372 		return 0;
1373 
1374 	shost = sdev->host;
1375 	starget = scsi_target(sdev);
1376 
1377 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1378 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1379 		return 1;
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Kill a request for a dead device
1386  */
1387 static void scsi_kill_request(struct request *req, struct request_queue *q)
1388 {
1389 	struct scsi_cmnd *cmd = req->special;
1390 	struct scsi_device *sdev;
1391 	struct scsi_target *starget;
1392 	struct Scsi_Host *shost;
1393 
1394 	blk_start_request(req);
1395 
1396 	sdev = cmd->device;
1397 	starget = scsi_target(sdev);
1398 	shost = sdev->host;
1399 	scsi_init_cmd_errh(cmd);
1400 	cmd->result = DID_NO_CONNECT << 16;
1401 	atomic_inc(&cmd->device->iorequest_cnt);
1402 
1403 	/*
1404 	 * SCSI request completion path will do scsi_device_unbusy(),
1405 	 * bump busy counts.  To bump the counters, we need to dance
1406 	 * with the locks as normal issue path does.
1407 	 */
1408 	sdev->device_busy++;
1409 	spin_unlock(sdev->request_queue->queue_lock);
1410 	spin_lock(shost->host_lock);
1411 	shost->host_busy++;
1412 	starget->target_busy++;
1413 	spin_unlock(shost->host_lock);
1414 	spin_lock(sdev->request_queue->queue_lock);
1415 
1416 	blk_complete_request(req);
1417 }
1418 
1419 static void scsi_softirq_done(struct request *rq)
1420 {
1421 	struct scsi_cmnd *cmd = rq->special;
1422 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1423 	int disposition;
1424 
1425 	INIT_LIST_HEAD(&cmd->eh_entry);
1426 
1427 	atomic_inc(&cmd->device->iodone_cnt);
1428 	if (cmd->result)
1429 		atomic_inc(&cmd->device->ioerr_cnt);
1430 
1431 	disposition = scsi_decide_disposition(cmd);
1432 	if (disposition != SUCCESS &&
1433 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1434 		sdev_printk(KERN_ERR, cmd->device,
1435 			    "timing out command, waited %lus\n",
1436 			    wait_for/HZ);
1437 		disposition = SUCCESS;
1438 	}
1439 
1440 	scsi_log_completion(cmd, disposition);
1441 
1442 	switch (disposition) {
1443 		case SUCCESS:
1444 			scsi_finish_command(cmd);
1445 			break;
1446 		case NEEDS_RETRY:
1447 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1448 			break;
1449 		case ADD_TO_MLQUEUE:
1450 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1451 			break;
1452 		default:
1453 			if (!scsi_eh_scmd_add(cmd, 0))
1454 				scsi_finish_command(cmd);
1455 	}
1456 }
1457 
1458 /*
1459  * Function:    scsi_request_fn()
1460  *
1461  * Purpose:     Main strategy routine for SCSI.
1462  *
1463  * Arguments:   q       - Pointer to actual queue.
1464  *
1465  * Returns:     Nothing
1466  *
1467  * Lock status: IO request lock assumed to be held when called.
1468  */
1469 static void scsi_request_fn(struct request_queue *q)
1470 {
1471 	struct scsi_device *sdev = q->queuedata;
1472 	struct Scsi_Host *shost;
1473 	struct scsi_cmnd *cmd;
1474 	struct request *req;
1475 
1476 	if (!sdev) {
1477 		printk("scsi: killing requests for dead queue\n");
1478 		while ((req = blk_peek_request(q)) != NULL)
1479 			scsi_kill_request(req, q);
1480 		return;
1481 	}
1482 
1483 	if(!get_device(&sdev->sdev_gendev))
1484 		/* We must be tearing the block queue down already */
1485 		return;
1486 
1487 	/*
1488 	 * To start with, we keep looping until the queue is empty, or until
1489 	 * the host is no longer able to accept any more requests.
1490 	 */
1491 	shost = sdev->host;
1492 	for (;;) {
1493 		int rtn;
1494 		/*
1495 		 * get next queueable request.  We do this early to make sure
1496 		 * that the request is fully prepared even if we cannot
1497 		 * accept it.
1498 		 */
1499 		req = blk_peek_request(q);
1500 		if (!req || !scsi_dev_queue_ready(q, sdev))
1501 			break;
1502 
1503 		if (unlikely(!scsi_device_online(sdev))) {
1504 			sdev_printk(KERN_ERR, sdev,
1505 				    "rejecting I/O to offline device\n");
1506 			scsi_kill_request(req, q);
1507 			continue;
1508 		}
1509 
1510 
1511 		/*
1512 		 * Remove the request from the request list.
1513 		 */
1514 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1515 			blk_start_request(req);
1516 		sdev->device_busy++;
1517 
1518 		spin_unlock(q->queue_lock);
1519 		cmd = req->special;
1520 		if (unlikely(cmd == NULL)) {
1521 			printk(KERN_CRIT "impossible request in %s.\n"
1522 					 "please mail a stack trace to "
1523 					 "linux-scsi@vger.kernel.org\n",
1524 					 __func__);
1525 			blk_dump_rq_flags(req, "foo");
1526 			BUG();
1527 		}
1528 		spin_lock(shost->host_lock);
1529 
1530 		/*
1531 		 * We hit this when the driver is using a host wide
1532 		 * tag map. For device level tag maps the queue_depth check
1533 		 * in the device ready fn would prevent us from trying
1534 		 * to allocate a tag. Since the map is a shared host resource
1535 		 * we add the dev to the starved list so it eventually gets
1536 		 * a run when a tag is freed.
1537 		 */
1538 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1539 			if (list_empty(&sdev->starved_entry))
1540 				list_add_tail(&sdev->starved_entry,
1541 					      &shost->starved_list);
1542 			goto not_ready;
1543 		}
1544 
1545 		if (!scsi_target_queue_ready(shost, sdev))
1546 			goto not_ready;
1547 
1548 		if (!scsi_host_queue_ready(q, shost, sdev))
1549 			goto not_ready;
1550 
1551 		scsi_target(sdev)->target_busy++;
1552 		shost->host_busy++;
1553 
1554 		/*
1555 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1556 		 *		take the lock again.
1557 		 */
1558 		spin_unlock_irq(shost->host_lock);
1559 
1560 		/*
1561 		 * Finally, initialize any error handling parameters, and set up
1562 		 * the timers for timeouts.
1563 		 */
1564 		scsi_init_cmd_errh(cmd);
1565 
1566 		/*
1567 		 * Dispatch the command to the low-level driver.
1568 		 */
1569 		rtn = scsi_dispatch_cmd(cmd);
1570 		spin_lock_irq(q->queue_lock);
1571 		if (rtn)
1572 			goto out_delay;
1573 	}
1574 
1575 	goto out;
1576 
1577  not_ready:
1578 	spin_unlock_irq(shost->host_lock);
1579 
1580 	/*
1581 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1582 	 * must return with queue_lock held.
1583 	 *
1584 	 * Decrementing device_busy without checking it is OK, as all such
1585 	 * cases (host limits or settings) should run the queue at some
1586 	 * later time.
1587 	 */
1588 	spin_lock_irq(q->queue_lock);
1589 	blk_requeue_request(q, req);
1590 	sdev->device_busy--;
1591 out_delay:
1592 	if (sdev->device_busy == 0)
1593 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1594 out:
1595 	/* must be careful here...if we trigger the ->remove() function
1596 	 * we cannot be holding the q lock */
1597 	spin_unlock_irq(q->queue_lock);
1598 	put_device(&sdev->sdev_gendev);
1599 	spin_lock_irq(q->queue_lock);
1600 }
1601 
1602 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1603 {
1604 	struct device *host_dev;
1605 	u64 bounce_limit = 0xffffffff;
1606 
1607 	if (shost->unchecked_isa_dma)
1608 		return BLK_BOUNCE_ISA;
1609 	/*
1610 	 * Platforms with virtual-DMA translation
1611 	 * hardware have no practical limit.
1612 	 */
1613 	if (!PCI_DMA_BUS_IS_PHYS)
1614 		return BLK_BOUNCE_ANY;
1615 
1616 	host_dev = scsi_get_device(shost);
1617 	if (host_dev && host_dev->dma_mask)
1618 		bounce_limit = *host_dev->dma_mask;
1619 
1620 	return bounce_limit;
1621 }
1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1623 
1624 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1625 					 request_fn_proc *request_fn)
1626 {
1627 	struct request_queue *q;
1628 	struct device *dev = shost->shost_gendev.parent;
1629 
1630 	q = blk_init_queue(request_fn, NULL);
1631 	if (!q)
1632 		return NULL;
1633 
1634 	/*
1635 	 * this limit is imposed by hardware restrictions
1636 	 */
1637 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1638 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1639 
1640 	if (scsi_host_prot_dma(shost)) {
1641 		shost->sg_prot_tablesize =
1642 			min_not_zero(shost->sg_prot_tablesize,
1643 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1644 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1645 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1646 	}
1647 
1648 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1649 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1650 	blk_queue_segment_boundary(q, shost->dma_boundary);
1651 	dma_set_seg_boundary(dev, shost->dma_boundary);
1652 
1653 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1654 
1655 	if (!shost->use_clustering)
1656 		q->limits.cluster = 0;
1657 
1658 	/*
1659 	 * set a reasonable default alignment on word boundaries: the
1660 	 * host and device may alter it using
1661 	 * blk_queue_update_dma_alignment() later.
1662 	 */
1663 	blk_queue_dma_alignment(q, 0x03);
1664 
1665 	return q;
1666 }
1667 EXPORT_SYMBOL(__scsi_alloc_queue);
1668 
1669 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1670 {
1671 	struct request_queue *q;
1672 
1673 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1674 	if (!q)
1675 		return NULL;
1676 
1677 	blk_queue_prep_rq(q, scsi_prep_fn);
1678 	blk_queue_softirq_done(q, scsi_softirq_done);
1679 	blk_queue_rq_timed_out(q, scsi_times_out);
1680 	blk_queue_lld_busy(q, scsi_lld_busy);
1681 	return q;
1682 }
1683 
1684 void scsi_free_queue(struct request_queue *q)
1685 {
1686 	blk_cleanup_queue(q);
1687 }
1688 
1689 /*
1690  * Function:    scsi_block_requests()
1691  *
1692  * Purpose:     Utility function used by low-level drivers to prevent further
1693  *		commands from being queued to the device.
1694  *
1695  * Arguments:   shost       - Host in question
1696  *
1697  * Returns:     Nothing
1698  *
1699  * Lock status: No locks are assumed held.
1700  *
1701  * Notes:       There is no timer nor any other means by which the requests
1702  *		get unblocked other than the low-level driver calling
1703  *		scsi_unblock_requests().
1704  */
1705 void scsi_block_requests(struct Scsi_Host *shost)
1706 {
1707 	shost->host_self_blocked = 1;
1708 }
1709 EXPORT_SYMBOL(scsi_block_requests);
1710 
1711 /*
1712  * Function:    scsi_unblock_requests()
1713  *
1714  * Purpose:     Utility function used by low-level drivers to allow further
1715  *		commands from being queued to the device.
1716  *
1717  * Arguments:   shost       - Host in question
1718  *
1719  * Returns:     Nothing
1720  *
1721  * Lock status: No locks are assumed held.
1722  *
1723  * Notes:       There is no timer nor any other means by which the requests
1724  *		get unblocked other than the low-level driver calling
1725  *		scsi_unblock_requests().
1726  *
1727  *		This is done as an API function so that changes to the
1728  *		internals of the scsi mid-layer won't require wholesale
1729  *		changes to drivers that use this feature.
1730  */
1731 void scsi_unblock_requests(struct Scsi_Host *shost)
1732 {
1733 	shost->host_self_blocked = 0;
1734 	scsi_run_host_queues(shost);
1735 }
1736 EXPORT_SYMBOL(scsi_unblock_requests);
1737 
1738 int __init scsi_init_queue(void)
1739 {
1740 	int i;
1741 
1742 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1743 					   sizeof(struct scsi_data_buffer),
1744 					   0, 0, NULL);
1745 	if (!scsi_sdb_cache) {
1746 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1747 		return -ENOMEM;
1748 	}
1749 
1750 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1751 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1752 		int size = sgp->size * sizeof(struct scatterlist);
1753 
1754 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1755 				SLAB_HWCACHE_ALIGN, NULL);
1756 		if (!sgp->slab) {
1757 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1758 					sgp->name);
1759 			goto cleanup_sdb;
1760 		}
1761 
1762 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1763 						     sgp->slab);
1764 		if (!sgp->pool) {
1765 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1766 					sgp->name);
1767 			goto cleanup_sdb;
1768 		}
1769 	}
1770 
1771 	return 0;
1772 
1773 cleanup_sdb:
1774 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1775 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1776 		if (sgp->pool)
1777 			mempool_destroy(sgp->pool);
1778 		if (sgp->slab)
1779 			kmem_cache_destroy(sgp->slab);
1780 	}
1781 	kmem_cache_destroy(scsi_sdb_cache);
1782 
1783 	return -ENOMEM;
1784 }
1785 
1786 void scsi_exit_queue(void)
1787 {
1788 	int i;
1789 
1790 	kmem_cache_destroy(scsi_sdb_cache);
1791 
1792 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1793 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1794 		mempool_destroy(sgp->pool);
1795 		kmem_cache_destroy(sgp->slab);
1796 	}
1797 }
1798 
1799 /**
1800  *	scsi_mode_select - issue a mode select
1801  *	@sdev:	SCSI device to be queried
1802  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1803  *	@sp:	Save page bit (0 == don't save, 1 == save)
1804  *	@modepage: mode page being requested
1805  *	@buffer: request buffer (may not be smaller than eight bytes)
1806  *	@len:	length of request buffer.
1807  *	@timeout: command timeout
1808  *	@retries: number of retries before failing
1809  *	@data: returns a structure abstracting the mode header data
1810  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1811  *		must be SCSI_SENSE_BUFFERSIZE big.
1812  *
1813  *	Returns zero if successful; negative error number or scsi
1814  *	status on error
1815  *
1816  */
1817 int
1818 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1819 		 unsigned char *buffer, int len, int timeout, int retries,
1820 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1821 {
1822 	unsigned char cmd[10];
1823 	unsigned char *real_buffer;
1824 	int ret;
1825 
1826 	memset(cmd, 0, sizeof(cmd));
1827 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1828 
1829 	if (sdev->use_10_for_ms) {
1830 		if (len > 65535)
1831 			return -EINVAL;
1832 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1833 		if (!real_buffer)
1834 			return -ENOMEM;
1835 		memcpy(real_buffer + 8, buffer, len);
1836 		len += 8;
1837 		real_buffer[0] = 0;
1838 		real_buffer[1] = 0;
1839 		real_buffer[2] = data->medium_type;
1840 		real_buffer[3] = data->device_specific;
1841 		real_buffer[4] = data->longlba ? 0x01 : 0;
1842 		real_buffer[5] = 0;
1843 		real_buffer[6] = data->block_descriptor_length >> 8;
1844 		real_buffer[7] = data->block_descriptor_length;
1845 
1846 		cmd[0] = MODE_SELECT_10;
1847 		cmd[7] = len >> 8;
1848 		cmd[8] = len;
1849 	} else {
1850 		if (len > 255 || data->block_descriptor_length > 255 ||
1851 		    data->longlba)
1852 			return -EINVAL;
1853 
1854 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1855 		if (!real_buffer)
1856 			return -ENOMEM;
1857 		memcpy(real_buffer + 4, buffer, len);
1858 		len += 4;
1859 		real_buffer[0] = 0;
1860 		real_buffer[1] = data->medium_type;
1861 		real_buffer[2] = data->device_specific;
1862 		real_buffer[3] = data->block_descriptor_length;
1863 
1864 
1865 		cmd[0] = MODE_SELECT;
1866 		cmd[4] = len;
1867 	}
1868 
1869 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1870 			       sshdr, timeout, retries, NULL);
1871 	kfree(real_buffer);
1872 	return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(scsi_mode_select);
1875 
1876 /**
1877  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1878  *	@sdev:	SCSI device to be queried
1879  *	@dbd:	set if mode sense will allow block descriptors to be returned
1880  *	@modepage: mode page being requested
1881  *	@buffer: request buffer (may not be smaller than eight bytes)
1882  *	@len:	length of request buffer.
1883  *	@timeout: command timeout
1884  *	@retries: number of retries before failing
1885  *	@data: returns a structure abstracting the mode header data
1886  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1887  *		must be SCSI_SENSE_BUFFERSIZE big.
1888  *
1889  *	Returns zero if unsuccessful, or the header offset (either 4
1890  *	or 8 depending on whether a six or ten byte command was
1891  *	issued) if successful.
1892  */
1893 int
1894 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1895 		  unsigned char *buffer, int len, int timeout, int retries,
1896 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1897 {
1898 	unsigned char cmd[12];
1899 	int use_10_for_ms;
1900 	int header_length;
1901 	int result;
1902 	struct scsi_sense_hdr my_sshdr;
1903 
1904 	memset(data, 0, sizeof(*data));
1905 	memset(&cmd[0], 0, 12);
1906 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1907 	cmd[2] = modepage;
1908 
1909 	/* caller might not be interested in sense, but we need it */
1910 	if (!sshdr)
1911 		sshdr = &my_sshdr;
1912 
1913  retry:
1914 	use_10_for_ms = sdev->use_10_for_ms;
1915 
1916 	if (use_10_for_ms) {
1917 		if (len < 8)
1918 			len = 8;
1919 
1920 		cmd[0] = MODE_SENSE_10;
1921 		cmd[8] = len;
1922 		header_length = 8;
1923 	} else {
1924 		if (len < 4)
1925 			len = 4;
1926 
1927 		cmd[0] = MODE_SENSE;
1928 		cmd[4] = len;
1929 		header_length = 4;
1930 	}
1931 
1932 	memset(buffer, 0, len);
1933 
1934 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1935 				  sshdr, timeout, retries, NULL);
1936 
1937 	/* This code looks awful: what it's doing is making sure an
1938 	 * ILLEGAL REQUEST sense return identifies the actual command
1939 	 * byte as the problem.  MODE_SENSE commands can return
1940 	 * ILLEGAL REQUEST if the code page isn't supported */
1941 
1942 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1943 	    (driver_byte(result) & DRIVER_SENSE)) {
1944 		if (scsi_sense_valid(sshdr)) {
1945 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1946 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1947 				/*
1948 				 * Invalid command operation code
1949 				 */
1950 				sdev->use_10_for_ms = 0;
1951 				goto retry;
1952 			}
1953 		}
1954 	}
1955 
1956 	if(scsi_status_is_good(result)) {
1957 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1958 			     (modepage == 6 || modepage == 8))) {
1959 			/* Initio breakage? */
1960 			header_length = 0;
1961 			data->length = 13;
1962 			data->medium_type = 0;
1963 			data->device_specific = 0;
1964 			data->longlba = 0;
1965 			data->block_descriptor_length = 0;
1966 		} else if(use_10_for_ms) {
1967 			data->length = buffer[0]*256 + buffer[1] + 2;
1968 			data->medium_type = buffer[2];
1969 			data->device_specific = buffer[3];
1970 			data->longlba = buffer[4] & 0x01;
1971 			data->block_descriptor_length = buffer[6]*256
1972 				+ buffer[7];
1973 		} else {
1974 			data->length = buffer[0] + 1;
1975 			data->medium_type = buffer[1];
1976 			data->device_specific = buffer[2];
1977 			data->block_descriptor_length = buffer[3];
1978 		}
1979 		data->header_length = header_length;
1980 	}
1981 
1982 	return result;
1983 }
1984 EXPORT_SYMBOL(scsi_mode_sense);
1985 
1986 /**
1987  *	scsi_test_unit_ready - test if unit is ready
1988  *	@sdev:	scsi device to change the state of.
1989  *	@timeout: command timeout
1990  *	@retries: number of retries before failing
1991  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1992  *		returning sense. Make sure that this is cleared before passing
1993  *		in.
1994  *
1995  *	Returns zero if unsuccessful or an error if TUR failed.  For
1996  *	removable media, UNIT_ATTENTION sets ->changed flag.
1997  **/
1998 int
1999 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2000 		     struct scsi_sense_hdr *sshdr_external)
2001 {
2002 	char cmd[] = {
2003 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2004 	};
2005 	struct scsi_sense_hdr *sshdr;
2006 	int result;
2007 
2008 	if (!sshdr_external)
2009 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2010 	else
2011 		sshdr = sshdr_external;
2012 
2013 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2014 	do {
2015 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2016 					  timeout, retries, NULL);
2017 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2018 		    sshdr->sense_key == UNIT_ATTENTION)
2019 			sdev->changed = 1;
2020 	} while (scsi_sense_valid(sshdr) &&
2021 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2022 
2023 	if (!sshdr_external)
2024 		kfree(sshdr);
2025 	return result;
2026 }
2027 EXPORT_SYMBOL(scsi_test_unit_ready);
2028 
2029 /**
2030  *	scsi_device_set_state - Take the given device through the device state model.
2031  *	@sdev:	scsi device to change the state of.
2032  *	@state:	state to change to.
2033  *
2034  *	Returns zero if unsuccessful or an error if the requested
2035  *	transition is illegal.
2036  */
2037 int
2038 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2039 {
2040 	enum scsi_device_state oldstate = sdev->sdev_state;
2041 
2042 	if (state == oldstate)
2043 		return 0;
2044 
2045 	switch (state) {
2046 	case SDEV_CREATED:
2047 		switch (oldstate) {
2048 		case SDEV_CREATED_BLOCK:
2049 			break;
2050 		default:
2051 			goto illegal;
2052 		}
2053 		break;
2054 
2055 	case SDEV_RUNNING:
2056 		switch (oldstate) {
2057 		case SDEV_CREATED:
2058 		case SDEV_OFFLINE:
2059 		case SDEV_QUIESCE:
2060 		case SDEV_BLOCK:
2061 			break;
2062 		default:
2063 			goto illegal;
2064 		}
2065 		break;
2066 
2067 	case SDEV_QUIESCE:
2068 		switch (oldstate) {
2069 		case SDEV_RUNNING:
2070 		case SDEV_OFFLINE:
2071 			break;
2072 		default:
2073 			goto illegal;
2074 		}
2075 		break;
2076 
2077 	case SDEV_OFFLINE:
2078 		switch (oldstate) {
2079 		case SDEV_CREATED:
2080 		case SDEV_RUNNING:
2081 		case SDEV_QUIESCE:
2082 		case SDEV_BLOCK:
2083 			break;
2084 		default:
2085 			goto illegal;
2086 		}
2087 		break;
2088 
2089 	case SDEV_BLOCK:
2090 		switch (oldstate) {
2091 		case SDEV_RUNNING:
2092 		case SDEV_CREATED_BLOCK:
2093 			break;
2094 		default:
2095 			goto illegal;
2096 		}
2097 		break;
2098 
2099 	case SDEV_CREATED_BLOCK:
2100 		switch (oldstate) {
2101 		case SDEV_CREATED:
2102 			break;
2103 		default:
2104 			goto illegal;
2105 		}
2106 		break;
2107 
2108 	case SDEV_CANCEL:
2109 		switch (oldstate) {
2110 		case SDEV_CREATED:
2111 		case SDEV_RUNNING:
2112 		case SDEV_QUIESCE:
2113 		case SDEV_OFFLINE:
2114 		case SDEV_BLOCK:
2115 			break;
2116 		default:
2117 			goto illegal;
2118 		}
2119 		break;
2120 
2121 	case SDEV_DEL:
2122 		switch (oldstate) {
2123 		case SDEV_CREATED:
2124 		case SDEV_RUNNING:
2125 		case SDEV_OFFLINE:
2126 		case SDEV_CANCEL:
2127 			break;
2128 		default:
2129 			goto illegal;
2130 		}
2131 		break;
2132 
2133 	}
2134 	sdev->sdev_state = state;
2135 	return 0;
2136 
2137  illegal:
2138 	SCSI_LOG_ERROR_RECOVERY(1,
2139 				sdev_printk(KERN_ERR, sdev,
2140 					    "Illegal state transition %s->%s\n",
2141 					    scsi_device_state_name(oldstate),
2142 					    scsi_device_state_name(state))
2143 				);
2144 	return -EINVAL;
2145 }
2146 EXPORT_SYMBOL(scsi_device_set_state);
2147 
2148 /**
2149  * 	sdev_evt_emit - emit a single SCSI device uevent
2150  *	@sdev: associated SCSI device
2151  *	@evt: event to emit
2152  *
2153  *	Send a single uevent (scsi_event) to the associated scsi_device.
2154  */
2155 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2156 {
2157 	int idx = 0;
2158 	char *envp[3];
2159 
2160 	switch (evt->evt_type) {
2161 	case SDEV_EVT_MEDIA_CHANGE:
2162 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2163 		break;
2164 
2165 	default:
2166 		/* do nothing */
2167 		break;
2168 	}
2169 
2170 	envp[idx++] = NULL;
2171 
2172 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2173 }
2174 
2175 /**
2176  * 	sdev_evt_thread - send a uevent for each scsi event
2177  *	@work: work struct for scsi_device
2178  *
2179  *	Dispatch queued events to their associated scsi_device kobjects
2180  *	as uevents.
2181  */
2182 void scsi_evt_thread(struct work_struct *work)
2183 {
2184 	struct scsi_device *sdev;
2185 	LIST_HEAD(event_list);
2186 
2187 	sdev = container_of(work, struct scsi_device, event_work);
2188 
2189 	while (1) {
2190 		struct scsi_event *evt;
2191 		struct list_head *this, *tmp;
2192 		unsigned long flags;
2193 
2194 		spin_lock_irqsave(&sdev->list_lock, flags);
2195 		list_splice_init(&sdev->event_list, &event_list);
2196 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2197 
2198 		if (list_empty(&event_list))
2199 			break;
2200 
2201 		list_for_each_safe(this, tmp, &event_list) {
2202 			evt = list_entry(this, struct scsi_event, node);
2203 			list_del(&evt->node);
2204 			scsi_evt_emit(sdev, evt);
2205 			kfree(evt);
2206 		}
2207 	}
2208 }
2209 
2210 /**
2211  * 	sdev_evt_send - send asserted event to uevent thread
2212  *	@sdev: scsi_device event occurred on
2213  *	@evt: event to send
2214  *
2215  *	Assert scsi device event asynchronously.
2216  */
2217 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2218 {
2219 	unsigned long flags;
2220 
2221 #if 0
2222 	/* FIXME: currently this check eliminates all media change events
2223 	 * for polled devices.  Need to update to discriminate between AN
2224 	 * and polled events */
2225 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2226 		kfree(evt);
2227 		return;
2228 	}
2229 #endif
2230 
2231 	spin_lock_irqsave(&sdev->list_lock, flags);
2232 	list_add_tail(&evt->node, &sdev->event_list);
2233 	schedule_work(&sdev->event_work);
2234 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2235 }
2236 EXPORT_SYMBOL_GPL(sdev_evt_send);
2237 
2238 /**
2239  * 	sdev_evt_alloc - allocate a new scsi event
2240  *	@evt_type: type of event to allocate
2241  *	@gfpflags: GFP flags for allocation
2242  *
2243  *	Allocates and returns a new scsi_event.
2244  */
2245 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2246 				  gfp_t gfpflags)
2247 {
2248 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2249 	if (!evt)
2250 		return NULL;
2251 
2252 	evt->evt_type = evt_type;
2253 	INIT_LIST_HEAD(&evt->node);
2254 
2255 	/* evt_type-specific initialization, if any */
2256 	switch (evt_type) {
2257 	case SDEV_EVT_MEDIA_CHANGE:
2258 	default:
2259 		/* do nothing */
2260 		break;
2261 	}
2262 
2263 	return evt;
2264 }
2265 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2266 
2267 /**
2268  * 	sdev_evt_send_simple - send asserted event to uevent thread
2269  *	@sdev: scsi_device event occurred on
2270  *	@evt_type: type of event to send
2271  *	@gfpflags: GFP flags for allocation
2272  *
2273  *	Assert scsi device event asynchronously, given an event type.
2274  */
2275 void sdev_evt_send_simple(struct scsi_device *sdev,
2276 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2277 {
2278 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2279 	if (!evt) {
2280 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2281 			    evt_type);
2282 		return;
2283 	}
2284 
2285 	sdev_evt_send(sdev, evt);
2286 }
2287 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2288 
2289 /**
2290  *	scsi_device_quiesce - Block user issued commands.
2291  *	@sdev:	scsi device to quiesce.
2292  *
2293  *	This works by trying to transition to the SDEV_QUIESCE state
2294  *	(which must be a legal transition).  When the device is in this
2295  *	state, only special requests will be accepted, all others will
2296  *	be deferred.  Since special requests may also be requeued requests,
2297  *	a successful return doesn't guarantee the device will be
2298  *	totally quiescent.
2299  *
2300  *	Must be called with user context, may sleep.
2301  *
2302  *	Returns zero if unsuccessful or an error if not.
2303  */
2304 int
2305 scsi_device_quiesce(struct scsi_device *sdev)
2306 {
2307 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2308 	if (err)
2309 		return err;
2310 
2311 	scsi_run_queue(sdev->request_queue);
2312 	while (sdev->device_busy) {
2313 		msleep_interruptible(200);
2314 		scsi_run_queue(sdev->request_queue);
2315 	}
2316 	return 0;
2317 }
2318 EXPORT_SYMBOL(scsi_device_quiesce);
2319 
2320 /**
2321  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2322  *	@sdev:	scsi device to resume.
2323  *
2324  *	Moves the device from quiesced back to running and restarts the
2325  *	queues.
2326  *
2327  *	Must be called with user context, may sleep.
2328  */
2329 void
2330 scsi_device_resume(struct scsi_device *sdev)
2331 {
2332 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2333 		return;
2334 	scsi_run_queue(sdev->request_queue);
2335 }
2336 EXPORT_SYMBOL(scsi_device_resume);
2337 
2338 static void
2339 device_quiesce_fn(struct scsi_device *sdev, void *data)
2340 {
2341 	scsi_device_quiesce(sdev);
2342 }
2343 
2344 void
2345 scsi_target_quiesce(struct scsi_target *starget)
2346 {
2347 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2348 }
2349 EXPORT_SYMBOL(scsi_target_quiesce);
2350 
2351 static void
2352 device_resume_fn(struct scsi_device *sdev, void *data)
2353 {
2354 	scsi_device_resume(sdev);
2355 }
2356 
2357 void
2358 scsi_target_resume(struct scsi_target *starget)
2359 {
2360 	starget_for_each_device(starget, NULL, device_resume_fn);
2361 }
2362 EXPORT_SYMBOL(scsi_target_resume);
2363 
2364 /**
2365  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2366  * @sdev:	device to block
2367  *
2368  * Block request made by scsi lld's to temporarily stop all
2369  * scsi commands on the specified device.  Called from interrupt
2370  * or normal process context.
2371  *
2372  * Returns zero if successful or error if not
2373  *
2374  * Notes:
2375  *	This routine transitions the device to the SDEV_BLOCK state
2376  *	(which must be a legal transition).  When the device is in this
2377  *	state, all commands are deferred until the scsi lld reenables
2378  *	the device with scsi_device_unblock or device_block_tmo fires.
2379  *	This routine assumes the host_lock is held on entry.
2380  */
2381 int
2382 scsi_internal_device_block(struct scsi_device *sdev)
2383 {
2384 	struct request_queue *q = sdev->request_queue;
2385 	unsigned long flags;
2386 	int err = 0;
2387 
2388 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2389 	if (err) {
2390 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2391 
2392 		if (err)
2393 			return err;
2394 	}
2395 
2396 	/*
2397 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2398 	 * block layer from calling the midlayer with this device's
2399 	 * request queue.
2400 	 */
2401 	spin_lock_irqsave(q->queue_lock, flags);
2402 	blk_stop_queue(q);
2403 	spin_unlock_irqrestore(q->queue_lock, flags);
2404 
2405 	return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2408 
2409 /**
2410  * scsi_internal_device_unblock - resume a device after a block request
2411  * @sdev:	device to resume
2412  *
2413  * Called by scsi lld's or the midlayer to restart the device queue
2414  * for the previously suspended scsi device.  Called from interrupt or
2415  * normal process context.
2416  *
2417  * Returns zero if successful or error if not.
2418  *
2419  * Notes:
2420  *	This routine transitions the device to the SDEV_RUNNING state
2421  *	(which must be a legal transition) allowing the midlayer to
2422  *	goose the queue for this device.  This routine assumes the
2423  *	host_lock is held upon entry.
2424  */
2425 int
2426 scsi_internal_device_unblock(struct scsi_device *sdev)
2427 {
2428 	struct request_queue *q = sdev->request_queue;
2429 	unsigned long flags;
2430 
2431 	/*
2432 	 * Try to transition the scsi device to SDEV_RUNNING
2433 	 * and goose the device queue if successful.
2434 	 */
2435 	if (sdev->sdev_state == SDEV_BLOCK)
2436 		sdev->sdev_state = SDEV_RUNNING;
2437 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2438 		sdev->sdev_state = SDEV_CREATED;
2439 	else if (sdev->sdev_state != SDEV_CANCEL &&
2440 		 sdev->sdev_state != SDEV_OFFLINE)
2441 		return -EINVAL;
2442 
2443 	spin_lock_irqsave(q->queue_lock, flags);
2444 	blk_start_queue(q);
2445 	spin_unlock_irqrestore(q->queue_lock, flags);
2446 
2447 	return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2450 
2451 static void
2452 device_block(struct scsi_device *sdev, void *data)
2453 {
2454 	scsi_internal_device_block(sdev);
2455 }
2456 
2457 static int
2458 target_block(struct device *dev, void *data)
2459 {
2460 	if (scsi_is_target_device(dev))
2461 		starget_for_each_device(to_scsi_target(dev), NULL,
2462 					device_block);
2463 	return 0;
2464 }
2465 
2466 void
2467 scsi_target_block(struct device *dev)
2468 {
2469 	if (scsi_is_target_device(dev))
2470 		starget_for_each_device(to_scsi_target(dev), NULL,
2471 					device_block);
2472 	else
2473 		device_for_each_child(dev, NULL, target_block);
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_target_block);
2476 
2477 static void
2478 device_unblock(struct scsi_device *sdev, void *data)
2479 {
2480 	scsi_internal_device_unblock(sdev);
2481 }
2482 
2483 static int
2484 target_unblock(struct device *dev, void *data)
2485 {
2486 	if (scsi_is_target_device(dev))
2487 		starget_for_each_device(to_scsi_target(dev), NULL,
2488 					device_unblock);
2489 	return 0;
2490 }
2491 
2492 void
2493 scsi_target_unblock(struct device *dev)
2494 {
2495 	if (scsi_is_target_device(dev))
2496 		starget_for_each_device(to_scsi_target(dev), NULL,
2497 					device_unblock);
2498 	else
2499 		device_for_each_child(dev, NULL, target_unblock);
2500 }
2501 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2502 
2503 /**
2504  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2505  * @sgl:	scatter-gather list
2506  * @sg_count:	number of segments in sg
2507  * @offset:	offset in bytes into sg, on return offset into the mapped area
2508  * @len:	bytes to map, on return number of bytes mapped
2509  *
2510  * Returns virtual address of the start of the mapped page
2511  */
2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2513 			  size_t *offset, size_t *len)
2514 {
2515 	int i;
2516 	size_t sg_len = 0, len_complete = 0;
2517 	struct scatterlist *sg;
2518 	struct page *page;
2519 
2520 	WARN_ON(!irqs_disabled());
2521 
2522 	for_each_sg(sgl, sg, sg_count, i) {
2523 		len_complete = sg_len; /* Complete sg-entries */
2524 		sg_len += sg->length;
2525 		if (sg_len > *offset)
2526 			break;
2527 	}
2528 
2529 	if (unlikely(i == sg_count)) {
2530 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2531 			"elements %d\n",
2532 		       __func__, sg_len, *offset, sg_count);
2533 		WARN_ON(1);
2534 		return NULL;
2535 	}
2536 
2537 	/* Offset starting from the beginning of first page in this sg-entry */
2538 	*offset = *offset - len_complete + sg->offset;
2539 
2540 	/* Assumption: contiguous pages can be accessed as "page + i" */
2541 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2542 	*offset &= ~PAGE_MASK;
2543 
2544 	/* Bytes in this sg-entry from *offset to the end of the page */
2545 	sg_len = PAGE_SIZE - *offset;
2546 	if (*len > sg_len)
2547 		*len = sg_len;
2548 
2549 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2550 }
2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2552 
2553 /**
2554  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2555  * @virt:	virtual address to be unmapped
2556  */
2557 void scsi_kunmap_atomic_sg(void *virt)
2558 {
2559 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2562