1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 /* 71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 72 * not change behaviour from the previous unplug mechanism, experimentation 73 * may prove this needs changing. 74 */ 75 #define SCSI_QUEUE_DELAY 3 76 77 static void scsi_run_queue(struct request_queue *q); 78 79 /* 80 * Function: scsi_unprep_request() 81 * 82 * Purpose: Remove all preparation done for a request, including its 83 * associated scsi_cmnd, so that it can be requeued. 84 * 85 * Arguments: req - request to unprepare 86 * 87 * Lock status: Assumed that no locks are held upon entry. 88 * 89 * Returns: Nothing. 90 */ 91 static void scsi_unprep_request(struct request *req) 92 { 93 struct scsi_cmnd *cmd = req->special; 94 95 blk_unprep_request(req); 96 req->special = NULL; 97 98 scsi_put_command(cmd); 99 } 100 101 /** 102 * __scsi_queue_insert - private queue insertion 103 * @cmd: The SCSI command being requeued 104 * @reason: The reason for the requeue 105 * @unbusy: Whether the queue should be unbusied 106 * 107 * This is a private queue insertion. The public interface 108 * scsi_queue_insert() always assumes the queue should be unbusied 109 * because it's always called before the completion. This function is 110 * for a requeue after completion, which should only occur in this 111 * file. 112 */ 113 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 114 { 115 struct Scsi_Host *host = cmd->device->host; 116 struct scsi_device *device = cmd->device; 117 struct scsi_target *starget = scsi_target(device); 118 struct request_queue *q = device->request_queue; 119 unsigned long flags; 120 121 SCSI_LOG_MLQUEUE(1, 122 printk("Inserting command %p into mlqueue\n", cmd)); 123 124 /* 125 * Set the appropriate busy bit for the device/host. 126 * 127 * If the host/device isn't busy, assume that something actually 128 * completed, and that we should be able to queue a command now. 129 * 130 * Note that the prior mid-layer assumption that any host could 131 * always queue at least one command is now broken. The mid-layer 132 * will implement a user specifiable stall (see 133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 134 * if a command is requeued with no other commands outstanding 135 * either for the device or for the host. 136 */ 137 switch (reason) { 138 case SCSI_MLQUEUE_HOST_BUSY: 139 host->host_blocked = host->max_host_blocked; 140 break; 141 case SCSI_MLQUEUE_DEVICE_BUSY: 142 device->device_blocked = device->max_device_blocked; 143 break; 144 case SCSI_MLQUEUE_TARGET_BUSY: 145 starget->target_blocked = starget->max_target_blocked; 146 break; 147 } 148 149 /* 150 * Decrement the counters, since these commands are no longer 151 * active on the host/device. 152 */ 153 if (unbusy) 154 scsi_device_unbusy(device); 155 156 /* 157 * Requeue this command. It will go before all other commands 158 * that are already in the queue. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 /* if the device is dead, sdev will be NULL, so no queue to run */ 408 if (!sdev) 409 return; 410 411 shost = sdev->host; 412 if (scsi_target(sdev)->single_lun) 413 scsi_single_lun_run(sdev); 414 415 spin_lock_irqsave(shost->host_lock, flags); 416 list_splice_init(&shost->starved_list, &starved_list); 417 418 while (!list_empty(&starved_list)) { 419 /* 420 * As long as shost is accepting commands and we have 421 * starved queues, call blk_run_queue. scsi_request_fn 422 * drops the queue_lock and can add us back to the 423 * starved_list. 424 * 425 * host_lock protects the starved_list and starved_entry. 426 * scsi_request_fn must get the host_lock before checking 427 * or modifying starved_list or starved_entry. 428 */ 429 if (scsi_host_is_busy(shost)) 430 break; 431 432 sdev = list_entry(starved_list.next, 433 struct scsi_device, starved_entry); 434 list_del_init(&sdev->starved_entry); 435 if (scsi_target_is_busy(scsi_target(sdev))) { 436 list_move_tail(&sdev->starved_entry, 437 &shost->starved_list); 438 continue; 439 } 440 441 blk_run_queue_async(sdev->request_queue); 442 } 443 /* put any unprocessed entries back */ 444 list_splice(&starved_list, &shost->starved_list); 445 spin_unlock_irqrestore(shost->host_lock, flags); 446 447 blk_run_queue(q); 448 } 449 450 /* 451 * Function: scsi_requeue_command() 452 * 453 * Purpose: Handle post-processing of completed commands. 454 * 455 * Arguments: q - queue to operate on 456 * cmd - command that may need to be requeued. 457 * 458 * Returns: Nothing 459 * 460 * Notes: After command completion, there may be blocks left 461 * over which weren't finished by the previous command 462 * this can be for a number of reasons - the main one is 463 * I/O errors in the middle of the request, in which case 464 * we need to request the blocks that come after the bad 465 * sector. 466 * Notes: Upon return, cmd is a stale pointer. 467 */ 468 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 469 { 470 struct request *req = cmd->request; 471 unsigned long flags; 472 473 spin_lock_irqsave(q->queue_lock, flags); 474 scsi_unprep_request(req); 475 blk_requeue_request(q, req); 476 spin_unlock_irqrestore(q->queue_lock, flags); 477 478 scsi_run_queue(q); 479 } 480 481 void scsi_next_command(struct scsi_cmnd *cmd) 482 { 483 struct scsi_device *sdev = cmd->device; 484 struct request_queue *q = sdev->request_queue; 485 486 /* need to hold a reference on the device before we let go of the cmd */ 487 get_device(&sdev->sdev_gendev); 488 489 scsi_put_command(cmd); 490 scsi_run_queue(q); 491 492 /* ok to remove device now */ 493 put_device(&sdev->sdev_gendev); 494 } 495 496 void scsi_run_host_queues(struct Scsi_Host *shost) 497 { 498 struct scsi_device *sdev; 499 500 shost_for_each_device(sdev, shost) 501 scsi_run_queue(sdev->request_queue); 502 } 503 504 static void __scsi_release_buffers(struct scsi_cmnd *, int); 505 506 /* 507 * Function: scsi_end_request() 508 * 509 * Purpose: Post-processing of completed commands (usually invoked at end 510 * of upper level post-processing and scsi_io_completion). 511 * 512 * Arguments: cmd - command that is complete. 513 * error - 0 if I/O indicates success, < 0 for I/O error. 514 * bytes - number of bytes of completed I/O 515 * requeue - indicates whether we should requeue leftovers. 516 * 517 * Lock status: Assumed that lock is not held upon entry. 518 * 519 * Returns: cmd if requeue required, NULL otherwise. 520 * 521 * Notes: This is called for block device requests in order to 522 * mark some number of sectors as complete. 523 * 524 * We are guaranteeing that the request queue will be goosed 525 * at some point during this call. 526 * Notes: If cmd was requeued, upon return it will be a stale pointer. 527 */ 528 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 529 int bytes, int requeue) 530 { 531 struct request_queue *q = cmd->device->request_queue; 532 struct request *req = cmd->request; 533 534 /* 535 * If there are blocks left over at the end, set up the command 536 * to queue the remainder of them. 537 */ 538 if (blk_end_request(req, error, bytes)) { 539 /* kill remainder if no retrys */ 540 if (error && scsi_noretry_cmd(cmd)) 541 blk_end_request_all(req, error); 542 else { 543 if (requeue) { 544 /* 545 * Bleah. Leftovers again. Stick the 546 * leftovers in the front of the 547 * queue, and goose the queue again. 548 */ 549 scsi_release_buffers(cmd); 550 scsi_requeue_command(q, cmd); 551 cmd = NULL; 552 } 553 return cmd; 554 } 555 } 556 557 /* 558 * This will goose the queue request function at the end, so we don't 559 * need to worry about launching another command. 560 */ 561 __scsi_release_buffers(cmd, 0); 562 scsi_next_command(cmd); 563 return NULL; 564 } 565 566 static inline unsigned int scsi_sgtable_index(unsigned short nents) 567 { 568 unsigned int index; 569 570 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 571 572 if (nents <= 8) 573 index = 0; 574 else 575 index = get_count_order(nents) - 3; 576 577 return index; 578 } 579 580 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 581 { 582 struct scsi_host_sg_pool *sgp; 583 584 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 585 mempool_free(sgl, sgp->pool); 586 } 587 588 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 589 { 590 struct scsi_host_sg_pool *sgp; 591 592 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 593 return mempool_alloc(sgp->pool, gfp_mask); 594 } 595 596 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 597 gfp_t gfp_mask) 598 { 599 int ret; 600 601 BUG_ON(!nents); 602 603 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 604 gfp_mask, scsi_sg_alloc); 605 if (unlikely(ret)) 606 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 607 scsi_sg_free); 608 609 return ret; 610 } 611 612 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 613 { 614 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 615 } 616 617 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 618 { 619 620 if (cmd->sdb.table.nents) 621 scsi_free_sgtable(&cmd->sdb); 622 623 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 624 625 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 626 struct scsi_data_buffer *bidi_sdb = 627 cmd->request->next_rq->special; 628 scsi_free_sgtable(bidi_sdb); 629 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 630 cmd->request->next_rq->special = NULL; 631 } 632 633 if (scsi_prot_sg_count(cmd)) 634 scsi_free_sgtable(cmd->prot_sdb); 635 } 636 637 /* 638 * Function: scsi_release_buffers() 639 * 640 * Purpose: Completion processing for block device I/O requests. 641 * 642 * Arguments: cmd - command that we are bailing. 643 * 644 * Lock status: Assumed that no lock is held upon entry. 645 * 646 * Returns: Nothing 647 * 648 * Notes: In the event that an upper level driver rejects a 649 * command, we must release resources allocated during 650 * the __init_io() function. Primarily this would involve 651 * the scatter-gather table, and potentially any bounce 652 * buffers. 653 */ 654 void scsi_release_buffers(struct scsi_cmnd *cmd) 655 { 656 __scsi_release_buffers(cmd, 1); 657 } 658 EXPORT_SYMBOL(scsi_release_buffers); 659 660 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 661 { 662 int error = 0; 663 664 switch(host_byte(result)) { 665 case DID_TRANSPORT_FAILFAST: 666 error = -ENOLINK; 667 break; 668 case DID_TARGET_FAILURE: 669 cmd->result |= (DID_OK << 16); 670 error = -EREMOTEIO; 671 break; 672 case DID_NEXUS_FAILURE: 673 cmd->result |= (DID_OK << 16); 674 error = -EBADE; 675 break; 676 default: 677 error = -EIO; 678 break; 679 } 680 681 return error; 682 } 683 684 /* 685 * Function: scsi_io_completion() 686 * 687 * Purpose: Completion processing for block device I/O requests. 688 * 689 * Arguments: cmd - command that is finished. 690 * 691 * Lock status: Assumed that no lock is held upon entry. 692 * 693 * Returns: Nothing 694 * 695 * Notes: This function is matched in terms of capabilities to 696 * the function that created the scatter-gather list. 697 * In other words, if there are no bounce buffers 698 * (the normal case for most drivers), we don't need 699 * the logic to deal with cleaning up afterwards. 700 * 701 * We must call scsi_end_request(). This will finish off 702 * the specified number of sectors. If we are done, the 703 * command block will be released and the queue function 704 * will be goosed. If we are not done then we have to 705 * figure out what to do next: 706 * 707 * a) We can call scsi_requeue_command(). The request 708 * will be unprepared and put back on the queue. Then 709 * a new command will be created for it. This should 710 * be used if we made forward progress, or if we want 711 * to switch from READ(10) to READ(6) for example. 712 * 713 * b) We can call scsi_queue_insert(). The request will 714 * be put back on the queue and retried using the same 715 * command as before, possibly after a delay. 716 * 717 * c) We can call blk_end_request() with -EIO to fail 718 * the remainder of the request. 719 */ 720 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 721 { 722 int result = cmd->result; 723 struct request_queue *q = cmd->device->request_queue; 724 struct request *req = cmd->request; 725 int error = 0; 726 struct scsi_sense_hdr sshdr; 727 int sense_valid = 0; 728 int sense_deferred = 0; 729 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 730 ACTION_DELAYED_RETRY} action; 731 char *description = NULL; 732 733 if (result) { 734 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 735 if (sense_valid) 736 sense_deferred = scsi_sense_is_deferred(&sshdr); 737 } 738 739 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 740 req->errors = result; 741 if (result) { 742 if (sense_valid && req->sense) { 743 /* 744 * SG_IO wants current and deferred errors 745 */ 746 int len = 8 + cmd->sense_buffer[7]; 747 748 if (len > SCSI_SENSE_BUFFERSIZE) 749 len = SCSI_SENSE_BUFFERSIZE; 750 memcpy(req->sense, cmd->sense_buffer, len); 751 req->sense_len = len; 752 } 753 if (!sense_deferred) 754 error = __scsi_error_from_host_byte(cmd, result); 755 } 756 757 req->resid_len = scsi_get_resid(cmd); 758 759 if (scsi_bidi_cmnd(cmd)) { 760 /* 761 * Bidi commands Must be complete as a whole, 762 * both sides at once. 763 */ 764 req->next_rq->resid_len = scsi_in(cmd)->resid; 765 766 scsi_release_buffers(cmd); 767 blk_end_request_all(req, 0); 768 769 scsi_next_command(cmd); 770 return; 771 } 772 } 773 774 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 775 BUG_ON(blk_bidi_rq(req)); 776 777 /* 778 * Next deal with any sectors which we were able to correctly 779 * handle. 780 */ 781 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 782 "%d bytes done.\n", 783 blk_rq_sectors(req), good_bytes)); 784 785 /* 786 * Recovered errors need reporting, but they're always treated 787 * as success, so fiddle the result code here. For BLOCK_PC 788 * we already took a copy of the original into rq->errors which 789 * is what gets returned to the user 790 */ 791 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 792 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 793 * print since caller wants ATA registers. Only occurs on 794 * SCSI ATA PASS_THROUGH commands when CK_COND=1 795 */ 796 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 797 ; 798 else if (!(req->cmd_flags & REQ_QUIET)) 799 scsi_print_sense("", cmd); 800 result = 0; 801 /* BLOCK_PC may have set error */ 802 error = 0; 803 } 804 805 /* 806 * A number of bytes were successfully read. If there 807 * are leftovers and there is some kind of error 808 * (result != 0), retry the rest. 809 */ 810 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 811 return; 812 813 error = __scsi_error_from_host_byte(cmd, result); 814 815 if (host_byte(result) == DID_RESET) { 816 /* Third party bus reset or reset for error recovery 817 * reasons. Just retry the command and see what 818 * happens. 819 */ 820 action = ACTION_RETRY; 821 } else if (sense_valid && !sense_deferred) { 822 switch (sshdr.sense_key) { 823 case UNIT_ATTENTION: 824 if (cmd->device->removable) { 825 /* Detected disc change. Set a bit 826 * and quietly refuse further access. 827 */ 828 cmd->device->changed = 1; 829 description = "Media Changed"; 830 action = ACTION_FAIL; 831 } else { 832 /* Must have been a power glitch, or a 833 * bus reset. Could not have been a 834 * media change, so we just retry the 835 * command and see what happens. 836 */ 837 action = ACTION_RETRY; 838 } 839 break; 840 case ILLEGAL_REQUEST: 841 /* If we had an ILLEGAL REQUEST returned, then 842 * we may have performed an unsupported 843 * command. The only thing this should be 844 * would be a ten byte read where only a six 845 * byte read was supported. Also, on a system 846 * where READ CAPACITY failed, we may have 847 * read past the end of the disk. 848 */ 849 if ((cmd->device->use_10_for_rw && 850 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 851 (cmd->cmnd[0] == READ_10 || 852 cmd->cmnd[0] == WRITE_10)) { 853 /* This will issue a new 6-byte command. */ 854 cmd->device->use_10_for_rw = 0; 855 action = ACTION_REPREP; 856 } else if (sshdr.asc == 0x10) /* DIX */ { 857 description = "Host Data Integrity Failure"; 858 action = ACTION_FAIL; 859 error = -EILSEQ; 860 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 861 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 862 (cmd->cmnd[0] == UNMAP || 863 cmd->cmnd[0] == WRITE_SAME_16 || 864 cmd->cmnd[0] == WRITE_SAME)) { 865 description = "Discard failure"; 866 action = ACTION_FAIL; 867 } else 868 action = ACTION_FAIL; 869 break; 870 case ABORTED_COMMAND: 871 action = ACTION_FAIL; 872 if (sshdr.asc == 0x10) { /* DIF */ 873 description = "Target Data Integrity Failure"; 874 error = -EILSEQ; 875 } 876 break; 877 case NOT_READY: 878 /* If the device is in the process of becoming 879 * ready, or has a temporary blockage, retry. 880 */ 881 if (sshdr.asc == 0x04) { 882 switch (sshdr.ascq) { 883 case 0x01: /* becoming ready */ 884 case 0x04: /* format in progress */ 885 case 0x05: /* rebuild in progress */ 886 case 0x06: /* recalculation in progress */ 887 case 0x07: /* operation in progress */ 888 case 0x08: /* Long write in progress */ 889 case 0x09: /* self test in progress */ 890 case 0x14: /* space allocation in progress */ 891 action = ACTION_DELAYED_RETRY; 892 break; 893 default: 894 description = "Device not ready"; 895 action = ACTION_FAIL; 896 break; 897 } 898 } else { 899 description = "Device not ready"; 900 action = ACTION_FAIL; 901 } 902 break; 903 case VOLUME_OVERFLOW: 904 /* See SSC3rXX or current. */ 905 action = ACTION_FAIL; 906 break; 907 default: 908 description = "Unhandled sense code"; 909 action = ACTION_FAIL; 910 break; 911 } 912 } else { 913 description = "Unhandled error code"; 914 action = ACTION_FAIL; 915 } 916 917 switch (action) { 918 case ACTION_FAIL: 919 /* Give up and fail the remainder of the request */ 920 scsi_release_buffers(cmd); 921 if (!(req->cmd_flags & REQ_QUIET)) { 922 if (description) 923 scmd_printk(KERN_INFO, cmd, "%s\n", 924 description); 925 scsi_print_result(cmd); 926 if (driver_byte(result) & DRIVER_SENSE) 927 scsi_print_sense("", cmd); 928 scsi_print_command(cmd); 929 } 930 if (blk_end_request_err(req, error)) 931 scsi_requeue_command(q, cmd); 932 else 933 scsi_next_command(cmd); 934 break; 935 case ACTION_REPREP: 936 /* Unprep the request and put it back at the head of the queue. 937 * A new command will be prepared and issued. 938 */ 939 scsi_release_buffers(cmd); 940 scsi_requeue_command(q, cmd); 941 break; 942 case ACTION_RETRY: 943 /* Retry the same command immediately */ 944 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 945 break; 946 case ACTION_DELAYED_RETRY: 947 /* Retry the same command after a delay */ 948 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 949 break; 950 } 951 } 952 953 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 954 gfp_t gfp_mask) 955 { 956 int count; 957 958 /* 959 * If sg table allocation fails, requeue request later. 960 */ 961 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 962 gfp_mask))) { 963 return BLKPREP_DEFER; 964 } 965 966 req->buffer = NULL; 967 968 /* 969 * Next, walk the list, and fill in the addresses and sizes of 970 * each segment. 971 */ 972 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 973 BUG_ON(count > sdb->table.nents); 974 sdb->table.nents = count; 975 sdb->length = blk_rq_bytes(req); 976 return BLKPREP_OK; 977 } 978 979 /* 980 * Function: scsi_init_io() 981 * 982 * Purpose: SCSI I/O initialize function. 983 * 984 * Arguments: cmd - Command descriptor we wish to initialize 985 * 986 * Returns: 0 on success 987 * BLKPREP_DEFER if the failure is retryable 988 * BLKPREP_KILL if the failure is fatal 989 */ 990 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 991 { 992 struct request *rq = cmd->request; 993 994 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 995 if (error) 996 goto err_exit; 997 998 if (blk_bidi_rq(rq)) { 999 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1000 scsi_sdb_cache, GFP_ATOMIC); 1001 if (!bidi_sdb) { 1002 error = BLKPREP_DEFER; 1003 goto err_exit; 1004 } 1005 1006 rq->next_rq->special = bidi_sdb; 1007 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1008 if (error) 1009 goto err_exit; 1010 } 1011 1012 if (blk_integrity_rq(rq)) { 1013 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1014 int ivecs, count; 1015 1016 BUG_ON(prot_sdb == NULL); 1017 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1018 1019 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1020 error = BLKPREP_DEFER; 1021 goto err_exit; 1022 } 1023 1024 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1025 prot_sdb->table.sgl); 1026 BUG_ON(unlikely(count > ivecs)); 1027 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1028 1029 cmd->prot_sdb = prot_sdb; 1030 cmd->prot_sdb->table.nents = count; 1031 } 1032 1033 return BLKPREP_OK ; 1034 1035 err_exit: 1036 scsi_release_buffers(cmd); 1037 cmd->request->special = NULL; 1038 scsi_put_command(cmd); 1039 return error; 1040 } 1041 EXPORT_SYMBOL(scsi_init_io); 1042 1043 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1044 struct request *req) 1045 { 1046 struct scsi_cmnd *cmd; 1047 1048 if (!req->special) { 1049 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1050 if (unlikely(!cmd)) 1051 return NULL; 1052 req->special = cmd; 1053 } else { 1054 cmd = req->special; 1055 } 1056 1057 /* pull a tag out of the request if we have one */ 1058 cmd->tag = req->tag; 1059 cmd->request = req; 1060 1061 cmd->cmnd = req->cmd; 1062 cmd->prot_op = SCSI_PROT_NORMAL; 1063 1064 return cmd; 1065 } 1066 1067 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1068 { 1069 struct scsi_cmnd *cmd; 1070 int ret = scsi_prep_state_check(sdev, req); 1071 1072 if (ret != BLKPREP_OK) 1073 return ret; 1074 1075 cmd = scsi_get_cmd_from_req(sdev, req); 1076 if (unlikely(!cmd)) 1077 return BLKPREP_DEFER; 1078 1079 /* 1080 * BLOCK_PC requests may transfer data, in which case they must 1081 * a bio attached to them. Or they might contain a SCSI command 1082 * that does not transfer data, in which case they may optionally 1083 * submit a request without an attached bio. 1084 */ 1085 if (req->bio) { 1086 int ret; 1087 1088 BUG_ON(!req->nr_phys_segments); 1089 1090 ret = scsi_init_io(cmd, GFP_ATOMIC); 1091 if (unlikely(ret)) 1092 return ret; 1093 } else { 1094 BUG_ON(blk_rq_bytes(req)); 1095 1096 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1097 req->buffer = NULL; 1098 } 1099 1100 cmd->cmd_len = req->cmd_len; 1101 if (!blk_rq_bytes(req)) 1102 cmd->sc_data_direction = DMA_NONE; 1103 else if (rq_data_dir(req) == WRITE) 1104 cmd->sc_data_direction = DMA_TO_DEVICE; 1105 else 1106 cmd->sc_data_direction = DMA_FROM_DEVICE; 1107 1108 cmd->transfersize = blk_rq_bytes(req); 1109 cmd->allowed = req->retries; 1110 return BLKPREP_OK; 1111 } 1112 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1113 1114 /* 1115 * Setup a REQ_TYPE_FS command. These are simple read/write request 1116 * from filesystems that still need to be translated to SCSI CDBs from 1117 * the ULD. 1118 */ 1119 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1120 { 1121 struct scsi_cmnd *cmd; 1122 int ret = scsi_prep_state_check(sdev, req); 1123 1124 if (ret != BLKPREP_OK) 1125 return ret; 1126 1127 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1128 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1129 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1130 if (ret != BLKPREP_OK) 1131 return ret; 1132 } 1133 1134 /* 1135 * Filesystem requests must transfer data. 1136 */ 1137 BUG_ON(!req->nr_phys_segments); 1138 1139 cmd = scsi_get_cmd_from_req(sdev, req); 1140 if (unlikely(!cmd)) 1141 return BLKPREP_DEFER; 1142 1143 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1144 return scsi_init_io(cmd, GFP_ATOMIC); 1145 } 1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1147 1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1149 { 1150 int ret = BLKPREP_OK; 1151 1152 /* 1153 * If the device is not in running state we will reject some 1154 * or all commands. 1155 */ 1156 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1157 switch (sdev->sdev_state) { 1158 case SDEV_OFFLINE: 1159 /* 1160 * If the device is offline we refuse to process any 1161 * commands. The device must be brought online 1162 * before trying any recovery commands. 1163 */ 1164 sdev_printk(KERN_ERR, sdev, 1165 "rejecting I/O to offline device\n"); 1166 ret = BLKPREP_KILL; 1167 break; 1168 case SDEV_DEL: 1169 /* 1170 * If the device is fully deleted, we refuse to 1171 * process any commands as well. 1172 */ 1173 sdev_printk(KERN_ERR, sdev, 1174 "rejecting I/O to dead device\n"); 1175 ret = BLKPREP_KILL; 1176 break; 1177 case SDEV_QUIESCE: 1178 case SDEV_BLOCK: 1179 case SDEV_CREATED_BLOCK: 1180 /* 1181 * If the devices is blocked we defer normal commands. 1182 */ 1183 if (!(req->cmd_flags & REQ_PREEMPT)) 1184 ret = BLKPREP_DEFER; 1185 break; 1186 default: 1187 /* 1188 * For any other not fully online state we only allow 1189 * special commands. In particular any user initiated 1190 * command is not allowed. 1191 */ 1192 if (!(req->cmd_flags & REQ_PREEMPT)) 1193 ret = BLKPREP_KILL; 1194 break; 1195 } 1196 } 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(scsi_prep_state_check); 1200 1201 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1202 { 1203 struct scsi_device *sdev = q->queuedata; 1204 1205 switch (ret) { 1206 case BLKPREP_KILL: 1207 req->errors = DID_NO_CONNECT << 16; 1208 /* release the command and kill it */ 1209 if (req->special) { 1210 struct scsi_cmnd *cmd = req->special; 1211 scsi_release_buffers(cmd); 1212 scsi_put_command(cmd); 1213 req->special = NULL; 1214 } 1215 break; 1216 case BLKPREP_DEFER: 1217 /* 1218 * If we defer, the blk_peek_request() returns NULL, but the 1219 * queue must be restarted, so we schedule a callback to happen 1220 * shortly. 1221 */ 1222 if (sdev->device_busy == 0) 1223 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1224 break; 1225 default: 1226 req->cmd_flags |= REQ_DONTPREP; 1227 } 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(scsi_prep_return); 1232 1233 int scsi_prep_fn(struct request_queue *q, struct request *req) 1234 { 1235 struct scsi_device *sdev = q->queuedata; 1236 int ret = BLKPREP_KILL; 1237 1238 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1239 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1240 return scsi_prep_return(q, req, ret); 1241 } 1242 EXPORT_SYMBOL(scsi_prep_fn); 1243 1244 /* 1245 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1246 * return 0. 1247 * 1248 * Called with the queue_lock held. 1249 */ 1250 static inline int scsi_dev_queue_ready(struct request_queue *q, 1251 struct scsi_device *sdev) 1252 { 1253 if (sdev->device_busy == 0 && sdev->device_blocked) { 1254 /* 1255 * unblock after device_blocked iterates to zero 1256 */ 1257 if (--sdev->device_blocked == 0) { 1258 SCSI_LOG_MLQUEUE(3, 1259 sdev_printk(KERN_INFO, sdev, 1260 "unblocking device at zero depth\n")); 1261 } else { 1262 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1263 return 0; 1264 } 1265 } 1266 if (scsi_device_is_busy(sdev)) 1267 return 0; 1268 1269 return 1; 1270 } 1271 1272 1273 /* 1274 * scsi_target_queue_ready: checks if there we can send commands to target 1275 * @sdev: scsi device on starget to check. 1276 * 1277 * Called with the host lock held. 1278 */ 1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1280 struct scsi_device *sdev) 1281 { 1282 struct scsi_target *starget = scsi_target(sdev); 1283 1284 if (starget->single_lun) { 1285 if (starget->starget_sdev_user && 1286 starget->starget_sdev_user != sdev) 1287 return 0; 1288 starget->starget_sdev_user = sdev; 1289 } 1290 1291 if (starget->target_busy == 0 && starget->target_blocked) { 1292 /* 1293 * unblock after target_blocked iterates to zero 1294 */ 1295 if (--starget->target_blocked == 0) { 1296 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1297 "unblocking target at zero depth\n")); 1298 } else 1299 return 0; 1300 } 1301 1302 if (scsi_target_is_busy(starget)) { 1303 if (list_empty(&sdev->starved_entry)) 1304 list_add_tail(&sdev->starved_entry, 1305 &shost->starved_list); 1306 return 0; 1307 } 1308 1309 /* We're OK to process the command, so we can't be starved */ 1310 if (!list_empty(&sdev->starved_entry)) 1311 list_del_init(&sdev->starved_entry); 1312 return 1; 1313 } 1314 1315 /* 1316 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1317 * return 0. We must end up running the queue again whenever 0 is 1318 * returned, else IO can hang. 1319 * 1320 * Called with host_lock held. 1321 */ 1322 static inline int scsi_host_queue_ready(struct request_queue *q, 1323 struct Scsi_Host *shost, 1324 struct scsi_device *sdev) 1325 { 1326 if (scsi_host_in_recovery(shost)) 1327 return 0; 1328 if (shost->host_busy == 0 && shost->host_blocked) { 1329 /* 1330 * unblock after host_blocked iterates to zero 1331 */ 1332 if (--shost->host_blocked == 0) { 1333 SCSI_LOG_MLQUEUE(3, 1334 printk("scsi%d unblocking host at zero depth\n", 1335 shost->host_no)); 1336 } else { 1337 return 0; 1338 } 1339 } 1340 if (scsi_host_is_busy(shost)) { 1341 if (list_empty(&sdev->starved_entry)) 1342 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1343 return 0; 1344 } 1345 1346 /* We're OK to process the command, so we can't be starved */ 1347 if (!list_empty(&sdev->starved_entry)) 1348 list_del_init(&sdev->starved_entry); 1349 1350 return 1; 1351 } 1352 1353 /* 1354 * Busy state exporting function for request stacking drivers. 1355 * 1356 * For efficiency, no lock is taken to check the busy state of 1357 * shost/starget/sdev, since the returned value is not guaranteed and 1358 * may be changed after request stacking drivers call the function, 1359 * regardless of taking lock or not. 1360 * 1361 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1362 * (e.g. !sdev), scsi needs to return 'not busy'. 1363 * Otherwise, request stacking drivers may hold requests forever. 1364 */ 1365 static int scsi_lld_busy(struct request_queue *q) 1366 { 1367 struct scsi_device *sdev = q->queuedata; 1368 struct Scsi_Host *shost; 1369 struct scsi_target *starget; 1370 1371 if (!sdev) 1372 return 0; 1373 1374 shost = sdev->host; 1375 starget = scsi_target(sdev); 1376 1377 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1378 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1379 return 1; 1380 1381 return 0; 1382 } 1383 1384 /* 1385 * Kill a request for a dead device 1386 */ 1387 static void scsi_kill_request(struct request *req, struct request_queue *q) 1388 { 1389 struct scsi_cmnd *cmd = req->special; 1390 struct scsi_device *sdev; 1391 struct scsi_target *starget; 1392 struct Scsi_Host *shost; 1393 1394 blk_start_request(req); 1395 1396 sdev = cmd->device; 1397 starget = scsi_target(sdev); 1398 shost = sdev->host; 1399 scsi_init_cmd_errh(cmd); 1400 cmd->result = DID_NO_CONNECT << 16; 1401 atomic_inc(&cmd->device->iorequest_cnt); 1402 1403 /* 1404 * SCSI request completion path will do scsi_device_unbusy(), 1405 * bump busy counts. To bump the counters, we need to dance 1406 * with the locks as normal issue path does. 1407 */ 1408 sdev->device_busy++; 1409 spin_unlock(sdev->request_queue->queue_lock); 1410 spin_lock(shost->host_lock); 1411 shost->host_busy++; 1412 starget->target_busy++; 1413 spin_unlock(shost->host_lock); 1414 spin_lock(sdev->request_queue->queue_lock); 1415 1416 blk_complete_request(req); 1417 } 1418 1419 static void scsi_softirq_done(struct request *rq) 1420 { 1421 struct scsi_cmnd *cmd = rq->special; 1422 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1423 int disposition; 1424 1425 INIT_LIST_HEAD(&cmd->eh_entry); 1426 1427 atomic_inc(&cmd->device->iodone_cnt); 1428 if (cmd->result) 1429 atomic_inc(&cmd->device->ioerr_cnt); 1430 1431 disposition = scsi_decide_disposition(cmd); 1432 if (disposition != SUCCESS && 1433 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1434 sdev_printk(KERN_ERR, cmd->device, 1435 "timing out command, waited %lus\n", 1436 wait_for/HZ); 1437 disposition = SUCCESS; 1438 } 1439 1440 scsi_log_completion(cmd, disposition); 1441 1442 switch (disposition) { 1443 case SUCCESS: 1444 scsi_finish_command(cmd); 1445 break; 1446 case NEEDS_RETRY: 1447 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1448 break; 1449 case ADD_TO_MLQUEUE: 1450 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1451 break; 1452 default: 1453 if (!scsi_eh_scmd_add(cmd, 0)) 1454 scsi_finish_command(cmd); 1455 } 1456 } 1457 1458 /* 1459 * Function: scsi_request_fn() 1460 * 1461 * Purpose: Main strategy routine for SCSI. 1462 * 1463 * Arguments: q - Pointer to actual queue. 1464 * 1465 * Returns: Nothing 1466 * 1467 * Lock status: IO request lock assumed to be held when called. 1468 */ 1469 static void scsi_request_fn(struct request_queue *q) 1470 { 1471 struct scsi_device *sdev = q->queuedata; 1472 struct Scsi_Host *shost; 1473 struct scsi_cmnd *cmd; 1474 struct request *req; 1475 1476 if (!sdev) { 1477 printk("scsi: killing requests for dead queue\n"); 1478 while ((req = blk_peek_request(q)) != NULL) 1479 scsi_kill_request(req, q); 1480 return; 1481 } 1482 1483 if(!get_device(&sdev->sdev_gendev)) 1484 /* We must be tearing the block queue down already */ 1485 return; 1486 1487 /* 1488 * To start with, we keep looping until the queue is empty, or until 1489 * the host is no longer able to accept any more requests. 1490 */ 1491 shost = sdev->host; 1492 for (;;) { 1493 int rtn; 1494 /* 1495 * get next queueable request. We do this early to make sure 1496 * that the request is fully prepared even if we cannot 1497 * accept it. 1498 */ 1499 req = blk_peek_request(q); 1500 if (!req || !scsi_dev_queue_ready(q, sdev)) 1501 break; 1502 1503 if (unlikely(!scsi_device_online(sdev))) { 1504 sdev_printk(KERN_ERR, sdev, 1505 "rejecting I/O to offline device\n"); 1506 scsi_kill_request(req, q); 1507 continue; 1508 } 1509 1510 1511 /* 1512 * Remove the request from the request list. 1513 */ 1514 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1515 blk_start_request(req); 1516 sdev->device_busy++; 1517 1518 spin_unlock(q->queue_lock); 1519 cmd = req->special; 1520 if (unlikely(cmd == NULL)) { 1521 printk(KERN_CRIT "impossible request in %s.\n" 1522 "please mail a stack trace to " 1523 "linux-scsi@vger.kernel.org\n", 1524 __func__); 1525 blk_dump_rq_flags(req, "foo"); 1526 BUG(); 1527 } 1528 spin_lock(shost->host_lock); 1529 1530 /* 1531 * We hit this when the driver is using a host wide 1532 * tag map. For device level tag maps the queue_depth check 1533 * in the device ready fn would prevent us from trying 1534 * to allocate a tag. Since the map is a shared host resource 1535 * we add the dev to the starved list so it eventually gets 1536 * a run when a tag is freed. 1537 */ 1538 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1539 if (list_empty(&sdev->starved_entry)) 1540 list_add_tail(&sdev->starved_entry, 1541 &shost->starved_list); 1542 goto not_ready; 1543 } 1544 1545 if (!scsi_target_queue_ready(shost, sdev)) 1546 goto not_ready; 1547 1548 if (!scsi_host_queue_ready(q, shost, sdev)) 1549 goto not_ready; 1550 1551 scsi_target(sdev)->target_busy++; 1552 shost->host_busy++; 1553 1554 /* 1555 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1556 * take the lock again. 1557 */ 1558 spin_unlock_irq(shost->host_lock); 1559 1560 /* 1561 * Finally, initialize any error handling parameters, and set up 1562 * the timers for timeouts. 1563 */ 1564 scsi_init_cmd_errh(cmd); 1565 1566 /* 1567 * Dispatch the command to the low-level driver. 1568 */ 1569 rtn = scsi_dispatch_cmd(cmd); 1570 spin_lock_irq(q->queue_lock); 1571 if (rtn) 1572 goto out_delay; 1573 } 1574 1575 goto out; 1576 1577 not_ready: 1578 spin_unlock_irq(shost->host_lock); 1579 1580 /* 1581 * lock q, handle tag, requeue req, and decrement device_busy. We 1582 * must return with queue_lock held. 1583 * 1584 * Decrementing device_busy without checking it is OK, as all such 1585 * cases (host limits or settings) should run the queue at some 1586 * later time. 1587 */ 1588 spin_lock_irq(q->queue_lock); 1589 blk_requeue_request(q, req); 1590 sdev->device_busy--; 1591 out_delay: 1592 if (sdev->device_busy == 0) 1593 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1594 out: 1595 /* must be careful here...if we trigger the ->remove() function 1596 * we cannot be holding the q lock */ 1597 spin_unlock_irq(q->queue_lock); 1598 put_device(&sdev->sdev_gendev); 1599 spin_lock_irq(q->queue_lock); 1600 } 1601 1602 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1603 { 1604 struct device *host_dev; 1605 u64 bounce_limit = 0xffffffff; 1606 1607 if (shost->unchecked_isa_dma) 1608 return BLK_BOUNCE_ISA; 1609 /* 1610 * Platforms with virtual-DMA translation 1611 * hardware have no practical limit. 1612 */ 1613 if (!PCI_DMA_BUS_IS_PHYS) 1614 return BLK_BOUNCE_ANY; 1615 1616 host_dev = scsi_get_device(shost); 1617 if (host_dev && host_dev->dma_mask) 1618 bounce_limit = *host_dev->dma_mask; 1619 1620 return bounce_limit; 1621 } 1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1623 1624 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1625 request_fn_proc *request_fn) 1626 { 1627 struct request_queue *q; 1628 struct device *dev = shost->shost_gendev.parent; 1629 1630 q = blk_init_queue(request_fn, NULL); 1631 if (!q) 1632 return NULL; 1633 1634 /* 1635 * this limit is imposed by hardware restrictions 1636 */ 1637 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1638 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1639 1640 if (scsi_host_prot_dma(shost)) { 1641 shost->sg_prot_tablesize = 1642 min_not_zero(shost->sg_prot_tablesize, 1643 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1644 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1645 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1646 } 1647 1648 blk_queue_max_hw_sectors(q, shost->max_sectors); 1649 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1650 blk_queue_segment_boundary(q, shost->dma_boundary); 1651 dma_set_seg_boundary(dev, shost->dma_boundary); 1652 1653 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1654 1655 if (!shost->use_clustering) 1656 q->limits.cluster = 0; 1657 1658 /* 1659 * set a reasonable default alignment on word boundaries: the 1660 * host and device may alter it using 1661 * blk_queue_update_dma_alignment() later. 1662 */ 1663 blk_queue_dma_alignment(q, 0x03); 1664 1665 return q; 1666 } 1667 EXPORT_SYMBOL(__scsi_alloc_queue); 1668 1669 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1670 { 1671 struct request_queue *q; 1672 1673 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1674 if (!q) 1675 return NULL; 1676 1677 blk_queue_prep_rq(q, scsi_prep_fn); 1678 blk_queue_softirq_done(q, scsi_softirq_done); 1679 blk_queue_rq_timed_out(q, scsi_times_out); 1680 blk_queue_lld_busy(q, scsi_lld_busy); 1681 return q; 1682 } 1683 1684 void scsi_free_queue(struct request_queue *q) 1685 { 1686 blk_cleanup_queue(q); 1687 } 1688 1689 /* 1690 * Function: scsi_block_requests() 1691 * 1692 * Purpose: Utility function used by low-level drivers to prevent further 1693 * commands from being queued to the device. 1694 * 1695 * Arguments: shost - Host in question 1696 * 1697 * Returns: Nothing 1698 * 1699 * Lock status: No locks are assumed held. 1700 * 1701 * Notes: There is no timer nor any other means by which the requests 1702 * get unblocked other than the low-level driver calling 1703 * scsi_unblock_requests(). 1704 */ 1705 void scsi_block_requests(struct Scsi_Host *shost) 1706 { 1707 shost->host_self_blocked = 1; 1708 } 1709 EXPORT_SYMBOL(scsi_block_requests); 1710 1711 /* 1712 * Function: scsi_unblock_requests() 1713 * 1714 * Purpose: Utility function used by low-level drivers to allow further 1715 * commands from being queued to the device. 1716 * 1717 * Arguments: shost - Host in question 1718 * 1719 * Returns: Nothing 1720 * 1721 * Lock status: No locks are assumed held. 1722 * 1723 * Notes: There is no timer nor any other means by which the requests 1724 * get unblocked other than the low-level driver calling 1725 * scsi_unblock_requests(). 1726 * 1727 * This is done as an API function so that changes to the 1728 * internals of the scsi mid-layer won't require wholesale 1729 * changes to drivers that use this feature. 1730 */ 1731 void scsi_unblock_requests(struct Scsi_Host *shost) 1732 { 1733 shost->host_self_blocked = 0; 1734 scsi_run_host_queues(shost); 1735 } 1736 EXPORT_SYMBOL(scsi_unblock_requests); 1737 1738 int __init scsi_init_queue(void) 1739 { 1740 int i; 1741 1742 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1743 sizeof(struct scsi_data_buffer), 1744 0, 0, NULL); 1745 if (!scsi_sdb_cache) { 1746 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1747 return -ENOMEM; 1748 } 1749 1750 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1751 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1752 int size = sgp->size * sizeof(struct scatterlist); 1753 1754 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1755 SLAB_HWCACHE_ALIGN, NULL); 1756 if (!sgp->slab) { 1757 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1758 sgp->name); 1759 goto cleanup_sdb; 1760 } 1761 1762 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1763 sgp->slab); 1764 if (!sgp->pool) { 1765 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1766 sgp->name); 1767 goto cleanup_sdb; 1768 } 1769 } 1770 1771 return 0; 1772 1773 cleanup_sdb: 1774 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1775 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1776 if (sgp->pool) 1777 mempool_destroy(sgp->pool); 1778 if (sgp->slab) 1779 kmem_cache_destroy(sgp->slab); 1780 } 1781 kmem_cache_destroy(scsi_sdb_cache); 1782 1783 return -ENOMEM; 1784 } 1785 1786 void scsi_exit_queue(void) 1787 { 1788 int i; 1789 1790 kmem_cache_destroy(scsi_sdb_cache); 1791 1792 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1793 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1794 mempool_destroy(sgp->pool); 1795 kmem_cache_destroy(sgp->slab); 1796 } 1797 } 1798 1799 /** 1800 * scsi_mode_select - issue a mode select 1801 * @sdev: SCSI device to be queried 1802 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1803 * @sp: Save page bit (0 == don't save, 1 == save) 1804 * @modepage: mode page being requested 1805 * @buffer: request buffer (may not be smaller than eight bytes) 1806 * @len: length of request buffer. 1807 * @timeout: command timeout 1808 * @retries: number of retries before failing 1809 * @data: returns a structure abstracting the mode header data 1810 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1811 * must be SCSI_SENSE_BUFFERSIZE big. 1812 * 1813 * Returns zero if successful; negative error number or scsi 1814 * status on error 1815 * 1816 */ 1817 int 1818 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1819 unsigned char *buffer, int len, int timeout, int retries, 1820 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1821 { 1822 unsigned char cmd[10]; 1823 unsigned char *real_buffer; 1824 int ret; 1825 1826 memset(cmd, 0, sizeof(cmd)); 1827 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1828 1829 if (sdev->use_10_for_ms) { 1830 if (len > 65535) 1831 return -EINVAL; 1832 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1833 if (!real_buffer) 1834 return -ENOMEM; 1835 memcpy(real_buffer + 8, buffer, len); 1836 len += 8; 1837 real_buffer[0] = 0; 1838 real_buffer[1] = 0; 1839 real_buffer[2] = data->medium_type; 1840 real_buffer[3] = data->device_specific; 1841 real_buffer[4] = data->longlba ? 0x01 : 0; 1842 real_buffer[5] = 0; 1843 real_buffer[6] = data->block_descriptor_length >> 8; 1844 real_buffer[7] = data->block_descriptor_length; 1845 1846 cmd[0] = MODE_SELECT_10; 1847 cmd[7] = len >> 8; 1848 cmd[8] = len; 1849 } else { 1850 if (len > 255 || data->block_descriptor_length > 255 || 1851 data->longlba) 1852 return -EINVAL; 1853 1854 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1855 if (!real_buffer) 1856 return -ENOMEM; 1857 memcpy(real_buffer + 4, buffer, len); 1858 len += 4; 1859 real_buffer[0] = 0; 1860 real_buffer[1] = data->medium_type; 1861 real_buffer[2] = data->device_specific; 1862 real_buffer[3] = data->block_descriptor_length; 1863 1864 1865 cmd[0] = MODE_SELECT; 1866 cmd[4] = len; 1867 } 1868 1869 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1870 sshdr, timeout, retries, NULL); 1871 kfree(real_buffer); 1872 return ret; 1873 } 1874 EXPORT_SYMBOL_GPL(scsi_mode_select); 1875 1876 /** 1877 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1878 * @sdev: SCSI device to be queried 1879 * @dbd: set if mode sense will allow block descriptors to be returned 1880 * @modepage: mode page being requested 1881 * @buffer: request buffer (may not be smaller than eight bytes) 1882 * @len: length of request buffer. 1883 * @timeout: command timeout 1884 * @retries: number of retries before failing 1885 * @data: returns a structure abstracting the mode header data 1886 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1887 * must be SCSI_SENSE_BUFFERSIZE big. 1888 * 1889 * Returns zero if unsuccessful, or the header offset (either 4 1890 * or 8 depending on whether a six or ten byte command was 1891 * issued) if successful. 1892 */ 1893 int 1894 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1895 unsigned char *buffer, int len, int timeout, int retries, 1896 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1897 { 1898 unsigned char cmd[12]; 1899 int use_10_for_ms; 1900 int header_length; 1901 int result; 1902 struct scsi_sense_hdr my_sshdr; 1903 1904 memset(data, 0, sizeof(*data)); 1905 memset(&cmd[0], 0, 12); 1906 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1907 cmd[2] = modepage; 1908 1909 /* caller might not be interested in sense, but we need it */ 1910 if (!sshdr) 1911 sshdr = &my_sshdr; 1912 1913 retry: 1914 use_10_for_ms = sdev->use_10_for_ms; 1915 1916 if (use_10_for_ms) { 1917 if (len < 8) 1918 len = 8; 1919 1920 cmd[0] = MODE_SENSE_10; 1921 cmd[8] = len; 1922 header_length = 8; 1923 } else { 1924 if (len < 4) 1925 len = 4; 1926 1927 cmd[0] = MODE_SENSE; 1928 cmd[4] = len; 1929 header_length = 4; 1930 } 1931 1932 memset(buffer, 0, len); 1933 1934 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1935 sshdr, timeout, retries, NULL); 1936 1937 /* This code looks awful: what it's doing is making sure an 1938 * ILLEGAL REQUEST sense return identifies the actual command 1939 * byte as the problem. MODE_SENSE commands can return 1940 * ILLEGAL REQUEST if the code page isn't supported */ 1941 1942 if (use_10_for_ms && !scsi_status_is_good(result) && 1943 (driver_byte(result) & DRIVER_SENSE)) { 1944 if (scsi_sense_valid(sshdr)) { 1945 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1946 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1947 /* 1948 * Invalid command operation code 1949 */ 1950 sdev->use_10_for_ms = 0; 1951 goto retry; 1952 } 1953 } 1954 } 1955 1956 if(scsi_status_is_good(result)) { 1957 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1958 (modepage == 6 || modepage == 8))) { 1959 /* Initio breakage? */ 1960 header_length = 0; 1961 data->length = 13; 1962 data->medium_type = 0; 1963 data->device_specific = 0; 1964 data->longlba = 0; 1965 data->block_descriptor_length = 0; 1966 } else if(use_10_for_ms) { 1967 data->length = buffer[0]*256 + buffer[1] + 2; 1968 data->medium_type = buffer[2]; 1969 data->device_specific = buffer[3]; 1970 data->longlba = buffer[4] & 0x01; 1971 data->block_descriptor_length = buffer[6]*256 1972 + buffer[7]; 1973 } else { 1974 data->length = buffer[0] + 1; 1975 data->medium_type = buffer[1]; 1976 data->device_specific = buffer[2]; 1977 data->block_descriptor_length = buffer[3]; 1978 } 1979 data->header_length = header_length; 1980 } 1981 1982 return result; 1983 } 1984 EXPORT_SYMBOL(scsi_mode_sense); 1985 1986 /** 1987 * scsi_test_unit_ready - test if unit is ready 1988 * @sdev: scsi device to change the state of. 1989 * @timeout: command timeout 1990 * @retries: number of retries before failing 1991 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1992 * returning sense. Make sure that this is cleared before passing 1993 * in. 1994 * 1995 * Returns zero if unsuccessful or an error if TUR failed. For 1996 * removable media, UNIT_ATTENTION sets ->changed flag. 1997 **/ 1998 int 1999 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2000 struct scsi_sense_hdr *sshdr_external) 2001 { 2002 char cmd[] = { 2003 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2004 }; 2005 struct scsi_sense_hdr *sshdr; 2006 int result; 2007 2008 if (!sshdr_external) 2009 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2010 else 2011 sshdr = sshdr_external; 2012 2013 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2014 do { 2015 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2016 timeout, retries, NULL); 2017 if (sdev->removable && scsi_sense_valid(sshdr) && 2018 sshdr->sense_key == UNIT_ATTENTION) 2019 sdev->changed = 1; 2020 } while (scsi_sense_valid(sshdr) && 2021 sshdr->sense_key == UNIT_ATTENTION && --retries); 2022 2023 if (!sshdr_external) 2024 kfree(sshdr); 2025 return result; 2026 } 2027 EXPORT_SYMBOL(scsi_test_unit_ready); 2028 2029 /** 2030 * scsi_device_set_state - Take the given device through the device state model. 2031 * @sdev: scsi device to change the state of. 2032 * @state: state to change to. 2033 * 2034 * Returns zero if unsuccessful or an error if the requested 2035 * transition is illegal. 2036 */ 2037 int 2038 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2039 { 2040 enum scsi_device_state oldstate = sdev->sdev_state; 2041 2042 if (state == oldstate) 2043 return 0; 2044 2045 switch (state) { 2046 case SDEV_CREATED: 2047 switch (oldstate) { 2048 case SDEV_CREATED_BLOCK: 2049 break; 2050 default: 2051 goto illegal; 2052 } 2053 break; 2054 2055 case SDEV_RUNNING: 2056 switch (oldstate) { 2057 case SDEV_CREATED: 2058 case SDEV_OFFLINE: 2059 case SDEV_QUIESCE: 2060 case SDEV_BLOCK: 2061 break; 2062 default: 2063 goto illegal; 2064 } 2065 break; 2066 2067 case SDEV_QUIESCE: 2068 switch (oldstate) { 2069 case SDEV_RUNNING: 2070 case SDEV_OFFLINE: 2071 break; 2072 default: 2073 goto illegal; 2074 } 2075 break; 2076 2077 case SDEV_OFFLINE: 2078 switch (oldstate) { 2079 case SDEV_CREATED: 2080 case SDEV_RUNNING: 2081 case SDEV_QUIESCE: 2082 case SDEV_BLOCK: 2083 break; 2084 default: 2085 goto illegal; 2086 } 2087 break; 2088 2089 case SDEV_BLOCK: 2090 switch (oldstate) { 2091 case SDEV_RUNNING: 2092 case SDEV_CREATED_BLOCK: 2093 break; 2094 default: 2095 goto illegal; 2096 } 2097 break; 2098 2099 case SDEV_CREATED_BLOCK: 2100 switch (oldstate) { 2101 case SDEV_CREATED: 2102 break; 2103 default: 2104 goto illegal; 2105 } 2106 break; 2107 2108 case SDEV_CANCEL: 2109 switch (oldstate) { 2110 case SDEV_CREATED: 2111 case SDEV_RUNNING: 2112 case SDEV_QUIESCE: 2113 case SDEV_OFFLINE: 2114 case SDEV_BLOCK: 2115 break; 2116 default: 2117 goto illegal; 2118 } 2119 break; 2120 2121 case SDEV_DEL: 2122 switch (oldstate) { 2123 case SDEV_CREATED: 2124 case SDEV_RUNNING: 2125 case SDEV_OFFLINE: 2126 case SDEV_CANCEL: 2127 break; 2128 default: 2129 goto illegal; 2130 } 2131 break; 2132 2133 } 2134 sdev->sdev_state = state; 2135 return 0; 2136 2137 illegal: 2138 SCSI_LOG_ERROR_RECOVERY(1, 2139 sdev_printk(KERN_ERR, sdev, 2140 "Illegal state transition %s->%s\n", 2141 scsi_device_state_name(oldstate), 2142 scsi_device_state_name(state)) 2143 ); 2144 return -EINVAL; 2145 } 2146 EXPORT_SYMBOL(scsi_device_set_state); 2147 2148 /** 2149 * sdev_evt_emit - emit a single SCSI device uevent 2150 * @sdev: associated SCSI device 2151 * @evt: event to emit 2152 * 2153 * Send a single uevent (scsi_event) to the associated scsi_device. 2154 */ 2155 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2156 { 2157 int idx = 0; 2158 char *envp[3]; 2159 2160 switch (evt->evt_type) { 2161 case SDEV_EVT_MEDIA_CHANGE: 2162 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2163 break; 2164 2165 default: 2166 /* do nothing */ 2167 break; 2168 } 2169 2170 envp[idx++] = NULL; 2171 2172 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2173 } 2174 2175 /** 2176 * sdev_evt_thread - send a uevent for each scsi event 2177 * @work: work struct for scsi_device 2178 * 2179 * Dispatch queued events to their associated scsi_device kobjects 2180 * as uevents. 2181 */ 2182 void scsi_evt_thread(struct work_struct *work) 2183 { 2184 struct scsi_device *sdev; 2185 LIST_HEAD(event_list); 2186 2187 sdev = container_of(work, struct scsi_device, event_work); 2188 2189 while (1) { 2190 struct scsi_event *evt; 2191 struct list_head *this, *tmp; 2192 unsigned long flags; 2193 2194 spin_lock_irqsave(&sdev->list_lock, flags); 2195 list_splice_init(&sdev->event_list, &event_list); 2196 spin_unlock_irqrestore(&sdev->list_lock, flags); 2197 2198 if (list_empty(&event_list)) 2199 break; 2200 2201 list_for_each_safe(this, tmp, &event_list) { 2202 evt = list_entry(this, struct scsi_event, node); 2203 list_del(&evt->node); 2204 scsi_evt_emit(sdev, evt); 2205 kfree(evt); 2206 } 2207 } 2208 } 2209 2210 /** 2211 * sdev_evt_send - send asserted event to uevent thread 2212 * @sdev: scsi_device event occurred on 2213 * @evt: event to send 2214 * 2215 * Assert scsi device event asynchronously. 2216 */ 2217 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2218 { 2219 unsigned long flags; 2220 2221 #if 0 2222 /* FIXME: currently this check eliminates all media change events 2223 * for polled devices. Need to update to discriminate between AN 2224 * and polled events */ 2225 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2226 kfree(evt); 2227 return; 2228 } 2229 #endif 2230 2231 spin_lock_irqsave(&sdev->list_lock, flags); 2232 list_add_tail(&evt->node, &sdev->event_list); 2233 schedule_work(&sdev->event_work); 2234 spin_unlock_irqrestore(&sdev->list_lock, flags); 2235 } 2236 EXPORT_SYMBOL_GPL(sdev_evt_send); 2237 2238 /** 2239 * sdev_evt_alloc - allocate a new scsi event 2240 * @evt_type: type of event to allocate 2241 * @gfpflags: GFP flags for allocation 2242 * 2243 * Allocates and returns a new scsi_event. 2244 */ 2245 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2246 gfp_t gfpflags) 2247 { 2248 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2249 if (!evt) 2250 return NULL; 2251 2252 evt->evt_type = evt_type; 2253 INIT_LIST_HEAD(&evt->node); 2254 2255 /* evt_type-specific initialization, if any */ 2256 switch (evt_type) { 2257 case SDEV_EVT_MEDIA_CHANGE: 2258 default: 2259 /* do nothing */ 2260 break; 2261 } 2262 2263 return evt; 2264 } 2265 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2266 2267 /** 2268 * sdev_evt_send_simple - send asserted event to uevent thread 2269 * @sdev: scsi_device event occurred on 2270 * @evt_type: type of event to send 2271 * @gfpflags: GFP flags for allocation 2272 * 2273 * Assert scsi device event asynchronously, given an event type. 2274 */ 2275 void sdev_evt_send_simple(struct scsi_device *sdev, 2276 enum scsi_device_event evt_type, gfp_t gfpflags) 2277 { 2278 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2279 if (!evt) { 2280 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2281 evt_type); 2282 return; 2283 } 2284 2285 sdev_evt_send(sdev, evt); 2286 } 2287 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2288 2289 /** 2290 * scsi_device_quiesce - Block user issued commands. 2291 * @sdev: scsi device to quiesce. 2292 * 2293 * This works by trying to transition to the SDEV_QUIESCE state 2294 * (which must be a legal transition). When the device is in this 2295 * state, only special requests will be accepted, all others will 2296 * be deferred. Since special requests may also be requeued requests, 2297 * a successful return doesn't guarantee the device will be 2298 * totally quiescent. 2299 * 2300 * Must be called with user context, may sleep. 2301 * 2302 * Returns zero if unsuccessful or an error if not. 2303 */ 2304 int 2305 scsi_device_quiesce(struct scsi_device *sdev) 2306 { 2307 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2308 if (err) 2309 return err; 2310 2311 scsi_run_queue(sdev->request_queue); 2312 while (sdev->device_busy) { 2313 msleep_interruptible(200); 2314 scsi_run_queue(sdev->request_queue); 2315 } 2316 return 0; 2317 } 2318 EXPORT_SYMBOL(scsi_device_quiesce); 2319 2320 /** 2321 * scsi_device_resume - Restart user issued commands to a quiesced device. 2322 * @sdev: scsi device to resume. 2323 * 2324 * Moves the device from quiesced back to running and restarts the 2325 * queues. 2326 * 2327 * Must be called with user context, may sleep. 2328 */ 2329 void 2330 scsi_device_resume(struct scsi_device *sdev) 2331 { 2332 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2333 return; 2334 scsi_run_queue(sdev->request_queue); 2335 } 2336 EXPORT_SYMBOL(scsi_device_resume); 2337 2338 static void 2339 device_quiesce_fn(struct scsi_device *sdev, void *data) 2340 { 2341 scsi_device_quiesce(sdev); 2342 } 2343 2344 void 2345 scsi_target_quiesce(struct scsi_target *starget) 2346 { 2347 starget_for_each_device(starget, NULL, device_quiesce_fn); 2348 } 2349 EXPORT_SYMBOL(scsi_target_quiesce); 2350 2351 static void 2352 device_resume_fn(struct scsi_device *sdev, void *data) 2353 { 2354 scsi_device_resume(sdev); 2355 } 2356 2357 void 2358 scsi_target_resume(struct scsi_target *starget) 2359 { 2360 starget_for_each_device(starget, NULL, device_resume_fn); 2361 } 2362 EXPORT_SYMBOL(scsi_target_resume); 2363 2364 /** 2365 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2366 * @sdev: device to block 2367 * 2368 * Block request made by scsi lld's to temporarily stop all 2369 * scsi commands on the specified device. Called from interrupt 2370 * or normal process context. 2371 * 2372 * Returns zero if successful or error if not 2373 * 2374 * Notes: 2375 * This routine transitions the device to the SDEV_BLOCK state 2376 * (which must be a legal transition). When the device is in this 2377 * state, all commands are deferred until the scsi lld reenables 2378 * the device with scsi_device_unblock or device_block_tmo fires. 2379 * This routine assumes the host_lock is held on entry. 2380 */ 2381 int 2382 scsi_internal_device_block(struct scsi_device *sdev) 2383 { 2384 struct request_queue *q = sdev->request_queue; 2385 unsigned long flags; 2386 int err = 0; 2387 2388 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2389 if (err) { 2390 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2391 2392 if (err) 2393 return err; 2394 } 2395 2396 /* 2397 * The device has transitioned to SDEV_BLOCK. Stop the 2398 * block layer from calling the midlayer with this device's 2399 * request queue. 2400 */ 2401 spin_lock_irqsave(q->queue_lock, flags); 2402 blk_stop_queue(q); 2403 spin_unlock_irqrestore(q->queue_lock, flags); 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2408 2409 /** 2410 * scsi_internal_device_unblock - resume a device after a block request 2411 * @sdev: device to resume 2412 * 2413 * Called by scsi lld's or the midlayer to restart the device queue 2414 * for the previously suspended scsi device. Called from interrupt or 2415 * normal process context. 2416 * 2417 * Returns zero if successful or error if not. 2418 * 2419 * Notes: 2420 * This routine transitions the device to the SDEV_RUNNING state 2421 * (which must be a legal transition) allowing the midlayer to 2422 * goose the queue for this device. This routine assumes the 2423 * host_lock is held upon entry. 2424 */ 2425 int 2426 scsi_internal_device_unblock(struct scsi_device *sdev) 2427 { 2428 struct request_queue *q = sdev->request_queue; 2429 unsigned long flags; 2430 2431 /* 2432 * Try to transition the scsi device to SDEV_RUNNING 2433 * and goose the device queue if successful. 2434 */ 2435 if (sdev->sdev_state == SDEV_BLOCK) 2436 sdev->sdev_state = SDEV_RUNNING; 2437 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2438 sdev->sdev_state = SDEV_CREATED; 2439 else if (sdev->sdev_state != SDEV_CANCEL && 2440 sdev->sdev_state != SDEV_OFFLINE) 2441 return -EINVAL; 2442 2443 spin_lock_irqsave(q->queue_lock, flags); 2444 blk_start_queue(q); 2445 spin_unlock_irqrestore(q->queue_lock, flags); 2446 2447 return 0; 2448 } 2449 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2450 2451 static void 2452 device_block(struct scsi_device *sdev, void *data) 2453 { 2454 scsi_internal_device_block(sdev); 2455 } 2456 2457 static int 2458 target_block(struct device *dev, void *data) 2459 { 2460 if (scsi_is_target_device(dev)) 2461 starget_for_each_device(to_scsi_target(dev), NULL, 2462 device_block); 2463 return 0; 2464 } 2465 2466 void 2467 scsi_target_block(struct device *dev) 2468 { 2469 if (scsi_is_target_device(dev)) 2470 starget_for_each_device(to_scsi_target(dev), NULL, 2471 device_block); 2472 else 2473 device_for_each_child(dev, NULL, target_block); 2474 } 2475 EXPORT_SYMBOL_GPL(scsi_target_block); 2476 2477 static void 2478 device_unblock(struct scsi_device *sdev, void *data) 2479 { 2480 scsi_internal_device_unblock(sdev); 2481 } 2482 2483 static int 2484 target_unblock(struct device *dev, void *data) 2485 { 2486 if (scsi_is_target_device(dev)) 2487 starget_for_each_device(to_scsi_target(dev), NULL, 2488 device_unblock); 2489 return 0; 2490 } 2491 2492 void 2493 scsi_target_unblock(struct device *dev) 2494 { 2495 if (scsi_is_target_device(dev)) 2496 starget_for_each_device(to_scsi_target(dev), NULL, 2497 device_unblock); 2498 else 2499 device_for_each_child(dev, NULL, target_unblock); 2500 } 2501 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2502 2503 /** 2504 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2505 * @sgl: scatter-gather list 2506 * @sg_count: number of segments in sg 2507 * @offset: offset in bytes into sg, on return offset into the mapped area 2508 * @len: bytes to map, on return number of bytes mapped 2509 * 2510 * Returns virtual address of the start of the mapped page 2511 */ 2512 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2513 size_t *offset, size_t *len) 2514 { 2515 int i; 2516 size_t sg_len = 0, len_complete = 0; 2517 struct scatterlist *sg; 2518 struct page *page; 2519 2520 WARN_ON(!irqs_disabled()); 2521 2522 for_each_sg(sgl, sg, sg_count, i) { 2523 len_complete = sg_len; /* Complete sg-entries */ 2524 sg_len += sg->length; 2525 if (sg_len > *offset) 2526 break; 2527 } 2528 2529 if (unlikely(i == sg_count)) { 2530 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2531 "elements %d\n", 2532 __func__, sg_len, *offset, sg_count); 2533 WARN_ON(1); 2534 return NULL; 2535 } 2536 2537 /* Offset starting from the beginning of first page in this sg-entry */ 2538 *offset = *offset - len_complete + sg->offset; 2539 2540 /* Assumption: contiguous pages can be accessed as "page + i" */ 2541 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2542 *offset &= ~PAGE_MASK; 2543 2544 /* Bytes in this sg-entry from *offset to the end of the page */ 2545 sg_len = PAGE_SIZE - *offset; 2546 if (*len > sg_len) 2547 *len = sg_len; 2548 2549 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2550 } 2551 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2552 2553 /** 2554 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2555 * @virt: virtual address to be unmapped 2556 */ 2557 void scsi_kunmap_atomic_sg(void *virt) 2558 { 2559 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2560 } 2561 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2562