1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /* 95 * Function: scsi_queue_insert() 96 * 97 * Purpose: Insert a command in the midlevel queue. 98 * 99 * Arguments: cmd - command that we are adding to queue. 100 * reason - why we are inserting command to queue. 101 * 102 * Lock status: Assumed that lock is not held upon entry. 103 * 104 * Returns: Nothing. 105 * 106 * Notes: We do this for one of two cases. Either the host is busy 107 * and it cannot accept any more commands for the time being, 108 * or the device returned QUEUE_FULL and can accept no more 109 * commands. 110 * Notes: This could be called either from an interrupt context or a 111 * normal process context. 112 */ 113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 114 { 115 struct Scsi_Host *host = cmd->device->host; 116 struct scsi_device *device = cmd->device; 117 struct scsi_target *starget = scsi_target(device); 118 struct request_queue *q = device->request_queue; 119 unsigned long flags; 120 121 SCSI_LOG_MLQUEUE(1, 122 printk("Inserting command %p into mlqueue\n", cmd)); 123 124 /* 125 * Set the appropriate busy bit for the device/host. 126 * 127 * If the host/device isn't busy, assume that something actually 128 * completed, and that we should be able to queue a command now. 129 * 130 * Note that the prior mid-layer assumption that any host could 131 * always queue at least one command is now broken. The mid-layer 132 * will implement a user specifiable stall (see 133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 134 * if a command is requeued with no other commands outstanding 135 * either for the device or for the host. 136 */ 137 switch (reason) { 138 case SCSI_MLQUEUE_HOST_BUSY: 139 host->host_blocked = host->max_host_blocked; 140 break; 141 case SCSI_MLQUEUE_DEVICE_BUSY: 142 device->device_blocked = device->max_device_blocked; 143 break; 144 case SCSI_MLQUEUE_TARGET_BUSY: 145 starget->target_blocked = starget->max_target_blocked; 146 break; 147 } 148 149 /* 150 * Decrement the counters, since these commands are no longer 151 * active on the host/device. 152 */ 153 scsi_device_unbusy(device); 154 155 /* 156 * Requeue this command. It will go before all other commands 157 * that are already in the queue. 158 * 159 * NOTE: there is magic here about the way the queue is plugged if 160 * we have no outstanding commands. 161 * 162 * Although we *don't* plug the queue, we call the request 163 * function. The SCSI request function detects the blocked condition 164 * and plugs the queue appropriately. 165 */ 166 spin_lock_irqsave(q->queue_lock, flags); 167 blk_requeue_request(q, cmd->request); 168 spin_unlock_irqrestore(q->queue_lock, flags); 169 170 scsi_run_queue(q); 171 172 return 0; 173 } 174 175 /** 176 * scsi_execute - insert request and wait for the result 177 * @sdev: scsi device 178 * @cmd: scsi command 179 * @data_direction: data direction 180 * @buffer: data buffer 181 * @bufflen: len of buffer 182 * @sense: optional sense buffer 183 * @timeout: request timeout in seconds 184 * @retries: number of times to retry request 185 * @flags: or into request flags; 186 * 187 * returns the req->errors value which is the scsi_cmnd result 188 * field. 189 */ 190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 191 int data_direction, void *buffer, unsigned bufflen, 192 unsigned char *sense, int timeout, int retries, int flags) 193 { 194 struct request *req; 195 int write = (data_direction == DMA_TO_DEVICE); 196 int ret = DRIVER_ERROR << 24; 197 198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 199 200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 201 buffer, bufflen, __GFP_WAIT)) 202 goto out; 203 204 req->cmd_len = COMMAND_SIZE(cmd[0]); 205 memcpy(req->cmd, cmd, req->cmd_len); 206 req->sense = sense; 207 req->sense_len = 0; 208 req->retries = retries; 209 req->timeout = timeout; 210 req->cmd_type = REQ_TYPE_BLOCK_PC; 211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 212 213 /* 214 * head injection *required* here otherwise quiesce won't work 215 */ 216 blk_execute_rq(req->q, NULL, req, 1); 217 218 /* 219 * Some devices (USB mass-storage in particular) may transfer 220 * garbage data together with a residue indicating that the data 221 * is invalid. Prevent the garbage from being misinterpreted 222 * and prevent security leaks by zeroing out the excess data. 223 */ 224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen)) 225 memset(buffer + (bufflen - req->data_len), 0, req->data_len); 226 227 ret = req->errors; 228 out: 229 blk_put_request(req); 230 231 return ret; 232 } 233 EXPORT_SYMBOL(scsi_execute); 234 235 236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 237 int data_direction, void *buffer, unsigned bufflen, 238 struct scsi_sense_hdr *sshdr, int timeout, int retries) 239 { 240 char *sense = NULL; 241 int result; 242 243 if (sshdr) { 244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 245 if (!sense) 246 return DRIVER_ERROR << 24; 247 } 248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 249 sense, timeout, retries, 0); 250 if (sshdr) 251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 252 253 kfree(sense); 254 return result; 255 } 256 EXPORT_SYMBOL(scsi_execute_req); 257 258 struct scsi_io_context { 259 void *data; 260 void (*done)(void *data, char *sense, int result, int resid); 261 char sense[SCSI_SENSE_BUFFERSIZE]; 262 }; 263 264 static struct kmem_cache *scsi_io_context_cache; 265 266 static void scsi_end_async(struct request *req, int uptodate) 267 { 268 struct scsi_io_context *sioc = req->end_io_data; 269 270 if (sioc->done) 271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 272 273 kmem_cache_free(scsi_io_context_cache, sioc); 274 __blk_put_request(req->q, req); 275 } 276 277 static int scsi_merge_bio(struct request *rq, struct bio *bio) 278 { 279 struct request_queue *q = rq->q; 280 281 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 282 if (rq_data_dir(rq) == WRITE) 283 bio->bi_rw |= (1 << BIO_RW); 284 blk_queue_bounce(q, &bio); 285 286 return blk_rq_append_bio(q, rq, bio); 287 } 288 289 static void scsi_bi_endio(struct bio *bio, int error) 290 { 291 bio_put(bio); 292 } 293 294 /** 295 * scsi_req_map_sg - map a scatterlist into a request 296 * @rq: request to fill 297 * @sgl: scatterlist 298 * @nsegs: number of elements 299 * @bufflen: len of buffer 300 * @gfp: memory allocation flags 301 * 302 * scsi_req_map_sg maps a scatterlist into a request so that the 303 * request can be sent to the block layer. We do not trust the scatterlist 304 * sent to use, as some ULDs use that struct to only organize the pages. 305 */ 306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 307 int nsegs, unsigned bufflen, gfp_t gfp) 308 { 309 struct request_queue *q = rq->q; 310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 311 unsigned int data_len = bufflen, len, bytes, off; 312 struct scatterlist *sg; 313 struct page *page; 314 struct bio *bio = NULL; 315 int i, err, nr_vecs = 0; 316 317 for_each_sg(sgl, sg, nsegs, i) { 318 page = sg_page(sg); 319 off = sg->offset; 320 len = sg->length; 321 322 while (len > 0 && data_len > 0) { 323 /* 324 * sg sends a scatterlist that is larger than 325 * the data_len it wants transferred for certain 326 * IO sizes 327 */ 328 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 329 bytes = min(bytes, data_len); 330 331 if (!bio) { 332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 333 nr_pages -= nr_vecs; 334 335 bio = bio_alloc(gfp, nr_vecs); 336 if (!bio) { 337 err = -ENOMEM; 338 goto free_bios; 339 } 340 bio->bi_end_io = scsi_bi_endio; 341 } 342 343 if (bio_add_pc_page(q, bio, page, bytes, off) != 344 bytes) { 345 bio_put(bio); 346 err = -EINVAL; 347 goto free_bios; 348 } 349 350 if (bio->bi_vcnt >= nr_vecs) { 351 err = scsi_merge_bio(rq, bio); 352 if (err) { 353 bio_endio(bio, 0); 354 goto free_bios; 355 } 356 bio = NULL; 357 } 358 359 page++; 360 len -= bytes; 361 data_len -=bytes; 362 off = 0; 363 } 364 } 365 366 rq->buffer = rq->data = NULL; 367 rq->data_len = bufflen; 368 return 0; 369 370 free_bios: 371 while ((bio = rq->bio) != NULL) { 372 rq->bio = bio->bi_next; 373 /* 374 * call endio instead of bio_put incase it was bounced 375 */ 376 bio_endio(bio, 0); 377 } 378 379 return err; 380 } 381 382 /** 383 * scsi_execute_async - insert request 384 * @sdev: scsi device 385 * @cmd: scsi command 386 * @cmd_len: length of scsi cdb 387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE 388 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 389 * @bufflen: len of buffer 390 * @use_sg: if buffer is a scatterlist this is the number of elements 391 * @timeout: request timeout in seconds 392 * @retries: number of times to retry request 393 * @privdata: data passed to done() 394 * @done: callback function when done 395 * @gfp: memory allocation flags 396 */ 397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 398 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 399 int use_sg, int timeout, int retries, void *privdata, 400 void (*done)(void *, char *, int, int), gfp_t gfp) 401 { 402 struct request *req; 403 struct scsi_io_context *sioc; 404 int err = 0; 405 int write = (data_direction == DMA_TO_DEVICE); 406 407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 408 if (!sioc) 409 return DRIVER_ERROR << 24; 410 411 req = blk_get_request(sdev->request_queue, write, gfp); 412 if (!req) 413 goto free_sense; 414 req->cmd_type = REQ_TYPE_BLOCK_PC; 415 req->cmd_flags |= REQ_QUIET; 416 417 if (use_sg) 418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 419 else if (bufflen) 420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 421 422 if (err) 423 goto free_req; 424 425 req->cmd_len = cmd_len; 426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 427 memcpy(req->cmd, cmd, req->cmd_len); 428 req->sense = sioc->sense; 429 req->sense_len = 0; 430 req->timeout = timeout; 431 req->retries = retries; 432 req->end_io_data = sioc; 433 434 sioc->data = privdata; 435 sioc->done = done; 436 437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 438 return 0; 439 440 free_req: 441 blk_put_request(req); 442 free_sense: 443 kmem_cache_free(scsi_io_context_cache, sioc); 444 return DRIVER_ERROR << 24; 445 } 446 EXPORT_SYMBOL_GPL(scsi_execute_async); 447 448 /* 449 * Function: scsi_init_cmd_errh() 450 * 451 * Purpose: Initialize cmd fields related to error handling. 452 * 453 * Arguments: cmd - command that is ready to be queued. 454 * 455 * Notes: This function has the job of initializing a number of 456 * fields related to error handling. Typically this will 457 * be called once for each command, as required. 458 */ 459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 460 { 461 cmd->serial_number = 0; 462 scsi_set_resid(cmd, 0); 463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 464 if (cmd->cmd_len == 0) 465 cmd->cmd_len = scsi_command_size(cmd->cmnd); 466 } 467 468 void scsi_device_unbusy(struct scsi_device *sdev) 469 { 470 struct Scsi_Host *shost = sdev->host; 471 struct scsi_target *starget = scsi_target(sdev); 472 unsigned long flags; 473 474 spin_lock_irqsave(shost->host_lock, flags); 475 shost->host_busy--; 476 starget->target_busy--; 477 if (unlikely(scsi_host_in_recovery(shost) && 478 (shost->host_failed || shost->host_eh_scheduled))) 479 scsi_eh_wakeup(shost); 480 spin_unlock(shost->host_lock); 481 spin_lock(sdev->request_queue->queue_lock); 482 sdev->device_busy--; 483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 484 } 485 486 /* 487 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 488 * and call blk_run_queue for all the scsi_devices on the target - 489 * including current_sdev first. 490 * 491 * Called with *no* scsi locks held. 492 */ 493 static void scsi_single_lun_run(struct scsi_device *current_sdev) 494 { 495 struct Scsi_Host *shost = current_sdev->host; 496 struct scsi_device *sdev, *tmp; 497 struct scsi_target *starget = scsi_target(current_sdev); 498 unsigned long flags; 499 500 spin_lock_irqsave(shost->host_lock, flags); 501 starget->starget_sdev_user = NULL; 502 spin_unlock_irqrestore(shost->host_lock, flags); 503 504 /* 505 * Call blk_run_queue for all LUNs on the target, starting with 506 * current_sdev. We race with others (to set starget_sdev_user), 507 * but in most cases, we will be first. Ideally, each LU on the 508 * target would get some limited time or requests on the target. 509 */ 510 blk_run_queue(current_sdev->request_queue); 511 512 spin_lock_irqsave(shost->host_lock, flags); 513 if (starget->starget_sdev_user) 514 goto out; 515 list_for_each_entry_safe(sdev, tmp, &starget->devices, 516 same_target_siblings) { 517 if (sdev == current_sdev) 518 continue; 519 if (scsi_device_get(sdev)) 520 continue; 521 522 spin_unlock_irqrestore(shost->host_lock, flags); 523 blk_run_queue(sdev->request_queue); 524 spin_lock_irqsave(shost->host_lock, flags); 525 526 scsi_device_put(sdev); 527 } 528 out: 529 spin_unlock_irqrestore(shost->host_lock, flags); 530 } 531 532 static inline int scsi_device_is_busy(struct scsi_device *sdev) 533 { 534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 535 return 1; 536 537 return 0; 538 } 539 540 static inline int scsi_target_is_busy(struct scsi_target *starget) 541 { 542 return ((starget->can_queue > 0 && 543 starget->target_busy >= starget->can_queue) || 544 starget->target_blocked); 545 } 546 547 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 548 { 549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 550 shost->host_blocked || shost->host_self_blocked) 551 return 1; 552 553 return 0; 554 } 555 556 /* 557 * Function: scsi_run_queue() 558 * 559 * Purpose: Select a proper request queue to serve next 560 * 561 * Arguments: q - last request's queue 562 * 563 * Returns: Nothing 564 * 565 * Notes: The previous command was completely finished, start 566 * a new one if possible. 567 */ 568 static void scsi_run_queue(struct request_queue *q) 569 { 570 struct scsi_device *starved_head = NULL, *sdev = q->queuedata; 571 struct Scsi_Host *shost = sdev->host; 572 unsigned long flags; 573 574 if (scsi_target(sdev)->single_lun) 575 scsi_single_lun_run(sdev); 576 577 spin_lock_irqsave(shost->host_lock, flags); 578 while (!list_empty(&shost->starved_list) && !scsi_host_is_busy(shost)) { 579 int flagset; 580 581 /* 582 * As long as shost is accepting commands and we have 583 * starved queues, call blk_run_queue. scsi_request_fn 584 * drops the queue_lock and can add us back to the 585 * starved_list. 586 * 587 * host_lock protects the starved_list and starved_entry. 588 * scsi_request_fn must get the host_lock before checking 589 * or modifying starved_list or starved_entry. 590 */ 591 sdev = list_entry(shost->starved_list.next, 592 struct scsi_device, starved_entry); 593 /* 594 * The *queue_ready functions can add a device back onto the 595 * starved list's tail, so we must check for a infinite loop. 596 */ 597 if (sdev == starved_head) 598 break; 599 if (!starved_head) 600 starved_head = sdev; 601 602 if (scsi_target_is_busy(scsi_target(sdev))) { 603 list_move_tail(&sdev->starved_entry, 604 &shost->starved_list); 605 continue; 606 } 607 608 list_del_init(&sdev->starved_entry); 609 spin_unlock(shost->host_lock); 610 611 spin_lock(sdev->request_queue->queue_lock); 612 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 613 !test_bit(QUEUE_FLAG_REENTER, 614 &sdev->request_queue->queue_flags); 615 if (flagset) 616 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 617 __blk_run_queue(sdev->request_queue); 618 if (flagset) 619 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 620 spin_unlock(sdev->request_queue->queue_lock); 621 622 spin_lock(shost->host_lock); 623 } 624 spin_unlock_irqrestore(shost->host_lock, flags); 625 626 blk_run_queue(q); 627 } 628 629 /* 630 * Function: scsi_requeue_command() 631 * 632 * Purpose: Handle post-processing of completed commands. 633 * 634 * Arguments: q - queue to operate on 635 * cmd - command that may need to be requeued. 636 * 637 * Returns: Nothing 638 * 639 * Notes: After command completion, there may be blocks left 640 * over which weren't finished by the previous command 641 * this can be for a number of reasons - the main one is 642 * I/O errors in the middle of the request, in which case 643 * we need to request the blocks that come after the bad 644 * sector. 645 * Notes: Upon return, cmd is a stale pointer. 646 */ 647 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 648 { 649 struct request *req = cmd->request; 650 unsigned long flags; 651 652 scsi_unprep_request(req); 653 spin_lock_irqsave(q->queue_lock, flags); 654 blk_requeue_request(q, req); 655 spin_unlock_irqrestore(q->queue_lock, flags); 656 657 scsi_run_queue(q); 658 } 659 660 void scsi_next_command(struct scsi_cmnd *cmd) 661 { 662 struct scsi_device *sdev = cmd->device; 663 struct request_queue *q = sdev->request_queue; 664 665 /* need to hold a reference on the device before we let go of the cmd */ 666 get_device(&sdev->sdev_gendev); 667 668 scsi_put_command(cmd); 669 scsi_run_queue(q); 670 671 /* ok to remove device now */ 672 put_device(&sdev->sdev_gendev); 673 } 674 675 void scsi_run_host_queues(struct Scsi_Host *shost) 676 { 677 struct scsi_device *sdev; 678 679 shost_for_each_device(sdev, shost) 680 scsi_run_queue(sdev->request_queue); 681 } 682 683 /* 684 * Function: scsi_end_request() 685 * 686 * Purpose: Post-processing of completed commands (usually invoked at end 687 * of upper level post-processing and scsi_io_completion). 688 * 689 * Arguments: cmd - command that is complete. 690 * error - 0 if I/O indicates success, < 0 for I/O error. 691 * bytes - number of bytes of completed I/O 692 * requeue - indicates whether we should requeue leftovers. 693 * 694 * Lock status: Assumed that lock is not held upon entry. 695 * 696 * Returns: cmd if requeue required, NULL otherwise. 697 * 698 * Notes: This is called for block device requests in order to 699 * mark some number of sectors as complete. 700 * 701 * We are guaranteeing that the request queue will be goosed 702 * at some point during this call. 703 * Notes: If cmd was requeued, upon return it will be a stale pointer. 704 */ 705 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 706 int bytes, int requeue) 707 { 708 struct request_queue *q = cmd->device->request_queue; 709 struct request *req = cmd->request; 710 711 /* 712 * If there are blocks left over at the end, set up the command 713 * to queue the remainder of them. 714 */ 715 if (blk_end_request(req, error, bytes)) { 716 int leftover = (req->hard_nr_sectors << 9); 717 718 if (blk_pc_request(req)) 719 leftover = req->data_len; 720 721 /* kill remainder if no retrys */ 722 if (error && scsi_noretry_cmd(cmd)) 723 blk_end_request(req, error, leftover); 724 else { 725 if (requeue) { 726 /* 727 * Bleah. Leftovers again. Stick the 728 * leftovers in the front of the 729 * queue, and goose the queue again. 730 */ 731 scsi_requeue_command(q, cmd); 732 cmd = NULL; 733 } 734 return cmd; 735 } 736 } 737 738 /* 739 * This will goose the queue request function at the end, so we don't 740 * need to worry about launching another command. 741 */ 742 scsi_next_command(cmd); 743 return NULL; 744 } 745 746 static inline unsigned int scsi_sgtable_index(unsigned short nents) 747 { 748 unsigned int index; 749 750 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 751 752 if (nents <= 8) 753 index = 0; 754 else 755 index = get_count_order(nents) - 3; 756 757 return index; 758 } 759 760 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 761 { 762 struct scsi_host_sg_pool *sgp; 763 764 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 765 mempool_free(sgl, sgp->pool); 766 } 767 768 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 769 { 770 struct scsi_host_sg_pool *sgp; 771 772 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 773 return mempool_alloc(sgp->pool, gfp_mask); 774 } 775 776 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 777 gfp_t gfp_mask) 778 { 779 int ret; 780 781 BUG_ON(!nents); 782 783 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 784 gfp_mask, scsi_sg_alloc); 785 if (unlikely(ret)) 786 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 787 scsi_sg_free); 788 789 return ret; 790 } 791 792 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 793 { 794 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 795 } 796 797 /* 798 * Function: scsi_release_buffers() 799 * 800 * Purpose: Completion processing for block device I/O requests. 801 * 802 * Arguments: cmd - command that we are bailing. 803 * 804 * Lock status: Assumed that no lock is held upon entry. 805 * 806 * Returns: Nothing 807 * 808 * Notes: In the event that an upper level driver rejects a 809 * command, we must release resources allocated during 810 * the __init_io() function. Primarily this would involve 811 * the scatter-gather table, and potentially any bounce 812 * buffers. 813 */ 814 void scsi_release_buffers(struct scsi_cmnd *cmd) 815 { 816 if (cmd->sdb.table.nents) 817 scsi_free_sgtable(&cmd->sdb); 818 819 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 820 821 if (scsi_bidi_cmnd(cmd)) { 822 struct scsi_data_buffer *bidi_sdb = 823 cmd->request->next_rq->special; 824 scsi_free_sgtable(bidi_sdb); 825 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 826 cmd->request->next_rq->special = NULL; 827 } 828 829 if (scsi_prot_sg_count(cmd)) 830 scsi_free_sgtable(cmd->prot_sdb); 831 } 832 EXPORT_SYMBOL(scsi_release_buffers); 833 834 /* 835 * Bidi commands Must be complete as a whole, both sides at once. 836 * If part of the bytes were written and lld returned 837 * scsi_in()->resid and/or scsi_out()->resid this information will be left 838 * in req->data_len and req->next_rq->data_len. The upper-layer driver can 839 * decide what to do with this information. 840 */ 841 static void scsi_end_bidi_request(struct scsi_cmnd *cmd) 842 { 843 struct request *req = cmd->request; 844 unsigned int dlen = req->data_len; 845 unsigned int next_dlen = req->next_rq->data_len; 846 847 req->data_len = scsi_out(cmd)->resid; 848 req->next_rq->data_len = scsi_in(cmd)->resid; 849 850 /* The req and req->next_rq have not been completed */ 851 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen)); 852 853 scsi_release_buffers(cmd); 854 855 /* 856 * This will goose the queue request function at the end, so we don't 857 * need to worry about launching another command. 858 */ 859 scsi_next_command(cmd); 860 } 861 862 /* 863 * Function: scsi_io_completion() 864 * 865 * Purpose: Completion processing for block device I/O requests. 866 * 867 * Arguments: cmd - command that is finished. 868 * 869 * Lock status: Assumed that no lock is held upon entry. 870 * 871 * Returns: Nothing 872 * 873 * Notes: This function is matched in terms of capabilities to 874 * the function that created the scatter-gather list. 875 * In other words, if there are no bounce buffers 876 * (the normal case for most drivers), we don't need 877 * the logic to deal with cleaning up afterwards. 878 * 879 * We must do one of several things here: 880 * 881 * a) Call scsi_end_request. This will finish off the 882 * specified number of sectors. If we are done, the 883 * command block will be released, and the queue 884 * function will be goosed. If we are not done, then 885 * scsi_end_request will directly goose the queue. 886 * 887 * b) We can just use scsi_requeue_command() here. This would 888 * be used if we just wanted to retry, for example. 889 */ 890 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 891 { 892 int result = cmd->result; 893 int this_count; 894 struct request_queue *q = cmd->device->request_queue; 895 struct request *req = cmd->request; 896 int error = 0; 897 struct scsi_sense_hdr sshdr; 898 int sense_valid = 0; 899 int sense_deferred = 0; 900 901 if (result) { 902 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 903 if (sense_valid) 904 sense_deferred = scsi_sense_is_deferred(&sshdr); 905 } 906 907 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 908 req->errors = result; 909 if (result) { 910 if (sense_valid && req->sense) { 911 /* 912 * SG_IO wants current and deferred errors 913 */ 914 int len = 8 + cmd->sense_buffer[7]; 915 916 if (len > SCSI_SENSE_BUFFERSIZE) 917 len = SCSI_SENSE_BUFFERSIZE; 918 memcpy(req->sense, cmd->sense_buffer, len); 919 req->sense_len = len; 920 } 921 if (!sense_deferred) 922 error = -EIO; 923 } 924 if (scsi_bidi_cmnd(cmd)) { 925 /* will also release_buffers */ 926 scsi_end_bidi_request(cmd); 927 return; 928 } 929 req->data_len = scsi_get_resid(cmd); 930 } 931 932 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 933 scsi_release_buffers(cmd); 934 935 /* 936 * Next deal with any sectors which we were able to correctly 937 * handle. 938 */ 939 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 940 "%d bytes done.\n", 941 req->nr_sectors, good_bytes)); 942 943 /* A number of bytes were successfully read. If there 944 * are leftovers and there is some kind of error 945 * (result != 0), retry the rest. 946 */ 947 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 948 return; 949 this_count = blk_rq_bytes(req); 950 951 /* good_bytes = 0, or (inclusive) there were leftovers and 952 * result = 0, so scsi_end_request couldn't retry. 953 */ 954 if (sense_valid && !sense_deferred) { 955 switch (sshdr.sense_key) { 956 case UNIT_ATTENTION: 957 if (cmd->device->removable) { 958 /* Detected disc change. Set a bit 959 * and quietly refuse further access. 960 */ 961 cmd->device->changed = 1; 962 scsi_end_request(cmd, -EIO, this_count, 1); 963 return; 964 } else { 965 /* Must have been a power glitch, or a 966 * bus reset. Could not have been a 967 * media change, so we just retry the 968 * request and see what happens. 969 */ 970 scsi_requeue_command(q, cmd); 971 return; 972 } 973 break; 974 case ILLEGAL_REQUEST: 975 /* If we had an ILLEGAL REQUEST returned, then 976 * we may have performed an unsupported 977 * command. The only thing this should be 978 * would be a ten byte read where only a six 979 * byte read was supported. Also, on a system 980 * where READ CAPACITY failed, we may have 981 * read past the end of the disk. 982 */ 983 if ((cmd->device->use_10_for_rw && 984 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 985 (cmd->cmnd[0] == READ_10 || 986 cmd->cmnd[0] == WRITE_10)) { 987 cmd->device->use_10_for_rw = 0; 988 /* This will cause a retry with a 989 * 6-byte command. 990 */ 991 scsi_requeue_command(q, cmd); 992 } else if (sshdr.asc == 0x10) /* DIX */ 993 scsi_end_request(cmd, -EIO, this_count, 0); 994 else 995 scsi_end_request(cmd, -EIO, this_count, 1); 996 return; 997 case ABORTED_COMMAND: 998 if (sshdr.asc == 0x10) { /* DIF */ 999 scsi_end_request(cmd, -EIO, this_count, 0); 1000 return; 1001 } 1002 break; 1003 case NOT_READY: 1004 /* If the device is in the process of becoming 1005 * ready, or has a temporary blockage, retry. 1006 */ 1007 if (sshdr.asc == 0x04) { 1008 switch (sshdr.ascq) { 1009 case 0x01: /* becoming ready */ 1010 case 0x04: /* format in progress */ 1011 case 0x05: /* rebuild in progress */ 1012 case 0x06: /* recalculation in progress */ 1013 case 0x07: /* operation in progress */ 1014 case 0x08: /* Long write in progress */ 1015 case 0x09: /* self test in progress */ 1016 scsi_requeue_command(q, cmd); 1017 return; 1018 default: 1019 break; 1020 } 1021 } 1022 if (!(req->cmd_flags & REQ_QUIET)) 1023 scsi_cmd_print_sense_hdr(cmd, 1024 "Device not ready", 1025 &sshdr); 1026 1027 scsi_end_request(cmd, -EIO, this_count, 1); 1028 return; 1029 case VOLUME_OVERFLOW: 1030 if (!(req->cmd_flags & REQ_QUIET)) { 1031 scmd_printk(KERN_INFO, cmd, 1032 "Volume overflow, CDB: "); 1033 __scsi_print_command(cmd->cmnd); 1034 scsi_print_sense("", cmd); 1035 } 1036 /* See SSC3rXX or current. */ 1037 scsi_end_request(cmd, -EIO, this_count, 1); 1038 return; 1039 default: 1040 break; 1041 } 1042 } 1043 if (host_byte(result) == DID_RESET) { 1044 /* Third party bus reset or reset for error recovery 1045 * reasons. Just retry the request and see what 1046 * happens. 1047 */ 1048 scsi_requeue_command(q, cmd); 1049 return; 1050 } 1051 if (result) { 1052 if (!(req->cmd_flags & REQ_QUIET)) { 1053 scsi_print_result(cmd); 1054 if (driver_byte(result) & DRIVER_SENSE) 1055 scsi_print_sense("", cmd); 1056 } 1057 } 1058 scsi_end_request(cmd, -EIO, this_count, !result); 1059 } 1060 1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1062 gfp_t gfp_mask) 1063 { 1064 int count; 1065 1066 /* 1067 * If sg table allocation fails, requeue request later. 1068 */ 1069 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1070 gfp_mask))) { 1071 return BLKPREP_DEFER; 1072 } 1073 1074 req->buffer = NULL; 1075 1076 /* 1077 * Next, walk the list, and fill in the addresses and sizes of 1078 * each segment. 1079 */ 1080 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1081 BUG_ON(count > sdb->table.nents); 1082 sdb->table.nents = count; 1083 if (blk_pc_request(req)) 1084 sdb->length = req->data_len; 1085 else 1086 sdb->length = req->nr_sectors << 9; 1087 return BLKPREP_OK; 1088 } 1089 1090 /* 1091 * Function: scsi_init_io() 1092 * 1093 * Purpose: SCSI I/O initialize function. 1094 * 1095 * Arguments: cmd - Command descriptor we wish to initialize 1096 * 1097 * Returns: 0 on success 1098 * BLKPREP_DEFER if the failure is retryable 1099 * BLKPREP_KILL if the failure is fatal 1100 */ 1101 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1102 { 1103 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 1104 if (error) 1105 goto err_exit; 1106 1107 if (blk_bidi_rq(cmd->request)) { 1108 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1109 scsi_sdb_cache, GFP_ATOMIC); 1110 if (!bidi_sdb) { 1111 error = BLKPREP_DEFER; 1112 goto err_exit; 1113 } 1114 1115 cmd->request->next_rq->special = bidi_sdb; 1116 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 1117 GFP_ATOMIC); 1118 if (error) 1119 goto err_exit; 1120 } 1121 1122 if (blk_integrity_rq(cmd->request)) { 1123 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1124 int ivecs, count; 1125 1126 BUG_ON(prot_sdb == NULL); 1127 ivecs = blk_rq_count_integrity_sg(cmd->request); 1128 1129 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1130 error = BLKPREP_DEFER; 1131 goto err_exit; 1132 } 1133 1134 count = blk_rq_map_integrity_sg(cmd->request, 1135 prot_sdb->table.sgl); 1136 BUG_ON(unlikely(count > ivecs)); 1137 1138 cmd->prot_sdb = prot_sdb; 1139 cmd->prot_sdb->table.nents = count; 1140 } 1141 1142 return BLKPREP_OK ; 1143 1144 err_exit: 1145 scsi_release_buffers(cmd); 1146 if (error == BLKPREP_KILL) 1147 scsi_put_command(cmd); 1148 else /* BLKPREP_DEFER */ 1149 scsi_unprep_request(cmd->request); 1150 1151 return error; 1152 } 1153 EXPORT_SYMBOL(scsi_init_io); 1154 1155 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1156 struct request *req) 1157 { 1158 struct scsi_cmnd *cmd; 1159 1160 if (!req->special) { 1161 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1162 if (unlikely(!cmd)) 1163 return NULL; 1164 req->special = cmd; 1165 } else { 1166 cmd = req->special; 1167 } 1168 1169 /* pull a tag out of the request if we have one */ 1170 cmd->tag = req->tag; 1171 cmd->request = req; 1172 1173 cmd->cmnd = req->cmd; 1174 1175 return cmd; 1176 } 1177 1178 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1179 { 1180 struct scsi_cmnd *cmd; 1181 int ret = scsi_prep_state_check(sdev, req); 1182 1183 if (ret != BLKPREP_OK) 1184 return ret; 1185 1186 cmd = scsi_get_cmd_from_req(sdev, req); 1187 if (unlikely(!cmd)) 1188 return BLKPREP_DEFER; 1189 1190 /* 1191 * BLOCK_PC requests may transfer data, in which case they must 1192 * a bio attached to them. Or they might contain a SCSI command 1193 * that does not transfer data, in which case they may optionally 1194 * submit a request without an attached bio. 1195 */ 1196 if (req->bio) { 1197 int ret; 1198 1199 BUG_ON(!req->nr_phys_segments); 1200 1201 ret = scsi_init_io(cmd, GFP_ATOMIC); 1202 if (unlikely(ret)) 1203 return ret; 1204 } else { 1205 BUG_ON(req->data_len); 1206 BUG_ON(req->data); 1207 1208 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1209 req->buffer = NULL; 1210 } 1211 1212 cmd->cmd_len = req->cmd_len; 1213 if (!req->data_len) 1214 cmd->sc_data_direction = DMA_NONE; 1215 else if (rq_data_dir(req) == WRITE) 1216 cmd->sc_data_direction = DMA_TO_DEVICE; 1217 else 1218 cmd->sc_data_direction = DMA_FROM_DEVICE; 1219 1220 cmd->transfersize = req->data_len; 1221 cmd->allowed = req->retries; 1222 return BLKPREP_OK; 1223 } 1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1225 1226 /* 1227 * Setup a REQ_TYPE_FS command. These are simple read/write request 1228 * from filesystems that still need to be translated to SCSI CDBs from 1229 * the ULD. 1230 */ 1231 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1232 { 1233 struct scsi_cmnd *cmd; 1234 int ret = scsi_prep_state_check(sdev, req); 1235 1236 if (ret != BLKPREP_OK) 1237 return ret; 1238 1239 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1240 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1241 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1242 if (ret != BLKPREP_OK) 1243 return ret; 1244 } 1245 1246 /* 1247 * Filesystem requests must transfer data. 1248 */ 1249 BUG_ON(!req->nr_phys_segments); 1250 1251 cmd = scsi_get_cmd_from_req(sdev, req); 1252 if (unlikely(!cmd)) 1253 return BLKPREP_DEFER; 1254 1255 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1256 return scsi_init_io(cmd, GFP_ATOMIC); 1257 } 1258 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1259 1260 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1261 { 1262 int ret = BLKPREP_OK; 1263 1264 /* 1265 * If the device is not in running state we will reject some 1266 * or all commands. 1267 */ 1268 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1269 switch (sdev->sdev_state) { 1270 case SDEV_OFFLINE: 1271 /* 1272 * If the device is offline we refuse to process any 1273 * commands. The device must be brought online 1274 * before trying any recovery commands. 1275 */ 1276 sdev_printk(KERN_ERR, sdev, 1277 "rejecting I/O to offline device\n"); 1278 ret = BLKPREP_KILL; 1279 break; 1280 case SDEV_DEL: 1281 /* 1282 * If the device is fully deleted, we refuse to 1283 * process any commands as well. 1284 */ 1285 sdev_printk(KERN_ERR, sdev, 1286 "rejecting I/O to dead device\n"); 1287 ret = BLKPREP_KILL; 1288 break; 1289 case SDEV_QUIESCE: 1290 case SDEV_BLOCK: 1291 case SDEV_CREATED_BLOCK: 1292 /* 1293 * If the devices is blocked we defer normal commands. 1294 */ 1295 if (!(req->cmd_flags & REQ_PREEMPT)) 1296 ret = BLKPREP_DEFER; 1297 break; 1298 default: 1299 /* 1300 * For any other not fully online state we only allow 1301 * special commands. In particular any user initiated 1302 * command is not allowed. 1303 */ 1304 if (!(req->cmd_flags & REQ_PREEMPT)) 1305 ret = BLKPREP_KILL; 1306 break; 1307 } 1308 } 1309 return ret; 1310 } 1311 EXPORT_SYMBOL(scsi_prep_state_check); 1312 1313 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1314 { 1315 struct scsi_device *sdev = q->queuedata; 1316 1317 switch (ret) { 1318 case BLKPREP_KILL: 1319 req->errors = DID_NO_CONNECT << 16; 1320 /* release the command and kill it */ 1321 if (req->special) { 1322 struct scsi_cmnd *cmd = req->special; 1323 scsi_release_buffers(cmd); 1324 scsi_put_command(cmd); 1325 req->special = NULL; 1326 } 1327 break; 1328 case BLKPREP_DEFER: 1329 /* 1330 * If we defer, the elv_next_request() returns NULL, but the 1331 * queue must be restarted, so we plug here if no returning 1332 * command will automatically do that. 1333 */ 1334 if (sdev->device_busy == 0) 1335 blk_plug_device(q); 1336 break; 1337 default: 1338 req->cmd_flags |= REQ_DONTPREP; 1339 } 1340 1341 return ret; 1342 } 1343 EXPORT_SYMBOL(scsi_prep_return); 1344 1345 int scsi_prep_fn(struct request_queue *q, struct request *req) 1346 { 1347 struct scsi_device *sdev = q->queuedata; 1348 int ret = BLKPREP_KILL; 1349 1350 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1351 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1352 return scsi_prep_return(q, req, ret); 1353 } 1354 1355 /* 1356 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1357 * return 0. 1358 * 1359 * Called with the queue_lock held. 1360 */ 1361 static inline int scsi_dev_queue_ready(struct request_queue *q, 1362 struct scsi_device *sdev) 1363 { 1364 if (sdev->device_busy == 0 && sdev->device_blocked) { 1365 /* 1366 * unblock after device_blocked iterates to zero 1367 */ 1368 if (--sdev->device_blocked == 0) { 1369 SCSI_LOG_MLQUEUE(3, 1370 sdev_printk(KERN_INFO, sdev, 1371 "unblocking device at zero depth\n")); 1372 } else { 1373 blk_plug_device(q); 1374 return 0; 1375 } 1376 } 1377 if (scsi_device_is_busy(sdev)) 1378 return 0; 1379 1380 return 1; 1381 } 1382 1383 1384 /* 1385 * scsi_target_queue_ready: checks if there we can send commands to target 1386 * @sdev: scsi device on starget to check. 1387 * 1388 * Called with the host lock held. 1389 */ 1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1391 struct scsi_device *sdev) 1392 { 1393 struct scsi_target *starget = scsi_target(sdev); 1394 1395 if (starget->single_lun) { 1396 if (starget->starget_sdev_user && 1397 starget->starget_sdev_user != sdev) 1398 return 0; 1399 starget->starget_sdev_user = sdev; 1400 } 1401 1402 if (starget->target_busy == 0 && starget->target_blocked) { 1403 /* 1404 * unblock after target_blocked iterates to zero 1405 */ 1406 if (--starget->target_blocked == 0) { 1407 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1408 "unblocking target at zero depth\n")); 1409 } else { 1410 blk_plug_device(sdev->request_queue); 1411 return 0; 1412 } 1413 } 1414 1415 if (scsi_target_is_busy(starget)) { 1416 if (list_empty(&sdev->starved_entry)) { 1417 list_add_tail(&sdev->starved_entry, 1418 &shost->starved_list); 1419 return 0; 1420 } 1421 } 1422 1423 /* We're OK to process the command, so we can't be starved */ 1424 if (!list_empty(&sdev->starved_entry)) 1425 list_del_init(&sdev->starved_entry); 1426 return 1; 1427 } 1428 1429 /* 1430 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1431 * return 0. We must end up running the queue again whenever 0 is 1432 * returned, else IO can hang. 1433 * 1434 * Called with host_lock held. 1435 */ 1436 static inline int scsi_host_queue_ready(struct request_queue *q, 1437 struct Scsi_Host *shost, 1438 struct scsi_device *sdev) 1439 { 1440 if (scsi_host_in_recovery(shost)) 1441 return 0; 1442 if (shost->host_busy == 0 && shost->host_blocked) { 1443 /* 1444 * unblock after host_blocked iterates to zero 1445 */ 1446 if (--shost->host_blocked == 0) { 1447 SCSI_LOG_MLQUEUE(3, 1448 printk("scsi%d unblocking host at zero depth\n", 1449 shost->host_no)); 1450 } else { 1451 return 0; 1452 } 1453 } 1454 if (scsi_host_is_busy(shost)) { 1455 if (list_empty(&sdev->starved_entry)) 1456 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1457 return 0; 1458 } 1459 1460 /* We're OK to process the command, so we can't be starved */ 1461 if (!list_empty(&sdev->starved_entry)) 1462 list_del_init(&sdev->starved_entry); 1463 1464 return 1; 1465 } 1466 1467 /* 1468 * Busy state exporting function for request stacking drivers. 1469 * 1470 * For efficiency, no lock is taken to check the busy state of 1471 * shost/starget/sdev, since the returned value is not guaranteed and 1472 * may be changed after request stacking drivers call the function, 1473 * regardless of taking lock or not. 1474 * 1475 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1476 * (e.g. !sdev), scsi needs to return 'not busy'. 1477 * Otherwise, request stacking drivers may hold requests forever. 1478 */ 1479 static int scsi_lld_busy(struct request_queue *q) 1480 { 1481 struct scsi_device *sdev = q->queuedata; 1482 struct Scsi_Host *shost; 1483 struct scsi_target *starget; 1484 1485 if (!sdev) 1486 return 0; 1487 1488 shost = sdev->host; 1489 starget = scsi_target(sdev); 1490 1491 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1492 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1493 return 1; 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * Kill a request for a dead device 1500 */ 1501 static void scsi_kill_request(struct request *req, struct request_queue *q) 1502 { 1503 struct scsi_cmnd *cmd = req->special; 1504 struct scsi_device *sdev = cmd->device; 1505 struct scsi_target *starget = scsi_target(sdev); 1506 struct Scsi_Host *shost = sdev->host; 1507 1508 blkdev_dequeue_request(req); 1509 1510 if (unlikely(cmd == NULL)) { 1511 printk(KERN_CRIT "impossible request in %s.\n", 1512 __func__); 1513 BUG(); 1514 } 1515 1516 scsi_init_cmd_errh(cmd); 1517 cmd->result = DID_NO_CONNECT << 16; 1518 atomic_inc(&cmd->device->iorequest_cnt); 1519 1520 /* 1521 * SCSI request completion path will do scsi_device_unbusy(), 1522 * bump busy counts. To bump the counters, we need to dance 1523 * with the locks as normal issue path does. 1524 */ 1525 sdev->device_busy++; 1526 spin_unlock(sdev->request_queue->queue_lock); 1527 spin_lock(shost->host_lock); 1528 shost->host_busy++; 1529 starget->target_busy++; 1530 spin_unlock(shost->host_lock); 1531 spin_lock(sdev->request_queue->queue_lock); 1532 1533 blk_complete_request(req); 1534 } 1535 1536 static void scsi_softirq_done(struct request *rq) 1537 { 1538 struct scsi_cmnd *cmd = rq->special; 1539 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1540 int disposition; 1541 1542 INIT_LIST_HEAD(&cmd->eh_entry); 1543 1544 /* 1545 * Set the serial numbers back to zero 1546 */ 1547 cmd->serial_number = 0; 1548 1549 atomic_inc(&cmd->device->iodone_cnt); 1550 if (cmd->result) 1551 atomic_inc(&cmd->device->ioerr_cnt); 1552 1553 disposition = scsi_decide_disposition(cmd); 1554 if (disposition != SUCCESS && 1555 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1556 sdev_printk(KERN_ERR, cmd->device, 1557 "timing out command, waited %lus\n", 1558 wait_for/HZ); 1559 disposition = SUCCESS; 1560 } 1561 1562 scsi_log_completion(cmd, disposition); 1563 1564 switch (disposition) { 1565 case SUCCESS: 1566 scsi_finish_command(cmd); 1567 break; 1568 case NEEDS_RETRY: 1569 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1570 break; 1571 case ADD_TO_MLQUEUE: 1572 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1573 break; 1574 default: 1575 if (!scsi_eh_scmd_add(cmd, 0)) 1576 scsi_finish_command(cmd); 1577 } 1578 } 1579 1580 /* 1581 * Function: scsi_request_fn() 1582 * 1583 * Purpose: Main strategy routine for SCSI. 1584 * 1585 * Arguments: q - Pointer to actual queue. 1586 * 1587 * Returns: Nothing 1588 * 1589 * Lock status: IO request lock assumed to be held when called. 1590 */ 1591 static void scsi_request_fn(struct request_queue *q) 1592 { 1593 struct scsi_device *sdev = q->queuedata; 1594 struct Scsi_Host *shost; 1595 struct scsi_cmnd *cmd; 1596 struct request *req; 1597 1598 if (!sdev) { 1599 printk("scsi: killing requests for dead queue\n"); 1600 while ((req = elv_next_request(q)) != NULL) 1601 scsi_kill_request(req, q); 1602 return; 1603 } 1604 1605 if(!get_device(&sdev->sdev_gendev)) 1606 /* We must be tearing the block queue down already */ 1607 return; 1608 1609 /* 1610 * To start with, we keep looping until the queue is empty, or until 1611 * the host is no longer able to accept any more requests. 1612 */ 1613 shost = sdev->host; 1614 while (!blk_queue_plugged(q)) { 1615 int rtn; 1616 /* 1617 * get next queueable request. We do this early to make sure 1618 * that the request is fully prepared even if we cannot 1619 * accept it. 1620 */ 1621 req = elv_next_request(q); 1622 if (!req || !scsi_dev_queue_ready(q, sdev)) 1623 break; 1624 1625 if (unlikely(!scsi_device_online(sdev))) { 1626 sdev_printk(KERN_ERR, sdev, 1627 "rejecting I/O to offline device\n"); 1628 scsi_kill_request(req, q); 1629 continue; 1630 } 1631 1632 1633 /* 1634 * Remove the request from the request list. 1635 */ 1636 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1637 blkdev_dequeue_request(req); 1638 sdev->device_busy++; 1639 1640 spin_unlock(q->queue_lock); 1641 cmd = req->special; 1642 if (unlikely(cmd == NULL)) { 1643 printk(KERN_CRIT "impossible request in %s.\n" 1644 "please mail a stack trace to " 1645 "linux-scsi@vger.kernel.org\n", 1646 __func__); 1647 blk_dump_rq_flags(req, "foo"); 1648 BUG(); 1649 } 1650 spin_lock(shost->host_lock); 1651 1652 /* 1653 * We hit this when the driver is using a host wide 1654 * tag map. For device level tag maps the queue_depth check 1655 * in the device ready fn would prevent us from trying 1656 * to allocate a tag. Since the map is a shared host resource 1657 * we add the dev to the starved list so it eventually gets 1658 * a run when a tag is freed. 1659 */ 1660 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1661 if (list_empty(&sdev->starved_entry)) 1662 list_add_tail(&sdev->starved_entry, 1663 &shost->starved_list); 1664 goto not_ready; 1665 } 1666 1667 if (!scsi_target_queue_ready(shost, sdev)) 1668 goto not_ready; 1669 1670 if (!scsi_host_queue_ready(q, shost, sdev)) 1671 goto not_ready; 1672 1673 scsi_target(sdev)->target_busy++; 1674 shost->host_busy++; 1675 1676 /* 1677 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1678 * take the lock again. 1679 */ 1680 spin_unlock_irq(shost->host_lock); 1681 1682 /* 1683 * Finally, initialize any error handling parameters, and set up 1684 * the timers for timeouts. 1685 */ 1686 scsi_init_cmd_errh(cmd); 1687 1688 /* 1689 * Dispatch the command to the low-level driver. 1690 */ 1691 rtn = scsi_dispatch_cmd(cmd); 1692 spin_lock_irq(q->queue_lock); 1693 if(rtn) { 1694 /* we're refusing the command; because of 1695 * the way locks get dropped, we need to 1696 * check here if plugging is required */ 1697 if(sdev->device_busy == 0) 1698 blk_plug_device(q); 1699 1700 break; 1701 } 1702 } 1703 1704 goto out; 1705 1706 not_ready: 1707 spin_unlock_irq(shost->host_lock); 1708 1709 /* 1710 * lock q, handle tag, requeue req, and decrement device_busy. We 1711 * must return with queue_lock held. 1712 * 1713 * Decrementing device_busy without checking it is OK, as all such 1714 * cases (host limits or settings) should run the queue at some 1715 * later time. 1716 */ 1717 spin_lock_irq(q->queue_lock); 1718 blk_requeue_request(q, req); 1719 sdev->device_busy--; 1720 if(sdev->device_busy == 0) 1721 blk_plug_device(q); 1722 out: 1723 /* must be careful here...if we trigger the ->remove() function 1724 * we cannot be holding the q lock */ 1725 spin_unlock_irq(q->queue_lock); 1726 put_device(&sdev->sdev_gendev); 1727 spin_lock_irq(q->queue_lock); 1728 } 1729 1730 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1731 { 1732 struct device *host_dev; 1733 u64 bounce_limit = 0xffffffff; 1734 1735 if (shost->unchecked_isa_dma) 1736 return BLK_BOUNCE_ISA; 1737 /* 1738 * Platforms with virtual-DMA translation 1739 * hardware have no practical limit. 1740 */ 1741 if (!PCI_DMA_BUS_IS_PHYS) 1742 return BLK_BOUNCE_ANY; 1743 1744 host_dev = scsi_get_device(shost); 1745 if (host_dev && host_dev->dma_mask) 1746 bounce_limit = *host_dev->dma_mask; 1747 1748 return bounce_limit; 1749 } 1750 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1751 1752 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1753 request_fn_proc *request_fn) 1754 { 1755 struct request_queue *q; 1756 struct device *dev = shost->shost_gendev.parent; 1757 1758 q = blk_init_queue(request_fn, NULL); 1759 if (!q) 1760 return NULL; 1761 1762 /* 1763 * this limit is imposed by hardware restrictions 1764 */ 1765 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1766 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1767 1768 blk_queue_max_sectors(q, shost->max_sectors); 1769 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1770 blk_queue_segment_boundary(q, shost->dma_boundary); 1771 dma_set_seg_boundary(dev, shost->dma_boundary); 1772 1773 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1774 1775 /* New queue, no concurrency on queue_flags */ 1776 if (!shost->use_clustering) 1777 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1778 1779 /* 1780 * set a reasonable default alignment on word boundaries: the 1781 * host and device may alter it using 1782 * blk_queue_update_dma_alignment() later. 1783 */ 1784 blk_queue_dma_alignment(q, 0x03); 1785 1786 return q; 1787 } 1788 EXPORT_SYMBOL(__scsi_alloc_queue); 1789 1790 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1791 { 1792 struct request_queue *q; 1793 1794 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1795 if (!q) 1796 return NULL; 1797 1798 blk_queue_prep_rq(q, scsi_prep_fn); 1799 blk_queue_softirq_done(q, scsi_softirq_done); 1800 blk_queue_rq_timed_out(q, scsi_times_out); 1801 blk_queue_lld_busy(q, scsi_lld_busy); 1802 return q; 1803 } 1804 1805 void scsi_free_queue(struct request_queue *q) 1806 { 1807 blk_cleanup_queue(q); 1808 } 1809 1810 /* 1811 * Function: scsi_block_requests() 1812 * 1813 * Purpose: Utility function used by low-level drivers to prevent further 1814 * commands from being queued to the device. 1815 * 1816 * Arguments: shost - Host in question 1817 * 1818 * Returns: Nothing 1819 * 1820 * Lock status: No locks are assumed held. 1821 * 1822 * Notes: There is no timer nor any other means by which the requests 1823 * get unblocked other than the low-level driver calling 1824 * scsi_unblock_requests(). 1825 */ 1826 void scsi_block_requests(struct Scsi_Host *shost) 1827 { 1828 shost->host_self_blocked = 1; 1829 } 1830 EXPORT_SYMBOL(scsi_block_requests); 1831 1832 /* 1833 * Function: scsi_unblock_requests() 1834 * 1835 * Purpose: Utility function used by low-level drivers to allow further 1836 * commands from being queued to the device. 1837 * 1838 * Arguments: shost - Host in question 1839 * 1840 * Returns: Nothing 1841 * 1842 * Lock status: No locks are assumed held. 1843 * 1844 * Notes: There is no timer nor any other means by which the requests 1845 * get unblocked other than the low-level driver calling 1846 * scsi_unblock_requests(). 1847 * 1848 * This is done as an API function so that changes to the 1849 * internals of the scsi mid-layer won't require wholesale 1850 * changes to drivers that use this feature. 1851 */ 1852 void scsi_unblock_requests(struct Scsi_Host *shost) 1853 { 1854 shost->host_self_blocked = 0; 1855 scsi_run_host_queues(shost); 1856 } 1857 EXPORT_SYMBOL(scsi_unblock_requests); 1858 1859 int __init scsi_init_queue(void) 1860 { 1861 int i; 1862 1863 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1864 sizeof(struct scsi_io_context), 1865 0, 0, NULL); 1866 if (!scsi_io_context_cache) { 1867 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1868 return -ENOMEM; 1869 } 1870 1871 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1872 sizeof(struct scsi_data_buffer), 1873 0, 0, NULL); 1874 if (!scsi_sdb_cache) { 1875 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1876 goto cleanup_io_context; 1877 } 1878 1879 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1880 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1881 int size = sgp->size * sizeof(struct scatterlist); 1882 1883 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1884 SLAB_HWCACHE_ALIGN, NULL); 1885 if (!sgp->slab) { 1886 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1887 sgp->name); 1888 goto cleanup_sdb; 1889 } 1890 1891 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1892 sgp->slab); 1893 if (!sgp->pool) { 1894 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1895 sgp->name); 1896 goto cleanup_sdb; 1897 } 1898 } 1899 1900 return 0; 1901 1902 cleanup_sdb: 1903 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1904 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1905 if (sgp->pool) 1906 mempool_destroy(sgp->pool); 1907 if (sgp->slab) 1908 kmem_cache_destroy(sgp->slab); 1909 } 1910 kmem_cache_destroy(scsi_sdb_cache); 1911 cleanup_io_context: 1912 kmem_cache_destroy(scsi_io_context_cache); 1913 1914 return -ENOMEM; 1915 } 1916 1917 void scsi_exit_queue(void) 1918 { 1919 int i; 1920 1921 kmem_cache_destroy(scsi_io_context_cache); 1922 kmem_cache_destroy(scsi_sdb_cache); 1923 1924 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1925 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1926 mempool_destroy(sgp->pool); 1927 kmem_cache_destroy(sgp->slab); 1928 } 1929 } 1930 1931 /** 1932 * scsi_mode_select - issue a mode select 1933 * @sdev: SCSI device to be queried 1934 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1935 * @sp: Save page bit (0 == don't save, 1 == save) 1936 * @modepage: mode page being requested 1937 * @buffer: request buffer (may not be smaller than eight bytes) 1938 * @len: length of request buffer. 1939 * @timeout: command timeout 1940 * @retries: number of retries before failing 1941 * @data: returns a structure abstracting the mode header data 1942 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1943 * must be SCSI_SENSE_BUFFERSIZE big. 1944 * 1945 * Returns zero if successful; negative error number or scsi 1946 * status on error 1947 * 1948 */ 1949 int 1950 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1951 unsigned char *buffer, int len, int timeout, int retries, 1952 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1953 { 1954 unsigned char cmd[10]; 1955 unsigned char *real_buffer; 1956 int ret; 1957 1958 memset(cmd, 0, sizeof(cmd)); 1959 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1960 1961 if (sdev->use_10_for_ms) { 1962 if (len > 65535) 1963 return -EINVAL; 1964 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1965 if (!real_buffer) 1966 return -ENOMEM; 1967 memcpy(real_buffer + 8, buffer, len); 1968 len += 8; 1969 real_buffer[0] = 0; 1970 real_buffer[1] = 0; 1971 real_buffer[2] = data->medium_type; 1972 real_buffer[3] = data->device_specific; 1973 real_buffer[4] = data->longlba ? 0x01 : 0; 1974 real_buffer[5] = 0; 1975 real_buffer[6] = data->block_descriptor_length >> 8; 1976 real_buffer[7] = data->block_descriptor_length; 1977 1978 cmd[0] = MODE_SELECT_10; 1979 cmd[7] = len >> 8; 1980 cmd[8] = len; 1981 } else { 1982 if (len > 255 || data->block_descriptor_length > 255 || 1983 data->longlba) 1984 return -EINVAL; 1985 1986 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1987 if (!real_buffer) 1988 return -ENOMEM; 1989 memcpy(real_buffer + 4, buffer, len); 1990 len += 4; 1991 real_buffer[0] = 0; 1992 real_buffer[1] = data->medium_type; 1993 real_buffer[2] = data->device_specific; 1994 real_buffer[3] = data->block_descriptor_length; 1995 1996 1997 cmd[0] = MODE_SELECT; 1998 cmd[4] = len; 1999 } 2000 2001 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2002 sshdr, timeout, retries); 2003 kfree(real_buffer); 2004 return ret; 2005 } 2006 EXPORT_SYMBOL_GPL(scsi_mode_select); 2007 2008 /** 2009 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2010 * @sdev: SCSI device to be queried 2011 * @dbd: set if mode sense will allow block descriptors to be returned 2012 * @modepage: mode page being requested 2013 * @buffer: request buffer (may not be smaller than eight bytes) 2014 * @len: length of request buffer. 2015 * @timeout: command timeout 2016 * @retries: number of retries before failing 2017 * @data: returns a structure abstracting the mode header data 2018 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2019 * must be SCSI_SENSE_BUFFERSIZE big. 2020 * 2021 * Returns zero if unsuccessful, or the header offset (either 4 2022 * or 8 depending on whether a six or ten byte command was 2023 * issued) if successful. 2024 */ 2025 int 2026 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2027 unsigned char *buffer, int len, int timeout, int retries, 2028 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2029 { 2030 unsigned char cmd[12]; 2031 int use_10_for_ms; 2032 int header_length; 2033 int result; 2034 struct scsi_sense_hdr my_sshdr; 2035 2036 memset(data, 0, sizeof(*data)); 2037 memset(&cmd[0], 0, 12); 2038 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2039 cmd[2] = modepage; 2040 2041 /* caller might not be interested in sense, but we need it */ 2042 if (!sshdr) 2043 sshdr = &my_sshdr; 2044 2045 retry: 2046 use_10_for_ms = sdev->use_10_for_ms; 2047 2048 if (use_10_for_ms) { 2049 if (len < 8) 2050 len = 8; 2051 2052 cmd[0] = MODE_SENSE_10; 2053 cmd[8] = len; 2054 header_length = 8; 2055 } else { 2056 if (len < 4) 2057 len = 4; 2058 2059 cmd[0] = MODE_SENSE; 2060 cmd[4] = len; 2061 header_length = 4; 2062 } 2063 2064 memset(buffer, 0, len); 2065 2066 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2067 sshdr, timeout, retries); 2068 2069 /* This code looks awful: what it's doing is making sure an 2070 * ILLEGAL REQUEST sense return identifies the actual command 2071 * byte as the problem. MODE_SENSE commands can return 2072 * ILLEGAL REQUEST if the code page isn't supported */ 2073 2074 if (use_10_for_ms && !scsi_status_is_good(result) && 2075 (driver_byte(result) & DRIVER_SENSE)) { 2076 if (scsi_sense_valid(sshdr)) { 2077 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2078 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2079 /* 2080 * Invalid command operation code 2081 */ 2082 sdev->use_10_for_ms = 0; 2083 goto retry; 2084 } 2085 } 2086 } 2087 2088 if(scsi_status_is_good(result)) { 2089 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2090 (modepage == 6 || modepage == 8))) { 2091 /* Initio breakage? */ 2092 header_length = 0; 2093 data->length = 13; 2094 data->medium_type = 0; 2095 data->device_specific = 0; 2096 data->longlba = 0; 2097 data->block_descriptor_length = 0; 2098 } else if(use_10_for_ms) { 2099 data->length = buffer[0]*256 + buffer[1] + 2; 2100 data->medium_type = buffer[2]; 2101 data->device_specific = buffer[3]; 2102 data->longlba = buffer[4] & 0x01; 2103 data->block_descriptor_length = buffer[6]*256 2104 + buffer[7]; 2105 } else { 2106 data->length = buffer[0] + 1; 2107 data->medium_type = buffer[1]; 2108 data->device_specific = buffer[2]; 2109 data->block_descriptor_length = buffer[3]; 2110 } 2111 data->header_length = header_length; 2112 } 2113 2114 return result; 2115 } 2116 EXPORT_SYMBOL(scsi_mode_sense); 2117 2118 /** 2119 * scsi_test_unit_ready - test if unit is ready 2120 * @sdev: scsi device to change the state of. 2121 * @timeout: command timeout 2122 * @retries: number of retries before failing 2123 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2124 * returning sense. Make sure that this is cleared before passing 2125 * in. 2126 * 2127 * Returns zero if unsuccessful or an error if TUR failed. For 2128 * removable media, a return of NOT_READY or UNIT_ATTENTION is 2129 * translated to success, with the ->changed flag updated. 2130 **/ 2131 int 2132 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2133 struct scsi_sense_hdr *sshdr_external) 2134 { 2135 char cmd[] = { 2136 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2137 }; 2138 struct scsi_sense_hdr *sshdr; 2139 int result; 2140 2141 if (!sshdr_external) 2142 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2143 else 2144 sshdr = sshdr_external; 2145 2146 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2147 do { 2148 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2149 timeout, retries); 2150 if (sdev->removable && scsi_sense_valid(sshdr) && 2151 sshdr->sense_key == UNIT_ATTENTION) 2152 sdev->changed = 1; 2153 } while (scsi_sense_valid(sshdr) && 2154 sshdr->sense_key == UNIT_ATTENTION && --retries); 2155 2156 if (!sshdr) 2157 /* could not allocate sense buffer, so can't process it */ 2158 return result; 2159 2160 if (sdev->removable && scsi_sense_valid(sshdr) && 2161 (sshdr->sense_key == UNIT_ATTENTION || 2162 sshdr->sense_key == NOT_READY)) { 2163 sdev->changed = 1; 2164 result = 0; 2165 } 2166 if (!sshdr_external) 2167 kfree(sshdr); 2168 return result; 2169 } 2170 EXPORT_SYMBOL(scsi_test_unit_ready); 2171 2172 /** 2173 * scsi_device_set_state - Take the given device through the device state model. 2174 * @sdev: scsi device to change the state of. 2175 * @state: state to change to. 2176 * 2177 * Returns zero if unsuccessful or an error if the requested 2178 * transition is illegal. 2179 */ 2180 int 2181 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2182 { 2183 enum scsi_device_state oldstate = sdev->sdev_state; 2184 2185 if (state == oldstate) 2186 return 0; 2187 2188 switch (state) { 2189 case SDEV_CREATED: 2190 switch (oldstate) { 2191 case SDEV_CREATED_BLOCK: 2192 break; 2193 default: 2194 goto illegal; 2195 } 2196 break; 2197 2198 case SDEV_RUNNING: 2199 switch (oldstate) { 2200 case SDEV_CREATED: 2201 case SDEV_OFFLINE: 2202 case SDEV_QUIESCE: 2203 case SDEV_BLOCK: 2204 break; 2205 default: 2206 goto illegal; 2207 } 2208 break; 2209 2210 case SDEV_QUIESCE: 2211 switch (oldstate) { 2212 case SDEV_RUNNING: 2213 case SDEV_OFFLINE: 2214 break; 2215 default: 2216 goto illegal; 2217 } 2218 break; 2219 2220 case SDEV_OFFLINE: 2221 switch (oldstate) { 2222 case SDEV_CREATED: 2223 case SDEV_RUNNING: 2224 case SDEV_QUIESCE: 2225 case SDEV_BLOCK: 2226 break; 2227 default: 2228 goto illegal; 2229 } 2230 break; 2231 2232 case SDEV_BLOCK: 2233 switch (oldstate) { 2234 case SDEV_RUNNING: 2235 case SDEV_CREATED_BLOCK: 2236 break; 2237 default: 2238 goto illegal; 2239 } 2240 break; 2241 2242 case SDEV_CREATED_BLOCK: 2243 switch (oldstate) { 2244 case SDEV_CREATED: 2245 break; 2246 default: 2247 goto illegal; 2248 } 2249 break; 2250 2251 case SDEV_CANCEL: 2252 switch (oldstate) { 2253 case SDEV_CREATED: 2254 case SDEV_RUNNING: 2255 case SDEV_QUIESCE: 2256 case SDEV_OFFLINE: 2257 case SDEV_BLOCK: 2258 break; 2259 default: 2260 goto illegal; 2261 } 2262 break; 2263 2264 case SDEV_DEL: 2265 switch (oldstate) { 2266 case SDEV_CREATED: 2267 case SDEV_RUNNING: 2268 case SDEV_OFFLINE: 2269 case SDEV_CANCEL: 2270 break; 2271 default: 2272 goto illegal; 2273 } 2274 break; 2275 2276 } 2277 sdev->sdev_state = state; 2278 return 0; 2279 2280 illegal: 2281 SCSI_LOG_ERROR_RECOVERY(1, 2282 sdev_printk(KERN_ERR, sdev, 2283 "Illegal state transition %s->%s\n", 2284 scsi_device_state_name(oldstate), 2285 scsi_device_state_name(state)) 2286 ); 2287 return -EINVAL; 2288 } 2289 EXPORT_SYMBOL(scsi_device_set_state); 2290 2291 /** 2292 * sdev_evt_emit - emit a single SCSI device uevent 2293 * @sdev: associated SCSI device 2294 * @evt: event to emit 2295 * 2296 * Send a single uevent (scsi_event) to the associated scsi_device. 2297 */ 2298 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2299 { 2300 int idx = 0; 2301 char *envp[3]; 2302 2303 switch (evt->evt_type) { 2304 case SDEV_EVT_MEDIA_CHANGE: 2305 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2306 break; 2307 2308 default: 2309 /* do nothing */ 2310 break; 2311 } 2312 2313 envp[idx++] = NULL; 2314 2315 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2316 } 2317 2318 /** 2319 * sdev_evt_thread - send a uevent for each scsi event 2320 * @work: work struct for scsi_device 2321 * 2322 * Dispatch queued events to their associated scsi_device kobjects 2323 * as uevents. 2324 */ 2325 void scsi_evt_thread(struct work_struct *work) 2326 { 2327 struct scsi_device *sdev; 2328 LIST_HEAD(event_list); 2329 2330 sdev = container_of(work, struct scsi_device, event_work); 2331 2332 while (1) { 2333 struct scsi_event *evt; 2334 struct list_head *this, *tmp; 2335 unsigned long flags; 2336 2337 spin_lock_irqsave(&sdev->list_lock, flags); 2338 list_splice_init(&sdev->event_list, &event_list); 2339 spin_unlock_irqrestore(&sdev->list_lock, flags); 2340 2341 if (list_empty(&event_list)) 2342 break; 2343 2344 list_for_each_safe(this, tmp, &event_list) { 2345 evt = list_entry(this, struct scsi_event, node); 2346 list_del(&evt->node); 2347 scsi_evt_emit(sdev, evt); 2348 kfree(evt); 2349 } 2350 } 2351 } 2352 2353 /** 2354 * sdev_evt_send - send asserted event to uevent thread 2355 * @sdev: scsi_device event occurred on 2356 * @evt: event to send 2357 * 2358 * Assert scsi device event asynchronously. 2359 */ 2360 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2361 { 2362 unsigned long flags; 2363 2364 #if 0 2365 /* FIXME: currently this check eliminates all media change events 2366 * for polled devices. Need to update to discriminate between AN 2367 * and polled events */ 2368 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2369 kfree(evt); 2370 return; 2371 } 2372 #endif 2373 2374 spin_lock_irqsave(&sdev->list_lock, flags); 2375 list_add_tail(&evt->node, &sdev->event_list); 2376 schedule_work(&sdev->event_work); 2377 spin_unlock_irqrestore(&sdev->list_lock, flags); 2378 } 2379 EXPORT_SYMBOL_GPL(sdev_evt_send); 2380 2381 /** 2382 * sdev_evt_alloc - allocate a new scsi event 2383 * @evt_type: type of event to allocate 2384 * @gfpflags: GFP flags for allocation 2385 * 2386 * Allocates and returns a new scsi_event. 2387 */ 2388 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2389 gfp_t gfpflags) 2390 { 2391 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2392 if (!evt) 2393 return NULL; 2394 2395 evt->evt_type = evt_type; 2396 INIT_LIST_HEAD(&evt->node); 2397 2398 /* evt_type-specific initialization, if any */ 2399 switch (evt_type) { 2400 case SDEV_EVT_MEDIA_CHANGE: 2401 default: 2402 /* do nothing */ 2403 break; 2404 } 2405 2406 return evt; 2407 } 2408 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2409 2410 /** 2411 * sdev_evt_send_simple - send asserted event to uevent thread 2412 * @sdev: scsi_device event occurred on 2413 * @evt_type: type of event to send 2414 * @gfpflags: GFP flags for allocation 2415 * 2416 * Assert scsi device event asynchronously, given an event type. 2417 */ 2418 void sdev_evt_send_simple(struct scsi_device *sdev, 2419 enum scsi_device_event evt_type, gfp_t gfpflags) 2420 { 2421 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2422 if (!evt) { 2423 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2424 evt_type); 2425 return; 2426 } 2427 2428 sdev_evt_send(sdev, evt); 2429 } 2430 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2431 2432 /** 2433 * scsi_device_quiesce - Block user issued commands. 2434 * @sdev: scsi device to quiesce. 2435 * 2436 * This works by trying to transition to the SDEV_QUIESCE state 2437 * (which must be a legal transition). When the device is in this 2438 * state, only special requests will be accepted, all others will 2439 * be deferred. Since special requests may also be requeued requests, 2440 * a successful return doesn't guarantee the device will be 2441 * totally quiescent. 2442 * 2443 * Must be called with user context, may sleep. 2444 * 2445 * Returns zero if unsuccessful or an error if not. 2446 */ 2447 int 2448 scsi_device_quiesce(struct scsi_device *sdev) 2449 { 2450 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2451 if (err) 2452 return err; 2453 2454 scsi_run_queue(sdev->request_queue); 2455 while (sdev->device_busy) { 2456 msleep_interruptible(200); 2457 scsi_run_queue(sdev->request_queue); 2458 } 2459 return 0; 2460 } 2461 EXPORT_SYMBOL(scsi_device_quiesce); 2462 2463 /** 2464 * scsi_device_resume - Restart user issued commands to a quiesced device. 2465 * @sdev: scsi device to resume. 2466 * 2467 * Moves the device from quiesced back to running and restarts the 2468 * queues. 2469 * 2470 * Must be called with user context, may sleep. 2471 */ 2472 void 2473 scsi_device_resume(struct scsi_device *sdev) 2474 { 2475 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2476 return; 2477 scsi_run_queue(sdev->request_queue); 2478 } 2479 EXPORT_SYMBOL(scsi_device_resume); 2480 2481 static void 2482 device_quiesce_fn(struct scsi_device *sdev, void *data) 2483 { 2484 scsi_device_quiesce(sdev); 2485 } 2486 2487 void 2488 scsi_target_quiesce(struct scsi_target *starget) 2489 { 2490 starget_for_each_device(starget, NULL, device_quiesce_fn); 2491 } 2492 EXPORT_SYMBOL(scsi_target_quiesce); 2493 2494 static void 2495 device_resume_fn(struct scsi_device *sdev, void *data) 2496 { 2497 scsi_device_resume(sdev); 2498 } 2499 2500 void 2501 scsi_target_resume(struct scsi_target *starget) 2502 { 2503 starget_for_each_device(starget, NULL, device_resume_fn); 2504 } 2505 EXPORT_SYMBOL(scsi_target_resume); 2506 2507 /** 2508 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2509 * @sdev: device to block 2510 * 2511 * Block request made by scsi lld's to temporarily stop all 2512 * scsi commands on the specified device. Called from interrupt 2513 * or normal process context. 2514 * 2515 * Returns zero if successful or error if not 2516 * 2517 * Notes: 2518 * This routine transitions the device to the SDEV_BLOCK state 2519 * (which must be a legal transition). When the device is in this 2520 * state, all commands are deferred until the scsi lld reenables 2521 * the device with scsi_device_unblock or device_block_tmo fires. 2522 * This routine assumes the host_lock is held on entry. 2523 */ 2524 int 2525 scsi_internal_device_block(struct scsi_device *sdev) 2526 { 2527 struct request_queue *q = sdev->request_queue; 2528 unsigned long flags; 2529 int err = 0; 2530 2531 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2532 if (err) { 2533 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2534 2535 if (err) 2536 return err; 2537 } 2538 2539 /* 2540 * The device has transitioned to SDEV_BLOCK. Stop the 2541 * block layer from calling the midlayer with this device's 2542 * request queue. 2543 */ 2544 spin_lock_irqsave(q->queue_lock, flags); 2545 blk_stop_queue(q); 2546 spin_unlock_irqrestore(q->queue_lock, flags); 2547 2548 return 0; 2549 } 2550 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2551 2552 /** 2553 * scsi_internal_device_unblock - resume a device after a block request 2554 * @sdev: device to resume 2555 * 2556 * Called by scsi lld's or the midlayer to restart the device queue 2557 * for the previously suspended scsi device. Called from interrupt or 2558 * normal process context. 2559 * 2560 * Returns zero if successful or error if not. 2561 * 2562 * Notes: 2563 * This routine transitions the device to the SDEV_RUNNING state 2564 * (which must be a legal transition) allowing the midlayer to 2565 * goose the queue for this device. This routine assumes the 2566 * host_lock is held upon entry. 2567 */ 2568 int 2569 scsi_internal_device_unblock(struct scsi_device *sdev) 2570 { 2571 struct request_queue *q = sdev->request_queue; 2572 int err; 2573 unsigned long flags; 2574 2575 /* 2576 * Try to transition the scsi device to SDEV_RUNNING 2577 * and goose the device queue if successful. 2578 */ 2579 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2580 if (err) { 2581 err = scsi_device_set_state(sdev, SDEV_CREATED); 2582 2583 if (err) 2584 return err; 2585 } 2586 2587 spin_lock_irqsave(q->queue_lock, flags); 2588 blk_start_queue(q); 2589 spin_unlock_irqrestore(q->queue_lock, flags); 2590 2591 return 0; 2592 } 2593 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2594 2595 static void 2596 device_block(struct scsi_device *sdev, void *data) 2597 { 2598 scsi_internal_device_block(sdev); 2599 } 2600 2601 static int 2602 target_block(struct device *dev, void *data) 2603 { 2604 if (scsi_is_target_device(dev)) 2605 starget_for_each_device(to_scsi_target(dev), NULL, 2606 device_block); 2607 return 0; 2608 } 2609 2610 void 2611 scsi_target_block(struct device *dev) 2612 { 2613 if (scsi_is_target_device(dev)) 2614 starget_for_each_device(to_scsi_target(dev), NULL, 2615 device_block); 2616 else 2617 device_for_each_child(dev, NULL, target_block); 2618 } 2619 EXPORT_SYMBOL_GPL(scsi_target_block); 2620 2621 static void 2622 device_unblock(struct scsi_device *sdev, void *data) 2623 { 2624 scsi_internal_device_unblock(sdev); 2625 } 2626 2627 static int 2628 target_unblock(struct device *dev, void *data) 2629 { 2630 if (scsi_is_target_device(dev)) 2631 starget_for_each_device(to_scsi_target(dev), NULL, 2632 device_unblock); 2633 return 0; 2634 } 2635 2636 void 2637 scsi_target_unblock(struct device *dev) 2638 { 2639 if (scsi_is_target_device(dev)) 2640 starget_for_each_device(to_scsi_target(dev), NULL, 2641 device_unblock); 2642 else 2643 device_for_each_child(dev, NULL, target_unblock); 2644 } 2645 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2646 2647 /** 2648 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2649 * @sgl: scatter-gather list 2650 * @sg_count: number of segments in sg 2651 * @offset: offset in bytes into sg, on return offset into the mapped area 2652 * @len: bytes to map, on return number of bytes mapped 2653 * 2654 * Returns virtual address of the start of the mapped page 2655 */ 2656 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2657 size_t *offset, size_t *len) 2658 { 2659 int i; 2660 size_t sg_len = 0, len_complete = 0; 2661 struct scatterlist *sg; 2662 struct page *page; 2663 2664 WARN_ON(!irqs_disabled()); 2665 2666 for_each_sg(sgl, sg, sg_count, i) { 2667 len_complete = sg_len; /* Complete sg-entries */ 2668 sg_len += sg->length; 2669 if (sg_len > *offset) 2670 break; 2671 } 2672 2673 if (unlikely(i == sg_count)) { 2674 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2675 "elements %d\n", 2676 __func__, sg_len, *offset, sg_count); 2677 WARN_ON(1); 2678 return NULL; 2679 } 2680 2681 /* Offset starting from the beginning of first page in this sg-entry */ 2682 *offset = *offset - len_complete + sg->offset; 2683 2684 /* Assumption: contiguous pages can be accessed as "page + i" */ 2685 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2686 *offset &= ~PAGE_MASK; 2687 2688 /* Bytes in this sg-entry from *offset to the end of the page */ 2689 sg_len = PAGE_SIZE - *offset; 2690 if (*len > sg_len) 2691 *len = sg_len; 2692 2693 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2694 } 2695 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2696 2697 /** 2698 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2699 * @virt: virtual address to be unmapped 2700 */ 2701 void scsi_kunmap_atomic_sg(void *virt) 2702 { 2703 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2704 } 2705 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2706