xref: /linux/drivers/scsi/scsi_lib.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct scsi_target *starget = scsi_target(device);
118 	struct request_queue *q = device->request_queue;
119 	unsigned long flags;
120 
121 	SCSI_LOG_MLQUEUE(1,
122 		 printk("Inserting command %p into mlqueue\n", cmd));
123 
124 	/*
125 	 * Set the appropriate busy bit for the device/host.
126 	 *
127 	 * If the host/device isn't busy, assume that something actually
128 	 * completed, and that we should be able to queue a command now.
129 	 *
130 	 * Note that the prior mid-layer assumption that any host could
131 	 * always queue at least one command is now broken.  The mid-layer
132 	 * will implement a user specifiable stall (see
133 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 	 * if a command is requeued with no other commands outstanding
135 	 * either for the device or for the host.
136 	 */
137 	switch (reason) {
138 	case SCSI_MLQUEUE_HOST_BUSY:
139 		host->host_blocked = host->max_host_blocked;
140 		break;
141 	case SCSI_MLQUEUE_DEVICE_BUSY:
142 		device->device_blocked = device->max_device_blocked;
143 		break;
144 	case SCSI_MLQUEUE_TARGET_BUSY:
145 		starget->target_blocked = starget->max_target_blocked;
146 		break;
147 	}
148 
149 	/*
150 	 * Decrement the counters, since these commands are no longer
151 	 * active on the host/device.
152 	 */
153 	scsi_device_unbusy(device);
154 
155 	/*
156 	 * Requeue this command.  It will go before all other commands
157 	 * that are already in the queue.
158 	 *
159 	 * NOTE: there is magic here about the way the queue is plugged if
160 	 * we have no outstanding commands.
161 	 *
162 	 * Although we *don't* plug the queue, we call the request
163 	 * function.  The SCSI request function detects the blocked condition
164 	 * and plugs the queue appropriately.
165          */
166 	spin_lock_irqsave(q->queue_lock, flags);
167 	blk_requeue_request(q, cmd->request);
168 	spin_unlock_irqrestore(q->queue_lock, flags);
169 
170 	scsi_run_queue(q);
171 
172 	return 0;
173 }
174 
175 /**
176  * scsi_execute - insert request and wait for the result
177  * @sdev:	scsi device
178  * @cmd:	scsi command
179  * @data_direction: data direction
180  * @buffer:	data buffer
181  * @bufflen:	len of buffer
182  * @sense:	optional sense buffer
183  * @timeout:	request timeout in seconds
184  * @retries:	number of times to retry request
185  * @flags:	or into request flags;
186  *
187  * returns the req->errors value which is the scsi_cmnd result
188  * field.
189  */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 		 int data_direction, void *buffer, unsigned bufflen,
192 		 unsigned char *sense, int timeout, int retries, int flags)
193 {
194 	struct request *req;
195 	int write = (data_direction == DMA_TO_DEVICE);
196 	int ret = DRIVER_ERROR << 24;
197 
198 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199 
200 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
201 					buffer, bufflen, __GFP_WAIT))
202 		goto out;
203 
204 	req->cmd_len = COMMAND_SIZE(cmd[0]);
205 	memcpy(req->cmd, cmd, req->cmd_len);
206 	req->sense = sense;
207 	req->sense_len = 0;
208 	req->retries = retries;
209 	req->timeout = timeout;
210 	req->cmd_type = REQ_TYPE_BLOCK_PC;
211 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212 
213 	/*
214 	 * head injection *required* here otherwise quiesce won't work
215 	 */
216 	blk_execute_rq(req->q, NULL, req, 1);
217 
218 	/*
219 	 * Some devices (USB mass-storage in particular) may transfer
220 	 * garbage data together with a residue indicating that the data
221 	 * is invalid.  Prevent the garbage from being misinterpreted
222 	 * and prevent security leaks by zeroing out the excess data.
223 	 */
224 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226 
227 	ret = req->errors;
228  out:
229 	blk_put_request(req);
230 
231 	return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234 
235 
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 		     int data_direction, void *buffer, unsigned bufflen,
238 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240 	char *sense = NULL;
241 	int result;
242 
243 	if (sshdr) {
244 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 		if (!sense)
246 			return DRIVER_ERROR << 24;
247 	}
248 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 			      sense, timeout, retries, 0);
250 	if (sshdr)
251 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252 
253 	kfree(sense);
254 	return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257 
258 struct scsi_io_context {
259 	void *data;
260 	void (*done)(void *data, char *sense, int result, int resid);
261 	char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263 
264 static struct kmem_cache *scsi_io_context_cache;
265 
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268 	struct scsi_io_context *sioc = req->end_io_data;
269 
270 	if (sioc->done)
271 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272 
273 	kmem_cache_free(scsi_io_context_cache, sioc);
274 	__blk_put_request(req->q, req);
275 }
276 
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279 	struct request_queue *q = rq->q;
280 
281 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 	if (rq_data_dir(rq) == WRITE)
283 		bio->bi_rw |= (1 << BIO_RW);
284 	blk_queue_bounce(q, &bio);
285 
286 	return blk_rq_append_bio(q, rq, bio);
287 }
288 
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291 	bio_put(bio);
292 }
293 
294 /**
295  * scsi_req_map_sg - map a scatterlist into a request
296  * @rq:		request to fill
297  * @sgl:	scatterlist
298  * @nsegs:	number of elements
299  * @bufflen:	len of buffer
300  * @gfp:	memory allocation flags
301  *
302  * scsi_req_map_sg maps a scatterlist into a request so that the
303  * request can be sent to the block layer. We do not trust the scatterlist
304  * sent to use, as some ULDs use that struct to only organize the pages.
305  */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 			   int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309 	struct request_queue *q = rq->q;
310 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 	unsigned int data_len = bufflen, len, bytes, off;
312 	struct scatterlist *sg;
313 	struct page *page;
314 	struct bio *bio = NULL;
315 	int i, err, nr_vecs = 0;
316 
317 	for_each_sg(sgl, sg, nsegs, i) {
318 		page = sg_page(sg);
319 		off = sg->offset;
320 		len = sg->length;
321 
322 		while (len > 0 && data_len > 0) {
323 			/*
324 			 * sg sends a scatterlist that is larger than
325 			 * the data_len it wants transferred for certain
326 			 * IO sizes
327 			 */
328 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 			bytes = min(bytes, data_len);
330 
331 			if (!bio) {
332 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333 				nr_pages -= nr_vecs;
334 
335 				bio = bio_alloc(gfp, nr_vecs);
336 				if (!bio) {
337 					err = -ENOMEM;
338 					goto free_bios;
339 				}
340 				bio->bi_end_io = scsi_bi_endio;
341 			}
342 
343 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
344 			    bytes) {
345 				bio_put(bio);
346 				err = -EINVAL;
347 				goto free_bios;
348 			}
349 
350 			if (bio->bi_vcnt >= nr_vecs) {
351 				err = scsi_merge_bio(rq, bio);
352 				if (err) {
353 					bio_endio(bio, 0);
354 					goto free_bios;
355 				}
356 				bio = NULL;
357 			}
358 
359 			page++;
360 			len -= bytes;
361 			data_len -=bytes;
362 			off = 0;
363 		}
364 	}
365 
366 	rq->buffer = rq->data = NULL;
367 	rq->data_len = bufflen;
368 	return 0;
369 
370 free_bios:
371 	while ((bio = rq->bio) != NULL) {
372 		rq->bio = bio->bi_next;
373 		/*
374 		 * call endio instead of bio_put incase it was bounced
375 		 */
376 		bio_endio(bio, 0);
377 	}
378 
379 	return err;
380 }
381 
382 /**
383  * scsi_execute_async - insert request
384  * @sdev:	scsi device
385  * @cmd:	scsi command
386  * @cmd_len:	length of scsi cdb
387  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
389  * @bufflen:	len of buffer
390  * @use_sg:	if buffer is a scatterlist this is the number of elements
391  * @timeout:	request timeout in seconds
392  * @retries:	number of times to retry request
393  * @privdata:	data passed to done()
394  * @done:	callback function when done
395  * @gfp:	memory allocation flags
396  */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 		       int use_sg, int timeout, int retries, void *privdata,
400 		       void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402 	struct request *req;
403 	struct scsi_io_context *sioc;
404 	int err = 0;
405 	int write = (data_direction == DMA_TO_DEVICE);
406 
407 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408 	if (!sioc)
409 		return DRIVER_ERROR << 24;
410 
411 	req = blk_get_request(sdev->request_queue, write, gfp);
412 	if (!req)
413 		goto free_sense;
414 	req->cmd_type = REQ_TYPE_BLOCK_PC;
415 	req->cmd_flags |= REQ_QUIET;
416 
417 	if (use_sg)
418 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419 	else if (bufflen)
420 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421 
422 	if (err)
423 		goto free_req;
424 
425 	req->cmd_len = cmd_len;
426 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 	memcpy(req->cmd, cmd, req->cmd_len);
428 	req->sense = sioc->sense;
429 	req->sense_len = 0;
430 	req->timeout = timeout;
431 	req->retries = retries;
432 	req->end_io_data = sioc;
433 
434 	sioc->data = privdata;
435 	sioc->done = done;
436 
437 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438 	return 0;
439 
440 free_req:
441 	blk_put_request(req);
442 free_sense:
443 	kmem_cache_free(scsi_io_context_cache, sioc);
444 	return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447 
448 /*
449  * Function:    scsi_init_cmd_errh()
450  *
451  * Purpose:     Initialize cmd fields related to error handling.
452  *
453  * Arguments:   cmd	- command that is ready to be queued.
454  *
455  * Notes:       This function has the job of initializing a number of
456  *              fields related to error handling.   Typically this will
457  *              be called once for each command, as required.
458  */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461 	cmd->serial_number = 0;
462 	scsi_set_resid(cmd, 0);
463 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 	if (cmd->cmd_len == 0)
465 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467 
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470 	struct Scsi_Host *shost = sdev->host;
471 	struct scsi_target *starget = scsi_target(sdev);
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(shost->host_lock, flags);
475 	shost->host_busy--;
476 	starget->target_busy--;
477 	if (unlikely(scsi_host_in_recovery(shost) &&
478 		     (shost->host_failed || shost->host_eh_scheduled)))
479 		scsi_eh_wakeup(shost);
480 	spin_unlock(shost->host_lock);
481 	spin_lock(sdev->request_queue->queue_lock);
482 	sdev->device_busy--;
483 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485 
486 /*
487  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488  * and call blk_run_queue for all the scsi_devices on the target -
489  * including current_sdev first.
490  *
491  * Called with *no* scsi locks held.
492  */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495 	struct Scsi_Host *shost = current_sdev->host;
496 	struct scsi_device *sdev, *tmp;
497 	struct scsi_target *starget = scsi_target(current_sdev);
498 	unsigned long flags;
499 
500 	spin_lock_irqsave(shost->host_lock, flags);
501 	starget->starget_sdev_user = NULL;
502 	spin_unlock_irqrestore(shost->host_lock, flags);
503 
504 	/*
505 	 * Call blk_run_queue for all LUNs on the target, starting with
506 	 * current_sdev. We race with others (to set starget_sdev_user),
507 	 * but in most cases, we will be first. Ideally, each LU on the
508 	 * target would get some limited time or requests on the target.
509 	 */
510 	blk_run_queue(current_sdev->request_queue);
511 
512 	spin_lock_irqsave(shost->host_lock, flags);
513 	if (starget->starget_sdev_user)
514 		goto out;
515 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 			same_target_siblings) {
517 		if (sdev == current_sdev)
518 			continue;
519 		if (scsi_device_get(sdev))
520 			continue;
521 
522 		spin_unlock_irqrestore(shost->host_lock, flags);
523 		blk_run_queue(sdev->request_queue);
524 		spin_lock_irqsave(shost->host_lock, flags);
525 
526 		scsi_device_put(sdev);
527 	}
528  out:
529 	spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531 
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
533 {
534 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535 		return 1;
536 
537 	return 0;
538 }
539 
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
541 {
542 	return ((starget->can_queue > 0 &&
543 		 starget->target_busy >= starget->can_queue) ||
544 		 starget->target_blocked);
545 }
546 
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
548 {
549 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 	    shost->host_blocked || shost->host_self_blocked)
551 		return 1;
552 
553 	return 0;
554 }
555 
556 /*
557  * Function:	scsi_run_queue()
558  *
559  * Purpose:	Select a proper request queue to serve next
560  *
561  * Arguments:	q	- last request's queue
562  *
563  * Returns:     Nothing
564  *
565  * Notes:	The previous command was completely finished, start
566  *		a new one if possible.
567  */
568 static void scsi_run_queue(struct request_queue *q)
569 {
570 	struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
571 	struct Scsi_Host *shost = sdev->host;
572 	unsigned long flags;
573 
574 	if (scsi_target(sdev)->single_lun)
575 		scsi_single_lun_run(sdev);
576 
577 	spin_lock_irqsave(shost->host_lock, flags);
578 	while (!list_empty(&shost->starved_list) && !scsi_host_is_busy(shost)) {
579 		int flagset;
580 
581 		/*
582 		 * As long as shost is accepting commands and we have
583 		 * starved queues, call blk_run_queue. scsi_request_fn
584 		 * drops the queue_lock and can add us back to the
585 		 * starved_list.
586 		 *
587 		 * host_lock protects the starved_list and starved_entry.
588 		 * scsi_request_fn must get the host_lock before checking
589 		 * or modifying starved_list or starved_entry.
590 		 */
591 		sdev = list_entry(shost->starved_list.next,
592 					  struct scsi_device, starved_entry);
593 		/*
594 		 * The *queue_ready functions can add a device back onto the
595 		 * starved list's tail, so we must check for a infinite loop.
596 		 */
597 		if (sdev == starved_head)
598 			break;
599 		if (!starved_head)
600 			starved_head = sdev;
601 
602 		if (scsi_target_is_busy(scsi_target(sdev))) {
603 			list_move_tail(&sdev->starved_entry,
604 				       &shost->starved_list);
605 			continue;
606 		}
607 
608 		list_del_init(&sdev->starved_entry);
609 		spin_unlock(shost->host_lock);
610 
611 		spin_lock(sdev->request_queue->queue_lock);
612 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
613 				!test_bit(QUEUE_FLAG_REENTER,
614 					&sdev->request_queue->queue_flags);
615 		if (flagset)
616 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
617 		__blk_run_queue(sdev->request_queue);
618 		if (flagset)
619 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
620 		spin_unlock(sdev->request_queue->queue_lock);
621 
622 		spin_lock(shost->host_lock);
623 	}
624 	spin_unlock_irqrestore(shost->host_lock, flags);
625 
626 	blk_run_queue(q);
627 }
628 
629 /*
630  * Function:	scsi_requeue_command()
631  *
632  * Purpose:	Handle post-processing of completed commands.
633  *
634  * Arguments:	q	- queue to operate on
635  *		cmd	- command that may need to be requeued.
636  *
637  * Returns:	Nothing
638  *
639  * Notes:	After command completion, there may be blocks left
640  *		over which weren't finished by the previous command
641  *		this can be for a number of reasons - the main one is
642  *		I/O errors in the middle of the request, in which case
643  *		we need to request the blocks that come after the bad
644  *		sector.
645  * Notes:	Upon return, cmd is a stale pointer.
646  */
647 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
648 {
649 	struct request *req = cmd->request;
650 	unsigned long flags;
651 
652 	scsi_unprep_request(req);
653 	spin_lock_irqsave(q->queue_lock, flags);
654 	blk_requeue_request(q, req);
655 	spin_unlock_irqrestore(q->queue_lock, flags);
656 
657 	scsi_run_queue(q);
658 }
659 
660 void scsi_next_command(struct scsi_cmnd *cmd)
661 {
662 	struct scsi_device *sdev = cmd->device;
663 	struct request_queue *q = sdev->request_queue;
664 
665 	/* need to hold a reference on the device before we let go of the cmd */
666 	get_device(&sdev->sdev_gendev);
667 
668 	scsi_put_command(cmd);
669 	scsi_run_queue(q);
670 
671 	/* ok to remove device now */
672 	put_device(&sdev->sdev_gendev);
673 }
674 
675 void scsi_run_host_queues(struct Scsi_Host *shost)
676 {
677 	struct scsi_device *sdev;
678 
679 	shost_for_each_device(sdev, shost)
680 		scsi_run_queue(sdev->request_queue);
681 }
682 
683 /*
684  * Function:    scsi_end_request()
685  *
686  * Purpose:     Post-processing of completed commands (usually invoked at end
687  *		of upper level post-processing and scsi_io_completion).
688  *
689  * Arguments:   cmd	 - command that is complete.
690  *              error    - 0 if I/O indicates success, < 0 for I/O error.
691  *              bytes    - number of bytes of completed I/O
692  *		requeue  - indicates whether we should requeue leftovers.
693  *
694  * Lock status: Assumed that lock is not held upon entry.
695  *
696  * Returns:     cmd if requeue required, NULL otherwise.
697  *
698  * Notes:       This is called for block device requests in order to
699  *              mark some number of sectors as complete.
700  *
701  *		We are guaranteeing that the request queue will be goosed
702  *		at some point during this call.
703  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
704  */
705 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
706 					  int bytes, int requeue)
707 {
708 	struct request_queue *q = cmd->device->request_queue;
709 	struct request *req = cmd->request;
710 
711 	/*
712 	 * If there are blocks left over at the end, set up the command
713 	 * to queue the remainder of them.
714 	 */
715 	if (blk_end_request(req, error, bytes)) {
716 		int leftover = (req->hard_nr_sectors << 9);
717 
718 		if (blk_pc_request(req))
719 			leftover = req->data_len;
720 
721 		/* kill remainder if no retrys */
722 		if (error && scsi_noretry_cmd(cmd))
723 			blk_end_request(req, error, leftover);
724 		else {
725 			if (requeue) {
726 				/*
727 				 * Bleah.  Leftovers again.  Stick the
728 				 * leftovers in the front of the
729 				 * queue, and goose the queue again.
730 				 */
731 				scsi_requeue_command(q, cmd);
732 				cmd = NULL;
733 			}
734 			return cmd;
735 		}
736 	}
737 
738 	/*
739 	 * This will goose the queue request function at the end, so we don't
740 	 * need to worry about launching another command.
741 	 */
742 	scsi_next_command(cmd);
743 	return NULL;
744 }
745 
746 static inline unsigned int scsi_sgtable_index(unsigned short nents)
747 {
748 	unsigned int index;
749 
750 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
751 
752 	if (nents <= 8)
753 		index = 0;
754 	else
755 		index = get_count_order(nents) - 3;
756 
757 	return index;
758 }
759 
760 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
761 {
762 	struct scsi_host_sg_pool *sgp;
763 
764 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
765 	mempool_free(sgl, sgp->pool);
766 }
767 
768 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
769 {
770 	struct scsi_host_sg_pool *sgp;
771 
772 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
773 	return mempool_alloc(sgp->pool, gfp_mask);
774 }
775 
776 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
777 			      gfp_t gfp_mask)
778 {
779 	int ret;
780 
781 	BUG_ON(!nents);
782 
783 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
784 			       gfp_mask, scsi_sg_alloc);
785 	if (unlikely(ret))
786 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
787 				scsi_sg_free);
788 
789 	return ret;
790 }
791 
792 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
793 {
794 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
795 }
796 
797 /*
798  * Function:    scsi_release_buffers()
799  *
800  * Purpose:     Completion processing for block device I/O requests.
801  *
802  * Arguments:   cmd	- command that we are bailing.
803  *
804  * Lock status: Assumed that no lock is held upon entry.
805  *
806  * Returns:     Nothing
807  *
808  * Notes:       In the event that an upper level driver rejects a
809  *		command, we must release resources allocated during
810  *		the __init_io() function.  Primarily this would involve
811  *		the scatter-gather table, and potentially any bounce
812  *		buffers.
813  */
814 void scsi_release_buffers(struct scsi_cmnd *cmd)
815 {
816 	if (cmd->sdb.table.nents)
817 		scsi_free_sgtable(&cmd->sdb);
818 
819 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
820 
821 	if (scsi_bidi_cmnd(cmd)) {
822 		struct scsi_data_buffer *bidi_sdb =
823 			cmd->request->next_rq->special;
824 		scsi_free_sgtable(bidi_sdb);
825 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
826 		cmd->request->next_rq->special = NULL;
827 	}
828 
829 	if (scsi_prot_sg_count(cmd))
830 		scsi_free_sgtable(cmd->prot_sdb);
831 }
832 EXPORT_SYMBOL(scsi_release_buffers);
833 
834 /*
835  * Bidi commands Must be complete as a whole, both sides at once.
836  * If part of the bytes were written and lld returned
837  * scsi_in()->resid and/or scsi_out()->resid this information will be left
838  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
839  * decide what to do with this information.
840  */
841 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
842 {
843 	struct request *req = cmd->request;
844 	unsigned int dlen = req->data_len;
845 	unsigned int next_dlen = req->next_rq->data_len;
846 
847 	req->data_len = scsi_out(cmd)->resid;
848 	req->next_rq->data_len = scsi_in(cmd)->resid;
849 
850 	/* The req and req->next_rq have not been completed */
851 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
852 
853 	scsi_release_buffers(cmd);
854 
855 	/*
856 	 * This will goose the queue request function at the end, so we don't
857 	 * need to worry about launching another command.
858 	 */
859 	scsi_next_command(cmd);
860 }
861 
862 /*
863  * Function:    scsi_io_completion()
864  *
865  * Purpose:     Completion processing for block device I/O requests.
866  *
867  * Arguments:   cmd   - command that is finished.
868  *
869  * Lock status: Assumed that no lock is held upon entry.
870  *
871  * Returns:     Nothing
872  *
873  * Notes:       This function is matched in terms of capabilities to
874  *              the function that created the scatter-gather list.
875  *              In other words, if there are no bounce buffers
876  *              (the normal case for most drivers), we don't need
877  *              the logic to deal with cleaning up afterwards.
878  *
879  *		We must do one of several things here:
880  *
881  *		a) Call scsi_end_request.  This will finish off the
882  *		   specified number of sectors.  If we are done, the
883  *		   command block will be released, and the queue
884  *		   function will be goosed.  If we are not done, then
885  *		   scsi_end_request will directly goose the queue.
886  *
887  *		b) We can just use scsi_requeue_command() here.  This would
888  *		   be used if we just wanted to retry, for example.
889  */
890 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
891 {
892 	int result = cmd->result;
893 	int this_count;
894 	struct request_queue *q = cmd->device->request_queue;
895 	struct request *req = cmd->request;
896 	int error = 0;
897 	struct scsi_sense_hdr sshdr;
898 	int sense_valid = 0;
899 	int sense_deferred = 0;
900 
901 	if (result) {
902 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
903 		if (sense_valid)
904 			sense_deferred = scsi_sense_is_deferred(&sshdr);
905 	}
906 
907 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
908 		req->errors = result;
909 		if (result) {
910 			if (sense_valid && req->sense) {
911 				/*
912 				 * SG_IO wants current and deferred errors
913 				 */
914 				int len = 8 + cmd->sense_buffer[7];
915 
916 				if (len > SCSI_SENSE_BUFFERSIZE)
917 					len = SCSI_SENSE_BUFFERSIZE;
918 				memcpy(req->sense, cmd->sense_buffer,  len);
919 				req->sense_len = len;
920 			}
921 			if (!sense_deferred)
922 				error = -EIO;
923 		}
924 		if (scsi_bidi_cmnd(cmd)) {
925 			/* will also release_buffers */
926 			scsi_end_bidi_request(cmd);
927 			return;
928 		}
929 		req->data_len = scsi_get_resid(cmd);
930 	}
931 
932 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
933 	scsi_release_buffers(cmd);
934 
935 	/*
936 	 * Next deal with any sectors which we were able to correctly
937 	 * handle.
938 	 */
939 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
940 				      "%d bytes done.\n",
941 				      req->nr_sectors, good_bytes));
942 
943 	/* A number of bytes were successfully read.  If there
944 	 * are leftovers and there is some kind of error
945 	 * (result != 0), retry the rest.
946 	 */
947 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
948 		return;
949 	this_count = blk_rq_bytes(req);
950 
951 	/* good_bytes = 0, or (inclusive) there were leftovers and
952 	 * result = 0, so scsi_end_request couldn't retry.
953 	 */
954 	if (sense_valid && !sense_deferred) {
955 		switch (sshdr.sense_key) {
956 		case UNIT_ATTENTION:
957 			if (cmd->device->removable) {
958 				/* Detected disc change.  Set a bit
959 				 * and quietly refuse further access.
960 				 */
961 				cmd->device->changed = 1;
962 				scsi_end_request(cmd, -EIO, this_count, 1);
963 				return;
964 			} else {
965 				/* Must have been a power glitch, or a
966 				 * bus reset.  Could not have been a
967 				 * media change, so we just retry the
968 				 * request and see what happens.
969 				 */
970 				scsi_requeue_command(q, cmd);
971 				return;
972 			}
973 			break;
974 		case ILLEGAL_REQUEST:
975 			/* If we had an ILLEGAL REQUEST returned, then
976 			 * we may have performed an unsupported
977 			 * command.  The only thing this should be
978 			 * would be a ten byte read where only a six
979 			 * byte read was supported.  Also, on a system
980 			 * where READ CAPACITY failed, we may have
981 			 * read past the end of the disk.
982 			 */
983 			if ((cmd->device->use_10_for_rw &&
984 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
985 			    (cmd->cmnd[0] == READ_10 ||
986 			     cmd->cmnd[0] == WRITE_10)) {
987 				cmd->device->use_10_for_rw = 0;
988 				/* This will cause a retry with a
989 				 * 6-byte command.
990 				 */
991 				scsi_requeue_command(q, cmd);
992 			} else if (sshdr.asc == 0x10) /* DIX */
993 				scsi_end_request(cmd, -EIO, this_count, 0);
994 			else
995 				scsi_end_request(cmd, -EIO, this_count, 1);
996 			return;
997 		case ABORTED_COMMAND:
998 			if (sshdr.asc == 0x10) { /* DIF */
999 				scsi_end_request(cmd, -EIO, this_count, 0);
1000 				return;
1001 			}
1002 			break;
1003 		case NOT_READY:
1004 			/* If the device is in the process of becoming
1005 			 * ready, or has a temporary blockage, retry.
1006 			 */
1007 			if (sshdr.asc == 0x04) {
1008 				switch (sshdr.ascq) {
1009 				case 0x01: /* becoming ready */
1010 				case 0x04: /* format in progress */
1011 				case 0x05: /* rebuild in progress */
1012 				case 0x06: /* recalculation in progress */
1013 				case 0x07: /* operation in progress */
1014 				case 0x08: /* Long write in progress */
1015 				case 0x09: /* self test in progress */
1016 					scsi_requeue_command(q, cmd);
1017 					return;
1018 				default:
1019 					break;
1020 				}
1021 			}
1022 			if (!(req->cmd_flags & REQ_QUIET))
1023 				scsi_cmd_print_sense_hdr(cmd,
1024 							 "Device not ready",
1025 							 &sshdr);
1026 
1027 			scsi_end_request(cmd, -EIO, this_count, 1);
1028 			return;
1029 		case VOLUME_OVERFLOW:
1030 			if (!(req->cmd_flags & REQ_QUIET)) {
1031 				scmd_printk(KERN_INFO, cmd,
1032 					    "Volume overflow, CDB: ");
1033 				__scsi_print_command(cmd->cmnd);
1034 				scsi_print_sense("", cmd);
1035 			}
1036 			/* See SSC3rXX or current. */
1037 			scsi_end_request(cmd, -EIO, this_count, 1);
1038 			return;
1039 		default:
1040 			break;
1041 		}
1042 	}
1043 	if (host_byte(result) == DID_RESET) {
1044 		/* Third party bus reset or reset for error recovery
1045 		 * reasons.  Just retry the request and see what
1046 		 * happens.
1047 		 */
1048 		scsi_requeue_command(q, cmd);
1049 		return;
1050 	}
1051 	if (result) {
1052 		if (!(req->cmd_flags & REQ_QUIET)) {
1053 			scsi_print_result(cmd);
1054 			if (driver_byte(result) & DRIVER_SENSE)
1055 				scsi_print_sense("", cmd);
1056 		}
1057 	}
1058 	scsi_end_request(cmd, -EIO, this_count, !result);
1059 }
1060 
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1062 			     gfp_t gfp_mask)
1063 {
1064 	int count;
1065 
1066 	/*
1067 	 * If sg table allocation fails, requeue request later.
1068 	 */
1069 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1070 					gfp_mask))) {
1071 		return BLKPREP_DEFER;
1072 	}
1073 
1074 	req->buffer = NULL;
1075 
1076 	/*
1077 	 * Next, walk the list, and fill in the addresses and sizes of
1078 	 * each segment.
1079 	 */
1080 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081 	BUG_ON(count > sdb->table.nents);
1082 	sdb->table.nents = count;
1083 	if (blk_pc_request(req))
1084 		sdb->length = req->data_len;
1085 	else
1086 		sdb->length = req->nr_sectors << 9;
1087 	return BLKPREP_OK;
1088 }
1089 
1090 /*
1091  * Function:    scsi_init_io()
1092  *
1093  * Purpose:     SCSI I/O initialize function.
1094  *
1095  * Arguments:   cmd   - Command descriptor we wish to initialize
1096  *
1097  * Returns:     0 on success
1098  *		BLKPREP_DEFER if the failure is retryable
1099  *		BLKPREP_KILL if the failure is fatal
1100  */
1101 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1102 {
1103 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1104 	if (error)
1105 		goto err_exit;
1106 
1107 	if (blk_bidi_rq(cmd->request)) {
1108 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1109 			scsi_sdb_cache, GFP_ATOMIC);
1110 		if (!bidi_sdb) {
1111 			error = BLKPREP_DEFER;
1112 			goto err_exit;
1113 		}
1114 
1115 		cmd->request->next_rq->special = bidi_sdb;
1116 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1117 								    GFP_ATOMIC);
1118 		if (error)
1119 			goto err_exit;
1120 	}
1121 
1122 	if (blk_integrity_rq(cmd->request)) {
1123 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1124 		int ivecs, count;
1125 
1126 		BUG_ON(prot_sdb == NULL);
1127 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1128 
1129 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1130 			error = BLKPREP_DEFER;
1131 			goto err_exit;
1132 		}
1133 
1134 		count = blk_rq_map_integrity_sg(cmd->request,
1135 						prot_sdb->table.sgl);
1136 		BUG_ON(unlikely(count > ivecs));
1137 
1138 		cmd->prot_sdb = prot_sdb;
1139 		cmd->prot_sdb->table.nents = count;
1140 	}
1141 
1142 	return BLKPREP_OK ;
1143 
1144 err_exit:
1145 	scsi_release_buffers(cmd);
1146 	if (error == BLKPREP_KILL)
1147 		scsi_put_command(cmd);
1148 	else /* BLKPREP_DEFER */
1149 		scsi_unprep_request(cmd->request);
1150 
1151 	return error;
1152 }
1153 EXPORT_SYMBOL(scsi_init_io);
1154 
1155 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1156 		struct request *req)
1157 {
1158 	struct scsi_cmnd *cmd;
1159 
1160 	if (!req->special) {
1161 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162 		if (unlikely(!cmd))
1163 			return NULL;
1164 		req->special = cmd;
1165 	} else {
1166 		cmd = req->special;
1167 	}
1168 
1169 	/* pull a tag out of the request if we have one */
1170 	cmd->tag = req->tag;
1171 	cmd->request = req;
1172 
1173 	cmd->cmnd = req->cmd;
1174 
1175 	return cmd;
1176 }
1177 
1178 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd;
1181 	int ret = scsi_prep_state_check(sdev, req);
1182 
1183 	if (ret != BLKPREP_OK)
1184 		return ret;
1185 
1186 	cmd = scsi_get_cmd_from_req(sdev, req);
1187 	if (unlikely(!cmd))
1188 		return BLKPREP_DEFER;
1189 
1190 	/*
1191 	 * BLOCK_PC requests may transfer data, in which case they must
1192 	 * a bio attached to them.  Or they might contain a SCSI command
1193 	 * that does not transfer data, in which case they may optionally
1194 	 * submit a request without an attached bio.
1195 	 */
1196 	if (req->bio) {
1197 		int ret;
1198 
1199 		BUG_ON(!req->nr_phys_segments);
1200 
1201 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1202 		if (unlikely(ret))
1203 			return ret;
1204 	} else {
1205 		BUG_ON(req->data_len);
1206 		BUG_ON(req->data);
1207 
1208 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1209 		req->buffer = NULL;
1210 	}
1211 
1212 	cmd->cmd_len = req->cmd_len;
1213 	if (!req->data_len)
1214 		cmd->sc_data_direction = DMA_NONE;
1215 	else if (rq_data_dir(req) == WRITE)
1216 		cmd->sc_data_direction = DMA_TO_DEVICE;
1217 	else
1218 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1219 
1220 	cmd->transfersize = req->data_len;
1221 	cmd->allowed = req->retries;
1222 	return BLKPREP_OK;
1223 }
1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1225 
1226 /*
1227  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1228  * from filesystems that still need to be translated to SCSI CDBs from
1229  * the ULD.
1230  */
1231 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1232 {
1233 	struct scsi_cmnd *cmd;
1234 	int ret = scsi_prep_state_check(sdev, req);
1235 
1236 	if (ret != BLKPREP_OK)
1237 		return ret;
1238 
1239 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242 		if (ret != BLKPREP_OK)
1243 			return ret;
1244 	}
1245 
1246 	/*
1247 	 * Filesystem requests must transfer data.
1248 	 */
1249 	BUG_ON(!req->nr_phys_segments);
1250 
1251 	cmd = scsi_get_cmd_from_req(sdev, req);
1252 	if (unlikely(!cmd))
1253 		return BLKPREP_DEFER;
1254 
1255 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1256 	return scsi_init_io(cmd, GFP_ATOMIC);
1257 }
1258 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1259 
1260 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1261 {
1262 	int ret = BLKPREP_OK;
1263 
1264 	/*
1265 	 * If the device is not in running state we will reject some
1266 	 * or all commands.
1267 	 */
1268 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1269 		switch (sdev->sdev_state) {
1270 		case SDEV_OFFLINE:
1271 			/*
1272 			 * If the device is offline we refuse to process any
1273 			 * commands.  The device must be brought online
1274 			 * before trying any recovery commands.
1275 			 */
1276 			sdev_printk(KERN_ERR, sdev,
1277 				    "rejecting I/O to offline device\n");
1278 			ret = BLKPREP_KILL;
1279 			break;
1280 		case SDEV_DEL:
1281 			/*
1282 			 * If the device is fully deleted, we refuse to
1283 			 * process any commands as well.
1284 			 */
1285 			sdev_printk(KERN_ERR, sdev,
1286 				    "rejecting I/O to dead device\n");
1287 			ret = BLKPREP_KILL;
1288 			break;
1289 		case SDEV_QUIESCE:
1290 		case SDEV_BLOCK:
1291 		case SDEV_CREATED_BLOCK:
1292 			/*
1293 			 * If the devices is blocked we defer normal commands.
1294 			 */
1295 			if (!(req->cmd_flags & REQ_PREEMPT))
1296 				ret = BLKPREP_DEFER;
1297 			break;
1298 		default:
1299 			/*
1300 			 * For any other not fully online state we only allow
1301 			 * special commands.  In particular any user initiated
1302 			 * command is not allowed.
1303 			 */
1304 			if (!(req->cmd_flags & REQ_PREEMPT))
1305 				ret = BLKPREP_KILL;
1306 			break;
1307 		}
1308 	}
1309 	return ret;
1310 }
1311 EXPORT_SYMBOL(scsi_prep_state_check);
1312 
1313 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1314 {
1315 	struct scsi_device *sdev = q->queuedata;
1316 
1317 	switch (ret) {
1318 	case BLKPREP_KILL:
1319 		req->errors = DID_NO_CONNECT << 16;
1320 		/* release the command and kill it */
1321 		if (req->special) {
1322 			struct scsi_cmnd *cmd = req->special;
1323 			scsi_release_buffers(cmd);
1324 			scsi_put_command(cmd);
1325 			req->special = NULL;
1326 		}
1327 		break;
1328 	case BLKPREP_DEFER:
1329 		/*
1330 		 * If we defer, the elv_next_request() returns NULL, but the
1331 		 * queue must be restarted, so we plug here if no returning
1332 		 * command will automatically do that.
1333 		 */
1334 		if (sdev->device_busy == 0)
1335 			blk_plug_device(q);
1336 		break;
1337 	default:
1338 		req->cmd_flags |= REQ_DONTPREP;
1339 	}
1340 
1341 	return ret;
1342 }
1343 EXPORT_SYMBOL(scsi_prep_return);
1344 
1345 int scsi_prep_fn(struct request_queue *q, struct request *req)
1346 {
1347 	struct scsi_device *sdev = q->queuedata;
1348 	int ret = BLKPREP_KILL;
1349 
1350 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1351 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1352 	return scsi_prep_return(q, req, ret);
1353 }
1354 
1355 /*
1356  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1357  * return 0.
1358  *
1359  * Called with the queue_lock held.
1360  */
1361 static inline int scsi_dev_queue_ready(struct request_queue *q,
1362 				  struct scsi_device *sdev)
1363 {
1364 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1365 		/*
1366 		 * unblock after device_blocked iterates to zero
1367 		 */
1368 		if (--sdev->device_blocked == 0) {
1369 			SCSI_LOG_MLQUEUE(3,
1370 				   sdev_printk(KERN_INFO, sdev,
1371 				   "unblocking device at zero depth\n"));
1372 		} else {
1373 			blk_plug_device(q);
1374 			return 0;
1375 		}
1376 	}
1377 	if (scsi_device_is_busy(sdev))
1378 		return 0;
1379 
1380 	return 1;
1381 }
1382 
1383 
1384 /*
1385  * scsi_target_queue_ready: checks if there we can send commands to target
1386  * @sdev: scsi device on starget to check.
1387  *
1388  * Called with the host lock held.
1389  */
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391 					   struct scsi_device *sdev)
1392 {
1393 	struct scsi_target *starget = scsi_target(sdev);
1394 
1395 	if (starget->single_lun) {
1396 		if (starget->starget_sdev_user &&
1397 		    starget->starget_sdev_user != sdev)
1398 			return 0;
1399 		starget->starget_sdev_user = sdev;
1400 	}
1401 
1402 	if (starget->target_busy == 0 && starget->target_blocked) {
1403 		/*
1404 		 * unblock after target_blocked iterates to zero
1405 		 */
1406 		if (--starget->target_blocked == 0) {
1407 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1408 					 "unblocking target at zero depth\n"));
1409 		} else {
1410 			blk_plug_device(sdev->request_queue);
1411 			return 0;
1412 		}
1413 	}
1414 
1415 	if (scsi_target_is_busy(starget)) {
1416 		if (list_empty(&sdev->starved_entry)) {
1417 			list_add_tail(&sdev->starved_entry,
1418 				      &shost->starved_list);
1419 			return 0;
1420 		}
1421 	}
1422 
1423 	/* We're OK to process the command, so we can't be starved */
1424 	if (!list_empty(&sdev->starved_entry))
1425 		list_del_init(&sdev->starved_entry);
1426 	return 1;
1427 }
1428 
1429 /*
1430  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1431  * return 0. We must end up running the queue again whenever 0 is
1432  * returned, else IO can hang.
1433  *
1434  * Called with host_lock held.
1435  */
1436 static inline int scsi_host_queue_ready(struct request_queue *q,
1437 				   struct Scsi_Host *shost,
1438 				   struct scsi_device *sdev)
1439 {
1440 	if (scsi_host_in_recovery(shost))
1441 		return 0;
1442 	if (shost->host_busy == 0 && shost->host_blocked) {
1443 		/*
1444 		 * unblock after host_blocked iterates to zero
1445 		 */
1446 		if (--shost->host_blocked == 0) {
1447 			SCSI_LOG_MLQUEUE(3,
1448 				printk("scsi%d unblocking host at zero depth\n",
1449 					shost->host_no));
1450 		} else {
1451 			return 0;
1452 		}
1453 	}
1454 	if (scsi_host_is_busy(shost)) {
1455 		if (list_empty(&sdev->starved_entry))
1456 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457 		return 0;
1458 	}
1459 
1460 	/* We're OK to process the command, so we can't be starved */
1461 	if (!list_empty(&sdev->starved_entry))
1462 		list_del_init(&sdev->starved_entry);
1463 
1464 	return 1;
1465 }
1466 
1467 /*
1468  * Busy state exporting function for request stacking drivers.
1469  *
1470  * For efficiency, no lock is taken to check the busy state of
1471  * shost/starget/sdev, since the returned value is not guaranteed and
1472  * may be changed after request stacking drivers call the function,
1473  * regardless of taking lock or not.
1474  *
1475  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1476  * (e.g. !sdev), scsi needs to return 'not busy'.
1477  * Otherwise, request stacking drivers may hold requests forever.
1478  */
1479 static int scsi_lld_busy(struct request_queue *q)
1480 {
1481 	struct scsi_device *sdev = q->queuedata;
1482 	struct Scsi_Host *shost;
1483 	struct scsi_target *starget;
1484 
1485 	if (!sdev)
1486 		return 0;
1487 
1488 	shost = sdev->host;
1489 	starget = scsi_target(sdev);
1490 
1491 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1492 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1493 		return 1;
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Kill a request for a dead device
1500  */
1501 static void scsi_kill_request(struct request *req, struct request_queue *q)
1502 {
1503 	struct scsi_cmnd *cmd = req->special;
1504 	struct scsi_device *sdev = cmd->device;
1505 	struct scsi_target *starget = scsi_target(sdev);
1506 	struct Scsi_Host *shost = sdev->host;
1507 
1508 	blkdev_dequeue_request(req);
1509 
1510 	if (unlikely(cmd == NULL)) {
1511 		printk(KERN_CRIT "impossible request in %s.\n",
1512 				 __func__);
1513 		BUG();
1514 	}
1515 
1516 	scsi_init_cmd_errh(cmd);
1517 	cmd->result = DID_NO_CONNECT << 16;
1518 	atomic_inc(&cmd->device->iorequest_cnt);
1519 
1520 	/*
1521 	 * SCSI request completion path will do scsi_device_unbusy(),
1522 	 * bump busy counts.  To bump the counters, we need to dance
1523 	 * with the locks as normal issue path does.
1524 	 */
1525 	sdev->device_busy++;
1526 	spin_unlock(sdev->request_queue->queue_lock);
1527 	spin_lock(shost->host_lock);
1528 	shost->host_busy++;
1529 	starget->target_busy++;
1530 	spin_unlock(shost->host_lock);
1531 	spin_lock(sdev->request_queue->queue_lock);
1532 
1533 	blk_complete_request(req);
1534 }
1535 
1536 static void scsi_softirq_done(struct request *rq)
1537 {
1538 	struct scsi_cmnd *cmd = rq->special;
1539 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1540 	int disposition;
1541 
1542 	INIT_LIST_HEAD(&cmd->eh_entry);
1543 
1544 	/*
1545 	 * Set the serial numbers back to zero
1546 	 */
1547 	cmd->serial_number = 0;
1548 
1549 	atomic_inc(&cmd->device->iodone_cnt);
1550 	if (cmd->result)
1551 		atomic_inc(&cmd->device->ioerr_cnt);
1552 
1553 	disposition = scsi_decide_disposition(cmd);
1554 	if (disposition != SUCCESS &&
1555 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1556 		sdev_printk(KERN_ERR, cmd->device,
1557 			    "timing out command, waited %lus\n",
1558 			    wait_for/HZ);
1559 		disposition = SUCCESS;
1560 	}
1561 
1562 	scsi_log_completion(cmd, disposition);
1563 
1564 	switch (disposition) {
1565 		case SUCCESS:
1566 			scsi_finish_command(cmd);
1567 			break;
1568 		case NEEDS_RETRY:
1569 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1570 			break;
1571 		case ADD_TO_MLQUEUE:
1572 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1573 			break;
1574 		default:
1575 			if (!scsi_eh_scmd_add(cmd, 0))
1576 				scsi_finish_command(cmd);
1577 	}
1578 }
1579 
1580 /*
1581  * Function:    scsi_request_fn()
1582  *
1583  * Purpose:     Main strategy routine for SCSI.
1584  *
1585  * Arguments:   q       - Pointer to actual queue.
1586  *
1587  * Returns:     Nothing
1588  *
1589  * Lock status: IO request lock assumed to be held when called.
1590  */
1591 static void scsi_request_fn(struct request_queue *q)
1592 {
1593 	struct scsi_device *sdev = q->queuedata;
1594 	struct Scsi_Host *shost;
1595 	struct scsi_cmnd *cmd;
1596 	struct request *req;
1597 
1598 	if (!sdev) {
1599 		printk("scsi: killing requests for dead queue\n");
1600 		while ((req = elv_next_request(q)) != NULL)
1601 			scsi_kill_request(req, q);
1602 		return;
1603 	}
1604 
1605 	if(!get_device(&sdev->sdev_gendev))
1606 		/* We must be tearing the block queue down already */
1607 		return;
1608 
1609 	/*
1610 	 * To start with, we keep looping until the queue is empty, or until
1611 	 * the host is no longer able to accept any more requests.
1612 	 */
1613 	shost = sdev->host;
1614 	while (!blk_queue_plugged(q)) {
1615 		int rtn;
1616 		/*
1617 		 * get next queueable request.  We do this early to make sure
1618 		 * that the request is fully prepared even if we cannot
1619 		 * accept it.
1620 		 */
1621 		req = elv_next_request(q);
1622 		if (!req || !scsi_dev_queue_ready(q, sdev))
1623 			break;
1624 
1625 		if (unlikely(!scsi_device_online(sdev))) {
1626 			sdev_printk(KERN_ERR, sdev,
1627 				    "rejecting I/O to offline device\n");
1628 			scsi_kill_request(req, q);
1629 			continue;
1630 		}
1631 
1632 
1633 		/*
1634 		 * Remove the request from the request list.
1635 		 */
1636 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1637 			blkdev_dequeue_request(req);
1638 		sdev->device_busy++;
1639 
1640 		spin_unlock(q->queue_lock);
1641 		cmd = req->special;
1642 		if (unlikely(cmd == NULL)) {
1643 			printk(KERN_CRIT "impossible request in %s.\n"
1644 					 "please mail a stack trace to "
1645 					 "linux-scsi@vger.kernel.org\n",
1646 					 __func__);
1647 			blk_dump_rq_flags(req, "foo");
1648 			BUG();
1649 		}
1650 		spin_lock(shost->host_lock);
1651 
1652 		/*
1653 		 * We hit this when the driver is using a host wide
1654 		 * tag map. For device level tag maps the queue_depth check
1655 		 * in the device ready fn would prevent us from trying
1656 		 * to allocate a tag. Since the map is a shared host resource
1657 		 * we add the dev to the starved list so it eventually gets
1658 		 * a run when a tag is freed.
1659 		 */
1660 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1661 			if (list_empty(&sdev->starved_entry))
1662 				list_add_tail(&sdev->starved_entry,
1663 					      &shost->starved_list);
1664 			goto not_ready;
1665 		}
1666 
1667 		if (!scsi_target_queue_ready(shost, sdev))
1668 			goto not_ready;
1669 
1670 		if (!scsi_host_queue_ready(q, shost, sdev))
1671 			goto not_ready;
1672 
1673 		scsi_target(sdev)->target_busy++;
1674 		shost->host_busy++;
1675 
1676 		/*
1677 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1678 		 *		take the lock again.
1679 		 */
1680 		spin_unlock_irq(shost->host_lock);
1681 
1682 		/*
1683 		 * Finally, initialize any error handling parameters, and set up
1684 		 * the timers for timeouts.
1685 		 */
1686 		scsi_init_cmd_errh(cmd);
1687 
1688 		/*
1689 		 * Dispatch the command to the low-level driver.
1690 		 */
1691 		rtn = scsi_dispatch_cmd(cmd);
1692 		spin_lock_irq(q->queue_lock);
1693 		if(rtn) {
1694 			/* we're refusing the command; because of
1695 			 * the way locks get dropped, we need to
1696 			 * check here if plugging is required */
1697 			if(sdev->device_busy == 0)
1698 				blk_plug_device(q);
1699 
1700 			break;
1701 		}
1702 	}
1703 
1704 	goto out;
1705 
1706  not_ready:
1707 	spin_unlock_irq(shost->host_lock);
1708 
1709 	/*
1710 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1711 	 * must return with queue_lock held.
1712 	 *
1713 	 * Decrementing device_busy without checking it is OK, as all such
1714 	 * cases (host limits or settings) should run the queue at some
1715 	 * later time.
1716 	 */
1717 	spin_lock_irq(q->queue_lock);
1718 	blk_requeue_request(q, req);
1719 	sdev->device_busy--;
1720 	if(sdev->device_busy == 0)
1721 		blk_plug_device(q);
1722  out:
1723 	/* must be careful here...if we trigger the ->remove() function
1724 	 * we cannot be holding the q lock */
1725 	spin_unlock_irq(q->queue_lock);
1726 	put_device(&sdev->sdev_gendev);
1727 	spin_lock_irq(q->queue_lock);
1728 }
1729 
1730 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1731 {
1732 	struct device *host_dev;
1733 	u64 bounce_limit = 0xffffffff;
1734 
1735 	if (shost->unchecked_isa_dma)
1736 		return BLK_BOUNCE_ISA;
1737 	/*
1738 	 * Platforms with virtual-DMA translation
1739 	 * hardware have no practical limit.
1740 	 */
1741 	if (!PCI_DMA_BUS_IS_PHYS)
1742 		return BLK_BOUNCE_ANY;
1743 
1744 	host_dev = scsi_get_device(shost);
1745 	if (host_dev && host_dev->dma_mask)
1746 		bounce_limit = *host_dev->dma_mask;
1747 
1748 	return bounce_limit;
1749 }
1750 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1751 
1752 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1753 					 request_fn_proc *request_fn)
1754 {
1755 	struct request_queue *q;
1756 	struct device *dev = shost->shost_gendev.parent;
1757 
1758 	q = blk_init_queue(request_fn, NULL);
1759 	if (!q)
1760 		return NULL;
1761 
1762 	/*
1763 	 * this limit is imposed by hardware restrictions
1764 	 */
1765 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1766 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1767 
1768 	blk_queue_max_sectors(q, shost->max_sectors);
1769 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1770 	blk_queue_segment_boundary(q, shost->dma_boundary);
1771 	dma_set_seg_boundary(dev, shost->dma_boundary);
1772 
1773 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1774 
1775 	/* New queue, no concurrency on queue_flags */
1776 	if (!shost->use_clustering)
1777 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1778 
1779 	/*
1780 	 * set a reasonable default alignment on word boundaries: the
1781 	 * host and device may alter it using
1782 	 * blk_queue_update_dma_alignment() later.
1783 	 */
1784 	blk_queue_dma_alignment(q, 0x03);
1785 
1786 	return q;
1787 }
1788 EXPORT_SYMBOL(__scsi_alloc_queue);
1789 
1790 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1791 {
1792 	struct request_queue *q;
1793 
1794 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1795 	if (!q)
1796 		return NULL;
1797 
1798 	blk_queue_prep_rq(q, scsi_prep_fn);
1799 	blk_queue_softirq_done(q, scsi_softirq_done);
1800 	blk_queue_rq_timed_out(q, scsi_times_out);
1801 	blk_queue_lld_busy(q, scsi_lld_busy);
1802 	return q;
1803 }
1804 
1805 void scsi_free_queue(struct request_queue *q)
1806 {
1807 	blk_cleanup_queue(q);
1808 }
1809 
1810 /*
1811  * Function:    scsi_block_requests()
1812  *
1813  * Purpose:     Utility function used by low-level drivers to prevent further
1814  *		commands from being queued to the device.
1815  *
1816  * Arguments:   shost       - Host in question
1817  *
1818  * Returns:     Nothing
1819  *
1820  * Lock status: No locks are assumed held.
1821  *
1822  * Notes:       There is no timer nor any other means by which the requests
1823  *		get unblocked other than the low-level driver calling
1824  *		scsi_unblock_requests().
1825  */
1826 void scsi_block_requests(struct Scsi_Host *shost)
1827 {
1828 	shost->host_self_blocked = 1;
1829 }
1830 EXPORT_SYMBOL(scsi_block_requests);
1831 
1832 /*
1833  * Function:    scsi_unblock_requests()
1834  *
1835  * Purpose:     Utility function used by low-level drivers to allow further
1836  *		commands from being queued to the device.
1837  *
1838  * Arguments:   shost       - Host in question
1839  *
1840  * Returns:     Nothing
1841  *
1842  * Lock status: No locks are assumed held.
1843  *
1844  * Notes:       There is no timer nor any other means by which the requests
1845  *		get unblocked other than the low-level driver calling
1846  *		scsi_unblock_requests().
1847  *
1848  *		This is done as an API function so that changes to the
1849  *		internals of the scsi mid-layer won't require wholesale
1850  *		changes to drivers that use this feature.
1851  */
1852 void scsi_unblock_requests(struct Scsi_Host *shost)
1853 {
1854 	shost->host_self_blocked = 0;
1855 	scsi_run_host_queues(shost);
1856 }
1857 EXPORT_SYMBOL(scsi_unblock_requests);
1858 
1859 int __init scsi_init_queue(void)
1860 {
1861 	int i;
1862 
1863 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1864 					sizeof(struct scsi_io_context),
1865 					0, 0, NULL);
1866 	if (!scsi_io_context_cache) {
1867 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1868 		return -ENOMEM;
1869 	}
1870 
1871 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1872 					   sizeof(struct scsi_data_buffer),
1873 					   0, 0, NULL);
1874 	if (!scsi_sdb_cache) {
1875 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1876 		goto cleanup_io_context;
1877 	}
1878 
1879 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1880 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1881 		int size = sgp->size * sizeof(struct scatterlist);
1882 
1883 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1884 				SLAB_HWCACHE_ALIGN, NULL);
1885 		if (!sgp->slab) {
1886 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1887 					sgp->name);
1888 			goto cleanup_sdb;
1889 		}
1890 
1891 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1892 						     sgp->slab);
1893 		if (!sgp->pool) {
1894 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1895 					sgp->name);
1896 			goto cleanup_sdb;
1897 		}
1898 	}
1899 
1900 	return 0;
1901 
1902 cleanup_sdb:
1903 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1904 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1905 		if (sgp->pool)
1906 			mempool_destroy(sgp->pool);
1907 		if (sgp->slab)
1908 			kmem_cache_destroy(sgp->slab);
1909 	}
1910 	kmem_cache_destroy(scsi_sdb_cache);
1911 cleanup_io_context:
1912 	kmem_cache_destroy(scsi_io_context_cache);
1913 
1914 	return -ENOMEM;
1915 }
1916 
1917 void scsi_exit_queue(void)
1918 {
1919 	int i;
1920 
1921 	kmem_cache_destroy(scsi_io_context_cache);
1922 	kmem_cache_destroy(scsi_sdb_cache);
1923 
1924 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1925 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1926 		mempool_destroy(sgp->pool);
1927 		kmem_cache_destroy(sgp->slab);
1928 	}
1929 }
1930 
1931 /**
1932  *	scsi_mode_select - issue a mode select
1933  *	@sdev:	SCSI device to be queried
1934  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1935  *	@sp:	Save page bit (0 == don't save, 1 == save)
1936  *	@modepage: mode page being requested
1937  *	@buffer: request buffer (may not be smaller than eight bytes)
1938  *	@len:	length of request buffer.
1939  *	@timeout: command timeout
1940  *	@retries: number of retries before failing
1941  *	@data: returns a structure abstracting the mode header data
1942  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1943  *		must be SCSI_SENSE_BUFFERSIZE big.
1944  *
1945  *	Returns zero if successful; negative error number or scsi
1946  *	status on error
1947  *
1948  */
1949 int
1950 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1951 		 unsigned char *buffer, int len, int timeout, int retries,
1952 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1953 {
1954 	unsigned char cmd[10];
1955 	unsigned char *real_buffer;
1956 	int ret;
1957 
1958 	memset(cmd, 0, sizeof(cmd));
1959 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1960 
1961 	if (sdev->use_10_for_ms) {
1962 		if (len > 65535)
1963 			return -EINVAL;
1964 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1965 		if (!real_buffer)
1966 			return -ENOMEM;
1967 		memcpy(real_buffer + 8, buffer, len);
1968 		len += 8;
1969 		real_buffer[0] = 0;
1970 		real_buffer[1] = 0;
1971 		real_buffer[2] = data->medium_type;
1972 		real_buffer[3] = data->device_specific;
1973 		real_buffer[4] = data->longlba ? 0x01 : 0;
1974 		real_buffer[5] = 0;
1975 		real_buffer[6] = data->block_descriptor_length >> 8;
1976 		real_buffer[7] = data->block_descriptor_length;
1977 
1978 		cmd[0] = MODE_SELECT_10;
1979 		cmd[7] = len >> 8;
1980 		cmd[8] = len;
1981 	} else {
1982 		if (len > 255 || data->block_descriptor_length > 255 ||
1983 		    data->longlba)
1984 			return -EINVAL;
1985 
1986 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1987 		if (!real_buffer)
1988 			return -ENOMEM;
1989 		memcpy(real_buffer + 4, buffer, len);
1990 		len += 4;
1991 		real_buffer[0] = 0;
1992 		real_buffer[1] = data->medium_type;
1993 		real_buffer[2] = data->device_specific;
1994 		real_buffer[3] = data->block_descriptor_length;
1995 
1996 
1997 		cmd[0] = MODE_SELECT;
1998 		cmd[4] = len;
1999 	}
2000 
2001 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2002 			       sshdr, timeout, retries);
2003 	kfree(real_buffer);
2004 	return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(scsi_mode_select);
2007 
2008 /**
2009  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2010  *	@sdev:	SCSI device to be queried
2011  *	@dbd:	set if mode sense will allow block descriptors to be returned
2012  *	@modepage: mode page being requested
2013  *	@buffer: request buffer (may not be smaller than eight bytes)
2014  *	@len:	length of request buffer.
2015  *	@timeout: command timeout
2016  *	@retries: number of retries before failing
2017  *	@data: returns a structure abstracting the mode header data
2018  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2019  *		must be SCSI_SENSE_BUFFERSIZE big.
2020  *
2021  *	Returns zero if unsuccessful, or the header offset (either 4
2022  *	or 8 depending on whether a six or ten byte command was
2023  *	issued) if successful.
2024  */
2025 int
2026 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2027 		  unsigned char *buffer, int len, int timeout, int retries,
2028 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029 {
2030 	unsigned char cmd[12];
2031 	int use_10_for_ms;
2032 	int header_length;
2033 	int result;
2034 	struct scsi_sense_hdr my_sshdr;
2035 
2036 	memset(data, 0, sizeof(*data));
2037 	memset(&cmd[0], 0, 12);
2038 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2039 	cmd[2] = modepage;
2040 
2041 	/* caller might not be interested in sense, but we need it */
2042 	if (!sshdr)
2043 		sshdr = &my_sshdr;
2044 
2045  retry:
2046 	use_10_for_ms = sdev->use_10_for_ms;
2047 
2048 	if (use_10_for_ms) {
2049 		if (len < 8)
2050 			len = 8;
2051 
2052 		cmd[0] = MODE_SENSE_10;
2053 		cmd[8] = len;
2054 		header_length = 8;
2055 	} else {
2056 		if (len < 4)
2057 			len = 4;
2058 
2059 		cmd[0] = MODE_SENSE;
2060 		cmd[4] = len;
2061 		header_length = 4;
2062 	}
2063 
2064 	memset(buffer, 0, len);
2065 
2066 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2067 				  sshdr, timeout, retries);
2068 
2069 	/* This code looks awful: what it's doing is making sure an
2070 	 * ILLEGAL REQUEST sense return identifies the actual command
2071 	 * byte as the problem.  MODE_SENSE commands can return
2072 	 * ILLEGAL REQUEST if the code page isn't supported */
2073 
2074 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2075 	    (driver_byte(result) & DRIVER_SENSE)) {
2076 		if (scsi_sense_valid(sshdr)) {
2077 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2078 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2079 				/*
2080 				 * Invalid command operation code
2081 				 */
2082 				sdev->use_10_for_ms = 0;
2083 				goto retry;
2084 			}
2085 		}
2086 	}
2087 
2088 	if(scsi_status_is_good(result)) {
2089 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2090 			     (modepage == 6 || modepage == 8))) {
2091 			/* Initio breakage? */
2092 			header_length = 0;
2093 			data->length = 13;
2094 			data->medium_type = 0;
2095 			data->device_specific = 0;
2096 			data->longlba = 0;
2097 			data->block_descriptor_length = 0;
2098 		} else if(use_10_for_ms) {
2099 			data->length = buffer[0]*256 + buffer[1] + 2;
2100 			data->medium_type = buffer[2];
2101 			data->device_specific = buffer[3];
2102 			data->longlba = buffer[4] & 0x01;
2103 			data->block_descriptor_length = buffer[6]*256
2104 				+ buffer[7];
2105 		} else {
2106 			data->length = buffer[0] + 1;
2107 			data->medium_type = buffer[1];
2108 			data->device_specific = buffer[2];
2109 			data->block_descriptor_length = buffer[3];
2110 		}
2111 		data->header_length = header_length;
2112 	}
2113 
2114 	return result;
2115 }
2116 EXPORT_SYMBOL(scsi_mode_sense);
2117 
2118 /**
2119  *	scsi_test_unit_ready - test if unit is ready
2120  *	@sdev:	scsi device to change the state of.
2121  *	@timeout: command timeout
2122  *	@retries: number of retries before failing
2123  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2124  *		returning sense. Make sure that this is cleared before passing
2125  *		in.
2126  *
2127  *	Returns zero if unsuccessful or an error if TUR failed.  For
2128  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2129  *	translated to success, with the ->changed flag updated.
2130  **/
2131 int
2132 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2133 		     struct scsi_sense_hdr *sshdr_external)
2134 {
2135 	char cmd[] = {
2136 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2137 	};
2138 	struct scsi_sense_hdr *sshdr;
2139 	int result;
2140 
2141 	if (!sshdr_external)
2142 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2143 	else
2144 		sshdr = sshdr_external;
2145 
2146 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2147 	do {
2148 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2149 					  timeout, retries);
2150 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2151 		    sshdr->sense_key == UNIT_ATTENTION)
2152 			sdev->changed = 1;
2153 	} while (scsi_sense_valid(sshdr) &&
2154 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2155 
2156 	if (!sshdr)
2157 		/* could not allocate sense buffer, so can't process it */
2158 		return result;
2159 
2160 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2161 	    (sshdr->sense_key == UNIT_ATTENTION ||
2162 	     sshdr->sense_key == NOT_READY)) {
2163 		sdev->changed = 1;
2164 		result = 0;
2165 	}
2166 	if (!sshdr_external)
2167 		kfree(sshdr);
2168 	return result;
2169 }
2170 EXPORT_SYMBOL(scsi_test_unit_ready);
2171 
2172 /**
2173  *	scsi_device_set_state - Take the given device through the device state model.
2174  *	@sdev:	scsi device to change the state of.
2175  *	@state:	state to change to.
2176  *
2177  *	Returns zero if unsuccessful or an error if the requested
2178  *	transition is illegal.
2179  */
2180 int
2181 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2182 {
2183 	enum scsi_device_state oldstate = sdev->sdev_state;
2184 
2185 	if (state == oldstate)
2186 		return 0;
2187 
2188 	switch (state) {
2189 	case SDEV_CREATED:
2190 		switch (oldstate) {
2191 		case SDEV_CREATED_BLOCK:
2192 			break;
2193 		default:
2194 			goto illegal;
2195 		}
2196 		break;
2197 
2198 	case SDEV_RUNNING:
2199 		switch (oldstate) {
2200 		case SDEV_CREATED:
2201 		case SDEV_OFFLINE:
2202 		case SDEV_QUIESCE:
2203 		case SDEV_BLOCK:
2204 			break;
2205 		default:
2206 			goto illegal;
2207 		}
2208 		break;
2209 
2210 	case SDEV_QUIESCE:
2211 		switch (oldstate) {
2212 		case SDEV_RUNNING:
2213 		case SDEV_OFFLINE:
2214 			break;
2215 		default:
2216 			goto illegal;
2217 		}
2218 		break;
2219 
2220 	case SDEV_OFFLINE:
2221 		switch (oldstate) {
2222 		case SDEV_CREATED:
2223 		case SDEV_RUNNING:
2224 		case SDEV_QUIESCE:
2225 		case SDEV_BLOCK:
2226 			break;
2227 		default:
2228 			goto illegal;
2229 		}
2230 		break;
2231 
2232 	case SDEV_BLOCK:
2233 		switch (oldstate) {
2234 		case SDEV_RUNNING:
2235 		case SDEV_CREATED_BLOCK:
2236 			break;
2237 		default:
2238 			goto illegal;
2239 		}
2240 		break;
2241 
2242 	case SDEV_CREATED_BLOCK:
2243 		switch (oldstate) {
2244 		case SDEV_CREATED:
2245 			break;
2246 		default:
2247 			goto illegal;
2248 		}
2249 		break;
2250 
2251 	case SDEV_CANCEL:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED:
2254 		case SDEV_RUNNING:
2255 		case SDEV_QUIESCE:
2256 		case SDEV_OFFLINE:
2257 		case SDEV_BLOCK:
2258 			break;
2259 		default:
2260 			goto illegal;
2261 		}
2262 		break;
2263 
2264 	case SDEV_DEL:
2265 		switch (oldstate) {
2266 		case SDEV_CREATED:
2267 		case SDEV_RUNNING:
2268 		case SDEV_OFFLINE:
2269 		case SDEV_CANCEL:
2270 			break;
2271 		default:
2272 			goto illegal;
2273 		}
2274 		break;
2275 
2276 	}
2277 	sdev->sdev_state = state;
2278 	return 0;
2279 
2280  illegal:
2281 	SCSI_LOG_ERROR_RECOVERY(1,
2282 				sdev_printk(KERN_ERR, sdev,
2283 					    "Illegal state transition %s->%s\n",
2284 					    scsi_device_state_name(oldstate),
2285 					    scsi_device_state_name(state))
2286 				);
2287 	return -EINVAL;
2288 }
2289 EXPORT_SYMBOL(scsi_device_set_state);
2290 
2291 /**
2292  * 	sdev_evt_emit - emit a single SCSI device uevent
2293  *	@sdev: associated SCSI device
2294  *	@evt: event to emit
2295  *
2296  *	Send a single uevent (scsi_event) to the associated scsi_device.
2297  */
2298 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2299 {
2300 	int idx = 0;
2301 	char *envp[3];
2302 
2303 	switch (evt->evt_type) {
2304 	case SDEV_EVT_MEDIA_CHANGE:
2305 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2306 		break;
2307 
2308 	default:
2309 		/* do nothing */
2310 		break;
2311 	}
2312 
2313 	envp[idx++] = NULL;
2314 
2315 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2316 }
2317 
2318 /**
2319  * 	sdev_evt_thread - send a uevent for each scsi event
2320  *	@work: work struct for scsi_device
2321  *
2322  *	Dispatch queued events to their associated scsi_device kobjects
2323  *	as uevents.
2324  */
2325 void scsi_evt_thread(struct work_struct *work)
2326 {
2327 	struct scsi_device *sdev;
2328 	LIST_HEAD(event_list);
2329 
2330 	sdev = container_of(work, struct scsi_device, event_work);
2331 
2332 	while (1) {
2333 		struct scsi_event *evt;
2334 		struct list_head *this, *tmp;
2335 		unsigned long flags;
2336 
2337 		spin_lock_irqsave(&sdev->list_lock, flags);
2338 		list_splice_init(&sdev->event_list, &event_list);
2339 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2340 
2341 		if (list_empty(&event_list))
2342 			break;
2343 
2344 		list_for_each_safe(this, tmp, &event_list) {
2345 			evt = list_entry(this, struct scsi_event, node);
2346 			list_del(&evt->node);
2347 			scsi_evt_emit(sdev, evt);
2348 			kfree(evt);
2349 		}
2350 	}
2351 }
2352 
2353 /**
2354  * 	sdev_evt_send - send asserted event to uevent thread
2355  *	@sdev: scsi_device event occurred on
2356  *	@evt: event to send
2357  *
2358  *	Assert scsi device event asynchronously.
2359  */
2360 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2361 {
2362 	unsigned long flags;
2363 
2364 #if 0
2365 	/* FIXME: currently this check eliminates all media change events
2366 	 * for polled devices.  Need to update to discriminate between AN
2367 	 * and polled events */
2368 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2369 		kfree(evt);
2370 		return;
2371 	}
2372 #endif
2373 
2374 	spin_lock_irqsave(&sdev->list_lock, flags);
2375 	list_add_tail(&evt->node, &sdev->event_list);
2376 	schedule_work(&sdev->event_work);
2377 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2378 }
2379 EXPORT_SYMBOL_GPL(sdev_evt_send);
2380 
2381 /**
2382  * 	sdev_evt_alloc - allocate a new scsi event
2383  *	@evt_type: type of event to allocate
2384  *	@gfpflags: GFP flags for allocation
2385  *
2386  *	Allocates and returns a new scsi_event.
2387  */
2388 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2389 				  gfp_t gfpflags)
2390 {
2391 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2392 	if (!evt)
2393 		return NULL;
2394 
2395 	evt->evt_type = evt_type;
2396 	INIT_LIST_HEAD(&evt->node);
2397 
2398 	/* evt_type-specific initialization, if any */
2399 	switch (evt_type) {
2400 	case SDEV_EVT_MEDIA_CHANGE:
2401 	default:
2402 		/* do nothing */
2403 		break;
2404 	}
2405 
2406 	return evt;
2407 }
2408 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2409 
2410 /**
2411  * 	sdev_evt_send_simple - send asserted event to uevent thread
2412  *	@sdev: scsi_device event occurred on
2413  *	@evt_type: type of event to send
2414  *	@gfpflags: GFP flags for allocation
2415  *
2416  *	Assert scsi device event asynchronously, given an event type.
2417  */
2418 void sdev_evt_send_simple(struct scsi_device *sdev,
2419 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2420 {
2421 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2422 	if (!evt) {
2423 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2424 			    evt_type);
2425 		return;
2426 	}
2427 
2428 	sdev_evt_send(sdev, evt);
2429 }
2430 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2431 
2432 /**
2433  *	scsi_device_quiesce - Block user issued commands.
2434  *	@sdev:	scsi device to quiesce.
2435  *
2436  *	This works by trying to transition to the SDEV_QUIESCE state
2437  *	(which must be a legal transition).  When the device is in this
2438  *	state, only special requests will be accepted, all others will
2439  *	be deferred.  Since special requests may also be requeued requests,
2440  *	a successful return doesn't guarantee the device will be
2441  *	totally quiescent.
2442  *
2443  *	Must be called with user context, may sleep.
2444  *
2445  *	Returns zero if unsuccessful or an error if not.
2446  */
2447 int
2448 scsi_device_quiesce(struct scsi_device *sdev)
2449 {
2450 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2451 	if (err)
2452 		return err;
2453 
2454 	scsi_run_queue(sdev->request_queue);
2455 	while (sdev->device_busy) {
2456 		msleep_interruptible(200);
2457 		scsi_run_queue(sdev->request_queue);
2458 	}
2459 	return 0;
2460 }
2461 EXPORT_SYMBOL(scsi_device_quiesce);
2462 
2463 /**
2464  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2465  *	@sdev:	scsi device to resume.
2466  *
2467  *	Moves the device from quiesced back to running and restarts the
2468  *	queues.
2469  *
2470  *	Must be called with user context, may sleep.
2471  */
2472 void
2473 scsi_device_resume(struct scsi_device *sdev)
2474 {
2475 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2476 		return;
2477 	scsi_run_queue(sdev->request_queue);
2478 }
2479 EXPORT_SYMBOL(scsi_device_resume);
2480 
2481 static void
2482 device_quiesce_fn(struct scsi_device *sdev, void *data)
2483 {
2484 	scsi_device_quiesce(sdev);
2485 }
2486 
2487 void
2488 scsi_target_quiesce(struct scsi_target *starget)
2489 {
2490 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2491 }
2492 EXPORT_SYMBOL(scsi_target_quiesce);
2493 
2494 static void
2495 device_resume_fn(struct scsi_device *sdev, void *data)
2496 {
2497 	scsi_device_resume(sdev);
2498 }
2499 
2500 void
2501 scsi_target_resume(struct scsi_target *starget)
2502 {
2503 	starget_for_each_device(starget, NULL, device_resume_fn);
2504 }
2505 EXPORT_SYMBOL(scsi_target_resume);
2506 
2507 /**
2508  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2509  * @sdev:	device to block
2510  *
2511  * Block request made by scsi lld's to temporarily stop all
2512  * scsi commands on the specified device.  Called from interrupt
2513  * or normal process context.
2514  *
2515  * Returns zero if successful or error if not
2516  *
2517  * Notes:
2518  *	This routine transitions the device to the SDEV_BLOCK state
2519  *	(which must be a legal transition).  When the device is in this
2520  *	state, all commands are deferred until the scsi lld reenables
2521  *	the device with scsi_device_unblock or device_block_tmo fires.
2522  *	This routine assumes the host_lock is held on entry.
2523  */
2524 int
2525 scsi_internal_device_block(struct scsi_device *sdev)
2526 {
2527 	struct request_queue *q = sdev->request_queue;
2528 	unsigned long flags;
2529 	int err = 0;
2530 
2531 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2532 	if (err) {
2533 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2534 
2535 		if (err)
2536 			return err;
2537 	}
2538 
2539 	/*
2540 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2541 	 * block layer from calling the midlayer with this device's
2542 	 * request queue.
2543 	 */
2544 	spin_lock_irqsave(q->queue_lock, flags);
2545 	blk_stop_queue(q);
2546 	spin_unlock_irqrestore(q->queue_lock, flags);
2547 
2548 	return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2551 
2552 /**
2553  * scsi_internal_device_unblock - resume a device after a block request
2554  * @sdev:	device to resume
2555  *
2556  * Called by scsi lld's or the midlayer to restart the device queue
2557  * for the previously suspended scsi device.  Called from interrupt or
2558  * normal process context.
2559  *
2560  * Returns zero if successful or error if not.
2561  *
2562  * Notes:
2563  *	This routine transitions the device to the SDEV_RUNNING state
2564  *	(which must be a legal transition) allowing the midlayer to
2565  *	goose the queue for this device.  This routine assumes the
2566  *	host_lock is held upon entry.
2567  */
2568 int
2569 scsi_internal_device_unblock(struct scsi_device *sdev)
2570 {
2571 	struct request_queue *q = sdev->request_queue;
2572 	int err;
2573 	unsigned long flags;
2574 
2575 	/*
2576 	 * Try to transition the scsi device to SDEV_RUNNING
2577 	 * and goose the device queue if successful.
2578 	 */
2579 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2580 	if (err) {
2581 		err = scsi_device_set_state(sdev, SDEV_CREATED);
2582 
2583 		if (err)
2584 			return err;
2585 	}
2586 
2587 	spin_lock_irqsave(q->queue_lock, flags);
2588 	blk_start_queue(q);
2589 	spin_unlock_irqrestore(q->queue_lock, flags);
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2594 
2595 static void
2596 device_block(struct scsi_device *sdev, void *data)
2597 {
2598 	scsi_internal_device_block(sdev);
2599 }
2600 
2601 static int
2602 target_block(struct device *dev, void *data)
2603 {
2604 	if (scsi_is_target_device(dev))
2605 		starget_for_each_device(to_scsi_target(dev), NULL,
2606 					device_block);
2607 	return 0;
2608 }
2609 
2610 void
2611 scsi_target_block(struct device *dev)
2612 {
2613 	if (scsi_is_target_device(dev))
2614 		starget_for_each_device(to_scsi_target(dev), NULL,
2615 					device_block);
2616 	else
2617 		device_for_each_child(dev, NULL, target_block);
2618 }
2619 EXPORT_SYMBOL_GPL(scsi_target_block);
2620 
2621 static void
2622 device_unblock(struct scsi_device *sdev, void *data)
2623 {
2624 	scsi_internal_device_unblock(sdev);
2625 }
2626 
2627 static int
2628 target_unblock(struct device *dev, void *data)
2629 {
2630 	if (scsi_is_target_device(dev))
2631 		starget_for_each_device(to_scsi_target(dev), NULL,
2632 					device_unblock);
2633 	return 0;
2634 }
2635 
2636 void
2637 scsi_target_unblock(struct device *dev)
2638 {
2639 	if (scsi_is_target_device(dev))
2640 		starget_for_each_device(to_scsi_target(dev), NULL,
2641 					device_unblock);
2642 	else
2643 		device_for_each_child(dev, NULL, target_unblock);
2644 }
2645 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2646 
2647 /**
2648  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2649  * @sgl:	scatter-gather list
2650  * @sg_count:	number of segments in sg
2651  * @offset:	offset in bytes into sg, on return offset into the mapped area
2652  * @len:	bytes to map, on return number of bytes mapped
2653  *
2654  * Returns virtual address of the start of the mapped page
2655  */
2656 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2657 			  size_t *offset, size_t *len)
2658 {
2659 	int i;
2660 	size_t sg_len = 0, len_complete = 0;
2661 	struct scatterlist *sg;
2662 	struct page *page;
2663 
2664 	WARN_ON(!irqs_disabled());
2665 
2666 	for_each_sg(sgl, sg, sg_count, i) {
2667 		len_complete = sg_len; /* Complete sg-entries */
2668 		sg_len += sg->length;
2669 		if (sg_len > *offset)
2670 			break;
2671 	}
2672 
2673 	if (unlikely(i == sg_count)) {
2674 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2675 			"elements %d\n",
2676 		       __func__, sg_len, *offset, sg_count);
2677 		WARN_ON(1);
2678 		return NULL;
2679 	}
2680 
2681 	/* Offset starting from the beginning of first page in this sg-entry */
2682 	*offset = *offset - len_complete + sg->offset;
2683 
2684 	/* Assumption: contiguous pages can be accessed as "page + i" */
2685 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2686 	*offset &= ~PAGE_MASK;
2687 
2688 	/* Bytes in this sg-entry from *offset to the end of the page */
2689 	sg_len = PAGE_SIZE - *offset;
2690 	if (*len > sg_len)
2691 		*len = sg_len;
2692 
2693 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2694 }
2695 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2696 
2697 /**
2698  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2699  * @virt:	virtual address to be unmapped
2700  */
2701 void scsi_kunmap_atomic_sg(void *virt)
2702 {
2703 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2704 }
2705 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2706