1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <linux/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 blk_mq_requeue_request(rq, false); 126 if (!scsi_host_in_recovery(cmd->device->host)) 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } 129 130 /** 131 * __scsi_queue_insert - private queue insertion 132 * @cmd: The SCSI command being requeued 133 * @reason: The reason for the requeue 134 * @unbusy: Whether the queue should be unbusied 135 * 136 * This is a private queue insertion. The public interface 137 * scsi_queue_insert() always assumes the queue should be unbusied 138 * because it's always called before the completion. This function is 139 * for a requeue after completion, which should only occur in this 140 * file. 141 */ 142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 143 { 144 struct scsi_device *device = cmd->device; 145 146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 147 "Inserting command %p into mlqueue\n", cmd)); 148 149 scsi_set_blocked(cmd, reason); 150 151 /* 152 * Decrement the counters, since these commands are no longer 153 * active on the host/device. 154 */ 155 if (unbusy) 156 scsi_device_unbusy(device, cmd); 157 158 /* 159 * Requeue this command. It will go before all other commands 160 * that are already in the queue. Schedule requeue work under 161 * lock such that the kblockd_schedule_work() call happens 162 * before blk_mq_destroy_queue() finishes. 163 */ 164 cmd->result = 0; 165 166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), 167 !scsi_host_in_recovery(cmd->device->host)); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 /** 188 * scsi_failures_reset_retries - reset all failures to zero 189 * @failures: &struct scsi_failures with specific failure modes set 190 */ 191 void scsi_failures_reset_retries(struct scsi_failures *failures) 192 { 193 struct scsi_failure *failure; 194 195 failures->total_retries = 0; 196 197 for (failure = failures->failure_definitions; failure->result; 198 failure++) 199 failure->retries = 0; 200 } 201 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries); 202 203 /** 204 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry. 205 * @scmd: scsi_cmnd to check. 206 * @failures: scsi_failures struct that lists failures to check for. 207 * 208 * Returns -EAGAIN if the caller should retry else 0. 209 */ 210 static int scsi_check_passthrough(struct scsi_cmnd *scmd, 211 struct scsi_failures *failures) 212 { 213 struct scsi_failure *failure; 214 struct scsi_sense_hdr sshdr; 215 enum sam_status status; 216 217 if (!scmd->result) 218 return 0; 219 220 if (!failures) 221 return 0; 222 223 for (failure = failures->failure_definitions; failure->result; 224 failure++) { 225 if (failure->result == SCMD_FAILURE_RESULT_ANY) 226 goto maybe_retry; 227 228 if (host_byte(scmd->result) && 229 host_byte(scmd->result) == host_byte(failure->result)) 230 goto maybe_retry; 231 232 status = status_byte(scmd->result); 233 if (!status) 234 continue; 235 236 if (failure->result == SCMD_FAILURE_STAT_ANY && 237 !scsi_status_is_good(scmd->result)) 238 goto maybe_retry; 239 240 if (status != status_byte(failure->result)) 241 continue; 242 243 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION || 244 failure->sense == SCMD_FAILURE_SENSE_ANY) 245 goto maybe_retry; 246 247 if (!scsi_command_normalize_sense(scmd, &sshdr)) 248 return 0; 249 250 if (failure->sense != sshdr.sense_key) 251 continue; 252 253 if (failure->asc == SCMD_FAILURE_ASC_ANY) 254 goto maybe_retry; 255 256 if (failure->asc != sshdr.asc) 257 continue; 258 259 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY || 260 failure->ascq == sshdr.ascq) 261 goto maybe_retry; 262 } 263 264 return 0; 265 266 maybe_retry: 267 if (failure->allowed) { 268 if (failure->allowed == SCMD_FAILURE_NO_LIMIT || 269 ++failure->retries <= failure->allowed) 270 return -EAGAIN; 271 } else { 272 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT || 273 ++failures->total_retries <= failures->total_allowed) 274 return -EAGAIN; 275 } 276 277 return 0; 278 } 279 280 /** 281 * scsi_execute_cmd - insert request and wait for the result 282 * @sdev: scsi_device 283 * @cmd: scsi command 284 * @opf: block layer request cmd_flags 285 * @buffer: data buffer 286 * @bufflen: len of buffer 287 * @timeout: request timeout in HZ 288 * @ml_retries: number of times SCSI midlayer will retry request 289 * @args: Optional args. See struct definition for field descriptions 290 * 291 * Returns the scsi_cmnd result field if a command was executed, or a negative 292 * Linux error code if we didn't get that far. 293 */ 294 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 295 blk_opf_t opf, void *buffer, unsigned int bufflen, 296 int timeout, int ml_retries, 297 const struct scsi_exec_args *args) 298 { 299 static const struct scsi_exec_args default_args; 300 struct request *req; 301 struct scsi_cmnd *scmd; 302 int ret; 303 304 if (!args) 305 args = &default_args; 306 else if (WARN_ON_ONCE(args->sense && 307 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 308 return -EINVAL; 309 310 retry: 311 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 312 if (IS_ERR(req)) 313 return PTR_ERR(req); 314 315 if (bufflen) { 316 ret = blk_rq_map_kern(sdev->request_queue, req, 317 buffer, bufflen, GFP_NOIO); 318 if (ret) 319 goto out; 320 } 321 scmd = blk_mq_rq_to_pdu(req); 322 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 323 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 324 scmd->allowed = ml_retries; 325 scmd->flags |= args->scmd_flags; 326 req->timeout = timeout; 327 req->rq_flags |= RQF_QUIET; 328 329 /* 330 * head injection *required* here otherwise quiesce won't work 331 */ 332 blk_execute_rq(req, true); 333 334 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) { 335 blk_mq_free_request(req); 336 goto retry; 337 } 338 339 /* 340 * Some devices (USB mass-storage in particular) may transfer 341 * garbage data together with a residue indicating that the data 342 * is invalid. Prevent the garbage from being misinterpreted 343 * and prevent security leaks by zeroing out the excess data. 344 */ 345 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 346 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 347 348 if (args->resid) 349 *args->resid = scmd->resid_len; 350 if (args->sense) 351 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 352 if (args->sshdr) 353 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 354 args->sshdr); 355 356 ret = scmd->result; 357 out: 358 blk_mq_free_request(req); 359 360 return ret; 361 } 362 EXPORT_SYMBOL(scsi_execute_cmd); 363 364 /* 365 * Wake up the error handler if necessary. Avoid as follows that the error 366 * handler is not woken up if host in-flight requests number == 367 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 368 * with an RCU read lock in this function to ensure that this function in 369 * its entirety either finishes before scsi_eh_scmd_add() increases the 370 * host_failed counter or that it notices the shost state change made by 371 * scsi_eh_scmd_add(). 372 */ 373 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 374 { 375 unsigned long flags; 376 377 rcu_read_lock(); 378 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 379 if (unlikely(scsi_host_in_recovery(shost))) { 380 unsigned int busy = scsi_host_busy(shost); 381 382 spin_lock_irqsave(shost->host_lock, flags); 383 if (shost->host_failed || shost->host_eh_scheduled) 384 scsi_eh_wakeup(shost, busy); 385 spin_unlock_irqrestore(shost->host_lock, flags); 386 } 387 rcu_read_unlock(); 388 } 389 390 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 391 { 392 struct Scsi_Host *shost = sdev->host; 393 struct scsi_target *starget = scsi_target(sdev); 394 395 scsi_dec_host_busy(shost, cmd); 396 397 if (starget->can_queue > 0) 398 atomic_dec(&starget->target_busy); 399 400 sbitmap_put(&sdev->budget_map, cmd->budget_token); 401 cmd->budget_token = -1; 402 } 403 404 /* 405 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 406 * interrupts disabled. 407 */ 408 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 409 { 410 struct scsi_device *current_sdev = data; 411 412 if (sdev != current_sdev) 413 blk_mq_run_hw_queues(sdev->request_queue, true); 414 } 415 416 /* 417 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 418 * and call blk_run_queue for all the scsi_devices on the target - 419 * including current_sdev first. 420 * 421 * Called with *no* scsi locks held. 422 */ 423 static void scsi_single_lun_run(struct scsi_device *current_sdev) 424 { 425 struct Scsi_Host *shost = current_sdev->host; 426 struct scsi_target *starget = scsi_target(current_sdev); 427 unsigned long flags; 428 429 spin_lock_irqsave(shost->host_lock, flags); 430 starget->starget_sdev_user = NULL; 431 spin_unlock_irqrestore(shost->host_lock, flags); 432 433 /* 434 * Call blk_run_queue for all LUNs on the target, starting with 435 * current_sdev. We race with others (to set starget_sdev_user), 436 * but in most cases, we will be first. Ideally, each LU on the 437 * target would get some limited time or requests on the target. 438 */ 439 blk_mq_run_hw_queues(current_sdev->request_queue, 440 shost->queuecommand_may_block); 441 442 spin_lock_irqsave(shost->host_lock, flags); 443 if (!starget->starget_sdev_user) 444 __starget_for_each_device(starget, current_sdev, 445 scsi_kick_sdev_queue); 446 spin_unlock_irqrestore(shost->host_lock, flags); 447 } 448 449 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 450 { 451 if (scsi_device_busy(sdev) >= sdev->queue_depth) 452 return true; 453 if (atomic_read(&sdev->device_blocked) > 0) 454 return true; 455 return false; 456 } 457 458 static inline bool scsi_target_is_busy(struct scsi_target *starget) 459 { 460 if (starget->can_queue > 0) { 461 if (atomic_read(&starget->target_busy) >= starget->can_queue) 462 return true; 463 if (atomic_read(&starget->target_blocked) > 0) 464 return true; 465 } 466 return false; 467 } 468 469 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 470 { 471 if (atomic_read(&shost->host_blocked) > 0) 472 return true; 473 if (shost->host_self_blocked) 474 return true; 475 return false; 476 } 477 478 static void scsi_starved_list_run(struct Scsi_Host *shost) 479 { 480 LIST_HEAD(starved_list); 481 struct scsi_device *sdev; 482 unsigned long flags; 483 484 spin_lock_irqsave(shost->host_lock, flags); 485 list_splice_init(&shost->starved_list, &starved_list); 486 487 while (!list_empty(&starved_list)) { 488 struct request_queue *slq; 489 490 /* 491 * As long as shost is accepting commands and we have 492 * starved queues, call blk_run_queue. scsi_request_fn 493 * drops the queue_lock and can add us back to the 494 * starved_list. 495 * 496 * host_lock protects the starved_list and starved_entry. 497 * scsi_request_fn must get the host_lock before checking 498 * or modifying starved_list or starved_entry. 499 */ 500 if (scsi_host_is_busy(shost)) 501 break; 502 503 sdev = list_entry(starved_list.next, 504 struct scsi_device, starved_entry); 505 list_del_init(&sdev->starved_entry); 506 if (scsi_target_is_busy(scsi_target(sdev))) { 507 list_move_tail(&sdev->starved_entry, 508 &shost->starved_list); 509 continue; 510 } 511 512 /* 513 * Once we drop the host lock, a racing scsi_remove_device() 514 * call may remove the sdev from the starved list and destroy 515 * it and the queue. Mitigate by taking a reference to the 516 * queue and never touching the sdev again after we drop the 517 * host lock. Note: if __scsi_remove_device() invokes 518 * blk_mq_destroy_queue() before the queue is run from this 519 * function then blk_run_queue() will return immediately since 520 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 521 */ 522 slq = sdev->request_queue; 523 if (!blk_get_queue(slq)) 524 continue; 525 spin_unlock_irqrestore(shost->host_lock, flags); 526 527 blk_mq_run_hw_queues(slq, false); 528 blk_put_queue(slq); 529 530 spin_lock_irqsave(shost->host_lock, flags); 531 } 532 /* put any unprocessed entries back */ 533 list_splice(&starved_list, &shost->starved_list); 534 spin_unlock_irqrestore(shost->host_lock, flags); 535 } 536 537 /** 538 * scsi_run_queue - Select a proper request queue to serve next. 539 * @q: last request's queue 540 * 541 * The previous command was completely finished, start a new one if possible. 542 */ 543 static void scsi_run_queue(struct request_queue *q) 544 { 545 struct scsi_device *sdev = q->queuedata; 546 547 if (scsi_target(sdev)->single_lun) 548 scsi_single_lun_run(sdev); 549 if (!list_empty(&sdev->host->starved_list)) 550 scsi_starved_list_run(sdev->host); 551 552 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */ 553 blk_mq_kick_requeue_list(q); 554 } 555 556 void scsi_requeue_run_queue(struct work_struct *work) 557 { 558 struct scsi_device *sdev; 559 struct request_queue *q; 560 561 sdev = container_of(work, struct scsi_device, requeue_work); 562 q = sdev->request_queue; 563 scsi_run_queue(q); 564 } 565 566 void scsi_run_host_queues(struct Scsi_Host *shost) 567 { 568 struct scsi_device *sdev; 569 570 shost_for_each_device(sdev, shost) 571 scsi_run_queue(sdev->request_queue); 572 } 573 574 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 575 { 576 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 577 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 578 579 if (drv->uninit_command) 580 drv->uninit_command(cmd); 581 } 582 } 583 584 void scsi_free_sgtables(struct scsi_cmnd *cmd) 585 { 586 if (cmd->sdb.table.nents) 587 sg_free_table_chained(&cmd->sdb.table, 588 SCSI_INLINE_SG_CNT); 589 if (scsi_prot_sg_count(cmd)) 590 sg_free_table_chained(&cmd->prot_sdb->table, 591 SCSI_INLINE_PROT_SG_CNT); 592 } 593 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 594 595 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 596 { 597 scsi_free_sgtables(cmd); 598 scsi_uninit_cmd(cmd); 599 } 600 601 static void scsi_run_queue_async(struct scsi_device *sdev) 602 { 603 if (scsi_host_in_recovery(sdev->host)) 604 return; 605 606 if (scsi_target(sdev)->single_lun || 607 !list_empty(&sdev->host->starved_list)) { 608 kblockd_schedule_work(&sdev->requeue_work); 609 } else { 610 /* 611 * smp_mb() present in sbitmap_queue_clear() or implied in 612 * .end_io is for ordering writing .device_busy in 613 * scsi_device_unbusy() and reading sdev->restarts. 614 */ 615 int old = atomic_read(&sdev->restarts); 616 617 /* 618 * ->restarts has to be kept as non-zero if new budget 619 * contention occurs. 620 * 621 * No need to run queue when either another re-run 622 * queue wins in updating ->restarts or a new budget 623 * contention occurs. 624 */ 625 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 626 blk_mq_run_hw_queues(sdev->request_queue, true); 627 } 628 } 629 630 /* Returns false when no more bytes to process, true if there are more */ 631 static bool scsi_end_request(struct request *req, blk_status_t error, 632 unsigned int bytes) 633 { 634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 635 struct scsi_device *sdev = cmd->device; 636 struct request_queue *q = sdev->request_queue; 637 638 if (blk_update_request(req, error, bytes)) 639 return true; 640 641 if (q->limits.features & BLK_FEAT_ADD_RANDOM) 642 add_disk_randomness(req->q->disk); 643 644 WARN_ON_ONCE(!blk_rq_is_passthrough(req) && 645 !(cmd->flags & SCMD_INITIALIZED)); 646 cmd->flags = 0; 647 648 /* 649 * Calling rcu_barrier() is not necessary here because the 650 * SCSI error handler guarantees that the function called by 651 * call_rcu() has been called before scsi_end_request() is 652 * called. 653 */ 654 destroy_rcu_head(&cmd->rcu); 655 656 /* 657 * In the MQ case the command gets freed by __blk_mq_end_request, 658 * so we have to do all cleanup that depends on it earlier. 659 * 660 * We also can't kick the queues from irq context, so we 661 * will have to defer it to a workqueue. 662 */ 663 scsi_mq_uninit_cmd(cmd); 664 665 /* 666 * queue is still alive, so grab the ref for preventing it 667 * from being cleaned up during running queue. 668 */ 669 percpu_ref_get(&q->q_usage_counter); 670 671 __blk_mq_end_request(req, error); 672 673 scsi_run_queue_async(sdev); 674 675 percpu_ref_put(&q->q_usage_counter); 676 return false; 677 } 678 679 /** 680 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 681 * @result: scsi error code 682 * 683 * Translate a SCSI result code into a blk_status_t value. 684 */ 685 static blk_status_t scsi_result_to_blk_status(int result) 686 { 687 /* 688 * Check the scsi-ml byte first in case we converted a host or status 689 * byte. 690 */ 691 switch (scsi_ml_byte(result)) { 692 case SCSIML_STAT_OK: 693 break; 694 case SCSIML_STAT_RESV_CONFLICT: 695 return BLK_STS_RESV_CONFLICT; 696 case SCSIML_STAT_NOSPC: 697 return BLK_STS_NOSPC; 698 case SCSIML_STAT_MED_ERROR: 699 return BLK_STS_MEDIUM; 700 case SCSIML_STAT_TGT_FAILURE: 701 return BLK_STS_TARGET; 702 case SCSIML_STAT_DL_TIMEOUT: 703 return BLK_STS_DURATION_LIMIT; 704 } 705 706 switch (host_byte(result)) { 707 case DID_OK: 708 if (scsi_status_is_good(result)) 709 return BLK_STS_OK; 710 return BLK_STS_IOERR; 711 case DID_TRANSPORT_FAILFAST: 712 case DID_TRANSPORT_MARGINAL: 713 return BLK_STS_TRANSPORT; 714 default: 715 return BLK_STS_IOERR; 716 } 717 } 718 719 /** 720 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 721 * @rq: request to examine 722 * 723 * Description: 724 * A request could be merge of IOs which require different failure 725 * handling. This function determines the number of bytes which 726 * can be failed from the beginning of the request without 727 * crossing into area which need to be retried further. 728 * 729 * Return: 730 * The number of bytes to fail. 731 */ 732 static unsigned int scsi_rq_err_bytes(const struct request *rq) 733 { 734 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 735 unsigned int bytes = 0; 736 struct bio *bio; 737 738 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 739 return blk_rq_bytes(rq); 740 741 /* 742 * Currently the only 'mixing' which can happen is between 743 * different fastfail types. We can safely fail portions 744 * which have all the failfast bits that the first one has - 745 * the ones which are at least as eager to fail as the first 746 * one. 747 */ 748 for (bio = rq->bio; bio; bio = bio->bi_next) { 749 if ((bio->bi_opf & ff) != ff) 750 break; 751 bytes += bio->bi_iter.bi_size; 752 } 753 754 /* this could lead to infinite loop */ 755 BUG_ON(blk_rq_bytes(rq) && !bytes); 756 return bytes; 757 } 758 759 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 760 { 761 struct request *req = scsi_cmd_to_rq(cmd); 762 unsigned long wait_for; 763 764 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 765 return false; 766 767 wait_for = (cmd->allowed + 1) * req->timeout; 768 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 769 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 770 wait_for/HZ); 771 return true; 772 } 773 return false; 774 } 775 776 /* 777 * When ALUA transition state is returned, reprep the cmd to 778 * use the ALUA handler's transition timeout. Delay the reprep 779 * 1 sec to avoid aggressive retries of the target in that 780 * state. 781 */ 782 #define ALUA_TRANSITION_REPREP_DELAY 1000 783 784 /* Helper for scsi_io_completion() when special action required. */ 785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 786 { 787 struct request *req = scsi_cmd_to_rq(cmd); 788 int level = 0; 789 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 790 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 791 struct scsi_sense_hdr sshdr; 792 bool sense_valid; 793 bool sense_current = true; /* false implies "deferred sense" */ 794 blk_status_t blk_stat; 795 796 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 797 if (sense_valid) 798 sense_current = !scsi_sense_is_deferred(&sshdr); 799 800 blk_stat = scsi_result_to_blk_status(result); 801 802 if (host_byte(result) == DID_RESET) { 803 /* Third party bus reset or reset for error recovery 804 * reasons. Just retry the command and see what 805 * happens. 806 */ 807 action = ACTION_RETRY; 808 } else if (sense_valid && sense_current) { 809 switch (sshdr.sense_key) { 810 case UNIT_ATTENTION: 811 if (cmd->device->removable) { 812 /* Detected disc change. Set a bit 813 * and quietly refuse further access. 814 */ 815 cmd->device->changed = 1; 816 action = ACTION_FAIL; 817 } else { 818 /* Must have been a power glitch, or a 819 * bus reset. Could not have been a 820 * media change, so we just retry the 821 * command and see what happens. 822 */ 823 action = ACTION_RETRY; 824 } 825 break; 826 case ILLEGAL_REQUEST: 827 /* If we had an ILLEGAL REQUEST returned, then 828 * we may have performed an unsupported 829 * command. The only thing this should be 830 * would be a ten byte read where only a six 831 * byte read was supported. Also, on a system 832 * where READ CAPACITY failed, we may have 833 * read past the end of the disk. 834 */ 835 if ((cmd->device->use_10_for_rw && 836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 837 (cmd->cmnd[0] == READ_10 || 838 cmd->cmnd[0] == WRITE_10)) { 839 /* This will issue a new 6-byte command. */ 840 cmd->device->use_10_for_rw = 0; 841 action = ACTION_REPREP; 842 } else if (sshdr.asc == 0x10) /* DIX */ { 843 action = ACTION_FAIL; 844 blk_stat = BLK_STS_PROTECTION; 845 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 846 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 847 action = ACTION_FAIL; 848 blk_stat = BLK_STS_TARGET; 849 } else 850 action = ACTION_FAIL; 851 break; 852 case ABORTED_COMMAND: 853 action = ACTION_FAIL; 854 if (sshdr.asc == 0x10) /* DIF */ 855 blk_stat = BLK_STS_PROTECTION; 856 break; 857 case NOT_READY: 858 /* If the device is in the process of becoming 859 * ready, or has a temporary blockage, retry. 860 */ 861 if (sshdr.asc == 0x04) { 862 switch (sshdr.ascq) { 863 case 0x01: /* becoming ready */ 864 case 0x04: /* format in progress */ 865 case 0x05: /* rebuild in progress */ 866 case 0x06: /* recalculation in progress */ 867 case 0x07: /* operation in progress */ 868 case 0x08: /* Long write in progress */ 869 case 0x09: /* self test in progress */ 870 case 0x11: /* notify (enable spinup) required */ 871 case 0x14: /* space allocation in progress */ 872 case 0x1a: /* start stop unit in progress */ 873 case 0x1b: /* sanitize in progress */ 874 case 0x1d: /* configuration in progress */ 875 action = ACTION_DELAYED_RETRY; 876 break; 877 case 0x0a: /* ALUA state transition */ 878 action = ACTION_DELAYED_REPREP; 879 break; 880 /* 881 * Depopulation might take many hours, 882 * thus it is not worthwhile to retry. 883 */ 884 case 0x24: /* depopulation in progress */ 885 case 0x25: /* depopulation restore in progress */ 886 fallthrough; 887 default: 888 action = ACTION_FAIL; 889 break; 890 } 891 } else 892 action = ACTION_FAIL; 893 break; 894 case VOLUME_OVERFLOW: 895 /* See SSC3rXX or current. */ 896 action = ACTION_FAIL; 897 break; 898 case DATA_PROTECT: 899 action = ACTION_FAIL; 900 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 901 (sshdr.asc == 0x55 && 902 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 903 /* Insufficient zone resources */ 904 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 905 } 906 break; 907 case COMPLETED: 908 fallthrough; 909 default: 910 action = ACTION_FAIL; 911 break; 912 } 913 } else 914 action = ACTION_FAIL; 915 916 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 917 action = ACTION_FAIL; 918 919 switch (action) { 920 case ACTION_FAIL: 921 /* Give up and fail the remainder of the request */ 922 if (!(req->rq_flags & RQF_QUIET)) { 923 static DEFINE_RATELIMIT_STATE(_rs, 924 DEFAULT_RATELIMIT_INTERVAL, 925 DEFAULT_RATELIMIT_BURST); 926 927 if (unlikely(scsi_logging_level)) 928 level = 929 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 930 SCSI_LOG_MLCOMPLETE_BITS); 931 932 /* 933 * if logging is enabled the failure will be printed 934 * in scsi_log_completion(), so avoid duplicate messages 935 */ 936 if (!level && __ratelimit(&_rs)) { 937 scsi_print_result(cmd, NULL, FAILED); 938 if (sense_valid) 939 scsi_print_sense(cmd); 940 scsi_print_command(cmd); 941 } 942 } 943 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 944 return; 945 fallthrough; 946 case ACTION_REPREP: 947 scsi_mq_requeue_cmd(cmd, 0); 948 break; 949 case ACTION_DELAYED_REPREP: 950 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 951 break; 952 case ACTION_RETRY: 953 /* Retry the same command immediately */ 954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 955 break; 956 case ACTION_DELAYED_RETRY: 957 /* Retry the same command after a delay */ 958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 959 break; 960 } 961 } 962 963 /* 964 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 965 * new result that may suppress further error checking. Also modifies 966 * *blk_statp in some cases. 967 */ 968 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 969 blk_status_t *blk_statp) 970 { 971 bool sense_valid; 972 bool sense_current = true; /* false implies "deferred sense" */ 973 struct request *req = scsi_cmd_to_rq(cmd); 974 struct scsi_sense_hdr sshdr; 975 976 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 977 if (sense_valid) 978 sense_current = !scsi_sense_is_deferred(&sshdr); 979 980 if (blk_rq_is_passthrough(req)) { 981 if (sense_valid) { 982 /* 983 * SG_IO wants current and deferred errors 984 */ 985 cmd->sense_len = min(8 + cmd->sense_buffer[7], 986 SCSI_SENSE_BUFFERSIZE); 987 } 988 if (sense_current) 989 *blk_statp = scsi_result_to_blk_status(result); 990 } else if (blk_rq_bytes(req) == 0 && sense_current) { 991 /* 992 * Flush commands do not transfers any data, and thus cannot use 993 * good_bytes != blk_rq_bytes(req) as the signal for an error. 994 * This sets *blk_statp explicitly for the problem case. 995 */ 996 *blk_statp = scsi_result_to_blk_status(result); 997 } 998 /* 999 * Recovered errors need reporting, but they're always treated as 1000 * success, so fiddle the result code here. For passthrough requests 1001 * we already took a copy of the original into sreq->result which 1002 * is what gets returned to the user 1003 */ 1004 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 1005 bool do_print = true; 1006 /* 1007 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 1008 * skip print since caller wants ATA registers. Only occurs 1009 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 1010 */ 1011 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 1012 do_print = false; 1013 else if (req->rq_flags & RQF_QUIET) 1014 do_print = false; 1015 if (do_print) 1016 scsi_print_sense(cmd); 1017 result = 0; 1018 /* for passthrough, *blk_statp may be set */ 1019 *blk_statp = BLK_STS_OK; 1020 } 1021 /* 1022 * Another corner case: the SCSI status byte is non-zero but 'good'. 1023 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 1024 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 1025 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1026 * intermediate statuses (both obsolete in SAM-4) as good. 1027 */ 1028 if ((result & 0xff) && scsi_status_is_good(result)) { 1029 result = 0; 1030 *blk_statp = BLK_STS_OK; 1031 } 1032 return result; 1033 } 1034 1035 /** 1036 * scsi_io_completion - Completion processing for SCSI commands. 1037 * @cmd: command that is finished. 1038 * @good_bytes: number of processed bytes. 1039 * 1040 * We will finish off the specified number of sectors. If we are done, the 1041 * command block will be released and the queue function will be goosed. If we 1042 * are not done then we have to figure out what to do next: 1043 * 1044 * a) We can call scsi_mq_requeue_cmd(). The request will be 1045 * unprepared and put back on the queue. Then a new command will 1046 * be created for it. This should be used if we made forward 1047 * progress, or if we want to switch from READ(10) to READ(6) for 1048 * example. 1049 * 1050 * b) We can call scsi_io_completion_action(). The request will be 1051 * put back on the queue and retried using the same command as 1052 * before, possibly after a delay. 1053 * 1054 * c) We can call scsi_end_request() with blk_stat other than 1055 * BLK_STS_OK, to fail the remainder of the request. 1056 */ 1057 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1058 { 1059 int result = cmd->result; 1060 struct request *req = scsi_cmd_to_rq(cmd); 1061 blk_status_t blk_stat = BLK_STS_OK; 1062 1063 if (unlikely(result)) /* a nz result may or may not be an error */ 1064 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1065 1066 /* 1067 * Next deal with any sectors which we were able to correctly 1068 * handle. 1069 */ 1070 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1071 "%u sectors total, %d bytes done.\n", 1072 blk_rq_sectors(req), good_bytes)); 1073 1074 /* 1075 * Failed, zero length commands always need to drop down 1076 * to retry code. Fast path should return in this block. 1077 */ 1078 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1079 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 1080 return; /* no bytes remaining */ 1081 } 1082 1083 /* Kill remainder if no retries. */ 1084 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1085 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 1086 WARN_ONCE(true, 1087 "Bytes remaining after failed, no-retry command"); 1088 return; 1089 } 1090 1091 /* 1092 * If there had been no error, but we have leftover bytes in the 1093 * request just queue the command up again. 1094 */ 1095 if (likely(result == 0)) 1096 scsi_mq_requeue_cmd(cmd, 0); 1097 else 1098 scsi_io_completion_action(cmd, result); 1099 } 1100 1101 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 1102 struct request *rq) 1103 { 1104 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1105 !op_is_write(req_op(rq)) && 1106 sdev->host->hostt->dma_need_drain(rq); 1107 } 1108 1109 /** 1110 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1111 * @cmd: SCSI command data structure to initialize. 1112 * 1113 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1114 * for @cmd. 1115 * 1116 * Returns: 1117 * * BLK_STS_OK - on success 1118 * * BLK_STS_RESOURCE - if the failure is retryable 1119 * * BLK_STS_IOERR - if the failure is fatal 1120 */ 1121 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1122 { 1123 struct scsi_device *sdev = cmd->device; 1124 struct request *rq = scsi_cmd_to_rq(cmd); 1125 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1126 struct scatterlist *last_sg = NULL; 1127 blk_status_t ret; 1128 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1129 int count; 1130 1131 if (WARN_ON_ONCE(!nr_segs)) 1132 return BLK_STS_IOERR; 1133 1134 /* 1135 * Make sure there is space for the drain. The driver must adjust 1136 * max_hw_segments to be prepared for this. 1137 */ 1138 if (need_drain) 1139 nr_segs++; 1140 1141 /* 1142 * If sg table allocation fails, requeue request later. 1143 */ 1144 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1145 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1146 return BLK_STS_RESOURCE; 1147 1148 /* 1149 * Next, walk the list, and fill in the addresses and sizes of 1150 * each segment. 1151 */ 1152 count = __blk_rq_map_sg(rq, cmd->sdb.table.sgl, &last_sg); 1153 1154 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) { 1155 unsigned int pad_len = 1156 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1157 1158 last_sg->length += pad_len; 1159 cmd->extra_len += pad_len; 1160 } 1161 1162 if (need_drain) { 1163 sg_unmark_end(last_sg); 1164 last_sg = sg_next(last_sg); 1165 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1166 sg_mark_end(last_sg); 1167 1168 cmd->extra_len += sdev->dma_drain_len; 1169 count++; 1170 } 1171 1172 BUG_ON(count > cmd->sdb.table.nents); 1173 cmd->sdb.table.nents = count; 1174 cmd->sdb.length = blk_rq_payload_bytes(rq); 1175 1176 if (blk_integrity_rq(rq)) { 1177 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1178 1179 if (WARN_ON_ONCE(!prot_sdb)) { 1180 /* 1181 * This can happen if someone (e.g. multipath) 1182 * queues a command to a device on an adapter 1183 * that does not support DIX. 1184 */ 1185 ret = BLK_STS_IOERR; 1186 goto out_free_sgtables; 1187 } 1188 1189 if (sg_alloc_table_chained(&prot_sdb->table, 1190 rq->nr_integrity_segments, 1191 prot_sdb->table.sgl, 1192 SCSI_INLINE_PROT_SG_CNT)) { 1193 ret = BLK_STS_RESOURCE; 1194 goto out_free_sgtables; 1195 } 1196 1197 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl); 1198 cmd->prot_sdb = prot_sdb; 1199 cmd->prot_sdb->table.nents = count; 1200 } 1201 1202 return BLK_STS_OK; 1203 out_free_sgtables: 1204 scsi_free_sgtables(cmd); 1205 return ret; 1206 } 1207 EXPORT_SYMBOL(scsi_alloc_sgtables); 1208 1209 /** 1210 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1211 * @rq: Request associated with the SCSI command to be initialized. 1212 * 1213 * This function initializes the members of struct scsi_cmnd that must be 1214 * initialized before request processing starts and that won't be 1215 * reinitialized if a SCSI command is requeued. 1216 */ 1217 static void scsi_initialize_rq(struct request *rq) 1218 { 1219 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1220 1221 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1222 cmd->cmd_len = MAX_COMMAND_SIZE; 1223 cmd->sense_len = 0; 1224 init_rcu_head(&cmd->rcu); 1225 cmd->jiffies_at_alloc = jiffies; 1226 cmd->retries = 0; 1227 } 1228 1229 /** 1230 * scsi_alloc_request - allocate a block request and partially 1231 * initialize its &scsi_cmnd 1232 * @q: the device's request queue 1233 * @opf: the request operation code 1234 * @flags: block layer allocation flags 1235 * 1236 * Return: &struct request pointer on success or %NULL on failure 1237 */ 1238 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1239 blk_mq_req_flags_t flags) 1240 { 1241 struct request *rq; 1242 1243 rq = blk_mq_alloc_request(q, opf, flags); 1244 if (!IS_ERR(rq)) 1245 scsi_initialize_rq(rq); 1246 return rq; 1247 } 1248 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1249 1250 /* 1251 * Only called when the request isn't completed by SCSI, and not freed by 1252 * SCSI 1253 */ 1254 static void scsi_cleanup_rq(struct request *rq) 1255 { 1256 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1257 1258 cmd->flags = 0; 1259 1260 if (rq->rq_flags & RQF_DONTPREP) { 1261 scsi_mq_uninit_cmd(cmd); 1262 rq->rq_flags &= ~RQF_DONTPREP; 1263 } 1264 } 1265 1266 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1267 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1268 { 1269 struct request *rq = scsi_cmd_to_rq(cmd); 1270 1271 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1272 cmd->flags |= SCMD_INITIALIZED; 1273 scsi_initialize_rq(rq); 1274 } 1275 1276 cmd->device = dev; 1277 INIT_LIST_HEAD(&cmd->eh_entry); 1278 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1279 } 1280 1281 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1282 struct request *req) 1283 { 1284 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1285 1286 /* 1287 * Passthrough requests may transfer data, in which case they must 1288 * a bio attached to them. Or they might contain a SCSI command 1289 * that does not transfer data, in which case they may optionally 1290 * submit a request without an attached bio. 1291 */ 1292 if (req->bio) { 1293 blk_status_t ret = scsi_alloc_sgtables(cmd); 1294 if (unlikely(ret != BLK_STS_OK)) 1295 return ret; 1296 } else { 1297 BUG_ON(blk_rq_bytes(req)); 1298 1299 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1300 } 1301 1302 cmd->transfersize = blk_rq_bytes(req); 1303 return BLK_STS_OK; 1304 } 1305 1306 static blk_status_t 1307 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1308 { 1309 switch (sdev->sdev_state) { 1310 case SDEV_CREATED: 1311 return BLK_STS_OK; 1312 case SDEV_OFFLINE: 1313 case SDEV_TRANSPORT_OFFLINE: 1314 /* 1315 * If the device is offline we refuse to process any 1316 * commands. The device must be brought online 1317 * before trying any recovery commands. 1318 */ 1319 if (!sdev->offline_already) { 1320 sdev->offline_already = true; 1321 sdev_printk(KERN_ERR, sdev, 1322 "rejecting I/O to offline device\n"); 1323 } 1324 return BLK_STS_IOERR; 1325 case SDEV_DEL: 1326 /* 1327 * If the device is fully deleted, we refuse to 1328 * process any commands as well. 1329 */ 1330 sdev_printk(KERN_ERR, sdev, 1331 "rejecting I/O to dead device\n"); 1332 return BLK_STS_IOERR; 1333 case SDEV_BLOCK: 1334 case SDEV_CREATED_BLOCK: 1335 return BLK_STS_RESOURCE; 1336 case SDEV_QUIESCE: 1337 /* 1338 * If the device is blocked we only accept power management 1339 * commands. 1340 */ 1341 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1342 return BLK_STS_RESOURCE; 1343 return BLK_STS_OK; 1344 default: 1345 /* 1346 * For any other not fully online state we only allow 1347 * power management commands. 1348 */ 1349 if (req && !(req->rq_flags & RQF_PM)) 1350 return BLK_STS_OFFLINE; 1351 return BLK_STS_OK; 1352 } 1353 } 1354 1355 /* 1356 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1357 * and return the token else return -1. 1358 */ 1359 static inline int scsi_dev_queue_ready(struct request_queue *q, 1360 struct scsi_device *sdev) 1361 { 1362 int token; 1363 1364 token = sbitmap_get(&sdev->budget_map); 1365 if (token < 0) 1366 return -1; 1367 1368 if (!atomic_read(&sdev->device_blocked)) 1369 return token; 1370 1371 /* 1372 * Only unblock if no other commands are pending and 1373 * if device_blocked has decreased to zero 1374 */ 1375 if (scsi_device_busy(sdev) > 1 || 1376 atomic_dec_return(&sdev->device_blocked) > 0) { 1377 sbitmap_put(&sdev->budget_map, token); 1378 return -1; 1379 } 1380 1381 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1382 "unblocking device at zero depth\n")); 1383 1384 return token; 1385 } 1386 1387 /* 1388 * scsi_target_queue_ready: checks if there we can send commands to target 1389 * @sdev: scsi device on starget to check. 1390 */ 1391 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1392 struct scsi_device *sdev) 1393 { 1394 struct scsi_target *starget = scsi_target(sdev); 1395 unsigned int busy; 1396 1397 if (starget->single_lun) { 1398 spin_lock_irq(shost->host_lock); 1399 if (starget->starget_sdev_user && 1400 starget->starget_sdev_user != sdev) { 1401 spin_unlock_irq(shost->host_lock); 1402 return 0; 1403 } 1404 starget->starget_sdev_user = sdev; 1405 spin_unlock_irq(shost->host_lock); 1406 } 1407 1408 if (starget->can_queue <= 0) 1409 return 1; 1410 1411 busy = atomic_inc_return(&starget->target_busy) - 1; 1412 if (atomic_read(&starget->target_blocked) > 0) { 1413 if (busy) 1414 goto starved; 1415 1416 /* 1417 * unblock after target_blocked iterates to zero 1418 */ 1419 if (atomic_dec_return(&starget->target_blocked) > 0) 1420 goto out_dec; 1421 1422 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1423 "unblocking target at zero depth\n")); 1424 } 1425 1426 if (busy >= starget->can_queue) 1427 goto starved; 1428 1429 return 1; 1430 1431 starved: 1432 spin_lock_irq(shost->host_lock); 1433 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1434 spin_unlock_irq(shost->host_lock); 1435 out_dec: 1436 if (starget->can_queue > 0) 1437 atomic_dec(&starget->target_busy); 1438 return 0; 1439 } 1440 1441 /* 1442 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1443 * return 0. We must end up running the queue again whenever 0 is 1444 * returned, else IO can hang. 1445 */ 1446 static inline int scsi_host_queue_ready(struct request_queue *q, 1447 struct Scsi_Host *shost, 1448 struct scsi_device *sdev, 1449 struct scsi_cmnd *cmd) 1450 { 1451 if (atomic_read(&shost->host_blocked) > 0) { 1452 if (scsi_host_busy(shost) > 0) 1453 goto starved; 1454 1455 /* 1456 * unblock after host_blocked iterates to zero 1457 */ 1458 if (atomic_dec_return(&shost->host_blocked) > 0) 1459 goto out_dec; 1460 1461 SCSI_LOG_MLQUEUE(3, 1462 shost_printk(KERN_INFO, shost, 1463 "unblocking host at zero depth\n")); 1464 } 1465 1466 if (shost->host_self_blocked) 1467 goto starved; 1468 1469 /* We're OK to process the command, so we can't be starved */ 1470 if (!list_empty(&sdev->starved_entry)) { 1471 spin_lock_irq(shost->host_lock); 1472 if (!list_empty(&sdev->starved_entry)) 1473 list_del_init(&sdev->starved_entry); 1474 spin_unlock_irq(shost->host_lock); 1475 } 1476 1477 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1478 1479 return 1; 1480 1481 starved: 1482 spin_lock_irq(shost->host_lock); 1483 if (list_empty(&sdev->starved_entry)) 1484 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1485 spin_unlock_irq(shost->host_lock); 1486 out_dec: 1487 scsi_dec_host_busy(shost, cmd); 1488 return 0; 1489 } 1490 1491 /* 1492 * Busy state exporting function for request stacking drivers. 1493 * 1494 * For efficiency, no lock is taken to check the busy state of 1495 * shost/starget/sdev, since the returned value is not guaranteed and 1496 * may be changed after request stacking drivers call the function, 1497 * regardless of taking lock or not. 1498 * 1499 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1500 * needs to return 'not busy'. Otherwise, request stacking drivers 1501 * may hold requests forever. 1502 */ 1503 static bool scsi_mq_lld_busy(struct request_queue *q) 1504 { 1505 struct scsi_device *sdev = q->queuedata; 1506 struct Scsi_Host *shost; 1507 1508 if (blk_queue_dying(q)) 1509 return false; 1510 1511 shost = sdev->host; 1512 1513 /* 1514 * Ignore host/starget busy state. 1515 * Since block layer does not have a concept of fairness across 1516 * multiple queues, congestion of host/starget needs to be handled 1517 * in SCSI layer. 1518 */ 1519 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1520 return true; 1521 1522 return false; 1523 } 1524 1525 /* 1526 * Block layer request completion callback. May be called from interrupt 1527 * context. 1528 */ 1529 static void scsi_complete(struct request *rq) 1530 { 1531 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1532 enum scsi_disposition disposition; 1533 1534 INIT_LIST_HEAD(&cmd->eh_entry); 1535 1536 atomic_inc(&cmd->device->iodone_cnt); 1537 if (cmd->result) 1538 atomic_inc(&cmd->device->ioerr_cnt); 1539 1540 disposition = scsi_decide_disposition(cmd); 1541 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1542 disposition = SUCCESS; 1543 1544 scsi_log_completion(cmd, disposition); 1545 1546 switch (disposition) { 1547 case SUCCESS: 1548 scsi_finish_command(cmd); 1549 break; 1550 case NEEDS_RETRY: 1551 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1552 break; 1553 case ADD_TO_MLQUEUE: 1554 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1555 break; 1556 default: 1557 scsi_eh_scmd_add(cmd); 1558 break; 1559 } 1560 } 1561 1562 /** 1563 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1564 * @cmd: command block we are dispatching. 1565 * 1566 * Return: nonzero return request was rejected and device's queue needs to be 1567 * plugged. 1568 */ 1569 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1570 { 1571 struct Scsi_Host *host = cmd->device->host; 1572 int rtn = 0; 1573 1574 atomic_inc(&cmd->device->iorequest_cnt); 1575 1576 /* check if the device is still usable */ 1577 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1578 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1579 * returns an immediate error upwards, and signals 1580 * that the device is no longer present */ 1581 cmd->result = DID_NO_CONNECT << 16; 1582 goto done; 1583 } 1584 1585 /* Check to see if the scsi lld made this device blocked. */ 1586 if (unlikely(scsi_device_blocked(cmd->device))) { 1587 /* 1588 * in blocked state, the command is just put back on 1589 * the device queue. The suspend state has already 1590 * blocked the queue so future requests should not 1591 * occur until the device transitions out of the 1592 * suspend state. 1593 */ 1594 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1595 "queuecommand : device blocked\n")); 1596 atomic_dec(&cmd->device->iorequest_cnt); 1597 return SCSI_MLQUEUE_DEVICE_BUSY; 1598 } 1599 1600 /* Store the LUN value in cmnd, if needed. */ 1601 if (cmd->device->lun_in_cdb) 1602 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1603 (cmd->device->lun << 5 & 0xe0); 1604 1605 scsi_log_send(cmd); 1606 1607 /* 1608 * Before we queue this command, check if the command 1609 * length exceeds what the host adapter can handle. 1610 */ 1611 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1612 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1613 "queuecommand : command too long. " 1614 "cdb_size=%d host->max_cmd_len=%d\n", 1615 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1616 cmd->result = (DID_ABORT << 16); 1617 goto done; 1618 } 1619 1620 if (unlikely(host->shost_state == SHOST_DEL)) { 1621 cmd->result = (DID_NO_CONNECT << 16); 1622 goto done; 1623 1624 } 1625 1626 trace_scsi_dispatch_cmd_start(cmd); 1627 rtn = host->hostt->queuecommand(host, cmd); 1628 if (rtn) { 1629 atomic_dec(&cmd->device->iorequest_cnt); 1630 trace_scsi_dispatch_cmd_error(cmd, rtn); 1631 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1632 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1633 rtn = SCSI_MLQUEUE_HOST_BUSY; 1634 1635 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1636 "queuecommand : request rejected\n")); 1637 } 1638 1639 return rtn; 1640 done: 1641 scsi_done(cmd); 1642 return 0; 1643 } 1644 1645 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1646 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1647 { 1648 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1649 sizeof(struct scatterlist); 1650 } 1651 1652 static blk_status_t scsi_prepare_cmd(struct request *req) 1653 { 1654 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1655 struct scsi_device *sdev = req->q->queuedata; 1656 struct Scsi_Host *shost = sdev->host; 1657 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1658 struct scatterlist *sg; 1659 1660 scsi_init_command(sdev, cmd); 1661 1662 cmd->eh_eflags = 0; 1663 cmd->prot_type = 0; 1664 cmd->prot_flags = 0; 1665 cmd->submitter = 0; 1666 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1667 cmd->underflow = 0; 1668 cmd->transfersize = 0; 1669 cmd->host_scribble = NULL; 1670 cmd->result = 0; 1671 cmd->extra_len = 0; 1672 cmd->state = 0; 1673 if (in_flight) 1674 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1675 1676 cmd->prot_op = SCSI_PROT_NORMAL; 1677 if (blk_rq_bytes(req)) 1678 cmd->sc_data_direction = rq_dma_dir(req); 1679 else 1680 cmd->sc_data_direction = DMA_NONE; 1681 1682 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1683 cmd->sdb.table.sgl = sg; 1684 1685 if (scsi_host_get_prot(shost)) { 1686 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1687 1688 cmd->prot_sdb->table.sgl = 1689 (struct scatterlist *)(cmd->prot_sdb + 1); 1690 } 1691 1692 /* 1693 * Special handling for passthrough commands, which don't go to the ULP 1694 * at all: 1695 */ 1696 if (blk_rq_is_passthrough(req)) 1697 return scsi_setup_scsi_cmnd(sdev, req); 1698 1699 if (sdev->handler && sdev->handler->prep_fn) { 1700 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1701 1702 if (ret != BLK_STS_OK) 1703 return ret; 1704 } 1705 1706 /* Usually overridden by the ULP */ 1707 cmd->allowed = 0; 1708 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1709 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1710 } 1711 1712 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1713 { 1714 struct request *req = scsi_cmd_to_rq(cmd); 1715 1716 switch (cmd->submitter) { 1717 case SUBMITTED_BY_BLOCK_LAYER: 1718 break; 1719 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1720 return scsi_eh_done(cmd); 1721 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1722 return; 1723 } 1724 1725 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1726 return; 1727 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1728 return; 1729 trace_scsi_dispatch_cmd_done(cmd); 1730 1731 if (complete_directly) 1732 blk_mq_complete_request_direct(req, scsi_complete); 1733 else 1734 blk_mq_complete_request(req); 1735 } 1736 1737 void scsi_done(struct scsi_cmnd *cmd) 1738 { 1739 scsi_done_internal(cmd, false); 1740 } 1741 EXPORT_SYMBOL(scsi_done); 1742 1743 void scsi_done_direct(struct scsi_cmnd *cmd) 1744 { 1745 scsi_done_internal(cmd, true); 1746 } 1747 EXPORT_SYMBOL(scsi_done_direct); 1748 1749 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1750 { 1751 struct scsi_device *sdev = q->queuedata; 1752 1753 sbitmap_put(&sdev->budget_map, budget_token); 1754 } 1755 1756 /* 1757 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1758 * not change behaviour from the previous unplug mechanism, experimentation 1759 * may prove this needs changing. 1760 */ 1761 #define SCSI_QUEUE_DELAY 3 1762 1763 static int scsi_mq_get_budget(struct request_queue *q) 1764 { 1765 struct scsi_device *sdev = q->queuedata; 1766 int token = scsi_dev_queue_ready(q, sdev); 1767 1768 if (token >= 0) 1769 return token; 1770 1771 atomic_inc(&sdev->restarts); 1772 1773 /* 1774 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1775 * .restarts must be incremented before .device_busy is read because the 1776 * code in scsi_run_queue_async() depends on the order of these operations. 1777 */ 1778 smp_mb__after_atomic(); 1779 1780 /* 1781 * If all in-flight requests originated from this LUN are completed 1782 * before reading .device_busy, sdev->device_busy will be observed as 1783 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1784 * soon. Otherwise, completion of one of these requests will observe 1785 * the .restarts flag, and the request queue will be run for handling 1786 * this request, see scsi_end_request(). 1787 */ 1788 if (unlikely(scsi_device_busy(sdev) == 0 && 1789 !scsi_device_blocked(sdev))) 1790 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1791 return -1; 1792 } 1793 1794 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1795 { 1796 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1797 1798 cmd->budget_token = token; 1799 } 1800 1801 static int scsi_mq_get_rq_budget_token(struct request *req) 1802 { 1803 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1804 1805 return cmd->budget_token; 1806 } 1807 1808 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1809 const struct blk_mq_queue_data *bd) 1810 { 1811 struct request *req = bd->rq; 1812 struct request_queue *q = req->q; 1813 struct scsi_device *sdev = q->queuedata; 1814 struct Scsi_Host *shost = sdev->host; 1815 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1816 blk_status_t ret; 1817 int reason; 1818 1819 WARN_ON_ONCE(cmd->budget_token < 0); 1820 1821 /* 1822 * If the device is not in running state we will reject some or all 1823 * commands. 1824 */ 1825 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1826 ret = scsi_device_state_check(sdev, req); 1827 if (ret != BLK_STS_OK) 1828 goto out_put_budget; 1829 } 1830 1831 ret = BLK_STS_RESOURCE; 1832 if (!scsi_target_queue_ready(shost, sdev)) 1833 goto out_put_budget; 1834 if (unlikely(scsi_host_in_recovery(shost))) { 1835 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1836 ret = BLK_STS_OFFLINE; 1837 goto out_dec_target_busy; 1838 } 1839 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1840 goto out_dec_target_busy; 1841 1842 /* 1843 * Only clear the driver-private command data if the LLD does not supply 1844 * a function to initialize that data. 1845 */ 1846 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv) 1847 memset(cmd + 1, 0, shost->hostt->cmd_size); 1848 1849 if (!(req->rq_flags & RQF_DONTPREP)) { 1850 ret = scsi_prepare_cmd(req); 1851 if (ret != BLK_STS_OK) 1852 goto out_dec_host_busy; 1853 req->rq_flags |= RQF_DONTPREP; 1854 } else { 1855 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1856 } 1857 1858 cmd->flags &= SCMD_PRESERVED_FLAGS; 1859 if (sdev->simple_tags) 1860 cmd->flags |= SCMD_TAGGED; 1861 if (bd->last) 1862 cmd->flags |= SCMD_LAST; 1863 1864 scsi_set_resid(cmd, 0); 1865 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1866 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1867 1868 blk_mq_start_request(req); 1869 reason = scsi_dispatch_cmd(cmd); 1870 if (reason) { 1871 scsi_set_blocked(cmd, reason); 1872 ret = BLK_STS_RESOURCE; 1873 goto out_dec_host_busy; 1874 } 1875 1876 return BLK_STS_OK; 1877 1878 out_dec_host_busy: 1879 scsi_dec_host_busy(shost, cmd); 1880 out_dec_target_busy: 1881 if (scsi_target(sdev)->can_queue > 0) 1882 atomic_dec(&scsi_target(sdev)->target_busy); 1883 out_put_budget: 1884 scsi_mq_put_budget(q, cmd->budget_token); 1885 cmd->budget_token = -1; 1886 switch (ret) { 1887 case BLK_STS_OK: 1888 break; 1889 case BLK_STS_RESOURCE: 1890 if (scsi_device_blocked(sdev)) 1891 ret = BLK_STS_DEV_RESOURCE; 1892 break; 1893 case BLK_STS_AGAIN: 1894 cmd->result = DID_BUS_BUSY << 16; 1895 if (req->rq_flags & RQF_DONTPREP) 1896 scsi_mq_uninit_cmd(cmd); 1897 break; 1898 default: 1899 if (unlikely(!scsi_device_online(sdev))) 1900 cmd->result = DID_NO_CONNECT << 16; 1901 else 1902 cmd->result = DID_ERROR << 16; 1903 /* 1904 * Make sure to release all allocated resources when 1905 * we hit an error, as we will never see this command 1906 * again. 1907 */ 1908 if (req->rq_flags & RQF_DONTPREP) 1909 scsi_mq_uninit_cmd(cmd); 1910 scsi_run_queue_async(sdev); 1911 break; 1912 } 1913 return ret; 1914 } 1915 1916 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1917 unsigned int hctx_idx, unsigned int numa_node) 1918 { 1919 struct Scsi_Host *shost = set->driver_data; 1920 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1921 struct scatterlist *sg; 1922 int ret = 0; 1923 1924 cmd->sense_buffer = 1925 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1926 if (!cmd->sense_buffer) 1927 return -ENOMEM; 1928 1929 if (scsi_host_get_prot(shost)) { 1930 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1931 shost->hostt->cmd_size; 1932 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1933 } 1934 1935 if (shost->hostt->init_cmd_priv) { 1936 ret = shost->hostt->init_cmd_priv(shost, cmd); 1937 if (ret < 0) 1938 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1939 } 1940 1941 return ret; 1942 } 1943 1944 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1945 unsigned int hctx_idx) 1946 { 1947 struct Scsi_Host *shost = set->driver_data; 1948 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1949 1950 if (shost->hostt->exit_cmd_priv) 1951 shost->hostt->exit_cmd_priv(shost, cmd); 1952 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1953 } 1954 1955 1956 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1957 { 1958 struct Scsi_Host *shost = hctx->driver_data; 1959 1960 if (shost->hostt->mq_poll) 1961 return shost->hostt->mq_poll(shost, hctx->queue_num); 1962 1963 return 0; 1964 } 1965 1966 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1967 unsigned int hctx_idx) 1968 { 1969 struct Scsi_Host *shost = data; 1970 1971 hctx->driver_data = shost; 1972 return 0; 1973 } 1974 1975 static void scsi_map_queues(struct blk_mq_tag_set *set) 1976 { 1977 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1978 1979 if (shost->hostt->map_queues) 1980 return shost->hostt->map_queues(shost); 1981 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1982 } 1983 1984 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim) 1985 { 1986 struct device *dev = shost->dma_dev; 1987 1988 memset(lim, 0, sizeof(*lim)); 1989 lim->max_segments = 1990 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS); 1991 1992 if (scsi_host_prot_dma(shost)) { 1993 shost->sg_prot_tablesize = 1994 min_not_zero(shost->sg_prot_tablesize, 1995 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1996 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1997 lim->max_integrity_segments = shost->sg_prot_tablesize; 1998 } 1999 2000 lim->max_hw_sectors = shost->max_sectors; 2001 lim->seg_boundary_mask = shost->dma_boundary; 2002 lim->max_segment_size = shost->max_segment_size; 2003 lim->virt_boundary_mask = shost->virt_boundary_mask; 2004 lim->dma_alignment = max_t(unsigned int, 2005 shost->dma_alignment, dma_get_cache_alignment() - 1); 2006 2007 if (shost->no_highmem) 2008 lim->features |= BLK_FEAT_BOUNCE_HIGH; 2009 2010 /* 2011 * Propagate the DMA formation properties to the dma-mapping layer as 2012 * a courtesy service to the LLDDs. This needs to check that the buses 2013 * actually support the DMA API first, though. 2014 */ 2015 if (dev->dma_parms) { 2016 dma_set_seg_boundary(dev, shost->dma_boundary); 2017 dma_set_max_seg_size(dev, shost->max_segment_size); 2018 } 2019 } 2020 EXPORT_SYMBOL_GPL(scsi_init_limits); 2021 2022 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 2023 .get_budget = scsi_mq_get_budget, 2024 .put_budget = scsi_mq_put_budget, 2025 .queue_rq = scsi_queue_rq, 2026 .complete = scsi_complete, 2027 .timeout = scsi_timeout, 2028 #ifdef CONFIG_BLK_DEBUG_FS 2029 .show_rq = scsi_show_rq, 2030 #endif 2031 .init_request = scsi_mq_init_request, 2032 .exit_request = scsi_mq_exit_request, 2033 .cleanup_rq = scsi_cleanup_rq, 2034 .busy = scsi_mq_lld_busy, 2035 .map_queues = scsi_map_queues, 2036 .init_hctx = scsi_init_hctx, 2037 .poll = scsi_mq_poll, 2038 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2039 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2040 }; 2041 2042 2043 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 2044 { 2045 struct Scsi_Host *shost = hctx->driver_data; 2046 2047 shost->hostt->commit_rqs(shost, hctx->queue_num); 2048 } 2049 2050 static const struct blk_mq_ops scsi_mq_ops = { 2051 .get_budget = scsi_mq_get_budget, 2052 .put_budget = scsi_mq_put_budget, 2053 .queue_rq = scsi_queue_rq, 2054 .commit_rqs = scsi_commit_rqs, 2055 .complete = scsi_complete, 2056 .timeout = scsi_timeout, 2057 #ifdef CONFIG_BLK_DEBUG_FS 2058 .show_rq = scsi_show_rq, 2059 #endif 2060 .init_request = scsi_mq_init_request, 2061 .exit_request = scsi_mq_exit_request, 2062 .cleanup_rq = scsi_cleanup_rq, 2063 .busy = scsi_mq_lld_busy, 2064 .map_queues = scsi_map_queues, 2065 .init_hctx = scsi_init_hctx, 2066 .poll = scsi_mq_poll, 2067 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 2068 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 2069 }; 2070 2071 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2072 { 2073 unsigned int cmd_size, sgl_size; 2074 struct blk_mq_tag_set *tag_set = &shost->tag_set; 2075 2076 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 2077 scsi_mq_inline_sgl_size(shost)); 2078 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2079 if (scsi_host_get_prot(shost)) 2080 cmd_size += sizeof(struct scsi_data_buffer) + 2081 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 2082 2083 memset(tag_set, 0, sizeof(*tag_set)); 2084 if (shost->hostt->commit_rqs) 2085 tag_set->ops = &scsi_mq_ops; 2086 else 2087 tag_set->ops = &scsi_mq_ops_no_commit; 2088 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 2089 tag_set->nr_maps = shost->nr_maps ? : 1; 2090 tag_set->queue_depth = shost->can_queue; 2091 tag_set->cmd_size = cmd_size; 2092 tag_set->numa_node = dev_to_node(shost->dma_dev); 2093 if (shost->hostt->tag_alloc_policy_rr) 2094 tag_set->flags |= BLK_MQ_F_TAG_RR; 2095 if (shost->queuecommand_may_block) 2096 tag_set->flags |= BLK_MQ_F_BLOCKING; 2097 tag_set->driver_data = shost; 2098 if (shost->host_tagset) 2099 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 2100 2101 return blk_mq_alloc_tag_set(tag_set); 2102 } 2103 2104 void scsi_mq_free_tags(struct kref *kref) 2105 { 2106 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 2107 tagset_refcnt); 2108 2109 blk_mq_free_tag_set(&shost->tag_set); 2110 complete(&shost->tagset_freed); 2111 } 2112 2113 /** 2114 * scsi_device_from_queue - return sdev associated with a request_queue 2115 * @q: The request queue to return the sdev from 2116 * 2117 * Return the sdev associated with a request queue or NULL if the 2118 * request_queue does not reference a SCSI device. 2119 */ 2120 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2121 { 2122 struct scsi_device *sdev = NULL; 2123 2124 if (q->mq_ops == &scsi_mq_ops_no_commit || 2125 q->mq_ops == &scsi_mq_ops) 2126 sdev = q->queuedata; 2127 if (!sdev || !get_device(&sdev->sdev_gendev)) 2128 sdev = NULL; 2129 2130 return sdev; 2131 } 2132 /* 2133 * pktcdvd should have been integrated into the SCSI layers, but for historical 2134 * reasons like the old IDE driver it isn't. This export allows it to safely 2135 * probe if a given device is a SCSI one and only attach to that. 2136 */ 2137 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2138 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2139 #endif 2140 2141 /** 2142 * scsi_block_requests - Utility function used by low-level drivers to prevent 2143 * further commands from being queued to the device. 2144 * @shost: host in question 2145 * 2146 * There is no timer nor any other means by which the requests get unblocked 2147 * other than the low-level driver calling scsi_unblock_requests(). 2148 */ 2149 void scsi_block_requests(struct Scsi_Host *shost) 2150 { 2151 shost->host_self_blocked = 1; 2152 } 2153 EXPORT_SYMBOL(scsi_block_requests); 2154 2155 /** 2156 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2157 * further commands to be queued to the device. 2158 * @shost: host in question 2159 * 2160 * There is no timer nor any other means by which the requests get unblocked 2161 * other than the low-level driver calling scsi_unblock_requests(). This is done 2162 * as an API function so that changes to the internals of the scsi mid-layer 2163 * won't require wholesale changes to drivers that use this feature. 2164 */ 2165 void scsi_unblock_requests(struct Scsi_Host *shost) 2166 { 2167 shost->host_self_blocked = 0; 2168 scsi_run_host_queues(shost); 2169 } 2170 EXPORT_SYMBOL(scsi_unblock_requests); 2171 2172 void scsi_exit_queue(void) 2173 { 2174 kmem_cache_destroy(scsi_sense_cache); 2175 } 2176 2177 /** 2178 * scsi_mode_select - issue a mode select 2179 * @sdev: SCSI device to be queried 2180 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2181 * @sp: Save page bit (0 == don't save, 1 == save) 2182 * @buffer: request buffer (may not be smaller than eight bytes) 2183 * @len: length of request buffer. 2184 * @timeout: command timeout 2185 * @retries: number of retries before failing 2186 * @data: returns a structure abstracting the mode header data 2187 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2188 * must be SCSI_SENSE_BUFFERSIZE big. 2189 * 2190 * Returns zero if successful; negative error number or scsi 2191 * status on error 2192 * 2193 */ 2194 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2195 unsigned char *buffer, int len, int timeout, int retries, 2196 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2197 { 2198 unsigned char cmd[10]; 2199 unsigned char *real_buffer; 2200 const struct scsi_exec_args exec_args = { 2201 .sshdr = sshdr, 2202 }; 2203 int ret; 2204 2205 memset(cmd, 0, sizeof(cmd)); 2206 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2207 2208 /* 2209 * Use MODE SELECT(10) if the device asked for it or if the mode page 2210 * and the mode select header cannot fit within the maximumm 255 bytes 2211 * of the MODE SELECT(6) command. 2212 */ 2213 if (sdev->use_10_for_ms || 2214 len + 4 > 255 || 2215 data->block_descriptor_length > 255) { 2216 if (len > 65535 - 8) 2217 return -EINVAL; 2218 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2219 if (!real_buffer) 2220 return -ENOMEM; 2221 memcpy(real_buffer + 8, buffer, len); 2222 len += 8; 2223 real_buffer[0] = 0; 2224 real_buffer[1] = 0; 2225 real_buffer[2] = data->medium_type; 2226 real_buffer[3] = data->device_specific; 2227 real_buffer[4] = data->longlba ? 0x01 : 0; 2228 real_buffer[5] = 0; 2229 put_unaligned_be16(data->block_descriptor_length, 2230 &real_buffer[6]); 2231 2232 cmd[0] = MODE_SELECT_10; 2233 put_unaligned_be16(len, &cmd[7]); 2234 } else { 2235 if (data->longlba) 2236 return -EINVAL; 2237 2238 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2239 if (!real_buffer) 2240 return -ENOMEM; 2241 memcpy(real_buffer + 4, buffer, len); 2242 len += 4; 2243 real_buffer[0] = 0; 2244 real_buffer[1] = data->medium_type; 2245 real_buffer[2] = data->device_specific; 2246 real_buffer[3] = data->block_descriptor_length; 2247 2248 cmd[0] = MODE_SELECT; 2249 cmd[4] = len; 2250 } 2251 2252 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2253 timeout, retries, &exec_args); 2254 kfree(real_buffer); 2255 return ret; 2256 } 2257 EXPORT_SYMBOL_GPL(scsi_mode_select); 2258 2259 /** 2260 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2261 * @sdev: SCSI device to be queried 2262 * @dbd: set to prevent mode sense from returning block descriptors 2263 * @modepage: mode page being requested 2264 * @subpage: sub-page of the mode page being requested 2265 * @buffer: request buffer (may not be smaller than eight bytes) 2266 * @len: length of request buffer. 2267 * @timeout: command timeout 2268 * @retries: number of retries before failing 2269 * @data: returns a structure abstracting the mode header data 2270 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2271 * must be SCSI_SENSE_BUFFERSIZE big. 2272 * 2273 * Returns zero if successful, or a negative error number on failure 2274 */ 2275 int 2276 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage, 2277 unsigned char *buffer, int len, int timeout, int retries, 2278 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2279 { 2280 unsigned char cmd[12]; 2281 int use_10_for_ms; 2282 int header_length; 2283 int result; 2284 struct scsi_sense_hdr my_sshdr; 2285 struct scsi_failure failure_defs[] = { 2286 { 2287 .sense = UNIT_ATTENTION, 2288 .asc = SCMD_FAILURE_ASC_ANY, 2289 .ascq = SCMD_FAILURE_ASCQ_ANY, 2290 .allowed = retries, 2291 .result = SAM_STAT_CHECK_CONDITION, 2292 }, 2293 {} 2294 }; 2295 struct scsi_failures failures = { 2296 .failure_definitions = failure_defs, 2297 }; 2298 const struct scsi_exec_args exec_args = { 2299 /* caller might not be interested in sense, but we need it */ 2300 .sshdr = sshdr ? : &my_sshdr, 2301 .failures = &failures, 2302 }; 2303 2304 memset(data, 0, sizeof(*data)); 2305 memset(&cmd[0], 0, 12); 2306 2307 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2308 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2309 cmd[2] = modepage; 2310 cmd[3] = subpage; 2311 2312 sshdr = exec_args.sshdr; 2313 2314 retry: 2315 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2316 2317 if (use_10_for_ms) { 2318 if (len < 8 || len > 65535) 2319 return -EINVAL; 2320 2321 cmd[0] = MODE_SENSE_10; 2322 put_unaligned_be16(len, &cmd[7]); 2323 header_length = 8; 2324 } else { 2325 if (len < 4) 2326 return -EINVAL; 2327 2328 cmd[0] = MODE_SENSE; 2329 cmd[4] = len; 2330 header_length = 4; 2331 } 2332 2333 memset(buffer, 0, len); 2334 2335 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2336 timeout, retries, &exec_args); 2337 if (result < 0) 2338 return result; 2339 2340 /* This code looks awful: what it's doing is making sure an 2341 * ILLEGAL REQUEST sense return identifies the actual command 2342 * byte as the problem. MODE_SENSE commands can return 2343 * ILLEGAL REQUEST if the code page isn't supported */ 2344 2345 if (!scsi_status_is_good(result)) { 2346 if (scsi_sense_valid(sshdr)) { 2347 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2348 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2349 /* 2350 * Invalid command operation code: retry using 2351 * MODE SENSE(6) if this was a MODE SENSE(10) 2352 * request, except if the request mode page is 2353 * too large for MODE SENSE single byte 2354 * allocation length field. 2355 */ 2356 if (use_10_for_ms) { 2357 if (len > 255) 2358 return -EIO; 2359 sdev->use_10_for_ms = 0; 2360 goto retry; 2361 } 2362 } 2363 } 2364 return -EIO; 2365 } 2366 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2367 (modepage == 6 || modepage == 8))) { 2368 /* Initio breakage? */ 2369 header_length = 0; 2370 data->length = 13; 2371 data->medium_type = 0; 2372 data->device_specific = 0; 2373 data->longlba = 0; 2374 data->block_descriptor_length = 0; 2375 } else if (use_10_for_ms) { 2376 data->length = get_unaligned_be16(&buffer[0]) + 2; 2377 data->medium_type = buffer[2]; 2378 data->device_specific = buffer[3]; 2379 data->longlba = buffer[4] & 0x01; 2380 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2381 } else { 2382 data->length = buffer[0] + 1; 2383 data->medium_type = buffer[1]; 2384 data->device_specific = buffer[2]; 2385 data->block_descriptor_length = buffer[3]; 2386 } 2387 data->header_length = header_length; 2388 2389 return 0; 2390 } 2391 EXPORT_SYMBOL(scsi_mode_sense); 2392 2393 /** 2394 * scsi_test_unit_ready - test if unit is ready 2395 * @sdev: scsi device to change the state of. 2396 * @timeout: command timeout 2397 * @retries: number of retries before failing 2398 * @sshdr: outpout pointer for decoded sense information. 2399 * 2400 * Returns zero if unsuccessful or an error if TUR failed. For 2401 * removable media, UNIT_ATTENTION sets ->changed flag. 2402 **/ 2403 int 2404 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2405 struct scsi_sense_hdr *sshdr) 2406 { 2407 char cmd[] = { 2408 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2409 }; 2410 const struct scsi_exec_args exec_args = { 2411 .sshdr = sshdr, 2412 }; 2413 int result; 2414 2415 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2416 do { 2417 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2418 timeout, 1, &exec_args); 2419 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) && 2420 sshdr->sense_key == UNIT_ATTENTION) 2421 sdev->changed = 1; 2422 } while (result > 0 && scsi_sense_valid(sshdr) && 2423 sshdr->sense_key == UNIT_ATTENTION && --retries); 2424 2425 return result; 2426 } 2427 EXPORT_SYMBOL(scsi_test_unit_ready); 2428 2429 /** 2430 * scsi_device_set_state - Take the given device through the device state model. 2431 * @sdev: scsi device to change the state of. 2432 * @state: state to change to. 2433 * 2434 * Returns zero if successful or an error if the requested 2435 * transition is illegal. 2436 */ 2437 int 2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2439 { 2440 enum scsi_device_state oldstate = sdev->sdev_state; 2441 2442 if (state == oldstate) 2443 return 0; 2444 2445 switch (state) { 2446 case SDEV_CREATED: 2447 switch (oldstate) { 2448 case SDEV_CREATED_BLOCK: 2449 break; 2450 default: 2451 goto illegal; 2452 } 2453 break; 2454 2455 case SDEV_RUNNING: 2456 switch (oldstate) { 2457 case SDEV_CREATED: 2458 case SDEV_OFFLINE: 2459 case SDEV_TRANSPORT_OFFLINE: 2460 case SDEV_QUIESCE: 2461 case SDEV_BLOCK: 2462 break; 2463 default: 2464 goto illegal; 2465 } 2466 break; 2467 2468 case SDEV_QUIESCE: 2469 switch (oldstate) { 2470 case SDEV_RUNNING: 2471 case SDEV_OFFLINE: 2472 case SDEV_TRANSPORT_OFFLINE: 2473 break; 2474 default: 2475 goto illegal; 2476 } 2477 break; 2478 2479 case SDEV_OFFLINE: 2480 case SDEV_TRANSPORT_OFFLINE: 2481 switch (oldstate) { 2482 case SDEV_CREATED: 2483 case SDEV_RUNNING: 2484 case SDEV_QUIESCE: 2485 case SDEV_BLOCK: 2486 break; 2487 default: 2488 goto illegal; 2489 } 2490 break; 2491 2492 case SDEV_BLOCK: 2493 switch (oldstate) { 2494 case SDEV_RUNNING: 2495 case SDEV_CREATED_BLOCK: 2496 case SDEV_QUIESCE: 2497 case SDEV_OFFLINE: 2498 break; 2499 default: 2500 goto illegal; 2501 } 2502 break; 2503 2504 case SDEV_CREATED_BLOCK: 2505 switch (oldstate) { 2506 case SDEV_CREATED: 2507 break; 2508 default: 2509 goto illegal; 2510 } 2511 break; 2512 2513 case SDEV_CANCEL: 2514 switch (oldstate) { 2515 case SDEV_CREATED: 2516 case SDEV_RUNNING: 2517 case SDEV_QUIESCE: 2518 case SDEV_OFFLINE: 2519 case SDEV_TRANSPORT_OFFLINE: 2520 break; 2521 default: 2522 goto illegal; 2523 } 2524 break; 2525 2526 case SDEV_DEL: 2527 switch (oldstate) { 2528 case SDEV_CREATED: 2529 case SDEV_RUNNING: 2530 case SDEV_OFFLINE: 2531 case SDEV_TRANSPORT_OFFLINE: 2532 case SDEV_CANCEL: 2533 case SDEV_BLOCK: 2534 case SDEV_CREATED_BLOCK: 2535 break; 2536 default: 2537 goto illegal; 2538 } 2539 break; 2540 2541 } 2542 sdev->offline_already = false; 2543 sdev->sdev_state = state; 2544 return 0; 2545 2546 illegal: 2547 SCSI_LOG_ERROR_RECOVERY(1, 2548 sdev_printk(KERN_ERR, sdev, 2549 "Illegal state transition %s->%s", 2550 scsi_device_state_name(oldstate), 2551 scsi_device_state_name(state)) 2552 ); 2553 return -EINVAL; 2554 } 2555 EXPORT_SYMBOL(scsi_device_set_state); 2556 2557 /** 2558 * scsi_evt_emit - emit a single SCSI device uevent 2559 * @sdev: associated SCSI device 2560 * @evt: event to emit 2561 * 2562 * Send a single uevent (scsi_event) to the associated scsi_device. 2563 */ 2564 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2565 { 2566 int idx = 0; 2567 char *envp[3]; 2568 2569 switch (evt->evt_type) { 2570 case SDEV_EVT_MEDIA_CHANGE: 2571 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2572 break; 2573 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2574 scsi_rescan_device(sdev); 2575 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2576 break; 2577 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2578 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2579 break; 2580 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2581 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2582 break; 2583 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2584 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2585 break; 2586 case SDEV_EVT_LUN_CHANGE_REPORTED: 2587 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2588 break; 2589 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2590 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2591 break; 2592 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2593 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2594 break; 2595 default: 2596 /* do nothing */ 2597 break; 2598 } 2599 2600 envp[idx++] = NULL; 2601 2602 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2603 } 2604 2605 /** 2606 * scsi_evt_thread - send a uevent for each scsi event 2607 * @work: work struct for scsi_device 2608 * 2609 * Dispatch queued events to their associated scsi_device kobjects 2610 * as uevents. 2611 */ 2612 void scsi_evt_thread(struct work_struct *work) 2613 { 2614 struct scsi_device *sdev; 2615 enum scsi_device_event evt_type; 2616 LIST_HEAD(event_list); 2617 2618 sdev = container_of(work, struct scsi_device, event_work); 2619 2620 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2621 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2622 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2623 2624 while (1) { 2625 struct scsi_event *evt; 2626 struct list_head *this, *tmp; 2627 unsigned long flags; 2628 2629 spin_lock_irqsave(&sdev->list_lock, flags); 2630 list_splice_init(&sdev->event_list, &event_list); 2631 spin_unlock_irqrestore(&sdev->list_lock, flags); 2632 2633 if (list_empty(&event_list)) 2634 break; 2635 2636 list_for_each_safe(this, tmp, &event_list) { 2637 evt = list_entry(this, struct scsi_event, node); 2638 list_del(&evt->node); 2639 scsi_evt_emit(sdev, evt); 2640 kfree(evt); 2641 } 2642 } 2643 } 2644 2645 /** 2646 * sdev_evt_send - send asserted event to uevent thread 2647 * @sdev: scsi_device event occurred on 2648 * @evt: event to send 2649 * 2650 * Assert scsi device event asynchronously. 2651 */ 2652 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2653 { 2654 unsigned long flags; 2655 2656 #if 0 2657 /* FIXME: currently this check eliminates all media change events 2658 * for polled devices. Need to update to discriminate between AN 2659 * and polled events */ 2660 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2661 kfree(evt); 2662 return; 2663 } 2664 #endif 2665 2666 spin_lock_irqsave(&sdev->list_lock, flags); 2667 list_add_tail(&evt->node, &sdev->event_list); 2668 schedule_work(&sdev->event_work); 2669 spin_unlock_irqrestore(&sdev->list_lock, flags); 2670 } 2671 EXPORT_SYMBOL_GPL(sdev_evt_send); 2672 2673 /** 2674 * sdev_evt_alloc - allocate a new scsi event 2675 * @evt_type: type of event to allocate 2676 * @gfpflags: GFP flags for allocation 2677 * 2678 * Allocates and returns a new scsi_event. 2679 */ 2680 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2681 gfp_t gfpflags) 2682 { 2683 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2684 if (!evt) 2685 return NULL; 2686 2687 evt->evt_type = evt_type; 2688 INIT_LIST_HEAD(&evt->node); 2689 2690 /* evt_type-specific initialization, if any */ 2691 switch (evt_type) { 2692 case SDEV_EVT_MEDIA_CHANGE: 2693 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2694 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2695 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2696 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2697 case SDEV_EVT_LUN_CHANGE_REPORTED: 2698 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2699 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2700 default: 2701 /* do nothing */ 2702 break; 2703 } 2704 2705 return evt; 2706 } 2707 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2708 2709 /** 2710 * sdev_evt_send_simple - send asserted event to uevent thread 2711 * @sdev: scsi_device event occurred on 2712 * @evt_type: type of event to send 2713 * @gfpflags: GFP flags for allocation 2714 * 2715 * Assert scsi device event asynchronously, given an event type. 2716 */ 2717 void sdev_evt_send_simple(struct scsi_device *sdev, 2718 enum scsi_device_event evt_type, gfp_t gfpflags) 2719 { 2720 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2721 if (!evt) { 2722 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2723 evt_type); 2724 return; 2725 } 2726 2727 sdev_evt_send(sdev, evt); 2728 } 2729 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2730 2731 /** 2732 * scsi_device_quiesce - Block all commands except power management. 2733 * @sdev: scsi device to quiesce. 2734 * 2735 * This works by trying to transition to the SDEV_QUIESCE state 2736 * (which must be a legal transition). When the device is in this 2737 * state, only power management requests will be accepted, all others will 2738 * be deferred. 2739 * 2740 * Must be called with user context, may sleep. 2741 * 2742 * Returns zero if unsuccessful or an error if not. 2743 */ 2744 int 2745 scsi_device_quiesce(struct scsi_device *sdev) 2746 { 2747 struct request_queue *q = sdev->request_queue; 2748 unsigned int memflags; 2749 int err; 2750 2751 /* 2752 * It is allowed to call scsi_device_quiesce() multiple times from 2753 * the same context but concurrent scsi_device_quiesce() calls are 2754 * not allowed. 2755 */ 2756 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2757 2758 if (sdev->quiesced_by == current) 2759 return 0; 2760 2761 blk_set_pm_only(q); 2762 2763 memflags = blk_mq_freeze_queue(q); 2764 /* 2765 * Ensure that the effect of blk_set_pm_only() will be visible 2766 * for percpu_ref_tryget() callers that occur after the queue 2767 * unfreeze even if the queue was already frozen before this function 2768 * was called. See also https://lwn.net/Articles/573497/. 2769 */ 2770 synchronize_rcu(); 2771 blk_mq_unfreeze_queue(q, memflags); 2772 2773 mutex_lock(&sdev->state_mutex); 2774 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2775 if (err == 0) 2776 sdev->quiesced_by = current; 2777 else 2778 blk_clear_pm_only(q); 2779 mutex_unlock(&sdev->state_mutex); 2780 2781 return err; 2782 } 2783 EXPORT_SYMBOL(scsi_device_quiesce); 2784 2785 /** 2786 * scsi_device_resume - Restart user issued commands to a quiesced device. 2787 * @sdev: scsi device to resume. 2788 * 2789 * Moves the device from quiesced back to running and restarts the 2790 * queues. 2791 * 2792 * Must be called with user context, may sleep. 2793 */ 2794 void scsi_device_resume(struct scsi_device *sdev) 2795 { 2796 /* check if the device state was mutated prior to resume, and if 2797 * so assume the state is being managed elsewhere (for example 2798 * device deleted during suspend) 2799 */ 2800 mutex_lock(&sdev->state_mutex); 2801 if (sdev->sdev_state == SDEV_QUIESCE) 2802 scsi_device_set_state(sdev, SDEV_RUNNING); 2803 if (sdev->quiesced_by) { 2804 sdev->quiesced_by = NULL; 2805 blk_clear_pm_only(sdev->request_queue); 2806 } 2807 mutex_unlock(&sdev->state_mutex); 2808 } 2809 EXPORT_SYMBOL(scsi_device_resume); 2810 2811 static void 2812 device_quiesce_fn(struct scsi_device *sdev, void *data) 2813 { 2814 scsi_device_quiesce(sdev); 2815 } 2816 2817 void 2818 scsi_target_quiesce(struct scsi_target *starget) 2819 { 2820 starget_for_each_device(starget, NULL, device_quiesce_fn); 2821 } 2822 EXPORT_SYMBOL(scsi_target_quiesce); 2823 2824 static void 2825 device_resume_fn(struct scsi_device *sdev, void *data) 2826 { 2827 scsi_device_resume(sdev); 2828 } 2829 2830 void 2831 scsi_target_resume(struct scsi_target *starget) 2832 { 2833 starget_for_each_device(starget, NULL, device_resume_fn); 2834 } 2835 EXPORT_SYMBOL(scsi_target_resume); 2836 2837 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2838 { 2839 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2840 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2841 2842 return 0; 2843 } 2844 2845 void scsi_start_queue(struct scsi_device *sdev) 2846 { 2847 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2848 blk_mq_unquiesce_queue(sdev->request_queue); 2849 } 2850 2851 static void scsi_stop_queue(struct scsi_device *sdev) 2852 { 2853 /* 2854 * The atomic variable of ->queue_stopped covers that 2855 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2856 * 2857 * The caller needs to wait until quiesce is done. 2858 */ 2859 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) 2860 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2861 } 2862 2863 /** 2864 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2865 * @sdev: device to block 2866 * 2867 * Pause SCSI command processing on the specified device. Does not sleep. 2868 * 2869 * Returns zero if successful or a negative error code upon failure. 2870 * 2871 * Notes: 2872 * This routine transitions the device to the SDEV_BLOCK state (which must be 2873 * a legal transition). When the device is in this state, command processing 2874 * is paused until the device leaves the SDEV_BLOCK state. See also 2875 * scsi_internal_device_unblock_nowait(). 2876 */ 2877 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2878 { 2879 int ret = __scsi_internal_device_block_nowait(sdev); 2880 2881 /* 2882 * The device has transitioned to SDEV_BLOCK. Stop the 2883 * block layer from calling the midlayer with this device's 2884 * request queue. 2885 */ 2886 if (!ret) 2887 scsi_stop_queue(sdev); 2888 return ret; 2889 } 2890 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2891 2892 /** 2893 * scsi_device_block - try to transition to the SDEV_BLOCK state 2894 * @sdev: device to block 2895 * @data: dummy argument, ignored 2896 * 2897 * Pause SCSI command processing on the specified device. Callers must wait 2898 * until all ongoing scsi_queue_rq() calls have finished after this function 2899 * returns. 2900 * 2901 * Note: 2902 * This routine transitions the device to the SDEV_BLOCK state (which must be 2903 * a legal transition). When the device is in this state, command processing 2904 * is paused until the device leaves the SDEV_BLOCK state. See also 2905 * scsi_internal_device_unblock(). 2906 */ 2907 static void scsi_device_block(struct scsi_device *sdev, void *data) 2908 { 2909 int err; 2910 enum scsi_device_state state; 2911 2912 mutex_lock(&sdev->state_mutex); 2913 err = __scsi_internal_device_block_nowait(sdev); 2914 state = sdev->sdev_state; 2915 if (err == 0) 2916 /* 2917 * scsi_stop_queue() must be called with the state_mutex 2918 * held. Otherwise a simultaneous scsi_start_queue() call 2919 * might unquiesce the queue before we quiesce it. 2920 */ 2921 scsi_stop_queue(sdev); 2922 2923 mutex_unlock(&sdev->state_mutex); 2924 2925 WARN_ONCE(err, "%s: failed to block %s in state %d\n", 2926 __func__, dev_name(&sdev->sdev_gendev), state); 2927 } 2928 2929 /** 2930 * scsi_internal_device_unblock_nowait - resume a device after a block request 2931 * @sdev: device to resume 2932 * @new_state: state to set the device to after unblocking 2933 * 2934 * Restart the device queue for a previously suspended SCSI device. Does not 2935 * sleep. 2936 * 2937 * Returns zero if successful or a negative error code upon failure. 2938 * 2939 * Notes: 2940 * This routine transitions the device to the SDEV_RUNNING state or to one of 2941 * the offline states (which must be a legal transition) allowing the midlayer 2942 * to goose the queue for this device. 2943 */ 2944 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2945 enum scsi_device_state new_state) 2946 { 2947 switch (new_state) { 2948 case SDEV_RUNNING: 2949 case SDEV_TRANSPORT_OFFLINE: 2950 break; 2951 default: 2952 return -EINVAL; 2953 } 2954 2955 /* 2956 * Try to transition the scsi device to SDEV_RUNNING or one of the 2957 * offlined states and goose the device queue if successful. 2958 */ 2959 switch (sdev->sdev_state) { 2960 case SDEV_BLOCK: 2961 case SDEV_TRANSPORT_OFFLINE: 2962 sdev->sdev_state = new_state; 2963 break; 2964 case SDEV_CREATED_BLOCK: 2965 if (new_state == SDEV_TRANSPORT_OFFLINE || 2966 new_state == SDEV_OFFLINE) 2967 sdev->sdev_state = new_state; 2968 else 2969 sdev->sdev_state = SDEV_CREATED; 2970 break; 2971 case SDEV_CANCEL: 2972 case SDEV_OFFLINE: 2973 break; 2974 default: 2975 return -EINVAL; 2976 } 2977 scsi_start_queue(sdev); 2978 2979 return 0; 2980 } 2981 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2982 2983 /** 2984 * scsi_internal_device_unblock - resume a device after a block request 2985 * @sdev: device to resume 2986 * @new_state: state to set the device to after unblocking 2987 * 2988 * Restart the device queue for a previously suspended SCSI device. May sleep. 2989 * 2990 * Returns zero if successful or a negative error code upon failure. 2991 * 2992 * Notes: 2993 * This routine transitions the device to the SDEV_RUNNING state or to one of 2994 * the offline states (which must be a legal transition) allowing the midlayer 2995 * to goose the queue for this device. 2996 */ 2997 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2998 enum scsi_device_state new_state) 2999 { 3000 int ret; 3001 3002 mutex_lock(&sdev->state_mutex); 3003 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3004 mutex_unlock(&sdev->state_mutex); 3005 3006 return ret; 3007 } 3008 3009 static int 3010 target_block(struct device *dev, void *data) 3011 { 3012 if (scsi_is_target_device(dev)) 3013 starget_for_each_device(to_scsi_target(dev), NULL, 3014 scsi_device_block); 3015 return 0; 3016 } 3017 3018 /** 3019 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state 3020 * @dev: a parent device of one or more scsi_target devices 3021 * @shost: the Scsi_Host to which this device belongs 3022 * 3023 * Iterate over all children of @dev, which should be scsi_target devices, 3024 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for 3025 * ongoing scsi_queue_rq() calls to finish. May sleep. 3026 * 3027 * Note: 3028 * @dev must not itself be a scsi_target device. 3029 */ 3030 void 3031 scsi_block_targets(struct Scsi_Host *shost, struct device *dev) 3032 { 3033 WARN_ON_ONCE(scsi_is_target_device(dev)); 3034 device_for_each_child(dev, NULL, target_block); 3035 blk_mq_wait_quiesce_done(&shost->tag_set); 3036 } 3037 EXPORT_SYMBOL_GPL(scsi_block_targets); 3038 3039 static void 3040 device_unblock(struct scsi_device *sdev, void *data) 3041 { 3042 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3043 } 3044 3045 static int 3046 target_unblock(struct device *dev, void *data) 3047 { 3048 if (scsi_is_target_device(dev)) 3049 starget_for_each_device(to_scsi_target(dev), data, 3050 device_unblock); 3051 return 0; 3052 } 3053 3054 void 3055 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3056 { 3057 if (scsi_is_target_device(dev)) 3058 starget_for_each_device(to_scsi_target(dev), &new_state, 3059 device_unblock); 3060 else 3061 device_for_each_child(dev, &new_state, target_unblock); 3062 } 3063 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3064 3065 /** 3066 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state 3067 * @shost: device to block 3068 * 3069 * Pause SCSI command processing for all logical units associated with the SCSI 3070 * host and wait until pending scsi_queue_rq() calls have finished. 3071 * 3072 * Returns zero if successful or a negative error code upon failure. 3073 */ 3074 int 3075 scsi_host_block(struct Scsi_Host *shost) 3076 { 3077 struct scsi_device *sdev; 3078 int ret; 3079 3080 /* 3081 * Call scsi_internal_device_block_nowait so we can avoid 3082 * calling synchronize_rcu() for each LUN. 3083 */ 3084 shost_for_each_device(sdev, shost) { 3085 mutex_lock(&sdev->state_mutex); 3086 ret = scsi_internal_device_block_nowait(sdev); 3087 mutex_unlock(&sdev->state_mutex); 3088 if (ret) { 3089 scsi_device_put(sdev); 3090 return ret; 3091 } 3092 } 3093 3094 /* Wait for ongoing scsi_queue_rq() calls to finish. */ 3095 blk_mq_wait_quiesce_done(&shost->tag_set); 3096 3097 return 0; 3098 } 3099 EXPORT_SYMBOL_GPL(scsi_host_block); 3100 3101 int 3102 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 3103 { 3104 struct scsi_device *sdev; 3105 int ret = 0; 3106 3107 shost_for_each_device(sdev, shost) { 3108 ret = scsi_internal_device_unblock(sdev, new_state); 3109 if (ret) { 3110 scsi_device_put(sdev); 3111 break; 3112 } 3113 } 3114 return ret; 3115 } 3116 EXPORT_SYMBOL_GPL(scsi_host_unblock); 3117 3118 /** 3119 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3120 * @sgl: scatter-gather list 3121 * @sg_count: number of segments in sg 3122 * @offset: offset in bytes into sg, on return offset into the mapped area 3123 * @len: bytes to map, on return number of bytes mapped 3124 * 3125 * Returns virtual address of the start of the mapped page 3126 */ 3127 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3128 size_t *offset, size_t *len) 3129 { 3130 int i; 3131 size_t sg_len = 0, len_complete = 0; 3132 struct scatterlist *sg; 3133 struct page *page; 3134 3135 WARN_ON(!irqs_disabled()); 3136 3137 for_each_sg(sgl, sg, sg_count, i) { 3138 len_complete = sg_len; /* Complete sg-entries */ 3139 sg_len += sg->length; 3140 if (sg_len > *offset) 3141 break; 3142 } 3143 3144 if (unlikely(i == sg_count)) { 3145 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3146 "elements %d\n", 3147 __func__, sg_len, *offset, sg_count); 3148 WARN_ON(1); 3149 return NULL; 3150 } 3151 3152 /* Offset starting from the beginning of first page in this sg-entry */ 3153 *offset = *offset - len_complete + sg->offset; 3154 3155 /* Assumption: contiguous pages can be accessed as "page + i" */ 3156 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3157 *offset &= ~PAGE_MASK; 3158 3159 /* Bytes in this sg-entry from *offset to the end of the page */ 3160 sg_len = PAGE_SIZE - *offset; 3161 if (*len > sg_len) 3162 *len = sg_len; 3163 3164 return kmap_atomic(page); 3165 } 3166 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3167 3168 /** 3169 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3170 * @virt: virtual address to be unmapped 3171 */ 3172 void scsi_kunmap_atomic_sg(void *virt) 3173 { 3174 kunmap_atomic(virt); 3175 } 3176 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3177 3178 void sdev_disable_disk_events(struct scsi_device *sdev) 3179 { 3180 atomic_inc(&sdev->disk_events_disable_depth); 3181 } 3182 EXPORT_SYMBOL(sdev_disable_disk_events); 3183 3184 void sdev_enable_disk_events(struct scsi_device *sdev) 3185 { 3186 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3187 return; 3188 atomic_dec(&sdev->disk_events_disable_depth); 3189 } 3190 EXPORT_SYMBOL(sdev_enable_disk_events); 3191 3192 static unsigned char designator_prio(const unsigned char *d) 3193 { 3194 if (d[1] & 0x30) 3195 /* not associated with LUN */ 3196 return 0; 3197 3198 if (d[3] == 0) 3199 /* invalid length */ 3200 return 0; 3201 3202 /* 3203 * Order of preference for lun descriptor: 3204 * - SCSI name string 3205 * - NAA IEEE Registered Extended 3206 * - EUI-64 based 16-byte 3207 * - EUI-64 based 12-byte 3208 * - NAA IEEE Registered 3209 * - NAA IEEE Extended 3210 * - EUI-64 based 8-byte 3211 * - SCSI name string (truncated) 3212 * - T10 Vendor ID 3213 * as longer descriptors reduce the likelyhood 3214 * of identification clashes. 3215 */ 3216 3217 switch (d[1] & 0xf) { 3218 case 8: 3219 /* SCSI name string, variable-length UTF-8 */ 3220 return 9; 3221 case 3: 3222 switch (d[4] >> 4) { 3223 case 6: 3224 /* NAA registered extended */ 3225 return 8; 3226 case 5: 3227 /* NAA registered */ 3228 return 5; 3229 case 4: 3230 /* NAA extended */ 3231 return 4; 3232 case 3: 3233 /* NAA locally assigned */ 3234 return 1; 3235 default: 3236 break; 3237 } 3238 break; 3239 case 2: 3240 switch (d[3]) { 3241 case 16: 3242 /* EUI64-based, 16 byte */ 3243 return 7; 3244 case 12: 3245 /* EUI64-based, 12 byte */ 3246 return 6; 3247 case 8: 3248 /* EUI64-based, 8 byte */ 3249 return 3; 3250 default: 3251 break; 3252 } 3253 break; 3254 case 1: 3255 /* T10 vendor ID */ 3256 return 1; 3257 default: 3258 break; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /** 3265 * scsi_vpd_lun_id - return a unique device identification 3266 * @sdev: SCSI device 3267 * @id: buffer for the identification 3268 * @id_len: length of the buffer 3269 * 3270 * Copies a unique device identification into @id based 3271 * on the information in the VPD page 0x83 of the device. 3272 * The string will be formatted as a SCSI name string. 3273 * 3274 * Returns the length of the identification or error on failure. 3275 * If the identifier is longer than the supplied buffer the actual 3276 * identifier length is returned and the buffer is not zero-padded. 3277 */ 3278 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3279 { 3280 u8 cur_id_prio = 0; 3281 u8 cur_id_size = 0; 3282 const unsigned char *d, *cur_id_str; 3283 const struct scsi_vpd *vpd_pg83; 3284 int id_size = -EINVAL; 3285 3286 rcu_read_lock(); 3287 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3288 if (!vpd_pg83) { 3289 rcu_read_unlock(); 3290 return -ENXIO; 3291 } 3292 3293 /* The id string must be at least 20 bytes + terminating NULL byte */ 3294 if (id_len < 21) { 3295 rcu_read_unlock(); 3296 return -EINVAL; 3297 } 3298 3299 memset(id, 0, id_len); 3300 for (d = vpd_pg83->data + 4; 3301 d < vpd_pg83->data + vpd_pg83->len; 3302 d += d[3] + 4) { 3303 u8 prio = designator_prio(d); 3304 3305 if (prio == 0 || cur_id_prio > prio) 3306 continue; 3307 3308 switch (d[1] & 0xf) { 3309 case 0x1: 3310 /* T10 Vendor ID */ 3311 if (cur_id_size > d[3]) 3312 break; 3313 cur_id_prio = prio; 3314 cur_id_size = d[3]; 3315 if (cur_id_size + 4 > id_len) 3316 cur_id_size = id_len - 4; 3317 cur_id_str = d + 4; 3318 id_size = snprintf(id, id_len, "t10.%*pE", 3319 cur_id_size, cur_id_str); 3320 break; 3321 case 0x2: 3322 /* EUI-64 */ 3323 cur_id_prio = prio; 3324 cur_id_size = d[3]; 3325 cur_id_str = d + 4; 3326 switch (cur_id_size) { 3327 case 8: 3328 id_size = snprintf(id, id_len, 3329 "eui.%8phN", 3330 cur_id_str); 3331 break; 3332 case 12: 3333 id_size = snprintf(id, id_len, 3334 "eui.%12phN", 3335 cur_id_str); 3336 break; 3337 case 16: 3338 id_size = snprintf(id, id_len, 3339 "eui.%16phN", 3340 cur_id_str); 3341 break; 3342 default: 3343 break; 3344 } 3345 break; 3346 case 0x3: 3347 /* NAA */ 3348 cur_id_prio = prio; 3349 cur_id_size = d[3]; 3350 cur_id_str = d + 4; 3351 switch (cur_id_size) { 3352 case 8: 3353 id_size = snprintf(id, id_len, 3354 "naa.%8phN", 3355 cur_id_str); 3356 break; 3357 case 16: 3358 id_size = snprintf(id, id_len, 3359 "naa.%16phN", 3360 cur_id_str); 3361 break; 3362 default: 3363 break; 3364 } 3365 break; 3366 case 0x8: 3367 /* SCSI name string */ 3368 if (cur_id_size > d[3]) 3369 break; 3370 /* Prefer others for truncated descriptor */ 3371 if (d[3] > id_len) { 3372 prio = 2; 3373 if (cur_id_prio > prio) 3374 break; 3375 } 3376 cur_id_prio = prio; 3377 cur_id_size = id_size = d[3]; 3378 cur_id_str = d + 4; 3379 if (cur_id_size >= id_len) 3380 cur_id_size = id_len - 1; 3381 memcpy(id, cur_id_str, cur_id_size); 3382 break; 3383 default: 3384 break; 3385 } 3386 } 3387 rcu_read_unlock(); 3388 3389 return id_size; 3390 } 3391 EXPORT_SYMBOL(scsi_vpd_lun_id); 3392 3393 /** 3394 * scsi_vpd_tpg_id - return a target port group identifier 3395 * @sdev: SCSI device 3396 * @rel_id: pointer to return relative target port in if not %NULL 3397 * 3398 * Returns the Target Port Group identifier from the information 3399 * from VPD page 0x83 of the device. 3400 * Optionally sets @rel_id to the relative target port on success. 3401 * 3402 * Return: the identifier or error on failure. 3403 */ 3404 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3405 { 3406 const unsigned char *d; 3407 const struct scsi_vpd *vpd_pg83; 3408 int group_id = -EAGAIN, rel_port = -1; 3409 3410 rcu_read_lock(); 3411 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3412 if (!vpd_pg83) { 3413 rcu_read_unlock(); 3414 return -ENXIO; 3415 } 3416 3417 d = vpd_pg83->data + 4; 3418 while (d < vpd_pg83->data + vpd_pg83->len) { 3419 switch (d[1] & 0xf) { 3420 case 0x4: 3421 /* Relative target port */ 3422 rel_port = get_unaligned_be16(&d[6]); 3423 break; 3424 case 0x5: 3425 /* Target port group */ 3426 group_id = get_unaligned_be16(&d[6]); 3427 break; 3428 default: 3429 break; 3430 } 3431 d += d[3] + 4; 3432 } 3433 rcu_read_unlock(); 3434 3435 if (group_id >= 0 && rel_id && rel_port != -1) 3436 *rel_id = rel_port; 3437 3438 return group_id; 3439 } 3440 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3441 3442 /** 3443 * scsi_build_sense - build sense data for a command 3444 * @scmd: scsi command for which the sense should be formatted 3445 * @desc: Sense format (non-zero == descriptor format, 3446 * 0 == fixed format) 3447 * @key: Sense key 3448 * @asc: Additional sense code 3449 * @ascq: Additional sense code qualifier 3450 * 3451 **/ 3452 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3453 { 3454 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3455 scmd->result = SAM_STAT_CHECK_CONDITION; 3456 } 3457 EXPORT_SYMBOL_GPL(scsi_build_sense); 3458 3459 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST 3460 #include "scsi_lib_test.c" 3461 #endif 3462