1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/completion.h> 13 #include <linux/kernel.h> 14 #include <linux/mempool.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/pci.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_dbg.h> 24 #include <scsi/scsi_device.h> 25 #include <scsi/scsi_driver.h> 26 #include <scsi/scsi_eh.h> 27 #include <scsi/scsi_host.h> 28 29 #include "scsi_priv.h" 30 #include "scsi_logging.h" 31 32 33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 34 #define SG_MEMPOOL_SIZE 2 35 36 struct scsi_host_sg_pool { 37 size_t size; 38 char *name; 39 struct kmem_cache *slab; 40 mempool_t *pool; 41 }; 42 43 #if (SCSI_MAX_PHYS_SEGMENTS < 32) 44 #error SCSI_MAX_PHYS_SEGMENTS is too small 45 #endif 46 47 #define SP(x) { x, "sgpool-" #x } 48 static struct scsi_host_sg_pool scsi_sg_pools[] = { 49 SP(8), 50 SP(16), 51 SP(32), 52 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 53 SP(64), 54 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 55 SP(128), 56 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 57 SP(256), 58 #if (SCSI_MAX_PHYS_SEGMENTS > 256) 59 #error SCSI_MAX_PHYS_SEGMENTS is too large 60 #endif 61 #endif 62 #endif 63 #endif 64 }; 65 #undef SP 66 67 static void scsi_run_queue(struct request_queue *q); 68 69 /* 70 * Function: scsi_unprep_request() 71 * 72 * Purpose: Remove all preparation done for a request, including its 73 * associated scsi_cmnd, so that it can be requeued. 74 * 75 * Arguments: req - request to unprepare 76 * 77 * Lock status: Assumed that no locks are held upon entry. 78 * 79 * Returns: Nothing. 80 */ 81 static void scsi_unprep_request(struct request *req) 82 { 83 struct scsi_cmnd *cmd = req->special; 84 85 req->cmd_flags &= ~REQ_DONTPREP; 86 req->special = NULL; 87 88 scsi_put_command(cmd); 89 } 90 91 /* 92 * Function: scsi_queue_insert() 93 * 94 * Purpose: Insert a command in the midlevel queue. 95 * 96 * Arguments: cmd - command that we are adding to queue. 97 * reason - why we are inserting command to queue. 98 * 99 * Lock status: Assumed that lock is not held upon entry. 100 * 101 * Returns: Nothing. 102 * 103 * Notes: We do this for one of two cases. Either the host is busy 104 * and it cannot accept any more commands for the time being, 105 * or the device returned QUEUE_FULL and can accept no more 106 * commands. 107 * Notes: This could be called either from an interrupt context or a 108 * normal process context. 109 */ 110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 111 { 112 struct Scsi_Host *host = cmd->device->host; 113 struct scsi_device *device = cmd->device; 114 struct request_queue *q = device->request_queue; 115 unsigned long flags; 116 117 SCSI_LOG_MLQUEUE(1, 118 printk("Inserting command %p into mlqueue\n", cmd)); 119 120 /* 121 * Set the appropriate busy bit for the device/host. 122 * 123 * If the host/device isn't busy, assume that something actually 124 * completed, and that we should be able to queue a command now. 125 * 126 * Note that the prior mid-layer assumption that any host could 127 * always queue at least one command is now broken. The mid-layer 128 * will implement a user specifiable stall (see 129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 130 * if a command is requeued with no other commands outstanding 131 * either for the device or for the host. 132 */ 133 if (reason == SCSI_MLQUEUE_HOST_BUSY) 134 host->host_blocked = host->max_host_blocked; 135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY) 136 device->device_blocked = device->max_device_blocked; 137 138 /* 139 * Decrement the counters, since these commands are no longer 140 * active on the host/device. 141 */ 142 scsi_device_unbusy(device); 143 144 /* 145 * Requeue this command. It will go before all other commands 146 * that are already in the queue. 147 * 148 * NOTE: there is magic here about the way the queue is plugged if 149 * we have no outstanding commands. 150 * 151 * Although we *don't* plug the queue, we call the request 152 * function. The SCSI request function detects the blocked condition 153 * and plugs the queue appropriately. 154 */ 155 spin_lock_irqsave(q->queue_lock, flags); 156 blk_requeue_request(q, cmd->request); 157 spin_unlock_irqrestore(q->queue_lock, flags); 158 159 scsi_run_queue(q); 160 161 return 0; 162 } 163 164 /** 165 * scsi_execute - insert request and wait for the result 166 * @sdev: scsi device 167 * @cmd: scsi command 168 * @data_direction: data direction 169 * @buffer: data buffer 170 * @bufflen: len of buffer 171 * @sense: optional sense buffer 172 * @timeout: request timeout in seconds 173 * @retries: number of times to retry request 174 * @flags: or into request flags; 175 * 176 * returns the req->errors value which is the scsi_cmnd result 177 * field. 178 **/ 179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 180 int data_direction, void *buffer, unsigned bufflen, 181 unsigned char *sense, int timeout, int retries, int flags) 182 { 183 struct request *req; 184 int write = (data_direction == DMA_TO_DEVICE); 185 int ret = DRIVER_ERROR << 24; 186 187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 188 189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 190 buffer, bufflen, __GFP_WAIT)) 191 goto out; 192 193 req->cmd_len = COMMAND_SIZE(cmd[0]); 194 memcpy(req->cmd, cmd, req->cmd_len); 195 req->sense = sense; 196 req->sense_len = 0; 197 req->retries = retries; 198 req->timeout = timeout; 199 req->cmd_type = REQ_TYPE_BLOCK_PC; 200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 201 202 /* 203 * head injection *required* here otherwise quiesce won't work 204 */ 205 blk_execute_rq(req->q, NULL, req, 1); 206 207 ret = req->errors; 208 out: 209 blk_put_request(req); 210 211 return ret; 212 } 213 EXPORT_SYMBOL(scsi_execute); 214 215 216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 217 int data_direction, void *buffer, unsigned bufflen, 218 struct scsi_sense_hdr *sshdr, int timeout, int retries) 219 { 220 char *sense = NULL; 221 int result; 222 223 if (sshdr) { 224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 225 if (!sense) 226 return DRIVER_ERROR << 24; 227 } 228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 229 sense, timeout, retries, 0); 230 if (sshdr) 231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 232 233 kfree(sense); 234 return result; 235 } 236 EXPORT_SYMBOL(scsi_execute_req); 237 238 struct scsi_io_context { 239 void *data; 240 void (*done)(void *data, char *sense, int result, int resid); 241 char sense[SCSI_SENSE_BUFFERSIZE]; 242 }; 243 244 static struct kmem_cache *scsi_io_context_cache; 245 246 static void scsi_end_async(struct request *req, int uptodate) 247 { 248 struct scsi_io_context *sioc = req->end_io_data; 249 250 if (sioc->done) 251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 252 253 kmem_cache_free(scsi_io_context_cache, sioc); 254 __blk_put_request(req->q, req); 255 } 256 257 static int scsi_merge_bio(struct request *rq, struct bio *bio) 258 { 259 struct request_queue *q = rq->q; 260 261 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 262 if (rq_data_dir(rq) == WRITE) 263 bio->bi_rw |= (1 << BIO_RW); 264 blk_queue_bounce(q, &bio); 265 266 return blk_rq_append_bio(q, rq, bio); 267 } 268 269 static void scsi_bi_endio(struct bio *bio, int error) 270 { 271 bio_put(bio); 272 } 273 274 /** 275 * scsi_req_map_sg - map a scatterlist into a request 276 * @rq: request to fill 277 * @sg: scatterlist 278 * @nsegs: number of elements 279 * @bufflen: len of buffer 280 * @gfp: memory allocation flags 281 * 282 * scsi_req_map_sg maps a scatterlist into a request so that the 283 * request can be sent to the block layer. We do not trust the scatterlist 284 * sent to use, as some ULDs use that struct to only organize the pages. 285 */ 286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 287 int nsegs, unsigned bufflen, gfp_t gfp) 288 { 289 struct request_queue *q = rq->q; 290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 291 unsigned int data_len = 0, len, bytes, off; 292 struct page *page; 293 struct bio *bio = NULL; 294 int i, err, nr_vecs = 0; 295 296 for (i = 0; i < nsegs; i++) { 297 page = sgl[i].page; 298 off = sgl[i].offset; 299 len = sgl[i].length; 300 data_len += len; 301 302 while (len > 0) { 303 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 304 305 if (!bio) { 306 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 307 nr_pages -= nr_vecs; 308 309 bio = bio_alloc(gfp, nr_vecs); 310 if (!bio) { 311 err = -ENOMEM; 312 goto free_bios; 313 } 314 bio->bi_end_io = scsi_bi_endio; 315 } 316 317 if (bio_add_pc_page(q, bio, page, bytes, off) != 318 bytes) { 319 bio_put(bio); 320 err = -EINVAL; 321 goto free_bios; 322 } 323 324 if (bio->bi_vcnt >= nr_vecs) { 325 err = scsi_merge_bio(rq, bio); 326 if (err) { 327 bio_endio(bio, 0); 328 goto free_bios; 329 } 330 bio = NULL; 331 } 332 333 page++; 334 len -= bytes; 335 off = 0; 336 } 337 } 338 339 rq->buffer = rq->data = NULL; 340 rq->data_len = data_len; 341 return 0; 342 343 free_bios: 344 while ((bio = rq->bio) != NULL) { 345 rq->bio = bio->bi_next; 346 /* 347 * call endio instead of bio_put incase it was bounced 348 */ 349 bio_endio(bio, 0); 350 } 351 352 return err; 353 } 354 355 /** 356 * scsi_execute_async - insert request 357 * @sdev: scsi device 358 * @cmd: scsi command 359 * @cmd_len: length of scsi cdb 360 * @data_direction: data direction 361 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 362 * @bufflen: len of buffer 363 * @use_sg: if buffer is a scatterlist this is the number of elements 364 * @timeout: request timeout in seconds 365 * @retries: number of times to retry request 366 * @flags: or into request flags 367 **/ 368 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 369 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 370 int use_sg, int timeout, int retries, void *privdata, 371 void (*done)(void *, char *, int, int), gfp_t gfp) 372 { 373 struct request *req; 374 struct scsi_io_context *sioc; 375 int err = 0; 376 int write = (data_direction == DMA_TO_DEVICE); 377 378 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 379 if (!sioc) 380 return DRIVER_ERROR << 24; 381 382 req = blk_get_request(sdev->request_queue, write, gfp); 383 if (!req) 384 goto free_sense; 385 req->cmd_type = REQ_TYPE_BLOCK_PC; 386 req->cmd_flags |= REQ_QUIET; 387 388 if (use_sg) 389 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 390 else if (bufflen) 391 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 392 393 if (err) 394 goto free_req; 395 396 req->cmd_len = cmd_len; 397 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 398 memcpy(req->cmd, cmd, req->cmd_len); 399 req->sense = sioc->sense; 400 req->sense_len = 0; 401 req->timeout = timeout; 402 req->retries = retries; 403 req->end_io_data = sioc; 404 405 sioc->data = privdata; 406 sioc->done = done; 407 408 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 409 return 0; 410 411 free_req: 412 blk_put_request(req); 413 free_sense: 414 kmem_cache_free(scsi_io_context_cache, sioc); 415 return DRIVER_ERROR << 24; 416 } 417 EXPORT_SYMBOL_GPL(scsi_execute_async); 418 419 /* 420 * Function: scsi_init_cmd_errh() 421 * 422 * Purpose: Initialize cmd fields related to error handling. 423 * 424 * Arguments: cmd - command that is ready to be queued. 425 * 426 * Notes: This function has the job of initializing a number of 427 * fields related to error handling. Typically this will 428 * be called once for each command, as required. 429 */ 430 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 431 { 432 cmd->serial_number = 0; 433 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer); 434 if (cmd->cmd_len == 0) 435 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]); 436 } 437 438 void scsi_device_unbusy(struct scsi_device *sdev) 439 { 440 struct Scsi_Host *shost = sdev->host; 441 unsigned long flags; 442 443 spin_lock_irqsave(shost->host_lock, flags); 444 shost->host_busy--; 445 if (unlikely(scsi_host_in_recovery(shost) && 446 (shost->host_failed || shost->host_eh_scheduled))) 447 scsi_eh_wakeup(shost); 448 spin_unlock(shost->host_lock); 449 spin_lock(sdev->request_queue->queue_lock); 450 sdev->device_busy--; 451 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 452 } 453 454 /* 455 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 456 * and call blk_run_queue for all the scsi_devices on the target - 457 * including current_sdev first. 458 * 459 * Called with *no* scsi locks held. 460 */ 461 static void scsi_single_lun_run(struct scsi_device *current_sdev) 462 { 463 struct Scsi_Host *shost = current_sdev->host; 464 struct scsi_device *sdev, *tmp; 465 struct scsi_target *starget = scsi_target(current_sdev); 466 unsigned long flags; 467 468 spin_lock_irqsave(shost->host_lock, flags); 469 starget->starget_sdev_user = NULL; 470 spin_unlock_irqrestore(shost->host_lock, flags); 471 472 /* 473 * Call blk_run_queue for all LUNs on the target, starting with 474 * current_sdev. We race with others (to set starget_sdev_user), 475 * but in most cases, we will be first. Ideally, each LU on the 476 * target would get some limited time or requests on the target. 477 */ 478 blk_run_queue(current_sdev->request_queue); 479 480 spin_lock_irqsave(shost->host_lock, flags); 481 if (starget->starget_sdev_user) 482 goto out; 483 list_for_each_entry_safe(sdev, tmp, &starget->devices, 484 same_target_siblings) { 485 if (sdev == current_sdev) 486 continue; 487 if (scsi_device_get(sdev)) 488 continue; 489 490 spin_unlock_irqrestore(shost->host_lock, flags); 491 blk_run_queue(sdev->request_queue); 492 spin_lock_irqsave(shost->host_lock, flags); 493 494 scsi_device_put(sdev); 495 } 496 out: 497 spin_unlock_irqrestore(shost->host_lock, flags); 498 } 499 500 /* 501 * Function: scsi_run_queue() 502 * 503 * Purpose: Select a proper request queue to serve next 504 * 505 * Arguments: q - last request's queue 506 * 507 * Returns: Nothing 508 * 509 * Notes: The previous command was completely finished, start 510 * a new one if possible. 511 */ 512 static void scsi_run_queue(struct request_queue *q) 513 { 514 struct scsi_device *sdev = q->queuedata; 515 struct Scsi_Host *shost = sdev->host; 516 unsigned long flags; 517 518 if (sdev->single_lun) 519 scsi_single_lun_run(sdev); 520 521 spin_lock_irqsave(shost->host_lock, flags); 522 while (!list_empty(&shost->starved_list) && 523 !shost->host_blocked && !shost->host_self_blocked && 524 !((shost->can_queue > 0) && 525 (shost->host_busy >= shost->can_queue))) { 526 /* 527 * As long as shost is accepting commands and we have 528 * starved queues, call blk_run_queue. scsi_request_fn 529 * drops the queue_lock and can add us back to the 530 * starved_list. 531 * 532 * host_lock protects the starved_list and starved_entry. 533 * scsi_request_fn must get the host_lock before checking 534 * or modifying starved_list or starved_entry. 535 */ 536 sdev = list_entry(shost->starved_list.next, 537 struct scsi_device, starved_entry); 538 list_del_init(&sdev->starved_entry); 539 spin_unlock_irqrestore(shost->host_lock, flags); 540 541 542 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 543 !test_and_set_bit(QUEUE_FLAG_REENTER, 544 &sdev->request_queue->queue_flags)) { 545 blk_run_queue(sdev->request_queue); 546 clear_bit(QUEUE_FLAG_REENTER, 547 &sdev->request_queue->queue_flags); 548 } else 549 blk_run_queue(sdev->request_queue); 550 551 spin_lock_irqsave(shost->host_lock, flags); 552 if (unlikely(!list_empty(&sdev->starved_entry))) 553 /* 554 * sdev lost a race, and was put back on the 555 * starved list. This is unlikely but without this 556 * in theory we could loop forever. 557 */ 558 break; 559 } 560 spin_unlock_irqrestore(shost->host_lock, flags); 561 562 blk_run_queue(q); 563 } 564 565 /* 566 * Function: scsi_requeue_command() 567 * 568 * Purpose: Handle post-processing of completed commands. 569 * 570 * Arguments: q - queue to operate on 571 * cmd - command that may need to be requeued. 572 * 573 * Returns: Nothing 574 * 575 * Notes: After command completion, there may be blocks left 576 * over which weren't finished by the previous command 577 * this can be for a number of reasons - the main one is 578 * I/O errors in the middle of the request, in which case 579 * we need to request the blocks that come after the bad 580 * sector. 581 * Notes: Upon return, cmd is a stale pointer. 582 */ 583 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 584 { 585 struct request *req = cmd->request; 586 unsigned long flags; 587 588 scsi_unprep_request(req); 589 spin_lock_irqsave(q->queue_lock, flags); 590 blk_requeue_request(q, req); 591 spin_unlock_irqrestore(q->queue_lock, flags); 592 593 scsi_run_queue(q); 594 } 595 596 void scsi_next_command(struct scsi_cmnd *cmd) 597 { 598 struct scsi_device *sdev = cmd->device; 599 struct request_queue *q = sdev->request_queue; 600 601 /* need to hold a reference on the device before we let go of the cmd */ 602 get_device(&sdev->sdev_gendev); 603 604 scsi_put_command(cmd); 605 scsi_run_queue(q); 606 607 /* ok to remove device now */ 608 put_device(&sdev->sdev_gendev); 609 } 610 611 void scsi_run_host_queues(struct Scsi_Host *shost) 612 { 613 struct scsi_device *sdev; 614 615 shost_for_each_device(sdev, shost) 616 scsi_run_queue(sdev->request_queue); 617 } 618 619 /* 620 * Function: scsi_end_request() 621 * 622 * Purpose: Post-processing of completed commands (usually invoked at end 623 * of upper level post-processing and scsi_io_completion). 624 * 625 * Arguments: cmd - command that is complete. 626 * uptodate - 1 if I/O indicates success, <= 0 for I/O error. 627 * bytes - number of bytes of completed I/O 628 * requeue - indicates whether we should requeue leftovers. 629 * 630 * Lock status: Assumed that lock is not held upon entry. 631 * 632 * Returns: cmd if requeue required, NULL otherwise. 633 * 634 * Notes: This is called for block device requests in order to 635 * mark some number of sectors as complete. 636 * 637 * We are guaranteeing that the request queue will be goosed 638 * at some point during this call. 639 * Notes: If cmd was requeued, upon return it will be a stale pointer. 640 */ 641 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate, 642 int bytes, int requeue) 643 { 644 struct request_queue *q = cmd->device->request_queue; 645 struct request *req = cmd->request; 646 unsigned long flags; 647 648 /* 649 * If there are blocks left over at the end, set up the command 650 * to queue the remainder of them. 651 */ 652 if (end_that_request_chunk(req, uptodate, bytes)) { 653 int leftover = (req->hard_nr_sectors << 9); 654 655 if (blk_pc_request(req)) 656 leftover = req->data_len; 657 658 /* kill remainder if no retrys */ 659 if (!uptodate && blk_noretry_request(req)) 660 end_that_request_chunk(req, 0, leftover); 661 else { 662 if (requeue) { 663 /* 664 * Bleah. Leftovers again. Stick the 665 * leftovers in the front of the 666 * queue, and goose the queue again. 667 */ 668 scsi_requeue_command(q, cmd); 669 cmd = NULL; 670 } 671 return cmd; 672 } 673 } 674 675 add_disk_randomness(req->rq_disk); 676 677 spin_lock_irqsave(q->queue_lock, flags); 678 if (blk_rq_tagged(req)) 679 blk_queue_end_tag(q, req); 680 end_that_request_last(req, uptodate); 681 spin_unlock_irqrestore(q->queue_lock, flags); 682 683 /* 684 * This will goose the queue request function at the end, so we don't 685 * need to worry about launching another command. 686 */ 687 scsi_next_command(cmd); 688 return NULL; 689 } 690 691 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask) 692 { 693 struct scsi_host_sg_pool *sgp; 694 struct scatterlist *sgl; 695 696 BUG_ON(!cmd->use_sg); 697 698 switch (cmd->use_sg) { 699 case 1 ... 8: 700 cmd->sglist_len = 0; 701 break; 702 case 9 ... 16: 703 cmd->sglist_len = 1; 704 break; 705 case 17 ... 32: 706 cmd->sglist_len = 2; 707 break; 708 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 709 case 33 ... 64: 710 cmd->sglist_len = 3; 711 break; 712 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 713 case 65 ... 128: 714 cmd->sglist_len = 4; 715 break; 716 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 717 case 129 ... 256: 718 cmd->sglist_len = 5; 719 break; 720 #endif 721 #endif 722 #endif 723 default: 724 return NULL; 725 } 726 727 sgp = scsi_sg_pools + cmd->sglist_len; 728 sgl = mempool_alloc(sgp->pool, gfp_mask); 729 return sgl; 730 } 731 732 EXPORT_SYMBOL(scsi_alloc_sgtable); 733 734 void scsi_free_sgtable(struct scatterlist *sgl, int index) 735 { 736 struct scsi_host_sg_pool *sgp; 737 738 BUG_ON(index >= SG_MEMPOOL_NR); 739 740 sgp = scsi_sg_pools + index; 741 mempool_free(sgl, sgp->pool); 742 } 743 744 EXPORT_SYMBOL(scsi_free_sgtable); 745 746 /* 747 * Function: scsi_release_buffers() 748 * 749 * Purpose: Completion processing for block device I/O requests. 750 * 751 * Arguments: cmd - command that we are bailing. 752 * 753 * Lock status: Assumed that no lock is held upon entry. 754 * 755 * Returns: Nothing 756 * 757 * Notes: In the event that an upper level driver rejects a 758 * command, we must release resources allocated during 759 * the __init_io() function. Primarily this would involve 760 * the scatter-gather table, and potentially any bounce 761 * buffers. 762 */ 763 static void scsi_release_buffers(struct scsi_cmnd *cmd) 764 { 765 if (cmd->use_sg) 766 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len); 767 768 /* 769 * Zero these out. They now point to freed memory, and it is 770 * dangerous to hang onto the pointers. 771 */ 772 cmd->request_buffer = NULL; 773 cmd->request_bufflen = 0; 774 } 775 776 /* 777 * Function: scsi_io_completion() 778 * 779 * Purpose: Completion processing for block device I/O requests. 780 * 781 * Arguments: cmd - command that is finished. 782 * 783 * Lock status: Assumed that no lock is held upon entry. 784 * 785 * Returns: Nothing 786 * 787 * Notes: This function is matched in terms of capabilities to 788 * the function that created the scatter-gather list. 789 * In other words, if there are no bounce buffers 790 * (the normal case for most drivers), we don't need 791 * the logic to deal with cleaning up afterwards. 792 * 793 * We must do one of several things here: 794 * 795 * a) Call scsi_end_request. This will finish off the 796 * specified number of sectors. If we are done, the 797 * command block will be released, and the queue 798 * function will be goosed. If we are not done, then 799 * scsi_end_request will directly goose the queue. 800 * 801 * b) We can just use scsi_requeue_command() here. This would 802 * be used if we just wanted to retry, for example. 803 */ 804 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 805 { 806 int result = cmd->result; 807 int this_count = cmd->request_bufflen; 808 struct request_queue *q = cmd->device->request_queue; 809 struct request *req = cmd->request; 810 int clear_errors = 1; 811 struct scsi_sense_hdr sshdr; 812 int sense_valid = 0; 813 int sense_deferred = 0; 814 815 scsi_release_buffers(cmd); 816 817 if (result) { 818 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 819 if (sense_valid) 820 sense_deferred = scsi_sense_is_deferred(&sshdr); 821 } 822 823 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 824 req->errors = result; 825 if (result) { 826 clear_errors = 0; 827 if (sense_valid && req->sense) { 828 /* 829 * SG_IO wants current and deferred errors 830 */ 831 int len = 8 + cmd->sense_buffer[7]; 832 833 if (len > SCSI_SENSE_BUFFERSIZE) 834 len = SCSI_SENSE_BUFFERSIZE; 835 memcpy(req->sense, cmd->sense_buffer, len); 836 req->sense_len = len; 837 } 838 } 839 req->data_len = cmd->resid; 840 } 841 842 /* 843 * Next deal with any sectors which we were able to correctly 844 * handle. 845 */ 846 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 847 "%d bytes done.\n", 848 req->nr_sectors, good_bytes)); 849 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg)); 850 851 if (clear_errors) 852 req->errors = 0; 853 854 /* A number of bytes were successfully read. If there 855 * are leftovers and there is some kind of error 856 * (result != 0), retry the rest. 857 */ 858 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL) 859 return; 860 861 /* good_bytes = 0, or (inclusive) there were leftovers and 862 * result = 0, so scsi_end_request couldn't retry. 863 */ 864 if (sense_valid && !sense_deferred) { 865 switch (sshdr.sense_key) { 866 case UNIT_ATTENTION: 867 if (cmd->device->removable) { 868 /* Detected disc change. Set a bit 869 * and quietly refuse further access. 870 */ 871 cmd->device->changed = 1; 872 scsi_end_request(cmd, 0, this_count, 1); 873 return; 874 } else { 875 /* Must have been a power glitch, or a 876 * bus reset. Could not have been a 877 * media change, so we just retry the 878 * request and see what happens. 879 */ 880 scsi_requeue_command(q, cmd); 881 return; 882 } 883 break; 884 case ILLEGAL_REQUEST: 885 /* If we had an ILLEGAL REQUEST returned, then 886 * we may have performed an unsupported 887 * command. The only thing this should be 888 * would be a ten byte read where only a six 889 * byte read was supported. Also, on a system 890 * where READ CAPACITY failed, we may have 891 * read past the end of the disk. 892 */ 893 if ((cmd->device->use_10_for_rw && 894 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 895 (cmd->cmnd[0] == READ_10 || 896 cmd->cmnd[0] == WRITE_10)) { 897 cmd->device->use_10_for_rw = 0; 898 /* This will cause a retry with a 899 * 6-byte command. 900 */ 901 scsi_requeue_command(q, cmd); 902 return; 903 } else { 904 scsi_end_request(cmd, 0, this_count, 1); 905 return; 906 } 907 break; 908 case NOT_READY: 909 /* If the device is in the process of becoming 910 * ready, or has a temporary blockage, retry. 911 */ 912 if (sshdr.asc == 0x04) { 913 switch (sshdr.ascq) { 914 case 0x01: /* becoming ready */ 915 case 0x04: /* format in progress */ 916 case 0x05: /* rebuild in progress */ 917 case 0x06: /* recalculation in progress */ 918 case 0x07: /* operation in progress */ 919 case 0x08: /* Long write in progress */ 920 case 0x09: /* self test in progress */ 921 scsi_requeue_command(q, cmd); 922 return; 923 default: 924 break; 925 } 926 } 927 if (!(req->cmd_flags & REQ_QUIET)) { 928 scmd_printk(KERN_INFO, cmd, 929 "Device not ready: "); 930 scsi_print_sense_hdr("", &sshdr); 931 } 932 scsi_end_request(cmd, 0, this_count, 1); 933 return; 934 case VOLUME_OVERFLOW: 935 if (!(req->cmd_flags & REQ_QUIET)) { 936 scmd_printk(KERN_INFO, cmd, 937 "Volume overflow, CDB: "); 938 __scsi_print_command(cmd->cmnd); 939 scsi_print_sense("", cmd); 940 } 941 /* See SSC3rXX or current. */ 942 scsi_end_request(cmd, 0, this_count, 1); 943 return; 944 default: 945 break; 946 } 947 } 948 if (host_byte(result) == DID_RESET) { 949 /* Third party bus reset or reset for error recovery 950 * reasons. Just retry the request and see what 951 * happens. 952 */ 953 scsi_requeue_command(q, cmd); 954 return; 955 } 956 if (result) { 957 if (!(req->cmd_flags & REQ_QUIET)) { 958 scsi_print_result(cmd); 959 if (driver_byte(result) & DRIVER_SENSE) 960 scsi_print_sense("", cmd); 961 } 962 } 963 scsi_end_request(cmd, 0, this_count, !result); 964 } 965 EXPORT_SYMBOL(scsi_io_completion); 966 967 /* 968 * Function: scsi_init_io() 969 * 970 * Purpose: SCSI I/O initialize function. 971 * 972 * Arguments: cmd - Command descriptor we wish to initialize 973 * 974 * Returns: 0 on success 975 * BLKPREP_DEFER if the failure is retryable 976 * BLKPREP_KILL if the failure is fatal 977 */ 978 static int scsi_init_io(struct scsi_cmnd *cmd) 979 { 980 struct request *req = cmd->request; 981 struct scatterlist *sgpnt; 982 int count; 983 984 /* 985 * We used to not use scatter-gather for single segment request, 986 * but now we do (it makes highmem I/O easier to support without 987 * kmapping pages) 988 */ 989 cmd->use_sg = req->nr_phys_segments; 990 991 /* 992 * If sg table allocation fails, requeue request later. 993 */ 994 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC); 995 if (unlikely(!sgpnt)) { 996 scsi_unprep_request(req); 997 return BLKPREP_DEFER; 998 } 999 1000 req->buffer = NULL; 1001 cmd->request_buffer = (char *) sgpnt; 1002 if (blk_pc_request(req)) 1003 cmd->request_bufflen = req->data_len; 1004 else 1005 cmd->request_bufflen = req->nr_sectors << 9; 1006 1007 /* 1008 * Next, walk the list, and fill in the addresses and sizes of 1009 * each segment. 1010 */ 1011 count = blk_rq_map_sg(req->q, req, cmd->request_buffer); 1012 if (likely(count <= cmd->use_sg)) { 1013 cmd->use_sg = count; 1014 return BLKPREP_OK; 1015 } 1016 1017 printk(KERN_ERR "Incorrect number of segments after building list\n"); 1018 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg); 1019 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors, 1020 req->current_nr_sectors); 1021 1022 /* release the command and kill it */ 1023 scsi_release_buffers(cmd); 1024 scsi_put_command(cmd); 1025 return BLKPREP_KILL; 1026 } 1027 1028 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1029 struct request *req) 1030 { 1031 struct scsi_cmnd *cmd; 1032 1033 if (!req->special) { 1034 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1035 if (unlikely(!cmd)) 1036 return NULL; 1037 req->special = cmd; 1038 } else { 1039 cmd = req->special; 1040 } 1041 1042 /* pull a tag out of the request if we have one */ 1043 cmd->tag = req->tag; 1044 cmd->request = req; 1045 1046 return cmd; 1047 } 1048 1049 static void scsi_blk_pc_done(struct scsi_cmnd *cmd) 1050 { 1051 BUG_ON(!blk_pc_request(cmd->request)); 1052 /* 1053 * This will complete the whole command with uptodate=1 so 1054 * as far as the block layer is concerned the command completed 1055 * successfully. Since this is a REQ_BLOCK_PC command the 1056 * caller should check the request's errors value 1057 */ 1058 scsi_io_completion(cmd, cmd->request_bufflen); 1059 } 1060 1061 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1062 { 1063 struct scsi_cmnd *cmd; 1064 1065 cmd = scsi_get_cmd_from_req(sdev, req); 1066 if (unlikely(!cmd)) 1067 return BLKPREP_DEFER; 1068 1069 /* 1070 * BLOCK_PC requests may transfer data, in which case they must 1071 * a bio attached to them. Or they might contain a SCSI command 1072 * that does not transfer data, in which case they may optionally 1073 * submit a request without an attached bio. 1074 */ 1075 if (req->bio) { 1076 int ret; 1077 1078 BUG_ON(!req->nr_phys_segments); 1079 1080 ret = scsi_init_io(cmd); 1081 if (unlikely(ret)) 1082 return ret; 1083 } else { 1084 BUG_ON(req->data_len); 1085 BUG_ON(req->data); 1086 1087 cmd->request_bufflen = 0; 1088 cmd->request_buffer = NULL; 1089 cmd->use_sg = 0; 1090 req->buffer = NULL; 1091 } 1092 1093 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd)); 1094 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd)); 1095 cmd->cmd_len = req->cmd_len; 1096 if (!req->data_len) 1097 cmd->sc_data_direction = DMA_NONE; 1098 else if (rq_data_dir(req) == WRITE) 1099 cmd->sc_data_direction = DMA_TO_DEVICE; 1100 else 1101 cmd->sc_data_direction = DMA_FROM_DEVICE; 1102 1103 cmd->transfersize = req->data_len; 1104 cmd->allowed = req->retries; 1105 cmd->timeout_per_command = req->timeout; 1106 cmd->done = scsi_blk_pc_done; 1107 return BLKPREP_OK; 1108 } 1109 1110 /* 1111 * Setup a REQ_TYPE_FS command. These are simple read/write request 1112 * from filesystems that still need to be translated to SCSI CDBs from 1113 * the ULD. 1114 */ 1115 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1116 { 1117 struct scsi_cmnd *cmd; 1118 struct scsi_driver *drv; 1119 int ret; 1120 1121 /* 1122 * Filesystem requests must transfer data. 1123 */ 1124 BUG_ON(!req->nr_phys_segments); 1125 1126 cmd = scsi_get_cmd_from_req(sdev, req); 1127 if (unlikely(!cmd)) 1128 return BLKPREP_DEFER; 1129 1130 ret = scsi_init_io(cmd); 1131 if (unlikely(ret)) 1132 return ret; 1133 1134 /* 1135 * Initialize the actual SCSI command for this request. 1136 */ 1137 drv = *(struct scsi_driver **)req->rq_disk->private_data; 1138 if (unlikely(!drv->init_command(cmd))) { 1139 scsi_release_buffers(cmd); 1140 scsi_put_command(cmd); 1141 return BLKPREP_KILL; 1142 } 1143 1144 return BLKPREP_OK; 1145 } 1146 1147 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1148 { 1149 struct scsi_device *sdev = q->queuedata; 1150 int ret = BLKPREP_OK; 1151 1152 /* 1153 * If the device is not in running state we will reject some 1154 * or all commands. 1155 */ 1156 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1157 switch (sdev->sdev_state) { 1158 case SDEV_OFFLINE: 1159 /* 1160 * If the device is offline we refuse to process any 1161 * commands. The device must be brought online 1162 * before trying any recovery commands. 1163 */ 1164 sdev_printk(KERN_ERR, sdev, 1165 "rejecting I/O to offline device\n"); 1166 ret = BLKPREP_KILL; 1167 break; 1168 case SDEV_DEL: 1169 /* 1170 * If the device is fully deleted, we refuse to 1171 * process any commands as well. 1172 */ 1173 sdev_printk(KERN_ERR, sdev, 1174 "rejecting I/O to dead device\n"); 1175 ret = BLKPREP_KILL; 1176 break; 1177 case SDEV_QUIESCE: 1178 case SDEV_BLOCK: 1179 /* 1180 * If the devices is blocked we defer normal commands. 1181 */ 1182 if (!(req->cmd_flags & REQ_PREEMPT)) 1183 ret = BLKPREP_DEFER; 1184 break; 1185 default: 1186 /* 1187 * For any other not fully online state we only allow 1188 * special commands. In particular any user initiated 1189 * command is not allowed. 1190 */ 1191 if (!(req->cmd_flags & REQ_PREEMPT)) 1192 ret = BLKPREP_KILL; 1193 break; 1194 } 1195 1196 if (ret != BLKPREP_OK) 1197 goto out; 1198 } 1199 1200 switch (req->cmd_type) { 1201 case REQ_TYPE_BLOCK_PC: 1202 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1203 break; 1204 case REQ_TYPE_FS: 1205 ret = scsi_setup_fs_cmnd(sdev, req); 1206 break; 1207 default: 1208 /* 1209 * All other command types are not supported. 1210 * 1211 * Note that these days the SCSI subsystem does not use 1212 * REQ_TYPE_SPECIAL requests anymore. These are only used 1213 * (directly or via blk_insert_request) by non-SCSI drivers. 1214 */ 1215 blk_dump_rq_flags(req, "SCSI bad req"); 1216 ret = BLKPREP_KILL; 1217 break; 1218 } 1219 1220 out: 1221 switch (ret) { 1222 case BLKPREP_KILL: 1223 req->errors = DID_NO_CONNECT << 16; 1224 break; 1225 case BLKPREP_DEFER: 1226 /* 1227 * If we defer, the elv_next_request() returns NULL, but the 1228 * queue must be restarted, so we plug here if no returning 1229 * command will automatically do that. 1230 */ 1231 if (sdev->device_busy == 0) 1232 blk_plug_device(q); 1233 break; 1234 default: 1235 req->cmd_flags |= REQ_DONTPREP; 1236 } 1237 1238 return ret; 1239 } 1240 1241 /* 1242 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1243 * return 0. 1244 * 1245 * Called with the queue_lock held. 1246 */ 1247 static inline int scsi_dev_queue_ready(struct request_queue *q, 1248 struct scsi_device *sdev) 1249 { 1250 if (sdev->device_busy >= sdev->queue_depth) 1251 return 0; 1252 if (sdev->device_busy == 0 && sdev->device_blocked) { 1253 /* 1254 * unblock after device_blocked iterates to zero 1255 */ 1256 if (--sdev->device_blocked == 0) { 1257 SCSI_LOG_MLQUEUE(3, 1258 sdev_printk(KERN_INFO, sdev, 1259 "unblocking device at zero depth\n")); 1260 } else { 1261 blk_plug_device(q); 1262 return 0; 1263 } 1264 } 1265 if (sdev->device_blocked) 1266 return 0; 1267 1268 return 1; 1269 } 1270 1271 /* 1272 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1273 * return 0. We must end up running the queue again whenever 0 is 1274 * returned, else IO can hang. 1275 * 1276 * Called with host_lock held. 1277 */ 1278 static inline int scsi_host_queue_ready(struct request_queue *q, 1279 struct Scsi_Host *shost, 1280 struct scsi_device *sdev) 1281 { 1282 if (scsi_host_in_recovery(shost)) 1283 return 0; 1284 if (shost->host_busy == 0 && shost->host_blocked) { 1285 /* 1286 * unblock after host_blocked iterates to zero 1287 */ 1288 if (--shost->host_blocked == 0) { 1289 SCSI_LOG_MLQUEUE(3, 1290 printk("scsi%d unblocking host at zero depth\n", 1291 shost->host_no)); 1292 } else { 1293 blk_plug_device(q); 1294 return 0; 1295 } 1296 } 1297 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 1298 shost->host_blocked || shost->host_self_blocked) { 1299 if (list_empty(&sdev->starved_entry)) 1300 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1301 return 0; 1302 } 1303 1304 /* We're OK to process the command, so we can't be starved */ 1305 if (!list_empty(&sdev->starved_entry)) 1306 list_del_init(&sdev->starved_entry); 1307 1308 return 1; 1309 } 1310 1311 /* 1312 * Kill a request for a dead device 1313 */ 1314 static void scsi_kill_request(struct request *req, struct request_queue *q) 1315 { 1316 struct scsi_cmnd *cmd = req->special; 1317 struct scsi_device *sdev = cmd->device; 1318 struct Scsi_Host *shost = sdev->host; 1319 1320 blkdev_dequeue_request(req); 1321 1322 if (unlikely(cmd == NULL)) { 1323 printk(KERN_CRIT "impossible request in %s.\n", 1324 __FUNCTION__); 1325 BUG(); 1326 } 1327 1328 scsi_init_cmd_errh(cmd); 1329 cmd->result = DID_NO_CONNECT << 16; 1330 atomic_inc(&cmd->device->iorequest_cnt); 1331 1332 /* 1333 * SCSI request completion path will do scsi_device_unbusy(), 1334 * bump busy counts. To bump the counters, we need to dance 1335 * with the locks as normal issue path does. 1336 */ 1337 sdev->device_busy++; 1338 spin_unlock(sdev->request_queue->queue_lock); 1339 spin_lock(shost->host_lock); 1340 shost->host_busy++; 1341 spin_unlock(shost->host_lock); 1342 spin_lock(sdev->request_queue->queue_lock); 1343 1344 __scsi_done(cmd); 1345 } 1346 1347 static void scsi_softirq_done(struct request *rq) 1348 { 1349 struct scsi_cmnd *cmd = rq->completion_data; 1350 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command; 1351 int disposition; 1352 1353 INIT_LIST_HEAD(&cmd->eh_entry); 1354 1355 disposition = scsi_decide_disposition(cmd); 1356 if (disposition != SUCCESS && 1357 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1358 sdev_printk(KERN_ERR, cmd->device, 1359 "timing out command, waited %lus\n", 1360 wait_for/HZ); 1361 disposition = SUCCESS; 1362 } 1363 1364 scsi_log_completion(cmd, disposition); 1365 1366 switch (disposition) { 1367 case SUCCESS: 1368 scsi_finish_command(cmd); 1369 break; 1370 case NEEDS_RETRY: 1371 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1372 break; 1373 case ADD_TO_MLQUEUE: 1374 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1375 break; 1376 default: 1377 if (!scsi_eh_scmd_add(cmd, 0)) 1378 scsi_finish_command(cmd); 1379 } 1380 } 1381 1382 /* 1383 * Function: scsi_request_fn() 1384 * 1385 * Purpose: Main strategy routine for SCSI. 1386 * 1387 * Arguments: q - Pointer to actual queue. 1388 * 1389 * Returns: Nothing 1390 * 1391 * Lock status: IO request lock assumed to be held when called. 1392 */ 1393 static void scsi_request_fn(struct request_queue *q) 1394 { 1395 struct scsi_device *sdev = q->queuedata; 1396 struct Scsi_Host *shost; 1397 struct scsi_cmnd *cmd; 1398 struct request *req; 1399 1400 if (!sdev) { 1401 printk("scsi: killing requests for dead queue\n"); 1402 while ((req = elv_next_request(q)) != NULL) 1403 scsi_kill_request(req, q); 1404 return; 1405 } 1406 1407 if(!get_device(&sdev->sdev_gendev)) 1408 /* We must be tearing the block queue down already */ 1409 return; 1410 1411 /* 1412 * To start with, we keep looping until the queue is empty, or until 1413 * the host is no longer able to accept any more requests. 1414 */ 1415 shost = sdev->host; 1416 while (!blk_queue_plugged(q)) { 1417 int rtn; 1418 /* 1419 * get next queueable request. We do this early to make sure 1420 * that the request is fully prepared even if we cannot 1421 * accept it. 1422 */ 1423 req = elv_next_request(q); 1424 if (!req || !scsi_dev_queue_ready(q, sdev)) 1425 break; 1426 1427 if (unlikely(!scsi_device_online(sdev))) { 1428 sdev_printk(KERN_ERR, sdev, 1429 "rejecting I/O to offline device\n"); 1430 scsi_kill_request(req, q); 1431 continue; 1432 } 1433 1434 1435 /* 1436 * Remove the request from the request list. 1437 */ 1438 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1439 blkdev_dequeue_request(req); 1440 sdev->device_busy++; 1441 1442 spin_unlock(q->queue_lock); 1443 cmd = req->special; 1444 if (unlikely(cmd == NULL)) { 1445 printk(KERN_CRIT "impossible request in %s.\n" 1446 "please mail a stack trace to " 1447 "linux-scsi@vger.kernel.org\n", 1448 __FUNCTION__); 1449 blk_dump_rq_flags(req, "foo"); 1450 BUG(); 1451 } 1452 spin_lock(shost->host_lock); 1453 1454 if (!scsi_host_queue_ready(q, shost, sdev)) 1455 goto not_ready; 1456 if (sdev->single_lun) { 1457 if (scsi_target(sdev)->starget_sdev_user && 1458 scsi_target(sdev)->starget_sdev_user != sdev) 1459 goto not_ready; 1460 scsi_target(sdev)->starget_sdev_user = sdev; 1461 } 1462 shost->host_busy++; 1463 1464 /* 1465 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1466 * take the lock again. 1467 */ 1468 spin_unlock_irq(shost->host_lock); 1469 1470 /* 1471 * Finally, initialize any error handling parameters, and set up 1472 * the timers for timeouts. 1473 */ 1474 scsi_init_cmd_errh(cmd); 1475 1476 /* 1477 * Dispatch the command to the low-level driver. 1478 */ 1479 rtn = scsi_dispatch_cmd(cmd); 1480 spin_lock_irq(q->queue_lock); 1481 if(rtn) { 1482 /* we're refusing the command; because of 1483 * the way locks get dropped, we need to 1484 * check here if plugging is required */ 1485 if(sdev->device_busy == 0) 1486 blk_plug_device(q); 1487 1488 break; 1489 } 1490 } 1491 1492 goto out; 1493 1494 not_ready: 1495 spin_unlock_irq(shost->host_lock); 1496 1497 /* 1498 * lock q, handle tag, requeue req, and decrement device_busy. We 1499 * must return with queue_lock held. 1500 * 1501 * Decrementing device_busy without checking it is OK, as all such 1502 * cases (host limits or settings) should run the queue at some 1503 * later time. 1504 */ 1505 spin_lock_irq(q->queue_lock); 1506 blk_requeue_request(q, req); 1507 sdev->device_busy--; 1508 if(sdev->device_busy == 0) 1509 blk_plug_device(q); 1510 out: 1511 /* must be careful here...if we trigger the ->remove() function 1512 * we cannot be holding the q lock */ 1513 spin_unlock_irq(q->queue_lock); 1514 put_device(&sdev->sdev_gendev); 1515 spin_lock_irq(q->queue_lock); 1516 } 1517 1518 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1519 { 1520 struct device *host_dev; 1521 u64 bounce_limit = 0xffffffff; 1522 1523 if (shost->unchecked_isa_dma) 1524 return BLK_BOUNCE_ISA; 1525 /* 1526 * Platforms with virtual-DMA translation 1527 * hardware have no practical limit. 1528 */ 1529 if (!PCI_DMA_BUS_IS_PHYS) 1530 return BLK_BOUNCE_ANY; 1531 1532 host_dev = scsi_get_device(shost); 1533 if (host_dev && host_dev->dma_mask) 1534 bounce_limit = *host_dev->dma_mask; 1535 1536 return bounce_limit; 1537 } 1538 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1539 1540 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1541 request_fn_proc *request_fn) 1542 { 1543 struct request_queue *q; 1544 1545 q = blk_init_queue(request_fn, NULL); 1546 if (!q) 1547 return NULL; 1548 1549 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1550 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS); 1551 blk_queue_max_sectors(q, shost->max_sectors); 1552 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1553 blk_queue_segment_boundary(q, shost->dma_boundary); 1554 1555 if (!shost->use_clustering) 1556 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 1557 return q; 1558 } 1559 EXPORT_SYMBOL(__scsi_alloc_queue); 1560 1561 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1562 { 1563 struct request_queue *q; 1564 1565 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1566 if (!q) 1567 return NULL; 1568 1569 blk_queue_prep_rq(q, scsi_prep_fn); 1570 blk_queue_softirq_done(q, scsi_softirq_done); 1571 return q; 1572 } 1573 1574 void scsi_free_queue(struct request_queue *q) 1575 { 1576 blk_cleanup_queue(q); 1577 } 1578 1579 /* 1580 * Function: scsi_block_requests() 1581 * 1582 * Purpose: Utility function used by low-level drivers to prevent further 1583 * commands from being queued to the device. 1584 * 1585 * Arguments: shost - Host in question 1586 * 1587 * Returns: Nothing 1588 * 1589 * Lock status: No locks are assumed held. 1590 * 1591 * Notes: There is no timer nor any other means by which the requests 1592 * get unblocked other than the low-level driver calling 1593 * scsi_unblock_requests(). 1594 */ 1595 void scsi_block_requests(struct Scsi_Host *shost) 1596 { 1597 shost->host_self_blocked = 1; 1598 } 1599 EXPORT_SYMBOL(scsi_block_requests); 1600 1601 /* 1602 * Function: scsi_unblock_requests() 1603 * 1604 * Purpose: Utility function used by low-level drivers to allow further 1605 * commands from being queued to the device. 1606 * 1607 * Arguments: shost - Host in question 1608 * 1609 * Returns: Nothing 1610 * 1611 * Lock status: No locks are assumed held. 1612 * 1613 * Notes: There is no timer nor any other means by which the requests 1614 * get unblocked other than the low-level driver calling 1615 * scsi_unblock_requests(). 1616 * 1617 * This is done as an API function so that changes to the 1618 * internals of the scsi mid-layer won't require wholesale 1619 * changes to drivers that use this feature. 1620 */ 1621 void scsi_unblock_requests(struct Scsi_Host *shost) 1622 { 1623 shost->host_self_blocked = 0; 1624 scsi_run_host_queues(shost); 1625 } 1626 EXPORT_SYMBOL(scsi_unblock_requests); 1627 1628 int __init scsi_init_queue(void) 1629 { 1630 int i; 1631 1632 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1633 sizeof(struct scsi_io_context), 1634 0, 0, NULL); 1635 if (!scsi_io_context_cache) { 1636 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1637 return -ENOMEM; 1638 } 1639 1640 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1641 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1642 int size = sgp->size * sizeof(struct scatterlist); 1643 1644 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1645 SLAB_HWCACHE_ALIGN, NULL); 1646 if (!sgp->slab) { 1647 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1648 sgp->name); 1649 } 1650 1651 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1652 sgp->slab); 1653 if (!sgp->pool) { 1654 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1655 sgp->name); 1656 } 1657 } 1658 1659 return 0; 1660 } 1661 1662 void scsi_exit_queue(void) 1663 { 1664 int i; 1665 1666 kmem_cache_destroy(scsi_io_context_cache); 1667 1668 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1669 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1670 mempool_destroy(sgp->pool); 1671 kmem_cache_destroy(sgp->slab); 1672 } 1673 } 1674 1675 /** 1676 * scsi_mode_select - issue a mode select 1677 * @sdev: SCSI device to be queried 1678 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1679 * @sp: Save page bit (0 == don't save, 1 == save) 1680 * @modepage: mode page being requested 1681 * @buffer: request buffer (may not be smaller than eight bytes) 1682 * @len: length of request buffer. 1683 * @timeout: command timeout 1684 * @retries: number of retries before failing 1685 * @data: returns a structure abstracting the mode header data 1686 * @sense: place to put sense data (or NULL if no sense to be collected). 1687 * must be SCSI_SENSE_BUFFERSIZE big. 1688 * 1689 * Returns zero if successful; negative error number or scsi 1690 * status on error 1691 * 1692 */ 1693 int 1694 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1695 unsigned char *buffer, int len, int timeout, int retries, 1696 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1697 { 1698 unsigned char cmd[10]; 1699 unsigned char *real_buffer; 1700 int ret; 1701 1702 memset(cmd, 0, sizeof(cmd)); 1703 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1704 1705 if (sdev->use_10_for_ms) { 1706 if (len > 65535) 1707 return -EINVAL; 1708 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1709 if (!real_buffer) 1710 return -ENOMEM; 1711 memcpy(real_buffer + 8, buffer, len); 1712 len += 8; 1713 real_buffer[0] = 0; 1714 real_buffer[1] = 0; 1715 real_buffer[2] = data->medium_type; 1716 real_buffer[3] = data->device_specific; 1717 real_buffer[4] = data->longlba ? 0x01 : 0; 1718 real_buffer[5] = 0; 1719 real_buffer[6] = data->block_descriptor_length >> 8; 1720 real_buffer[7] = data->block_descriptor_length; 1721 1722 cmd[0] = MODE_SELECT_10; 1723 cmd[7] = len >> 8; 1724 cmd[8] = len; 1725 } else { 1726 if (len > 255 || data->block_descriptor_length > 255 || 1727 data->longlba) 1728 return -EINVAL; 1729 1730 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1731 if (!real_buffer) 1732 return -ENOMEM; 1733 memcpy(real_buffer + 4, buffer, len); 1734 len += 4; 1735 real_buffer[0] = 0; 1736 real_buffer[1] = data->medium_type; 1737 real_buffer[2] = data->device_specific; 1738 real_buffer[3] = data->block_descriptor_length; 1739 1740 1741 cmd[0] = MODE_SELECT; 1742 cmd[4] = len; 1743 } 1744 1745 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1746 sshdr, timeout, retries); 1747 kfree(real_buffer); 1748 return ret; 1749 } 1750 EXPORT_SYMBOL_GPL(scsi_mode_select); 1751 1752 /** 1753 * scsi_mode_sense - issue a mode sense, falling back from 10 to 1754 * six bytes if necessary. 1755 * @sdev: SCSI device to be queried 1756 * @dbd: set if mode sense will allow block descriptors to be returned 1757 * @modepage: mode page being requested 1758 * @buffer: request buffer (may not be smaller than eight bytes) 1759 * @len: length of request buffer. 1760 * @timeout: command timeout 1761 * @retries: number of retries before failing 1762 * @data: returns a structure abstracting the mode header data 1763 * @sense: place to put sense data (or NULL if no sense to be collected). 1764 * must be SCSI_SENSE_BUFFERSIZE big. 1765 * 1766 * Returns zero if unsuccessful, or the header offset (either 4 1767 * or 8 depending on whether a six or ten byte command was 1768 * issued) if successful. 1769 **/ 1770 int 1771 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1772 unsigned char *buffer, int len, int timeout, int retries, 1773 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1774 { 1775 unsigned char cmd[12]; 1776 int use_10_for_ms; 1777 int header_length; 1778 int result; 1779 struct scsi_sense_hdr my_sshdr; 1780 1781 memset(data, 0, sizeof(*data)); 1782 memset(&cmd[0], 0, 12); 1783 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1784 cmd[2] = modepage; 1785 1786 /* caller might not be interested in sense, but we need it */ 1787 if (!sshdr) 1788 sshdr = &my_sshdr; 1789 1790 retry: 1791 use_10_for_ms = sdev->use_10_for_ms; 1792 1793 if (use_10_for_ms) { 1794 if (len < 8) 1795 len = 8; 1796 1797 cmd[0] = MODE_SENSE_10; 1798 cmd[8] = len; 1799 header_length = 8; 1800 } else { 1801 if (len < 4) 1802 len = 4; 1803 1804 cmd[0] = MODE_SENSE; 1805 cmd[4] = len; 1806 header_length = 4; 1807 } 1808 1809 memset(buffer, 0, len); 1810 1811 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1812 sshdr, timeout, retries); 1813 1814 /* This code looks awful: what it's doing is making sure an 1815 * ILLEGAL REQUEST sense return identifies the actual command 1816 * byte as the problem. MODE_SENSE commands can return 1817 * ILLEGAL REQUEST if the code page isn't supported */ 1818 1819 if (use_10_for_ms && !scsi_status_is_good(result) && 1820 (driver_byte(result) & DRIVER_SENSE)) { 1821 if (scsi_sense_valid(sshdr)) { 1822 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1823 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1824 /* 1825 * Invalid command operation code 1826 */ 1827 sdev->use_10_for_ms = 0; 1828 goto retry; 1829 } 1830 } 1831 } 1832 1833 if(scsi_status_is_good(result)) { 1834 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1835 (modepage == 6 || modepage == 8))) { 1836 /* Initio breakage? */ 1837 header_length = 0; 1838 data->length = 13; 1839 data->medium_type = 0; 1840 data->device_specific = 0; 1841 data->longlba = 0; 1842 data->block_descriptor_length = 0; 1843 } else if(use_10_for_ms) { 1844 data->length = buffer[0]*256 + buffer[1] + 2; 1845 data->medium_type = buffer[2]; 1846 data->device_specific = buffer[3]; 1847 data->longlba = buffer[4] & 0x01; 1848 data->block_descriptor_length = buffer[6]*256 1849 + buffer[7]; 1850 } else { 1851 data->length = buffer[0] + 1; 1852 data->medium_type = buffer[1]; 1853 data->device_specific = buffer[2]; 1854 data->block_descriptor_length = buffer[3]; 1855 } 1856 data->header_length = header_length; 1857 } 1858 1859 return result; 1860 } 1861 EXPORT_SYMBOL(scsi_mode_sense); 1862 1863 int 1864 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries) 1865 { 1866 char cmd[] = { 1867 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1868 }; 1869 struct scsi_sense_hdr sshdr; 1870 int result; 1871 1872 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr, 1873 timeout, retries); 1874 1875 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) { 1876 1877 if ((scsi_sense_valid(&sshdr)) && 1878 ((sshdr.sense_key == UNIT_ATTENTION) || 1879 (sshdr.sense_key == NOT_READY))) { 1880 sdev->changed = 1; 1881 result = 0; 1882 } 1883 } 1884 return result; 1885 } 1886 EXPORT_SYMBOL(scsi_test_unit_ready); 1887 1888 /** 1889 * scsi_device_set_state - Take the given device through the device 1890 * state model. 1891 * @sdev: scsi device to change the state of. 1892 * @state: state to change to. 1893 * 1894 * Returns zero if unsuccessful or an error if the requested 1895 * transition is illegal. 1896 **/ 1897 int 1898 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 1899 { 1900 enum scsi_device_state oldstate = sdev->sdev_state; 1901 1902 if (state == oldstate) 1903 return 0; 1904 1905 switch (state) { 1906 case SDEV_CREATED: 1907 /* There are no legal states that come back to 1908 * created. This is the manually initialised start 1909 * state */ 1910 goto illegal; 1911 1912 case SDEV_RUNNING: 1913 switch (oldstate) { 1914 case SDEV_CREATED: 1915 case SDEV_OFFLINE: 1916 case SDEV_QUIESCE: 1917 case SDEV_BLOCK: 1918 break; 1919 default: 1920 goto illegal; 1921 } 1922 break; 1923 1924 case SDEV_QUIESCE: 1925 switch (oldstate) { 1926 case SDEV_RUNNING: 1927 case SDEV_OFFLINE: 1928 break; 1929 default: 1930 goto illegal; 1931 } 1932 break; 1933 1934 case SDEV_OFFLINE: 1935 switch (oldstate) { 1936 case SDEV_CREATED: 1937 case SDEV_RUNNING: 1938 case SDEV_QUIESCE: 1939 case SDEV_BLOCK: 1940 break; 1941 default: 1942 goto illegal; 1943 } 1944 break; 1945 1946 case SDEV_BLOCK: 1947 switch (oldstate) { 1948 case SDEV_CREATED: 1949 case SDEV_RUNNING: 1950 break; 1951 default: 1952 goto illegal; 1953 } 1954 break; 1955 1956 case SDEV_CANCEL: 1957 switch (oldstate) { 1958 case SDEV_CREATED: 1959 case SDEV_RUNNING: 1960 case SDEV_QUIESCE: 1961 case SDEV_OFFLINE: 1962 case SDEV_BLOCK: 1963 break; 1964 default: 1965 goto illegal; 1966 } 1967 break; 1968 1969 case SDEV_DEL: 1970 switch (oldstate) { 1971 case SDEV_CREATED: 1972 case SDEV_RUNNING: 1973 case SDEV_OFFLINE: 1974 case SDEV_CANCEL: 1975 break; 1976 default: 1977 goto illegal; 1978 } 1979 break; 1980 1981 } 1982 sdev->sdev_state = state; 1983 return 0; 1984 1985 illegal: 1986 SCSI_LOG_ERROR_RECOVERY(1, 1987 sdev_printk(KERN_ERR, sdev, 1988 "Illegal state transition %s->%s\n", 1989 scsi_device_state_name(oldstate), 1990 scsi_device_state_name(state)) 1991 ); 1992 return -EINVAL; 1993 } 1994 EXPORT_SYMBOL(scsi_device_set_state); 1995 1996 /** 1997 * scsi_device_quiesce - Block user issued commands. 1998 * @sdev: scsi device to quiesce. 1999 * 2000 * This works by trying to transition to the SDEV_QUIESCE state 2001 * (which must be a legal transition). When the device is in this 2002 * state, only special requests will be accepted, all others will 2003 * be deferred. Since special requests may also be requeued requests, 2004 * a successful return doesn't guarantee the device will be 2005 * totally quiescent. 2006 * 2007 * Must be called with user context, may sleep. 2008 * 2009 * Returns zero if unsuccessful or an error if not. 2010 **/ 2011 int 2012 scsi_device_quiesce(struct scsi_device *sdev) 2013 { 2014 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2015 if (err) 2016 return err; 2017 2018 scsi_run_queue(sdev->request_queue); 2019 while (sdev->device_busy) { 2020 msleep_interruptible(200); 2021 scsi_run_queue(sdev->request_queue); 2022 } 2023 return 0; 2024 } 2025 EXPORT_SYMBOL(scsi_device_quiesce); 2026 2027 /** 2028 * scsi_device_resume - Restart user issued commands to a quiesced device. 2029 * @sdev: scsi device to resume. 2030 * 2031 * Moves the device from quiesced back to running and restarts the 2032 * queues. 2033 * 2034 * Must be called with user context, may sleep. 2035 **/ 2036 void 2037 scsi_device_resume(struct scsi_device *sdev) 2038 { 2039 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2040 return; 2041 scsi_run_queue(sdev->request_queue); 2042 } 2043 EXPORT_SYMBOL(scsi_device_resume); 2044 2045 static void 2046 device_quiesce_fn(struct scsi_device *sdev, void *data) 2047 { 2048 scsi_device_quiesce(sdev); 2049 } 2050 2051 void 2052 scsi_target_quiesce(struct scsi_target *starget) 2053 { 2054 starget_for_each_device(starget, NULL, device_quiesce_fn); 2055 } 2056 EXPORT_SYMBOL(scsi_target_quiesce); 2057 2058 static void 2059 device_resume_fn(struct scsi_device *sdev, void *data) 2060 { 2061 scsi_device_resume(sdev); 2062 } 2063 2064 void 2065 scsi_target_resume(struct scsi_target *starget) 2066 { 2067 starget_for_each_device(starget, NULL, device_resume_fn); 2068 } 2069 EXPORT_SYMBOL(scsi_target_resume); 2070 2071 /** 2072 * scsi_internal_device_block - internal function to put a device 2073 * temporarily into the SDEV_BLOCK state 2074 * @sdev: device to block 2075 * 2076 * Block request made by scsi lld's to temporarily stop all 2077 * scsi commands on the specified device. Called from interrupt 2078 * or normal process context. 2079 * 2080 * Returns zero if successful or error if not 2081 * 2082 * Notes: 2083 * This routine transitions the device to the SDEV_BLOCK state 2084 * (which must be a legal transition). When the device is in this 2085 * state, all commands are deferred until the scsi lld reenables 2086 * the device with scsi_device_unblock or device_block_tmo fires. 2087 * This routine assumes the host_lock is held on entry. 2088 **/ 2089 int 2090 scsi_internal_device_block(struct scsi_device *sdev) 2091 { 2092 struct request_queue *q = sdev->request_queue; 2093 unsigned long flags; 2094 int err = 0; 2095 2096 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2097 if (err) 2098 return err; 2099 2100 /* 2101 * The device has transitioned to SDEV_BLOCK. Stop the 2102 * block layer from calling the midlayer with this device's 2103 * request queue. 2104 */ 2105 spin_lock_irqsave(q->queue_lock, flags); 2106 blk_stop_queue(q); 2107 spin_unlock_irqrestore(q->queue_lock, flags); 2108 2109 return 0; 2110 } 2111 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2112 2113 /** 2114 * scsi_internal_device_unblock - resume a device after a block request 2115 * @sdev: device to resume 2116 * 2117 * Called by scsi lld's or the midlayer to restart the device queue 2118 * for the previously suspended scsi device. Called from interrupt or 2119 * normal process context. 2120 * 2121 * Returns zero if successful or error if not. 2122 * 2123 * Notes: 2124 * This routine transitions the device to the SDEV_RUNNING state 2125 * (which must be a legal transition) allowing the midlayer to 2126 * goose the queue for this device. This routine assumes the 2127 * host_lock is held upon entry. 2128 **/ 2129 int 2130 scsi_internal_device_unblock(struct scsi_device *sdev) 2131 { 2132 struct request_queue *q = sdev->request_queue; 2133 int err; 2134 unsigned long flags; 2135 2136 /* 2137 * Try to transition the scsi device to SDEV_RUNNING 2138 * and goose the device queue if successful. 2139 */ 2140 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2141 if (err) 2142 return err; 2143 2144 spin_lock_irqsave(q->queue_lock, flags); 2145 blk_start_queue(q); 2146 spin_unlock_irqrestore(q->queue_lock, flags); 2147 2148 return 0; 2149 } 2150 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2151 2152 static void 2153 device_block(struct scsi_device *sdev, void *data) 2154 { 2155 scsi_internal_device_block(sdev); 2156 } 2157 2158 static int 2159 target_block(struct device *dev, void *data) 2160 { 2161 if (scsi_is_target_device(dev)) 2162 starget_for_each_device(to_scsi_target(dev), NULL, 2163 device_block); 2164 return 0; 2165 } 2166 2167 void 2168 scsi_target_block(struct device *dev) 2169 { 2170 if (scsi_is_target_device(dev)) 2171 starget_for_each_device(to_scsi_target(dev), NULL, 2172 device_block); 2173 else 2174 device_for_each_child(dev, NULL, target_block); 2175 } 2176 EXPORT_SYMBOL_GPL(scsi_target_block); 2177 2178 static void 2179 device_unblock(struct scsi_device *sdev, void *data) 2180 { 2181 scsi_internal_device_unblock(sdev); 2182 } 2183 2184 static int 2185 target_unblock(struct device *dev, void *data) 2186 { 2187 if (scsi_is_target_device(dev)) 2188 starget_for_each_device(to_scsi_target(dev), NULL, 2189 device_unblock); 2190 return 0; 2191 } 2192 2193 void 2194 scsi_target_unblock(struct device *dev) 2195 { 2196 if (scsi_is_target_device(dev)) 2197 starget_for_each_device(to_scsi_target(dev), NULL, 2198 device_unblock); 2199 else 2200 device_for_each_child(dev, NULL, target_unblock); 2201 } 2202 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2203 2204 /** 2205 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2206 * @sg: scatter-gather list 2207 * @sg_count: number of segments in sg 2208 * @offset: offset in bytes into sg, on return offset into the mapped area 2209 * @len: bytes to map, on return number of bytes mapped 2210 * 2211 * Returns virtual address of the start of the mapped page 2212 */ 2213 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, 2214 size_t *offset, size_t *len) 2215 { 2216 int i; 2217 size_t sg_len = 0, len_complete = 0; 2218 struct page *page; 2219 2220 WARN_ON(!irqs_disabled()); 2221 2222 for (i = 0; i < sg_count; i++) { 2223 len_complete = sg_len; /* Complete sg-entries */ 2224 sg_len += sg[i].length; 2225 if (sg_len > *offset) 2226 break; 2227 } 2228 2229 if (unlikely(i == sg_count)) { 2230 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2231 "elements %d\n", 2232 __FUNCTION__, sg_len, *offset, sg_count); 2233 WARN_ON(1); 2234 return NULL; 2235 } 2236 2237 /* Offset starting from the beginning of first page in this sg-entry */ 2238 *offset = *offset - len_complete + sg[i].offset; 2239 2240 /* Assumption: contiguous pages can be accessed as "page + i" */ 2241 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT)); 2242 *offset &= ~PAGE_MASK; 2243 2244 /* Bytes in this sg-entry from *offset to the end of the page */ 2245 sg_len = PAGE_SIZE - *offset; 2246 if (*len > sg_len) 2247 *len = sg_len; 2248 2249 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2250 } 2251 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2252 2253 /** 2254 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously 2255 * mapped with scsi_kmap_atomic_sg 2256 * @virt: virtual address to be unmapped 2257 */ 2258 void scsi_kunmap_atomic_sg(void *virt) 2259 { 2260 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2261 } 2262 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2263