1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 blk_end_request_all(req, 0); 753 754 scsi_release_buffers(cmd); 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 761 762 /* 763 * Next deal with any sectors which we were able to correctly 764 * handle. 765 */ 766 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 767 "%d bytes done.\n", 768 blk_rq_sectors(req), good_bytes)); 769 770 /* 771 * Recovered errors need reporting, but they're always treated 772 * as success, so fiddle the result code here. For BLOCK_PC 773 * we already took a copy of the original into rq->errors which 774 * is what gets returned to the user 775 */ 776 if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) { 777 if (!(req->cmd_flags & REQ_QUIET)) 778 scsi_print_sense("", cmd); 779 result = 0; 780 /* BLOCK_PC may have set error */ 781 error = 0; 782 } 783 784 /* 785 * A number of bytes were successfully read. If there 786 * are leftovers and there is some kind of error 787 * (result != 0), retry the rest. 788 */ 789 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 790 return; 791 792 error = -EIO; 793 794 if (host_byte(result) == DID_RESET) { 795 /* Third party bus reset or reset for error recovery 796 * reasons. Just retry the command and see what 797 * happens. 798 */ 799 action = ACTION_RETRY; 800 } else if (sense_valid && !sense_deferred) { 801 switch (sshdr.sense_key) { 802 case UNIT_ATTENTION: 803 if (cmd->device->removable) { 804 /* Detected disc change. Set a bit 805 * and quietly refuse further access. 806 */ 807 cmd->device->changed = 1; 808 description = "Media Changed"; 809 action = ACTION_FAIL; 810 } else { 811 /* Must have been a power glitch, or a 812 * bus reset. Could not have been a 813 * media change, so we just retry the 814 * command and see what happens. 815 */ 816 action = ACTION_RETRY; 817 } 818 break; 819 case ILLEGAL_REQUEST: 820 /* If we had an ILLEGAL REQUEST returned, then 821 * we may have performed an unsupported 822 * command. The only thing this should be 823 * would be a ten byte read where only a six 824 * byte read was supported. Also, on a system 825 * where READ CAPACITY failed, we may have 826 * read past the end of the disk. 827 */ 828 if ((cmd->device->use_10_for_rw && 829 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 830 (cmd->cmnd[0] == READ_10 || 831 cmd->cmnd[0] == WRITE_10)) { 832 /* This will issue a new 6-byte command. */ 833 cmd->device->use_10_for_rw = 0; 834 action = ACTION_REPREP; 835 } else if (sshdr.asc == 0x10) /* DIX */ { 836 description = "Host Data Integrity Failure"; 837 action = ACTION_FAIL; 838 error = -EILSEQ; 839 } else 840 action = ACTION_FAIL; 841 break; 842 case ABORTED_COMMAND: 843 action = ACTION_FAIL; 844 if (sshdr.asc == 0x10) { /* DIF */ 845 description = "Target Data Integrity Failure"; 846 error = -EILSEQ; 847 } 848 break; 849 case NOT_READY: 850 /* If the device is in the process of becoming 851 * ready, or has a temporary blockage, retry. 852 */ 853 if (sshdr.asc == 0x04) { 854 switch (sshdr.ascq) { 855 case 0x01: /* becoming ready */ 856 case 0x04: /* format in progress */ 857 case 0x05: /* rebuild in progress */ 858 case 0x06: /* recalculation in progress */ 859 case 0x07: /* operation in progress */ 860 case 0x08: /* Long write in progress */ 861 case 0x09: /* self test in progress */ 862 action = ACTION_DELAYED_RETRY; 863 break; 864 default: 865 description = "Device not ready"; 866 action = ACTION_FAIL; 867 break; 868 } 869 } else { 870 description = "Device not ready"; 871 action = ACTION_FAIL; 872 } 873 break; 874 case VOLUME_OVERFLOW: 875 /* See SSC3rXX or current. */ 876 action = ACTION_FAIL; 877 break; 878 default: 879 description = "Unhandled sense code"; 880 action = ACTION_FAIL; 881 break; 882 } 883 } else { 884 description = "Unhandled error code"; 885 action = ACTION_FAIL; 886 } 887 888 switch (action) { 889 case ACTION_FAIL: 890 /* Give up and fail the remainder of the request */ 891 scsi_release_buffers(cmd); 892 if (!(req->cmd_flags & REQ_QUIET)) { 893 if (description) 894 scmd_printk(KERN_INFO, cmd, "%s\n", 895 description); 896 scsi_print_result(cmd); 897 if (driver_byte(result) & DRIVER_SENSE) 898 scsi_print_sense("", cmd); 899 scsi_print_command(cmd); 900 } 901 if (blk_end_request_err(req, error)) 902 scsi_requeue_command(q, cmd); 903 else 904 scsi_next_command(cmd); 905 break; 906 case ACTION_REPREP: 907 /* Unprep the request and put it back at the head of the queue. 908 * A new command will be prepared and issued. 909 */ 910 scsi_release_buffers(cmd); 911 scsi_requeue_command(q, cmd); 912 break; 913 case ACTION_RETRY: 914 /* Retry the same command immediately */ 915 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 916 break; 917 case ACTION_DELAYED_RETRY: 918 /* Retry the same command after a delay */ 919 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 920 break; 921 } 922 } 923 924 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 925 gfp_t gfp_mask) 926 { 927 int count; 928 929 /* 930 * If sg table allocation fails, requeue request later. 931 */ 932 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 933 gfp_mask))) { 934 return BLKPREP_DEFER; 935 } 936 937 req->buffer = NULL; 938 939 /* 940 * Next, walk the list, and fill in the addresses and sizes of 941 * each segment. 942 */ 943 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 944 BUG_ON(count > sdb->table.nents); 945 sdb->table.nents = count; 946 sdb->length = blk_rq_bytes(req); 947 return BLKPREP_OK; 948 } 949 950 /* 951 * Function: scsi_init_io() 952 * 953 * Purpose: SCSI I/O initialize function. 954 * 955 * Arguments: cmd - Command descriptor we wish to initialize 956 * 957 * Returns: 0 on success 958 * BLKPREP_DEFER if the failure is retryable 959 * BLKPREP_KILL if the failure is fatal 960 */ 961 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 962 { 963 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 964 if (error) 965 goto err_exit; 966 967 if (blk_bidi_rq(cmd->request)) { 968 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 969 scsi_sdb_cache, GFP_ATOMIC); 970 if (!bidi_sdb) { 971 error = BLKPREP_DEFER; 972 goto err_exit; 973 } 974 975 cmd->request->next_rq->special = bidi_sdb; 976 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 977 GFP_ATOMIC); 978 if (error) 979 goto err_exit; 980 } 981 982 if (blk_integrity_rq(cmd->request)) { 983 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 984 int ivecs, count; 985 986 BUG_ON(prot_sdb == NULL); 987 ivecs = blk_rq_count_integrity_sg(cmd->request); 988 989 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 990 error = BLKPREP_DEFER; 991 goto err_exit; 992 } 993 994 count = blk_rq_map_integrity_sg(cmd->request, 995 prot_sdb->table.sgl); 996 BUG_ON(unlikely(count > ivecs)); 997 998 cmd->prot_sdb = prot_sdb; 999 cmd->prot_sdb->table.nents = count; 1000 } 1001 1002 return BLKPREP_OK ; 1003 1004 err_exit: 1005 scsi_release_buffers(cmd); 1006 if (error == BLKPREP_KILL) 1007 scsi_put_command(cmd); 1008 else /* BLKPREP_DEFER */ 1009 scsi_unprep_request(cmd->request); 1010 1011 return error; 1012 } 1013 EXPORT_SYMBOL(scsi_init_io); 1014 1015 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1016 struct request *req) 1017 { 1018 struct scsi_cmnd *cmd; 1019 1020 if (!req->special) { 1021 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1022 if (unlikely(!cmd)) 1023 return NULL; 1024 req->special = cmd; 1025 } else { 1026 cmd = req->special; 1027 } 1028 1029 /* pull a tag out of the request if we have one */ 1030 cmd->tag = req->tag; 1031 cmd->request = req; 1032 1033 cmd->cmnd = req->cmd; 1034 1035 return cmd; 1036 } 1037 1038 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1039 { 1040 struct scsi_cmnd *cmd; 1041 int ret = scsi_prep_state_check(sdev, req); 1042 1043 if (ret != BLKPREP_OK) 1044 return ret; 1045 1046 cmd = scsi_get_cmd_from_req(sdev, req); 1047 if (unlikely(!cmd)) 1048 return BLKPREP_DEFER; 1049 1050 /* 1051 * BLOCK_PC requests may transfer data, in which case they must 1052 * a bio attached to them. Or they might contain a SCSI command 1053 * that does not transfer data, in which case they may optionally 1054 * submit a request without an attached bio. 1055 */ 1056 if (req->bio) { 1057 int ret; 1058 1059 BUG_ON(!req->nr_phys_segments); 1060 1061 ret = scsi_init_io(cmd, GFP_ATOMIC); 1062 if (unlikely(ret)) 1063 return ret; 1064 } else { 1065 BUG_ON(blk_rq_bytes(req)); 1066 1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1068 req->buffer = NULL; 1069 } 1070 1071 cmd->cmd_len = req->cmd_len; 1072 if (!blk_rq_bytes(req)) 1073 cmd->sc_data_direction = DMA_NONE; 1074 else if (rq_data_dir(req) == WRITE) 1075 cmd->sc_data_direction = DMA_TO_DEVICE; 1076 else 1077 cmd->sc_data_direction = DMA_FROM_DEVICE; 1078 1079 cmd->transfersize = blk_rq_bytes(req); 1080 cmd->allowed = req->retries; 1081 return BLKPREP_OK; 1082 } 1083 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1084 1085 /* 1086 * Setup a REQ_TYPE_FS command. These are simple read/write request 1087 * from filesystems that still need to be translated to SCSI CDBs from 1088 * the ULD. 1089 */ 1090 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1091 { 1092 struct scsi_cmnd *cmd; 1093 int ret = scsi_prep_state_check(sdev, req); 1094 1095 if (ret != BLKPREP_OK) 1096 return ret; 1097 1098 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1099 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1100 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1101 if (ret != BLKPREP_OK) 1102 return ret; 1103 } 1104 1105 /* 1106 * Filesystem requests must transfer data. 1107 */ 1108 BUG_ON(!req->nr_phys_segments); 1109 1110 cmd = scsi_get_cmd_from_req(sdev, req); 1111 if (unlikely(!cmd)) 1112 return BLKPREP_DEFER; 1113 1114 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1115 return scsi_init_io(cmd, GFP_ATOMIC); 1116 } 1117 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1118 1119 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1120 { 1121 int ret = BLKPREP_OK; 1122 1123 /* 1124 * If the device is not in running state we will reject some 1125 * or all commands. 1126 */ 1127 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1128 switch (sdev->sdev_state) { 1129 case SDEV_OFFLINE: 1130 /* 1131 * If the device is offline we refuse to process any 1132 * commands. The device must be brought online 1133 * before trying any recovery commands. 1134 */ 1135 sdev_printk(KERN_ERR, sdev, 1136 "rejecting I/O to offline device\n"); 1137 ret = BLKPREP_KILL; 1138 break; 1139 case SDEV_DEL: 1140 /* 1141 * If the device is fully deleted, we refuse to 1142 * process any commands as well. 1143 */ 1144 sdev_printk(KERN_ERR, sdev, 1145 "rejecting I/O to dead device\n"); 1146 ret = BLKPREP_KILL; 1147 break; 1148 case SDEV_QUIESCE: 1149 case SDEV_BLOCK: 1150 case SDEV_CREATED_BLOCK: 1151 /* 1152 * If the devices is blocked we defer normal commands. 1153 */ 1154 if (!(req->cmd_flags & REQ_PREEMPT)) 1155 ret = BLKPREP_DEFER; 1156 break; 1157 default: 1158 /* 1159 * For any other not fully online state we only allow 1160 * special commands. In particular any user initiated 1161 * command is not allowed. 1162 */ 1163 if (!(req->cmd_flags & REQ_PREEMPT)) 1164 ret = BLKPREP_KILL; 1165 break; 1166 } 1167 } 1168 return ret; 1169 } 1170 EXPORT_SYMBOL(scsi_prep_state_check); 1171 1172 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1173 { 1174 struct scsi_device *sdev = q->queuedata; 1175 1176 switch (ret) { 1177 case BLKPREP_KILL: 1178 req->errors = DID_NO_CONNECT << 16; 1179 /* release the command and kill it */ 1180 if (req->special) { 1181 struct scsi_cmnd *cmd = req->special; 1182 scsi_release_buffers(cmd); 1183 scsi_put_command(cmd); 1184 req->special = NULL; 1185 } 1186 break; 1187 case BLKPREP_DEFER: 1188 /* 1189 * If we defer, the blk_peek_request() returns NULL, but the 1190 * queue must be restarted, so we plug here if no returning 1191 * command will automatically do that. 1192 */ 1193 if (sdev->device_busy == 0) 1194 blk_plug_device(q); 1195 break; 1196 default: 1197 req->cmd_flags |= REQ_DONTPREP; 1198 } 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(scsi_prep_return); 1203 1204 int scsi_prep_fn(struct request_queue *q, struct request *req) 1205 { 1206 struct scsi_device *sdev = q->queuedata; 1207 int ret = BLKPREP_KILL; 1208 1209 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1210 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1211 return scsi_prep_return(q, req, ret); 1212 } 1213 EXPORT_SYMBOL(scsi_prep_fn); 1214 1215 /* 1216 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1217 * return 0. 1218 * 1219 * Called with the queue_lock held. 1220 */ 1221 static inline int scsi_dev_queue_ready(struct request_queue *q, 1222 struct scsi_device *sdev) 1223 { 1224 if (sdev->device_busy == 0 && sdev->device_blocked) { 1225 /* 1226 * unblock after device_blocked iterates to zero 1227 */ 1228 if (--sdev->device_blocked == 0) { 1229 SCSI_LOG_MLQUEUE(3, 1230 sdev_printk(KERN_INFO, sdev, 1231 "unblocking device at zero depth\n")); 1232 } else { 1233 blk_plug_device(q); 1234 return 0; 1235 } 1236 } 1237 if (scsi_device_is_busy(sdev)) 1238 return 0; 1239 1240 return 1; 1241 } 1242 1243 1244 /* 1245 * scsi_target_queue_ready: checks if there we can send commands to target 1246 * @sdev: scsi device on starget to check. 1247 * 1248 * Called with the host lock held. 1249 */ 1250 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1251 struct scsi_device *sdev) 1252 { 1253 struct scsi_target *starget = scsi_target(sdev); 1254 1255 if (starget->single_lun) { 1256 if (starget->starget_sdev_user && 1257 starget->starget_sdev_user != sdev) 1258 return 0; 1259 starget->starget_sdev_user = sdev; 1260 } 1261 1262 if (starget->target_busy == 0 && starget->target_blocked) { 1263 /* 1264 * unblock after target_blocked iterates to zero 1265 */ 1266 if (--starget->target_blocked == 0) { 1267 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1268 "unblocking target at zero depth\n")); 1269 } else 1270 return 0; 1271 } 1272 1273 if (scsi_target_is_busy(starget)) { 1274 if (list_empty(&sdev->starved_entry)) { 1275 list_add_tail(&sdev->starved_entry, 1276 &shost->starved_list); 1277 return 0; 1278 } 1279 } 1280 1281 /* We're OK to process the command, so we can't be starved */ 1282 if (!list_empty(&sdev->starved_entry)) 1283 list_del_init(&sdev->starved_entry); 1284 return 1; 1285 } 1286 1287 /* 1288 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1289 * return 0. We must end up running the queue again whenever 0 is 1290 * returned, else IO can hang. 1291 * 1292 * Called with host_lock held. 1293 */ 1294 static inline int scsi_host_queue_ready(struct request_queue *q, 1295 struct Scsi_Host *shost, 1296 struct scsi_device *sdev) 1297 { 1298 if (scsi_host_in_recovery(shost)) 1299 return 0; 1300 if (shost->host_busy == 0 && shost->host_blocked) { 1301 /* 1302 * unblock after host_blocked iterates to zero 1303 */ 1304 if (--shost->host_blocked == 0) { 1305 SCSI_LOG_MLQUEUE(3, 1306 printk("scsi%d unblocking host at zero depth\n", 1307 shost->host_no)); 1308 } else { 1309 return 0; 1310 } 1311 } 1312 if (scsi_host_is_busy(shost)) { 1313 if (list_empty(&sdev->starved_entry)) 1314 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1315 return 0; 1316 } 1317 1318 /* We're OK to process the command, so we can't be starved */ 1319 if (!list_empty(&sdev->starved_entry)) 1320 list_del_init(&sdev->starved_entry); 1321 1322 return 1; 1323 } 1324 1325 /* 1326 * Busy state exporting function for request stacking drivers. 1327 * 1328 * For efficiency, no lock is taken to check the busy state of 1329 * shost/starget/sdev, since the returned value is not guaranteed and 1330 * may be changed after request stacking drivers call the function, 1331 * regardless of taking lock or not. 1332 * 1333 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1334 * (e.g. !sdev), scsi needs to return 'not busy'. 1335 * Otherwise, request stacking drivers may hold requests forever. 1336 */ 1337 static int scsi_lld_busy(struct request_queue *q) 1338 { 1339 struct scsi_device *sdev = q->queuedata; 1340 struct Scsi_Host *shost; 1341 struct scsi_target *starget; 1342 1343 if (!sdev) 1344 return 0; 1345 1346 shost = sdev->host; 1347 starget = scsi_target(sdev); 1348 1349 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1350 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1351 return 1; 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Kill a request for a dead device 1358 */ 1359 static void scsi_kill_request(struct request *req, struct request_queue *q) 1360 { 1361 struct scsi_cmnd *cmd = req->special; 1362 struct scsi_device *sdev; 1363 struct scsi_target *starget; 1364 struct Scsi_Host *shost; 1365 1366 blk_start_request(req); 1367 1368 if (unlikely(cmd == NULL)) { 1369 printk(KERN_CRIT "impossible request in %s.\n", 1370 __func__); 1371 BUG(); 1372 } 1373 1374 sdev = cmd->device; 1375 starget = scsi_target(sdev); 1376 shost = sdev->host; 1377 scsi_init_cmd_errh(cmd); 1378 cmd->result = DID_NO_CONNECT << 16; 1379 atomic_inc(&cmd->device->iorequest_cnt); 1380 1381 /* 1382 * SCSI request completion path will do scsi_device_unbusy(), 1383 * bump busy counts. To bump the counters, we need to dance 1384 * with the locks as normal issue path does. 1385 */ 1386 sdev->device_busy++; 1387 spin_unlock(sdev->request_queue->queue_lock); 1388 spin_lock(shost->host_lock); 1389 shost->host_busy++; 1390 starget->target_busy++; 1391 spin_unlock(shost->host_lock); 1392 spin_lock(sdev->request_queue->queue_lock); 1393 1394 blk_complete_request(req); 1395 } 1396 1397 static void scsi_softirq_done(struct request *rq) 1398 { 1399 struct scsi_cmnd *cmd = rq->special; 1400 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1401 int disposition; 1402 1403 INIT_LIST_HEAD(&cmd->eh_entry); 1404 1405 /* 1406 * Set the serial numbers back to zero 1407 */ 1408 cmd->serial_number = 0; 1409 1410 atomic_inc(&cmd->device->iodone_cnt); 1411 if (cmd->result) 1412 atomic_inc(&cmd->device->ioerr_cnt); 1413 1414 disposition = scsi_decide_disposition(cmd); 1415 if (disposition != SUCCESS && 1416 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1417 sdev_printk(KERN_ERR, cmd->device, 1418 "timing out command, waited %lus\n", 1419 wait_for/HZ); 1420 disposition = SUCCESS; 1421 } 1422 1423 scsi_log_completion(cmd, disposition); 1424 1425 switch (disposition) { 1426 case SUCCESS: 1427 scsi_finish_command(cmd); 1428 break; 1429 case NEEDS_RETRY: 1430 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1431 break; 1432 case ADD_TO_MLQUEUE: 1433 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1434 break; 1435 default: 1436 if (!scsi_eh_scmd_add(cmd, 0)) 1437 scsi_finish_command(cmd); 1438 } 1439 } 1440 1441 /* 1442 * Function: scsi_request_fn() 1443 * 1444 * Purpose: Main strategy routine for SCSI. 1445 * 1446 * Arguments: q - Pointer to actual queue. 1447 * 1448 * Returns: Nothing 1449 * 1450 * Lock status: IO request lock assumed to be held when called. 1451 */ 1452 static void scsi_request_fn(struct request_queue *q) 1453 { 1454 struct scsi_device *sdev = q->queuedata; 1455 struct Scsi_Host *shost; 1456 struct scsi_cmnd *cmd; 1457 struct request *req; 1458 1459 if (!sdev) { 1460 printk("scsi: killing requests for dead queue\n"); 1461 while ((req = blk_peek_request(q)) != NULL) 1462 scsi_kill_request(req, q); 1463 return; 1464 } 1465 1466 if(!get_device(&sdev->sdev_gendev)) 1467 /* We must be tearing the block queue down already */ 1468 return; 1469 1470 /* 1471 * To start with, we keep looping until the queue is empty, or until 1472 * the host is no longer able to accept any more requests. 1473 */ 1474 shost = sdev->host; 1475 while (!blk_queue_plugged(q)) { 1476 int rtn; 1477 /* 1478 * get next queueable request. We do this early to make sure 1479 * that the request is fully prepared even if we cannot 1480 * accept it. 1481 */ 1482 req = blk_peek_request(q); 1483 if (!req || !scsi_dev_queue_ready(q, sdev)) 1484 break; 1485 1486 if (unlikely(!scsi_device_online(sdev))) { 1487 sdev_printk(KERN_ERR, sdev, 1488 "rejecting I/O to offline device\n"); 1489 scsi_kill_request(req, q); 1490 continue; 1491 } 1492 1493 1494 /* 1495 * Remove the request from the request list. 1496 */ 1497 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1498 blk_start_request(req); 1499 sdev->device_busy++; 1500 1501 spin_unlock(q->queue_lock); 1502 cmd = req->special; 1503 if (unlikely(cmd == NULL)) { 1504 printk(KERN_CRIT "impossible request in %s.\n" 1505 "please mail a stack trace to " 1506 "linux-scsi@vger.kernel.org\n", 1507 __func__); 1508 blk_dump_rq_flags(req, "foo"); 1509 BUG(); 1510 } 1511 spin_lock(shost->host_lock); 1512 1513 /* 1514 * We hit this when the driver is using a host wide 1515 * tag map. For device level tag maps the queue_depth check 1516 * in the device ready fn would prevent us from trying 1517 * to allocate a tag. Since the map is a shared host resource 1518 * we add the dev to the starved list so it eventually gets 1519 * a run when a tag is freed. 1520 */ 1521 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1522 if (list_empty(&sdev->starved_entry)) 1523 list_add_tail(&sdev->starved_entry, 1524 &shost->starved_list); 1525 goto not_ready; 1526 } 1527 1528 if (!scsi_target_queue_ready(shost, sdev)) 1529 goto not_ready; 1530 1531 if (!scsi_host_queue_ready(q, shost, sdev)) 1532 goto not_ready; 1533 1534 scsi_target(sdev)->target_busy++; 1535 shost->host_busy++; 1536 1537 /* 1538 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1539 * take the lock again. 1540 */ 1541 spin_unlock_irq(shost->host_lock); 1542 1543 /* 1544 * Finally, initialize any error handling parameters, and set up 1545 * the timers for timeouts. 1546 */ 1547 scsi_init_cmd_errh(cmd); 1548 1549 /* 1550 * Dispatch the command to the low-level driver. 1551 */ 1552 rtn = scsi_dispatch_cmd(cmd); 1553 spin_lock_irq(q->queue_lock); 1554 if(rtn) { 1555 /* we're refusing the command; because of 1556 * the way locks get dropped, we need to 1557 * check here if plugging is required */ 1558 if(sdev->device_busy == 0) 1559 blk_plug_device(q); 1560 1561 break; 1562 } 1563 } 1564 1565 goto out; 1566 1567 not_ready: 1568 spin_unlock_irq(shost->host_lock); 1569 1570 /* 1571 * lock q, handle tag, requeue req, and decrement device_busy. We 1572 * must return with queue_lock held. 1573 * 1574 * Decrementing device_busy without checking it is OK, as all such 1575 * cases (host limits or settings) should run the queue at some 1576 * later time. 1577 */ 1578 spin_lock_irq(q->queue_lock); 1579 blk_requeue_request(q, req); 1580 sdev->device_busy--; 1581 if(sdev->device_busy == 0) 1582 blk_plug_device(q); 1583 out: 1584 /* must be careful here...if we trigger the ->remove() function 1585 * we cannot be holding the q lock */ 1586 spin_unlock_irq(q->queue_lock); 1587 put_device(&sdev->sdev_gendev); 1588 spin_lock_irq(q->queue_lock); 1589 } 1590 1591 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1592 { 1593 struct device *host_dev; 1594 u64 bounce_limit = 0xffffffff; 1595 1596 if (shost->unchecked_isa_dma) 1597 return BLK_BOUNCE_ISA; 1598 /* 1599 * Platforms with virtual-DMA translation 1600 * hardware have no practical limit. 1601 */ 1602 if (!PCI_DMA_BUS_IS_PHYS) 1603 return BLK_BOUNCE_ANY; 1604 1605 host_dev = scsi_get_device(shost); 1606 if (host_dev && host_dev->dma_mask) 1607 bounce_limit = *host_dev->dma_mask; 1608 1609 return bounce_limit; 1610 } 1611 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1612 1613 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1614 request_fn_proc *request_fn) 1615 { 1616 struct request_queue *q; 1617 struct device *dev = shost->shost_gendev.parent; 1618 1619 q = blk_init_queue(request_fn, NULL); 1620 if (!q) 1621 return NULL; 1622 1623 /* 1624 * this limit is imposed by hardware restrictions 1625 */ 1626 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1627 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1628 1629 blk_queue_max_sectors(q, shost->max_sectors); 1630 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1631 blk_queue_segment_boundary(q, shost->dma_boundary); 1632 dma_set_seg_boundary(dev, shost->dma_boundary); 1633 1634 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1635 1636 /* New queue, no concurrency on queue_flags */ 1637 if (!shost->use_clustering) 1638 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1639 1640 /* 1641 * set a reasonable default alignment on word boundaries: the 1642 * host and device may alter it using 1643 * blk_queue_update_dma_alignment() later. 1644 */ 1645 blk_queue_dma_alignment(q, 0x03); 1646 1647 return q; 1648 } 1649 EXPORT_SYMBOL(__scsi_alloc_queue); 1650 1651 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1652 { 1653 struct request_queue *q; 1654 1655 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1656 if (!q) 1657 return NULL; 1658 1659 blk_queue_prep_rq(q, scsi_prep_fn); 1660 blk_queue_softirq_done(q, scsi_softirq_done); 1661 blk_queue_rq_timed_out(q, scsi_times_out); 1662 blk_queue_lld_busy(q, scsi_lld_busy); 1663 return q; 1664 } 1665 1666 void scsi_free_queue(struct request_queue *q) 1667 { 1668 blk_cleanup_queue(q); 1669 } 1670 1671 /* 1672 * Function: scsi_block_requests() 1673 * 1674 * Purpose: Utility function used by low-level drivers to prevent further 1675 * commands from being queued to the device. 1676 * 1677 * Arguments: shost - Host in question 1678 * 1679 * Returns: Nothing 1680 * 1681 * Lock status: No locks are assumed held. 1682 * 1683 * Notes: There is no timer nor any other means by which the requests 1684 * get unblocked other than the low-level driver calling 1685 * scsi_unblock_requests(). 1686 */ 1687 void scsi_block_requests(struct Scsi_Host *shost) 1688 { 1689 shost->host_self_blocked = 1; 1690 } 1691 EXPORT_SYMBOL(scsi_block_requests); 1692 1693 /* 1694 * Function: scsi_unblock_requests() 1695 * 1696 * Purpose: Utility function used by low-level drivers to allow further 1697 * commands from being queued to the device. 1698 * 1699 * Arguments: shost - Host in question 1700 * 1701 * Returns: Nothing 1702 * 1703 * Lock status: No locks are assumed held. 1704 * 1705 * Notes: There is no timer nor any other means by which the requests 1706 * get unblocked other than the low-level driver calling 1707 * scsi_unblock_requests(). 1708 * 1709 * This is done as an API function so that changes to the 1710 * internals of the scsi mid-layer won't require wholesale 1711 * changes to drivers that use this feature. 1712 */ 1713 void scsi_unblock_requests(struct Scsi_Host *shost) 1714 { 1715 shost->host_self_blocked = 0; 1716 scsi_run_host_queues(shost); 1717 } 1718 EXPORT_SYMBOL(scsi_unblock_requests); 1719 1720 int __init scsi_init_queue(void) 1721 { 1722 int i; 1723 1724 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1725 sizeof(struct scsi_data_buffer), 1726 0, 0, NULL); 1727 if (!scsi_sdb_cache) { 1728 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1729 return -ENOMEM; 1730 } 1731 1732 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1733 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1734 int size = sgp->size * sizeof(struct scatterlist); 1735 1736 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1737 SLAB_HWCACHE_ALIGN, NULL); 1738 if (!sgp->slab) { 1739 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1740 sgp->name); 1741 goto cleanup_sdb; 1742 } 1743 1744 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1745 sgp->slab); 1746 if (!sgp->pool) { 1747 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1748 sgp->name); 1749 goto cleanup_sdb; 1750 } 1751 } 1752 1753 return 0; 1754 1755 cleanup_sdb: 1756 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1757 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1758 if (sgp->pool) 1759 mempool_destroy(sgp->pool); 1760 if (sgp->slab) 1761 kmem_cache_destroy(sgp->slab); 1762 } 1763 kmem_cache_destroy(scsi_sdb_cache); 1764 1765 return -ENOMEM; 1766 } 1767 1768 void scsi_exit_queue(void) 1769 { 1770 int i; 1771 1772 kmem_cache_destroy(scsi_sdb_cache); 1773 1774 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1775 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1776 mempool_destroy(sgp->pool); 1777 kmem_cache_destroy(sgp->slab); 1778 } 1779 } 1780 1781 /** 1782 * scsi_mode_select - issue a mode select 1783 * @sdev: SCSI device to be queried 1784 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1785 * @sp: Save page bit (0 == don't save, 1 == save) 1786 * @modepage: mode page being requested 1787 * @buffer: request buffer (may not be smaller than eight bytes) 1788 * @len: length of request buffer. 1789 * @timeout: command timeout 1790 * @retries: number of retries before failing 1791 * @data: returns a structure abstracting the mode header data 1792 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1793 * must be SCSI_SENSE_BUFFERSIZE big. 1794 * 1795 * Returns zero if successful; negative error number or scsi 1796 * status on error 1797 * 1798 */ 1799 int 1800 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1801 unsigned char *buffer, int len, int timeout, int retries, 1802 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1803 { 1804 unsigned char cmd[10]; 1805 unsigned char *real_buffer; 1806 int ret; 1807 1808 memset(cmd, 0, sizeof(cmd)); 1809 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1810 1811 if (sdev->use_10_for_ms) { 1812 if (len > 65535) 1813 return -EINVAL; 1814 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1815 if (!real_buffer) 1816 return -ENOMEM; 1817 memcpy(real_buffer + 8, buffer, len); 1818 len += 8; 1819 real_buffer[0] = 0; 1820 real_buffer[1] = 0; 1821 real_buffer[2] = data->medium_type; 1822 real_buffer[3] = data->device_specific; 1823 real_buffer[4] = data->longlba ? 0x01 : 0; 1824 real_buffer[5] = 0; 1825 real_buffer[6] = data->block_descriptor_length >> 8; 1826 real_buffer[7] = data->block_descriptor_length; 1827 1828 cmd[0] = MODE_SELECT_10; 1829 cmd[7] = len >> 8; 1830 cmd[8] = len; 1831 } else { 1832 if (len > 255 || data->block_descriptor_length > 255 || 1833 data->longlba) 1834 return -EINVAL; 1835 1836 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1837 if (!real_buffer) 1838 return -ENOMEM; 1839 memcpy(real_buffer + 4, buffer, len); 1840 len += 4; 1841 real_buffer[0] = 0; 1842 real_buffer[1] = data->medium_type; 1843 real_buffer[2] = data->device_specific; 1844 real_buffer[3] = data->block_descriptor_length; 1845 1846 1847 cmd[0] = MODE_SELECT; 1848 cmd[4] = len; 1849 } 1850 1851 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1852 sshdr, timeout, retries, NULL); 1853 kfree(real_buffer); 1854 return ret; 1855 } 1856 EXPORT_SYMBOL_GPL(scsi_mode_select); 1857 1858 /** 1859 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1860 * @sdev: SCSI device to be queried 1861 * @dbd: set if mode sense will allow block descriptors to be returned 1862 * @modepage: mode page being requested 1863 * @buffer: request buffer (may not be smaller than eight bytes) 1864 * @len: length of request buffer. 1865 * @timeout: command timeout 1866 * @retries: number of retries before failing 1867 * @data: returns a structure abstracting the mode header data 1868 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1869 * must be SCSI_SENSE_BUFFERSIZE big. 1870 * 1871 * Returns zero if unsuccessful, or the header offset (either 4 1872 * or 8 depending on whether a six or ten byte command was 1873 * issued) if successful. 1874 */ 1875 int 1876 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1877 unsigned char *buffer, int len, int timeout, int retries, 1878 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1879 { 1880 unsigned char cmd[12]; 1881 int use_10_for_ms; 1882 int header_length; 1883 int result; 1884 struct scsi_sense_hdr my_sshdr; 1885 1886 memset(data, 0, sizeof(*data)); 1887 memset(&cmd[0], 0, 12); 1888 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1889 cmd[2] = modepage; 1890 1891 /* caller might not be interested in sense, but we need it */ 1892 if (!sshdr) 1893 sshdr = &my_sshdr; 1894 1895 retry: 1896 use_10_for_ms = sdev->use_10_for_ms; 1897 1898 if (use_10_for_ms) { 1899 if (len < 8) 1900 len = 8; 1901 1902 cmd[0] = MODE_SENSE_10; 1903 cmd[8] = len; 1904 header_length = 8; 1905 } else { 1906 if (len < 4) 1907 len = 4; 1908 1909 cmd[0] = MODE_SENSE; 1910 cmd[4] = len; 1911 header_length = 4; 1912 } 1913 1914 memset(buffer, 0, len); 1915 1916 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1917 sshdr, timeout, retries, NULL); 1918 1919 /* This code looks awful: what it's doing is making sure an 1920 * ILLEGAL REQUEST sense return identifies the actual command 1921 * byte as the problem. MODE_SENSE commands can return 1922 * ILLEGAL REQUEST if the code page isn't supported */ 1923 1924 if (use_10_for_ms && !scsi_status_is_good(result) && 1925 (driver_byte(result) & DRIVER_SENSE)) { 1926 if (scsi_sense_valid(sshdr)) { 1927 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1928 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1929 /* 1930 * Invalid command operation code 1931 */ 1932 sdev->use_10_for_ms = 0; 1933 goto retry; 1934 } 1935 } 1936 } 1937 1938 if(scsi_status_is_good(result)) { 1939 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1940 (modepage == 6 || modepage == 8))) { 1941 /* Initio breakage? */ 1942 header_length = 0; 1943 data->length = 13; 1944 data->medium_type = 0; 1945 data->device_specific = 0; 1946 data->longlba = 0; 1947 data->block_descriptor_length = 0; 1948 } else if(use_10_for_ms) { 1949 data->length = buffer[0]*256 + buffer[1] + 2; 1950 data->medium_type = buffer[2]; 1951 data->device_specific = buffer[3]; 1952 data->longlba = buffer[4] & 0x01; 1953 data->block_descriptor_length = buffer[6]*256 1954 + buffer[7]; 1955 } else { 1956 data->length = buffer[0] + 1; 1957 data->medium_type = buffer[1]; 1958 data->device_specific = buffer[2]; 1959 data->block_descriptor_length = buffer[3]; 1960 } 1961 data->header_length = header_length; 1962 } 1963 1964 return result; 1965 } 1966 EXPORT_SYMBOL(scsi_mode_sense); 1967 1968 /** 1969 * scsi_test_unit_ready - test if unit is ready 1970 * @sdev: scsi device to change the state of. 1971 * @timeout: command timeout 1972 * @retries: number of retries before failing 1973 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1974 * returning sense. Make sure that this is cleared before passing 1975 * in. 1976 * 1977 * Returns zero if unsuccessful or an error if TUR failed. For 1978 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1979 * translated to success, with the ->changed flag updated. 1980 **/ 1981 int 1982 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1983 struct scsi_sense_hdr *sshdr_external) 1984 { 1985 char cmd[] = { 1986 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1987 }; 1988 struct scsi_sense_hdr *sshdr; 1989 int result; 1990 1991 if (!sshdr_external) 1992 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1993 else 1994 sshdr = sshdr_external; 1995 1996 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1997 do { 1998 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 1999 timeout, retries, NULL); 2000 if (sdev->removable && scsi_sense_valid(sshdr) && 2001 sshdr->sense_key == UNIT_ATTENTION) 2002 sdev->changed = 1; 2003 } while (scsi_sense_valid(sshdr) && 2004 sshdr->sense_key == UNIT_ATTENTION && --retries); 2005 2006 if (!sshdr) 2007 /* could not allocate sense buffer, so can't process it */ 2008 return result; 2009 2010 if (sdev->removable && scsi_sense_valid(sshdr) && 2011 (sshdr->sense_key == UNIT_ATTENTION || 2012 sshdr->sense_key == NOT_READY)) { 2013 sdev->changed = 1; 2014 result = 0; 2015 } 2016 if (!sshdr_external) 2017 kfree(sshdr); 2018 return result; 2019 } 2020 EXPORT_SYMBOL(scsi_test_unit_ready); 2021 2022 /** 2023 * scsi_device_set_state - Take the given device through the device state model. 2024 * @sdev: scsi device to change the state of. 2025 * @state: state to change to. 2026 * 2027 * Returns zero if unsuccessful or an error if the requested 2028 * transition is illegal. 2029 */ 2030 int 2031 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2032 { 2033 enum scsi_device_state oldstate = sdev->sdev_state; 2034 2035 if (state == oldstate) 2036 return 0; 2037 2038 switch (state) { 2039 case SDEV_CREATED: 2040 switch (oldstate) { 2041 case SDEV_CREATED_BLOCK: 2042 break; 2043 default: 2044 goto illegal; 2045 } 2046 break; 2047 2048 case SDEV_RUNNING: 2049 switch (oldstate) { 2050 case SDEV_CREATED: 2051 case SDEV_OFFLINE: 2052 case SDEV_QUIESCE: 2053 case SDEV_BLOCK: 2054 break; 2055 default: 2056 goto illegal; 2057 } 2058 break; 2059 2060 case SDEV_QUIESCE: 2061 switch (oldstate) { 2062 case SDEV_RUNNING: 2063 case SDEV_OFFLINE: 2064 break; 2065 default: 2066 goto illegal; 2067 } 2068 break; 2069 2070 case SDEV_OFFLINE: 2071 switch (oldstate) { 2072 case SDEV_CREATED: 2073 case SDEV_RUNNING: 2074 case SDEV_QUIESCE: 2075 case SDEV_BLOCK: 2076 break; 2077 default: 2078 goto illegal; 2079 } 2080 break; 2081 2082 case SDEV_BLOCK: 2083 switch (oldstate) { 2084 case SDEV_RUNNING: 2085 case SDEV_CREATED_BLOCK: 2086 break; 2087 default: 2088 goto illegal; 2089 } 2090 break; 2091 2092 case SDEV_CREATED_BLOCK: 2093 switch (oldstate) { 2094 case SDEV_CREATED: 2095 break; 2096 default: 2097 goto illegal; 2098 } 2099 break; 2100 2101 case SDEV_CANCEL: 2102 switch (oldstate) { 2103 case SDEV_CREATED: 2104 case SDEV_RUNNING: 2105 case SDEV_QUIESCE: 2106 case SDEV_OFFLINE: 2107 case SDEV_BLOCK: 2108 break; 2109 default: 2110 goto illegal; 2111 } 2112 break; 2113 2114 case SDEV_DEL: 2115 switch (oldstate) { 2116 case SDEV_CREATED: 2117 case SDEV_RUNNING: 2118 case SDEV_OFFLINE: 2119 case SDEV_CANCEL: 2120 break; 2121 default: 2122 goto illegal; 2123 } 2124 break; 2125 2126 } 2127 sdev->sdev_state = state; 2128 return 0; 2129 2130 illegal: 2131 SCSI_LOG_ERROR_RECOVERY(1, 2132 sdev_printk(KERN_ERR, sdev, 2133 "Illegal state transition %s->%s\n", 2134 scsi_device_state_name(oldstate), 2135 scsi_device_state_name(state)) 2136 ); 2137 return -EINVAL; 2138 } 2139 EXPORT_SYMBOL(scsi_device_set_state); 2140 2141 /** 2142 * sdev_evt_emit - emit a single SCSI device uevent 2143 * @sdev: associated SCSI device 2144 * @evt: event to emit 2145 * 2146 * Send a single uevent (scsi_event) to the associated scsi_device. 2147 */ 2148 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2149 { 2150 int idx = 0; 2151 char *envp[3]; 2152 2153 switch (evt->evt_type) { 2154 case SDEV_EVT_MEDIA_CHANGE: 2155 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2156 break; 2157 2158 default: 2159 /* do nothing */ 2160 break; 2161 } 2162 2163 envp[idx++] = NULL; 2164 2165 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2166 } 2167 2168 /** 2169 * sdev_evt_thread - send a uevent for each scsi event 2170 * @work: work struct for scsi_device 2171 * 2172 * Dispatch queued events to their associated scsi_device kobjects 2173 * as uevents. 2174 */ 2175 void scsi_evt_thread(struct work_struct *work) 2176 { 2177 struct scsi_device *sdev; 2178 LIST_HEAD(event_list); 2179 2180 sdev = container_of(work, struct scsi_device, event_work); 2181 2182 while (1) { 2183 struct scsi_event *evt; 2184 struct list_head *this, *tmp; 2185 unsigned long flags; 2186 2187 spin_lock_irqsave(&sdev->list_lock, flags); 2188 list_splice_init(&sdev->event_list, &event_list); 2189 spin_unlock_irqrestore(&sdev->list_lock, flags); 2190 2191 if (list_empty(&event_list)) 2192 break; 2193 2194 list_for_each_safe(this, tmp, &event_list) { 2195 evt = list_entry(this, struct scsi_event, node); 2196 list_del(&evt->node); 2197 scsi_evt_emit(sdev, evt); 2198 kfree(evt); 2199 } 2200 } 2201 } 2202 2203 /** 2204 * sdev_evt_send - send asserted event to uevent thread 2205 * @sdev: scsi_device event occurred on 2206 * @evt: event to send 2207 * 2208 * Assert scsi device event asynchronously. 2209 */ 2210 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2211 { 2212 unsigned long flags; 2213 2214 #if 0 2215 /* FIXME: currently this check eliminates all media change events 2216 * for polled devices. Need to update to discriminate between AN 2217 * and polled events */ 2218 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2219 kfree(evt); 2220 return; 2221 } 2222 #endif 2223 2224 spin_lock_irqsave(&sdev->list_lock, flags); 2225 list_add_tail(&evt->node, &sdev->event_list); 2226 schedule_work(&sdev->event_work); 2227 spin_unlock_irqrestore(&sdev->list_lock, flags); 2228 } 2229 EXPORT_SYMBOL_GPL(sdev_evt_send); 2230 2231 /** 2232 * sdev_evt_alloc - allocate a new scsi event 2233 * @evt_type: type of event to allocate 2234 * @gfpflags: GFP flags for allocation 2235 * 2236 * Allocates and returns a new scsi_event. 2237 */ 2238 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2239 gfp_t gfpflags) 2240 { 2241 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2242 if (!evt) 2243 return NULL; 2244 2245 evt->evt_type = evt_type; 2246 INIT_LIST_HEAD(&evt->node); 2247 2248 /* evt_type-specific initialization, if any */ 2249 switch (evt_type) { 2250 case SDEV_EVT_MEDIA_CHANGE: 2251 default: 2252 /* do nothing */ 2253 break; 2254 } 2255 2256 return evt; 2257 } 2258 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2259 2260 /** 2261 * sdev_evt_send_simple - send asserted event to uevent thread 2262 * @sdev: scsi_device event occurred on 2263 * @evt_type: type of event to send 2264 * @gfpflags: GFP flags for allocation 2265 * 2266 * Assert scsi device event asynchronously, given an event type. 2267 */ 2268 void sdev_evt_send_simple(struct scsi_device *sdev, 2269 enum scsi_device_event evt_type, gfp_t gfpflags) 2270 { 2271 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2272 if (!evt) { 2273 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2274 evt_type); 2275 return; 2276 } 2277 2278 sdev_evt_send(sdev, evt); 2279 } 2280 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2281 2282 /** 2283 * scsi_device_quiesce - Block user issued commands. 2284 * @sdev: scsi device to quiesce. 2285 * 2286 * This works by trying to transition to the SDEV_QUIESCE state 2287 * (which must be a legal transition). When the device is in this 2288 * state, only special requests will be accepted, all others will 2289 * be deferred. Since special requests may also be requeued requests, 2290 * a successful return doesn't guarantee the device will be 2291 * totally quiescent. 2292 * 2293 * Must be called with user context, may sleep. 2294 * 2295 * Returns zero if unsuccessful or an error if not. 2296 */ 2297 int 2298 scsi_device_quiesce(struct scsi_device *sdev) 2299 { 2300 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2301 if (err) 2302 return err; 2303 2304 scsi_run_queue(sdev->request_queue); 2305 while (sdev->device_busy) { 2306 msleep_interruptible(200); 2307 scsi_run_queue(sdev->request_queue); 2308 } 2309 return 0; 2310 } 2311 EXPORT_SYMBOL(scsi_device_quiesce); 2312 2313 /** 2314 * scsi_device_resume - Restart user issued commands to a quiesced device. 2315 * @sdev: scsi device to resume. 2316 * 2317 * Moves the device from quiesced back to running and restarts the 2318 * queues. 2319 * 2320 * Must be called with user context, may sleep. 2321 */ 2322 void 2323 scsi_device_resume(struct scsi_device *sdev) 2324 { 2325 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2326 return; 2327 scsi_run_queue(sdev->request_queue); 2328 } 2329 EXPORT_SYMBOL(scsi_device_resume); 2330 2331 static void 2332 device_quiesce_fn(struct scsi_device *sdev, void *data) 2333 { 2334 scsi_device_quiesce(sdev); 2335 } 2336 2337 void 2338 scsi_target_quiesce(struct scsi_target *starget) 2339 { 2340 starget_for_each_device(starget, NULL, device_quiesce_fn); 2341 } 2342 EXPORT_SYMBOL(scsi_target_quiesce); 2343 2344 static void 2345 device_resume_fn(struct scsi_device *sdev, void *data) 2346 { 2347 scsi_device_resume(sdev); 2348 } 2349 2350 void 2351 scsi_target_resume(struct scsi_target *starget) 2352 { 2353 starget_for_each_device(starget, NULL, device_resume_fn); 2354 } 2355 EXPORT_SYMBOL(scsi_target_resume); 2356 2357 /** 2358 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2359 * @sdev: device to block 2360 * 2361 * Block request made by scsi lld's to temporarily stop all 2362 * scsi commands on the specified device. Called from interrupt 2363 * or normal process context. 2364 * 2365 * Returns zero if successful or error if not 2366 * 2367 * Notes: 2368 * This routine transitions the device to the SDEV_BLOCK state 2369 * (which must be a legal transition). When the device is in this 2370 * state, all commands are deferred until the scsi lld reenables 2371 * the device with scsi_device_unblock or device_block_tmo fires. 2372 * This routine assumes the host_lock is held on entry. 2373 */ 2374 int 2375 scsi_internal_device_block(struct scsi_device *sdev) 2376 { 2377 struct request_queue *q = sdev->request_queue; 2378 unsigned long flags; 2379 int err = 0; 2380 2381 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2382 if (err) { 2383 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2384 2385 if (err) 2386 return err; 2387 } 2388 2389 /* 2390 * The device has transitioned to SDEV_BLOCK. Stop the 2391 * block layer from calling the midlayer with this device's 2392 * request queue. 2393 */ 2394 spin_lock_irqsave(q->queue_lock, flags); 2395 blk_stop_queue(q); 2396 spin_unlock_irqrestore(q->queue_lock, flags); 2397 2398 return 0; 2399 } 2400 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2401 2402 /** 2403 * scsi_internal_device_unblock - resume a device after a block request 2404 * @sdev: device to resume 2405 * 2406 * Called by scsi lld's or the midlayer to restart the device queue 2407 * for the previously suspended scsi device. Called from interrupt or 2408 * normal process context. 2409 * 2410 * Returns zero if successful or error if not. 2411 * 2412 * Notes: 2413 * This routine transitions the device to the SDEV_RUNNING state 2414 * (which must be a legal transition) allowing the midlayer to 2415 * goose the queue for this device. This routine assumes the 2416 * host_lock is held upon entry. 2417 */ 2418 int 2419 scsi_internal_device_unblock(struct scsi_device *sdev) 2420 { 2421 struct request_queue *q = sdev->request_queue; 2422 unsigned long flags; 2423 2424 /* 2425 * Try to transition the scsi device to SDEV_RUNNING 2426 * and goose the device queue if successful. 2427 */ 2428 if (sdev->sdev_state == SDEV_BLOCK) 2429 sdev->sdev_state = SDEV_RUNNING; 2430 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2431 sdev->sdev_state = SDEV_CREATED; 2432 else 2433 return -EINVAL; 2434 2435 spin_lock_irqsave(q->queue_lock, flags); 2436 blk_start_queue(q); 2437 spin_unlock_irqrestore(q->queue_lock, flags); 2438 2439 return 0; 2440 } 2441 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2442 2443 static void 2444 device_block(struct scsi_device *sdev, void *data) 2445 { 2446 scsi_internal_device_block(sdev); 2447 } 2448 2449 static int 2450 target_block(struct device *dev, void *data) 2451 { 2452 if (scsi_is_target_device(dev)) 2453 starget_for_each_device(to_scsi_target(dev), NULL, 2454 device_block); 2455 return 0; 2456 } 2457 2458 void 2459 scsi_target_block(struct device *dev) 2460 { 2461 if (scsi_is_target_device(dev)) 2462 starget_for_each_device(to_scsi_target(dev), NULL, 2463 device_block); 2464 else 2465 device_for_each_child(dev, NULL, target_block); 2466 } 2467 EXPORT_SYMBOL_GPL(scsi_target_block); 2468 2469 static void 2470 device_unblock(struct scsi_device *sdev, void *data) 2471 { 2472 scsi_internal_device_unblock(sdev); 2473 } 2474 2475 static int 2476 target_unblock(struct device *dev, void *data) 2477 { 2478 if (scsi_is_target_device(dev)) 2479 starget_for_each_device(to_scsi_target(dev), NULL, 2480 device_unblock); 2481 return 0; 2482 } 2483 2484 void 2485 scsi_target_unblock(struct device *dev) 2486 { 2487 if (scsi_is_target_device(dev)) 2488 starget_for_each_device(to_scsi_target(dev), NULL, 2489 device_unblock); 2490 else 2491 device_for_each_child(dev, NULL, target_unblock); 2492 } 2493 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2494 2495 /** 2496 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2497 * @sgl: scatter-gather list 2498 * @sg_count: number of segments in sg 2499 * @offset: offset in bytes into sg, on return offset into the mapped area 2500 * @len: bytes to map, on return number of bytes mapped 2501 * 2502 * Returns virtual address of the start of the mapped page 2503 */ 2504 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2505 size_t *offset, size_t *len) 2506 { 2507 int i; 2508 size_t sg_len = 0, len_complete = 0; 2509 struct scatterlist *sg; 2510 struct page *page; 2511 2512 WARN_ON(!irqs_disabled()); 2513 2514 for_each_sg(sgl, sg, sg_count, i) { 2515 len_complete = sg_len; /* Complete sg-entries */ 2516 sg_len += sg->length; 2517 if (sg_len > *offset) 2518 break; 2519 } 2520 2521 if (unlikely(i == sg_count)) { 2522 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2523 "elements %d\n", 2524 __func__, sg_len, *offset, sg_count); 2525 WARN_ON(1); 2526 return NULL; 2527 } 2528 2529 /* Offset starting from the beginning of first page in this sg-entry */ 2530 *offset = *offset - len_complete + sg->offset; 2531 2532 /* Assumption: contiguous pages can be accessed as "page + i" */ 2533 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2534 *offset &= ~PAGE_MASK; 2535 2536 /* Bytes in this sg-entry from *offset to the end of the page */ 2537 sg_len = PAGE_SIZE - *offset; 2538 if (*len > sg_len) 2539 *len = sg_len; 2540 2541 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2542 } 2543 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2544 2545 /** 2546 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2547 * @virt: virtual address to be unmapped 2548 */ 2549 void scsi_kunmap_atomic_sg(void *virt) 2550 { 2551 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2552 } 2553 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2554