1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 blk_end_request_all(req, 0); 753 754 scsi_release_buffers(cmd); 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 761 762 /* 763 * Next deal with any sectors which we were able to correctly 764 * handle. 765 */ 766 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 767 "%d bytes done.\n", 768 blk_rq_sectors(req), good_bytes)); 769 770 /* 771 * Recovered errors need reporting, but they're always treated 772 * as success, so fiddle the result code here. For BLOCK_PC 773 * we already took a copy of the original into rq->errors which 774 * is what gets returned to the user 775 */ 776 if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) { 777 if (!(req->cmd_flags & REQ_QUIET)) 778 scsi_print_sense("", cmd); 779 result = 0; 780 /* BLOCK_PC may have set error */ 781 error = 0; 782 } 783 784 /* 785 * A number of bytes were successfully read. If there 786 * are leftovers and there is some kind of error 787 * (result != 0), retry the rest. 788 */ 789 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 790 return; 791 792 error = -EIO; 793 794 if (host_byte(result) == DID_RESET) { 795 /* Third party bus reset or reset for error recovery 796 * reasons. Just retry the command and see what 797 * happens. 798 */ 799 action = ACTION_RETRY; 800 } else if (sense_valid && !sense_deferred) { 801 switch (sshdr.sense_key) { 802 case UNIT_ATTENTION: 803 if (cmd->device->removable) { 804 /* Detected disc change. Set a bit 805 * and quietly refuse further access. 806 */ 807 cmd->device->changed = 1; 808 description = "Media Changed"; 809 action = ACTION_FAIL; 810 } else { 811 /* Must have been a power glitch, or a 812 * bus reset. Could not have been a 813 * media change, so we just retry the 814 * command and see what happens. 815 */ 816 action = ACTION_RETRY; 817 } 818 break; 819 case ILLEGAL_REQUEST: 820 /* If we had an ILLEGAL REQUEST returned, then 821 * we may have performed an unsupported 822 * command. The only thing this should be 823 * would be a ten byte read where only a six 824 * byte read was supported. Also, on a system 825 * where READ CAPACITY failed, we may have 826 * read past the end of the disk. 827 */ 828 if ((cmd->device->use_10_for_rw && 829 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 830 (cmd->cmnd[0] == READ_10 || 831 cmd->cmnd[0] == WRITE_10)) { 832 /* This will issue a new 6-byte command. */ 833 cmd->device->use_10_for_rw = 0; 834 action = ACTION_REPREP; 835 } else if (sshdr.asc == 0x10) /* DIX */ { 836 description = "Host Data Integrity Failure"; 837 action = ACTION_FAIL; 838 error = -EILSEQ; 839 } else 840 action = ACTION_FAIL; 841 break; 842 case ABORTED_COMMAND: 843 action = ACTION_FAIL; 844 if (sshdr.asc == 0x10) { /* DIF */ 845 description = "Target Data Integrity Failure"; 846 error = -EILSEQ; 847 } 848 break; 849 case NOT_READY: 850 /* If the device is in the process of becoming 851 * ready, or has a temporary blockage, retry. 852 */ 853 if (sshdr.asc == 0x04) { 854 switch (sshdr.ascq) { 855 case 0x01: /* becoming ready */ 856 case 0x04: /* format in progress */ 857 case 0x05: /* rebuild in progress */ 858 case 0x06: /* recalculation in progress */ 859 case 0x07: /* operation in progress */ 860 case 0x08: /* Long write in progress */ 861 case 0x09: /* self test in progress */ 862 action = ACTION_DELAYED_RETRY; 863 break; 864 default: 865 description = "Device not ready"; 866 action = ACTION_FAIL; 867 break; 868 } 869 } else { 870 description = "Device not ready"; 871 action = ACTION_FAIL; 872 } 873 break; 874 case VOLUME_OVERFLOW: 875 /* See SSC3rXX or current. */ 876 action = ACTION_FAIL; 877 break; 878 default: 879 description = "Unhandled sense code"; 880 action = ACTION_FAIL; 881 break; 882 } 883 } else { 884 description = "Unhandled error code"; 885 action = ACTION_FAIL; 886 } 887 888 switch (action) { 889 case ACTION_FAIL: 890 /* Give up and fail the remainder of the request */ 891 scsi_release_buffers(cmd); 892 if (!(req->cmd_flags & REQ_QUIET)) { 893 if (description) 894 scmd_printk(KERN_INFO, cmd, "%s\n", 895 description); 896 scsi_print_result(cmd); 897 if (driver_byte(result) & DRIVER_SENSE) 898 scsi_print_sense("", cmd); 899 scsi_print_command(cmd); 900 } 901 if (blk_end_request_err(req, -EIO)) 902 scsi_requeue_command(q, cmd); 903 else 904 scsi_next_command(cmd); 905 break; 906 case ACTION_REPREP: 907 /* Unprep the request and put it back at the head of the queue. 908 * A new command will be prepared and issued. 909 */ 910 scsi_release_buffers(cmd); 911 scsi_requeue_command(q, cmd); 912 break; 913 case ACTION_RETRY: 914 /* Retry the same command immediately */ 915 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 916 break; 917 case ACTION_DELAYED_RETRY: 918 /* Retry the same command after a delay */ 919 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 920 break; 921 } 922 } 923 924 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 925 gfp_t gfp_mask) 926 { 927 int count; 928 929 /* 930 * If sg table allocation fails, requeue request later. 931 */ 932 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 933 gfp_mask))) { 934 return BLKPREP_DEFER; 935 } 936 937 req->buffer = NULL; 938 939 /* 940 * Next, walk the list, and fill in the addresses and sizes of 941 * each segment. 942 */ 943 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 944 BUG_ON(count > sdb->table.nents); 945 sdb->table.nents = count; 946 sdb->length = blk_rq_bytes(req); 947 return BLKPREP_OK; 948 } 949 950 /* 951 * Function: scsi_init_io() 952 * 953 * Purpose: SCSI I/O initialize function. 954 * 955 * Arguments: cmd - Command descriptor we wish to initialize 956 * 957 * Returns: 0 on success 958 * BLKPREP_DEFER if the failure is retryable 959 * BLKPREP_KILL if the failure is fatal 960 */ 961 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 962 { 963 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 964 if (error) 965 goto err_exit; 966 967 if (blk_bidi_rq(cmd->request)) { 968 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 969 scsi_sdb_cache, GFP_ATOMIC); 970 if (!bidi_sdb) { 971 error = BLKPREP_DEFER; 972 goto err_exit; 973 } 974 975 cmd->request->next_rq->special = bidi_sdb; 976 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 977 GFP_ATOMIC); 978 if (error) 979 goto err_exit; 980 } 981 982 if (blk_integrity_rq(cmd->request)) { 983 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 984 int ivecs, count; 985 986 BUG_ON(prot_sdb == NULL); 987 ivecs = blk_rq_count_integrity_sg(cmd->request); 988 989 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 990 error = BLKPREP_DEFER; 991 goto err_exit; 992 } 993 994 count = blk_rq_map_integrity_sg(cmd->request, 995 prot_sdb->table.sgl); 996 BUG_ON(unlikely(count > ivecs)); 997 998 cmd->prot_sdb = prot_sdb; 999 cmd->prot_sdb->table.nents = count; 1000 } 1001 1002 return BLKPREP_OK ; 1003 1004 err_exit: 1005 scsi_release_buffers(cmd); 1006 if (error == BLKPREP_KILL) 1007 scsi_put_command(cmd); 1008 else /* BLKPREP_DEFER */ 1009 scsi_unprep_request(cmd->request); 1010 1011 return error; 1012 } 1013 EXPORT_SYMBOL(scsi_init_io); 1014 1015 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1016 struct request *req) 1017 { 1018 struct scsi_cmnd *cmd; 1019 1020 if (!req->special) { 1021 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1022 if (unlikely(!cmd)) 1023 return NULL; 1024 req->special = cmd; 1025 } else { 1026 cmd = req->special; 1027 } 1028 1029 /* pull a tag out of the request if we have one */ 1030 cmd->tag = req->tag; 1031 cmd->request = req; 1032 1033 cmd->cmnd = req->cmd; 1034 1035 return cmd; 1036 } 1037 1038 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1039 { 1040 struct scsi_cmnd *cmd; 1041 int ret = scsi_prep_state_check(sdev, req); 1042 1043 if (ret != BLKPREP_OK) 1044 return ret; 1045 1046 cmd = scsi_get_cmd_from_req(sdev, req); 1047 if (unlikely(!cmd)) 1048 return BLKPREP_DEFER; 1049 1050 /* 1051 * BLOCK_PC requests may transfer data, in which case they must 1052 * a bio attached to them. Or they might contain a SCSI command 1053 * that does not transfer data, in which case they may optionally 1054 * submit a request without an attached bio. 1055 */ 1056 if (req->bio) { 1057 int ret; 1058 1059 BUG_ON(!req->nr_phys_segments); 1060 1061 ret = scsi_init_io(cmd, GFP_ATOMIC); 1062 if (unlikely(ret)) 1063 return ret; 1064 } else { 1065 BUG_ON(blk_rq_bytes(req)); 1066 1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1068 req->buffer = NULL; 1069 } 1070 1071 cmd->cmd_len = req->cmd_len; 1072 if (!blk_rq_bytes(req)) 1073 cmd->sc_data_direction = DMA_NONE; 1074 else if (rq_data_dir(req) == WRITE) 1075 cmd->sc_data_direction = DMA_TO_DEVICE; 1076 else 1077 cmd->sc_data_direction = DMA_FROM_DEVICE; 1078 1079 cmd->transfersize = blk_rq_bytes(req); 1080 cmd->allowed = req->retries; 1081 return BLKPREP_OK; 1082 } 1083 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1084 1085 /* 1086 * Setup a REQ_TYPE_FS command. These are simple read/write request 1087 * from filesystems that still need to be translated to SCSI CDBs from 1088 * the ULD. 1089 */ 1090 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1091 { 1092 struct scsi_cmnd *cmd; 1093 int ret = scsi_prep_state_check(sdev, req); 1094 1095 if (ret != BLKPREP_OK) 1096 return ret; 1097 1098 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1099 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1100 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1101 if (ret != BLKPREP_OK) 1102 return ret; 1103 } 1104 1105 /* 1106 * Filesystem requests must transfer data. 1107 */ 1108 BUG_ON(!req->nr_phys_segments); 1109 1110 cmd = scsi_get_cmd_from_req(sdev, req); 1111 if (unlikely(!cmd)) 1112 return BLKPREP_DEFER; 1113 1114 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1115 return scsi_init_io(cmd, GFP_ATOMIC); 1116 } 1117 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1118 1119 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1120 { 1121 int ret = BLKPREP_OK; 1122 1123 /* 1124 * If the device is not in running state we will reject some 1125 * or all commands. 1126 */ 1127 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1128 switch (sdev->sdev_state) { 1129 case SDEV_OFFLINE: 1130 /* 1131 * If the device is offline we refuse to process any 1132 * commands. The device must be brought online 1133 * before trying any recovery commands. 1134 */ 1135 sdev_printk(KERN_ERR, sdev, 1136 "rejecting I/O to offline device\n"); 1137 ret = BLKPREP_KILL; 1138 break; 1139 case SDEV_DEL: 1140 /* 1141 * If the device is fully deleted, we refuse to 1142 * process any commands as well. 1143 */ 1144 sdev_printk(KERN_ERR, sdev, 1145 "rejecting I/O to dead device\n"); 1146 ret = BLKPREP_KILL; 1147 break; 1148 case SDEV_QUIESCE: 1149 case SDEV_BLOCK: 1150 case SDEV_CREATED_BLOCK: 1151 /* 1152 * If the devices is blocked we defer normal commands. 1153 */ 1154 if (!(req->cmd_flags & REQ_PREEMPT)) 1155 ret = BLKPREP_DEFER; 1156 break; 1157 default: 1158 /* 1159 * For any other not fully online state we only allow 1160 * special commands. In particular any user initiated 1161 * command is not allowed. 1162 */ 1163 if (!(req->cmd_flags & REQ_PREEMPT)) 1164 ret = BLKPREP_KILL; 1165 break; 1166 } 1167 } 1168 return ret; 1169 } 1170 EXPORT_SYMBOL(scsi_prep_state_check); 1171 1172 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1173 { 1174 struct scsi_device *sdev = q->queuedata; 1175 1176 switch (ret) { 1177 case BLKPREP_KILL: 1178 req->errors = DID_NO_CONNECT << 16; 1179 /* release the command and kill it */ 1180 if (req->special) { 1181 struct scsi_cmnd *cmd = req->special; 1182 scsi_release_buffers(cmd); 1183 scsi_put_command(cmd); 1184 req->special = NULL; 1185 } 1186 break; 1187 case BLKPREP_DEFER: 1188 /* 1189 * If we defer, the blk_peek_request() returns NULL, but the 1190 * queue must be restarted, so we plug here if no returning 1191 * command will automatically do that. 1192 */ 1193 if (sdev->device_busy == 0) 1194 blk_plug_device(q); 1195 break; 1196 default: 1197 req->cmd_flags |= REQ_DONTPREP; 1198 } 1199 1200 return ret; 1201 } 1202 EXPORT_SYMBOL(scsi_prep_return); 1203 1204 int scsi_prep_fn(struct request_queue *q, struct request *req) 1205 { 1206 struct scsi_device *sdev = q->queuedata; 1207 int ret = BLKPREP_KILL; 1208 1209 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1210 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1211 return scsi_prep_return(q, req, ret); 1212 } 1213 EXPORT_SYMBOL(scsi_prep_fn); 1214 1215 /* 1216 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1217 * return 0. 1218 * 1219 * Called with the queue_lock held. 1220 */ 1221 static inline int scsi_dev_queue_ready(struct request_queue *q, 1222 struct scsi_device *sdev) 1223 { 1224 if (sdev->device_busy == 0 && sdev->device_blocked) { 1225 /* 1226 * unblock after device_blocked iterates to zero 1227 */ 1228 if (--sdev->device_blocked == 0) { 1229 SCSI_LOG_MLQUEUE(3, 1230 sdev_printk(KERN_INFO, sdev, 1231 "unblocking device at zero depth\n")); 1232 } else { 1233 blk_plug_device(q); 1234 return 0; 1235 } 1236 } 1237 if (scsi_device_is_busy(sdev)) 1238 return 0; 1239 1240 return 1; 1241 } 1242 1243 1244 /* 1245 * scsi_target_queue_ready: checks if there we can send commands to target 1246 * @sdev: scsi device on starget to check. 1247 * 1248 * Called with the host lock held. 1249 */ 1250 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1251 struct scsi_device *sdev) 1252 { 1253 struct scsi_target *starget = scsi_target(sdev); 1254 1255 if (starget->single_lun) { 1256 if (starget->starget_sdev_user && 1257 starget->starget_sdev_user != sdev) 1258 return 0; 1259 starget->starget_sdev_user = sdev; 1260 } 1261 1262 if (starget->target_busy == 0 && starget->target_blocked) { 1263 /* 1264 * unblock after target_blocked iterates to zero 1265 */ 1266 if (--starget->target_blocked == 0) { 1267 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1268 "unblocking target at zero depth\n")); 1269 } else 1270 return 0; 1271 } 1272 1273 if (scsi_target_is_busy(starget)) { 1274 if (list_empty(&sdev->starved_entry)) { 1275 list_add_tail(&sdev->starved_entry, 1276 &shost->starved_list); 1277 return 0; 1278 } 1279 } 1280 1281 /* We're OK to process the command, so we can't be starved */ 1282 if (!list_empty(&sdev->starved_entry)) 1283 list_del_init(&sdev->starved_entry); 1284 return 1; 1285 } 1286 1287 /* 1288 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1289 * return 0. We must end up running the queue again whenever 0 is 1290 * returned, else IO can hang. 1291 * 1292 * Called with host_lock held. 1293 */ 1294 static inline int scsi_host_queue_ready(struct request_queue *q, 1295 struct Scsi_Host *shost, 1296 struct scsi_device *sdev) 1297 { 1298 if (scsi_host_in_recovery(shost)) 1299 return 0; 1300 if (shost->host_busy == 0 && shost->host_blocked) { 1301 /* 1302 * unblock after host_blocked iterates to zero 1303 */ 1304 if (--shost->host_blocked == 0) { 1305 SCSI_LOG_MLQUEUE(3, 1306 printk("scsi%d unblocking host at zero depth\n", 1307 shost->host_no)); 1308 } else { 1309 return 0; 1310 } 1311 } 1312 if (scsi_host_is_busy(shost)) { 1313 if (list_empty(&sdev->starved_entry)) 1314 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1315 return 0; 1316 } 1317 1318 /* We're OK to process the command, so we can't be starved */ 1319 if (!list_empty(&sdev->starved_entry)) 1320 list_del_init(&sdev->starved_entry); 1321 1322 return 1; 1323 } 1324 1325 /* 1326 * Busy state exporting function for request stacking drivers. 1327 * 1328 * For efficiency, no lock is taken to check the busy state of 1329 * shost/starget/sdev, since the returned value is not guaranteed and 1330 * may be changed after request stacking drivers call the function, 1331 * regardless of taking lock or not. 1332 * 1333 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1334 * (e.g. !sdev), scsi needs to return 'not busy'. 1335 * Otherwise, request stacking drivers may hold requests forever. 1336 */ 1337 static int scsi_lld_busy(struct request_queue *q) 1338 { 1339 struct scsi_device *sdev = q->queuedata; 1340 struct Scsi_Host *shost; 1341 struct scsi_target *starget; 1342 1343 if (!sdev) 1344 return 0; 1345 1346 shost = sdev->host; 1347 starget = scsi_target(sdev); 1348 1349 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1350 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1351 return 1; 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Kill a request for a dead device 1358 */ 1359 static void scsi_kill_request(struct request *req, struct request_queue *q) 1360 { 1361 struct scsi_cmnd *cmd = req->special; 1362 struct scsi_device *sdev = cmd->device; 1363 struct scsi_target *starget = scsi_target(sdev); 1364 struct Scsi_Host *shost = sdev->host; 1365 1366 blk_start_request(req); 1367 1368 if (unlikely(cmd == NULL)) { 1369 printk(KERN_CRIT "impossible request in %s.\n", 1370 __func__); 1371 BUG(); 1372 } 1373 1374 scsi_init_cmd_errh(cmd); 1375 cmd->result = DID_NO_CONNECT << 16; 1376 atomic_inc(&cmd->device->iorequest_cnt); 1377 1378 /* 1379 * SCSI request completion path will do scsi_device_unbusy(), 1380 * bump busy counts. To bump the counters, we need to dance 1381 * with the locks as normal issue path does. 1382 */ 1383 sdev->device_busy++; 1384 spin_unlock(sdev->request_queue->queue_lock); 1385 spin_lock(shost->host_lock); 1386 shost->host_busy++; 1387 starget->target_busy++; 1388 spin_unlock(shost->host_lock); 1389 spin_lock(sdev->request_queue->queue_lock); 1390 1391 blk_complete_request(req); 1392 } 1393 1394 static void scsi_softirq_done(struct request *rq) 1395 { 1396 struct scsi_cmnd *cmd = rq->special; 1397 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1398 int disposition; 1399 1400 INIT_LIST_HEAD(&cmd->eh_entry); 1401 1402 /* 1403 * Set the serial numbers back to zero 1404 */ 1405 cmd->serial_number = 0; 1406 1407 atomic_inc(&cmd->device->iodone_cnt); 1408 if (cmd->result) 1409 atomic_inc(&cmd->device->ioerr_cnt); 1410 1411 disposition = scsi_decide_disposition(cmd); 1412 if (disposition != SUCCESS && 1413 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1414 sdev_printk(KERN_ERR, cmd->device, 1415 "timing out command, waited %lus\n", 1416 wait_for/HZ); 1417 disposition = SUCCESS; 1418 } 1419 1420 scsi_log_completion(cmd, disposition); 1421 1422 switch (disposition) { 1423 case SUCCESS: 1424 scsi_finish_command(cmd); 1425 break; 1426 case NEEDS_RETRY: 1427 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1428 break; 1429 case ADD_TO_MLQUEUE: 1430 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1431 break; 1432 default: 1433 if (!scsi_eh_scmd_add(cmd, 0)) 1434 scsi_finish_command(cmd); 1435 } 1436 } 1437 1438 /* 1439 * Function: scsi_request_fn() 1440 * 1441 * Purpose: Main strategy routine for SCSI. 1442 * 1443 * Arguments: q - Pointer to actual queue. 1444 * 1445 * Returns: Nothing 1446 * 1447 * Lock status: IO request lock assumed to be held when called. 1448 */ 1449 static void scsi_request_fn(struct request_queue *q) 1450 { 1451 struct scsi_device *sdev = q->queuedata; 1452 struct Scsi_Host *shost; 1453 struct scsi_cmnd *cmd; 1454 struct request *req; 1455 1456 if (!sdev) { 1457 printk("scsi: killing requests for dead queue\n"); 1458 while ((req = blk_peek_request(q)) != NULL) 1459 scsi_kill_request(req, q); 1460 return; 1461 } 1462 1463 if(!get_device(&sdev->sdev_gendev)) 1464 /* We must be tearing the block queue down already */ 1465 return; 1466 1467 /* 1468 * To start with, we keep looping until the queue is empty, or until 1469 * the host is no longer able to accept any more requests. 1470 */ 1471 shost = sdev->host; 1472 while (!blk_queue_plugged(q)) { 1473 int rtn; 1474 /* 1475 * get next queueable request. We do this early to make sure 1476 * that the request is fully prepared even if we cannot 1477 * accept it. 1478 */ 1479 req = blk_peek_request(q); 1480 if (!req || !scsi_dev_queue_ready(q, sdev)) 1481 break; 1482 1483 if (unlikely(!scsi_device_online(sdev))) { 1484 sdev_printk(KERN_ERR, sdev, 1485 "rejecting I/O to offline device\n"); 1486 scsi_kill_request(req, q); 1487 continue; 1488 } 1489 1490 1491 /* 1492 * Remove the request from the request list. 1493 */ 1494 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1495 blk_start_request(req); 1496 sdev->device_busy++; 1497 1498 spin_unlock(q->queue_lock); 1499 cmd = req->special; 1500 if (unlikely(cmd == NULL)) { 1501 printk(KERN_CRIT "impossible request in %s.\n" 1502 "please mail a stack trace to " 1503 "linux-scsi@vger.kernel.org\n", 1504 __func__); 1505 blk_dump_rq_flags(req, "foo"); 1506 BUG(); 1507 } 1508 spin_lock(shost->host_lock); 1509 1510 /* 1511 * We hit this when the driver is using a host wide 1512 * tag map. For device level tag maps the queue_depth check 1513 * in the device ready fn would prevent us from trying 1514 * to allocate a tag. Since the map is a shared host resource 1515 * we add the dev to the starved list so it eventually gets 1516 * a run when a tag is freed. 1517 */ 1518 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1519 if (list_empty(&sdev->starved_entry)) 1520 list_add_tail(&sdev->starved_entry, 1521 &shost->starved_list); 1522 goto not_ready; 1523 } 1524 1525 if (!scsi_target_queue_ready(shost, sdev)) 1526 goto not_ready; 1527 1528 if (!scsi_host_queue_ready(q, shost, sdev)) 1529 goto not_ready; 1530 1531 scsi_target(sdev)->target_busy++; 1532 shost->host_busy++; 1533 1534 /* 1535 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1536 * take the lock again. 1537 */ 1538 spin_unlock_irq(shost->host_lock); 1539 1540 /* 1541 * Finally, initialize any error handling parameters, and set up 1542 * the timers for timeouts. 1543 */ 1544 scsi_init_cmd_errh(cmd); 1545 1546 /* 1547 * Dispatch the command to the low-level driver. 1548 */ 1549 rtn = scsi_dispatch_cmd(cmd); 1550 spin_lock_irq(q->queue_lock); 1551 if(rtn) { 1552 /* we're refusing the command; because of 1553 * the way locks get dropped, we need to 1554 * check here if plugging is required */ 1555 if(sdev->device_busy == 0) 1556 blk_plug_device(q); 1557 1558 break; 1559 } 1560 } 1561 1562 goto out; 1563 1564 not_ready: 1565 spin_unlock_irq(shost->host_lock); 1566 1567 /* 1568 * lock q, handle tag, requeue req, and decrement device_busy. We 1569 * must return with queue_lock held. 1570 * 1571 * Decrementing device_busy without checking it is OK, as all such 1572 * cases (host limits or settings) should run the queue at some 1573 * later time. 1574 */ 1575 spin_lock_irq(q->queue_lock); 1576 blk_requeue_request(q, req); 1577 sdev->device_busy--; 1578 if(sdev->device_busy == 0) 1579 blk_plug_device(q); 1580 out: 1581 /* must be careful here...if we trigger the ->remove() function 1582 * we cannot be holding the q lock */ 1583 spin_unlock_irq(q->queue_lock); 1584 put_device(&sdev->sdev_gendev); 1585 spin_lock_irq(q->queue_lock); 1586 } 1587 1588 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1589 { 1590 struct device *host_dev; 1591 u64 bounce_limit = 0xffffffff; 1592 1593 if (shost->unchecked_isa_dma) 1594 return BLK_BOUNCE_ISA; 1595 /* 1596 * Platforms with virtual-DMA translation 1597 * hardware have no practical limit. 1598 */ 1599 if (!PCI_DMA_BUS_IS_PHYS) 1600 return BLK_BOUNCE_ANY; 1601 1602 host_dev = scsi_get_device(shost); 1603 if (host_dev && host_dev->dma_mask) 1604 bounce_limit = *host_dev->dma_mask; 1605 1606 return bounce_limit; 1607 } 1608 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1609 1610 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1611 request_fn_proc *request_fn) 1612 { 1613 struct request_queue *q; 1614 struct device *dev = shost->shost_gendev.parent; 1615 1616 q = blk_init_queue(request_fn, NULL); 1617 if (!q) 1618 return NULL; 1619 1620 /* 1621 * this limit is imposed by hardware restrictions 1622 */ 1623 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1624 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1625 1626 blk_queue_max_sectors(q, shost->max_sectors); 1627 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1628 blk_queue_segment_boundary(q, shost->dma_boundary); 1629 dma_set_seg_boundary(dev, shost->dma_boundary); 1630 1631 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1632 1633 /* New queue, no concurrency on queue_flags */ 1634 if (!shost->use_clustering) 1635 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1636 1637 /* 1638 * set a reasonable default alignment on word boundaries: the 1639 * host and device may alter it using 1640 * blk_queue_update_dma_alignment() later. 1641 */ 1642 blk_queue_dma_alignment(q, 0x03); 1643 1644 return q; 1645 } 1646 EXPORT_SYMBOL(__scsi_alloc_queue); 1647 1648 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1649 { 1650 struct request_queue *q; 1651 1652 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1653 if (!q) 1654 return NULL; 1655 1656 blk_queue_prep_rq(q, scsi_prep_fn); 1657 blk_queue_softirq_done(q, scsi_softirq_done); 1658 blk_queue_rq_timed_out(q, scsi_times_out); 1659 blk_queue_lld_busy(q, scsi_lld_busy); 1660 return q; 1661 } 1662 1663 void scsi_free_queue(struct request_queue *q) 1664 { 1665 blk_cleanup_queue(q); 1666 } 1667 1668 /* 1669 * Function: scsi_block_requests() 1670 * 1671 * Purpose: Utility function used by low-level drivers to prevent further 1672 * commands from being queued to the device. 1673 * 1674 * Arguments: shost - Host in question 1675 * 1676 * Returns: Nothing 1677 * 1678 * Lock status: No locks are assumed held. 1679 * 1680 * Notes: There is no timer nor any other means by which the requests 1681 * get unblocked other than the low-level driver calling 1682 * scsi_unblock_requests(). 1683 */ 1684 void scsi_block_requests(struct Scsi_Host *shost) 1685 { 1686 shost->host_self_blocked = 1; 1687 } 1688 EXPORT_SYMBOL(scsi_block_requests); 1689 1690 /* 1691 * Function: scsi_unblock_requests() 1692 * 1693 * Purpose: Utility function used by low-level drivers to allow further 1694 * commands from being queued to the device. 1695 * 1696 * Arguments: shost - Host in question 1697 * 1698 * Returns: Nothing 1699 * 1700 * Lock status: No locks are assumed held. 1701 * 1702 * Notes: There is no timer nor any other means by which the requests 1703 * get unblocked other than the low-level driver calling 1704 * scsi_unblock_requests(). 1705 * 1706 * This is done as an API function so that changes to the 1707 * internals of the scsi mid-layer won't require wholesale 1708 * changes to drivers that use this feature. 1709 */ 1710 void scsi_unblock_requests(struct Scsi_Host *shost) 1711 { 1712 shost->host_self_blocked = 0; 1713 scsi_run_host_queues(shost); 1714 } 1715 EXPORT_SYMBOL(scsi_unblock_requests); 1716 1717 int __init scsi_init_queue(void) 1718 { 1719 int i; 1720 1721 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1722 sizeof(struct scsi_data_buffer), 1723 0, 0, NULL); 1724 if (!scsi_sdb_cache) { 1725 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1726 return -ENOMEM; 1727 } 1728 1729 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1730 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1731 int size = sgp->size * sizeof(struct scatterlist); 1732 1733 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1734 SLAB_HWCACHE_ALIGN, NULL); 1735 if (!sgp->slab) { 1736 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1737 sgp->name); 1738 goto cleanup_sdb; 1739 } 1740 1741 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1742 sgp->slab); 1743 if (!sgp->pool) { 1744 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1745 sgp->name); 1746 goto cleanup_sdb; 1747 } 1748 } 1749 1750 return 0; 1751 1752 cleanup_sdb: 1753 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1754 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1755 if (sgp->pool) 1756 mempool_destroy(sgp->pool); 1757 if (sgp->slab) 1758 kmem_cache_destroy(sgp->slab); 1759 } 1760 kmem_cache_destroy(scsi_sdb_cache); 1761 1762 return -ENOMEM; 1763 } 1764 1765 void scsi_exit_queue(void) 1766 { 1767 int i; 1768 1769 kmem_cache_destroy(scsi_sdb_cache); 1770 1771 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1772 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1773 mempool_destroy(sgp->pool); 1774 kmem_cache_destroy(sgp->slab); 1775 } 1776 } 1777 1778 /** 1779 * scsi_mode_select - issue a mode select 1780 * @sdev: SCSI device to be queried 1781 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1782 * @sp: Save page bit (0 == don't save, 1 == save) 1783 * @modepage: mode page being requested 1784 * @buffer: request buffer (may not be smaller than eight bytes) 1785 * @len: length of request buffer. 1786 * @timeout: command timeout 1787 * @retries: number of retries before failing 1788 * @data: returns a structure abstracting the mode header data 1789 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1790 * must be SCSI_SENSE_BUFFERSIZE big. 1791 * 1792 * Returns zero if successful; negative error number or scsi 1793 * status on error 1794 * 1795 */ 1796 int 1797 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1798 unsigned char *buffer, int len, int timeout, int retries, 1799 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1800 { 1801 unsigned char cmd[10]; 1802 unsigned char *real_buffer; 1803 int ret; 1804 1805 memset(cmd, 0, sizeof(cmd)); 1806 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1807 1808 if (sdev->use_10_for_ms) { 1809 if (len > 65535) 1810 return -EINVAL; 1811 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1812 if (!real_buffer) 1813 return -ENOMEM; 1814 memcpy(real_buffer + 8, buffer, len); 1815 len += 8; 1816 real_buffer[0] = 0; 1817 real_buffer[1] = 0; 1818 real_buffer[2] = data->medium_type; 1819 real_buffer[3] = data->device_specific; 1820 real_buffer[4] = data->longlba ? 0x01 : 0; 1821 real_buffer[5] = 0; 1822 real_buffer[6] = data->block_descriptor_length >> 8; 1823 real_buffer[7] = data->block_descriptor_length; 1824 1825 cmd[0] = MODE_SELECT_10; 1826 cmd[7] = len >> 8; 1827 cmd[8] = len; 1828 } else { 1829 if (len > 255 || data->block_descriptor_length > 255 || 1830 data->longlba) 1831 return -EINVAL; 1832 1833 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1834 if (!real_buffer) 1835 return -ENOMEM; 1836 memcpy(real_buffer + 4, buffer, len); 1837 len += 4; 1838 real_buffer[0] = 0; 1839 real_buffer[1] = data->medium_type; 1840 real_buffer[2] = data->device_specific; 1841 real_buffer[3] = data->block_descriptor_length; 1842 1843 1844 cmd[0] = MODE_SELECT; 1845 cmd[4] = len; 1846 } 1847 1848 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1849 sshdr, timeout, retries, NULL); 1850 kfree(real_buffer); 1851 return ret; 1852 } 1853 EXPORT_SYMBOL_GPL(scsi_mode_select); 1854 1855 /** 1856 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1857 * @sdev: SCSI device to be queried 1858 * @dbd: set if mode sense will allow block descriptors to be returned 1859 * @modepage: mode page being requested 1860 * @buffer: request buffer (may not be smaller than eight bytes) 1861 * @len: length of request buffer. 1862 * @timeout: command timeout 1863 * @retries: number of retries before failing 1864 * @data: returns a structure abstracting the mode header data 1865 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1866 * must be SCSI_SENSE_BUFFERSIZE big. 1867 * 1868 * Returns zero if unsuccessful, or the header offset (either 4 1869 * or 8 depending on whether a six or ten byte command was 1870 * issued) if successful. 1871 */ 1872 int 1873 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1874 unsigned char *buffer, int len, int timeout, int retries, 1875 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1876 { 1877 unsigned char cmd[12]; 1878 int use_10_for_ms; 1879 int header_length; 1880 int result; 1881 struct scsi_sense_hdr my_sshdr; 1882 1883 memset(data, 0, sizeof(*data)); 1884 memset(&cmd[0], 0, 12); 1885 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1886 cmd[2] = modepage; 1887 1888 /* caller might not be interested in sense, but we need it */ 1889 if (!sshdr) 1890 sshdr = &my_sshdr; 1891 1892 retry: 1893 use_10_for_ms = sdev->use_10_for_ms; 1894 1895 if (use_10_for_ms) { 1896 if (len < 8) 1897 len = 8; 1898 1899 cmd[0] = MODE_SENSE_10; 1900 cmd[8] = len; 1901 header_length = 8; 1902 } else { 1903 if (len < 4) 1904 len = 4; 1905 1906 cmd[0] = MODE_SENSE; 1907 cmd[4] = len; 1908 header_length = 4; 1909 } 1910 1911 memset(buffer, 0, len); 1912 1913 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1914 sshdr, timeout, retries, NULL); 1915 1916 /* This code looks awful: what it's doing is making sure an 1917 * ILLEGAL REQUEST sense return identifies the actual command 1918 * byte as the problem. MODE_SENSE commands can return 1919 * ILLEGAL REQUEST if the code page isn't supported */ 1920 1921 if (use_10_for_ms && !scsi_status_is_good(result) && 1922 (driver_byte(result) & DRIVER_SENSE)) { 1923 if (scsi_sense_valid(sshdr)) { 1924 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1925 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1926 /* 1927 * Invalid command operation code 1928 */ 1929 sdev->use_10_for_ms = 0; 1930 goto retry; 1931 } 1932 } 1933 } 1934 1935 if(scsi_status_is_good(result)) { 1936 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1937 (modepage == 6 || modepage == 8))) { 1938 /* Initio breakage? */ 1939 header_length = 0; 1940 data->length = 13; 1941 data->medium_type = 0; 1942 data->device_specific = 0; 1943 data->longlba = 0; 1944 data->block_descriptor_length = 0; 1945 } else if(use_10_for_ms) { 1946 data->length = buffer[0]*256 + buffer[1] + 2; 1947 data->medium_type = buffer[2]; 1948 data->device_specific = buffer[3]; 1949 data->longlba = buffer[4] & 0x01; 1950 data->block_descriptor_length = buffer[6]*256 1951 + buffer[7]; 1952 } else { 1953 data->length = buffer[0] + 1; 1954 data->medium_type = buffer[1]; 1955 data->device_specific = buffer[2]; 1956 data->block_descriptor_length = buffer[3]; 1957 } 1958 data->header_length = header_length; 1959 } 1960 1961 return result; 1962 } 1963 EXPORT_SYMBOL(scsi_mode_sense); 1964 1965 /** 1966 * scsi_test_unit_ready - test if unit is ready 1967 * @sdev: scsi device to change the state of. 1968 * @timeout: command timeout 1969 * @retries: number of retries before failing 1970 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1971 * returning sense. Make sure that this is cleared before passing 1972 * in. 1973 * 1974 * Returns zero if unsuccessful or an error if TUR failed. For 1975 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1976 * translated to success, with the ->changed flag updated. 1977 **/ 1978 int 1979 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1980 struct scsi_sense_hdr *sshdr_external) 1981 { 1982 char cmd[] = { 1983 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1984 }; 1985 struct scsi_sense_hdr *sshdr; 1986 int result; 1987 1988 if (!sshdr_external) 1989 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1990 else 1991 sshdr = sshdr_external; 1992 1993 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1994 do { 1995 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 1996 timeout, retries, NULL); 1997 if (sdev->removable && scsi_sense_valid(sshdr) && 1998 sshdr->sense_key == UNIT_ATTENTION) 1999 sdev->changed = 1; 2000 } while (scsi_sense_valid(sshdr) && 2001 sshdr->sense_key == UNIT_ATTENTION && --retries); 2002 2003 if (!sshdr) 2004 /* could not allocate sense buffer, so can't process it */ 2005 return result; 2006 2007 if (sdev->removable && scsi_sense_valid(sshdr) && 2008 (sshdr->sense_key == UNIT_ATTENTION || 2009 sshdr->sense_key == NOT_READY)) { 2010 sdev->changed = 1; 2011 result = 0; 2012 } 2013 if (!sshdr_external) 2014 kfree(sshdr); 2015 return result; 2016 } 2017 EXPORT_SYMBOL(scsi_test_unit_ready); 2018 2019 /** 2020 * scsi_device_set_state - Take the given device through the device state model. 2021 * @sdev: scsi device to change the state of. 2022 * @state: state to change to. 2023 * 2024 * Returns zero if unsuccessful or an error if the requested 2025 * transition is illegal. 2026 */ 2027 int 2028 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2029 { 2030 enum scsi_device_state oldstate = sdev->sdev_state; 2031 2032 if (state == oldstate) 2033 return 0; 2034 2035 switch (state) { 2036 case SDEV_CREATED: 2037 switch (oldstate) { 2038 case SDEV_CREATED_BLOCK: 2039 break; 2040 default: 2041 goto illegal; 2042 } 2043 break; 2044 2045 case SDEV_RUNNING: 2046 switch (oldstate) { 2047 case SDEV_CREATED: 2048 case SDEV_OFFLINE: 2049 case SDEV_QUIESCE: 2050 case SDEV_BLOCK: 2051 break; 2052 default: 2053 goto illegal; 2054 } 2055 break; 2056 2057 case SDEV_QUIESCE: 2058 switch (oldstate) { 2059 case SDEV_RUNNING: 2060 case SDEV_OFFLINE: 2061 break; 2062 default: 2063 goto illegal; 2064 } 2065 break; 2066 2067 case SDEV_OFFLINE: 2068 switch (oldstate) { 2069 case SDEV_CREATED: 2070 case SDEV_RUNNING: 2071 case SDEV_QUIESCE: 2072 case SDEV_BLOCK: 2073 break; 2074 default: 2075 goto illegal; 2076 } 2077 break; 2078 2079 case SDEV_BLOCK: 2080 switch (oldstate) { 2081 case SDEV_RUNNING: 2082 case SDEV_CREATED_BLOCK: 2083 break; 2084 default: 2085 goto illegal; 2086 } 2087 break; 2088 2089 case SDEV_CREATED_BLOCK: 2090 switch (oldstate) { 2091 case SDEV_CREATED: 2092 break; 2093 default: 2094 goto illegal; 2095 } 2096 break; 2097 2098 case SDEV_CANCEL: 2099 switch (oldstate) { 2100 case SDEV_CREATED: 2101 case SDEV_RUNNING: 2102 case SDEV_QUIESCE: 2103 case SDEV_OFFLINE: 2104 case SDEV_BLOCK: 2105 break; 2106 default: 2107 goto illegal; 2108 } 2109 break; 2110 2111 case SDEV_DEL: 2112 switch (oldstate) { 2113 case SDEV_CREATED: 2114 case SDEV_RUNNING: 2115 case SDEV_OFFLINE: 2116 case SDEV_CANCEL: 2117 break; 2118 default: 2119 goto illegal; 2120 } 2121 break; 2122 2123 } 2124 sdev->sdev_state = state; 2125 return 0; 2126 2127 illegal: 2128 SCSI_LOG_ERROR_RECOVERY(1, 2129 sdev_printk(KERN_ERR, sdev, 2130 "Illegal state transition %s->%s\n", 2131 scsi_device_state_name(oldstate), 2132 scsi_device_state_name(state)) 2133 ); 2134 return -EINVAL; 2135 } 2136 EXPORT_SYMBOL(scsi_device_set_state); 2137 2138 /** 2139 * sdev_evt_emit - emit a single SCSI device uevent 2140 * @sdev: associated SCSI device 2141 * @evt: event to emit 2142 * 2143 * Send a single uevent (scsi_event) to the associated scsi_device. 2144 */ 2145 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2146 { 2147 int idx = 0; 2148 char *envp[3]; 2149 2150 switch (evt->evt_type) { 2151 case SDEV_EVT_MEDIA_CHANGE: 2152 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2153 break; 2154 2155 default: 2156 /* do nothing */ 2157 break; 2158 } 2159 2160 envp[idx++] = NULL; 2161 2162 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2163 } 2164 2165 /** 2166 * sdev_evt_thread - send a uevent for each scsi event 2167 * @work: work struct for scsi_device 2168 * 2169 * Dispatch queued events to their associated scsi_device kobjects 2170 * as uevents. 2171 */ 2172 void scsi_evt_thread(struct work_struct *work) 2173 { 2174 struct scsi_device *sdev; 2175 LIST_HEAD(event_list); 2176 2177 sdev = container_of(work, struct scsi_device, event_work); 2178 2179 while (1) { 2180 struct scsi_event *evt; 2181 struct list_head *this, *tmp; 2182 unsigned long flags; 2183 2184 spin_lock_irqsave(&sdev->list_lock, flags); 2185 list_splice_init(&sdev->event_list, &event_list); 2186 spin_unlock_irqrestore(&sdev->list_lock, flags); 2187 2188 if (list_empty(&event_list)) 2189 break; 2190 2191 list_for_each_safe(this, tmp, &event_list) { 2192 evt = list_entry(this, struct scsi_event, node); 2193 list_del(&evt->node); 2194 scsi_evt_emit(sdev, evt); 2195 kfree(evt); 2196 } 2197 } 2198 } 2199 2200 /** 2201 * sdev_evt_send - send asserted event to uevent thread 2202 * @sdev: scsi_device event occurred on 2203 * @evt: event to send 2204 * 2205 * Assert scsi device event asynchronously. 2206 */ 2207 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2208 { 2209 unsigned long flags; 2210 2211 #if 0 2212 /* FIXME: currently this check eliminates all media change events 2213 * for polled devices. Need to update to discriminate between AN 2214 * and polled events */ 2215 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2216 kfree(evt); 2217 return; 2218 } 2219 #endif 2220 2221 spin_lock_irqsave(&sdev->list_lock, flags); 2222 list_add_tail(&evt->node, &sdev->event_list); 2223 schedule_work(&sdev->event_work); 2224 spin_unlock_irqrestore(&sdev->list_lock, flags); 2225 } 2226 EXPORT_SYMBOL_GPL(sdev_evt_send); 2227 2228 /** 2229 * sdev_evt_alloc - allocate a new scsi event 2230 * @evt_type: type of event to allocate 2231 * @gfpflags: GFP flags for allocation 2232 * 2233 * Allocates and returns a new scsi_event. 2234 */ 2235 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2236 gfp_t gfpflags) 2237 { 2238 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2239 if (!evt) 2240 return NULL; 2241 2242 evt->evt_type = evt_type; 2243 INIT_LIST_HEAD(&evt->node); 2244 2245 /* evt_type-specific initialization, if any */ 2246 switch (evt_type) { 2247 case SDEV_EVT_MEDIA_CHANGE: 2248 default: 2249 /* do nothing */ 2250 break; 2251 } 2252 2253 return evt; 2254 } 2255 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2256 2257 /** 2258 * sdev_evt_send_simple - send asserted event to uevent thread 2259 * @sdev: scsi_device event occurred on 2260 * @evt_type: type of event to send 2261 * @gfpflags: GFP flags for allocation 2262 * 2263 * Assert scsi device event asynchronously, given an event type. 2264 */ 2265 void sdev_evt_send_simple(struct scsi_device *sdev, 2266 enum scsi_device_event evt_type, gfp_t gfpflags) 2267 { 2268 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2269 if (!evt) { 2270 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2271 evt_type); 2272 return; 2273 } 2274 2275 sdev_evt_send(sdev, evt); 2276 } 2277 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2278 2279 /** 2280 * scsi_device_quiesce - Block user issued commands. 2281 * @sdev: scsi device to quiesce. 2282 * 2283 * This works by trying to transition to the SDEV_QUIESCE state 2284 * (which must be a legal transition). When the device is in this 2285 * state, only special requests will be accepted, all others will 2286 * be deferred. Since special requests may also be requeued requests, 2287 * a successful return doesn't guarantee the device will be 2288 * totally quiescent. 2289 * 2290 * Must be called with user context, may sleep. 2291 * 2292 * Returns zero if unsuccessful or an error if not. 2293 */ 2294 int 2295 scsi_device_quiesce(struct scsi_device *sdev) 2296 { 2297 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2298 if (err) 2299 return err; 2300 2301 scsi_run_queue(sdev->request_queue); 2302 while (sdev->device_busy) { 2303 msleep_interruptible(200); 2304 scsi_run_queue(sdev->request_queue); 2305 } 2306 return 0; 2307 } 2308 EXPORT_SYMBOL(scsi_device_quiesce); 2309 2310 /** 2311 * scsi_device_resume - Restart user issued commands to a quiesced device. 2312 * @sdev: scsi device to resume. 2313 * 2314 * Moves the device from quiesced back to running and restarts the 2315 * queues. 2316 * 2317 * Must be called with user context, may sleep. 2318 */ 2319 void 2320 scsi_device_resume(struct scsi_device *sdev) 2321 { 2322 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2323 return; 2324 scsi_run_queue(sdev->request_queue); 2325 } 2326 EXPORT_SYMBOL(scsi_device_resume); 2327 2328 static void 2329 device_quiesce_fn(struct scsi_device *sdev, void *data) 2330 { 2331 scsi_device_quiesce(sdev); 2332 } 2333 2334 void 2335 scsi_target_quiesce(struct scsi_target *starget) 2336 { 2337 starget_for_each_device(starget, NULL, device_quiesce_fn); 2338 } 2339 EXPORT_SYMBOL(scsi_target_quiesce); 2340 2341 static void 2342 device_resume_fn(struct scsi_device *sdev, void *data) 2343 { 2344 scsi_device_resume(sdev); 2345 } 2346 2347 void 2348 scsi_target_resume(struct scsi_target *starget) 2349 { 2350 starget_for_each_device(starget, NULL, device_resume_fn); 2351 } 2352 EXPORT_SYMBOL(scsi_target_resume); 2353 2354 /** 2355 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2356 * @sdev: device to block 2357 * 2358 * Block request made by scsi lld's to temporarily stop all 2359 * scsi commands on the specified device. Called from interrupt 2360 * or normal process context. 2361 * 2362 * Returns zero if successful or error if not 2363 * 2364 * Notes: 2365 * This routine transitions the device to the SDEV_BLOCK state 2366 * (which must be a legal transition). When the device is in this 2367 * state, all commands are deferred until the scsi lld reenables 2368 * the device with scsi_device_unblock or device_block_tmo fires. 2369 * This routine assumes the host_lock is held on entry. 2370 */ 2371 int 2372 scsi_internal_device_block(struct scsi_device *sdev) 2373 { 2374 struct request_queue *q = sdev->request_queue; 2375 unsigned long flags; 2376 int err = 0; 2377 2378 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2379 if (err) { 2380 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2381 2382 if (err) 2383 return err; 2384 } 2385 2386 /* 2387 * The device has transitioned to SDEV_BLOCK. Stop the 2388 * block layer from calling the midlayer with this device's 2389 * request queue. 2390 */ 2391 spin_lock_irqsave(q->queue_lock, flags); 2392 blk_stop_queue(q); 2393 spin_unlock_irqrestore(q->queue_lock, flags); 2394 2395 return 0; 2396 } 2397 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2398 2399 /** 2400 * scsi_internal_device_unblock - resume a device after a block request 2401 * @sdev: device to resume 2402 * 2403 * Called by scsi lld's or the midlayer to restart the device queue 2404 * for the previously suspended scsi device. Called from interrupt or 2405 * normal process context. 2406 * 2407 * Returns zero if successful or error if not. 2408 * 2409 * Notes: 2410 * This routine transitions the device to the SDEV_RUNNING state 2411 * (which must be a legal transition) allowing the midlayer to 2412 * goose the queue for this device. This routine assumes the 2413 * host_lock is held upon entry. 2414 */ 2415 int 2416 scsi_internal_device_unblock(struct scsi_device *sdev) 2417 { 2418 struct request_queue *q = sdev->request_queue; 2419 unsigned long flags; 2420 2421 /* 2422 * Try to transition the scsi device to SDEV_RUNNING 2423 * and goose the device queue if successful. 2424 */ 2425 if (sdev->sdev_state == SDEV_BLOCK) 2426 sdev->sdev_state = SDEV_RUNNING; 2427 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2428 sdev->sdev_state = SDEV_CREATED; 2429 else 2430 return -EINVAL; 2431 2432 spin_lock_irqsave(q->queue_lock, flags); 2433 blk_start_queue(q); 2434 spin_unlock_irqrestore(q->queue_lock, flags); 2435 2436 return 0; 2437 } 2438 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2439 2440 static void 2441 device_block(struct scsi_device *sdev, void *data) 2442 { 2443 scsi_internal_device_block(sdev); 2444 } 2445 2446 static int 2447 target_block(struct device *dev, void *data) 2448 { 2449 if (scsi_is_target_device(dev)) 2450 starget_for_each_device(to_scsi_target(dev), NULL, 2451 device_block); 2452 return 0; 2453 } 2454 2455 void 2456 scsi_target_block(struct device *dev) 2457 { 2458 if (scsi_is_target_device(dev)) 2459 starget_for_each_device(to_scsi_target(dev), NULL, 2460 device_block); 2461 else 2462 device_for_each_child(dev, NULL, target_block); 2463 } 2464 EXPORT_SYMBOL_GPL(scsi_target_block); 2465 2466 static void 2467 device_unblock(struct scsi_device *sdev, void *data) 2468 { 2469 scsi_internal_device_unblock(sdev); 2470 } 2471 2472 static int 2473 target_unblock(struct device *dev, void *data) 2474 { 2475 if (scsi_is_target_device(dev)) 2476 starget_for_each_device(to_scsi_target(dev), NULL, 2477 device_unblock); 2478 return 0; 2479 } 2480 2481 void 2482 scsi_target_unblock(struct device *dev) 2483 { 2484 if (scsi_is_target_device(dev)) 2485 starget_for_each_device(to_scsi_target(dev), NULL, 2486 device_unblock); 2487 else 2488 device_for_each_child(dev, NULL, target_unblock); 2489 } 2490 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2491 2492 /** 2493 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2494 * @sgl: scatter-gather list 2495 * @sg_count: number of segments in sg 2496 * @offset: offset in bytes into sg, on return offset into the mapped area 2497 * @len: bytes to map, on return number of bytes mapped 2498 * 2499 * Returns virtual address of the start of the mapped page 2500 */ 2501 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2502 size_t *offset, size_t *len) 2503 { 2504 int i; 2505 size_t sg_len = 0, len_complete = 0; 2506 struct scatterlist *sg; 2507 struct page *page; 2508 2509 WARN_ON(!irqs_disabled()); 2510 2511 for_each_sg(sgl, sg, sg_count, i) { 2512 len_complete = sg_len; /* Complete sg-entries */ 2513 sg_len += sg->length; 2514 if (sg_len > *offset) 2515 break; 2516 } 2517 2518 if (unlikely(i == sg_count)) { 2519 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2520 "elements %d\n", 2521 __func__, sg_len, *offset, sg_count); 2522 WARN_ON(1); 2523 return NULL; 2524 } 2525 2526 /* Offset starting from the beginning of first page in this sg-entry */ 2527 *offset = *offset - len_complete + sg->offset; 2528 2529 /* Assumption: contiguous pages can be accessed as "page + i" */ 2530 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2531 *offset &= ~PAGE_MASK; 2532 2533 /* Bytes in this sg-entry from *offset to the end of the page */ 2534 sg_len = PAGE_SIZE - *offset; 2535 if (*len > sg_len) 2536 *len = sg_len; 2537 2538 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2539 } 2540 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2541 2542 /** 2543 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2544 * @virt: virtual address to be unmapped 2545 */ 2546 void scsi_kunmap_atomic_sg(void *virt) 2547 { 2548 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2549 } 2550 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2551