xref: /linux/drivers/scsi/scsi_lib.c (revision 170aafe35cb98e0f3fbacb446ea86389fbce22ea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	blk_mq_requeue_request(rq, false);
126 	if (!scsi_host_in_recovery(cmd->device->host))
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device, cmd);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_mq_destroy_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 
166 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 			       !scsi_host_in_recovery(cmd->device->host));
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189 	struct scsi_failure *failure;
190 
191 	failures->total_retries = 0;
192 
193 	for (failure = failures->failure_definitions; failure->result;
194 	     failure++)
195 		failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198 
199 /**
200  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201  * @scmd: scsi_cmnd to check.
202  * @failures: scsi_failures struct that lists failures to check for.
203  *
204  * Returns -EAGAIN if the caller should retry else 0.
205  */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207 				  struct scsi_failures *failures)
208 {
209 	struct scsi_failure *failure;
210 	struct scsi_sense_hdr sshdr;
211 	enum sam_status status;
212 
213 	if (!failures)
214 		return 0;
215 
216 	for (failure = failures->failure_definitions; failure->result;
217 	     failure++) {
218 		if (failure->result == SCMD_FAILURE_RESULT_ANY)
219 			goto maybe_retry;
220 
221 		if (host_byte(scmd->result) &&
222 		    host_byte(scmd->result) == host_byte(failure->result))
223 			goto maybe_retry;
224 
225 		status = status_byte(scmd->result);
226 		if (!status)
227 			continue;
228 
229 		if (failure->result == SCMD_FAILURE_STAT_ANY &&
230 		    !scsi_status_is_good(scmd->result))
231 			goto maybe_retry;
232 
233 		if (status != status_byte(failure->result))
234 			continue;
235 
236 		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237 		    failure->sense == SCMD_FAILURE_SENSE_ANY)
238 			goto maybe_retry;
239 
240 		if (!scsi_command_normalize_sense(scmd, &sshdr))
241 			return 0;
242 
243 		if (failure->sense != sshdr.sense_key)
244 			continue;
245 
246 		if (failure->asc == SCMD_FAILURE_ASC_ANY)
247 			goto maybe_retry;
248 
249 		if (failure->asc != sshdr.asc)
250 			continue;
251 
252 		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253 		    failure->ascq == sshdr.ascq)
254 			goto maybe_retry;
255 	}
256 
257 	return 0;
258 
259 maybe_retry:
260 	if (failure->allowed) {
261 		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262 		    ++failure->retries <= failure->allowed)
263 			return -EAGAIN;
264 	} else {
265 		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266 		    ++failures->total_retries <= failures->total_allowed)
267 			return -EAGAIN;
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * scsi_execute_cmd - insert request and wait for the result
275  * @sdev:	scsi_device
276  * @cmd:	scsi command
277  * @opf:	block layer request cmd_flags
278  * @buffer:	data buffer
279  * @bufflen:	len of buffer
280  * @timeout:	request timeout in HZ
281  * @ml_retries:	number of times SCSI midlayer will retry request
282  * @args:	Optional args. See struct definition for field descriptions
283  *
284  * Returns the scsi_cmnd result field if a command was executed, or a negative
285  * Linux error code if we didn't get that far.
286  */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
289 		     int timeout, int ml_retries,
290 		     const struct scsi_exec_args *args)
291 {
292 	static const struct scsi_exec_args default_args;
293 	struct request *req;
294 	struct scsi_cmnd *scmd;
295 	int ret;
296 
297 	if (!args)
298 		args = &default_args;
299 	else if (WARN_ON_ONCE(args->sense &&
300 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
301 		return -EINVAL;
302 
303 retry:
304 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305 	if (IS_ERR(req))
306 		return PTR_ERR(req);
307 
308 	if (bufflen) {
309 		ret = blk_rq_map_kern(sdev->request_queue, req,
310 				      buffer, bufflen, GFP_NOIO);
311 		if (ret)
312 			goto out;
313 	}
314 	scmd = blk_mq_rq_to_pdu(req);
315 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317 	scmd->allowed = ml_retries;
318 	scmd->flags |= args->scmd_flags;
319 	req->timeout = timeout;
320 	req->rq_flags |= RQF_QUIET;
321 
322 	/*
323 	 * head injection *required* here otherwise quiesce won't work
324 	 */
325 	blk_execute_rq(req, true);
326 
327 	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328 		blk_mq_free_request(req);
329 		goto retry;
330 	}
331 
332 	/*
333 	 * Some devices (USB mass-storage in particular) may transfer
334 	 * garbage data together with a residue indicating that the data
335 	 * is invalid.  Prevent the garbage from being misinterpreted
336 	 * and prevent security leaks by zeroing out the excess data.
337 	 */
338 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340 
341 	if (args->resid)
342 		*args->resid = scmd->resid_len;
343 	if (args->sense)
344 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345 	if (args->sshdr)
346 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347 				     args->sshdr);
348 
349 	ret = scmd->result;
350  out:
351 	blk_mq_free_request(req);
352 
353 	return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356 
357 /*
358  * Wake up the error handler if necessary. Avoid as follows that the error
359  * handler is not woken up if host in-flight requests number ==
360  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361  * with an RCU read lock in this function to ensure that this function in
362  * its entirety either finishes before scsi_eh_scmd_add() increases the
363  * host_failed counter or that it notices the shost state change made by
364  * scsi_eh_scmd_add().
365  */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368 	unsigned long flags;
369 
370 	rcu_read_lock();
371 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372 	if (unlikely(scsi_host_in_recovery(shost))) {
373 		unsigned int busy = scsi_host_busy(shost);
374 
375 		spin_lock_irqsave(shost->host_lock, flags);
376 		if (shost->host_failed || shost->host_eh_scheduled)
377 			scsi_eh_wakeup(shost, busy);
378 		spin_unlock_irqrestore(shost->host_lock, flags);
379 	}
380 	rcu_read_unlock();
381 }
382 
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385 	struct Scsi_Host *shost = sdev->host;
386 	struct scsi_target *starget = scsi_target(sdev);
387 
388 	scsi_dec_host_busy(shost, cmd);
389 
390 	if (starget->can_queue > 0)
391 		atomic_dec(&starget->target_busy);
392 
393 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
394 	cmd->budget_token = -1;
395 }
396 
397 /*
398  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399  * interrupts disabled.
400  */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403 	struct scsi_device *current_sdev = data;
404 
405 	if (sdev != current_sdev)
406 		blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408 
409 /*
410  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411  * and call blk_run_queue for all the scsi_devices on the target -
412  * including current_sdev first.
413  *
414  * Called with *no* scsi locks held.
415  */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418 	struct Scsi_Host *shost = current_sdev->host;
419 	struct scsi_target *starget = scsi_target(current_sdev);
420 	unsigned long flags;
421 
422 	spin_lock_irqsave(shost->host_lock, flags);
423 	starget->starget_sdev_user = NULL;
424 	spin_unlock_irqrestore(shost->host_lock, flags);
425 
426 	/*
427 	 * Call blk_run_queue for all LUNs on the target, starting with
428 	 * current_sdev. We race with others (to set starget_sdev_user),
429 	 * but in most cases, we will be first. Ideally, each LU on the
430 	 * target would get some limited time or requests on the target.
431 	 */
432 	blk_mq_run_hw_queues(current_sdev->request_queue,
433 			     shost->queuecommand_may_block);
434 
435 	spin_lock_irqsave(shost->host_lock, flags);
436 	if (!starget->starget_sdev_user)
437 		__starget_for_each_device(starget, current_sdev,
438 					  scsi_kick_sdev_queue);
439 	spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441 
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
445 		return true;
446 	if (atomic_read(&sdev->device_blocked) > 0)
447 		return true;
448 	return false;
449 }
450 
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453 	if (starget->can_queue > 0) {
454 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
455 			return true;
456 		if (atomic_read(&starget->target_blocked) > 0)
457 			return true;
458 	}
459 	return false;
460 }
461 
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464 	if (atomic_read(&shost->host_blocked) > 0)
465 		return true;
466 	if (shost->host_self_blocked)
467 		return true;
468 	return false;
469 }
470 
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473 	LIST_HEAD(starved_list);
474 	struct scsi_device *sdev;
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(shost->host_lock, flags);
478 	list_splice_init(&shost->starved_list, &starved_list);
479 
480 	while (!list_empty(&starved_list)) {
481 		struct request_queue *slq;
482 
483 		/*
484 		 * As long as shost is accepting commands and we have
485 		 * starved queues, call blk_run_queue. scsi_request_fn
486 		 * drops the queue_lock and can add us back to the
487 		 * starved_list.
488 		 *
489 		 * host_lock protects the starved_list and starved_entry.
490 		 * scsi_request_fn must get the host_lock before checking
491 		 * or modifying starved_list or starved_entry.
492 		 */
493 		if (scsi_host_is_busy(shost))
494 			break;
495 
496 		sdev = list_entry(starved_list.next,
497 				  struct scsi_device, starved_entry);
498 		list_del_init(&sdev->starved_entry);
499 		if (scsi_target_is_busy(scsi_target(sdev))) {
500 			list_move_tail(&sdev->starved_entry,
501 				       &shost->starved_list);
502 			continue;
503 		}
504 
505 		/*
506 		 * Once we drop the host lock, a racing scsi_remove_device()
507 		 * call may remove the sdev from the starved list and destroy
508 		 * it and the queue.  Mitigate by taking a reference to the
509 		 * queue and never touching the sdev again after we drop the
510 		 * host lock.  Note: if __scsi_remove_device() invokes
511 		 * blk_mq_destroy_queue() before the queue is run from this
512 		 * function then blk_run_queue() will return immediately since
513 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514 		 */
515 		slq = sdev->request_queue;
516 		if (!blk_get_queue(slq))
517 			continue;
518 		spin_unlock_irqrestore(shost->host_lock, flags);
519 
520 		blk_mq_run_hw_queues(slq, false);
521 		blk_put_queue(slq);
522 
523 		spin_lock_irqsave(shost->host_lock, flags);
524 	}
525 	/* put any unprocessed entries back */
526 	list_splice(&starved_list, &shost->starved_list);
527 	spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529 
530 /**
531  * scsi_run_queue - Select a proper request queue to serve next.
532  * @q:  last request's queue
533  *
534  * The previous command was completely finished, start a new one if possible.
535  */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538 	struct scsi_device *sdev = q->queuedata;
539 
540 	if (scsi_target(sdev)->single_lun)
541 		scsi_single_lun_run(sdev);
542 	if (!list_empty(&sdev->host->starved_list))
543 		scsi_starved_list_run(sdev->host);
544 
545 	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546 	blk_mq_kick_requeue_list(q);
547 }
548 
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551 	struct scsi_device *sdev;
552 	struct request_queue *q;
553 
554 	sdev = container_of(work, struct scsi_device, requeue_work);
555 	q = sdev->request_queue;
556 	scsi_run_queue(q);
557 }
558 
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 	struct scsi_device *sdev;
562 
563 	shost_for_each_device(sdev, shost)
564 		scsi_run_queue(sdev->request_queue);
565 }
566 
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571 
572 		if (drv->uninit_command)
573 			drv->uninit_command(cmd);
574 	}
575 }
576 
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 	if (cmd->sdb.table.nents)
580 		sg_free_table_chained(&cmd->sdb.table,
581 				SCSI_INLINE_SG_CNT);
582 	if (scsi_prot_sg_count(cmd))
583 		sg_free_table_chained(&cmd->prot_sdb->table,
584 				SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587 
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590 	scsi_free_sgtables(cmd);
591 	scsi_uninit_cmd(cmd);
592 }
593 
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596 	if (scsi_host_in_recovery(sdev->host))
597 		return;
598 
599 	if (scsi_target(sdev)->single_lun ||
600 	    !list_empty(&sdev->host->starved_list)) {
601 		kblockd_schedule_work(&sdev->requeue_work);
602 	} else {
603 		/*
604 		 * smp_mb() present in sbitmap_queue_clear() or implied in
605 		 * .end_io is for ordering writing .device_busy in
606 		 * scsi_device_unbusy() and reading sdev->restarts.
607 		 */
608 		int old = atomic_read(&sdev->restarts);
609 
610 		/*
611 		 * ->restarts has to be kept as non-zero if new budget
612 		 *  contention occurs.
613 		 *
614 		 *  No need to run queue when either another re-run
615 		 *  queue wins in updating ->restarts or a new budget
616 		 *  contention occurs.
617 		 */
618 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619 			blk_mq_run_hw_queues(sdev->request_queue, true);
620 	}
621 }
622 
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625 		unsigned int bytes)
626 {
627 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628 	struct scsi_device *sdev = cmd->device;
629 	struct request_queue *q = sdev->request_queue;
630 
631 	if (blk_update_request(req, error, bytes))
632 		return true;
633 
634 	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
635 		add_disk_randomness(req->q->disk);
636 
637 	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
638 		     !(cmd->flags & SCMD_INITIALIZED));
639 	cmd->flags = 0;
640 
641 	/*
642 	 * Calling rcu_barrier() is not necessary here because the
643 	 * SCSI error handler guarantees that the function called by
644 	 * call_rcu() has been called before scsi_end_request() is
645 	 * called.
646 	 */
647 	destroy_rcu_head(&cmd->rcu);
648 
649 	/*
650 	 * In the MQ case the command gets freed by __blk_mq_end_request,
651 	 * so we have to do all cleanup that depends on it earlier.
652 	 *
653 	 * We also can't kick the queues from irq context, so we
654 	 * will have to defer it to a workqueue.
655 	 */
656 	scsi_mq_uninit_cmd(cmd);
657 
658 	/*
659 	 * queue is still alive, so grab the ref for preventing it
660 	 * from being cleaned up during running queue.
661 	 */
662 	percpu_ref_get(&q->q_usage_counter);
663 
664 	__blk_mq_end_request(req, error);
665 
666 	scsi_run_queue_async(sdev);
667 
668 	percpu_ref_put(&q->q_usage_counter);
669 	return false;
670 }
671 
672 /**
673  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
674  * @result:	scsi error code
675  *
676  * Translate a SCSI result code into a blk_status_t value.
677  */
678 static blk_status_t scsi_result_to_blk_status(int result)
679 {
680 	/*
681 	 * Check the scsi-ml byte first in case we converted a host or status
682 	 * byte.
683 	 */
684 	switch (scsi_ml_byte(result)) {
685 	case SCSIML_STAT_OK:
686 		break;
687 	case SCSIML_STAT_RESV_CONFLICT:
688 		return BLK_STS_RESV_CONFLICT;
689 	case SCSIML_STAT_NOSPC:
690 		return BLK_STS_NOSPC;
691 	case SCSIML_STAT_MED_ERROR:
692 		return BLK_STS_MEDIUM;
693 	case SCSIML_STAT_TGT_FAILURE:
694 		return BLK_STS_TARGET;
695 	case SCSIML_STAT_DL_TIMEOUT:
696 		return BLK_STS_DURATION_LIMIT;
697 	}
698 
699 	switch (host_byte(result)) {
700 	case DID_OK:
701 		if (scsi_status_is_good(result))
702 			return BLK_STS_OK;
703 		return BLK_STS_IOERR;
704 	case DID_TRANSPORT_FAILFAST:
705 	case DID_TRANSPORT_MARGINAL:
706 		return BLK_STS_TRANSPORT;
707 	default:
708 		return BLK_STS_IOERR;
709 	}
710 }
711 
712 /**
713  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
714  * @rq: request to examine
715  *
716  * Description:
717  *     A request could be merge of IOs which require different failure
718  *     handling.  This function determines the number of bytes which
719  *     can be failed from the beginning of the request without
720  *     crossing into area which need to be retried further.
721  *
722  * Return:
723  *     The number of bytes to fail.
724  */
725 static unsigned int scsi_rq_err_bytes(const struct request *rq)
726 {
727 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
728 	unsigned int bytes = 0;
729 	struct bio *bio;
730 
731 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
732 		return blk_rq_bytes(rq);
733 
734 	/*
735 	 * Currently the only 'mixing' which can happen is between
736 	 * different fastfail types.  We can safely fail portions
737 	 * which have all the failfast bits that the first one has -
738 	 * the ones which are at least as eager to fail as the first
739 	 * one.
740 	 */
741 	for (bio = rq->bio; bio; bio = bio->bi_next) {
742 		if ((bio->bi_opf & ff) != ff)
743 			break;
744 		bytes += bio->bi_iter.bi_size;
745 	}
746 
747 	/* this could lead to infinite loop */
748 	BUG_ON(blk_rq_bytes(rq) && !bytes);
749 	return bytes;
750 }
751 
752 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
753 {
754 	struct request *req = scsi_cmd_to_rq(cmd);
755 	unsigned long wait_for;
756 
757 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
758 		return false;
759 
760 	wait_for = (cmd->allowed + 1) * req->timeout;
761 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
762 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
763 			    wait_for/HZ);
764 		return true;
765 	}
766 	return false;
767 }
768 
769 /*
770  * When ALUA transition state is returned, reprep the cmd to
771  * use the ALUA handler's transition timeout. Delay the reprep
772  * 1 sec to avoid aggressive retries of the target in that
773  * state.
774  */
775 #define ALUA_TRANSITION_REPREP_DELAY	1000
776 
777 /* Helper for scsi_io_completion() when special action required. */
778 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
779 {
780 	struct request *req = scsi_cmd_to_rq(cmd);
781 	int level = 0;
782 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
783 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
784 	struct scsi_sense_hdr sshdr;
785 	bool sense_valid;
786 	bool sense_current = true;      /* false implies "deferred sense" */
787 	blk_status_t blk_stat;
788 
789 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
790 	if (sense_valid)
791 		sense_current = !scsi_sense_is_deferred(&sshdr);
792 
793 	blk_stat = scsi_result_to_blk_status(result);
794 
795 	if (host_byte(result) == DID_RESET) {
796 		/* Third party bus reset or reset for error recovery
797 		 * reasons.  Just retry the command and see what
798 		 * happens.
799 		 */
800 		action = ACTION_RETRY;
801 	} else if (sense_valid && sense_current) {
802 		switch (sshdr.sense_key) {
803 		case UNIT_ATTENTION:
804 			if (cmd->device->removable) {
805 				/* Detected disc change.  Set a bit
806 				 * and quietly refuse further access.
807 				 */
808 				cmd->device->changed = 1;
809 				action = ACTION_FAIL;
810 			} else {
811 				/* Must have been a power glitch, or a
812 				 * bus reset.  Could not have been a
813 				 * media change, so we just retry the
814 				 * command and see what happens.
815 				 */
816 				action = ACTION_RETRY;
817 			}
818 			break;
819 		case ILLEGAL_REQUEST:
820 			/* If we had an ILLEGAL REQUEST returned, then
821 			 * we may have performed an unsupported
822 			 * command.  The only thing this should be
823 			 * would be a ten byte read where only a six
824 			 * byte read was supported.  Also, on a system
825 			 * where READ CAPACITY failed, we may have
826 			 * read past the end of the disk.
827 			 */
828 			if ((cmd->device->use_10_for_rw &&
829 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
830 			    (cmd->cmnd[0] == READ_10 ||
831 			     cmd->cmnd[0] == WRITE_10)) {
832 				/* This will issue a new 6-byte command. */
833 				cmd->device->use_10_for_rw = 0;
834 				action = ACTION_REPREP;
835 			} else if (sshdr.asc == 0x10) /* DIX */ {
836 				action = ACTION_FAIL;
837 				blk_stat = BLK_STS_PROTECTION;
838 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
839 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
840 				action = ACTION_FAIL;
841 				blk_stat = BLK_STS_TARGET;
842 			} else
843 				action = ACTION_FAIL;
844 			break;
845 		case ABORTED_COMMAND:
846 			action = ACTION_FAIL;
847 			if (sshdr.asc == 0x10) /* DIF */
848 				blk_stat = BLK_STS_PROTECTION;
849 			break;
850 		case NOT_READY:
851 			/* If the device is in the process of becoming
852 			 * ready, or has a temporary blockage, retry.
853 			 */
854 			if (sshdr.asc == 0x04) {
855 				switch (sshdr.ascq) {
856 				case 0x01: /* becoming ready */
857 				case 0x04: /* format in progress */
858 				case 0x05: /* rebuild in progress */
859 				case 0x06: /* recalculation in progress */
860 				case 0x07: /* operation in progress */
861 				case 0x08: /* Long write in progress */
862 				case 0x09: /* self test in progress */
863 				case 0x11: /* notify (enable spinup) required */
864 				case 0x14: /* space allocation in progress */
865 				case 0x1a: /* start stop unit in progress */
866 				case 0x1b: /* sanitize in progress */
867 				case 0x1d: /* configuration in progress */
868 				case 0x24: /* depopulation in progress */
869 				case 0x25: /* depopulation restore in progress */
870 					action = ACTION_DELAYED_RETRY;
871 					break;
872 				case 0x0a: /* ALUA state transition */
873 					action = ACTION_DELAYED_REPREP;
874 					break;
875 				default:
876 					action = ACTION_FAIL;
877 					break;
878 				}
879 			} else
880 				action = ACTION_FAIL;
881 			break;
882 		case VOLUME_OVERFLOW:
883 			/* See SSC3rXX or current. */
884 			action = ACTION_FAIL;
885 			break;
886 		case DATA_PROTECT:
887 			action = ACTION_FAIL;
888 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
889 			    (sshdr.asc == 0x55 &&
890 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
891 				/* Insufficient zone resources */
892 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
893 			}
894 			break;
895 		case COMPLETED:
896 			fallthrough;
897 		default:
898 			action = ACTION_FAIL;
899 			break;
900 		}
901 	} else
902 		action = ACTION_FAIL;
903 
904 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
905 		action = ACTION_FAIL;
906 
907 	switch (action) {
908 	case ACTION_FAIL:
909 		/* Give up and fail the remainder of the request */
910 		if (!(req->rq_flags & RQF_QUIET)) {
911 			static DEFINE_RATELIMIT_STATE(_rs,
912 					DEFAULT_RATELIMIT_INTERVAL,
913 					DEFAULT_RATELIMIT_BURST);
914 
915 			if (unlikely(scsi_logging_level))
916 				level =
917 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
918 						    SCSI_LOG_MLCOMPLETE_BITS);
919 
920 			/*
921 			 * if logging is enabled the failure will be printed
922 			 * in scsi_log_completion(), so avoid duplicate messages
923 			 */
924 			if (!level && __ratelimit(&_rs)) {
925 				scsi_print_result(cmd, NULL, FAILED);
926 				if (sense_valid)
927 					scsi_print_sense(cmd);
928 				scsi_print_command(cmd);
929 			}
930 		}
931 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
932 			return;
933 		fallthrough;
934 	case ACTION_REPREP:
935 		scsi_mq_requeue_cmd(cmd, 0);
936 		break;
937 	case ACTION_DELAYED_REPREP:
938 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
939 		break;
940 	case ACTION_RETRY:
941 		/* Retry the same command immediately */
942 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
943 		break;
944 	case ACTION_DELAYED_RETRY:
945 		/* Retry the same command after a delay */
946 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
947 		break;
948 	}
949 }
950 
951 /*
952  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
953  * new result that may suppress further error checking. Also modifies
954  * *blk_statp in some cases.
955  */
956 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
957 					blk_status_t *blk_statp)
958 {
959 	bool sense_valid;
960 	bool sense_current = true;	/* false implies "deferred sense" */
961 	struct request *req = scsi_cmd_to_rq(cmd);
962 	struct scsi_sense_hdr sshdr;
963 
964 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
965 	if (sense_valid)
966 		sense_current = !scsi_sense_is_deferred(&sshdr);
967 
968 	if (blk_rq_is_passthrough(req)) {
969 		if (sense_valid) {
970 			/*
971 			 * SG_IO wants current and deferred errors
972 			 */
973 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
974 					     SCSI_SENSE_BUFFERSIZE);
975 		}
976 		if (sense_current)
977 			*blk_statp = scsi_result_to_blk_status(result);
978 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
979 		/*
980 		 * Flush commands do not transfers any data, and thus cannot use
981 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
982 		 * This sets *blk_statp explicitly for the problem case.
983 		 */
984 		*blk_statp = scsi_result_to_blk_status(result);
985 	}
986 	/*
987 	 * Recovered errors need reporting, but they're always treated as
988 	 * success, so fiddle the result code here.  For passthrough requests
989 	 * we already took a copy of the original into sreq->result which
990 	 * is what gets returned to the user
991 	 */
992 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
993 		bool do_print = true;
994 		/*
995 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
996 		 * skip print since caller wants ATA registers. Only occurs
997 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
998 		 */
999 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1000 			do_print = false;
1001 		else if (req->rq_flags & RQF_QUIET)
1002 			do_print = false;
1003 		if (do_print)
1004 			scsi_print_sense(cmd);
1005 		result = 0;
1006 		/* for passthrough, *blk_statp may be set */
1007 		*blk_statp = BLK_STS_OK;
1008 	}
1009 	/*
1010 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1011 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1012 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1013 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1014 	 * intermediate statuses (both obsolete in SAM-4) as good.
1015 	 */
1016 	if ((result & 0xff) && scsi_status_is_good(result)) {
1017 		result = 0;
1018 		*blk_statp = BLK_STS_OK;
1019 	}
1020 	return result;
1021 }
1022 
1023 /**
1024  * scsi_io_completion - Completion processing for SCSI commands.
1025  * @cmd:	command that is finished.
1026  * @good_bytes:	number of processed bytes.
1027  *
1028  * We will finish off the specified number of sectors. If we are done, the
1029  * command block will be released and the queue function will be goosed. If we
1030  * are not done then we have to figure out what to do next:
1031  *
1032  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1033  *	unprepared and put back on the queue.  Then a new command will
1034  *	be created for it.  This should be used if we made forward
1035  *	progress, or if we want to switch from READ(10) to READ(6) for
1036  *	example.
1037  *
1038  *   b) We can call scsi_io_completion_action().  The request will be
1039  *	put back on the queue and retried using the same command as
1040  *	before, possibly after a delay.
1041  *
1042  *   c) We can call scsi_end_request() with blk_stat other than
1043  *	BLK_STS_OK, to fail the remainder of the request.
1044  */
1045 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1046 {
1047 	int result = cmd->result;
1048 	struct request *req = scsi_cmd_to_rq(cmd);
1049 	blk_status_t blk_stat = BLK_STS_OK;
1050 
1051 	if (unlikely(result))	/* a nz result may or may not be an error */
1052 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1053 
1054 	/*
1055 	 * Next deal with any sectors which we were able to correctly
1056 	 * handle.
1057 	 */
1058 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1059 		"%u sectors total, %d bytes done.\n",
1060 		blk_rq_sectors(req), good_bytes));
1061 
1062 	/*
1063 	 * Failed, zero length commands always need to drop down
1064 	 * to retry code. Fast path should return in this block.
1065 	 */
1066 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1067 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1068 			return; /* no bytes remaining */
1069 	}
1070 
1071 	/* Kill remainder if no retries. */
1072 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1073 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1074 			WARN_ONCE(true,
1075 			    "Bytes remaining after failed, no-retry command");
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * If there had been no error, but we have leftover bytes in the
1081 	 * request just queue the command up again.
1082 	 */
1083 	if (likely(result == 0))
1084 		scsi_mq_requeue_cmd(cmd, 0);
1085 	else
1086 		scsi_io_completion_action(cmd, result);
1087 }
1088 
1089 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1090 		struct request *rq)
1091 {
1092 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1093 	       !op_is_write(req_op(rq)) &&
1094 	       sdev->host->hostt->dma_need_drain(rq);
1095 }
1096 
1097 /**
1098  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1099  * @cmd: SCSI command data structure to initialize.
1100  *
1101  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1102  * for @cmd.
1103  *
1104  * Returns:
1105  * * BLK_STS_OK       - on success
1106  * * BLK_STS_RESOURCE - if the failure is retryable
1107  * * BLK_STS_IOERR    - if the failure is fatal
1108  */
1109 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1110 {
1111 	struct scsi_device *sdev = cmd->device;
1112 	struct request *rq = scsi_cmd_to_rq(cmd);
1113 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1114 	struct scatterlist *last_sg = NULL;
1115 	blk_status_t ret;
1116 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1117 	int count;
1118 
1119 	if (WARN_ON_ONCE(!nr_segs))
1120 		return BLK_STS_IOERR;
1121 
1122 	/*
1123 	 * Make sure there is space for the drain.  The driver must adjust
1124 	 * max_hw_segments to be prepared for this.
1125 	 */
1126 	if (need_drain)
1127 		nr_segs++;
1128 
1129 	/*
1130 	 * If sg table allocation fails, requeue request later.
1131 	 */
1132 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1133 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1134 		return BLK_STS_RESOURCE;
1135 
1136 	/*
1137 	 * Next, walk the list, and fill in the addresses and sizes of
1138 	 * each segment.
1139 	 */
1140 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1141 
1142 	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1143 		unsigned int pad_len =
1144 			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1145 
1146 		last_sg->length += pad_len;
1147 		cmd->extra_len += pad_len;
1148 	}
1149 
1150 	if (need_drain) {
1151 		sg_unmark_end(last_sg);
1152 		last_sg = sg_next(last_sg);
1153 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1154 		sg_mark_end(last_sg);
1155 
1156 		cmd->extra_len += sdev->dma_drain_len;
1157 		count++;
1158 	}
1159 
1160 	BUG_ON(count > cmd->sdb.table.nents);
1161 	cmd->sdb.table.nents = count;
1162 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1163 
1164 	if (blk_integrity_rq(rq)) {
1165 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1166 		int ivecs;
1167 
1168 		if (WARN_ON_ONCE(!prot_sdb)) {
1169 			/*
1170 			 * This can happen if someone (e.g. multipath)
1171 			 * queues a command to a device on an adapter
1172 			 * that does not support DIX.
1173 			 */
1174 			ret = BLK_STS_IOERR;
1175 			goto out_free_sgtables;
1176 		}
1177 
1178 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1179 
1180 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1181 				prot_sdb->table.sgl,
1182 				SCSI_INLINE_PROT_SG_CNT)) {
1183 			ret = BLK_STS_RESOURCE;
1184 			goto out_free_sgtables;
1185 		}
1186 
1187 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1188 						prot_sdb->table.sgl);
1189 		BUG_ON(count > ivecs);
1190 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1191 
1192 		cmd->prot_sdb = prot_sdb;
1193 		cmd->prot_sdb->table.nents = count;
1194 	}
1195 
1196 	return BLK_STS_OK;
1197 out_free_sgtables:
1198 	scsi_free_sgtables(cmd);
1199 	return ret;
1200 }
1201 EXPORT_SYMBOL(scsi_alloc_sgtables);
1202 
1203 /**
1204  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1205  * @rq: Request associated with the SCSI command to be initialized.
1206  *
1207  * This function initializes the members of struct scsi_cmnd that must be
1208  * initialized before request processing starts and that won't be
1209  * reinitialized if a SCSI command is requeued.
1210  */
1211 static void scsi_initialize_rq(struct request *rq)
1212 {
1213 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1214 
1215 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1216 	cmd->cmd_len = MAX_COMMAND_SIZE;
1217 	cmd->sense_len = 0;
1218 	init_rcu_head(&cmd->rcu);
1219 	cmd->jiffies_at_alloc = jiffies;
1220 	cmd->retries = 0;
1221 }
1222 
1223 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1224 				   blk_mq_req_flags_t flags)
1225 {
1226 	struct request *rq;
1227 
1228 	rq = blk_mq_alloc_request(q, opf, flags);
1229 	if (!IS_ERR(rq))
1230 		scsi_initialize_rq(rq);
1231 	return rq;
1232 }
1233 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1234 
1235 /*
1236  * Only called when the request isn't completed by SCSI, and not freed by
1237  * SCSI
1238  */
1239 static void scsi_cleanup_rq(struct request *rq)
1240 {
1241 	if (rq->rq_flags & RQF_DONTPREP) {
1242 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1243 		rq->rq_flags &= ~RQF_DONTPREP;
1244 	}
1245 }
1246 
1247 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1248 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1249 {
1250 	struct request *rq = scsi_cmd_to_rq(cmd);
1251 
1252 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1253 		cmd->flags |= SCMD_INITIALIZED;
1254 		scsi_initialize_rq(rq);
1255 	}
1256 
1257 	cmd->device = dev;
1258 	INIT_LIST_HEAD(&cmd->eh_entry);
1259 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1260 }
1261 
1262 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1263 		struct request *req)
1264 {
1265 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1266 
1267 	/*
1268 	 * Passthrough requests may transfer data, in which case they must
1269 	 * a bio attached to them.  Or they might contain a SCSI command
1270 	 * that does not transfer data, in which case they may optionally
1271 	 * submit a request without an attached bio.
1272 	 */
1273 	if (req->bio) {
1274 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1275 		if (unlikely(ret != BLK_STS_OK))
1276 			return ret;
1277 	} else {
1278 		BUG_ON(blk_rq_bytes(req));
1279 
1280 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1281 	}
1282 
1283 	cmd->transfersize = blk_rq_bytes(req);
1284 	return BLK_STS_OK;
1285 }
1286 
1287 static blk_status_t
1288 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1289 {
1290 	switch (sdev->sdev_state) {
1291 	case SDEV_CREATED:
1292 		return BLK_STS_OK;
1293 	case SDEV_OFFLINE:
1294 	case SDEV_TRANSPORT_OFFLINE:
1295 		/*
1296 		 * If the device is offline we refuse to process any
1297 		 * commands.  The device must be brought online
1298 		 * before trying any recovery commands.
1299 		 */
1300 		if (!sdev->offline_already) {
1301 			sdev->offline_already = true;
1302 			sdev_printk(KERN_ERR, sdev,
1303 				    "rejecting I/O to offline device\n");
1304 		}
1305 		return BLK_STS_IOERR;
1306 	case SDEV_DEL:
1307 		/*
1308 		 * If the device is fully deleted, we refuse to
1309 		 * process any commands as well.
1310 		 */
1311 		sdev_printk(KERN_ERR, sdev,
1312 			    "rejecting I/O to dead device\n");
1313 		return BLK_STS_IOERR;
1314 	case SDEV_BLOCK:
1315 	case SDEV_CREATED_BLOCK:
1316 		return BLK_STS_RESOURCE;
1317 	case SDEV_QUIESCE:
1318 		/*
1319 		 * If the device is blocked we only accept power management
1320 		 * commands.
1321 		 */
1322 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1323 			return BLK_STS_RESOURCE;
1324 		return BLK_STS_OK;
1325 	default:
1326 		/*
1327 		 * For any other not fully online state we only allow
1328 		 * power management commands.
1329 		 */
1330 		if (req && !(req->rq_flags & RQF_PM))
1331 			return BLK_STS_OFFLINE;
1332 		return BLK_STS_OK;
1333 	}
1334 }
1335 
1336 /*
1337  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1338  * and return the token else return -1.
1339  */
1340 static inline int scsi_dev_queue_ready(struct request_queue *q,
1341 				  struct scsi_device *sdev)
1342 {
1343 	int token;
1344 
1345 	token = sbitmap_get(&sdev->budget_map);
1346 	if (token < 0)
1347 		return -1;
1348 
1349 	if (!atomic_read(&sdev->device_blocked))
1350 		return token;
1351 
1352 	/*
1353 	 * Only unblock if no other commands are pending and
1354 	 * if device_blocked has decreased to zero
1355 	 */
1356 	if (scsi_device_busy(sdev) > 1 ||
1357 	    atomic_dec_return(&sdev->device_blocked) > 0) {
1358 		sbitmap_put(&sdev->budget_map, token);
1359 		return -1;
1360 	}
1361 
1362 	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1363 			 "unblocking device at zero depth\n"));
1364 
1365 	return token;
1366 }
1367 
1368 /*
1369  * scsi_target_queue_ready: checks if there we can send commands to target
1370  * @sdev: scsi device on starget to check.
1371  */
1372 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1373 					   struct scsi_device *sdev)
1374 {
1375 	struct scsi_target *starget = scsi_target(sdev);
1376 	unsigned int busy;
1377 
1378 	if (starget->single_lun) {
1379 		spin_lock_irq(shost->host_lock);
1380 		if (starget->starget_sdev_user &&
1381 		    starget->starget_sdev_user != sdev) {
1382 			spin_unlock_irq(shost->host_lock);
1383 			return 0;
1384 		}
1385 		starget->starget_sdev_user = sdev;
1386 		spin_unlock_irq(shost->host_lock);
1387 	}
1388 
1389 	if (starget->can_queue <= 0)
1390 		return 1;
1391 
1392 	busy = atomic_inc_return(&starget->target_busy) - 1;
1393 	if (atomic_read(&starget->target_blocked) > 0) {
1394 		if (busy)
1395 			goto starved;
1396 
1397 		/*
1398 		 * unblock after target_blocked iterates to zero
1399 		 */
1400 		if (atomic_dec_return(&starget->target_blocked) > 0)
1401 			goto out_dec;
1402 
1403 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1404 				 "unblocking target at zero depth\n"));
1405 	}
1406 
1407 	if (busy >= starget->can_queue)
1408 		goto starved;
1409 
1410 	return 1;
1411 
1412 starved:
1413 	spin_lock_irq(shost->host_lock);
1414 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1415 	spin_unlock_irq(shost->host_lock);
1416 out_dec:
1417 	if (starget->can_queue > 0)
1418 		atomic_dec(&starget->target_busy);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1424  * return 0. We must end up running the queue again whenever 0 is
1425  * returned, else IO can hang.
1426  */
1427 static inline int scsi_host_queue_ready(struct request_queue *q,
1428 				   struct Scsi_Host *shost,
1429 				   struct scsi_device *sdev,
1430 				   struct scsi_cmnd *cmd)
1431 {
1432 	if (atomic_read(&shost->host_blocked) > 0) {
1433 		if (scsi_host_busy(shost) > 0)
1434 			goto starved;
1435 
1436 		/*
1437 		 * unblock after host_blocked iterates to zero
1438 		 */
1439 		if (atomic_dec_return(&shost->host_blocked) > 0)
1440 			goto out_dec;
1441 
1442 		SCSI_LOG_MLQUEUE(3,
1443 			shost_printk(KERN_INFO, shost,
1444 				     "unblocking host at zero depth\n"));
1445 	}
1446 
1447 	if (shost->host_self_blocked)
1448 		goto starved;
1449 
1450 	/* We're OK to process the command, so we can't be starved */
1451 	if (!list_empty(&sdev->starved_entry)) {
1452 		spin_lock_irq(shost->host_lock);
1453 		if (!list_empty(&sdev->starved_entry))
1454 			list_del_init(&sdev->starved_entry);
1455 		spin_unlock_irq(shost->host_lock);
1456 	}
1457 
1458 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1459 
1460 	return 1;
1461 
1462 starved:
1463 	spin_lock_irq(shost->host_lock);
1464 	if (list_empty(&sdev->starved_entry))
1465 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466 	spin_unlock_irq(shost->host_lock);
1467 out_dec:
1468 	scsi_dec_host_busy(shost, cmd);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * Busy state exporting function for request stacking drivers.
1474  *
1475  * For efficiency, no lock is taken to check the busy state of
1476  * shost/starget/sdev, since the returned value is not guaranteed and
1477  * may be changed after request stacking drivers call the function,
1478  * regardless of taking lock or not.
1479  *
1480  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1481  * needs to return 'not busy'. Otherwise, request stacking drivers
1482  * may hold requests forever.
1483  */
1484 static bool scsi_mq_lld_busy(struct request_queue *q)
1485 {
1486 	struct scsi_device *sdev = q->queuedata;
1487 	struct Scsi_Host *shost;
1488 
1489 	if (blk_queue_dying(q))
1490 		return false;
1491 
1492 	shost = sdev->host;
1493 
1494 	/*
1495 	 * Ignore host/starget busy state.
1496 	 * Since block layer does not have a concept of fairness across
1497 	 * multiple queues, congestion of host/starget needs to be handled
1498 	 * in SCSI layer.
1499 	 */
1500 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1501 		return true;
1502 
1503 	return false;
1504 }
1505 
1506 /*
1507  * Block layer request completion callback. May be called from interrupt
1508  * context.
1509  */
1510 static void scsi_complete(struct request *rq)
1511 {
1512 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1513 	enum scsi_disposition disposition;
1514 
1515 	INIT_LIST_HEAD(&cmd->eh_entry);
1516 
1517 	atomic_inc(&cmd->device->iodone_cnt);
1518 	if (cmd->result)
1519 		atomic_inc(&cmd->device->ioerr_cnt);
1520 
1521 	disposition = scsi_decide_disposition(cmd);
1522 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1523 		disposition = SUCCESS;
1524 
1525 	scsi_log_completion(cmd, disposition);
1526 
1527 	switch (disposition) {
1528 	case SUCCESS:
1529 		scsi_finish_command(cmd);
1530 		break;
1531 	case NEEDS_RETRY:
1532 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1533 		break;
1534 	case ADD_TO_MLQUEUE:
1535 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1536 		break;
1537 	default:
1538 		scsi_eh_scmd_add(cmd);
1539 		break;
1540 	}
1541 }
1542 
1543 /**
1544  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1545  * @cmd: command block we are dispatching.
1546  *
1547  * Return: nonzero return request was rejected and device's queue needs to be
1548  * plugged.
1549  */
1550 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1551 {
1552 	struct Scsi_Host *host = cmd->device->host;
1553 	int rtn = 0;
1554 
1555 	atomic_inc(&cmd->device->iorequest_cnt);
1556 
1557 	/* check if the device is still usable */
1558 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1559 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1560 		 * returns an immediate error upwards, and signals
1561 		 * that the device is no longer present */
1562 		cmd->result = DID_NO_CONNECT << 16;
1563 		goto done;
1564 	}
1565 
1566 	/* Check to see if the scsi lld made this device blocked. */
1567 	if (unlikely(scsi_device_blocked(cmd->device))) {
1568 		/*
1569 		 * in blocked state, the command is just put back on
1570 		 * the device queue.  The suspend state has already
1571 		 * blocked the queue so future requests should not
1572 		 * occur until the device transitions out of the
1573 		 * suspend state.
1574 		 */
1575 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1576 			"queuecommand : device blocked\n"));
1577 		atomic_dec(&cmd->device->iorequest_cnt);
1578 		return SCSI_MLQUEUE_DEVICE_BUSY;
1579 	}
1580 
1581 	/* Store the LUN value in cmnd, if needed. */
1582 	if (cmd->device->lun_in_cdb)
1583 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1584 			       (cmd->device->lun << 5 & 0xe0);
1585 
1586 	scsi_log_send(cmd);
1587 
1588 	/*
1589 	 * Before we queue this command, check if the command
1590 	 * length exceeds what the host adapter can handle.
1591 	 */
1592 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1593 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1594 			       "queuecommand : command too long. "
1595 			       "cdb_size=%d host->max_cmd_len=%d\n",
1596 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1597 		cmd->result = (DID_ABORT << 16);
1598 		goto done;
1599 	}
1600 
1601 	if (unlikely(host->shost_state == SHOST_DEL)) {
1602 		cmd->result = (DID_NO_CONNECT << 16);
1603 		goto done;
1604 
1605 	}
1606 
1607 	trace_scsi_dispatch_cmd_start(cmd);
1608 	rtn = host->hostt->queuecommand(host, cmd);
1609 	if (rtn) {
1610 		atomic_dec(&cmd->device->iorequest_cnt);
1611 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1612 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1613 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1614 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1615 
1616 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1617 			"queuecommand : request rejected\n"));
1618 	}
1619 
1620 	return rtn;
1621  done:
1622 	scsi_done(cmd);
1623 	return 0;
1624 }
1625 
1626 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1627 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1628 {
1629 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1630 		sizeof(struct scatterlist);
1631 }
1632 
1633 static blk_status_t scsi_prepare_cmd(struct request *req)
1634 {
1635 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1636 	struct scsi_device *sdev = req->q->queuedata;
1637 	struct Scsi_Host *shost = sdev->host;
1638 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1639 	struct scatterlist *sg;
1640 
1641 	scsi_init_command(sdev, cmd);
1642 
1643 	cmd->eh_eflags = 0;
1644 	cmd->prot_type = 0;
1645 	cmd->prot_flags = 0;
1646 	cmd->submitter = 0;
1647 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1648 	cmd->underflow = 0;
1649 	cmd->transfersize = 0;
1650 	cmd->host_scribble = NULL;
1651 	cmd->result = 0;
1652 	cmd->extra_len = 0;
1653 	cmd->state = 0;
1654 	if (in_flight)
1655 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1656 
1657 	/*
1658 	 * Only clear the driver-private command data if the LLD does not supply
1659 	 * a function to initialize that data.
1660 	 */
1661 	if (!shost->hostt->init_cmd_priv)
1662 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1663 
1664 	cmd->prot_op = SCSI_PROT_NORMAL;
1665 	if (blk_rq_bytes(req))
1666 		cmd->sc_data_direction = rq_dma_dir(req);
1667 	else
1668 		cmd->sc_data_direction = DMA_NONE;
1669 
1670 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1671 	cmd->sdb.table.sgl = sg;
1672 
1673 	if (scsi_host_get_prot(shost)) {
1674 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1675 
1676 		cmd->prot_sdb->table.sgl =
1677 			(struct scatterlist *)(cmd->prot_sdb + 1);
1678 	}
1679 
1680 	/*
1681 	 * Special handling for passthrough commands, which don't go to the ULP
1682 	 * at all:
1683 	 */
1684 	if (blk_rq_is_passthrough(req))
1685 		return scsi_setup_scsi_cmnd(sdev, req);
1686 
1687 	if (sdev->handler && sdev->handler->prep_fn) {
1688 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1689 
1690 		if (ret != BLK_STS_OK)
1691 			return ret;
1692 	}
1693 
1694 	/* Usually overridden by the ULP */
1695 	cmd->allowed = 0;
1696 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1697 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1698 }
1699 
1700 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1701 {
1702 	struct request *req = scsi_cmd_to_rq(cmd);
1703 
1704 	switch (cmd->submitter) {
1705 	case SUBMITTED_BY_BLOCK_LAYER:
1706 		break;
1707 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1708 		return scsi_eh_done(cmd);
1709 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1710 		return;
1711 	}
1712 
1713 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1714 		return;
1715 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1716 		return;
1717 	trace_scsi_dispatch_cmd_done(cmd);
1718 
1719 	if (complete_directly)
1720 		blk_mq_complete_request_direct(req, scsi_complete);
1721 	else
1722 		blk_mq_complete_request(req);
1723 }
1724 
1725 void scsi_done(struct scsi_cmnd *cmd)
1726 {
1727 	scsi_done_internal(cmd, false);
1728 }
1729 EXPORT_SYMBOL(scsi_done);
1730 
1731 void scsi_done_direct(struct scsi_cmnd *cmd)
1732 {
1733 	scsi_done_internal(cmd, true);
1734 }
1735 EXPORT_SYMBOL(scsi_done_direct);
1736 
1737 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1738 {
1739 	struct scsi_device *sdev = q->queuedata;
1740 
1741 	sbitmap_put(&sdev->budget_map, budget_token);
1742 }
1743 
1744 /*
1745  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1746  * not change behaviour from the previous unplug mechanism, experimentation
1747  * may prove this needs changing.
1748  */
1749 #define SCSI_QUEUE_DELAY 3
1750 
1751 static int scsi_mq_get_budget(struct request_queue *q)
1752 {
1753 	struct scsi_device *sdev = q->queuedata;
1754 	int token = scsi_dev_queue_ready(q, sdev);
1755 
1756 	if (token >= 0)
1757 		return token;
1758 
1759 	atomic_inc(&sdev->restarts);
1760 
1761 	/*
1762 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1763 	 * .restarts must be incremented before .device_busy is read because the
1764 	 * code in scsi_run_queue_async() depends on the order of these operations.
1765 	 */
1766 	smp_mb__after_atomic();
1767 
1768 	/*
1769 	 * If all in-flight requests originated from this LUN are completed
1770 	 * before reading .device_busy, sdev->device_busy will be observed as
1771 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1772 	 * soon. Otherwise, completion of one of these requests will observe
1773 	 * the .restarts flag, and the request queue will be run for handling
1774 	 * this request, see scsi_end_request().
1775 	 */
1776 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1777 				!scsi_device_blocked(sdev)))
1778 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1779 	return -1;
1780 }
1781 
1782 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1783 {
1784 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1785 
1786 	cmd->budget_token = token;
1787 }
1788 
1789 static int scsi_mq_get_rq_budget_token(struct request *req)
1790 {
1791 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1792 
1793 	return cmd->budget_token;
1794 }
1795 
1796 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1797 			 const struct blk_mq_queue_data *bd)
1798 {
1799 	struct request *req = bd->rq;
1800 	struct request_queue *q = req->q;
1801 	struct scsi_device *sdev = q->queuedata;
1802 	struct Scsi_Host *shost = sdev->host;
1803 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1804 	blk_status_t ret;
1805 	int reason;
1806 
1807 	WARN_ON_ONCE(cmd->budget_token < 0);
1808 
1809 	/*
1810 	 * If the device is not in running state we will reject some or all
1811 	 * commands.
1812 	 */
1813 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1814 		ret = scsi_device_state_check(sdev, req);
1815 		if (ret != BLK_STS_OK)
1816 			goto out_put_budget;
1817 	}
1818 
1819 	ret = BLK_STS_RESOURCE;
1820 	if (!scsi_target_queue_ready(shost, sdev))
1821 		goto out_put_budget;
1822 	if (unlikely(scsi_host_in_recovery(shost))) {
1823 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1824 			ret = BLK_STS_OFFLINE;
1825 		goto out_dec_target_busy;
1826 	}
1827 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1828 		goto out_dec_target_busy;
1829 
1830 	if (!(req->rq_flags & RQF_DONTPREP)) {
1831 		ret = scsi_prepare_cmd(req);
1832 		if (ret != BLK_STS_OK)
1833 			goto out_dec_host_busy;
1834 		req->rq_flags |= RQF_DONTPREP;
1835 	} else {
1836 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1837 	}
1838 
1839 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1840 	if (sdev->simple_tags)
1841 		cmd->flags |= SCMD_TAGGED;
1842 	if (bd->last)
1843 		cmd->flags |= SCMD_LAST;
1844 
1845 	scsi_set_resid(cmd, 0);
1846 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1847 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1848 
1849 	blk_mq_start_request(req);
1850 	reason = scsi_dispatch_cmd(cmd);
1851 	if (reason) {
1852 		scsi_set_blocked(cmd, reason);
1853 		ret = BLK_STS_RESOURCE;
1854 		goto out_dec_host_busy;
1855 	}
1856 
1857 	return BLK_STS_OK;
1858 
1859 out_dec_host_busy:
1860 	scsi_dec_host_busy(shost, cmd);
1861 out_dec_target_busy:
1862 	if (scsi_target(sdev)->can_queue > 0)
1863 		atomic_dec(&scsi_target(sdev)->target_busy);
1864 out_put_budget:
1865 	scsi_mq_put_budget(q, cmd->budget_token);
1866 	cmd->budget_token = -1;
1867 	switch (ret) {
1868 	case BLK_STS_OK:
1869 		break;
1870 	case BLK_STS_RESOURCE:
1871 		if (scsi_device_blocked(sdev))
1872 			ret = BLK_STS_DEV_RESOURCE;
1873 		break;
1874 	case BLK_STS_AGAIN:
1875 		cmd->result = DID_BUS_BUSY << 16;
1876 		if (req->rq_flags & RQF_DONTPREP)
1877 			scsi_mq_uninit_cmd(cmd);
1878 		break;
1879 	default:
1880 		if (unlikely(!scsi_device_online(sdev)))
1881 			cmd->result = DID_NO_CONNECT << 16;
1882 		else
1883 			cmd->result = DID_ERROR << 16;
1884 		/*
1885 		 * Make sure to release all allocated resources when
1886 		 * we hit an error, as we will never see this command
1887 		 * again.
1888 		 */
1889 		if (req->rq_flags & RQF_DONTPREP)
1890 			scsi_mq_uninit_cmd(cmd);
1891 		scsi_run_queue_async(sdev);
1892 		break;
1893 	}
1894 	return ret;
1895 }
1896 
1897 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1898 				unsigned int hctx_idx, unsigned int numa_node)
1899 {
1900 	struct Scsi_Host *shost = set->driver_data;
1901 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1902 	struct scatterlist *sg;
1903 	int ret = 0;
1904 
1905 	cmd->sense_buffer =
1906 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1907 	if (!cmd->sense_buffer)
1908 		return -ENOMEM;
1909 
1910 	if (scsi_host_get_prot(shost)) {
1911 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1912 			shost->hostt->cmd_size;
1913 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1914 	}
1915 
1916 	if (shost->hostt->init_cmd_priv) {
1917 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1918 		if (ret < 0)
1919 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1926 				 unsigned int hctx_idx)
1927 {
1928 	struct Scsi_Host *shost = set->driver_data;
1929 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1930 
1931 	if (shost->hostt->exit_cmd_priv)
1932 		shost->hostt->exit_cmd_priv(shost, cmd);
1933 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1934 }
1935 
1936 
1937 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1938 {
1939 	struct Scsi_Host *shost = hctx->driver_data;
1940 
1941 	if (shost->hostt->mq_poll)
1942 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1943 
1944 	return 0;
1945 }
1946 
1947 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1948 			  unsigned int hctx_idx)
1949 {
1950 	struct Scsi_Host *shost = data;
1951 
1952 	hctx->driver_data = shost;
1953 	return 0;
1954 }
1955 
1956 static void scsi_map_queues(struct blk_mq_tag_set *set)
1957 {
1958 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1959 
1960 	if (shost->hostt->map_queues)
1961 		return shost->hostt->map_queues(shost);
1962 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1963 }
1964 
1965 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1966 {
1967 	struct device *dev = shost->dma_dev;
1968 
1969 	memset(lim, 0, sizeof(*lim));
1970 	lim->max_segments =
1971 		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1972 
1973 	if (scsi_host_prot_dma(shost)) {
1974 		shost->sg_prot_tablesize =
1975 			min_not_zero(shost->sg_prot_tablesize,
1976 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1977 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1978 		lim->max_integrity_segments = shost->sg_prot_tablesize;
1979 	}
1980 
1981 	lim->max_hw_sectors = shost->max_sectors;
1982 	lim->seg_boundary_mask = shost->dma_boundary;
1983 	lim->max_segment_size = shost->max_segment_size;
1984 	lim->virt_boundary_mask = shost->virt_boundary_mask;
1985 	lim->dma_alignment = max_t(unsigned int,
1986 		shost->dma_alignment, dma_get_cache_alignment() - 1);
1987 
1988 	if (shost->no_highmem)
1989 		lim->features |= BLK_FEAT_BOUNCE_HIGH;
1990 
1991 	dma_set_seg_boundary(dev, shost->dma_boundary);
1992 	dma_set_max_seg_size(dev, shost->max_segment_size);
1993 }
1994 EXPORT_SYMBOL_GPL(scsi_init_limits);
1995 
1996 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1997 	.get_budget	= scsi_mq_get_budget,
1998 	.put_budget	= scsi_mq_put_budget,
1999 	.queue_rq	= scsi_queue_rq,
2000 	.complete	= scsi_complete,
2001 	.timeout	= scsi_timeout,
2002 #ifdef CONFIG_BLK_DEBUG_FS
2003 	.show_rq	= scsi_show_rq,
2004 #endif
2005 	.init_request	= scsi_mq_init_request,
2006 	.exit_request	= scsi_mq_exit_request,
2007 	.cleanup_rq	= scsi_cleanup_rq,
2008 	.busy		= scsi_mq_lld_busy,
2009 	.map_queues	= scsi_map_queues,
2010 	.init_hctx	= scsi_init_hctx,
2011 	.poll		= scsi_mq_poll,
2012 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2013 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2014 };
2015 
2016 
2017 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2018 {
2019 	struct Scsi_Host *shost = hctx->driver_data;
2020 
2021 	shost->hostt->commit_rqs(shost, hctx->queue_num);
2022 }
2023 
2024 static const struct blk_mq_ops scsi_mq_ops = {
2025 	.get_budget	= scsi_mq_get_budget,
2026 	.put_budget	= scsi_mq_put_budget,
2027 	.queue_rq	= scsi_queue_rq,
2028 	.commit_rqs	= scsi_commit_rqs,
2029 	.complete	= scsi_complete,
2030 	.timeout	= scsi_timeout,
2031 #ifdef CONFIG_BLK_DEBUG_FS
2032 	.show_rq	= scsi_show_rq,
2033 #endif
2034 	.init_request	= scsi_mq_init_request,
2035 	.exit_request	= scsi_mq_exit_request,
2036 	.cleanup_rq	= scsi_cleanup_rq,
2037 	.busy		= scsi_mq_lld_busy,
2038 	.map_queues	= scsi_map_queues,
2039 	.init_hctx	= scsi_init_hctx,
2040 	.poll		= scsi_mq_poll,
2041 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2042 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2043 };
2044 
2045 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2046 {
2047 	unsigned int cmd_size, sgl_size;
2048 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2049 
2050 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2051 				scsi_mq_inline_sgl_size(shost));
2052 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2053 	if (scsi_host_get_prot(shost))
2054 		cmd_size += sizeof(struct scsi_data_buffer) +
2055 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2056 
2057 	memset(tag_set, 0, sizeof(*tag_set));
2058 	if (shost->hostt->commit_rqs)
2059 		tag_set->ops = &scsi_mq_ops;
2060 	else
2061 		tag_set->ops = &scsi_mq_ops_no_commit;
2062 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2063 	tag_set->nr_maps = shost->nr_maps ? : 1;
2064 	tag_set->queue_depth = shost->can_queue;
2065 	tag_set->cmd_size = cmd_size;
2066 	tag_set->numa_node = dev_to_node(shost->dma_dev);
2067 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2068 	tag_set->flags |=
2069 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2070 	if (shost->queuecommand_may_block)
2071 		tag_set->flags |= BLK_MQ_F_BLOCKING;
2072 	tag_set->driver_data = shost;
2073 	if (shost->host_tagset)
2074 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2075 
2076 	return blk_mq_alloc_tag_set(tag_set);
2077 }
2078 
2079 void scsi_mq_free_tags(struct kref *kref)
2080 {
2081 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2082 					       tagset_refcnt);
2083 
2084 	blk_mq_free_tag_set(&shost->tag_set);
2085 	complete(&shost->tagset_freed);
2086 }
2087 
2088 /**
2089  * scsi_device_from_queue - return sdev associated with a request_queue
2090  * @q: The request queue to return the sdev from
2091  *
2092  * Return the sdev associated with a request queue or NULL if the
2093  * request_queue does not reference a SCSI device.
2094  */
2095 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2096 {
2097 	struct scsi_device *sdev = NULL;
2098 
2099 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2100 	    q->mq_ops == &scsi_mq_ops)
2101 		sdev = q->queuedata;
2102 	if (!sdev || !get_device(&sdev->sdev_gendev))
2103 		sdev = NULL;
2104 
2105 	return sdev;
2106 }
2107 /*
2108  * pktcdvd should have been integrated into the SCSI layers, but for historical
2109  * reasons like the old IDE driver it isn't.  This export allows it to safely
2110  * probe if a given device is a SCSI one and only attach to that.
2111  */
2112 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2113 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2114 #endif
2115 
2116 /**
2117  * scsi_block_requests - Utility function used by low-level drivers to prevent
2118  * further commands from being queued to the device.
2119  * @shost:  host in question
2120  *
2121  * There is no timer nor any other means by which the requests get unblocked
2122  * other than the low-level driver calling scsi_unblock_requests().
2123  */
2124 void scsi_block_requests(struct Scsi_Host *shost)
2125 {
2126 	shost->host_self_blocked = 1;
2127 }
2128 EXPORT_SYMBOL(scsi_block_requests);
2129 
2130 /**
2131  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2132  * further commands to be queued to the device.
2133  * @shost:  host in question
2134  *
2135  * There is no timer nor any other means by which the requests get unblocked
2136  * other than the low-level driver calling scsi_unblock_requests(). This is done
2137  * as an API function so that changes to the internals of the scsi mid-layer
2138  * won't require wholesale changes to drivers that use this feature.
2139  */
2140 void scsi_unblock_requests(struct Scsi_Host *shost)
2141 {
2142 	shost->host_self_blocked = 0;
2143 	scsi_run_host_queues(shost);
2144 }
2145 EXPORT_SYMBOL(scsi_unblock_requests);
2146 
2147 void scsi_exit_queue(void)
2148 {
2149 	kmem_cache_destroy(scsi_sense_cache);
2150 }
2151 
2152 /**
2153  *	scsi_mode_select - issue a mode select
2154  *	@sdev:	SCSI device to be queried
2155  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2156  *	@sp:	Save page bit (0 == don't save, 1 == save)
2157  *	@buffer: request buffer (may not be smaller than eight bytes)
2158  *	@len:	length of request buffer.
2159  *	@timeout: command timeout
2160  *	@retries: number of retries before failing
2161  *	@data: returns a structure abstracting the mode header data
2162  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2163  *		must be SCSI_SENSE_BUFFERSIZE big.
2164  *
2165  *	Returns zero if successful; negative error number or scsi
2166  *	status on error
2167  *
2168  */
2169 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2170 		     unsigned char *buffer, int len, int timeout, int retries,
2171 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2172 {
2173 	unsigned char cmd[10];
2174 	unsigned char *real_buffer;
2175 	const struct scsi_exec_args exec_args = {
2176 		.sshdr = sshdr,
2177 	};
2178 	int ret;
2179 
2180 	memset(cmd, 0, sizeof(cmd));
2181 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2182 
2183 	/*
2184 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2185 	 * and the mode select header cannot fit within the maximumm 255 bytes
2186 	 * of the MODE SELECT(6) command.
2187 	 */
2188 	if (sdev->use_10_for_ms ||
2189 	    len + 4 > 255 ||
2190 	    data->block_descriptor_length > 255) {
2191 		if (len > 65535 - 8)
2192 			return -EINVAL;
2193 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2194 		if (!real_buffer)
2195 			return -ENOMEM;
2196 		memcpy(real_buffer + 8, buffer, len);
2197 		len += 8;
2198 		real_buffer[0] = 0;
2199 		real_buffer[1] = 0;
2200 		real_buffer[2] = data->medium_type;
2201 		real_buffer[3] = data->device_specific;
2202 		real_buffer[4] = data->longlba ? 0x01 : 0;
2203 		real_buffer[5] = 0;
2204 		put_unaligned_be16(data->block_descriptor_length,
2205 				   &real_buffer[6]);
2206 
2207 		cmd[0] = MODE_SELECT_10;
2208 		put_unaligned_be16(len, &cmd[7]);
2209 	} else {
2210 		if (data->longlba)
2211 			return -EINVAL;
2212 
2213 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2214 		if (!real_buffer)
2215 			return -ENOMEM;
2216 		memcpy(real_buffer + 4, buffer, len);
2217 		len += 4;
2218 		real_buffer[0] = 0;
2219 		real_buffer[1] = data->medium_type;
2220 		real_buffer[2] = data->device_specific;
2221 		real_buffer[3] = data->block_descriptor_length;
2222 
2223 		cmd[0] = MODE_SELECT;
2224 		cmd[4] = len;
2225 	}
2226 
2227 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2228 			       timeout, retries, &exec_args);
2229 	kfree(real_buffer);
2230 	return ret;
2231 }
2232 EXPORT_SYMBOL_GPL(scsi_mode_select);
2233 
2234 /**
2235  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2236  *	@sdev:	SCSI device to be queried
2237  *	@dbd:	set to prevent mode sense from returning block descriptors
2238  *	@modepage: mode page being requested
2239  *	@subpage: sub-page of the mode page being requested
2240  *	@buffer: request buffer (may not be smaller than eight bytes)
2241  *	@len:	length of request buffer.
2242  *	@timeout: command timeout
2243  *	@retries: number of retries before failing
2244  *	@data: returns a structure abstracting the mode header data
2245  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2246  *		must be SCSI_SENSE_BUFFERSIZE big.
2247  *
2248  *	Returns zero if successful, or a negative error number on failure
2249  */
2250 int
2251 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2252 		  unsigned char *buffer, int len, int timeout, int retries,
2253 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2254 {
2255 	unsigned char cmd[12];
2256 	int use_10_for_ms;
2257 	int header_length;
2258 	int result;
2259 	struct scsi_sense_hdr my_sshdr;
2260 	struct scsi_failure failure_defs[] = {
2261 		{
2262 			.sense = UNIT_ATTENTION,
2263 			.asc = SCMD_FAILURE_ASC_ANY,
2264 			.ascq = SCMD_FAILURE_ASCQ_ANY,
2265 			.allowed = retries,
2266 			.result = SAM_STAT_CHECK_CONDITION,
2267 		},
2268 		{}
2269 	};
2270 	struct scsi_failures failures = {
2271 		.failure_definitions = failure_defs,
2272 	};
2273 	const struct scsi_exec_args exec_args = {
2274 		/* caller might not be interested in sense, but we need it */
2275 		.sshdr = sshdr ? : &my_sshdr,
2276 		.failures = &failures,
2277 	};
2278 
2279 	memset(data, 0, sizeof(*data));
2280 	memset(&cmd[0], 0, 12);
2281 
2282 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2283 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2284 	cmd[2] = modepage;
2285 	cmd[3] = subpage;
2286 
2287 	sshdr = exec_args.sshdr;
2288 
2289  retry:
2290 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2291 
2292 	if (use_10_for_ms) {
2293 		if (len < 8 || len > 65535)
2294 			return -EINVAL;
2295 
2296 		cmd[0] = MODE_SENSE_10;
2297 		put_unaligned_be16(len, &cmd[7]);
2298 		header_length = 8;
2299 	} else {
2300 		if (len < 4)
2301 			return -EINVAL;
2302 
2303 		cmd[0] = MODE_SENSE;
2304 		cmd[4] = len;
2305 		header_length = 4;
2306 	}
2307 
2308 	memset(buffer, 0, len);
2309 
2310 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2311 				  timeout, retries, &exec_args);
2312 	if (result < 0)
2313 		return result;
2314 
2315 	/* This code looks awful: what it's doing is making sure an
2316 	 * ILLEGAL REQUEST sense return identifies the actual command
2317 	 * byte as the problem.  MODE_SENSE commands can return
2318 	 * ILLEGAL REQUEST if the code page isn't supported */
2319 
2320 	if (!scsi_status_is_good(result)) {
2321 		if (scsi_sense_valid(sshdr)) {
2322 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2323 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2324 				/*
2325 				 * Invalid command operation code: retry using
2326 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2327 				 * request, except if the request mode page is
2328 				 * too large for MODE SENSE single byte
2329 				 * allocation length field.
2330 				 */
2331 				if (use_10_for_ms) {
2332 					if (len > 255)
2333 						return -EIO;
2334 					sdev->use_10_for_ms = 0;
2335 					goto retry;
2336 				}
2337 			}
2338 		}
2339 		return -EIO;
2340 	}
2341 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2342 		     (modepage == 6 || modepage == 8))) {
2343 		/* Initio breakage? */
2344 		header_length = 0;
2345 		data->length = 13;
2346 		data->medium_type = 0;
2347 		data->device_specific = 0;
2348 		data->longlba = 0;
2349 		data->block_descriptor_length = 0;
2350 	} else if (use_10_for_ms) {
2351 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2352 		data->medium_type = buffer[2];
2353 		data->device_specific = buffer[3];
2354 		data->longlba = buffer[4] & 0x01;
2355 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2356 	} else {
2357 		data->length = buffer[0] + 1;
2358 		data->medium_type = buffer[1];
2359 		data->device_specific = buffer[2];
2360 		data->block_descriptor_length = buffer[3];
2361 	}
2362 	data->header_length = header_length;
2363 
2364 	return 0;
2365 }
2366 EXPORT_SYMBOL(scsi_mode_sense);
2367 
2368 /**
2369  *	scsi_test_unit_ready - test if unit is ready
2370  *	@sdev:	scsi device to change the state of.
2371  *	@timeout: command timeout
2372  *	@retries: number of retries before failing
2373  *	@sshdr: outpout pointer for decoded sense information.
2374  *
2375  *	Returns zero if unsuccessful or an error if TUR failed.  For
2376  *	removable media, UNIT_ATTENTION sets ->changed flag.
2377  **/
2378 int
2379 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2380 		     struct scsi_sense_hdr *sshdr)
2381 {
2382 	char cmd[] = {
2383 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2384 	};
2385 	const struct scsi_exec_args exec_args = {
2386 		.sshdr = sshdr,
2387 	};
2388 	int result;
2389 
2390 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2391 	do {
2392 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2393 					  timeout, 1, &exec_args);
2394 		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2395 		    sshdr->sense_key == UNIT_ATTENTION)
2396 			sdev->changed = 1;
2397 	} while (result > 0 && scsi_sense_valid(sshdr) &&
2398 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2399 
2400 	return result;
2401 }
2402 EXPORT_SYMBOL(scsi_test_unit_ready);
2403 
2404 /**
2405  *	scsi_device_set_state - Take the given device through the device state model.
2406  *	@sdev:	scsi device to change the state of.
2407  *	@state:	state to change to.
2408  *
2409  *	Returns zero if successful or an error if the requested
2410  *	transition is illegal.
2411  */
2412 int
2413 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2414 {
2415 	enum scsi_device_state oldstate = sdev->sdev_state;
2416 
2417 	if (state == oldstate)
2418 		return 0;
2419 
2420 	switch (state) {
2421 	case SDEV_CREATED:
2422 		switch (oldstate) {
2423 		case SDEV_CREATED_BLOCK:
2424 			break;
2425 		default:
2426 			goto illegal;
2427 		}
2428 		break;
2429 
2430 	case SDEV_RUNNING:
2431 		switch (oldstate) {
2432 		case SDEV_CREATED:
2433 		case SDEV_OFFLINE:
2434 		case SDEV_TRANSPORT_OFFLINE:
2435 		case SDEV_QUIESCE:
2436 		case SDEV_BLOCK:
2437 			break;
2438 		default:
2439 			goto illegal;
2440 		}
2441 		break;
2442 
2443 	case SDEV_QUIESCE:
2444 		switch (oldstate) {
2445 		case SDEV_RUNNING:
2446 		case SDEV_OFFLINE:
2447 		case SDEV_TRANSPORT_OFFLINE:
2448 			break;
2449 		default:
2450 			goto illegal;
2451 		}
2452 		break;
2453 
2454 	case SDEV_OFFLINE:
2455 	case SDEV_TRANSPORT_OFFLINE:
2456 		switch (oldstate) {
2457 		case SDEV_CREATED:
2458 		case SDEV_RUNNING:
2459 		case SDEV_QUIESCE:
2460 		case SDEV_BLOCK:
2461 			break;
2462 		default:
2463 			goto illegal;
2464 		}
2465 		break;
2466 
2467 	case SDEV_BLOCK:
2468 		switch (oldstate) {
2469 		case SDEV_RUNNING:
2470 		case SDEV_CREATED_BLOCK:
2471 		case SDEV_QUIESCE:
2472 		case SDEV_OFFLINE:
2473 			break;
2474 		default:
2475 			goto illegal;
2476 		}
2477 		break;
2478 
2479 	case SDEV_CREATED_BLOCK:
2480 		switch (oldstate) {
2481 		case SDEV_CREATED:
2482 			break;
2483 		default:
2484 			goto illegal;
2485 		}
2486 		break;
2487 
2488 	case SDEV_CANCEL:
2489 		switch (oldstate) {
2490 		case SDEV_CREATED:
2491 		case SDEV_RUNNING:
2492 		case SDEV_QUIESCE:
2493 		case SDEV_OFFLINE:
2494 		case SDEV_TRANSPORT_OFFLINE:
2495 			break;
2496 		default:
2497 			goto illegal;
2498 		}
2499 		break;
2500 
2501 	case SDEV_DEL:
2502 		switch (oldstate) {
2503 		case SDEV_CREATED:
2504 		case SDEV_RUNNING:
2505 		case SDEV_OFFLINE:
2506 		case SDEV_TRANSPORT_OFFLINE:
2507 		case SDEV_CANCEL:
2508 		case SDEV_BLOCK:
2509 		case SDEV_CREATED_BLOCK:
2510 			break;
2511 		default:
2512 			goto illegal;
2513 		}
2514 		break;
2515 
2516 	}
2517 	sdev->offline_already = false;
2518 	sdev->sdev_state = state;
2519 	return 0;
2520 
2521  illegal:
2522 	SCSI_LOG_ERROR_RECOVERY(1,
2523 				sdev_printk(KERN_ERR, sdev,
2524 					    "Illegal state transition %s->%s",
2525 					    scsi_device_state_name(oldstate),
2526 					    scsi_device_state_name(state))
2527 				);
2528 	return -EINVAL;
2529 }
2530 EXPORT_SYMBOL(scsi_device_set_state);
2531 
2532 /**
2533  *	scsi_evt_emit - emit a single SCSI device uevent
2534  *	@sdev: associated SCSI device
2535  *	@evt: event to emit
2536  *
2537  *	Send a single uevent (scsi_event) to the associated scsi_device.
2538  */
2539 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2540 {
2541 	int idx = 0;
2542 	char *envp[3];
2543 
2544 	switch (evt->evt_type) {
2545 	case SDEV_EVT_MEDIA_CHANGE:
2546 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2547 		break;
2548 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2549 		scsi_rescan_device(sdev);
2550 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2551 		break;
2552 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2553 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2554 		break;
2555 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2556 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2557 		break;
2558 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2559 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2560 		break;
2561 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2562 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2563 		break;
2564 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2565 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2566 		break;
2567 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2568 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2569 		break;
2570 	default:
2571 		/* do nothing */
2572 		break;
2573 	}
2574 
2575 	envp[idx++] = NULL;
2576 
2577 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2578 }
2579 
2580 /**
2581  *	scsi_evt_thread - send a uevent for each scsi event
2582  *	@work: work struct for scsi_device
2583  *
2584  *	Dispatch queued events to their associated scsi_device kobjects
2585  *	as uevents.
2586  */
2587 void scsi_evt_thread(struct work_struct *work)
2588 {
2589 	struct scsi_device *sdev;
2590 	enum scsi_device_event evt_type;
2591 	LIST_HEAD(event_list);
2592 
2593 	sdev = container_of(work, struct scsi_device, event_work);
2594 
2595 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2596 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2597 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2598 
2599 	while (1) {
2600 		struct scsi_event *evt;
2601 		struct list_head *this, *tmp;
2602 		unsigned long flags;
2603 
2604 		spin_lock_irqsave(&sdev->list_lock, flags);
2605 		list_splice_init(&sdev->event_list, &event_list);
2606 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2607 
2608 		if (list_empty(&event_list))
2609 			break;
2610 
2611 		list_for_each_safe(this, tmp, &event_list) {
2612 			evt = list_entry(this, struct scsi_event, node);
2613 			list_del(&evt->node);
2614 			scsi_evt_emit(sdev, evt);
2615 			kfree(evt);
2616 		}
2617 	}
2618 }
2619 
2620 /**
2621  * 	sdev_evt_send - send asserted event to uevent thread
2622  *	@sdev: scsi_device event occurred on
2623  *	@evt: event to send
2624  *
2625  *	Assert scsi device event asynchronously.
2626  */
2627 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2628 {
2629 	unsigned long flags;
2630 
2631 #if 0
2632 	/* FIXME: currently this check eliminates all media change events
2633 	 * for polled devices.  Need to update to discriminate between AN
2634 	 * and polled events */
2635 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2636 		kfree(evt);
2637 		return;
2638 	}
2639 #endif
2640 
2641 	spin_lock_irqsave(&sdev->list_lock, flags);
2642 	list_add_tail(&evt->node, &sdev->event_list);
2643 	schedule_work(&sdev->event_work);
2644 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2645 }
2646 EXPORT_SYMBOL_GPL(sdev_evt_send);
2647 
2648 /**
2649  * 	sdev_evt_alloc - allocate a new scsi event
2650  *	@evt_type: type of event to allocate
2651  *	@gfpflags: GFP flags for allocation
2652  *
2653  *	Allocates and returns a new scsi_event.
2654  */
2655 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2656 				  gfp_t gfpflags)
2657 {
2658 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2659 	if (!evt)
2660 		return NULL;
2661 
2662 	evt->evt_type = evt_type;
2663 	INIT_LIST_HEAD(&evt->node);
2664 
2665 	/* evt_type-specific initialization, if any */
2666 	switch (evt_type) {
2667 	case SDEV_EVT_MEDIA_CHANGE:
2668 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2669 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2670 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2671 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2672 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2673 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2674 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2675 	default:
2676 		/* do nothing */
2677 		break;
2678 	}
2679 
2680 	return evt;
2681 }
2682 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2683 
2684 /**
2685  * 	sdev_evt_send_simple - send asserted event to uevent thread
2686  *	@sdev: scsi_device event occurred on
2687  *	@evt_type: type of event to send
2688  *	@gfpflags: GFP flags for allocation
2689  *
2690  *	Assert scsi device event asynchronously, given an event type.
2691  */
2692 void sdev_evt_send_simple(struct scsi_device *sdev,
2693 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2694 {
2695 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2696 	if (!evt) {
2697 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2698 			    evt_type);
2699 		return;
2700 	}
2701 
2702 	sdev_evt_send(sdev, evt);
2703 }
2704 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2705 
2706 /**
2707  *	scsi_device_quiesce - Block all commands except power management.
2708  *	@sdev:	scsi device to quiesce.
2709  *
2710  *	This works by trying to transition to the SDEV_QUIESCE state
2711  *	(which must be a legal transition).  When the device is in this
2712  *	state, only power management requests will be accepted, all others will
2713  *	be deferred.
2714  *
2715  *	Must be called with user context, may sleep.
2716  *
2717  *	Returns zero if unsuccessful or an error if not.
2718  */
2719 int
2720 scsi_device_quiesce(struct scsi_device *sdev)
2721 {
2722 	struct request_queue *q = sdev->request_queue;
2723 	int err;
2724 
2725 	/*
2726 	 * It is allowed to call scsi_device_quiesce() multiple times from
2727 	 * the same context but concurrent scsi_device_quiesce() calls are
2728 	 * not allowed.
2729 	 */
2730 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2731 
2732 	if (sdev->quiesced_by == current)
2733 		return 0;
2734 
2735 	blk_set_pm_only(q);
2736 
2737 	blk_mq_freeze_queue(q);
2738 	/*
2739 	 * Ensure that the effect of blk_set_pm_only() will be visible
2740 	 * for percpu_ref_tryget() callers that occur after the queue
2741 	 * unfreeze even if the queue was already frozen before this function
2742 	 * was called. See also https://lwn.net/Articles/573497/.
2743 	 */
2744 	synchronize_rcu();
2745 	blk_mq_unfreeze_queue(q);
2746 
2747 	mutex_lock(&sdev->state_mutex);
2748 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2749 	if (err == 0)
2750 		sdev->quiesced_by = current;
2751 	else
2752 		blk_clear_pm_only(q);
2753 	mutex_unlock(&sdev->state_mutex);
2754 
2755 	return err;
2756 }
2757 EXPORT_SYMBOL(scsi_device_quiesce);
2758 
2759 /**
2760  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2761  *	@sdev:	scsi device to resume.
2762  *
2763  *	Moves the device from quiesced back to running and restarts the
2764  *	queues.
2765  *
2766  *	Must be called with user context, may sleep.
2767  */
2768 void scsi_device_resume(struct scsi_device *sdev)
2769 {
2770 	/* check if the device state was mutated prior to resume, and if
2771 	 * so assume the state is being managed elsewhere (for example
2772 	 * device deleted during suspend)
2773 	 */
2774 	mutex_lock(&sdev->state_mutex);
2775 	if (sdev->sdev_state == SDEV_QUIESCE)
2776 		scsi_device_set_state(sdev, SDEV_RUNNING);
2777 	if (sdev->quiesced_by) {
2778 		sdev->quiesced_by = NULL;
2779 		blk_clear_pm_only(sdev->request_queue);
2780 	}
2781 	mutex_unlock(&sdev->state_mutex);
2782 }
2783 EXPORT_SYMBOL(scsi_device_resume);
2784 
2785 static void
2786 device_quiesce_fn(struct scsi_device *sdev, void *data)
2787 {
2788 	scsi_device_quiesce(sdev);
2789 }
2790 
2791 void
2792 scsi_target_quiesce(struct scsi_target *starget)
2793 {
2794 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2795 }
2796 EXPORT_SYMBOL(scsi_target_quiesce);
2797 
2798 static void
2799 device_resume_fn(struct scsi_device *sdev, void *data)
2800 {
2801 	scsi_device_resume(sdev);
2802 }
2803 
2804 void
2805 scsi_target_resume(struct scsi_target *starget)
2806 {
2807 	starget_for_each_device(starget, NULL, device_resume_fn);
2808 }
2809 EXPORT_SYMBOL(scsi_target_resume);
2810 
2811 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2812 {
2813 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2814 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2815 
2816 	return 0;
2817 }
2818 
2819 void scsi_start_queue(struct scsi_device *sdev)
2820 {
2821 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2822 		blk_mq_unquiesce_queue(sdev->request_queue);
2823 }
2824 
2825 static void scsi_stop_queue(struct scsi_device *sdev)
2826 {
2827 	/*
2828 	 * The atomic variable of ->queue_stopped covers that
2829 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2830 	 *
2831 	 * The caller needs to wait until quiesce is done.
2832 	 */
2833 	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2834 		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2835 }
2836 
2837 /**
2838  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2839  * @sdev: device to block
2840  *
2841  * Pause SCSI command processing on the specified device. Does not sleep.
2842  *
2843  * Returns zero if successful or a negative error code upon failure.
2844  *
2845  * Notes:
2846  * This routine transitions the device to the SDEV_BLOCK state (which must be
2847  * a legal transition). When the device is in this state, command processing
2848  * is paused until the device leaves the SDEV_BLOCK state. See also
2849  * scsi_internal_device_unblock_nowait().
2850  */
2851 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2852 {
2853 	int ret = __scsi_internal_device_block_nowait(sdev);
2854 
2855 	/*
2856 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2857 	 * block layer from calling the midlayer with this device's
2858 	 * request queue.
2859 	 */
2860 	if (!ret)
2861 		scsi_stop_queue(sdev);
2862 	return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2865 
2866 /**
2867  * scsi_device_block - try to transition to the SDEV_BLOCK state
2868  * @sdev: device to block
2869  * @data: dummy argument, ignored
2870  *
2871  * Pause SCSI command processing on the specified device. Callers must wait
2872  * until all ongoing scsi_queue_rq() calls have finished after this function
2873  * returns.
2874  *
2875  * Note:
2876  * This routine transitions the device to the SDEV_BLOCK state (which must be
2877  * a legal transition). When the device is in this state, command processing
2878  * is paused until the device leaves the SDEV_BLOCK state. See also
2879  * scsi_internal_device_unblock().
2880  */
2881 static void scsi_device_block(struct scsi_device *sdev, void *data)
2882 {
2883 	int err;
2884 	enum scsi_device_state state;
2885 
2886 	mutex_lock(&sdev->state_mutex);
2887 	err = __scsi_internal_device_block_nowait(sdev);
2888 	state = sdev->sdev_state;
2889 	if (err == 0)
2890 		/*
2891 		 * scsi_stop_queue() must be called with the state_mutex
2892 		 * held. Otherwise a simultaneous scsi_start_queue() call
2893 		 * might unquiesce the queue before we quiesce it.
2894 		 */
2895 		scsi_stop_queue(sdev);
2896 
2897 	mutex_unlock(&sdev->state_mutex);
2898 
2899 	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2900 		  __func__, dev_name(&sdev->sdev_gendev), state);
2901 }
2902 
2903 /**
2904  * scsi_internal_device_unblock_nowait - resume a device after a block request
2905  * @sdev:	device to resume
2906  * @new_state:	state to set the device to after unblocking
2907  *
2908  * Restart the device queue for a previously suspended SCSI device. Does not
2909  * sleep.
2910  *
2911  * Returns zero if successful or a negative error code upon failure.
2912  *
2913  * Notes:
2914  * This routine transitions the device to the SDEV_RUNNING state or to one of
2915  * the offline states (which must be a legal transition) allowing the midlayer
2916  * to goose the queue for this device.
2917  */
2918 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2919 					enum scsi_device_state new_state)
2920 {
2921 	switch (new_state) {
2922 	case SDEV_RUNNING:
2923 	case SDEV_TRANSPORT_OFFLINE:
2924 		break;
2925 	default:
2926 		return -EINVAL;
2927 	}
2928 
2929 	/*
2930 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2931 	 * offlined states and goose the device queue if successful.
2932 	 */
2933 	switch (sdev->sdev_state) {
2934 	case SDEV_BLOCK:
2935 	case SDEV_TRANSPORT_OFFLINE:
2936 		sdev->sdev_state = new_state;
2937 		break;
2938 	case SDEV_CREATED_BLOCK:
2939 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2940 		    new_state == SDEV_OFFLINE)
2941 			sdev->sdev_state = new_state;
2942 		else
2943 			sdev->sdev_state = SDEV_CREATED;
2944 		break;
2945 	case SDEV_CANCEL:
2946 	case SDEV_OFFLINE:
2947 		break;
2948 	default:
2949 		return -EINVAL;
2950 	}
2951 	scsi_start_queue(sdev);
2952 
2953 	return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2956 
2957 /**
2958  * scsi_internal_device_unblock - resume a device after a block request
2959  * @sdev:	device to resume
2960  * @new_state:	state to set the device to after unblocking
2961  *
2962  * Restart the device queue for a previously suspended SCSI device. May sleep.
2963  *
2964  * Returns zero if successful or a negative error code upon failure.
2965  *
2966  * Notes:
2967  * This routine transitions the device to the SDEV_RUNNING state or to one of
2968  * the offline states (which must be a legal transition) allowing the midlayer
2969  * to goose the queue for this device.
2970  */
2971 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2972 					enum scsi_device_state new_state)
2973 {
2974 	int ret;
2975 
2976 	mutex_lock(&sdev->state_mutex);
2977 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2978 	mutex_unlock(&sdev->state_mutex);
2979 
2980 	return ret;
2981 }
2982 
2983 static int
2984 target_block(struct device *dev, void *data)
2985 {
2986 	if (scsi_is_target_device(dev))
2987 		starget_for_each_device(to_scsi_target(dev), NULL,
2988 					scsi_device_block);
2989 	return 0;
2990 }
2991 
2992 /**
2993  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2994  * @dev: a parent device of one or more scsi_target devices
2995  * @shost: the Scsi_Host to which this device belongs
2996  *
2997  * Iterate over all children of @dev, which should be scsi_target devices,
2998  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2999  * ongoing scsi_queue_rq() calls to finish. May sleep.
3000  *
3001  * Note:
3002  * @dev must not itself be a scsi_target device.
3003  */
3004 void
3005 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3006 {
3007 	WARN_ON_ONCE(scsi_is_target_device(dev));
3008 	device_for_each_child(dev, NULL, target_block);
3009 	blk_mq_wait_quiesce_done(&shost->tag_set);
3010 }
3011 EXPORT_SYMBOL_GPL(scsi_block_targets);
3012 
3013 static void
3014 device_unblock(struct scsi_device *sdev, void *data)
3015 {
3016 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3017 }
3018 
3019 static int
3020 target_unblock(struct device *dev, void *data)
3021 {
3022 	if (scsi_is_target_device(dev))
3023 		starget_for_each_device(to_scsi_target(dev), data,
3024 					device_unblock);
3025 	return 0;
3026 }
3027 
3028 void
3029 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3030 {
3031 	if (scsi_is_target_device(dev))
3032 		starget_for_each_device(to_scsi_target(dev), &new_state,
3033 					device_unblock);
3034 	else
3035 		device_for_each_child(dev, &new_state, target_unblock);
3036 }
3037 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3038 
3039 /**
3040  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3041  * @shost: device to block
3042  *
3043  * Pause SCSI command processing for all logical units associated with the SCSI
3044  * host and wait until pending scsi_queue_rq() calls have finished.
3045  *
3046  * Returns zero if successful or a negative error code upon failure.
3047  */
3048 int
3049 scsi_host_block(struct Scsi_Host *shost)
3050 {
3051 	struct scsi_device *sdev;
3052 	int ret;
3053 
3054 	/*
3055 	 * Call scsi_internal_device_block_nowait so we can avoid
3056 	 * calling synchronize_rcu() for each LUN.
3057 	 */
3058 	shost_for_each_device(sdev, shost) {
3059 		mutex_lock(&sdev->state_mutex);
3060 		ret = scsi_internal_device_block_nowait(sdev);
3061 		mutex_unlock(&sdev->state_mutex);
3062 		if (ret) {
3063 			scsi_device_put(sdev);
3064 			return ret;
3065 		}
3066 	}
3067 
3068 	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3069 	blk_mq_wait_quiesce_done(&shost->tag_set);
3070 
3071 	return 0;
3072 }
3073 EXPORT_SYMBOL_GPL(scsi_host_block);
3074 
3075 int
3076 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3077 {
3078 	struct scsi_device *sdev;
3079 	int ret = 0;
3080 
3081 	shost_for_each_device(sdev, shost) {
3082 		ret = scsi_internal_device_unblock(sdev, new_state);
3083 		if (ret) {
3084 			scsi_device_put(sdev);
3085 			break;
3086 		}
3087 	}
3088 	return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3091 
3092 /**
3093  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3094  * @sgl:	scatter-gather list
3095  * @sg_count:	number of segments in sg
3096  * @offset:	offset in bytes into sg, on return offset into the mapped area
3097  * @len:	bytes to map, on return number of bytes mapped
3098  *
3099  * Returns virtual address of the start of the mapped page
3100  */
3101 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3102 			  size_t *offset, size_t *len)
3103 {
3104 	int i;
3105 	size_t sg_len = 0, len_complete = 0;
3106 	struct scatterlist *sg;
3107 	struct page *page;
3108 
3109 	WARN_ON(!irqs_disabled());
3110 
3111 	for_each_sg(sgl, sg, sg_count, i) {
3112 		len_complete = sg_len; /* Complete sg-entries */
3113 		sg_len += sg->length;
3114 		if (sg_len > *offset)
3115 			break;
3116 	}
3117 
3118 	if (unlikely(i == sg_count)) {
3119 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3120 			"elements %d\n",
3121 		       __func__, sg_len, *offset, sg_count);
3122 		WARN_ON(1);
3123 		return NULL;
3124 	}
3125 
3126 	/* Offset starting from the beginning of first page in this sg-entry */
3127 	*offset = *offset - len_complete + sg->offset;
3128 
3129 	/* Assumption: contiguous pages can be accessed as "page + i" */
3130 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3131 	*offset &= ~PAGE_MASK;
3132 
3133 	/* Bytes in this sg-entry from *offset to the end of the page */
3134 	sg_len = PAGE_SIZE - *offset;
3135 	if (*len > sg_len)
3136 		*len = sg_len;
3137 
3138 	return kmap_atomic(page);
3139 }
3140 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3141 
3142 /**
3143  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3144  * @virt:	virtual address to be unmapped
3145  */
3146 void scsi_kunmap_atomic_sg(void *virt)
3147 {
3148 	kunmap_atomic(virt);
3149 }
3150 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3151 
3152 void sdev_disable_disk_events(struct scsi_device *sdev)
3153 {
3154 	atomic_inc(&sdev->disk_events_disable_depth);
3155 }
3156 EXPORT_SYMBOL(sdev_disable_disk_events);
3157 
3158 void sdev_enable_disk_events(struct scsi_device *sdev)
3159 {
3160 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3161 		return;
3162 	atomic_dec(&sdev->disk_events_disable_depth);
3163 }
3164 EXPORT_SYMBOL(sdev_enable_disk_events);
3165 
3166 static unsigned char designator_prio(const unsigned char *d)
3167 {
3168 	if (d[1] & 0x30)
3169 		/* not associated with LUN */
3170 		return 0;
3171 
3172 	if (d[3] == 0)
3173 		/* invalid length */
3174 		return 0;
3175 
3176 	/*
3177 	 * Order of preference for lun descriptor:
3178 	 * - SCSI name string
3179 	 * - NAA IEEE Registered Extended
3180 	 * - EUI-64 based 16-byte
3181 	 * - EUI-64 based 12-byte
3182 	 * - NAA IEEE Registered
3183 	 * - NAA IEEE Extended
3184 	 * - EUI-64 based 8-byte
3185 	 * - SCSI name string (truncated)
3186 	 * - T10 Vendor ID
3187 	 * as longer descriptors reduce the likelyhood
3188 	 * of identification clashes.
3189 	 */
3190 
3191 	switch (d[1] & 0xf) {
3192 	case 8:
3193 		/* SCSI name string, variable-length UTF-8 */
3194 		return 9;
3195 	case 3:
3196 		switch (d[4] >> 4) {
3197 		case 6:
3198 			/* NAA registered extended */
3199 			return 8;
3200 		case 5:
3201 			/* NAA registered */
3202 			return 5;
3203 		case 4:
3204 			/* NAA extended */
3205 			return 4;
3206 		case 3:
3207 			/* NAA locally assigned */
3208 			return 1;
3209 		default:
3210 			break;
3211 		}
3212 		break;
3213 	case 2:
3214 		switch (d[3]) {
3215 		case 16:
3216 			/* EUI64-based, 16 byte */
3217 			return 7;
3218 		case 12:
3219 			/* EUI64-based, 12 byte */
3220 			return 6;
3221 		case 8:
3222 			/* EUI64-based, 8 byte */
3223 			return 3;
3224 		default:
3225 			break;
3226 		}
3227 		break;
3228 	case 1:
3229 		/* T10 vendor ID */
3230 		return 1;
3231 	default:
3232 		break;
3233 	}
3234 
3235 	return 0;
3236 }
3237 
3238 /**
3239  * scsi_vpd_lun_id - return a unique device identification
3240  * @sdev: SCSI device
3241  * @id:   buffer for the identification
3242  * @id_len:  length of the buffer
3243  *
3244  * Copies a unique device identification into @id based
3245  * on the information in the VPD page 0x83 of the device.
3246  * The string will be formatted as a SCSI name string.
3247  *
3248  * Returns the length of the identification or error on failure.
3249  * If the identifier is longer than the supplied buffer the actual
3250  * identifier length is returned and the buffer is not zero-padded.
3251  */
3252 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3253 {
3254 	u8 cur_id_prio = 0;
3255 	u8 cur_id_size = 0;
3256 	const unsigned char *d, *cur_id_str;
3257 	const struct scsi_vpd *vpd_pg83;
3258 	int id_size = -EINVAL;
3259 
3260 	rcu_read_lock();
3261 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3262 	if (!vpd_pg83) {
3263 		rcu_read_unlock();
3264 		return -ENXIO;
3265 	}
3266 
3267 	/* The id string must be at least 20 bytes + terminating NULL byte */
3268 	if (id_len < 21) {
3269 		rcu_read_unlock();
3270 		return -EINVAL;
3271 	}
3272 
3273 	memset(id, 0, id_len);
3274 	for (d = vpd_pg83->data + 4;
3275 	     d < vpd_pg83->data + vpd_pg83->len;
3276 	     d += d[3] + 4) {
3277 		u8 prio = designator_prio(d);
3278 
3279 		if (prio == 0 || cur_id_prio > prio)
3280 			continue;
3281 
3282 		switch (d[1] & 0xf) {
3283 		case 0x1:
3284 			/* T10 Vendor ID */
3285 			if (cur_id_size > d[3])
3286 				break;
3287 			cur_id_prio = prio;
3288 			cur_id_size = d[3];
3289 			if (cur_id_size + 4 > id_len)
3290 				cur_id_size = id_len - 4;
3291 			cur_id_str = d + 4;
3292 			id_size = snprintf(id, id_len, "t10.%*pE",
3293 					   cur_id_size, cur_id_str);
3294 			break;
3295 		case 0x2:
3296 			/* EUI-64 */
3297 			cur_id_prio = prio;
3298 			cur_id_size = d[3];
3299 			cur_id_str = d + 4;
3300 			switch (cur_id_size) {
3301 			case 8:
3302 				id_size = snprintf(id, id_len,
3303 						   "eui.%8phN",
3304 						   cur_id_str);
3305 				break;
3306 			case 12:
3307 				id_size = snprintf(id, id_len,
3308 						   "eui.%12phN",
3309 						   cur_id_str);
3310 				break;
3311 			case 16:
3312 				id_size = snprintf(id, id_len,
3313 						   "eui.%16phN",
3314 						   cur_id_str);
3315 				break;
3316 			default:
3317 				break;
3318 			}
3319 			break;
3320 		case 0x3:
3321 			/* NAA */
3322 			cur_id_prio = prio;
3323 			cur_id_size = d[3];
3324 			cur_id_str = d + 4;
3325 			switch (cur_id_size) {
3326 			case 8:
3327 				id_size = snprintf(id, id_len,
3328 						   "naa.%8phN",
3329 						   cur_id_str);
3330 				break;
3331 			case 16:
3332 				id_size = snprintf(id, id_len,
3333 						   "naa.%16phN",
3334 						   cur_id_str);
3335 				break;
3336 			default:
3337 				break;
3338 			}
3339 			break;
3340 		case 0x8:
3341 			/* SCSI name string */
3342 			if (cur_id_size > d[3])
3343 				break;
3344 			/* Prefer others for truncated descriptor */
3345 			if (d[3] > id_len) {
3346 				prio = 2;
3347 				if (cur_id_prio > prio)
3348 					break;
3349 			}
3350 			cur_id_prio = prio;
3351 			cur_id_size = id_size = d[3];
3352 			cur_id_str = d + 4;
3353 			if (cur_id_size >= id_len)
3354 				cur_id_size = id_len - 1;
3355 			memcpy(id, cur_id_str, cur_id_size);
3356 			break;
3357 		default:
3358 			break;
3359 		}
3360 	}
3361 	rcu_read_unlock();
3362 
3363 	return id_size;
3364 }
3365 EXPORT_SYMBOL(scsi_vpd_lun_id);
3366 
3367 /*
3368  * scsi_vpd_tpg_id - return a target port group identifier
3369  * @sdev: SCSI device
3370  *
3371  * Returns the Target Port Group identifier from the information
3372  * froom VPD page 0x83 of the device.
3373  *
3374  * Returns the identifier or error on failure.
3375  */
3376 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3377 {
3378 	const unsigned char *d;
3379 	const struct scsi_vpd *vpd_pg83;
3380 	int group_id = -EAGAIN, rel_port = -1;
3381 
3382 	rcu_read_lock();
3383 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3384 	if (!vpd_pg83) {
3385 		rcu_read_unlock();
3386 		return -ENXIO;
3387 	}
3388 
3389 	d = vpd_pg83->data + 4;
3390 	while (d < vpd_pg83->data + vpd_pg83->len) {
3391 		switch (d[1] & 0xf) {
3392 		case 0x4:
3393 			/* Relative target port */
3394 			rel_port = get_unaligned_be16(&d[6]);
3395 			break;
3396 		case 0x5:
3397 			/* Target port group */
3398 			group_id = get_unaligned_be16(&d[6]);
3399 			break;
3400 		default:
3401 			break;
3402 		}
3403 		d += d[3] + 4;
3404 	}
3405 	rcu_read_unlock();
3406 
3407 	if (group_id >= 0 && rel_id && rel_port != -1)
3408 		*rel_id = rel_port;
3409 
3410 	return group_id;
3411 }
3412 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3413 
3414 /**
3415  * scsi_build_sense - build sense data for a command
3416  * @scmd:	scsi command for which the sense should be formatted
3417  * @desc:	Sense format (non-zero == descriptor format,
3418  *              0 == fixed format)
3419  * @key:	Sense key
3420  * @asc:	Additional sense code
3421  * @ascq:	Additional sense code qualifier
3422  *
3423  **/
3424 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3425 {
3426 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3427 	scmd->result = SAM_STAT_CHECK_CONDITION;
3428 }
3429 EXPORT_SYMBOL_GPL(scsi_build_sense);
3430 
3431 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3432 #include "scsi_lib_test.c"
3433 #endif
3434