1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/completion.h> 13 #include <linux/kernel.h> 14 #include <linux/mempool.h> 15 #include <linux/slab.h> 16 #include <linux/init.h> 17 #include <linux/pci.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_dbg.h> 24 #include <scsi/scsi_device.h> 25 #include <scsi/scsi_driver.h> 26 #include <scsi/scsi_eh.h> 27 #include <scsi/scsi_host.h> 28 29 #include "scsi_priv.h" 30 #include "scsi_logging.h" 31 32 33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 34 #define SG_MEMPOOL_SIZE 32 35 36 struct scsi_host_sg_pool { 37 size_t size; 38 char *name; 39 kmem_cache_t *slab; 40 mempool_t *pool; 41 }; 42 43 #if (SCSI_MAX_PHYS_SEGMENTS < 32) 44 #error SCSI_MAX_PHYS_SEGMENTS is too small 45 #endif 46 47 #define SP(x) { x, "sgpool-" #x } 48 static struct scsi_host_sg_pool scsi_sg_pools[] = { 49 SP(8), 50 SP(16), 51 SP(32), 52 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 53 SP(64), 54 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 55 SP(128), 56 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 57 SP(256), 58 #if (SCSI_MAX_PHYS_SEGMENTS > 256) 59 #error SCSI_MAX_PHYS_SEGMENTS is too large 60 #endif 61 #endif 62 #endif 63 #endif 64 }; 65 #undef SP 66 67 static void scsi_run_queue(struct request_queue *q); 68 69 /* 70 * Function: scsi_unprep_request() 71 * 72 * Purpose: Remove all preparation done for a request, including its 73 * associated scsi_cmnd, so that it can be requeued. 74 * 75 * Arguments: req - request to unprepare 76 * 77 * Lock status: Assumed that no locks are held upon entry. 78 * 79 * Returns: Nothing. 80 */ 81 static void scsi_unprep_request(struct request *req) 82 { 83 struct scsi_cmnd *cmd = req->special; 84 85 req->flags &= ~REQ_DONTPREP; 86 req->special = NULL; 87 88 scsi_put_command(cmd); 89 } 90 91 /* 92 * Function: scsi_queue_insert() 93 * 94 * Purpose: Insert a command in the midlevel queue. 95 * 96 * Arguments: cmd - command that we are adding to queue. 97 * reason - why we are inserting command to queue. 98 * 99 * Lock status: Assumed that lock is not held upon entry. 100 * 101 * Returns: Nothing. 102 * 103 * Notes: We do this for one of two cases. Either the host is busy 104 * and it cannot accept any more commands for the time being, 105 * or the device returned QUEUE_FULL and can accept no more 106 * commands. 107 * Notes: This could be called either from an interrupt context or a 108 * normal process context. 109 */ 110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 111 { 112 struct Scsi_Host *host = cmd->device->host; 113 struct scsi_device *device = cmd->device; 114 struct request_queue *q = device->request_queue; 115 unsigned long flags; 116 117 SCSI_LOG_MLQUEUE(1, 118 printk("Inserting command %p into mlqueue\n", cmd)); 119 120 /* 121 * Set the appropriate busy bit for the device/host. 122 * 123 * If the host/device isn't busy, assume that something actually 124 * completed, and that we should be able to queue a command now. 125 * 126 * Note that the prior mid-layer assumption that any host could 127 * always queue at least one command is now broken. The mid-layer 128 * will implement a user specifiable stall (see 129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 130 * if a command is requeued with no other commands outstanding 131 * either for the device or for the host. 132 */ 133 if (reason == SCSI_MLQUEUE_HOST_BUSY) 134 host->host_blocked = host->max_host_blocked; 135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY) 136 device->device_blocked = device->max_device_blocked; 137 138 /* 139 * Decrement the counters, since these commands are no longer 140 * active on the host/device. 141 */ 142 scsi_device_unbusy(device); 143 144 /* 145 * Requeue this command. It will go before all other commands 146 * that are already in the queue. 147 * 148 * NOTE: there is magic here about the way the queue is plugged if 149 * we have no outstanding commands. 150 * 151 * Although we *don't* plug the queue, we call the request 152 * function. The SCSI request function detects the blocked condition 153 * and plugs the queue appropriately. 154 */ 155 spin_lock_irqsave(q->queue_lock, flags); 156 blk_requeue_request(q, cmd->request); 157 spin_unlock_irqrestore(q->queue_lock, flags); 158 159 scsi_run_queue(q); 160 161 return 0; 162 } 163 164 /** 165 * scsi_execute - insert request and wait for the result 166 * @sdev: scsi device 167 * @cmd: scsi command 168 * @data_direction: data direction 169 * @buffer: data buffer 170 * @bufflen: len of buffer 171 * @sense: optional sense buffer 172 * @timeout: request timeout in seconds 173 * @retries: number of times to retry request 174 * @flags: or into request flags; 175 * 176 * returns the req->errors value which is the the scsi_cmnd result 177 * field. 178 **/ 179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 180 int data_direction, void *buffer, unsigned bufflen, 181 unsigned char *sense, int timeout, int retries, int flags) 182 { 183 struct request *req; 184 int write = (data_direction == DMA_TO_DEVICE); 185 int ret = DRIVER_ERROR << 24; 186 187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 188 189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 190 buffer, bufflen, __GFP_WAIT)) 191 goto out; 192 193 req->cmd_len = COMMAND_SIZE(cmd[0]); 194 memcpy(req->cmd, cmd, req->cmd_len); 195 req->sense = sense; 196 req->sense_len = 0; 197 req->retries = retries; 198 req->timeout = timeout; 199 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET; 200 201 /* 202 * head injection *required* here otherwise quiesce won't work 203 */ 204 blk_execute_rq(req->q, NULL, req, 1); 205 206 ret = req->errors; 207 out: 208 blk_put_request(req); 209 210 return ret; 211 } 212 EXPORT_SYMBOL(scsi_execute); 213 214 215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 216 int data_direction, void *buffer, unsigned bufflen, 217 struct scsi_sense_hdr *sshdr, int timeout, int retries) 218 { 219 char *sense = NULL; 220 int result; 221 222 if (sshdr) { 223 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 224 if (!sense) 225 return DRIVER_ERROR << 24; 226 } 227 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 228 sense, timeout, retries, 0); 229 if (sshdr) 230 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 231 232 kfree(sense); 233 return result; 234 } 235 EXPORT_SYMBOL(scsi_execute_req); 236 237 struct scsi_io_context { 238 void *data; 239 void (*done)(void *data, char *sense, int result, int resid); 240 char sense[SCSI_SENSE_BUFFERSIZE]; 241 }; 242 243 static kmem_cache_t *scsi_io_context_cache; 244 245 static void scsi_end_async(struct request *req, int uptodate) 246 { 247 struct scsi_io_context *sioc = req->end_io_data; 248 249 if (sioc->done) 250 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 251 252 kmem_cache_free(scsi_io_context_cache, sioc); 253 __blk_put_request(req->q, req); 254 } 255 256 static int scsi_merge_bio(struct request *rq, struct bio *bio) 257 { 258 struct request_queue *q = rq->q; 259 260 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 261 if (rq_data_dir(rq) == WRITE) 262 bio->bi_rw |= (1 << BIO_RW); 263 blk_queue_bounce(q, &bio); 264 265 if (!rq->bio) 266 blk_rq_bio_prep(q, rq, bio); 267 else if (!q->back_merge_fn(q, rq, bio)) 268 return -EINVAL; 269 else { 270 rq->biotail->bi_next = bio; 271 rq->biotail = bio; 272 rq->hard_nr_sectors += bio_sectors(bio); 273 rq->nr_sectors = rq->hard_nr_sectors; 274 } 275 276 return 0; 277 } 278 279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error) 280 { 281 if (bio->bi_size) 282 return 1; 283 284 bio_put(bio); 285 return 0; 286 } 287 288 /** 289 * scsi_req_map_sg - map a scatterlist into a request 290 * @rq: request to fill 291 * @sg: scatterlist 292 * @nsegs: number of elements 293 * @bufflen: len of buffer 294 * @gfp: memory allocation flags 295 * 296 * scsi_req_map_sg maps a scatterlist into a request so that the 297 * request can be sent to the block layer. We do not trust the scatterlist 298 * sent to use, as some ULDs use that struct to only organize the pages. 299 */ 300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 301 int nsegs, unsigned bufflen, gfp_t gfp) 302 { 303 struct request_queue *q = rq->q; 304 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 305 unsigned int data_len = 0, len, bytes, off; 306 struct page *page; 307 struct bio *bio = NULL; 308 int i, err, nr_vecs = 0; 309 310 for (i = 0; i < nsegs; i++) { 311 page = sgl[i].page; 312 off = sgl[i].offset; 313 len = sgl[i].length; 314 data_len += len; 315 316 while (len > 0) { 317 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 318 319 if (!bio) { 320 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 321 nr_pages -= nr_vecs; 322 323 bio = bio_alloc(gfp, nr_vecs); 324 if (!bio) { 325 err = -ENOMEM; 326 goto free_bios; 327 } 328 bio->bi_end_io = scsi_bi_endio; 329 } 330 331 if (bio_add_pc_page(q, bio, page, bytes, off) != 332 bytes) { 333 bio_put(bio); 334 err = -EINVAL; 335 goto free_bios; 336 } 337 338 if (bio->bi_vcnt >= nr_vecs) { 339 err = scsi_merge_bio(rq, bio); 340 if (err) { 341 bio_endio(bio, bio->bi_size, 0); 342 goto free_bios; 343 } 344 bio = NULL; 345 } 346 347 page++; 348 len -= bytes; 349 off = 0; 350 } 351 } 352 353 rq->buffer = rq->data = NULL; 354 rq->data_len = data_len; 355 return 0; 356 357 free_bios: 358 while ((bio = rq->bio) != NULL) { 359 rq->bio = bio->bi_next; 360 /* 361 * call endio instead of bio_put incase it was bounced 362 */ 363 bio_endio(bio, bio->bi_size, 0); 364 } 365 366 return err; 367 } 368 369 /** 370 * scsi_execute_async - insert request 371 * @sdev: scsi device 372 * @cmd: scsi command 373 * @cmd_len: length of scsi cdb 374 * @data_direction: data direction 375 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 376 * @bufflen: len of buffer 377 * @use_sg: if buffer is a scatterlist this is the number of elements 378 * @timeout: request timeout in seconds 379 * @retries: number of times to retry request 380 * @flags: or into request flags 381 **/ 382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 383 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 384 int use_sg, int timeout, int retries, void *privdata, 385 void (*done)(void *, char *, int, int), gfp_t gfp) 386 { 387 struct request *req; 388 struct scsi_io_context *sioc; 389 int err = 0; 390 int write = (data_direction == DMA_TO_DEVICE); 391 392 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp); 393 if (!sioc) 394 return DRIVER_ERROR << 24; 395 memset(sioc, 0, sizeof(*sioc)); 396 397 req = blk_get_request(sdev->request_queue, write, gfp); 398 if (!req) 399 goto free_sense; 400 req->flags |= REQ_BLOCK_PC | REQ_QUIET; 401 402 if (use_sg) 403 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 404 else if (bufflen) 405 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 406 407 if (err) 408 goto free_req; 409 410 req->cmd_len = cmd_len; 411 memcpy(req->cmd, cmd, req->cmd_len); 412 req->sense = sioc->sense; 413 req->sense_len = 0; 414 req->timeout = timeout; 415 req->retries = retries; 416 req->end_io_data = sioc; 417 418 sioc->data = privdata; 419 sioc->done = done; 420 421 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 422 return 0; 423 424 free_req: 425 blk_put_request(req); 426 free_sense: 427 kfree(sioc); 428 return DRIVER_ERROR << 24; 429 } 430 EXPORT_SYMBOL_GPL(scsi_execute_async); 431 432 /* 433 * Function: scsi_init_cmd_errh() 434 * 435 * Purpose: Initialize cmd fields related to error handling. 436 * 437 * Arguments: cmd - command that is ready to be queued. 438 * 439 * Returns: Nothing 440 * 441 * Notes: This function has the job of initializing a number of 442 * fields related to error handling. Typically this will 443 * be called once for each command, as required. 444 */ 445 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd) 446 { 447 cmd->serial_number = 0; 448 449 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer); 450 451 if (cmd->cmd_len == 0) 452 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]); 453 454 /* 455 * We need saved copies of a number of fields - this is because 456 * error handling may need to overwrite these with different values 457 * to run different commands, and once error handling is complete, 458 * we will need to restore these values prior to running the actual 459 * command. 460 */ 461 cmd->old_use_sg = cmd->use_sg; 462 cmd->old_cmd_len = cmd->cmd_len; 463 cmd->sc_old_data_direction = cmd->sc_data_direction; 464 cmd->old_underflow = cmd->underflow; 465 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd)); 466 cmd->buffer = cmd->request_buffer; 467 cmd->bufflen = cmd->request_bufflen; 468 469 return 1; 470 } 471 472 /* 473 * Function: scsi_setup_cmd_retry() 474 * 475 * Purpose: Restore the command state for a retry 476 * 477 * Arguments: cmd - command to be restored 478 * 479 * Returns: Nothing 480 * 481 * Notes: Immediately prior to retrying a command, we need 482 * to restore certain fields that we saved above. 483 */ 484 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd) 485 { 486 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd)); 487 cmd->request_buffer = cmd->buffer; 488 cmd->request_bufflen = cmd->bufflen; 489 cmd->use_sg = cmd->old_use_sg; 490 cmd->cmd_len = cmd->old_cmd_len; 491 cmd->sc_data_direction = cmd->sc_old_data_direction; 492 cmd->underflow = cmd->old_underflow; 493 } 494 495 void scsi_device_unbusy(struct scsi_device *sdev) 496 { 497 struct Scsi_Host *shost = sdev->host; 498 unsigned long flags; 499 500 spin_lock_irqsave(shost->host_lock, flags); 501 shost->host_busy--; 502 if (unlikely(scsi_host_in_recovery(shost) && 503 (shost->host_failed || shost->host_eh_scheduled))) 504 scsi_eh_wakeup(shost); 505 spin_unlock(shost->host_lock); 506 spin_lock(sdev->request_queue->queue_lock); 507 sdev->device_busy--; 508 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 509 } 510 511 /* 512 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 513 * and call blk_run_queue for all the scsi_devices on the target - 514 * including current_sdev first. 515 * 516 * Called with *no* scsi locks held. 517 */ 518 static void scsi_single_lun_run(struct scsi_device *current_sdev) 519 { 520 struct Scsi_Host *shost = current_sdev->host; 521 struct scsi_device *sdev, *tmp; 522 struct scsi_target *starget = scsi_target(current_sdev); 523 unsigned long flags; 524 525 spin_lock_irqsave(shost->host_lock, flags); 526 starget->starget_sdev_user = NULL; 527 spin_unlock_irqrestore(shost->host_lock, flags); 528 529 /* 530 * Call blk_run_queue for all LUNs on the target, starting with 531 * current_sdev. We race with others (to set starget_sdev_user), 532 * but in most cases, we will be first. Ideally, each LU on the 533 * target would get some limited time or requests on the target. 534 */ 535 blk_run_queue(current_sdev->request_queue); 536 537 spin_lock_irqsave(shost->host_lock, flags); 538 if (starget->starget_sdev_user) 539 goto out; 540 list_for_each_entry_safe(sdev, tmp, &starget->devices, 541 same_target_siblings) { 542 if (sdev == current_sdev) 543 continue; 544 if (scsi_device_get(sdev)) 545 continue; 546 547 spin_unlock_irqrestore(shost->host_lock, flags); 548 blk_run_queue(sdev->request_queue); 549 spin_lock_irqsave(shost->host_lock, flags); 550 551 scsi_device_put(sdev); 552 } 553 out: 554 spin_unlock_irqrestore(shost->host_lock, flags); 555 } 556 557 /* 558 * Function: scsi_run_queue() 559 * 560 * Purpose: Select a proper request queue to serve next 561 * 562 * Arguments: q - last request's queue 563 * 564 * Returns: Nothing 565 * 566 * Notes: The previous command was completely finished, start 567 * a new one if possible. 568 */ 569 static void scsi_run_queue(struct request_queue *q) 570 { 571 struct scsi_device *sdev = q->queuedata; 572 struct Scsi_Host *shost = sdev->host; 573 unsigned long flags; 574 575 if (sdev->single_lun) 576 scsi_single_lun_run(sdev); 577 578 spin_lock_irqsave(shost->host_lock, flags); 579 while (!list_empty(&shost->starved_list) && 580 !shost->host_blocked && !shost->host_self_blocked && 581 !((shost->can_queue > 0) && 582 (shost->host_busy >= shost->can_queue))) { 583 /* 584 * As long as shost is accepting commands and we have 585 * starved queues, call blk_run_queue. scsi_request_fn 586 * drops the queue_lock and can add us back to the 587 * starved_list. 588 * 589 * host_lock protects the starved_list and starved_entry. 590 * scsi_request_fn must get the host_lock before checking 591 * or modifying starved_list or starved_entry. 592 */ 593 sdev = list_entry(shost->starved_list.next, 594 struct scsi_device, starved_entry); 595 list_del_init(&sdev->starved_entry); 596 spin_unlock_irqrestore(shost->host_lock, flags); 597 598 blk_run_queue(sdev->request_queue); 599 600 spin_lock_irqsave(shost->host_lock, flags); 601 if (unlikely(!list_empty(&sdev->starved_entry))) 602 /* 603 * sdev lost a race, and was put back on the 604 * starved list. This is unlikely but without this 605 * in theory we could loop forever. 606 */ 607 break; 608 } 609 spin_unlock_irqrestore(shost->host_lock, flags); 610 611 blk_run_queue(q); 612 } 613 614 /* 615 * Function: scsi_requeue_command() 616 * 617 * Purpose: Handle post-processing of completed commands. 618 * 619 * Arguments: q - queue to operate on 620 * cmd - command that may need to be requeued. 621 * 622 * Returns: Nothing 623 * 624 * Notes: After command completion, there may be blocks left 625 * over which weren't finished by the previous command 626 * this can be for a number of reasons - the main one is 627 * I/O errors in the middle of the request, in which case 628 * we need to request the blocks that come after the bad 629 * sector. 630 * Notes: Upon return, cmd is a stale pointer. 631 */ 632 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 633 { 634 struct request *req = cmd->request; 635 unsigned long flags; 636 637 scsi_unprep_request(req); 638 spin_lock_irqsave(q->queue_lock, flags); 639 blk_requeue_request(q, req); 640 spin_unlock_irqrestore(q->queue_lock, flags); 641 642 scsi_run_queue(q); 643 } 644 645 void scsi_next_command(struct scsi_cmnd *cmd) 646 { 647 struct scsi_device *sdev = cmd->device; 648 struct request_queue *q = sdev->request_queue; 649 650 /* need to hold a reference on the device before we let go of the cmd */ 651 get_device(&sdev->sdev_gendev); 652 653 scsi_put_command(cmd); 654 scsi_run_queue(q); 655 656 /* ok to remove device now */ 657 put_device(&sdev->sdev_gendev); 658 } 659 660 void scsi_run_host_queues(struct Scsi_Host *shost) 661 { 662 struct scsi_device *sdev; 663 664 shost_for_each_device(sdev, shost) 665 scsi_run_queue(sdev->request_queue); 666 } 667 668 /* 669 * Function: scsi_end_request() 670 * 671 * Purpose: Post-processing of completed commands (usually invoked at end 672 * of upper level post-processing and scsi_io_completion). 673 * 674 * Arguments: cmd - command that is complete. 675 * uptodate - 1 if I/O indicates success, <= 0 for I/O error. 676 * bytes - number of bytes of completed I/O 677 * requeue - indicates whether we should requeue leftovers. 678 * 679 * Lock status: Assumed that lock is not held upon entry. 680 * 681 * Returns: cmd if requeue required, NULL otherwise. 682 * 683 * Notes: This is called for block device requests in order to 684 * mark some number of sectors as complete. 685 * 686 * We are guaranteeing that the request queue will be goosed 687 * at some point during this call. 688 * Notes: If cmd was requeued, upon return it will be a stale pointer. 689 */ 690 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate, 691 int bytes, int requeue) 692 { 693 request_queue_t *q = cmd->device->request_queue; 694 struct request *req = cmd->request; 695 unsigned long flags; 696 697 /* 698 * If there are blocks left over at the end, set up the command 699 * to queue the remainder of them. 700 */ 701 if (end_that_request_chunk(req, uptodate, bytes)) { 702 int leftover = (req->hard_nr_sectors << 9); 703 704 if (blk_pc_request(req)) 705 leftover = req->data_len; 706 707 /* kill remainder if no retrys */ 708 if (!uptodate && blk_noretry_request(req)) 709 end_that_request_chunk(req, 0, leftover); 710 else { 711 if (requeue) { 712 /* 713 * Bleah. Leftovers again. Stick the 714 * leftovers in the front of the 715 * queue, and goose the queue again. 716 */ 717 scsi_requeue_command(q, cmd); 718 cmd = NULL; 719 } 720 return cmd; 721 } 722 } 723 724 add_disk_randomness(req->rq_disk); 725 726 spin_lock_irqsave(q->queue_lock, flags); 727 if (blk_rq_tagged(req)) 728 blk_queue_end_tag(q, req); 729 end_that_request_last(req, uptodate); 730 spin_unlock_irqrestore(q->queue_lock, flags); 731 732 /* 733 * This will goose the queue request function at the end, so we don't 734 * need to worry about launching another command. 735 */ 736 scsi_next_command(cmd); 737 return NULL; 738 } 739 740 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask) 741 { 742 struct scsi_host_sg_pool *sgp; 743 struct scatterlist *sgl; 744 745 BUG_ON(!cmd->use_sg); 746 747 switch (cmd->use_sg) { 748 case 1 ... 8: 749 cmd->sglist_len = 0; 750 break; 751 case 9 ... 16: 752 cmd->sglist_len = 1; 753 break; 754 case 17 ... 32: 755 cmd->sglist_len = 2; 756 break; 757 #if (SCSI_MAX_PHYS_SEGMENTS > 32) 758 case 33 ... 64: 759 cmd->sglist_len = 3; 760 break; 761 #if (SCSI_MAX_PHYS_SEGMENTS > 64) 762 case 65 ... 128: 763 cmd->sglist_len = 4; 764 break; 765 #if (SCSI_MAX_PHYS_SEGMENTS > 128) 766 case 129 ... 256: 767 cmd->sglist_len = 5; 768 break; 769 #endif 770 #endif 771 #endif 772 default: 773 return NULL; 774 } 775 776 sgp = scsi_sg_pools + cmd->sglist_len; 777 sgl = mempool_alloc(sgp->pool, gfp_mask); 778 return sgl; 779 } 780 781 static void scsi_free_sgtable(struct scatterlist *sgl, int index) 782 { 783 struct scsi_host_sg_pool *sgp; 784 785 BUG_ON(index >= SG_MEMPOOL_NR); 786 787 sgp = scsi_sg_pools + index; 788 mempool_free(sgl, sgp->pool); 789 } 790 791 /* 792 * Function: scsi_release_buffers() 793 * 794 * Purpose: Completion processing for block device I/O requests. 795 * 796 * Arguments: cmd - command that we are bailing. 797 * 798 * Lock status: Assumed that no lock is held upon entry. 799 * 800 * Returns: Nothing 801 * 802 * Notes: In the event that an upper level driver rejects a 803 * command, we must release resources allocated during 804 * the __init_io() function. Primarily this would involve 805 * the scatter-gather table, and potentially any bounce 806 * buffers. 807 */ 808 static void scsi_release_buffers(struct scsi_cmnd *cmd) 809 { 810 struct request *req = cmd->request; 811 812 /* 813 * Free up any indirection buffers we allocated for DMA purposes. 814 */ 815 if (cmd->use_sg) 816 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len); 817 else if (cmd->request_buffer != req->buffer) 818 kfree(cmd->request_buffer); 819 820 /* 821 * Zero these out. They now point to freed memory, and it is 822 * dangerous to hang onto the pointers. 823 */ 824 cmd->buffer = NULL; 825 cmd->bufflen = 0; 826 cmd->request_buffer = NULL; 827 cmd->request_bufflen = 0; 828 } 829 830 /* 831 * Function: scsi_io_completion() 832 * 833 * Purpose: Completion processing for block device I/O requests. 834 * 835 * Arguments: cmd - command that is finished. 836 * 837 * Lock status: Assumed that no lock is held upon entry. 838 * 839 * Returns: Nothing 840 * 841 * Notes: This function is matched in terms of capabilities to 842 * the function that created the scatter-gather list. 843 * In other words, if there are no bounce buffers 844 * (the normal case for most drivers), we don't need 845 * the logic to deal with cleaning up afterwards. 846 * 847 * We must do one of several things here: 848 * 849 * a) Call scsi_end_request. This will finish off the 850 * specified number of sectors. If we are done, the 851 * command block will be released, and the queue 852 * function will be goosed. If we are not done, then 853 * scsi_end_request will directly goose the queue. 854 * 855 * b) We can just use scsi_requeue_command() here. This would 856 * be used if we just wanted to retry, for example. 857 */ 858 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 859 { 860 int result = cmd->result; 861 int this_count = cmd->bufflen; 862 request_queue_t *q = cmd->device->request_queue; 863 struct request *req = cmd->request; 864 int clear_errors = 1; 865 struct scsi_sense_hdr sshdr; 866 int sense_valid = 0; 867 int sense_deferred = 0; 868 869 /* 870 * Free up any indirection buffers we allocated for DMA purposes. 871 * For the case of a READ, we need to copy the data out of the 872 * bounce buffer and into the real buffer. 873 */ 874 if (cmd->use_sg) 875 scsi_free_sgtable(cmd->buffer, cmd->sglist_len); 876 else if (cmd->buffer != req->buffer) { 877 if (rq_data_dir(req) == READ) { 878 unsigned long flags; 879 char *to = bio_kmap_irq(req->bio, &flags); 880 memcpy(to, cmd->buffer, cmd->bufflen); 881 bio_kunmap_irq(to, &flags); 882 } 883 kfree(cmd->buffer); 884 } 885 886 if (result) { 887 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 888 if (sense_valid) 889 sense_deferred = scsi_sense_is_deferred(&sshdr); 890 } 891 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 892 req->errors = result; 893 if (result) { 894 clear_errors = 0; 895 if (sense_valid && req->sense) { 896 /* 897 * SG_IO wants current and deferred errors 898 */ 899 int len = 8 + cmd->sense_buffer[7]; 900 901 if (len > SCSI_SENSE_BUFFERSIZE) 902 len = SCSI_SENSE_BUFFERSIZE; 903 memcpy(req->sense, cmd->sense_buffer, len); 904 req->sense_len = len; 905 } 906 } else 907 req->data_len = cmd->resid; 908 } 909 910 /* 911 * Zero these out. They now point to freed memory, and it is 912 * dangerous to hang onto the pointers. 913 */ 914 cmd->buffer = NULL; 915 cmd->bufflen = 0; 916 cmd->request_buffer = NULL; 917 cmd->request_bufflen = 0; 918 919 /* 920 * Next deal with any sectors which we were able to correctly 921 * handle. 922 */ 923 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 924 "%d bytes done.\n", 925 req->nr_sectors, good_bytes)); 926 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg)); 927 928 if (clear_errors) 929 req->errors = 0; 930 931 /* A number of bytes were successfully read. If there 932 * are leftovers and there is some kind of error 933 * (result != 0), retry the rest. 934 */ 935 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL) 936 return; 937 938 /* good_bytes = 0, or (inclusive) there were leftovers and 939 * result = 0, so scsi_end_request couldn't retry. 940 */ 941 if (sense_valid && !sense_deferred) { 942 switch (sshdr.sense_key) { 943 case UNIT_ATTENTION: 944 if (cmd->device->removable) { 945 /* Detected disc change. Set a bit 946 * and quietly refuse further access. 947 */ 948 cmd->device->changed = 1; 949 scsi_end_request(cmd, 0, this_count, 1); 950 return; 951 } else { 952 /* Must have been a power glitch, or a 953 * bus reset. Could not have been a 954 * media change, so we just retry the 955 * request and see what happens. 956 */ 957 scsi_requeue_command(q, cmd); 958 return; 959 } 960 break; 961 case ILLEGAL_REQUEST: 962 /* If we had an ILLEGAL REQUEST returned, then 963 * we may have performed an unsupported 964 * command. The only thing this should be 965 * would be a ten byte read where only a six 966 * byte read was supported. Also, on a system 967 * where READ CAPACITY failed, we may have 968 * read past the end of the disk. 969 */ 970 if ((cmd->device->use_10_for_rw && 971 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 972 (cmd->cmnd[0] == READ_10 || 973 cmd->cmnd[0] == WRITE_10)) { 974 cmd->device->use_10_for_rw = 0; 975 /* This will cause a retry with a 976 * 6-byte command. 977 */ 978 scsi_requeue_command(q, cmd); 979 return; 980 } else { 981 scsi_end_request(cmd, 0, this_count, 1); 982 return; 983 } 984 break; 985 case NOT_READY: 986 /* If the device is in the process of becoming 987 * ready, or has a temporary blockage, retry. 988 */ 989 if (sshdr.asc == 0x04) { 990 switch (sshdr.ascq) { 991 case 0x01: /* becoming ready */ 992 case 0x04: /* format in progress */ 993 case 0x05: /* rebuild in progress */ 994 case 0x06: /* recalculation in progress */ 995 case 0x07: /* operation in progress */ 996 case 0x08: /* Long write in progress */ 997 case 0x09: /* self test in progress */ 998 scsi_requeue_command(q, cmd); 999 return; 1000 default: 1001 break; 1002 } 1003 } 1004 if (!(req->flags & REQ_QUIET)) { 1005 scmd_printk(KERN_INFO, cmd, 1006 "Device not ready: "); 1007 scsi_print_sense_hdr("", &sshdr); 1008 } 1009 scsi_end_request(cmd, 0, this_count, 1); 1010 return; 1011 case VOLUME_OVERFLOW: 1012 if (!(req->flags & REQ_QUIET)) { 1013 scmd_printk(KERN_INFO, cmd, 1014 "Volume overflow, CDB: "); 1015 __scsi_print_command(cmd->data_cmnd); 1016 scsi_print_sense("", cmd); 1017 } 1018 /* See SSC3rXX or current. */ 1019 scsi_end_request(cmd, 0, this_count, 1); 1020 return; 1021 default: 1022 break; 1023 } 1024 } 1025 if (host_byte(result) == DID_RESET) { 1026 /* Third party bus reset or reset for error recovery 1027 * reasons. Just retry the request and see what 1028 * happens. 1029 */ 1030 scsi_requeue_command(q, cmd); 1031 return; 1032 } 1033 if (result) { 1034 if (!(req->flags & REQ_QUIET)) { 1035 scmd_printk(KERN_INFO, cmd, 1036 "SCSI error: return code = 0x%08x\n", 1037 result); 1038 if (driver_byte(result) & DRIVER_SENSE) 1039 scsi_print_sense("", cmd); 1040 } 1041 } 1042 scsi_end_request(cmd, 0, this_count, !result); 1043 } 1044 EXPORT_SYMBOL(scsi_io_completion); 1045 1046 /* 1047 * Function: scsi_init_io() 1048 * 1049 * Purpose: SCSI I/O initialize function. 1050 * 1051 * Arguments: cmd - Command descriptor we wish to initialize 1052 * 1053 * Returns: 0 on success 1054 * BLKPREP_DEFER if the failure is retryable 1055 * BLKPREP_KILL if the failure is fatal 1056 */ 1057 static int scsi_init_io(struct scsi_cmnd *cmd) 1058 { 1059 struct request *req = cmd->request; 1060 struct scatterlist *sgpnt; 1061 int count; 1062 1063 /* 1064 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer 1065 */ 1066 if ((req->flags & REQ_BLOCK_PC) && !req->bio) { 1067 cmd->request_bufflen = req->data_len; 1068 cmd->request_buffer = req->data; 1069 req->buffer = req->data; 1070 cmd->use_sg = 0; 1071 return 0; 1072 } 1073 1074 /* 1075 * we used to not use scatter-gather for single segment request, 1076 * but now we do (it makes highmem I/O easier to support without 1077 * kmapping pages) 1078 */ 1079 cmd->use_sg = req->nr_phys_segments; 1080 1081 /* 1082 * if sg table allocation fails, requeue request later. 1083 */ 1084 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC); 1085 if (unlikely(!sgpnt)) { 1086 scsi_unprep_request(req); 1087 return BLKPREP_DEFER; 1088 } 1089 1090 cmd->request_buffer = (char *) sgpnt; 1091 cmd->request_bufflen = req->nr_sectors << 9; 1092 if (blk_pc_request(req)) 1093 cmd->request_bufflen = req->data_len; 1094 req->buffer = NULL; 1095 1096 /* 1097 * Next, walk the list, and fill in the addresses and sizes of 1098 * each segment. 1099 */ 1100 count = blk_rq_map_sg(req->q, req, cmd->request_buffer); 1101 1102 /* 1103 * mapped well, send it off 1104 */ 1105 if (likely(count <= cmd->use_sg)) { 1106 cmd->use_sg = count; 1107 return 0; 1108 } 1109 1110 printk(KERN_ERR "Incorrect number of segments after building list\n"); 1111 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg); 1112 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors, 1113 req->current_nr_sectors); 1114 1115 /* release the command and kill it */ 1116 scsi_release_buffers(cmd); 1117 scsi_put_command(cmd); 1118 return BLKPREP_KILL; 1119 } 1120 1121 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk, 1122 sector_t *error_sector) 1123 { 1124 struct scsi_device *sdev = q->queuedata; 1125 struct scsi_driver *drv; 1126 1127 if (sdev->sdev_state != SDEV_RUNNING) 1128 return -ENXIO; 1129 1130 drv = *(struct scsi_driver **) disk->private_data; 1131 if (drv->issue_flush) 1132 return drv->issue_flush(&sdev->sdev_gendev, error_sector); 1133 1134 return -EOPNOTSUPP; 1135 } 1136 1137 static void scsi_blk_pc_done(struct scsi_cmnd *cmd) 1138 { 1139 BUG_ON(!blk_pc_request(cmd->request)); 1140 /* 1141 * This will complete the whole command with uptodate=1 so 1142 * as far as the block layer is concerned the command completed 1143 * successfully. Since this is a REQ_BLOCK_PC command the 1144 * caller should check the request's errors value 1145 */ 1146 scsi_io_completion(cmd, cmd->bufflen); 1147 } 1148 1149 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd) 1150 { 1151 struct request *req = cmd->request; 1152 1153 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd)); 1154 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd)); 1155 cmd->cmd_len = req->cmd_len; 1156 if (!req->data_len) 1157 cmd->sc_data_direction = DMA_NONE; 1158 else if (rq_data_dir(req) == WRITE) 1159 cmd->sc_data_direction = DMA_TO_DEVICE; 1160 else 1161 cmd->sc_data_direction = DMA_FROM_DEVICE; 1162 1163 cmd->transfersize = req->data_len; 1164 cmd->allowed = req->retries; 1165 cmd->timeout_per_command = req->timeout; 1166 cmd->done = scsi_blk_pc_done; 1167 } 1168 1169 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1170 { 1171 struct scsi_device *sdev = q->queuedata; 1172 struct scsi_cmnd *cmd; 1173 int specials_only = 0; 1174 1175 /* 1176 * Just check to see if the device is online. If it isn't, we 1177 * refuse to process any commands. The device must be brought 1178 * online before trying any recovery commands 1179 */ 1180 if (unlikely(!scsi_device_online(sdev))) { 1181 sdev_printk(KERN_ERR, sdev, 1182 "rejecting I/O to offline device\n"); 1183 goto kill; 1184 } 1185 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1186 /* OK, we're not in a running state don't prep 1187 * user commands */ 1188 if (sdev->sdev_state == SDEV_DEL) { 1189 /* Device is fully deleted, no commands 1190 * at all allowed down */ 1191 sdev_printk(KERN_ERR, sdev, 1192 "rejecting I/O to dead device\n"); 1193 goto kill; 1194 } 1195 /* OK, we only allow special commands (i.e. not 1196 * user initiated ones */ 1197 specials_only = sdev->sdev_state; 1198 } 1199 1200 /* 1201 * Find the actual device driver associated with this command. 1202 * The SPECIAL requests are things like character device or 1203 * ioctls, which did not originate from ll_rw_blk. Note that 1204 * the special field is also used to indicate the cmd for 1205 * the remainder of a partially fulfilled request that can 1206 * come up when there is a medium error. We have to treat 1207 * these two cases differently. We differentiate by looking 1208 * at request->cmd, as this tells us the real story. 1209 */ 1210 if (req->flags & REQ_SPECIAL && req->special) { 1211 cmd = req->special; 1212 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) { 1213 1214 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) { 1215 if(specials_only == SDEV_QUIESCE || 1216 specials_only == SDEV_BLOCK) 1217 goto defer; 1218 1219 sdev_printk(KERN_ERR, sdev, 1220 "rejecting I/O to device being removed\n"); 1221 goto kill; 1222 } 1223 1224 1225 /* 1226 * Now try and find a command block that we can use. 1227 */ 1228 if (!req->special) { 1229 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1230 if (unlikely(!cmd)) 1231 goto defer; 1232 } else 1233 cmd = req->special; 1234 1235 /* pull a tag out of the request if we have one */ 1236 cmd->tag = req->tag; 1237 } else { 1238 blk_dump_rq_flags(req, "SCSI bad req"); 1239 goto kill; 1240 } 1241 1242 /* note the overloading of req->special. When the tag 1243 * is active it always means cmd. If the tag goes 1244 * back for re-queueing, it may be reset */ 1245 req->special = cmd; 1246 cmd->request = req; 1247 1248 /* 1249 * FIXME: drop the lock here because the functions below 1250 * expect to be called without the queue lock held. Also, 1251 * previously, we dequeued the request before dropping the 1252 * lock. We hope REQ_STARTED prevents anything untoward from 1253 * happening now. 1254 */ 1255 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) { 1256 int ret; 1257 1258 /* 1259 * This will do a couple of things: 1260 * 1) Fill in the actual SCSI command. 1261 * 2) Fill in any other upper-level specific fields 1262 * (timeout). 1263 * 1264 * If this returns 0, it means that the request failed 1265 * (reading past end of disk, reading offline device, 1266 * etc). This won't actually talk to the device, but 1267 * some kinds of consistency checking may cause the 1268 * request to be rejected immediately. 1269 */ 1270 1271 /* 1272 * This sets up the scatter-gather table (allocating if 1273 * required). 1274 */ 1275 ret = scsi_init_io(cmd); 1276 switch(ret) { 1277 /* For BLKPREP_KILL/DEFER the cmd was released */ 1278 case BLKPREP_KILL: 1279 goto kill; 1280 case BLKPREP_DEFER: 1281 goto defer; 1282 } 1283 1284 /* 1285 * Initialize the actual SCSI command for this request. 1286 */ 1287 if (req->flags & REQ_BLOCK_PC) { 1288 scsi_setup_blk_pc_cmnd(cmd); 1289 } else if (req->rq_disk) { 1290 struct scsi_driver *drv; 1291 1292 drv = *(struct scsi_driver **)req->rq_disk->private_data; 1293 if (unlikely(!drv->init_command(cmd))) { 1294 scsi_release_buffers(cmd); 1295 scsi_put_command(cmd); 1296 goto kill; 1297 } 1298 } 1299 } 1300 1301 /* 1302 * The request is now prepped, no need to come back here 1303 */ 1304 req->flags |= REQ_DONTPREP; 1305 return BLKPREP_OK; 1306 1307 defer: 1308 /* If we defer, the elv_next_request() returns NULL, but the 1309 * queue must be restarted, so we plug here if no returning 1310 * command will automatically do that. */ 1311 if (sdev->device_busy == 0) 1312 blk_plug_device(q); 1313 return BLKPREP_DEFER; 1314 kill: 1315 req->errors = DID_NO_CONNECT << 16; 1316 return BLKPREP_KILL; 1317 } 1318 1319 /* 1320 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1321 * return 0. 1322 * 1323 * Called with the queue_lock held. 1324 */ 1325 static inline int scsi_dev_queue_ready(struct request_queue *q, 1326 struct scsi_device *sdev) 1327 { 1328 if (sdev->device_busy >= sdev->queue_depth) 1329 return 0; 1330 if (sdev->device_busy == 0 && sdev->device_blocked) { 1331 /* 1332 * unblock after device_blocked iterates to zero 1333 */ 1334 if (--sdev->device_blocked == 0) { 1335 SCSI_LOG_MLQUEUE(3, 1336 sdev_printk(KERN_INFO, sdev, 1337 "unblocking device at zero depth\n")); 1338 } else { 1339 blk_plug_device(q); 1340 return 0; 1341 } 1342 } 1343 if (sdev->device_blocked) 1344 return 0; 1345 1346 return 1; 1347 } 1348 1349 /* 1350 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1351 * return 0. We must end up running the queue again whenever 0 is 1352 * returned, else IO can hang. 1353 * 1354 * Called with host_lock held. 1355 */ 1356 static inline int scsi_host_queue_ready(struct request_queue *q, 1357 struct Scsi_Host *shost, 1358 struct scsi_device *sdev) 1359 { 1360 if (scsi_host_in_recovery(shost)) 1361 return 0; 1362 if (shost->host_busy == 0 && shost->host_blocked) { 1363 /* 1364 * unblock after host_blocked iterates to zero 1365 */ 1366 if (--shost->host_blocked == 0) { 1367 SCSI_LOG_MLQUEUE(3, 1368 printk("scsi%d unblocking host at zero depth\n", 1369 shost->host_no)); 1370 } else { 1371 blk_plug_device(q); 1372 return 0; 1373 } 1374 } 1375 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 1376 shost->host_blocked || shost->host_self_blocked) { 1377 if (list_empty(&sdev->starved_entry)) 1378 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1379 return 0; 1380 } 1381 1382 /* We're OK to process the command, so we can't be starved */ 1383 if (!list_empty(&sdev->starved_entry)) 1384 list_del_init(&sdev->starved_entry); 1385 1386 return 1; 1387 } 1388 1389 /* 1390 * Kill a request for a dead device 1391 */ 1392 static void scsi_kill_request(struct request *req, request_queue_t *q) 1393 { 1394 struct scsi_cmnd *cmd = req->special; 1395 struct scsi_device *sdev = cmd->device; 1396 struct Scsi_Host *shost = sdev->host; 1397 1398 blkdev_dequeue_request(req); 1399 1400 if (unlikely(cmd == NULL)) { 1401 printk(KERN_CRIT "impossible request in %s.\n", 1402 __FUNCTION__); 1403 BUG(); 1404 } 1405 1406 scsi_init_cmd_errh(cmd); 1407 cmd->result = DID_NO_CONNECT << 16; 1408 atomic_inc(&cmd->device->iorequest_cnt); 1409 1410 /* 1411 * SCSI request completion path will do scsi_device_unbusy(), 1412 * bump busy counts. To bump the counters, we need to dance 1413 * with the locks as normal issue path does. 1414 */ 1415 sdev->device_busy++; 1416 spin_unlock(sdev->request_queue->queue_lock); 1417 spin_lock(shost->host_lock); 1418 shost->host_busy++; 1419 spin_unlock(shost->host_lock); 1420 spin_lock(sdev->request_queue->queue_lock); 1421 1422 __scsi_done(cmd); 1423 } 1424 1425 static void scsi_softirq_done(struct request *rq) 1426 { 1427 struct scsi_cmnd *cmd = rq->completion_data; 1428 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command; 1429 int disposition; 1430 1431 INIT_LIST_HEAD(&cmd->eh_entry); 1432 1433 disposition = scsi_decide_disposition(cmd); 1434 if (disposition != SUCCESS && 1435 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1436 sdev_printk(KERN_ERR, cmd->device, 1437 "timing out command, waited %lus\n", 1438 wait_for/HZ); 1439 disposition = SUCCESS; 1440 } 1441 1442 scsi_log_completion(cmd, disposition); 1443 1444 switch (disposition) { 1445 case SUCCESS: 1446 scsi_finish_command(cmd); 1447 break; 1448 case NEEDS_RETRY: 1449 scsi_retry_command(cmd); 1450 break; 1451 case ADD_TO_MLQUEUE: 1452 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1453 break; 1454 default: 1455 if (!scsi_eh_scmd_add(cmd, 0)) 1456 scsi_finish_command(cmd); 1457 } 1458 } 1459 1460 /* 1461 * Function: scsi_request_fn() 1462 * 1463 * Purpose: Main strategy routine for SCSI. 1464 * 1465 * Arguments: q - Pointer to actual queue. 1466 * 1467 * Returns: Nothing 1468 * 1469 * Lock status: IO request lock assumed to be held when called. 1470 */ 1471 static void scsi_request_fn(struct request_queue *q) 1472 { 1473 struct scsi_device *sdev = q->queuedata; 1474 struct Scsi_Host *shost; 1475 struct scsi_cmnd *cmd; 1476 struct request *req; 1477 1478 if (!sdev) { 1479 printk("scsi: killing requests for dead queue\n"); 1480 while ((req = elv_next_request(q)) != NULL) 1481 scsi_kill_request(req, q); 1482 return; 1483 } 1484 1485 if(!get_device(&sdev->sdev_gendev)) 1486 /* We must be tearing the block queue down already */ 1487 return; 1488 1489 /* 1490 * To start with, we keep looping until the queue is empty, or until 1491 * the host is no longer able to accept any more requests. 1492 */ 1493 shost = sdev->host; 1494 while (!blk_queue_plugged(q)) { 1495 int rtn; 1496 /* 1497 * get next queueable request. We do this early to make sure 1498 * that the request is fully prepared even if we cannot 1499 * accept it. 1500 */ 1501 req = elv_next_request(q); 1502 if (!req || !scsi_dev_queue_ready(q, sdev)) 1503 break; 1504 1505 if (unlikely(!scsi_device_online(sdev))) { 1506 sdev_printk(KERN_ERR, sdev, 1507 "rejecting I/O to offline device\n"); 1508 scsi_kill_request(req, q); 1509 continue; 1510 } 1511 1512 1513 /* 1514 * Remove the request from the request list. 1515 */ 1516 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1517 blkdev_dequeue_request(req); 1518 sdev->device_busy++; 1519 1520 spin_unlock(q->queue_lock); 1521 cmd = req->special; 1522 if (unlikely(cmd == NULL)) { 1523 printk(KERN_CRIT "impossible request in %s.\n" 1524 "please mail a stack trace to " 1525 "linux-scsi@vger.kernel.org", 1526 __FUNCTION__); 1527 BUG(); 1528 } 1529 spin_lock(shost->host_lock); 1530 1531 if (!scsi_host_queue_ready(q, shost, sdev)) 1532 goto not_ready; 1533 if (sdev->single_lun) { 1534 if (scsi_target(sdev)->starget_sdev_user && 1535 scsi_target(sdev)->starget_sdev_user != sdev) 1536 goto not_ready; 1537 scsi_target(sdev)->starget_sdev_user = sdev; 1538 } 1539 shost->host_busy++; 1540 1541 /* 1542 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1543 * take the lock again. 1544 */ 1545 spin_unlock_irq(shost->host_lock); 1546 1547 /* 1548 * Finally, initialize any error handling parameters, and set up 1549 * the timers for timeouts. 1550 */ 1551 scsi_init_cmd_errh(cmd); 1552 1553 /* 1554 * Dispatch the command to the low-level driver. 1555 */ 1556 rtn = scsi_dispatch_cmd(cmd); 1557 spin_lock_irq(q->queue_lock); 1558 if(rtn) { 1559 /* we're refusing the command; because of 1560 * the way locks get dropped, we need to 1561 * check here if plugging is required */ 1562 if(sdev->device_busy == 0) 1563 blk_plug_device(q); 1564 1565 break; 1566 } 1567 } 1568 1569 goto out; 1570 1571 not_ready: 1572 spin_unlock_irq(shost->host_lock); 1573 1574 /* 1575 * lock q, handle tag, requeue req, and decrement device_busy. We 1576 * must return with queue_lock held. 1577 * 1578 * Decrementing device_busy without checking it is OK, as all such 1579 * cases (host limits or settings) should run the queue at some 1580 * later time. 1581 */ 1582 spin_lock_irq(q->queue_lock); 1583 blk_requeue_request(q, req); 1584 sdev->device_busy--; 1585 if(sdev->device_busy == 0) 1586 blk_plug_device(q); 1587 out: 1588 /* must be careful here...if we trigger the ->remove() function 1589 * we cannot be holding the q lock */ 1590 spin_unlock_irq(q->queue_lock); 1591 put_device(&sdev->sdev_gendev); 1592 spin_lock_irq(q->queue_lock); 1593 } 1594 1595 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1596 { 1597 struct device *host_dev; 1598 u64 bounce_limit = 0xffffffff; 1599 1600 if (shost->unchecked_isa_dma) 1601 return BLK_BOUNCE_ISA; 1602 /* 1603 * Platforms with virtual-DMA translation 1604 * hardware have no practical limit. 1605 */ 1606 if (!PCI_DMA_BUS_IS_PHYS) 1607 return BLK_BOUNCE_ANY; 1608 1609 host_dev = scsi_get_device(shost); 1610 if (host_dev && host_dev->dma_mask) 1611 bounce_limit = *host_dev->dma_mask; 1612 1613 return bounce_limit; 1614 } 1615 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1616 1617 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1618 { 1619 struct Scsi_Host *shost = sdev->host; 1620 struct request_queue *q; 1621 1622 q = blk_init_queue(scsi_request_fn, NULL); 1623 if (!q) 1624 return NULL; 1625 1626 blk_queue_prep_rq(q, scsi_prep_fn); 1627 1628 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1629 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS); 1630 blk_queue_max_sectors(q, shost->max_sectors); 1631 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1632 blk_queue_segment_boundary(q, shost->dma_boundary); 1633 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn); 1634 blk_queue_softirq_done(q, scsi_softirq_done); 1635 1636 if (!shost->use_clustering) 1637 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 1638 return q; 1639 } 1640 1641 void scsi_free_queue(struct request_queue *q) 1642 { 1643 blk_cleanup_queue(q); 1644 } 1645 1646 /* 1647 * Function: scsi_block_requests() 1648 * 1649 * Purpose: Utility function used by low-level drivers to prevent further 1650 * commands from being queued to the device. 1651 * 1652 * Arguments: shost - Host in question 1653 * 1654 * Returns: Nothing 1655 * 1656 * Lock status: No locks are assumed held. 1657 * 1658 * Notes: There is no timer nor any other means by which the requests 1659 * get unblocked other than the low-level driver calling 1660 * scsi_unblock_requests(). 1661 */ 1662 void scsi_block_requests(struct Scsi_Host *shost) 1663 { 1664 shost->host_self_blocked = 1; 1665 } 1666 EXPORT_SYMBOL(scsi_block_requests); 1667 1668 /* 1669 * Function: scsi_unblock_requests() 1670 * 1671 * Purpose: Utility function used by low-level drivers to allow further 1672 * commands from being queued to the device. 1673 * 1674 * Arguments: shost - Host in question 1675 * 1676 * Returns: Nothing 1677 * 1678 * Lock status: No locks are assumed held. 1679 * 1680 * Notes: There is no timer nor any other means by which the requests 1681 * get unblocked other than the low-level driver calling 1682 * scsi_unblock_requests(). 1683 * 1684 * This is done as an API function so that changes to the 1685 * internals of the scsi mid-layer won't require wholesale 1686 * changes to drivers that use this feature. 1687 */ 1688 void scsi_unblock_requests(struct Scsi_Host *shost) 1689 { 1690 shost->host_self_blocked = 0; 1691 scsi_run_host_queues(shost); 1692 } 1693 EXPORT_SYMBOL(scsi_unblock_requests); 1694 1695 int __init scsi_init_queue(void) 1696 { 1697 int i; 1698 1699 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1700 sizeof(struct scsi_io_context), 1701 0, 0, NULL, NULL); 1702 if (!scsi_io_context_cache) { 1703 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1704 return -ENOMEM; 1705 } 1706 1707 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1708 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1709 int size = sgp->size * sizeof(struct scatterlist); 1710 1711 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1712 SLAB_HWCACHE_ALIGN, NULL, NULL); 1713 if (!sgp->slab) { 1714 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1715 sgp->name); 1716 } 1717 1718 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1719 sgp->slab); 1720 if (!sgp->pool) { 1721 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1722 sgp->name); 1723 } 1724 } 1725 1726 return 0; 1727 } 1728 1729 void scsi_exit_queue(void) 1730 { 1731 int i; 1732 1733 kmem_cache_destroy(scsi_io_context_cache); 1734 1735 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1736 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1737 mempool_destroy(sgp->pool); 1738 kmem_cache_destroy(sgp->slab); 1739 } 1740 } 1741 1742 /** 1743 * scsi_mode_select - issue a mode select 1744 * @sdev: SCSI device to be queried 1745 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1746 * @sp: Save page bit (0 == don't save, 1 == save) 1747 * @modepage: mode page being requested 1748 * @buffer: request buffer (may not be smaller than eight bytes) 1749 * @len: length of request buffer. 1750 * @timeout: command timeout 1751 * @retries: number of retries before failing 1752 * @data: returns a structure abstracting the mode header data 1753 * @sense: place to put sense data (or NULL if no sense to be collected). 1754 * must be SCSI_SENSE_BUFFERSIZE big. 1755 * 1756 * Returns zero if successful; negative error number or scsi 1757 * status on error 1758 * 1759 */ 1760 int 1761 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1762 unsigned char *buffer, int len, int timeout, int retries, 1763 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1764 { 1765 unsigned char cmd[10]; 1766 unsigned char *real_buffer; 1767 int ret; 1768 1769 memset(cmd, 0, sizeof(cmd)); 1770 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1771 1772 if (sdev->use_10_for_ms) { 1773 if (len > 65535) 1774 return -EINVAL; 1775 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1776 if (!real_buffer) 1777 return -ENOMEM; 1778 memcpy(real_buffer + 8, buffer, len); 1779 len += 8; 1780 real_buffer[0] = 0; 1781 real_buffer[1] = 0; 1782 real_buffer[2] = data->medium_type; 1783 real_buffer[3] = data->device_specific; 1784 real_buffer[4] = data->longlba ? 0x01 : 0; 1785 real_buffer[5] = 0; 1786 real_buffer[6] = data->block_descriptor_length >> 8; 1787 real_buffer[7] = data->block_descriptor_length; 1788 1789 cmd[0] = MODE_SELECT_10; 1790 cmd[7] = len >> 8; 1791 cmd[8] = len; 1792 } else { 1793 if (len > 255 || data->block_descriptor_length > 255 || 1794 data->longlba) 1795 return -EINVAL; 1796 1797 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1798 if (!real_buffer) 1799 return -ENOMEM; 1800 memcpy(real_buffer + 4, buffer, len); 1801 len += 4; 1802 real_buffer[0] = 0; 1803 real_buffer[1] = data->medium_type; 1804 real_buffer[2] = data->device_specific; 1805 real_buffer[3] = data->block_descriptor_length; 1806 1807 1808 cmd[0] = MODE_SELECT; 1809 cmd[4] = len; 1810 } 1811 1812 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1813 sshdr, timeout, retries); 1814 kfree(real_buffer); 1815 return ret; 1816 } 1817 EXPORT_SYMBOL_GPL(scsi_mode_select); 1818 1819 /** 1820 * scsi_mode_sense - issue a mode sense, falling back from 10 to 1821 * six bytes if necessary. 1822 * @sdev: SCSI device to be queried 1823 * @dbd: set if mode sense will allow block descriptors to be returned 1824 * @modepage: mode page being requested 1825 * @buffer: request buffer (may not be smaller than eight bytes) 1826 * @len: length of request buffer. 1827 * @timeout: command timeout 1828 * @retries: number of retries before failing 1829 * @data: returns a structure abstracting the mode header data 1830 * @sense: place to put sense data (or NULL if no sense to be collected). 1831 * must be SCSI_SENSE_BUFFERSIZE big. 1832 * 1833 * Returns zero if unsuccessful, or the header offset (either 4 1834 * or 8 depending on whether a six or ten byte command was 1835 * issued) if successful. 1836 **/ 1837 int 1838 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1839 unsigned char *buffer, int len, int timeout, int retries, 1840 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1841 { 1842 unsigned char cmd[12]; 1843 int use_10_for_ms; 1844 int header_length; 1845 int result; 1846 struct scsi_sense_hdr my_sshdr; 1847 1848 memset(data, 0, sizeof(*data)); 1849 memset(&cmd[0], 0, 12); 1850 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1851 cmd[2] = modepage; 1852 1853 /* caller might not be interested in sense, but we need it */ 1854 if (!sshdr) 1855 sshdr = &my_sshdr; 1856 1857 retry: 1858 use_10_for_ms = sdev->use_10_for_ms; 1859 1860 if (use_10_for_ms) { 1861 if (len < 8) 1862 len = 8; 1863 1864 cmd[0] = MODE_SENSE_10; 1865 cmd[8] = len; 1866 header_length = 8; 1867 } else { 1868 if (len < 4) 1869 len = 4; 1870 1871 cmd[0] = MODE_SENSE; 1872 cmd[4] = len; 1873 header_length = 4; 1874 } 1875 1876 memset(buffer, 0, len); 1877 1878 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1879 sshdr, timeout, retries); 1880 1881 /* This code looks awful: what it's doing is making sure an 1882 * ILLEGAL REQUEST sense return identifies the actual command 1883 * byte as the problem. MODE_SENSE commands can return 1884 * ILLEGAL REQUEST if the code page isn't supported */ 1885 1886 if (use_10_for_ms && !scsi_status_is_good(result) && 1887 (driver_byte(result) & DRIVER_SENSE)) { 1888 if (scsi_sense_valid(sshdr)) { 1889 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1890 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1891 /* 1892 * Invalid command operation code 1893 */ 1894 sdev->use_10_for_ms = 0; 1895 goto retry; 1896 } 1897 } 1898 } 1899 1900 if(scsi_status_is_good(result)) { 1901 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1902 (modepage == 6 || modepage == 8))) { 1903 /* Initio breakage? */ 1904 header_length = 0; 1905 data->length = 13; 1906 data->medium_type = 0; 1907 data->device_specific = 0; 1908 data->longlba = 0; 1909 data->block_descriptor_length = 0; 1910 } else if(use_10_for_ms) { 1911 data->length = buffer[0]*256 + buffer[1] + 2; 1912 data->medium_type = buffer[2]; 1913 data->device_specific = buffer[3]; 1914 data->longlba = buffer[4] & 0x01; 1915 data->block_descriptor_length = buffer[6]*256 1916 + buffer[7]; 1917 } else { 1918 data->length = buffer[0] + 1; 1919 data->medium_type = buffer[1]; 1920 data->device_specific = buffer[2]; 1921 data->block_descriptor_length = buffer[3]; 1922 } 1923 data->header_length = header_length; 1924 } 1925 1926 return result; 1927 } 1928 EXPORT_SYMBOL(scsi_mode_sense); 1929 1930 int 1931 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries) 1932 { 1933 char cmd[] = { 1934 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1935 }; 1936 struct scsi_sense_hdr sshdr; 1937 int result; 1938 1939 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr, 1940 timeout, retries); 1941 1942 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) { 1943 1944 if ((scsi_sense_valid(&sshdr)) && 1945 ((sshdr.sense_key == UNIT_ATTENTION) || 1946 (sshdr.sense_key == NOT_READY))) { 1947 sdev->changed = 1; 1948 result = 0; 1949 } 1950 } 1951 return result; 1952 } 1953 EXPORT_SYMBOL(scsi_test_unit_ready); 1954 1955 /** 1956 * scsi_device_set_state - Take the given device through the device 1957 * state model. 1958 * @sdev: scsi device to change the state of. 1959 * @state: state to change to. 1960 * 1961 * Returns zero if unsuccessful or an error if the requested 1962 * transition is illegal. 1963 **/ 1964 int 1965 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 1966 { 1967 enum scsi_device_state oldstate = sdev->sdev_state; 1968 1969 if (state == oldstate) 1970 return 0; 1971 1972 switch (state) { 1973 case SDEV_CREATED: 1974 /* There are no legal states that come back to 1975 * created. This is the manually initialised start 1976 * state */ 1977 goto illegal; 1978 1979 case SDEV_RUNNING: 1980 switch (oldstate) { 1981 case SDEV_CREATED: 1982 case SDEV_OFFLINE: 1983 case SDEV_QUIESCE: 1984 case SDEV_BLOCK: 1985 break; 1986 default: 1987 goto illegal; 1988 } 1989 break; 1990 1991 case SDEV_QUIESCE: 1992 switch (oldstate) { 1993 case SDEV_RUNNING: 1994 case SDEV_OFFLINE: 1995 break; 1996 default: 1997 goto illegal; 1998 } 1999 break; 2000 2001 case SDEV_OFFLINE: 2002 switch (oldstate) { 2003 case SDEV_CREATED: 2004 case SDEV_RUNNING: 2005 case SDEV_QUIESCE: 2006 case SDEV_BLOCK: 2007 break; 2008 default: 2009 goto illegal; 2010 } 2011 break; 2012 2013 case SDEV_BLOCK: 2014 switch (oldstate) { 2015 case SDEV_CREATED: 2016 case SDEV_RUNNING: 2017 break; 2018 default: 2019 goto illegal; 2020 } 2021 break; 2022 2023 case SDEV_CANCEL: 2024 switch (oldstate) { 2025 case SDEV_CREATED: 2026 case SDEV_RUNNING: 2027 case SDEV_QUIESCE: 2028 case SDEV_OFFLINE: 2029 case SDEV_BLOCK: 2030 break; 2031 default: 2032 goto illegal; 2033 } 2034 break; 2035 2036 case SDEV_DEL: 2037 switch (oldstate) { 2038 case SDEV_CREATED: 2039 case SDEV_RUNNING: 2040 case SDEV_OFFLINE: 2041 case SDEV_CANCEL: 2042 break; 2043 default: 2044 goto illegal; 2045 } 2046 break; 2047 2048 } 2049 sdev->sdev_state = state; 2050 return 0; 2051 2052 illegal: 2053 SCSI_LOG_ERROR_RECOVERY(1, 2054 sdev_printk(KERN_ERR, sdev, 2055 "Illegal state transition %s->%s\n", 2056 scsi_device_state_name(oldstate), 2057 scsi_device_state_name(state)) 2058 ); 2059 return -EINVAL; 2060 } 2061 EXPORT_SYMBOL(scsi_device_set_state); 2062 2063 /** 2064 * scsi_device_quiesce - Block user issued commands. 2065 * @sdev: scsi device to quiesce. 2066 * 2067 * This works by trying to transition to the SDEV_QUIESCE state 2068 * (which must be a legal transition). When the device is in this 2069 * state, only special requests will be accepted, all others will 2070 * be deferred. Since special requests may also be requeued requests, 2071 * a successful return doesn't guarantee the device will be 2072 * totally quiescent. 2073 * 2074 * Must be called with user context, may sleep. 2075 * 2076 * Returns zero if unsuccessful or an error if not. 2077 **/ 2078 int 2079 scsi_device_quiesce(struct scsi_device *sdev) 2080 { 2081 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2082 if (err) 2083 return err; 2084 2085 scsi_run_queue(sdev->request_queue); 2086 while (sdev->device_busy) { 2087 msleep_interruptible(200); 2088 scsi_run_queue(sdev->request_queue); 2089 } 2090 return 0; 2091 } 2092 EXPORT_SYMBOL(scsi_device_quiesce); 2093 2094 /** 2095 * scsi_device_resume - Restart user issued commands to a quiesced device. 2096 * @sdev: scsi device to resume. 2097 * 2098 * Moves the device from quiesced back to running and restarts the 2099 * queues. 2100 * 2101 * Must be called with user context, may sleep. 2102 **/ 2103 void 2104 scsi_device_resume(struct scsi_device *sdev) 2105 { 2106 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2107 return; 2108 scsi_run_queue(sdev->request_queue); 2109 } 2110 EXPORT_SYMBOL(scsi_device_resume); 2111 2112 static void 2113 device_quiesce_fn(struct scsi_device *sdev, void *data) 2114 { 2115 scsi_device_quiesce(sdev); 2116 } 2117 2118 void 2119 scsi_target_quiesce(struct scsi_target *starget) 2120 { 2121 starget_for_each_device(starget, NULL, device_quiesce_fn); 2122 } 2123 EXPORT_SYMBOL(scsi_target_quiesce); 2124 2125 static void 2126 device_resume_fn(struct scsi_device *sdev, void *data) 2127 { 2128 scsi_device_resume(sdev); 2129 } 2130 2131 void 2132 scsi_target_resume(struct scsi_target *starget) 2133 { 2134 starget_for_each_device(starget, NULL, device_resume_fn); 2135 } 2136 EXPORT_SYMBOL(scsi_target_resume); 2137 2138 /** 2139 * scsi_internal_device_block - internal function to put a device 2140 * temporarily into the SDEV_BLOCK state 2141 * @sdev: device to block 2142 * 2143 * Block request made by scsi lld's to temporarily stop all 2144 * scsi commands on the specified device. Called from interrupt 2145 * or normal process context. 2146 * 2147 * Returns zero if successful or error if not 2148 * 2149 * Notes: 2150 * This routine transitions the device to the SDEV_BLOCK state 2151 * (which must be a legal transition). When the device is in this 2152 * state, all commands are deferred until the scsi lld reenables 2153 * the device with scsi_device_unblock or device_block_tmo fires. 2154 * This routine assumes the host_lock is held on entry. 2155 **/ 2156 int 2157 scsi_internal_device_block(struct scsi_device *sdev) 2158 { 2159 request_queue_t *q = sdev->request_queue; 2160 unsigned long flags; 2161 int err = 0; 2162 2163 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2164 if (err) 2165 return err; 2166 2167 /* 2168 * The device has transitioned to SDEV_BLOCK. Stop the 2169 * block layer from calling the midlayer with this device's 2170 * request queue. 2171 */ 2172 spin_lock_irqsave(q->queue_lock, flags); 2173 blk_stop_queue(q); 2174 spin_unlock_irqrestore(q->queue_lock, flags); 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2179 2180 /** 2181 * scsi_internal_device_unblock - resume a device after a block request 2182 * @sdev: device to resume 2183 * 2184 * Called by scsi lld's or the midlayer to restart the device queue 2185 * for the previously suspended scsi device. Called from interrupt or 2186 * normal process context. 2187 * 2188 * Returns zero if successful or error if not. 2189 * 2190 * Notes: 2191 * This routine transitions the device to the SDEV_RUNNING state 2192 * (which must be a legal transition) allowing the midlayer to 2193 * goose the queue for this device. This routine assumes the 2194 * host_lock is held upon entry. 2195 **/ 2196 int 2197 scsi_internal_device_unblock(struct scsi_device *sdev) 2198 { 2199 request_queue_t *q = sdev->request_queue; 2200 int err; 2201 unsigned long flags; 2202 2203 /* 2204 * Try to transition the scsi device to SDEV_RUNNING 2205 * and goose the device queue if successful. 2206 */ 2207 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2208 if (err) 2209 return err; 2210 2211 spin_lock_irqsave(q->queue_lock, flags); 2212 blk_start_queue(q); 2213 spin_unlock_irqrestore(q->queue_lock, flags); 2214 2215 return 0; 2216 } 2217 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2218 2219 static void 2220 device_block(struct scsi_device *sdev, void *data) 2221 { 2222 scsi_internal_device_block(sdev); 2223 } 2224 2225 static int 2226 target_block(struct device *dev, void *data) 2227 { 2228 if (scsi_is_target_device(dev)) 2229 starget_for_each_device(to_scsi_target(dev), NULL, 2230 device_block); 2231 return 0; 2232 } 2233 2234 void 2235 scsi_target_block(struct device *dev) 2236 { 2237 if (scsi_is_target_device(dev)) 2238 starget_for_each_device(to_scsi_target(dev), NULL, 2239 device_block); 2240 else 2241 device_for_each_child(dev, NULL, target_block); 2242 } 2243 EXPORT_SYMBOL_GPL(scsi_target_block); 2244 2245 static void 2246 device_unblock(struct scsi_device *sdev, void *data) 2247 { 2248 scsi_internal_device_unblock(sdev); 2249 } 2250 2251 static int 2252 target_unblock(struct device *dev, void *data) 2253 { 2254 if (scsi_is_target_device(dev)) 2255 starget_for_each_device(to_scsi_target(dev), NULL, 2256 device_unblock); 2257 return 0; 2258 } 2259 2260 void 2261 scsi_target_unblock(struct device *dev) 2262 { 2263 if (scsi_is_target_device(dev)) 2264 starget_for_each_device(to_scsi_target(dev), NULL, 2265 device_unblock); 2266 else 2267 device_for_each_child(dev, NULL, target_unblock); 2268 } 2269 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2270 2271 /** 2272 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2273 * @sg: scatter-gather list 2274 * @sg_count: number of segments in sg 2275 * @offset: offset in bytes into sg, on return offset into the mapped area 2276 * @len: bytes to map, on return number of bytes mapped 2277 * 2278 * Returns virtual address of the start of the mapped page 2279 */ 2280 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, 2281 size_t *offset, size_t *len) 2282 { 2283 int i; 2284 size_t sg_len = 0, len_complete = 0; 2285 struct page *page; 2286 2287 for (i = 0; i < sg_count; i++) { 2288 len_complete = sg_len; /* Complete sg-entries */ 2289 sg_len += sg[i].length; 2290 if (sg_len > *offset) 2291 break; 2292 } 2293 2294 if (unlikely(i == sg_count)) { 2295 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2296 "elements %d\n", 2297 __FUNCTION__, sg_len, *offset, sg_count); 2298 WARN_ON(1); 2299 return NULL; 2300 } 2301 2302 /* Offset starting from the beginning of first page in this sg-entry */ 2303 *offset = *offset - len_complete + sg[i].offset; 2304 2305 /* Assumption: contiguous pages can be accessed as "page + i" */ 2306 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT)); 2307 *offset &= ~PAGE_MASK; 2308 2309 /* Bytes in this sg-entry from *offset to the end of the page */ 2310 sg_len = PAGE_SIZE - *offset; 2311 if (*len > sg_len) 2312 *len = sg_len; 2313 2314 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2315 } 2316 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2317 2318 /** 2319 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously 2320 * mapped with scsi_kmap_atomic_sg 2321 * @virt: virtual address to be unmapped 2322 */ 2323 void scsi_kunmap_atomic_sg(void *virt) 2324 { 2325 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2326 } 2327 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2328