xref: /linux/drivers/scsi/scsi_lib.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		32
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	kmem_cache_t	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200 
201 	/*
202 	 * head injection *required* here otherwise quiesce won't work
203 	 */
204 	blk_execute_rq(req->q, NULL, req, 1);
205 
206 	ret = req->errors;
207  out:
208 	blk_put_request(req);
209 
210 	return ret;
211 }
212 EXPORT_SYMBOL(scsi_execute);
213 
214 
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216 		     int data_direction, void *buffer, unsigned bufflen,
217 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
218 {
219 	char *sense = NULL;
220 	int result;
221 
222 	if (sshdr) {
223 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224 		if (!sense)
225 			return DRIVER_ERROR << 24;
226 	}
227 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228 			      sense, timeout, retries, 0);
229 	if (sshdr)
230 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231 
232 	kfree(sense);
233 	return result;
234 }
235 EXPORT_SYMBOL(scsi_execute_req);
236 
237 struct scsi_io_context {
238 	void *data;
239 	void (*done)(void *data, char *sense, int result, int resid);
240 	char sense[SCSI_SENSE_BUFFERSIZE];
241 };
242 
243 static kmem_cache_t *scsi_io_context_cache;
244 
245 static void scsi_end_async(struct request *req, int uptodate)
246 {
247 	struct scsi_io_context *sioc = req->end_io_data;
248 
249 	if (sioc->done)
250 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251 
252 	kmem_cache_free(scsi_io_context_cache, sioc);
253 	__blk_put_request(req->q, req);
254 }
255 
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
257 {
258 	struct request_queue *q = rq->q;
259 
260 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261 	if (rq_data_dir(rq) == WRITE)
262 		bio->bi_rw |= (1 << BIO_RW);
263 	blk_queue_bounce(q, &bio);
264 
265 	if (!rq->bio)
266 		blk_rq_bio_prep(q, rq, bio);
267 	else if (!q->back_merge_fn(q, rq, bio))
268 		return -EINVAL;
269 	else {
270 		rq->biotail->bi_next = bio;
271 		rq->biotail = bio;
272 		rq->hard_nr_sectors += bio_sectors(bio);
273 		rq->nr_sectors = rq->hard_nr_sectors;
274 	}
275 
276 	return 0;
277 }
278 
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 {
281 	if (bio->bi_size)
282 		return 1;
283 
284 	bio_put(bio);
285 	return 0;
286 }
287 
288 /**
289  * scsi_req_map_sg - map a scatterlist into a request
290  * @rq:		request to fill
291  * @sg:		scatterlist
292  * @nsegs:	number of elements
293  * @bufflen:	len of buffer
294  * @gfp:	memory allocation flags
295  *
296  * scsi_req_map_sg maps a scatterlist into a request so that the
297  * request can be sent to the block layer. We do not trust the scatterlist
298  * sent to use, as some ULDs use that struct to only organize the pages.
299  */
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301 			   int nsegs, unsigned bufflen, gfp_t gfp)
302 {
303 	struct request_queue *q = rq->q;
304 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305 	unsigned int data_len = 0, len, bytes, off;
306 	struct page *page;
307 	struct bio *bio = NULL;
308 	int i, err, nr_vecs = 0;
309 
310 	for (i = 0; i < nsegs; i++) {
311 		page = sgl[i].page;
312 		off = sgl[i].offset;
313 		len = sgl[i].length;
314 		data_len += len;
315 
316 		while (len > 0) {
317 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318 
319 			if (!bio) {
320 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321 				nr_pages -= nr_vecs;
322 
323 				bio = bio_alloc(gfp, nr_vecs);
324 				if (!bio) {
325 					err = -ENOMEM;
326 					goto free_bios;
327 				}
328 				bio->bi_end_io = scsi_bi_endio;
329 			}
330 
331 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
332 			    bytes) {
333 				bio_put(bio);
334 				err = -EINVAL;
335 				goto free_bios;
336 			}
337 
338 			if (bio->bi_vcnt >= nr_vecs) {
339 				err = scsi_merge_bio(rq, bio);
340 				if (err) {
341 					bio_endio(bio, bio->bi_size, 0);
342 					goto free_bios;
343 				}
344 				bio = NULL;
345 			}
346 
347 			page++;
348 			len -= bytes;
349 			off = 0;
350 		}
351 	}
352 
353 	rq->buffer = rq->data = NULL;
354 	rq->data_len = data_len;
355 	return 0;
356 
357 free_bios:
358 	while ((bio = rq->bio) != NULL) {
359 		rq->bio = bio->bi_next;
360 		/*
361 		 * call endio instead of bio_put incase it was bounced
362 		 */
363 		bio_endio(bio, bio->bi_size, 0);
364 	}
365 
366 	return err;
367 }
368 
369 /**
370  * scsi_execute_async - insert request
371  * @sdev:	scsi device
372  * @cmd:	scsi command
373  * @cmd_len:	length of scsi cdb
374  * @data_direction: data direction
375  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
376  * @bufflen:	len of buffer
377  * @use_sg:	if buffer is a scatterlist this is the number of elements
378  * @timeout:	request timeout in seconds
379  * @retries:	number of times to retry request
380  * @flags:	or into request flags
381  **/
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384 		       int use_sg, int timeout, int retries, void *privdata,
385 		       void (*done)(void *, char *, int, int), gfp_t gfp)
386 {
387 	struct request *req;
388 	struct scsi_io_context *sioc;
389 	int err = 0;
390 	int write = (data_direction == DMA_TO_DEVICE);
391 
392 	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393 	if (!sioc)
394 		return DRIVER_ERROR << 24;
395 	memset(sioc, 0, sizeof(*sioc));
396 
397 	req = blk_get_request(sdev->request_queue, write, gfp);
398 	if (!req)
399 		goto free_sense;
400 	req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401 
402 	if (use_sg)
403 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404 	else if (bufflen)
405 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406 
407 	if (err)
408 		goto free_req;
409 
410 	req->cmd_len = cmd_len;
411 	memcpy(req->cmd, cmd, req->cmd_len);
412 	req->sense = sioc->sense;
413 	req->sense_len = 0;
414 	req->timeout = timeout;
415 	req->retries = retries;
416 	req->end_io_data = sioc;
417 
418 	sioc->data = privdata;
419 	sioc->done = done;
420 
421 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 	return 0;
423 
424 free_req:
425 	blk_put_request(req);
426 free_sense:
427 	kfree(sioc);
428 	return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431 
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd	- command that is ready to be queued.
438  *
439  * Returns:     Nothing
440  *
441  * Notes:       This function has the job of initializing a number of
442  *              fields related to error handling.   Typically this will
443  *              be called once for each command, as required.
444  */
445 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
446 {
447 	cmd->serial_number = 0;
448 
449 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450 
451 	if (cmd->cmd_len == 0)
452 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
453 
454 	/*
455 	 * We need saved copies of a number of fields - this is because
456 	 * error handling may need to overwrite these with different values
457 	 * to run different commands, and once error handling is complete,
458 	 * we will need to restore these values prior to running the actual
459 	 * command.
460 	 */
461 	cmd->old_use_sg = cmd->use_sg;
462 	cmd->old_cmd_len = cmd->cmd_len;
463 	cmd->sc_old_data_direction = cmd->sc_data_direction;
464 	cmd->old_underflow = cmd->underflow;
465 	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
466 	cmd->buffer = cmd->request_buffer;
467 	cmd->bufflen = cmd->request_bufflen;
468 
469 	return 1;
470 }
471 
472 /*
473  * Function:   scsi_setup_cmd_retry()
474  *
475  * Purpose:    Restore the command state for a retry
476  *
477  * Arguments:  cmd	- command to be restored
478  *
479  * Returns:    Nothing
480  *
481  * Notes:      Immediately prior to retrying a command, we need
482  *             to restore certain fields that we saved above.
483  */
484 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
485 {
486 	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
487 	cmd->request_buffer = cmd->buffer;
488 	cmd->request_bufflen = cmd->bufflen;
489 	cmd->use_sg = cmd->old_use_sg;
490 	cmd->cmd_len = cmd->old_cmd_len;
491 	cmd->sc_data_direction = cmd->sc_old_data_direction;
492 	cmd->underflow = cmd->old_underflow;
493 }
494 
495 void scsi_device_unbusy(struct scsi_device *sdev)
496 {
497 	struct Scsi_Host *shost = sdev->host;
498 	unsigned long flags;
499 
500 	spin_lock_irqsave(shost->host_lock, flags);
501 	shost->host_busy--;
502 	if (unlikely(scsi_host_in_recovery(shost) &&
503 		     (shost->host_failed || shost->host_eh_scheduled)))
504 		scsi_eh_wakeup(shost);
505 	spin_unlock(shost->host_lock);
506 	spin_lock(sdev->request_queue->queue_lock);
507 	sdev->device_busy--;
508 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
509 }
510 
511 /*
512  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
513  * and call blk_run_queue for all the scsi_devices on the target -
514  * including current_sdev first.
515  *
516  * Called with *no* scsi locks held.
517  */
518 static void scsi_single_lun_run(struct scsi_device *current_sdev)
519 {
520 	struct Scsi_Host *shost = current_sdev->host;
521 	struct scsi_device *sdev, *tmp;
522 	struct scsi_target *starget = scsi_target(current_sdev);
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(shost->host_lock, flags);
526 	starget->starget_sdev_user = NULL;
527 	spin_unlock_irqrestore(shost->host_lock, flags);
528 
529 	/*
530 	 * Call blk_run_queue for all LUNs on the target, starting with
531 	 * current_sdev. We race with others (to set starget_sdev_user),
532 	 * but in most cases, we will be first. Ideally, each LU on the
533 	 * target would get some limited time or requests on the target.
534 	 */
535 	blk_run_queue(current_sdev->request_queue);
536 
537 	spin_lock_irqsave(shost->host_lock, flags);
538 	if (starget->starget_sdev_user)
539 		goto out;
540 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
541 			same_target_siblings) {
542 		if (sdev == current_sdev)
543 			continue;
544 		if (scsi_device_get(sdev))
545 			continue;
546 
547 		spin_unlock_irqrestore(shost->host_lock, flags);
548 		blk_run_queue(sdev->request_queue);
549 		spin_lock_irqsave(shost->host_lock, flags);
550 
551 		scsi_device_put(sdev);
552 	}
553  out:
554 	spin_unlock_irqrestore(shost->host_lock, flags);
555 }
556 
557 /*
558  * Function:	scsi_run_queue()
559  *
560  * Purpose:	Select a proper request queue to serve next
561  *
562  * Arguments:	q	- last request's queue
563  *
564  * Returns:     Nothing
565  *
566  * Notes:	The previous command was completely finished, start
567  *		a new one if possible.
568  */
569 static void scsi_run_queue(struct request_queue *q)
570 {
571 	struct scsi_device *sdev = q->queuedata;
572 	struct Scsi_Host *shost = sdev->host;
573 	unsigned long flags;
574 
575 	if (sdev->single_lun)
576 		scsi_single_lun_run(sdev);
577 
578 	spin_lock_irqsave(shost->host_lock, flags);
579 	while (!list_empty(&shost->starved_list) &&
580 	       !shost->host_blocked && !shost->host_self_blocked &&
581 		!((shost->can_queue > 0) &&
582 		  (shost->host_busy >= shost->can_queue))) {
583 		/*
584 		 * As long as shost is accepting commands and we have
585 		 * starved queues, call blk_run_queue. scsi_request_fn
586 		 * drops the queue_lock and can add us back to the
587 		 * starved_list.
588 		 *
589 		 * host_lock protects the starved_list and starved_entry.
590 		 * scsi_request_fn must get the host_lock before checking
591 		 * or modifying starved_list or starved_entry.
592 		 */
593 		sdev = list_entry(shost->starved_list.next,
594 					  struct scsi_device, starved_entry);
595 		list_del_init(&sdev->starved_entry);
596 		spin_unlock_irqrestore(shost->host_lock, flags);
597 
598 		blk_run_queue(sdev->request_queue);
599 
600 		spin_lock_irqsave(shost->host_lock, flags);
601 		if (unlikely(!list_empty(&sdev->starved_entry)))
602 			/*
603 			 * sdev lost a race, and was put back on the
604 			 * starved list. This is unlikely but without this
605 			 * in theory we could loop forever.
606 			 */
607 			break;
608 	}
609 	spin_unlock_irqrestore(shost->host_lock, flags);
610 
611 	blk_run_queue(q);
612 }
613 
614 /*
615  * Function:	scsi_requeue_command()
616  *
617  * Purpose:	Handle post-processing of completed commands.
618  *
619  * Arguments:	q	- queue to operate on
620  *		cmd	- command that may need to be requeued.
621  *
622  * Returns:	Nothing
623  *
624  * Notes:	After command completion, there may be blocks left
625  *		over which weren't finished by the previous command
626  *		this can be for a number of reasons - the main one is
627  *		I/O errors in the middle of the request, in which case
628  *		we need to request the blocks that come after the bad
629  *		sector.
630  * Notes:	Upon return, cmd is a stale pointer.
631  */
632 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
633 {
634 	struct request *req = cmd->request;
635 	unsigned long flags;
636 
637 	scsi_unprep_request(req);
638 	spin_lock_irqsave(q->queue_lock, flags);
639 	blk_requeue_request(q, req);
640 	spin_unlock_irqrestore(q->queue_lock, flags);
641 
642 	scsi_run_queue(q);
643 }
644 
645 void scsi_next_command(struct scsi_cmnd *cmd)
646 {
647 	struct scsi_device *sdev = cmd->device;
648 	struct request_queue *q = sdev->request_queue;
649 
650 	/* need to hold a reference on the device before we let go of the cmd */
651 	get_device(&sdev->sdev_gendev);
652 
653 	scsi_put_command(cmd);
654 	scsi_run_queue(q);
655 
656 	/* ok to remove device now */
657 	put_device(&sdev->sdev_gendev);
658 }
659 
660 void scsi_run_host_queues(struct Scsi_Host *shost)
661 {
662 	struct scsi_device *sdev;
663 
664 	shost_for_each_device(sdev, shost)
665 		scsi_run_queue(sdev->request_queue);
666 }
667 
668 /*
669  * Function:    scsi_end_request()
670  *
671  * Purpose:     Post-processing of completed commands (usually invoked at end
672  *		of upper level post-processing and scsi_io_completion).
673  *
674  * Arguments:   cmd	 - command that is complete.
675  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
676  *              bytes    - number of bytes of completed I/O
677  *		requeue  - indicates whether we should requeue leftovers.
678  *
679  * Lock status: Assumed that lock is not held upon entry.
680  *
681  * Returns:     cmd if requeue required, NULL otherwise.
682  *
683  * Notes:       This is called for block device requests in order to
684  *              mark some number of sectors as complete.
685  *
686  *		We are guaranteeing that the request queue will be goosed
687  *		at some point during this call.
688  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
689  */
690 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
691 					  int bytes, int requeue)
692 {
693 	request_queue_t *q = cmd->device->request_queue;
694 	struct request *req = cmd->request;
695 	unsigned long flags;
696 
697 	/*
698 	 * If there are blocks left over at the end, set up the command
699 	 * to queue the remainder of them.
700 	 */
701 	if (end_that_request_chunk(req, uptodate, bytes)) {
702 		int leftover = (req->hard_nr_sectors << 9);
703 
704 		if (blk_pc_request(req))
705 			leftover = req->data_len;
706 
707 		/* kill remainder if no retrys */
708 		if (!uptodate && blk_noretry_request(req))
709 			end_that_request_chunk(req, 0, leftover);
710 		else {
711 			if (requeue) {
712 				/*
713 				 * Bleah.  Leftovers again.  Stick the
714 				 * leftovers in the front of the
715 				 * queue, and goose the queue again.
716 				 */
717 				scsi_requeue_command(q, cmd);
718 				cmd = NULL;
719 			}
720 			return cmd;
721 		}
722 	}
723 
724 	add_disk_randomness(req->rq_disk);
725 
726 	spin_lock_irqsave(q->queue_lock, flags);
727 	if (blk_rq_tagged(req))
728 		blk_queue_end_tag(q, req);
729 	end_that_request_last(req, uptodate);
730 	spin_unlock_irqrestore(q->queue_lock, flags);
731 
732 	/*
733 	 * This will goose the queue request function at the end, so we don't
734 	 * need to worry about launching another command.
735 	 */
736 	scsi_next_command(cmd);
737 	return NULL;
738 }
739 
740 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742 	struct scsi_host_sg_pool *sgp;
743 	struct scatterlist *sgl;
744 
745 	BUG_ON(!cmd->use_sg);
746 
747 	switch (cmd->use_sg) {
748 	case 1 ... 8:
749 		cmd->sglist_len = 0;
750 		break;
751 	case 9 ... 16:
752 		cmd->sglist_len = 1;
753 		break;
754 	case 17 ... 32:
755 		cmd->sglist_len = 2;
756 		break;
757 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
758 	case 33 ... 64:
759 		cmd->sglist_len = 3;
760 		break;
761 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
762 	case 65 ... 128:
763 		cmd->sglist_len = 4;
764 		break;
765 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
766 	case 129 ... 256:
767 		cmd->sglist_len = 5;
768 		break;
769 #endif
770 #endif
771 #endif
772 	default:
773 		return NULL;
774 	}
775 
776 	sgp = scsi_sg_pools + cmd->sglist_len;
777 	sgl = mempool_alloc(sgp->pool, gfp_mask);
778 	return sgl;
779 }
780 
781 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
782 {
783 	struct scsi_host_sg_pool *sgp;
784 
785 	BUG_ON(index >= SG_MEMPOOL_NR);
786 
787 	sgp = scsi_sg_pools + index;
788 	mempool_free(sgl, sgp->pool);
789 }
790 
791 /*
792  * Function:    scsi_release_buffers()
793  *
794  * Purpose:     Completion processing for block device I/O requests.
795  *
796  * Arguments:   cmd	- command that we are bailing.
797  *
798  * Lock status: Assumed that no lock is held upon entry.
799  *
800  * Returns:     Nothing
801  *
802  * Notes:       In the event that an upper level driver rejects a
803  *		command, we must release resources allocated during
804  *		the __init_io() function.  Primarily this would involve
805  *		the scatter-gather table, and potentially any bounce
806  *		buffers.
807  */
808 static void scsi_release_buffers(struct scsi_cmnd *cmd)
809 {
810 	struct request *req = cmd->request;
811 
812 	/*
813 	 * Free up any indirection buffers we allocated for DMA purposes.
814 	 */
815 	if (cmd->use_sg)
816 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
817 	else if (cmd->request_buffer != req->buffer)
818 		kfree(cmd->request_buffer);
819 
820 	/*
821 	 * Zero these out.  They now point to freed memory, and it is
822 	 * dangerous to hang onto the pointers.
823 	 */
824 	cmd->buffer  = NULL;
825 	cmd->bufflen = 0;
826 	cmd->request_buffer = NULL;
827 	cmd->request_bufflen = 0;
828 }
829 
830 /*
831  * Function:    scsi_io_completion()
832  *
833  * Purpose:     Completion processing for block device I/O requests.
834  *
835  * Arguments:   cmd   - command that is finished.
836  *
837  * Lock status: Assumed that no lock is held upon entry.
838  *
839  * Returns:     Nothing
840  *
841  * Notes:       This function is matched in terms of capabilities to
842  *              the function that created the scatter-gather list.
843  *              In other words, if there are no bounce buffers
844  *              (the normal case for most drivers), we don't need
845  *              the logic to deal with cleaning up afterwards.
846  *
847  *		We must do one of several things here:
848  *
849  *		a) Call scsi_end_request.  This will finish off the
850  *		   specified number of sectors.  If we are done, the
851  *		   command block will be released, and the queue
852  *		   function will be goosed.  If we are not done, then
853  *		   scsi_end_request will directly goose the queue.
854  *
855  *		b) We can just use scsi_requeue_command() here.  This would
856  *		   be used if we just wanted to retry, for example.
857  */
858 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
859 {
860 	int result = cmd->result;
861 	int this_count = cmd->bufflen;
862 	request_queue_t *q = cmd->device->request_queue;
863 	struct request *req = cmd->request;
864 	int clear_errors = 1;
865 	struct scsi_sense_hdr sshdr;
866 	int sense_valid = 0;
867 	int sense_deferred = 0;
868 
869 	/*
870 	 * Free up any indirection buffers we allocated for DMA purposes.
871 	 * For the case of a READ, we need to copy the data out of the
872 	 * bounce buffer and into the real buffer.
873 	 */
874 	if (cmd->use_sg)
875 		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
876 	else if (cmd->buffer != req->buffer) {
877 		if (rq_data_dir(req) == READ) {
878 			unsigned long flags;
879 			char *to = bio_kmap_irq(req->bio, &flags);
880 			memcpy(to, cmd->buffer, cmd->bufflen);
881 			bio_kunmap_irq(to, &flags);
882 		}
883 		kfree(cmd->buffer);
884 	}
885 
886 	if (result) {
887 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
888 		if (sense_valid)
889 			sense_deferred = scsi_sense_is_deferred(&sshdr);
890 	}
891 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
892 		req->errors = result;
893 		if (result) {
894 			clear_errors = 0;
895 			if (sense_valid && req->sense) {
896 				/*
897 				 * SG_IO wants current and deferred errors
898 				 */
899 				int len = 8 + cmd->sense_buffer[7];
900 
901 				if (len > SCSI_SENSE_BUFFERSIZE)
902 					len = SCSI_SENSE_BUFFERSIZE;
903 				memcpy(req->sense, cmd->sense_buffer,  len);
904 				req->sense_len = len;
905 			}
906 		} else
907 			req->data_len = cmd->resid;
908 	}
909 
910 	/*
911 	 * Zero these out.  They now point to freed memory, and it is
912 	 * dangerous to hang onto the pointers.
913 	 */
914 	cmd->buffer  = NULL;
915 	cmd->bufflen = 0;
916 	cmd->request_buffer = NULL;
917 	cmd->request_bufflen = 0;
918 
919 	/*
920 	 * Next deal with any sectors which we were able to correctly
921 	 * handle.
922 	 */
923 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
924 				      "%d bytes done.\n",
925 				      req->nr_sectors, good_bytes));
926 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
927 
928 	if (clear_errors)
929 		req->errors = 0;
930 
931 	/* A number of bytes were successfully read.  If there
932 	 * are leftovers and there is some kind of error
933 	 * (result != 0), retry the rest.
934 	 */
935 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
936 		return;
937 
938 	/* good_bytes = 0, or (inclusive) there were leftovers and
939 	 * result = 0, so scsi_end_request couldn't retry.
940 	 */
941 	if (sense_valid && !sense_deferred) {
942 		switch (sshdr.sense_key) {
943 		case UNIT_ATTENTION:
944 			if (cmd->device->removable) {
945 				/* Detected disc change.  Set a bit
946 				 * and quietly refuse further access.
947 				 */
948 				cmd->device->changed = 1;
949 				scsi_end_request(cmd, 0, this_count, 1);
950 				return;
951 			} else {
952 				/* Must have been a power glitch, or a
953 				 * bus reset.  Could not have been a
954 				 * media change, so we just retry the
955 				 * request and see what happens.
956 				 */
957 				scsi_requeue_command(q, cmd);
958 				return;
959 			}
960 			break;
961 		case ILLEGAL_REQUEST:
962 			/* If we had an ILLEGAL REQUEST returned, then
963 			 * we may have performed an unsupported
964 			 * command.  The only thing this should be
965 			 * would be a ten byte read where only a six
966 			 * byte read was supported.  Also, on a system
967 			 * where READ CAPACITY failed, we may have
968 			 * read past the end of the disk.
969 			 */
970 			if ((cmd->device->use_10_for_rw &&
971 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
972 			    (cmd->cmnd[0] == READ_10 ||
973 			     cmd->cmnd[0] == WRITE_10)) {
974 				cmd->device->use_10_for_rw = 0;
975 				/* This will cause a retry with a
976 				 * 6-byte command.
977 				 */
978 				scsi_requeue_command(q, cmd);
979 				return;
980 			} else {
981 				scsi_end_request(cmd, 0, this_count, 1);
982 				return;
983 			}
984 			break;
985 		case NOT_READY:
986 			/* If the device is in the process of becoming
987 			 * ready, or has a temporary blockage, retry.
988 			 */
989 			if (sshdr.asc == 0x04) {
990 				switch (sshdr.ascq) {
991 				case 0x01: /* becoming ready */
992 				case 0x04: /* format in progress */
993 				case 0x05: /* rebuild in progress */
994 				case 0x06: /* recalculation in progress */
995 				case 0x07: /* operation in progress */
996 				case 0x08: /* Long write in progress */
997 				case 0x09: /* self test in progress */
998 					scsi_requeue_command(q, cmd);
999 					return;
1000 				default:
1001 					break;
1002 				}
1003 			}
1004 			if (!(req->flags & REQ_QUIET)) {
1005 				scmd_printk(KERN_INFO, cmd,
1006 					    "Device not ready: ");
1007 				scsi_print_sense_hdr("", &sshdr);
1008 			}
1009 			scsi_end_request(cmd, 0, this_count, 1);
1010 			return;
1011 		case VOLUME_OVERFLOW:
1012 			if (!(req->flags & REQ_QUIET)) {
1013 				scmd_printk(KERN_INFO, cmd,
1014 					    "Volume overflow, CDB: ");
1015 				__scsi_print_command(cmd->data_cmnd);
1016 				scsi_print_sense("", cmd);
1017 			}
1018 			/* See SSC3rXX or current. */
1019 			scsi_end_request(cmd, 0, this_count, 1);
1020 			return;
1021 		default:
1022 			break;
1023 		}
1024 	}
1025 	if (host_byte(result) == DID_RESET) {
1026 		/* Third party bus reset or reset for error recovery
1027 		 * reasons.  Just retry the request and see what
1028 		 * happens.
1029 		 */
1030 		scsi_requeue_command(q, cmd);
1031 		return;
1032 	}
1033 	if (result) {
1034 		if (!(req->flags & REQ_QUIET)) {
1035 			scmd_printk(KERN_INFO, cmd,
1036 				    "SCSI error: return code = 0x%08x\n",
1037 				    result);
1038 			if (driver_byte(result) & DRIVER_SENSE)
1039 				scsi_print_sense("", cmd);
1040 		}
1041 	}
1042 	scsi_end_request(cmd, 0, this_count, !result);
1043 }
1044 EXPORT_SYMBOL(scsi_io_completion);
1045 
1046 /*
1047  * Function:    scsi_init_io()
1048  *
1049  * Purpose:     SCSI I/O initialize function.
1050  *
1051  * Arguments:   cmd   - Command descriptor we wish to initialize
1052  *
1053  * Returns:     0 on success
1054  *		BLKPREP_DEFER if the failure is retryable
1055  *		BLKPREP_KILL if the failure is fatal
1056  */
1057 static int scsi_init_io(struct scsi_cmnd *cmd)
1058 {
1059 	struct request     *req = cmd->request;
1060 	struct scatterlist *sgpnt;
1061 	int		   count;
1062 
1063 	/*
1064 	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1065 	 */
1066 	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1067 		cmd->request_bufflen = req->data_len;
1068 		cmd->request_buffer = req->data;
1069 		req->buffer = req->data;
1070 		cmd->use_sg = 0;
1071 		return 0;
1072 	}
1073 
1074 	/*
1075 	 * we used to not use scatter-gather for single segment request,
1076 	 * but now we do (it makes highmem I/O easier to support without
1077 	 * kmapping pages)
1078 	 */
1079 	cmd->use_sg = req->nr_phys_segments;
1080 
1081 	/*
1082 	 * if sg table allocation fails, requeue request later.
1083 	 */
1084 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1085 	if (unlikely(!sgpnt)) {
1086 		scsi_unprep_request(req);
1087 		return BLKPREP_DEFER;
1088 	}
1089 
1090 	cmd->request_buffer = (char *) sgpnt;
1091 	cmd->request_bufflen = req->nr_sectors << 9;
1092 	if (blk_pc_request(req))
1093 		cmd->request_bufflen = req->data_len;
1094 	req->buffer = NULL;
1095 
1096 	/*
1097 	 * Next, walk the list, and fill in the addresses and sizes of
1098 	 * each segment.
1099 	 */
1100 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1101 
1102 	/*
1103 	 * mapped well, send it off
1104 	 */
1105 	if (likely(count <= cmd->use_sg)) {
1106 		cmd->use_sg = count;
1107 		return 0;
1108 	}
1109 
1110 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1111 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1112 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1113 			req->current_nr_sectors);
1114 
1115 	/* release the command and kill it */
1116 	scsi_release_buffers(cmd);
1117 	scsi_put_command(cmd);
1118 	return BLKPREP_KILL;
1119 }
1120 
1121 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1122 			       sector_t *error_sector)
1123 {
1124 	struct scsi_device *sdev = q->queuedata;
1125 	struct scsi_driver *drv;
1126 
1127 	if (sdev->sdev_state != SDEV_RUNNING)
1128 		return -ENXIO;
1129 
1130 	drv = *(struct scsi_driver **) disk->private_data;
1131 	if (drv->issue_flush)
1132 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1133 
1134 	return -EOPNOTSUPP;
1135 }
1136 
1137 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1138 {
1139 	BUG_ON(!blk_pc_request(cmd->request));
1140 	/*
1141 	 * This will complete the whole command with uptodate=1 so
1142 	 * as far as the block layer is concerned the command completed
1143 	 * successfully. Since this is a REQ_BLOCK_PC command the
1144 	 * caller should check the request's errors value
1145 	 */
1146 	scsi_io_completion(cmd, cmd->bufflen);
1147 }
1148 
1149 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1150 {
1151 	struct request *req = cmd->request;
1152 
1153 	BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1154 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1155 	cmd->cmd_len = req->cmd_len;
1156 	if (!req->data_len)
1157 		cmd->sc_data_direction = DMA_NONE;
1158 	else if (rq_data_dir(req) == WRITE)
1159 		cmd->sc_data_direction = DMA_TO_DEVICE;
1160 	else
1161 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1162 
1163 	cmd->transfersize = req->data_len;
1164 	cmd->allowed = req->retries;
1165 	cmd->timeout_per_command = req->timeout;
1166 	cmd->done = scsi_blk_pc_done;
1167 }
1168 
1169 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1170 {
1171 	struct scsi_device *sdev = q->queuedata;
1172 	struct scsi_cmnd *cmd;
1173 	int specials_only = 0;
1174 
1175 	/*
1176 	 * Just check to see if the device is online.  If it isn't, we
1177 	 * refuse to process any commands.  The device must be brought
1178 	 * online before trying any recovery commands
1179 	 */
1180 	if (unlikely(!scsi_device_online(sdev))) {
1181 		sdev_printk(KERN_ERR, sdev,
1182 			    "rejecting I/O to offline device\n");
1183 		goto kill;
1184 	}
1185 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1186 		/* OK, we're not in a running state don't prep
1187 		 * user commands */
1188 		if (sdev->sdev_state == SDEV_DEL) {
1189 			/* Device is fully deleted, no commands
1190 			 * at all allowed down */
1191 			sdev_printk(KERN_ERR, sdev,
1192 				    "rejecting I/O to dead device\n");
1193 			goto kill;
1194 		}
1195 		/* OK, we only allow special commands (i.e. not
1196 		 * user initiated ones */
1197 		specials_only = sdev->sdev_state;
1198 	}
1199 
1200 	/*
1201 	 * Find the actual device driver associated with this command.
1202 	 * The SPECIAL requests are things like character device or
1203 	 * ioctls, which did not originate from ll_rw_blk.  Note that
1204 	 * the special field is also used to indicate the cmd for
1205 	 * the remainder of a partially fulfilled request that can
1206 	 * come up when there is a medium error.  We have to treat
1207 	 * these two cases differently.  We differentiate by looking
1208 	 * at request->cmd, as this tells us the real story.
1209 	 */
1210 	if (req->flags & REQ_SPECIAL && req->special) {
1211 		cmd = req->special;
1212 	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1213 
1214 		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1215 			if(specials_only == SDEV_QUIESCE ||
1216 					specials_only == SDEV_BLOCK)
1217 				goto defer;
1218 
1219 			sdev_printk(KERN_ERR, sdev,
1220 				    "rejecting I/O to device being removed\n");
1221 			goto kill;
1222 		}
1223 
1224 
1225 		/*
1226 		 * Now try and find a command block that we can use.
1227 		 */
1228 		if (!req->special) {
1229 			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1230 			if (unlikely(!cmd))
1231 				goto defer;
1232 		} else
1233 			cmd = req->special;
1234 
1235 		/* pull a tag out of the request if we have one */
1236 		cmd->tag = req->tag;
1237 	} else {
1238 		blk_dump_rq_flags(req, "SCSI bad req");
1239 		goto kill;
1240 	}
1241 
1242 	/* note the overloading of req->special.  When the tag
1243 	 * is active it always means cmd.  If the tag goes
1244 	 * back for re-queueing, it may be reset */
1245 	req->special = cmd;
1246 	cmd->request = req;
1247 
1248 	/*
1249 	 * FIXME: drop the lock here because the functions below
1250 	 * expect to be called without the queue lock held.  Also,
1251 	 * previously, we dequeued the request before dropping the
1252 	 * lock.  We hope REQ_STARTED prevents anything untoward from
1253 	 * happening now.
1254 	 */
1255 	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1256 		int ret;
1257 
1258 		/*
1259 		 * This will do a couple of things:
1260 		 *  1) Fill in the actual SCSI command.
1261 		 *  2) Fill in any other upper-level specific fields
1262 		 * (timeout).
1263 		 *
1264 		 * If this returns 0, it means that the request failed
1265 		 * (reading past end of disk, reading offline device,
1266 		 * etc).   This won't actually talk to the device, but
1267 		 * some kinds of consistency checking may cause the
1268 		 * request to be rejected immediately.
1269 		 */
1270 
1271 		/*
1272 		 * This sets up the scatter-gather table (allocating if
1273 		 * required).
1274 		 */
1275 		ret = scsi_init_io(cmd);
1276 		switch(ret) {
1277 			/* For BLKPREP_KILL/DEFER the cmd was released */
1278 		case BLKPREP_KILL:
1279 			goto kill;
1280 		case BLKPREP_DEFER:
1281 			goto defer;
1282 		}
1283 
1284 		/*
1285 		 * Initialize the actual SCSI command for this request.
1286 		 */
1287 		if (req->flags & REQ_BLOCK_PC) {
1288 			scsi_setup_blk_pc_cmnd(cmd);
1289 		} else if (req->rq_disk) {
1290 			struct scsi_driver *drv;
1291 
1292 			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1293 			if (unlikely(!drv->init_command(cmd))) {
1294 				scsi_release_buffers(cmd);
1295 				scsi_put_command(cmd);
1296 				goto kill;
1297 			}
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * The request is now prepped, no need to come back here
1303 	 */
1304 	req->flags |= REQ_DONTPREP;
1305 	return BLKPREP_OK;
1306 
1307  defer:
1308 	/* If we defer, the elv_next_request() returns NULL, but the
1309 	 * queue must be restarted, so we plug here if no returning
1310 	 * command will automatically do that. */
1311 	if (sdev->device_busy == 0)
1312 		blk_plug_device(q);
1313 	return BLKPREP_DEFER;
1314  kill:
1315 	req->errors = DID_NO_CONNECT << 16;
1316 	return BLKPREP_KILL;
1317 }
1318 
1319 /*
1320  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1321  * return 0.
1322  *
1323  * Called with the queue_lock held.
1324  */
1325 static inline int scsi_dev_queue_ready(struct request_queue *q,
1326 				  struct scsi_device *sdev)
1327 {
1328 	if (sdev->device_busy >= sdev->queue_depth)
1329 		return 0;
1330 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1331 		/*
1332 		 * unblock after device_blocked iterates to zero
1333 		 */
1334 		if (--sdev->device_blocked == 0) {
1335 			SCSI_LOG_MLQUEUE(3,
1336 				   sdev_printk(KERN_INFO, sdev,
1337 				   "unblocking device at zero depth\n"));
1338 		} else {
1339 			blk_plug_device(q);
1340 			return 0;
1341 		}
1342 	}
1343 	if (sdev->device_blocked)
1344 		return 0;
1345 
1346 	return 1;
1347 }
1348 
1349 /*
1350  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1351  * return 0. We must end up running the queue again whenever 0 is
1352  * returned, else IO can hang.
1353  *
1354  * Called with host_lock held.
1355  */
1356 static inline int scsi_host_queue_ready(struct request_queue *q,
1357 				   struct Scsi_Host *shost,
1358 				   struct scsi_device *sdev)
1359 {
1360 	if (scsi_host_in_recovery(shost))
1361 		return 0;
1362 	if (shost->host_busy == 0 && shost->host_blocked) {
1363 		/*
1364 		 * unblock after host_blocked iterates to zero
1365 		 */
1366 		if (--shost->host_blocked == 0) {
1367 			SCSI_LOG_MLQUEUE(3,
1368 				printk("scsi%d unblocking host at zero depth\n",
1369 					shost->host_no));
1370 		} else {
1371 			blk_plug_device(q);
1372 			return 0;
1373 		}
1374 	}
1375 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1376 	    shost->host_blocked || shost->host_self_blocked) {
1377 		if (list_empty(&sdev->starved_entry))
1378 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1379 		return 0;
1380 	}
1381 
1382 	/* We're OK to process the command, so we can't be starved */
1383 	if (!list_empty(&sdev->starved_entry))
1384 		list_del_init(&sdev->starved_entry);
1385 
1386 	return 1;
1387 }
1388 
1389 /*
1390  * Kill a request for a dead device
1391  */
1392 static void scsi_kill_request(struct request *req, request_queue_t *q)
1393 {
1394 	struct scsi_cmnd *cmd = req->special;
1395 	struct scsi_device *sdev = cmd->device;
1396 	struct Scsi_Host *shost = sdev->host;
1397 
1398 	blkdev_dequeue_request(req);
1399 
1400 	if (unlikely(cmd == NULL)) {
1401 		printk(KERN_CRIT "impossible request in %s.\n",
1402 				 __FUNCTION__);
1403 		BUG();
1404 	}
1405 
1406 	scsi_init_cmd_errh(cmd);
1407 	cmd->result = DID_NO_CONNECT << 16;
1408 	atomic_inc(&cmd->device->iorequest_cnt);
1409 
1410 	/*
1411 	 * SCSI request completion path will do scsi_device_unbusy(),
1412 	 * bump busy counts.  To bump the counters, we need to dance
1413 	 * with the locks as normal issue path does.
1414 	 */
1415 	sdev->device_busy++;
1416 	spin_unlock(sdev->request_queue->queue_lock);
1417 	spin_lock(shost->host_lock);
1418 	shost->host_busy++;
1419 	spin_unlock(shost->host_lock);
1420 	spin_lock(sdev->request_queue->queue_lock);
1421 
1422 	__scsi_done(cmd);
1423 }
1424 
1425 static void scsi_softirq_done(struct request *rq)
1426 {
1427 	struct scsi_cmnd *cmd = rq->completion_data;
1428 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1429 	int disposition;
1430 
1431 	INIT_LIST_HEAD(&cmd->eh_entry);
1432 
1433 	disposition = scsi_decide_disposition(cmd);
1434 	if (disposition != SUCCESS &&
1435 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1436 		sdev_printk(KERN_ERR, cmd->device,
1437 			    "timing out command, waited %lus\n",
1438 			    wait_for/HZ);
1439 		disposition = SUCCESS;
1440 	}
1441 
1442 	scsi_log_completion(cmd, disposition);
1443 
1444 	switch (disposition) {
1445 		case SUCCESS:
1446 			scsi_finish_command(cmd);
1447 			break;
1448 		case NEEDS_RETRY:
1449 			scsi_retry_command(cmd);
1450 			break;
1451 		case ADD_TO_MLQUEUE:
1452 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453 			break;
1454 		default:
1455 			if (!scsi_eh_scmd_add(cmd, 0))
1456 				scsi_finish_command(cmd);
1457 	}
1458 }
1459 
1460 /*
1461  * Function:    scsi_request_fn()
1462  *
1463  * Purpose:     Main strategy routine for SCSI.
1464  *
1465  * Arguments:   q       - Pointer to actual queue.
1466  *
1467  * Returns:     Nothing
1468  *
1469  * Lock status: IO request lock assumed to be held when called.
1470  */
1471 static void scsi_request_fn(struct request_queue *q)
1472 {
1473 	struct scsi_device *sdev = q->queuedata;
1474 	struct Scsi_Host *shost;
1475 	struct scsi_cmnd *cmd;
1476 	struct request *req;
1477 
1478 	if (!sdev) {
1479 		printk("scsi: killing requests for dead queue\n");
1480 		while ((req = elv_next_request(q)) != NULL)
1481 			scsi_kill_request(req, q);
1482 		return;
1483 	}
1484 
1485 	if(!get_device(&sdev->sdev_gendev))
1486 		/* We must be tearing the block queue down already */
1487 		return;
1488 
1489 	/*
1490 	 * To start with, we keep looping until the queue is empty, or until
1491 	 * the host is no longer able to accept any more requests.
1492 	 */
1493 	shost = sdev->host;
1494 	while (!blk_queue_plugged(q)) {
1495 		int rtn;
1496 		/*
1497 		 * get next queueable request.  We do this early to make sure
1498 		 * that the request is fully prepared even if we cannot
1499 		 * accept it.
1500 		 */
1501 		req = elv_next_request(q);
1502 		if (!req || !scsi_dev_queue_ready(q, sdev))
1503 			break;
1504 
1505 		if (unlikely(!scsi_device_online(sdev))) {
1506 			sdev_printk(KERN_ERR, sdev,
1507 				    "rejecting I/O to offline device\n");
1508 			scsi_kill_request(req, q);
1509 			continue;
1510 		}
1511 
1512 
1513 		/*
1514 		 * Remove the request from the request list.
1515 		 */
1516 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1517 			blkdev_dequeue_request(req);
1518 		sdev->device_busy++;
1519 
1520 		spin_unlock(q->queue_lock);
1521 		cmd = req->special;
1522 		if (unlikely(cmd == NULL)) {
1523 			printk(KERN_CRIT "impossible request in %s.\n"
1524 					 "please mail a stack trace to "
1525 					 "linux-scsi@vger.kernel.org",
1526 					 __FUNCTION__);
1527 			BUG();
1528 		}
1529 		spin_lock(shost->host_lock);
1530 
1531 		if (!scsi_host_queue_ready(q, shost, sdev))
1532 			goto not_ready;
1533 		if (sdev->single_lun) {
1534 			if (scsi_target(sdev)->starget_sdev_user &&
1535 			    scsi_target(sdev)->starget_sdev_user != sdev)
1536 				goto not_ready;
1537 			scsi_target(sdev)->starget_sdev_user = sdev;
1538 		}
1539 		shost->host_busy++;
1540 
1541 		/*
1542 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1543 		 *		take the lock again.
1544 		 */
1545 		spin_unlock_irq(shost->host_lock);
1546 
1547 		/*
1548 		 * Finally, initialize any error handling parameters, and set up
1549 		 * the timers for timeouts.
1550 		 */
1551 		scsi_init_cmd_errh(cmd);
1552 
1553 		/*
1554 		 * Dispatch the command to the low-level driver.
1555 		 */
1556 		rtn = scsi_dispatch_cmd(cmd);
1557 		spin_lock_irq(q->queue_lock);
1558 		if(rtn) {
1559 			/* we're refusing the command; because of
1560 			 * the way locks get dropped, we need to
1561 			 * check here if plugging is required */
1562 			if(sdev->device_busy == 0)
1563 				blk_plug_device(q);
1564 
1565 			break;
1566 		}
1567 	}
1568 
1569 	goto out;
1570 
1571  not_ready:
1572 	spin_unlock_irq(shost->host_lock);
1573 
1574 	/*
1575 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1576 	 * must return with queue_lock held.
1577 	 *
1578 	 * Decrementing device_busy without checking it is OK, as all such
1579 	 * cases (host limits or settings) should run the queue at some
1580 	 * later time.
1581 	 */
1582 	spin_lock_irq(q->queue_lock);
1583 	blk_requeue_request(q, req);
1584 	sdev->device_busy--;
1585 	if(sdev->device_busy == 0)
1586 		blk_plug_device(q);
1587  out:
1588 	/* must be careful here...if we trigger the ->remove() function
1589 	 * we cannot be holding the q lock */
1590 	spin_unlock_irq(q->queue_lock);
1591 	put_device(&sdev->sdev_gendev);
1592 	spin_lock_irq(q->queue_lock);
1593 }
1594 
1595 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1596 {
1597 	struct device *host_dev;
1598 	u64 bounce_limit = 0xffffffff;
1599 
1600 	if (shost->unchecked_isa_dma)
1601 		return BLK_BOUNCE_ISA;
1602 	/*
1603 	 * Platforms with virtual-DMA translation
1604 	 * hardware have no practical limit.
1605 	 */
1606 	if (!PCI_DMA_BUS_IS_PHYS)
1607 		return BLK_BOUNCE_ANY;
1608 
1609 	host_dev = scsi_get_device(shost);
1610 	if (host_dev && host_dev->dma_mask)
1611 		bounce_limit = *host_dev->dma_mask;
1612 
1613 	return bounce_limit;
1614 }
1615 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1616 
1617 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1618 {
1619 	struct Scsi_Host *shost = sdev->host;
1620 	struct request_queue *q;
1621 
1622 	q = blk_init_queue(scsi_request_fn, NULL);
1623 	if (!q)
1624 		return NULL;
1625 
1626 	blk_queue_prep_rq(q, scsi_prep_fn);
1627 
1628 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1629 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1630 	blk_queue_max_sectors(q, shost->max_sectors);
1631 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1632 	blk_queue_segment_boundary(q, shost->dma_boundary);
1633 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1634 	blk_queue_softirq_done(q, scsi_softirq_done);
1635 
1636 	if (!shost->use_clustering)
1637 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1638 	return q;
1639 }
1640 
1641 void scsi_free_queue(struct request_queue *q)
1642 {
1643 	blk_cleanup_queue(q);
1644 }
1645 
1646 /*
1647  * Function:    scsi_block_requests()
1648  *
1649  * Purpose:     Utility function used by low-level drivers to prevent further
1650  *		commands from being queued to the device.
1651  *
1652  * Arguments:   shost       - Host in question
1653  *
1654  * Returns:     Nothing
1655  *
1656  * Lock status: No locks are assumed held.
1657  *
1658  * Notes:       There is no timer nor any other means by which the requests
1659  *		get unblocked other than the low-level driver calling
1660  *		scsi_unblock_requests().
1661  */
1662 void scsi_block_requests(struct Scsi_Host *shost)
1663 {
1664 	shost->host_self_blocked = 1;
1665 }
1666 EXPORT_SYMBOL(scsi_block_requests);
1667 
1668 /*
1669  * Function:    scsi_unblock_requests()
1670  *
1671  * Purpose:     Utility function used by low-level drivers to allow further
1672  *		commands from being queued to the device.
1673  *
1674  * Arguments:   shost       - Host in question
1675  *
1676  * Returns:     Nothing
1677  *
1678  * Lock status: No locks are assumed held.
1679  *
1680  * Notes:       There is no timer nor any other means by which the requests
1681  *		get unblocked other than the low-level driver calling
1682  *		scsi_unblock_requests().
1683  *
1684  *		This is done as an API function so that changes to the
1685  *		internals of the scsi mid-layer won't require wholesale
1686  *		changes to drivers that use this feature.
1687  */
1688 void scsi_unblock_requests(struct Scsi_Host *shost)
1689 {
1690 	shost->host_self_blocked = 0;
1691 	scsi_run_host_queues(shost);
1692 }
1693 EXPORT_SYMBOL(scsi_unblock_requests);
1694 
1695 int __init scsi_init_queue(void)
1696 {
1697 	int i;
1698 
1699 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1700 					sizeof(struct scsi_io_context),
1701 					0, 0, NULL, NULL);
1702 	if (!scsi_io_context_cache) {
1703 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1704 		return -ENOMEM;
1705 	}
1706 
1707 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1708 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1709 		int size = sgp->size * sizeof(struct scatterlist);
1710 
1711 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1712 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1713 		if (!sgp->slab) {
1714 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1715 					sgp->name);
1716 		}
1717 
1718 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1719 						     sgp->slab);
1720 		if (!sgp->pool) {
1721 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1722 					sgp->name);
1723 		}
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 void scsi_exit_queue(void)
1730 {
1731 	int i;
1732 
1733 	kmem_cache_destroy(scsi_io_context_cache);
1734 
1735 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1736 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1737 		mempool_destroy(sgp->pool);
1738 		kmem_cache_destroy(sgp->slab);
1739 	}
1740 }
1741 
1742 /**
1743  *	scsi_mode_select - issue a mode select
1744  *	@sdev:	SCSI device to be queried
1745  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1746  *	@sp:	Save page bit (0 == don't save, 1 == save)
1747  *	@modepage: mode page being requested
1748  *	@buffer: request buffer (may not be smaller than eight bytes)
1749  *	@len:	length of request buffer.
1750  *	@timeout: command timeout
1751  *	@retries: number of retries before failing
1752  *	@data: returns a structure abstracting the mode header data
1753  *	@sense: place to put sense data (or NULL if no sense to be collected).
1754  *		must be SCSI_SENSE_BUFFERSIZE big.
1755  *
1756  *	Returns zero if successful; negative error number or scsi
1757  *	status on error
1758  *
1759  */
1760 int
1761 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1762 		 unsigned char *buffer, int len, int timeout, int retries,
1763 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1764 {
1765 	unsigned char cmd[10];
1766 	unsigned char *real_buffer;
1767 	int ret;
1768 
1769 	memset(cmd, 0, sizeof(cmd));
1770 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1771 
1772 	if (sdev->use_10_for_ms) {
1773 		if (len > 65535)
1774 			return -EINVAL;
1775 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1776 		if (!real_buffer)
1777 			return -ENOMEM;
1778 		memcpy(real_buffer + 8, buffer, len);
1779 		len += 8;
1780 		real_buffer[0] = 0;
1781 		real_buffer[1] = 0;
1782 		real_buffer[2] = data->medium_type;
1783 		real_buffer[3] = data->device_specific;
1784 		real_buffer[4] = data->longlba ? 0x01 : 0;
1785 		real_buffer[5] = 0;
1786 		real_buffer[6] = data->block_descriptor_length >> 8;
1787 		real_buffer[7] = data->block_descriptor_length;
1788 
1789 		cmd[0] = MODE_SELECT_10;
1790 		cmd[7] = len >> 8;
1791 		cmd[8] = len;
1792 	} else {
1793 		if (len > 255 || data->block_descriptor_length > 255 ||
1794 		    data->longlba)
1795 			return -EINVAL;
1796 
1797 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1798 		if (!real_buffer)
1799 			return -ENOMEM;
1800 		memcpy(real_buffer + 4, buffer, len);
1801 		len += 4;
1802 		real_buffer[0] = 0;
1803 		real_buffer[1] = data->medium_type;
1804 		real_buffer[2] = data->device_specific;
1805 		real_buffer[3] = data->block_descriptor_length;
1806 
1807 
1808 		cmd[0] = MODE_SELECT;
1809 		cmd[4] = len;
1810 	}
1811 
1812 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1813 			       sshdr, timeout, retries);
1814 	kfree(real_buffer);
1815 	return ret;
1816 }
1817 EXPORT_SYMBOL_GPL(scsi_mode_select);
1818 
1819 /**
1820  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1821  *		six bytes if necessary.
1822  *	@sdev:	SCSI device to be queried
1823  *	@dbd:	set if mode sense will allow block descriptors to be returned
1824  *	@modepage: mode page being requested
1825  *	@buffer: request buffer (may not be smaller than eight bytes)
1826  *	@len:	length of request buffer.
1827  *	@timeout: command timeout
1828  *	@retries: number of retries before failing
1829  *	@data: returns a structure abstracting the mode header data
1830  *	@sense: place to put sense data (or NULL if no sense to be collected).
1831  *		must be SCSI_SENSE_BUFFERSIZE big.
1832  *
1833  *	Returns zero if unsuccessful, or the header offset (either 4
1834  *	or 8 depending on whether a six or ten byte command was
1835  *	issued) if successful.
1836  **/
1837 int
1838 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1839 		  unsigned char *buffer, int len, int timeout, int retries,
1840 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1841 {
1842 	unsigned char cmd[12];
1843 	int use_10_for_ms;
1844 	int header_length;
1845 	int result;
1846 	struct scsi_sense_hdr my_sshdr;
1847 
1848 	memset(data, 0, sizeof(*data));
1849 	memset(&cmd[0], 0, 12);
1850 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1851 	cmd[2] = modepage;
1852 
1853 	/* caller might not be interested in sense, but we need it */
1854 	if (!sshdr)
1855 		sshdr = &my_sshdr;
1856 
1857  retry:
1858 	use_10_for_ms = sdev->use_10_for_ms;
1859 
1860 	if (use_10_for_ms) {
1861 		if (len < 8)
1862 			len = 8;
1863 
1864 		cmd[0] = MODE_SENSE_10;
1865 		cmd[8] = len;
1866 		header_length = 8;
1867 	} else {
1868 		if (len < 4)
1869 			len = 4;
1870 
1871 		cmd[0] = MODE_SENSE;
1872 		cmd[4] = len;
1873 		header_length = 4;
1874 	}
1875 
1876 	memset(buffer, 0, len);
1877 
1878 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1879 				  sshdr, timeout, retries);
1880 
1881 	/* This code looks awful: what it's doing is making sure an
1882 	 * ILLEGAL REQUEST sense return identifies the actual command
1883 	 * byte as the problem.  MODE_SENSE commands can return
1884 	 * ILLEGAL REQUEST if the code page isn't supported */
1885 
1886 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1887 	    (driver_byte(result) & DRIVER_SENSE)) {
1888 		if (scsi_sense_valid(sshdr)) {
1889 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1890 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1891 				/*
1892 				 * Invalid command operation code
1893 				 */
1894 				sdev->use_10_for_ms = 0;
1895 				goto retry;
1896 			}
1897 		}
1898 	}
1899 
1900 	if(scsi_status_is_good(result)) {
1901 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1902 			     (modepage == 6 || modepage == 8))) {
1903 			/* Initio breakage? */
1904 			header_length = 0;
1905 			data->length = 13;
1906 			data->medium_type = 0;
1907 			data->device_specific = 0;
1908 			data->longlba = 0;
1909 			data->block_descriptor_length = 0;
1910 		} else if(use_10_for_ms) {
1911 			data->length = buffer[0]*256 + buffer[1] + 2;
1912 			data->medium_type = buffer[2];
1913 			data->device_specific = buffer[3];
1914 			data->longlba = buffer[4] & 0x01;
1915 			data->block_descriptor_length = buffer[6]*256
1916 				+ buffer[7];
1917 		} else {
1918 			data->length = buffer[0] + 1;
1919 			data->medium_type = buffer[1];
1920 			data->device_specific = buffer[2];
1921 			data->block_descriptor_length = buffer[3];
1922 		}
1923 		data->header_length = header_length;
1924 	}
1925 
1926 	return result;
1927 }
1928 EXPORT_SYMBOL(scsi_mode_sense);
1929 
1930 int
1931 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1932 {
1933 	char cmd[] = {
1934 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1935 	};
1936 	struct scsi_sense_hdr sshdr;
1937 	int result;
1938 
1939 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1940 				  timeout, retries);
1941 
1942 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1943 
1944 		if ((scsi_sense_valid(&sshdr)) &&
1945 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1946 		     (sshdr.sense_key == NOT_READY))) {
1947 			sdev->changed = 1;
1948 			result = 0;
1949 		}
1950 	}
1951 	return result;
1952 }
1953 EXPORT_SYMBOL(scsi_test_unit_ready);
1954 
1955 /**
1956  *	scsi_device_set_state - Take the given device through the device
1957  *		state model.
1958  *	@sdev:	scsi device to change the state of.
1959  *	@state:	state to change to.
1960  *
1961  *	Returns zero if unsuccessful or an error if the requested
1962  *	transition is illegal.
1963  **/
1964 int
1965 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1966 {
1967 	enum scsi_device_state oldstate = sdev->sdev_state;
1968 
1969 	if (state == oldstate)
1970 		return 0;
1971 
1972 	switch (state) {
1973 	case SDEV_CREATED:
1974 		/* There are no legal states that come back to
1975 		 * created.  This is the manually initialised start
1976 		 * state */
1977 		goto illegal;
1978 
1979 	case SDEV_RUNNING:
1980 		switch (oldstate) {
1981 		case SDEV_CREATED:
1982 		case SDEV_OFFLINE:
1983 		case SDEV_QUIESCE:
1984 		case SDEV_BLOCK:
1985 			break;
1986 		default:
1987 			goto illegal;
1988 		}
1989 		break;
1990 
1991 	case SDEV_QUIESCE:
1992 		switch (oldstate) {
1993 		case SDEV_RUNNING:
1994 		case SDEV_OFFLINE:
1995 			break;
1996 		default:
1997 			goto illegal;
1998 		}
1999 		break;
2000 
2001 	case SDEV_OFFLINE:
2002 		switch (oldstate) {
2003 		case SDEV_CREATED:
2004 		case SDEV_RUNNING:
2005 		case SDEV_QUIESCE:
2006 		case SDEV_BLOCK:
2007 			break;
2008 		default:
2009 			goto illegal;
2010 		}
2011 		break;
2012 
2013 	case SDEV_BLOCK:
2014 		switch (oldstate) {
2015 		case SDEV_CREATED:
2016 		case SDEV_RUNNING:
2017 			break;
2018 		default:
2019 			goto illegal;
2020 		}
2021 		break;
2022 
2023 	case SDEV_CANCEL:
2024 		switch (oldstate) {
2025 		case SDEV_CREATED:
2026 		case SDEV_RUNNING:
2027 		case SDEV_QUIESCE:
2028 		case SDEV_OFFLINE:
2029 		case SDEV_BLOCK:
2030 			break;
2031 		default:
2032 			goto illegal;
2033 		}
2034 		break;
2035 
2036 	case SDEV_DEL:
2037 		switch (oldstate) {
2038 		case SDEV_CREATED:
2039 		case SDEV_RUNNING:
2040 		case SDEV_OFFLINE:
2041 		case SDEV_CANCEL:
2042 			break;
2043 		default:
2044 			goto illegal;
2045 		}
2046 		break;
2047 
2048 	}
2049 	sdev->sdev_state = state;
2050 	return 0;
2051 
2052  illegal:
2053 	SCSI_LOG_ERROR_RECOVERY(1,
2054 				sdev_printk(KERN_ERR, sdev,
2055 					    "Illegal state transition %s->%s\n",
2056 					    scsi_device_state_name(oldstate),
2057 					    scsi_device_state_name(state))
2058 				);
2059 	return -EINVAL;
2060 }
2061 EXPORT_SYMBOL(scsi_device_set_state);
2062 
2063 /**
2064  *	scsi_device_quiesce - Block user issued commands.
2065  *	@sdev:	scsi device to quiesce.
2066  *
2067  *	This works by trying to transition to the SDEV_QUIESCE state
2068  *	(which must be a legal transition).  When the device is in this
2069  *	state, only special requests will be accepted, all others will
2070  *	be deferred.  Since special requests may also be requeued requests,
2071  *	a successful return doesn't guarantee the device will be
2072  *	totally quiescent.
2073  *
2074  *	Must be called with user context, may sleep.
2075  *
2076  *	Returns zero if unsuccessful or an error if not.
2077  **/
2078 int
2079 scsi_device_quiesce(struct scsi_device *sdev)
2080 {
2081 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2082 	if (err)
2083 		return err;
2084 
2085 	scsi_run_queue(sdev->request_queue);
2086 	while (sdev->device_busy) {
2087 		msleep_interruptible(200);
2088 		scsi_run_queue(sdev->request_queue);
2089 	}
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL(scsi_device_quiesce);
2093 
2094 /**
2095  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2096  *	@sdev:	scsi device to resume.
2097  *
2098  *	Moves the device from quiesced back to running and restarts the
2099  *	queues.
2100  *
2101  *	Must be called with user context, may sleep.
2102  **/
2103 void
2104 scsi_device_resume(struct scsi_device *sdev)
2105 {
2106 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2107 		return;
2108 	scsi_run_queue(sdev->request_queue);
2109 }
2110 EXPORT_SYMBOL(scsi_device_resume);
2111 
2112 static void
2113 device_quiesce_fn(struct scsi_device *sdev, void *data)
2114 {
2115 	scsi_device_quiesce(sdev);
2116 }
2117 
2118 void
2119 scsi_target_quiesce(struct scsi_target *starget)
2120 {
2121 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2122 }
2123 EXPORT_SYMBOL(scsi_target_quiesce);
2124 
2125 static void
2126 device_resume_fn(struct scsi_device *sdev, void *data)
2127 {
2128 	scsi_device_resume(sdev);
2129 }
2130 
2131 void
2132 scsi_target_resume(struct scsi_target *starget)
2133 {
2134 	starget_for_each_device(starget, NULL, device_resume_fn);
2135 }
2136 EXPORT_SYMBOL(scsi_target_resume);
2137 
2138 /**
2139  * scsi_internal_device_block - internal function to put a device
2140  *				temporarily into the SDEV_BLOCK state
2141  * @sdev:	device to block
2142  *
2143  * Block request made by scsi lld's to temporarily stop all
2144  * scsi commands on the specified device.  Called from interrupt
2145  * or normal process context.
2146  *
2147  * Returns zero if successful or error if not
2148  *
2149  * Notes:
2150  *	This routine transitions the device to the SDEV_BLOCK state
2151  *	(which must be a legal transition).  When the device is in this
2152  *	state, all commands are deferred until the scsi lld reenables
2153  *	the device with scsi_device_unblock or device_block_tmo fires.
2154  *	This routine assumes the host_lock is held on entry.
2155  **/
2156 int
2157 scsi_internal_device_block(struct scsi_device *sdev)
2158 {
2159 	request_queue_t *q = sdev->request_queue;
2160 	unsigned long flags;
2161 	int err = 0;
2162 
2163 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2164 	if (err)
2165 		return err;
2166 
2167 	/*
2168 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2169 	 * block layer from calling the midlayer with this device's
2170 	 * request queue.
2171 	 */
2172 	spin_lock_irqsave(q->queue_lock, flags);
2173 	blk_stop_queue(q);
2174 	spin_unlock_irqrestore(q->queue_lock, flags);
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2179 
2180 /**
2181  * scsi_internal_device_unblock - resume a device after a block request
2182  * @sdev:	device to resume
2183  *
2184  * Called by scsi lld's or the midlayer to restart the device queue
2185  * for the previously suspended scsi device.  Called from interrupt or
2186  * normal process context.
2187  *
2188  * Returns zero if successful or error if not.
2189  *
2190  * Notes:
2191  *	This routine transitions the device to the SDEV_RUNNING state
2192  *	(which must be a legal transition) allowing the midlayer to
2193  *	goose the queue for this device.  This routine assumes the
2194  *	host_lock is held upon entry.
2195  **/
2196 int
2197 scsi_internal_device_unblock(struct scsi_device *sdev)
2198 {
2199 	request_queue_t *q = sdev->request_queue;
2200 	int err;
2201 	unsigned long flags;
2202 
2203 	/*
2204 	 * Try to transition the scsi device to SDEV_RUNNING
2205 	 * and goose the device queue if successful.
2206 	 */
2207 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2208 	if (err)
2209 		return err;
2210 
2211 	spin_lock_irqsave(q->queue_lock, flags);
2212 	blk_start_queue(q);
2213 	spin_unlock_irqrestore(q->queue_lock, flags);
2214 
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2218 
2219 static void
2220 device_block(struct scsi_device *sdev, void *data)
2221 {
2222 	scsi_internal_device_block(sdev);
2223 }
2224 
2225 static int
2226 target_block(struct device *dev, void *data)
2227 {
2228 	if (scsi_is_target_device(dev))
2229 		starget_for_each_device(to_scsi_target(dev), NULL,
2230 					device_block);
2231 	return 0;
2232 }
2233 
2234 void
2235 scsi_target_block(struct device *dev)
2236 {
2237 	if (scsi_is_target_device(dev))
2238 		starget_for_each_device(to_scsi_target(dev), NULL,
2239 					device_block);
2240 	else
2241 		device_for_each_child(dev, NULL, target_block);
2242 }
2243 EXPORT_SYMBOL_GPL(scsi_target_block);
2244 
2245 static void
2246 device_unblock(struct scsi_device *sdev, void *data)
2247 {
2248 	scsi_internal_device_unblock(sdev);
2249 }
2250 
2251 static int
2252 target_unblock(struct device *dev, void *data)
2253 {
2254 	if (scsi_is_target_device(dev))
2255 		starget_for_each_device(to_scsi_target(dev), NULL,
2256 					device_unblock);
2257 	return 0;
2258 }
2259 
2260 void
2261 scsi_target_unblock(struct device *dev)
2262 {
2263 	if (scsi_is_target_device(dev))
2264 		starget_for_each_device(to_scsi_target(dev), NULL,
2265 					device_unblock);
2266 	else
2267 		device_for_each_child(dev, NULL, target_unblock);
2268 }
2269 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2270 
2271 /**
2272  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2273  * @sg:		scatter-gather list
2274  * @sg_count:	number of segments in sg
2275  * @offset:	offset in bytes into sg, on return offset into the mapped area
2276  * @len:	bytes to map, on return number of bytes mapped
2277  *
2278  * Returns virtual address of the start of the mapped page
2279  */
2280 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2281 			  size_t *offset, size_t *len)
2282 {
2283 	int i;
2284 	size_t sg_len = 0, len_complete = 0;
2285 	struct page *page;
2286 
2287 	for (i = 0; i < sg_count; i++) {
2288 		len_complete = sg_len; /* Complete sg-entries */
2289 		sg_len += sg[i].length;
2290 		if (sg_len > *offset)
2291 			break;
2292 	}
2293 
2294 	if (unlikely(i == sg_count)) {
2295 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2296 			"elements %d\n",
2297 		       __FUNCTION__, sg_len, *offset, sg_count);
2298 		WARN_ON(1);
2299 		return NULL;
2300 	}
2301 
2302 	/* Offset starting from the beginning of first page in this sg-entry */
2303 	*offset = *offset - len_complete + sg[i].offset;
2304 
2305 	/* Assumption: contiguous pages can be accessed as "page + i" */
2306 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2307 	*offset &= ~PAGE_MASK;
2308 
2309 	/* Bytes in this sg-entry from *offset to the end of the page */
2310 	sg_len = PAGE_SIZE - *offset;
2311 	if (*len > sg_len)
2312 		*len = sg_len;
2313 
2314 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2315 }
2316 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2317 
2318 /**
2319  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2320  *			   mapped with scsi_kmap_atomic_sg
2321  * @virt:	virtual address to be unmapped
2322  */
2323 void scsi_kunmap_atomic_sg(void *virt)
2324 {
2325 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2326 }
2327 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2328