1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->data_len > 0 && req->data_len <= bufflen)) 244 memset(buffer + (bufflen - req->data_len), 0, req->data_len); 245 246 if (resid) 247 *resid = req->data_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 struct scsi_io_context { 281 void *data; 282 void (*done)(void *data, char *sense, int result, int resid); 283 char sense[SCSI_SENSE_BUFFERSIZE]; 284 }; 285 286 static struct kmem_cache *scsi_io_context_cache; 287 288 static void scsi_end_async(struct request *req, int uptodate) 289 { 290 struct scsi_io_context *sioc = req->end_io_data; 291 292 if (sioc->done) 293 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 294 295 kmem_cache_free(scsi_io_context_cache, sioc); 296 __blk_put_request(req->q, req); 297 } 298 299 static int scsi_merge_bio(struct request *rq, struct bio *bio) 300 { 301 struct request_queue *q = rq->q; 302 303 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 304 if (rq_data_dir(rq) == WRITE) 305 bio->bi_rw |= (1 << BIO_RW); 306 blk_queue_bounce(q, &bio); 307 308 return blk_rq_append_bio(q, rq, bio); 309 } 310 311 static void scsi_bi_endio(struct bio *bio, int error) 312 { 313 bio_put(bio); 314 } 315 316 /** 317 * scsi_req_map_sg - map a scatterlist into a request 318 * @rq: request to fill 319 * @sgl: scatterlist 320 * @nsegs: number of elements 321 * @bufflen: len of buffer 322 * @gfp: memory allocation flags 323 * 324 * scsi_req_map_sg maps a scatterlist into a request so that the 325 * request can be sent to the block layer. We do not trust the scatterlist 326 * sent to use, as some ULDs use that struct to only organize the pages. 327 */ 328 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 329 int nsegs, unsigned bufflen, gfp_t gfp) 330 { 331 struct request_queue *q = rq->q; 332 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 333 unsigned int data_len = bufflen, len, bytes, off; 334 struct scatterlist *sg; 335 struct page *page; 336 struct bio *bio = NULL; 337 int i, err, nr_vecs = 0; 338 339 for_each_sg(sgl, sg, nsegs, i) { 340 page = sg_page(sg); 341 off = sg->offset; 342 len = sg->length; 343 344 while (len > 0 && data_len > 0) { 345 /* 346 * sg sends a scatterlist that is larger than 347 * the data_len it wants transferred for certain 348 * IO sizes 349 */ 350 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 351 bytes = min(bytes, data_len); 352 353 if (!bio) { 354 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 355 nr_pages -= nr_vecs; 356 357 bio = bio_alloc(gfp, nr_vecs); 358 if (!bio) { 359 err = -ENOMEM; 360 goto free_bios; 361 } 362 bio->bi_end_io = scsi_bi_endio; 363 } 364 365 if (bio_add_pc_page(q, bio, page, bytes, off) != 366 bytes) { 367 bio_put(bio); 368 err = -EINVAL; 369 goto free_bios; 370 } 371 372 if (bio->bi_vcnt >= nr_vecs) { 373 err = scsi_merge_bio(rq, bio); 374 if (err) { 375 bio_endio(bio, 0); 376 goto free_bios; 377 } 378 bio = NULL; 379 } 380 381 page++; 382 len -= bytes; 383 data_len -=bytes; 384 off = 0; 385 } 386 } 387 388 rq->buffer = rq->data = NULL; 389 rq->data_len = bufflen; 390 return 0; 391 392 free_bios: 393 while ((bio = rq->bio) != NULL) { 394 rq->bio = bio->bi_next; 395 /* 396 * call endio instead of bio_put incase it was bounced 397 */ 398 bio_endio(bio, 0); 399 } 400 401 return err; 402 } 403 404 /** 405 * scsi_execute_async - insert request 406 * @sdev: scsi device 407 * @cmd: scsi command 408 * @cmd_len: length of scsi cdb 409 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE 410 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 411 * @bufflen: len of buffer 412 * @use_sg: if buffer is a scatterlist this is the number of elements 413 * @timeout: request timeout in seconds 414 * @retries: number of times to retry request 415 * @privdata: data passed to done() 416 * @done: callback function when done 417 * @gfp: memory allocation flags 418 */ 419 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 420 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 421 int use_sg, int timeout, int retries, void *privdata, 422 void (*done)(void *, char *, int, int), gfp_t gfp) 423 { 424 struct request *req; 425 struct scsi_io_context *sioc; 426 int err = 0; 427 int write = (data_direction == DMA_TO_DEVICE); 428 429 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 430 if (!sioc) 431 return DRIVER_ERROR << 24; 432 433 req = blk_get_request(sdev->request_queue, write, gfp); 434 if (!req) 435 goto free_sense; 436 req->cmd_type = REQ_TYPE_BLOCK_PC; 437 req->cmd_flags |= REQ_QUIET; 438 439 if (use_sg) 440 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 441 else if (bufflen) 442 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 443 444 if (err) 445 goto free_req; 446 447 req->cmd_len = cmd_len; 448 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 449 memcpy(req->cmd, cmd, req->cmd_len); 450 req->sense = sioc->sense; 451 req->sense_len = 0; 452 req->timeout = timeout; 453 req->retries = retries; 454 req->end_io_data = sioc; 455 456 sioc->data = privdata; 457 sioc->done = done; 458 459 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 460 return 0; 461 462 free_req: 463 blk_put_request(req); 464 free_sense: 465 kmem_cache_free(scsi_io_context_cache, sioc); 466 return DRIVER_ERROR << 24; 467 } 468 EXPORT_SYMBOL_GPL(scsi_execute_async); 469 470 /* 471 * Function: scsi_init_cmd_errh() 472 * 473 * Purpose: Initialize cmd fields related to error handling. 474 * 475 * Arguments: cmd - command that is ready to be queued. 476 * 477 * Notes: This function has the job of initializing a number of 478 * fields related to error handling. Typically this will 479 * be called once for each command, as required. 480 */ 481 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 482 { 483 cmd->serial_number = 0; 484 scsi_set_resid(cmd, 0); 485 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 486 if (cmd->cmd_len == 0) 487 cmd->cmd_len = scsi_command_size(cmd->cmnd); 488 } 489 490 void scsi_device_unbusy(struct scsi_device *sdev) 491 { 492 struct Scsi_Host *shost = sdev->host; 493 struct scsi_target *starget = scsi_target(sdev); 494 unsigned long flags; 495 496 spin_lock_irqsave(shost->host_lock, flags); 497 shost->host_busy--; 498 starget->target_busy--; 499 if (unlikely(scsi_host_in_recovery(shost) && 500 (shost->host_failed || shost->host_eh_scheduled))) 501 scsi_eh_wakeup(shost); 502 spin_unlock(shost->host_lock); 503 spin_lock(sdev->request_queue->queue_lock); 504 sdev->device_busy--; 505 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 506 } 507 508 /* 509 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 510 * and call blk_run_queue for all the scsi_devices on the target - 511 * including current_sdev first. 512 * 513 * Called with *no* scsi locks held. 514 */ 515 static void scsi_single_lun_run(struct scsi_device *current_sdev) 516 { 517 struct Scsi_Host *shost = current_sdev->host; 518 struct scsi_device *sdev, *tmp; 519 struct scsi_target *starget = scsi_target(current_sdev); 520 unsigned long flags; 521 522 spin_lock_irqsave(shost->host_lock, flags); 523 starget->starget_sdev_user = NULL; 524 spin_unlock_irqrestore(shost->host_lock, flags); 525 526 /* 527 * Call blk_run_queue for all LUNs on the target, starting with 528 * current_sdev. We race with others (to set starget_sdev_user), 529 * but in most cases, we will be first. Ideally, each LU on the 530 * target would get some limited time or requests on the target. 531 */ 532 blk_run_queue(current_sdev->request_queue); 533 534 spin_lock_irqsave(shost->host_lock, flags); 535 if (starget->starget_sdev_user) 536 goto out; 537 list_for_each_entry_safe(sdev, tmp, &starget->devices, 538 same_target_siblings) { 539 if (sdev == current_sdev) 540 continue; 541 if (scsi_device_get(sdev)) 542 continue; 543 544 spin_unlock_irqrestore(shost->host_lock, flags); 545 blk_run_queue(sdev->request_queue); 546 spin_lock_irqsave(shost->host_lock, flags); 547 548 scsi_device_put(sdev); 549 } 550 out: 551 spin_unlock_irqrestore(shost->host_lock, flags); 552 } 553 554 static inline int scsi_device_is_busy(struct scsi_device *sdev) 555 { 556 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 557 return 1; 558 559 return 0; 560 } 561 562 static inline int scsi_target_is_busy(struct scsi_target *starget) 563 { 564 return ((starget->can_queue > 0 && 565 starget->target_busy >= starget->can_queue) || 566 starget->target_blocked); 567 } 568 569 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 570 { 571 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 572 shost->host_blocked || shost->host_self_blocked) 573 return 1; 574 575 return 0; 576 } 577 578 /* 579 * Function: scsi_run_queue() 580 * 581 * Purpose: Select a proper request queue to serve next 582 * 583 * Arguments: q - last request's queue 584 * 585 * Returns: Nothing 586 * 587 * Notes: The previous command was completely finished, start 588 * a new one if possible. 589 */ 590 static void scsi_run_queue(struct request_queue *q) 591 { 592 struct scsi_device *sdev = q->queuedata; 593 struct Scsi_Host *shost = sdev->host; 594 LIST_HEAD(starved_list); 595 unsigned long flags; 596 597 if (scsi_target(sdev)->single_lun) 598 scsi_single_lun_run(sdev); 599 600 spin_lock_irqsave(shost->host_lock, flags); 601 list_splice_init(&shost->starved_list, &starved_list); 602 603 while (!list_empty(&starved_list)) { 604 int flagset; 605 606 /* 607 * As long as shost is accepting commands and we have 608 * starved queues, call blk_run_queue. scsi_request_fn 609 * drops the queue_lock and can add us back to the 610 * starved_list. 611 * 612 * host_lock protects the starved_list and starved_entry. 613 * scsi_request_fn must get the host_lock before checking 614 * or modifying starved_list or starved_entry. 615 */ 616 if (scsi_host_is_busy(shost)) 617 break; 618 619 sdev = list_entry(starved_list.next, 620 struct scsi_device, starved_entry); 621 list_del_init(&sdev->starved_entry); 622 if (scsi_target_is_busy(scsi_target(sdev))) { 623 list_move_tail(&sdev->starved_entry, 624 &shost->starved_list); 625 continue; 626 } 627 628 spin_unlock(shost->host_lock); 629 630 spin_lock(sdev->request_queue->queue_lock); 631 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 632 !test_bit(QUEUE_FLAG_REENTER, 633 &sdev->request_queue->queue_flags); 634 if (flagset) 635 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 636 __blk_run_queue(sdev->request_queue); 637 if (flagset) 638 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 639 spin_unlock(sdev->request_queue->queue_lock); 640 641 spin_lock(shost->host_lock); 642 } 643 /* put any unprocessed entries back */ 644 list_splice(&starved_list, &shost->starved_list); 645 spin_unlock_irqrestore(shost->host_lock, flags); 646 647 blk_run_queue(q); 648 } 649 650 /* 651 * Function: scsi_requeue_command() 652 * 653 * Purpose: Handle post-processing of completed commands. 654 * 655 * Arguments: q - queue to operate on 656 * cmd - command that may need to be requeued. 657 * 658 * Returns: Nothing 659 * 660 * Notes: After command completion, there may be blocks left 661 * over which weren't finished by the previous command 662 * this can be for a number of reasons - the main one is 663 * I/O errors in the middle of the request, in which case 664 * we need to request the blocks that come after the bad 665 * sector. 666 * Notes: Upon return, cmd is a stale pointer. 667 */ 668 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 669 { 670 struct request *req = cmd->request; 671 unsigned long flags; 672 673 spin_lock_irqsave(q->queue_lock, flags); 674 scsi_unprep_request(req); 675 blk_requeue_request(q, req); 676 spin_unlock_irqrestore(q->queue_lock, flags); 677 678 scsi_run_queue(q); 679 } 680 681 void scsi_next_command(struct scsi_cmnd *cmd) 682 { 683 struct scsi_device *sdev = cmd->device; 684 struct request_queue *q = sdev->request_queue; 685 686 /* need to hold a reference on the device before we let go of the cmd */ 687 get_device(&sdev->sdev_gendev); 688 689 scsi_put_command(cmd); 690 scsi_run_queue(q); 691 692 /* ok to remove device now */ 693 put_device(&sdev->sdev_gendev); 694 } 695 696 void scsi_run_host_queues(struct Scsi_Host *shost) 697 { 698 struct scsi_device *sdev; 699 700 shost_for_each_device(sdev, shost) 701 scsi_run_queue(sdev->request_queue); 702 } 703 704 static void __scsi_release_buffers(struct scsi_cmnd *, int); 705 706 /* 707 * Function: scsi_end_request() 708 * 709 * Purpose: Post-processing of completed commands (usually invoked at end 710 * of upper level post-processing and scsi_io_completion). 711 * 712 * Arguments: cmd - command that is complete. 713 * error - 0 if I/O indicates success, < 0 for I/O error. 714 * bytes - number of bytes of completed I/O 715 * requeue - indicates whether we should requeue leftovers. 716 * 717 * Lock status: Assumed that lock is not held upon entry. 718 * 719 * Returns: cmd if requeue required, NULL otherwise. 720 * 721 * Notes: This is called for block device requests in order to 722 * mark some number of sectors as complete. 723 * 724 * We are guaranteeing that the request queue will be goosed 725 * at some point during this call. 726 * Notes: If cmd was requeued, upon return it will be a stale pointer. 727 */ 728 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 729 int bytes, int requeue) 730 { 731 struct request_queue *q = cmd->device->request_queue; 732 struct request *req = cmd->request; 733 734 /* 735 * If there are blocks left over at the end, set up the command 736 * to queue the remainder of them. 737 */ 738 if (blk_end_request(req, error, bytes)) { 739 int leftover = (req->hard_nr_sectors << 9); 740 741 if (blk_pc_request(req)) 742 leftover = req->data_len; 743 744 /* kill remainder if no retrys */ 745 if (error && scsi_noretry_cmd(cmd)) 746 blk_end_request(req, error, leftover); 747 else { 748 if (requeue) { 749 /* 750 * Bleah. Leftovers again. Stick the 751 * leftovers in the front of the 752 * queue, and goose the queue again. 753 */ 754 scsi_release_buffers(cmd); 755 scsi_requeue_command(q, cmd); 756 cmd = NULL; 757 } 758 return cmd; 759 } 760 } 761 762 /* 763 * This will goose the queue request function at the end, so we don't 764 * need to worry about launching another command. 765 */ 766 __scsi_release_buffers(cmd, 0); 767 scsi_next_command(cmd); 768 return NULL; 769 } 770 771 static inline unsigned int scsi_sgtable_index(unsigned short nents) 772 { 773 unsigned int index; 774 775 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 776 777 if (nents <= 8) 778 index = 0; 779 else 780 index = get_count_order(nents) - 3; 781 782 return index; 783 } 784 785 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 786 { 787 struct scsi_host_sg_pool *sgp; 788 789 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 790 mempool_free(sgl, sgp->pool); 791 } 792 793 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 794 { 795 struct scsi_host_sg_pool *sgp; 796 797 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 798 return mempool_alloc(sgp->pool, gfp_mask); 799 } 800 801 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 802 gfp_t gfp_mask) 803 { 804 int ret; 805 806 BUG_ON(!nents); 807 808 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 809 gfp_mask, scsi_sg_alloc); 810 if (unlikely(ret)) 811 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 812 scsi_sg_free); 813 814 return ret; 815 } 816 817 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 818 { 819 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 820 } 821 822 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 823 { 824 825 if (cmd->sdb.table.nents) 826 scsi_free_sgtable(&cmd->sdb); 827 828 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 829 830 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 831 struct scsi_data_buffer *bidi_sdb = 832 cmd->request->next_rq->special; 833 scsi_free_sgtable(bidi_sdb); 834 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 835 cmd->request->next_rq->special = NULL; 836 } 837 838 if (scsi_prot_sg_count(cmd)) 839 scsi_free_sgtable(cmd->prot_sdb); 840 } 841 842 /* 843 * Function: scsi_release_buffers() 844 * 845 * Purpose: Completion processing for block device I/O requests. 846 * 847 * Arguments: cmd - command that we are bailing. 848 * 849 * Lock status: Assumed that no lock is held upon entry. 850 * 851 * Returns: Nothing 852 * 853 * Notes: In the event that an upper level driver rejects a 854 * command, we must release resources allocated during 855 * the __init_io() function. Primarily this would involve 856 * the scatter-gather table, and potentially any bounce 857 * buffers. 858 */ 859 void scsi_release_buffers(struct scsi_cmnd *cmd) 860 { 861 __scsi_release_buffers(cmd, 1); 862 } 863 EXPORT_SYMBOL(scsi_release_buffers); 864 865 /* 866 * Bidi commands Must be complete as a whole, both sides at once. 867 * If part of the bytes were written and lld returned 868 * scsi_in()->resid and/or scsi_out()->resid this information will be left 869 * in req->data_len and req->next_rq->data_len. The upper-layer driver can 870 * decide what to do with this information. 871 */ 872 static void scsi_end_bidi_request(struct scsi_cmnd *cmd) 873 { 874 struct request *req = cmd->request; 875 unsigned int dlen = req->data_len; 876 unsigned int next_dlen = req->next_rq->data_len; 877 878 req->data_len = scsi_out(cmd)->resid; 879 req->next_rq->data_len = scsi_in(cmd)->resid; 880 881 /* The req and req->next_rq have not been completed */ 882 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen)); 883 884 scsi_release_buffers(cmd); 885 886 /* 887 * This will goose the queue request function at the end, so we don't 888 * need to worry about launching another command. 889 */ 890 scsi_next_command(cmd); 891 } 892 893 /* 894 * Function: scsi_io_completion() 895 * 896 * Purpose: Completion processing for block device I/O requests. 897 * 898 * Arguments: cmd - command that is finished. 899 * 900 * Lock status: Assumed that no lock is held upon entry. 901 * 902 * Returns: Nothing 903 * 904 * Notes: This function is matched in terms of capabilities to 905 * the function that created the scatter-gather list. 906 * In other words, if there are no bounce buffers 907 * (the normal case for most drivers), we don't need 908 * the logic to deal with cleaning up afterwards. 909 * 910 * We must call scsi_end_request(). This will finish off 911 * the specified number of sectors. If we are done, the 912 * command block will be released and the queue function 913 * will be goosed. If we are not done then we have to 914 * figure out what to do next: 915 * 916 * a) We can call scsi_requeue_command(). The request 917 * will be unprepared and put back on the queue. Then 918 * a new command will be created for it. This should 919 * be used if we made forward progress, or if we want 920 * to switch from READ(10) to READ(6) for example. 921 * 922 * b) We can call scsi_queue_insert(). The request will 923 * be put back on the queue and retried using the same 924 * command as before, possibly after a delay. 925 * 926 * c) We can call blk_end_request() with -EIO to fail 927 * the remainder of the request. 928 */ 929 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 930 { 931 int result = cmd->result; 932 int this_count; 933 struct request_queue *q = cmd->device->request_queue; 934 struct request *req = cmd->request; 935 int error = 0; 936 struct scsi_sense_hdr sshdr; 937 int sense_valid = 0; 938 int sense_deferred = 0; 939 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 940 ACTION_DELAYED_RETRY} action; 941 char *description = NULL; 942 943 if (result) { 944 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 945 if (sense_valid) 946 sense_deferred = scsi_sense_is_deferred(&sshdr); 947 } 948 949 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 950 req->errors = result; 951 if (result) { 952 if (sense_valid && req->sense) { 953 /* 954 * SG_IO wants current and deferred errors 955 */ 956 int len = 8 + cmd->sense_buffer[7]; 957 958 if (len > SCSI_SENSE_BUFFERSIZE) 959 len = SCSI_SENSE_BUFFERSIZE; 960 memcpy(req->sense, cmd->sense_buffer, len); 961 req->sense_len = len; 962 } 963 if (!sense_deferred) 964 error = -EIO; 965 } 966 if (scsi_bidi_cmnd(cmd)) { 967 /* will also release_buffers */ 968 scsi_end_bidi_request(cmd); 969 return; 970 } 971 req->data_len = scsi_get_resid(cmd); 972 } 973 974 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 975 976 /* 977 * Next deal with any sectors which we were able to correctly 978 * handle. 979 */ 980 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 981 "%d bytes done.\n", 982 req->nr_sectors, good_bytes)); 983 984 /* A number of bytes were successfully read. If there 985 * are leftovers and there is some kind of error 986 * (result != 0), retry the rest. 987 */ 988 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 989 return; 990 this_count = blk_rq_bytes(req); 991 992 error = -EIO; 993 994 if (host_byte(result) == DID_RESET) { 995 /* Third party bus reset or reset for error recovery 996 * reasons. Just retry the command and see what 997 * happens. 998 */ 999 action = ACTION_RETRY; 1000 } else if (sense_valid && !sense_deferred) { 1001 switch (sshdr.sense_key) { 1002 case UNIT_ATTENTION: 1003 if (cmd->device->removable) { 1004 /* Detected disc change. Set a bit 1005 * and quietly refuse further access. 1006 */ 1007 cmd->device->changed = 1; 1008 description = "Media Changed"; 1009 action = ACTION_FAIL; 1010 } else { 1011 /* Must have been a power glitch, or a 1012 * bus reset. Could not have been a 1013 * media change, so we just retry the 1014 * command and see what happens. 1015 */ 1016 action = ACTION_RETRY; 1017 } 1018 break; 1019 case ILLEGAL_REQUEST: 1020 /* If we had an ILLEGAL REQUEST returned, then 1021 * we may have performed an unsupported 1022 * command. The only thing this should be 1023 * would be a ten byte read where only a six 1024 * byte read was supported. Also, on a system 1025 * where READ CAPACITY failed, we may have 1026 * read past the end of the disk. 1027 */ 1028 if ((cmd->device->use_10_for_rw && 1029 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 1030 (cmd->cmnd[0] == READ_10 || 1031 cmd->cmnd[0] == WRITE_10)) { 1032 /* This will issue a new 6-byte command. */ 1033 cmd->device->use_10_for_rw = 0; 1034 action = ACTION_REPREP; 1035 } else if (sshdr.asc == 0x10) /* DIX */ { 1036 description = "Host Data Integrity Failure"; 1037 action = ACTION_FAIL; 1038 error = -EILSEQ; 1039 } else 1040 action = ACTION_FAIL; 1041 break; 1042 case ABORTED_COMMAND: 1043 action = ACTION_FAIL; 1044 if (sshdr.asc == 0x10) { /* DIF */ 1045 description = "Target Data Integrity Failure"; 1046 error = -EILSEQ; 1047 } 1048 break; 1049 case NOT_READY: 1050 /* If the device is in the process of becoming 1051 * ready, or has a temporary blockage, retry. 1052 */ 1053 if (sshdr.asc == 0x04) { 1054 switch (sshdr.ascq) { 1055 case 0x01: /* becoming ready */ 1056 case 0x04: /* format in progress */ 1057 case 0x05: /* rebuild in progress */ 1058 case 0x06: /* recalculation in progress */ 1059 case 0x07: /* operation in progress */ 1060 case 0x08: /* Long write in progress */ 1061 case 0x09: /* self test in progress */ 1062 action = ACTION_DELAYED_RETRY; 1063 break; 1064 default: 1065 description = "Device not ready"; 1066 action = ACTION_FAIL; 1067 break; 1068 } 1069 } else { 1070 description = "Device not ready"; 1071 action = ACTION_FAIL; 1072 } 1073 break; 1074 case VOLUME_OVERFLOW: 1075 /* See SSC3rXX or current. */ 1076 action = ACTION_FAIL; 1077 break; 1078 default: 1079 description = "Unhandled sense code"; 1080 action = ACTION_FAIL; 1081 break; 1082 } 1083 } else { 1084 description = "Unhandled error code"; 1085 action = ACTION_FAIL; 1086 } 1087 1088 switch (action) { 1089 case ACTION_FAIL: 1090 /* Give up and fail the remainder of the request */ 1091 scsi_release_buffers(cmd); 1092 if (!(req->cmd_flags & REQ_QUIET)) { 1093 if (description) 1094 scmd_printk(KERN_INFO, cmd, "%s\n", 1095 description); 1096 scsi_print_result(cmd); 1097 if (driver_byte(result) & DRIVER_SENSE) 1098 scsi_print_sense("", cmd); 1099 } 1100 blk_end_request(req, -EIO, blk_rq_bytes(req)); 1101 scsi_next_command(cmd); 1102 break; 1103 case ACTION_REPREP: 1104 /* Unprep the request and put it back at the head of the queue. 1105 * A new command will be prepared and issued. 1106 */ 1107 scsi_release_buffers(cmd); 1108 scsi_requeue_command(q, cmd); 1109 break; 1110 case ACTION_RETRY: 1111 /* Retry the same command immediately */ 1112 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1113 break; 1114 case ACTION_DELAYED_RETRY: 1115 /* Retry the same command after a delay */ 1116 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1117 break; 1118 } 1119 } 1120 1121 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1122 gfp_t gfp_mask) 1123 { 1124 int count; 1125 1126 /* 1127 * If sg table allocation fails, requeue request later. 1128 */ 1129 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1130 gfp_mask))) { 1131 return BLKPREP_DEFER; 1132 } 1133 1134 req->buffer = NULL; 1135 1136 /* 1137 * Next, walk the list, and fill in the addresses and sizes of 1138 * each segment. 1139 */ 1140 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1141 BUG_ON(count > sdb->table.nents); 1142 sdb->table.nents = count; 1143 if (blk_pc_request(req)) 1144 sdb->length = req->data_len; 1145 else 1146 sdb->length = req->nr_sectors << 9; 1147 return BLKPREP_OK; 1148 } 1149 1150 /* 1151 * Function: scsi_init_io() 1152 * 1153 * Purpose: SCSI I/O initialize function. 1154 * 1155 * Arguments: cmd - Command descriptor we wish to initialize 1156 * 1157 * Returns: 0 on success 1158 * BLKPREP_DEFER if the failure is retryable 1159 * BLKPREP_KILL if the failure is fatal 1160 */ 1161 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1162 { 1163 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 1164 if (error) 1165 goto err_exit; 1166 1167 if (blk_bidi_rq(cmd->request)) { 1168 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1169 scsi_sdb_cache, GFP_ATOMIC); 1170 if (!bidi_sdb) { 1171 error = BLKPREP_DEFER; 1172 goto err_exit; 1173 } 1174 1175 cmd->request->next_rq->special = bidi_sdb; 1176 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 1177 GFP_ATOMIC); 1178 if (error) 1179 goto err_exit; 1180 } 1181 1182 if (blk_integrity_rq(cmd->request)) { 1183 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1184 int ivecs, count; 1185 1186 BUG_ON(prot_sdb == NULL); 1187 ivecs = blk_rq_count_integrity_sg(cmd->request); 1188 1189 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1190 error = BLKPREP_DEFER; 1191 goto err_exit; 1192 } 1193 1194 count = blk_rq_map_integrity_sg(cmd->request, 1195 prot_sdb->table.sgl); 1196 BUG_ON(unlikely(count > ivecs)); 1197 1198 cmd->prot_sdb = prot_sdb; 1199 cmd->prot_sdb->table.nents = count; 1200 } 1201 1202 return BLKPREP_OK ; 1203 1204 err_exit: 1205 scsi_release_buffers(cmd); 1206 if (error == BLKPREP_KILL) 1207 scsi_put_command(cmd); 1208 else /* BLKPREP_DEFER */ 1209 scsi_unprep_request(cmd->request); 1210 1211 return error; 1212 } 1213 EXPORT_SYMBOL(scsi_init_io); 1214 1215 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1216 struct request *req) 1217 { 1218 struct scsi_cmnd *cmd; 1219 1220 if (!req->special) { 1221 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1222 if (unlikely(!cmd)) 1223 return NULL; 1224 req->special = cmd; 1225 } else { 1226 cmd = req->special; 1227 } 1228 1229 /* pull a tag out of the request if we have one */ 1230 cmd->tag = req->tag; 1231 cmd->request = req; 1232 1233 cmd->cmnd = req->cmd; 1234 1235 return cmd; 1236 } 1237 1238 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1239 { 1240 struct scsi_cmnd *cmd; 1241 int ret = scsi_prep_state_check(sdev, req); 1242 1243 if (ret != BLKPREP_OK) 1244 return ret; 1245 1246 cmd = scsi_get_cmd_from_req(sdev, req); 1247 if (unlikely(!cmd)) 1248 return BLKPREP_DEFER; 1249 1250 /* 1251 * BLOCK_PC requests may transfer data, in which case they must 1252 * a bio attached to them. Or they might contain a SCSI command 1253 * that does not transfer data, in which case they may optionally 1254 * submit a request without an attached bio. 1255 */ 1256 if (req->bio) { 1257 int ret; 1258 1259 BUG_ON(!req->nr_phys_segments); 1260 1261 ret = scsi_init_io(cmd, GFP_ATOMIC); 1262 if (unlikely(ret)) 1263 return ret; 1264 } else { 1265 BUG_ON(req->data_len); 1266 BUG_ON(req->data); 1267 1268 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1269 req->buffer = NULL; 1270 } 1271 1272 cmd->cmd_len = req->cmd_len; 1273 if (!req->data_len) 1274 cmd->sc_data_direction = DMA_NONE; 1275 else if (rq_data_dir(req) == WRITE) 1276 cmd->sc_data_direction = DMA_TO_DEVICE; 1277 else 1278 cmd->sc_data_direction = DMA_FROM_DEVICE; 1279 1280 cmd->transfersize = req->data_len; 1281 cmd->allowed = req->retries; 1282 return BLKPREP_OK; 1283 } 1284 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1285 1286 /* 1287 * Setup a REQ_TYPE_FS command. These are simple read/write request 1288 * from filesystems that still need to be translated to SCSI CDBs from 1289 * the ULD. 1290 */ 1291 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1292 { 1293 struct scsi_cmnd *cmd; 1294 int ret = scsi_prep_state_check(sdev, req); 1295 1296 if (ret != BLKPREP_OK) 1297 return ret; 1298 1299 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1300 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1301 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1302 if (ret != BLKPREP_OK) 1303 return ret; 1304 } 1305 1306 /* 1307 * Filesystem requests must transfer data. 1308 */ 1309 BUG_ON(!req->nr_phys_segments); 1310 1311 cmd = scsi_get_cmd_from_req(sdev, req); 1312 if (unlikely(!cmd)) 1313 return BLKPREP_DEFER; 1314 1315 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1316 return scsi_init_io(cmd, GFP_ATOMIC); 1317 } 1318 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1319 1320 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1321 { 1322 int ret = BLKPREP_OK; 1323 1324 /* 1325 * If the device is not in running state we will reject some 1326 * or all commands. 1327 */ 1328 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1329 switch (sdev->sdev_state) { 1330 case SDEV_OFFLINE: 1331 /* 1332 * If the device is offline we refuse to process any 1333 * commands. The device must be brought online 1334 * before trying any recovery commands. 1335 */ 1336 sdev_printk(KERN_ERR, sdev, 1337 "rejecting I/O to offline device\n"); 1338 ret = BLKPREP_KILL; 1339 break; 1340 case SDEV_DEL: 1341 /* 1342 * If the device is fully deleted, we refuse to 1343 * process any commands as well. 1344 */ 1345 sdev_printk(KERN_ERR, sdev, 1346 "rejecting I/O to dead device\n"); 1347 ret = BLKPREP_KILL; 1348 break; 1349 case SDEV_QUIESCE: 1350 case SDEV_BLOCK: 1351 case SDEV_CREATED_BLOCK: 1352 /* 1353 * If the devices is blocked we defer normal commands. 1354 */ 1355 if (!(req->cmd_flags & REQ_PREEMPT)) 1356 ret = BLKPREP_DEFER; 1357 break; 1358 default: 1359 /* 1360 * For any other not fully online state we only allow 1361 * special commands. In particular any user initiated 1362 * command is not allowed. 1363 */ 1364 if (!(req->cmd_flags & REQ_PREEMPT)) 1365 ret = BLKPREP_KILL; 1366 break; 1367 } 1368 } 1369 return ret; 1370 } 1371 EXPORT_SYMBOL(scsi_prep_state_check); 1372 1373 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1374 { 1375 struct scsi_device *sdev = q->queuedata; 1376 1377 switch (ret) { 1378 case BLKPREP_KILL: 1379 req->errors = DID_NO_CONNECT << 16; 1380 /* release the command and kill it */ 1381 if (req->special) { 1382 struct scsi_cmnd *cmd = req->special; 1383 scsi_release_buffers(cmd); 1384 scsi_put_command(cmd); 1385 req->special = NULL; 1386 } 1387 break; 1388 case BLKPREP_DEFER: 1389 /* 1390 * If we defer, the elv_next_request() returns NULL, but the 1391 * queue must be restarted, so we plug here if no returning 1392 * command will automatically do that. 1393 */ 1394 if (sdev->device_busy == 0) 1395 blk_plug_device(q); 1396 break; 1397 default: 1398 req->cmd_flags |= REQ_DONTPREP; 1399 } 1400 1401 return ret; 1402 } 1403 EXPORT_SYMBOL(scsi_prep_return); 1404 1405 int scsi_prep_fn(struct request_queue *q, struct request *req) 1406 { 1407 struct scsi_device *sdev = q->queuedata; 1408 int ret = BLKPREP_KILL; 1409 1410 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1411 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1412 return scsi_prep_return(q, req, ret); 1413 } 1414 1415 /* 1416 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1417 * return 0. 1418 * 1419 * Called with the queue_lock held. 1420 */ 1421 static inline int scsi_dev_queue_ready(struct request_queue *q, 1422 struct scsi_device *sdev) 1423 { 1424 if (sdev->device_busy == 0 && sdev->device_blocked) { 1425 /* 1426 * unblock after device_blocked iterates to zero 1427 */ 1428 if (--sdev->device_blocked == 0) { 1429 SCSI_LOG_MLQUEUE(3, 1430 sdev_printk(KERN_INFO, sdev, 1431 "unblocking device at zero depth\n")); 1432 } else { 1433 blk_plug_device(q); 1434 return 0; 1435 } 1436 } 1437 if (scsi_device_is_busy(sdev)) 1438 return 0; 1439 1440 return 1; 1441 } 1442 1443 1444 /* 1445 * scsi_target_queue_ready: checks if there we can send commands to target 1446 * @sdev: scsi device on starget to check. 1447 * 1448 * Called with the host lock held. 1449 */ 1450 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1451 struct scsi_device *sdev) 1452 { 1453 struct scsi_target *starget = scsi_target(sdev); 1454 1455 if (starget->single_lun) { 1456 if (starget->starget_sdev_user && 1457 starget->starget_sdev_user != sdev) 1458 return 0; 1459 starget->starget_sdev_user = sdev; 1460 } 1461 1462 if (starget->target_busy == 0 && starget->target_blocked) { 1463 /* 1464 * unblock after target_blocked iterates to zero 1465 */ 1466 if (--starget->target_blocked == 0) { 1467 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1468 "unblocking target at zero depth\n")); 1469 } else { 1470 blk_plug_device(sdev->request_queue); 1471 return 0; 1472 } 1473 } 1474 1475 if (scsi_target_is_busy(starget)) { 1476 if (list_empty(&sdev->starved_entry)) { 1477 list_add_tail(&sdev->starved_entry, 1478 &shost->starved_list); 1479 return 0; 1480 } 1481 } 1482 1483 /* We're OK to process the command, so we can't be starved */ 1484 if (!list_empty(&sdev->starved_entry)) 1485 list_del_init(&sdev->starved_entry); 1486 return 1; 1487 } 1488 1489 /* 1490 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1491 * return 0. We must end up running the queue again whenever 0 is 1492 * returned, else IO can hang. 1493 * 1494 * Called with host_lock held. 1495 */ 1496 static inline int scsi_host_queue_ready(struct request_queue *q, 1497 struct Scsi_Host *shost, 1498 struct scsi_device *sdev) 1499 { 1500 if (scsi_host_in_recovery(shost)) 1501 return 0; 1502 if (shost->host_busy == 0 && shost->host_blocked) { 1503 /* 1504 * unblock after host_blocked iterates to zero 1505 */ 1506 if (--shost->host_blocked == 0) { 1507 SCSI_LOG_MLQUEUE(3, 1508 printk("scsi%d unblocking host at zero depth\n", 1509 shost->host_no)); 1510 } else { 1511 return 0; 1512 } 1513 } 1514 if (scsi_host_is_busy(shost)) { 1515 if (list_empty(&sdev->starved_entry)) 1516 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1517 return 0; 1518 } 1519 1520 /* We're OK to process the command, so we can't be starved */ 1521 if (!list_empty(&sdev->starved_entry)) 1522 list_del_init(&sdev->starved_entry); 1523 1524 return 1; 1525 } 1526 1527 /* 1528 * Busy state exporting function for request stacking drivers. 1529 * 1530 * For efficiency, no lock is taken to check the busy state of 1531 * shost/starget/sdev, since the returned value is not guaranteed and 1532 * may be changed after request stacking drivers call the function, 1533 * regardless of taking lock or not. 1534 * 1535 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1536 * (e.g. !sdev), scsi needs to return 'not busy'. 1537 * Otherwise, request stacking drivers may hold requests forever. 1538 */ 1539 static int scsi_lld_busy(struct request_queue *q) 1540 { 1541 struct scsi_device *sdev = q->queuedata; 1542 struct Scsi_Host *shost; 1543 struct scsi_target *starget; 1544 1545 if (!sdev) 1546 return 0; 1547 1548 shost = sdev->host; 1549 starget = scsi_target(sdev); 1550 1551 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1552 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1553 return 1; 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * Kill a request for a dead device 1560 */ 1561 static void scsi_kill_request(struct request *req, struct request_queue *q) 1562 { 1563 struct scsi_cmnd *cmd = req->special; 1564 struct scsi_device *sdev = cmd->device; 1565 struct scsi_target *starget = scsi_target(sdev); 1566 struct Scsi_Host *shost = sdev->host; 1567 1568 blkdev_dequeue_request(req); 1569 1570 if (unlikely(cmd == NULL)) { 1571 printk(KERN_CRIT "impossible request in %s.\n", 1572 __func__); 1573 BUG(); 1574 } 1575 1576 scsi_init_cmd_errh(cmd); 1577 cmd->result = DID_NO_CONNECT << 16; 1578 atomic_inc(&cmd->device->iorequest_cnt); 1579 1580 /* 1581 * SCSI request completion path will do scsi_device_unbusy(), 1582 * bump busy counts. To bump the counters, we need to dance 1583 * with the locks as normal issue path does. 1584 */ 1585 sdev->device_busy++; 1586 spin_unlock(sdev->request_queue->queue_lock); 1587 spin_lock(shost->host_lock); 1588 shost->host_busy++; 1589 starget->target_busy++; 1590 spin_unlock(shost->host_lock); 1591 spin_lock(sdev->request_queue->queue_lock); 1592 1593 blk_complete_request(req); 1594 } 1595 1596 static void scsi_softirq_done(struct request *rq) 1597 { 1598 struct scsi_cmnd *cmd = rq->special; 1599 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1600 int disposition; 1601 1602 INIT_LIST_HEAD(&cmd->eh_entry); 1603 1604 /* 1605 * Set the serial numbers back to zero 1606 */ 1607 cmd->serial_number = 0; 1608 1609 atomic_inc(&cmd->device->iodone_cnt); 1610 if (cmd->result) 1611 atomic_inc(&cmd->device->ioerr_cnt); 1612 1613 disposition = scsi_decide_disposition(cmd); 1614 if (disposition != SUCCESS && 1615 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1616 sdev_printk(KERN_ERR, cmd->device, 1617 "timing out command, waited %lus\n", 1618 wait_for/HZ); 1619 disposition = SUCCESS; 1620 } 1621 1622 scsi_log_completion(cmd, disposition); 1623 1624 switch (disposition) { 1625 case SUCCESS: 1626 scsi_finish_command(cmd); 1627 break; 1628 case NEEDS_RETRY: 1629 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1630 break; 1631 case ADD_TO_MLQUEUE: 1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1633 break; 1634 default: 1635 if (!scsi_eh_scmd_add(cmd, 0)) 1636 scsi_finish_command(cmd); 1637 } 1638 } 1639 1640 /* 1641 * Function: scsi_request_fn() 1642 * 1643 * Purpose: Main strategy routine for SCSI. 1644 * 1645 * Arguments: q - Pointer to actual queue. 1646 * 1647 * Returns: Nothing 1648 * 1649 * Lock status: IO request lock assumed to be held when called. 1650 */ 1651 static void scsi_request_fn(struct request_queue *q) 1652 { 1653 struct scsi_device *sdev = q->queuedata; 1654 struct Scsi_Host *shost; 1655 struct scsi_cmnd *cmd; 1656 struct request *req; 1657 1658 if (!sdev) { 1659 printk("scsi: killing requests for dead queue\n"); 1660 while ((req = elv_next_request(q)) != NULL) 1661 scsi_kill_request(req, q); 1662 return; 1663 } 1664 1665 if(!get_device(&sdev->sdev_gendev)) 1666 /* We must be tearing the block queue down already */ 1667 return; 1668 1669 /* 1670 * To start with, we keep looping until the queue is empty, or until 1671 * the host is no longer able to accept any more requests. 1672 */ 1673 shost = sdev->host; 1674 while (!blk_queue_plugged(q)) { 1675 int rtn; 1676 /* 1677 * get next queueable request. We do this early to make sure 1678 * that the request is fully prepared even if we cannot 1679 * accept it. 1680 */ 1681 req = elv_next_request(q); 1682 if (!req || !scsi_dev_queue_ready(q, sdev)) 1683 break; 1684 1685 if (unlikely(!scsi_device_online(sdev))) { 1686 sdev_printk(KERN_ERR, sdev, 1687 "rejecting I/O to offline device\n"); 1688 scsi_kill_request(req, q); 1689 continue; 1690 } 1691 1692 1693 /* 1694 * Remove the request from the request list. 1695 */ 1696 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1697 blkdev_dequeue_request(req); 1698 sdev->device_busy++; 1699 1700 spin_unlock(q->queue_lock); 1701 cmd = req->special; 1702 if (unlikely(cmd == NULL)) { 1703 printk(KERN_CRIT "impossible request in %s.\n" 1704 "please mail a stack trace to " 1705 "linux-scsi@vger.kernel.org\n", 1706 __func__); 1707 blk_dump_rq_flags(req, "foo"); 1708 BUG(); 1709 } 1710 spin_lock(shost->host_lock); 1711 1712 /* 1713 * We hit this when the driver is using a host wide 1714 * tag map. For device level tag maps the queue_depth check 1715 * in the device ready fn would prevent us from trying 1716 * to allocate a tag. Since the map is a shared host resource 1717 * we add the dev to the starved list so it eventually gets 1718 * a run when a tag is freed. 1719 */ 1720 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1721 if (list_empty(&sdev->starved_entry)) 1722 list_add_tail(&sdev->starved_entry, 1723 &shost->starved_list); 1724 goto not_ready; 1725 } 1726 1727 if (!scsi_target_queue_ready(shost, sdev)) 1728 goto not_ready; 1729 1730 if (!scsi_host_queue_ready(q, shost, sdev)) 1731 goto not_ready; 1732 1733 scsi_target(sdev)->target_busy++; 1734 shost->host_busy++; 1735 1736 /* 1737 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1738 * take the lock again. 1739 */ 1740 spin_unlock_irq(shost->host_lock); 1741 1742 /* 1743 * Finally, initialize any error handling parameters, and set up 1744 * the timers for timeouts. 1745 */ 1746 scsi_init_cmd_errh(cmd); 1747 1748 /* 1749 * Dispatch the command to the low-level driver. 1750 */ 1751 rtn = scsi_dispatch_cmd(cmd); 1752 spin_lock_irq(q->queue_lock); 1753 if(rtn) { 1754 /* we're refusing the command; because of 1755 * the way locks get dropped, we need to 1756 * check here if plugging is required */ 1757 if(sdev->device_busy == 0) 1758 blk_plug_device(q); 1759 1760 break; 1761 } 1762 } 1763 1764 goto out; 1765 1766 not_ready: 1767 spin_unlock_irq(shost->host_lock); 1768 1769 /* 1770 * lock q, handle tag, requeue req, and decrement device_busy. We 1771 * must return with queue_lock held. 1772 * 1773 * Decrementing device_busy without checking it is OK, as all such 1774 * cases (host limits or settings) should run the queue at some 1775 * later time. 1776 */ 1777 spin_lock_irq(q->queue_lock); 1778 blk_requeue_request(q, req); 1779 sdev->device_busy--; 1780 if(sdev->device_busy == 0) 1781 blk_plug_device(q); 1782 out: 1783 /* must be careful here...if we trigger the ->remove() function 1784 * we cannot be holding the q lock */ 1785 spin_unlock_irq(q->queue_lock); 1786 put_device(&sdev->sdev_gendev); 1787 spin_lock_irq(q->queue_lock); 1788 } 1789 1790 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1791 { 1792 struct device *host_dev; 1793 u64 bounce_limit = 0xffffffff; 1794 1795 if (shost->unchecked_isa_dma) 1796 return BLK_BOUNCE_ISA; 1797 /* 1798 * Platforms with virtual-DMA translation 1799 * hardware have no practical limit. 1800 */ 1801 if (!PCI_DMA_BUS_IS_PHYS) 1802 return BLK_BOUNCE_ANY; 1803 1804 host_dev = scsi_get_device(shost); 1805 if (host_dev && host_dev->dma_mask) 1806 bounce_limit = *host_dev->dma_mask; 1807 1808 return bounce_limit; 1809 } 1810 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1811 1812 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1813 request_fn_proc *request_fn) 1814 { 1815 struct request_queue *q; 1816 struct device *dev = shost->shost_gendev.parent; 1817 1818 q = blk_init_queue(request_fn, NULL); 1819 if (!q) 1820 return NULL; 1821 1822 /* 1823 * this limit is imposed by hardware restrictions 1824 */ 1825 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1826 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1827 1828 blk_queue_max_sectors(q, shost->max_sectors); 1829 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1830 blk_queue_segment_boundary(q, shost->dma_boundary); 1831 dma_set_seg_boundary(dev, shost->dma_boundary); 1832 1833 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1834 1835 /* New queue, no concurrency on queue_flags */ 1836 if (!shost->use_clustering) 1837 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1838 1839 /* 1840 * set a reasonable default alignment on word boundaries: the 1841 * host and device may alter it using 1842 * blk_queue_update_dma_alignment() later. 1843 */ 1844 blk_queue_dma_alignment(q, 0x03); 1845 1846 return q; 1847 } 1848 EXPORT_SYMBOL(__scsi_alloc_queue); 1849 1850 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1851 { 1852 struct request_queue *q; 1853 1854 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1855 if (!q) 1856 return NULL; 1857 1858 blk_queue_prep_rq(q, scsi_prep_fn); 1859 blk_queue_softirq_done(q, scsi_softirq_done); 1860 blk_queue_rq_timed_out(q, scsi_times_out); 1861 blk_queue_lld_busy(q, scsi_lld_busy); 1862 return q; 1863 } 1864 1865 void scsi_free_queue(struct request_queue *q) 1866 { 1867 blk_cleanup_queue(q); 1868 } 1869 1870 /* 1871 * Function: scsi_block_requests() 1872 * 1873 * Purpose: Utility function used by low-level drivers to prevent further 1874 * commands from being queued to the device. 1875 * 1876 * Arguments: shost - Host in question 1877 * 1878 * Returns: Nothing 1879 * 1880 * Lock status: No locks are assumed held. 1881 * 1882 * Notes: There is no timer nor any other means by which the requests 1883 * get unblocked other than the low-level driver calling 1884 * scsi_unblock_requests(). 1885 */ 1886 void scsi_block_requests(struct Scsi_Host *shost) 1887 { 1888 shost->host_self_blocked = 1; 1889 } 1890 EXPORT_SYMBOL(scsi_block_requests); 1891 1892 /* 1893 * Function: scsi_unblock_requests() 1894 * 1895 * Purpose: Utility function used by low-level drivers to allow further 1896 * commands from being queued to the device. 1897 * 1898 * Arguments: shost - Host in question 1899 * 1900 * Returns: Nothing 1901 * 1902 * Lock status: No locks are assumed held. 1903 * 1904 * Notes: There is no timer nor any other means by which the requests 1905 * get unblocked other than the low-level driver calling 1906 * scsi_unblock_requests(). 1907 * 1908 * This is done as an API function so that changes to the 1909 * internals of the scsi mid-layer won't require wholesale 1910 * changes to drivers that use this feature. 1911 */ 1912 void scsi_unblock_requests(struct Scsi_Host *shost) 1913 { 1914 shost->host_self_blocked = 0; 1915 scsi_run_host_queues(shost); 1916 } 1917 EXPORT_SYMBOL(scsi_unblock_requests); 1918 1919 int __init scsi_init_queue(void) 1920 { 1921 int i; 1922 1923 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1924 sizeof(struct scsi_io_context), 1925 0, 0, NULL); 1926 if (!scsi_io_context_cache) { 1927 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1928 return -ENOMEM; 1929 } 1930 1931 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1932 sizeof(struct scsi_data_buffer), 1933 0, 0, NULL); 1934 if (!scsi_sdb_cache) { 1935 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1936 goto cleanup_io_context; 1937 } 1938 1939 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1940 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1941 int size = sgp->size * sizeof(struct scatterlist); 1942 1943 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1944 SLAB_HWCACHE_ALIGN, NULL); 1945 if (!sgp->slab) { 1946 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1947 sgp->name); 1948 goto cleanup_sdb; 1949 } 1950 1951 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1952 sgp->slab); 1953 if (!sgp->pool) { 1954 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1955 sgp->name); 1956 goto cleanup_sdb; 1957 } 1958 } 1959 1960 return 0; 1961 1962 cleanup_sdb: 1963 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1964 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1965 if (sgp->pool) 1966 mempool_destroy(sgp->pool); 1967 if (sgp->slab) 1968 kmem_cache_destroy(sgp->slab); 1969 } 1970 kmem_cache_destroy(scsi_sdb_cache); 1971 cleanup_io_context: 1972 kmem_cache_destroy(scsi_io_context_cache); 1973 1974 return -ENOMEM; 1975 } 1976 1977 void scsi_exit_queue(void) 1978 { 1979 int i; 1980 1981 kmem_cache_destroy(scsi_io_context_cache); 1982 kmem_cache_destroy(scsi_sdb_cache); 1983 1984 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1985 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1986 mempool_destroy(sgp->pool); 1987 kmem_cache_destroy(sgp->slab); 1988 } 1989 } 1990 1991 /** 1992 * scsi_mode_select - issue a mode select 1993 * @sdev: SCSI device to be queried 1994 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1995 * @sp: Save page bit (0 == don't save, 1 == save) 1996 * @modepage: mode page being requested 1997 * @buffer: request buffer (may not be smaller than eight bytes) 1998 * @len: length of request buffer. 1999 * @timeout: command timeout 2000 * @retries: number of retries before failing 2001 * @data: returns a structure abstracting the mode header data 2002 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2003 * must be SCSI_SENSE_BUFFERSIZE big. 2004 * 2005 * Returns zero if successful; negative error number or scsi 2006 * status on error 2007 * 2008 */ 2009 int 2010 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2011 unsigned char *buffer, int len, int timeout, int retries, 2012 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2013 { 2014 unsigned char cmd[10]; 2015 unsigned char *real_buffer; 2016 int ret; 2017 2018 memset(cmd, 0, sizeof(cmd)); 2019 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2020 2021 if (sdev->use_10_for_ms) { 2022 if (len > 65535) 2023 return -EINVAL; 2024 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2025 if (!real_buffer) 2026 return -ENOMEM; 2027 memcpy(real_buffer + 8, buffer, len); 2028 len += 8; 2029 real_buffer[0] = 0; 2030 real_buffer[1] = 0; 2031 real_buffer[2] = data->medium_type; 2032 real_buffer[3] = data->device_specific; 2033 real_buffer[4] = data->longlba ? 0x01 : 0; 2034 real_buffer[5] = 0; 2035 real_buffer[6] = data->block_descriptor_length >> 8; 2036 real_buffer[7] = data->block_descriptor_length; 2037 2038 cmd[0] = MODE_SELECT_10; 2039 cmd[7] = len >> 8; 2040 cmd[8] = len; 2041 } else { 2042 if (len > 255 || data->block_descriptor_length > 255 || 2043 data->longlba) 2044 return -EINVAL; 2045 2046 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2047 if (!real_buffer) 2048 return -ENOMEM; 2049 memcpy(real_buffer + 4, buffer, len); 2050 len += 4; 2051 real_buffer[0] = 0; 2052 real_buffer[1] = data->medium_type; 2053 real_buffer[2] = data->device_specific; 2054 real_buffer[3] = data->block_descriptor_length; 2055 2056 2057 cmd[0] = MODE_SELECT; 2058 cmd[4] = len; 2059 } 2060 2061 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2062 sshdr, timeout, retries, NULL); 2063 kfree(real_buffer); 2064 return ret; 2065 } 2066 EXPORT_SYMBOL_GPL(scsi_mode_select); 2067 2068 /** 2069 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2070 * @sdev: SCSI device to be queried 2071 * @dbd: set if mode sense will allow block descriptors to be returned 2072 * @modepage: mode page being requested 2073 * @buffer: request buffer (may not be smaller than eight bytes) 2074 * @len: length of request buffer. 2075 * @timeout: command timeout 2076 * @retries: number of retries before failing 2077 * @data: returns a structure abstracting the mode header data 2078 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2079 * must be SCSI_SENSE_BUFFERSIZE big. 2080 * 2081 * Returns zero if unsuccessful, or the header offset (either 4 2082 * or 8 depending on whether a six or ten byte command was 2083 * issued) if successful. 2084 */ 2085 int 2086 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2087 unsigned char *buffer, int len, int timeout, int retries, 2088 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2089 { 2090 unsigned char cmd[12]; 2091 int use_10_for_ms; 2092 int header_length; 2093 int result; 2094 struct scsi_sense_hdr my_sshdr; 2095 2096 memset(data, 0, sizeof(*data)); 2097 memset(&cmd[0], 0, 12); 2098 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2099 cmd[2] = modepage; 2100 2101 /* caller might not be interested in sense, but we need it */ 2102 if (!sshdr) 2103 sshdr = &my_sshdr; 2104 2105 retry: 2106 use_10_for_ms = sdev->use_10_for_ms; 2107 2108 if (use_10_for_ms) { 2109 if (len < 8) 2110 len = 8; 2111 2112 cmd[0] = MODE_SENSE_10; 2113 cmd[8] = len; 2114 header_length = 8; 2115 } else { 2116 if (len < 4) 2117 len = 4; 2118 2119 cmd[0] = MODE_SENSE; 2120 cmd[4] = len; 2121 header_length = 4; 2122 } 2123 2124 memset(buffer, 0, len); 2125 2126 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2127 sshdr, timeout, retries, NULL); 2128 2129 /* This code looks awful: what it's doing is making sure an 2130 * ILLEGAL REQUEST sense return identifies the actual command 2131 * byte as the problem. MODE_SENSE commands can return 2132 * ILLEGAL REQUEST if the code page isn't supported */ 2133 2134 if (use_10_for_ms && !scsi_status_is_good(result) && 2135 (driver_byte(result) & DRIVER_SENSE)) { 2136 if (scsi_sense_valid(sshdr)) { 2137 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2138 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2139 /* 2140 * Invalid command operation code 2141 */ 2142 sdev->use_10_for_ms = 0; 2143 goto retry; 2144 } 2145 } 2146 } 2147 2148 if(scsi_status_is_good(result)) { 2149 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2150 (modepage == 6 || modepage == 8))) { 2151 /* Initio breakage? */ 2152 header_length = 0; 2153 data->length = 13; 2154 data->medium_type = 0; 2155 data->device_specific = 0; 2156 data->longlba = 0; 2157 data->block_descriptor_length = 0; 2158 } else if(use_10_for_ms) { 2159 data->length = buffer[0]*256 + buffer[1] + 2; 2160 data->medium_type = buffer[2]; 2161 data->device_specific = buffer[3]; 2162 data->longlba = buffer[4] & 0x01; 2163 data->block_descriptor_length = buffer[6]*256 2164 + buffer[7]; 2165 } else { 2166 data->length = buffer[0] + 1; 2167 data->medium_type = buffer[1]; 2168 data->device_specific = buffer[2]; 2169 data->block_descriptor_length = buffer[3]; 2170 } 2171 data->header_length = header_length; 2172 } 2173 2174 return result; 2175 } 2176 EXPORT_SYMBOL(scsi_mode_sense); 2177 2178 /** 2179 * scsi_test_unit_ready - test if unit is ready 2180 * @sdev: scsi device to change the state of. 2181 * @timeout: command timeout 2182 * @retries: number of retries before failing 2183 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2184 * returning sense. Make sure that this is cleared before passing 2185 * in. 2186 * 2187 * Returns zero if unsuccessful or an error if TUR failed. For 2188 * removable media, a return of NOT_READY or UNIT_ATTENTION is 2189 * translated to success, with the ->changed flag updated. 2190 **/ 2191 int 2192 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2193 struct scsi_sense_hdr *sshdr_external) 2194 { 2195 char cmd[] = { 2196 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2197 }; 2198 struct scsi_sense_hdr *sshdr; 2199 int result; 2200 2201 if (!sshdr_external) 2202 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2203 else 2204 sshdr = sshdr_external; 2205 2206 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2207 do { 2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2209 timeout, retries, NULL); 2210 if (sdev->removable && scsi_sense_valid(sshdr) && 2211 sshdr->sense_key == UNIT_ATTENTION) 2212 sdev->changed = 1; 2213 } while (scsi_sense_valid(sshdr) && 2214 sshdr->sense_key == UNIT_ATTENTION && --retries); 2215 2216 if (!sshdr) 2217 /* could not allocate sense buffer, so can't process it */ 2218 return result; 2219 2220 if (sdev->removable && scsi_sense_valid(sshdr) && 2221 (sshdr->sense_key == UNIT_ATTENTION || 2222 sshdr->sense_key == NOT_READY)) { 2223 sdev->changed = 1; 2224 result = 0; 2225 } 2226 if (!sshdr_external) 2227 kfree(sshdr); 2228 return result; 2229 } 2230 EXPORT_SYMBOL(scsi_test_unit_ready); 2231 2232 /** 2233 * scsi_device_set_state - Take the given device through the device state model. 2234 * @sdev: scsi device to change the state of. 2235 * @state: state to change to. 2236 * 2237 * Returns zero if unsuccessful or an error if the requested 2238 * transition is illegal. 2239 */ 2240 int 2241 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2242 { 2243 enum scsi_device_state oldstate = sdev->sdev_state; 2244 2245 if (state == oldstate) 2246 return 0; 2247 2248 switch (state) { 2249 case SDEV_CREATED: 2250 switch (oldstate) { 2251 case SDEV_CREATED_BLOCK: 2252 break; 2253 default: 2254 goto illegal; 2255 } 2256 break; 2257 2258 case SDEV_RUNNING: 2259 switch (oldstate) { 2260 case SDEV_CREATED: 2261 case SDEV_OFFLINE: 2262 case SDEV_QUIESCE: 2263 case SDEV_BLOCK: 2264 break; 2265 default: 2266 goto illegal; 2267 } 2268 break; 2269 2270 case SDEV_QUIESCE: 2271 switch (oldstate) { 2272 case SDEV_RUNNING: 2273 case SDEV_OFFLINE: 2274 break; 2275 default: 2276 goto illegal; 2277 } 2278 break; 2279 2280 case SDEV_OFFLINE: 2281 switch (oldstate) { 2282 case SDEV_CREATED: 2283 case SDEV_RUNNING: 2284 case SDEV_QUIESCE: 2285 case SDEV_BLOCK: 2286 break; 2287 default: 2288 goto illegal; 2289 } 2290 break; 2291 2292 case SDEV_BLOCK: 2293 switch (oldstate) { 2294 case SDEV_RUNNING: 2295 case SDEV_CREATED_BLOCK: 2296 break; 2297 default: 2298 goto illegal; 2299 } 2300 break; 2301 2302 case SDEV_CREATED_BLOCK: 2303 switch (oldstate) { 2304 case SDEV_CREATED: 2305 break; 2306 default: 2307 goto illegal; 2308 } 2309 break; 2310 2311 case SDEV_CANCEL: 2312 switch (oldstate) { 2313 case SDEV_CREATED: 2314 case SDEV_RUNNING: 2315 case SDEV_QUIESCE: 2316 case SDEV_OFFLINE: 2317 case SDEV_BLOCK: 2318 break; 2319 default: 2320 goto illegal; 2321 } 2322 break; 2323 2324 case SDEV_DEL: 2325 switch (oldstate) { 2326 case SDEV_CREATED: 2327 case SDEV_RUNNING: 2328 case SDEV_OFFLINE: 2329 case SDEV_CANCEL: 2330 break; 2331 default: 2332 goto illegal; 2333 } 2334 break; 2335 2336 } 2337 sdev->sdev_state = state; 2338 return 0; 2339 2340 illegal: 2341 SCSI_LOG_ERROR_RECOVERY(1, 2342 sdev_printk(KERN_ERR, sdev, 2343 "Illegal state transition %s->%s\n", 2344 scsi_device_state_name(oldstate), 2345 scsi_device_state_name(state)) 2346 ); 2347 return -EINVAL; 2348 } 2349 EXPORT_SYMBOL(scsi_device_set_state); 2350 2351 /** 2352 * sdev_evt_emit - emit a single SCSI device uevent 2353 * @sdev: associated SCSI device 2354 * @evt: event to emit 2355 * 2356 * Send a single uevent (scsi_event) to the associated scsi_device. 2357 */ 2358 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2359 { 2360 int idx = 0; 2361 char *envp[3]; 2362 2363 switch (evt->evt_type) { 2364 case SDEV_EVT_MEDIA_CHANGE: 2365 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2366 break; 2367 2368 default: 2369 /* do nothing */ 2370 break; 2371 } 2372 2373 envp[idx++] = NULL; 2374 2375 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2376 } 2377 2378 /** 2379 * sdev_evt_thread - send a uevent for each scsi event 2380 * @work: work struct for scsi_device 2381 * 2382 * Dispatch queued events to their associated scsi_device kobjects 2383 * as uevents. 2384 */ 2385 void scsi_evt_thread(struct work_struct *work) 2386 { 2387 struct scsi_device *sdev; 2388 LIST_HEAD(event_list); 2389 2390 sdev = container_of(work, struct scsi_device, event_work); 2391 2392 while (1) { 2393 struct scsi_event *evt; 2394 struct list_head *this, *tmp; 2395 unsigned long flags; 2396 2397 spin_lock_irqsave(&sdev->list_lock, flags); 2398 list_splice_init(&sdev->event_list, &event_list); 2399 spin_unlock_irqrestore(&sdev->list_lock, flags); 2400 2401 if (list_empty(&event_list)) 2402 break; 2403 2404 list_for_each_safe(this, tmp, &event_list) { 2405 evt = list_entry(this, struct scsi_event, node); 2406 list_del(&evt->node); 2407 scsi_evt_emit(sdev, evt); 2408 kfree(evt); 2409 } 2410 } 2411 } 2412 2413 /** 2414 * sdev_evt_send - send asserted event to uevent thread 2415 * @sdev: scsi_device event occurred on 2416 * @evt: event to send 2417 * 2418 * Assert scsi device event asynchronously. 2419 */ 2420 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2421 { 2422 unsigned long flags; 2423 2424 #if 0 2425 /* FIXME: currently this check eliminates all media change events 2426 * for polled devices. Need to update to discriminate between AN 2427 * and polled events */ 2428 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2429 kfree(evt); 2430 return; 2431 } 2432 #endif 2433 2434 spin_lock_irqsave(&sdev->list_lock, flags); 2435 list_add_tail(&evt->node, &sdev->event_list); 2436 schedule_work(&sdev->event_work); 2437 spin_unlock_irqrestore(&sdev->list_lock, flags); 2438 } 2439 EXPORT_SYMBOL_GPL(sdev_evt_send); 2440 2441 /** 2442 * sdev_evt_alloc - allocate a new scsi event 2443 * @evt_type: type of event to allocate 2444 * @gfpflags: GFP flags for allocation 2445 * 2446 * Allocates and returns a new scsi_event. 2447 */ 2448 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2449 gfp_t gfpflags) 2450 { 2451 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2452 if (!evt) 2453 return NULL; 2454 2455 evt->evt_type = evt_type; 2456 INIT_LIST_HEAD(&evt->node); 2457 2458 /* evt_type-specific initialization, if any */ 2459 switch (evt_type) { 2460 case SDEV_EVT_MEDIA_CHANGE: 2461 default: 2462 /* do nothing */ 2463 break; 2464 } 2465 2466 return evt; 2467 } 2468 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2469 2470 /** 2471 * sdev_evt_send_simple - send asserted event to uevent thread 2472 * @sdev: scsi_device event occurred on 2473 * @evt_type: type of event to send 2474 * @gfpflags: GFP flags for allocation 2475 * 2476 * Assert scsi device event asynchronously, given an event type. 2477 */ 2478 void sdev_evt_send_simple(struct scsi_device *sdev, 2479 enum scsi_device_event evt_type, gfp_t gfpflags) 2480 { 2481 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2482 if (!evt) { 2483 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2484 evt_type); 2485 return; 2486 } 2487 2488 sdev_evt_send(sdev, evt); 2489 } 2490 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2491 2492 /** 2493 * scsi_device_quiesce - Block user issued commands. 2494 * @sdev: scsi device to quiesce. 2495 * 2496 * This works by trying to transition to the SDEV_QUIESCE state 2497 * (which must be a legal transition). When the device is in this 2498 * state, only special requests will be accepted, all others will 2499 * be deferred. Since special requests may also be requeued requests, 2500 * a successful return doesn't guarantee the device will be 2501 * totally quiescent. 2502 * 2503 * Must be called with user context, may sleep. 2504 * 2505 * Returns zero if unsuccessful or an error if not. 2506 */ 2507 int 2508 scsi_device_quiesce(struct scsi_device *sdev) 2509 { 2510 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2511 if (err) 2512 return err; 2513 2514 scsi_run_queue(sdev->request_queue); 2515 while (sdev->device_busy) { 2516 msleep_interruptible(200); 2517 scsi_run_queue(sdev->request_queue); 2518 } 2519 return 0; 2520 } 2521 EXPORT_SYMBOL(scsi_device_quiesce); 2522 2523 /** 2524 * scsi_device_resume - Restart user issued commands to a quiesced device. 2525 * @sdev: scsi device to resume. 2526 * 2527 * Moves the device from quiesced back to running and restarts the 2528 * queues. 2529 * 2530 * Must be called with user context, may sleep. 2531 */ 2532 void 2533 scsi_device_resume(struct scsi_device *sdev) 2534 { 2535 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2536 return; 2537 scsi_run_queue(sdev->request_queue); 2538 } 2539 EXPORT_SYMBOL(scsi_device_resume); 2540 2541 static void 2542 device_quiesce_fn(struct scsi_device *sdev, void *data) 2543 { 2544 scsi_device_quiesce(sdev); 2545 } 2546 2547 void 2548 scsi_target_quiesce(struct scsi_target *starget) 2549 { 2550 starget_for_each_device(starget, NULL, device_quiesce_fn); 2551 } 2552 EXPORT_SYMBOL(scsi_target_quiesce); 2553 2554 static void 2555 device_resume_fn(struct scsi_device *sdev, void *data) 2556 { 2557 scsi_device_resume(sdev); 2558 } 2559 2560 void 2561 scsi_target_resume(struct scsi_target *starget) 2562 { 2563 starget_for_each_device(starget, NULL, device_resume_fn); 2564 } 2565 EXPORT_SYMBOL(scsi_target_resume); 2566 2567 /** 2568 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2569 * @sdev: device to block 2570 * 2571 * Block request made by scsi lld's to temporarily stop all 2572 * scsi commands on the specified device. Called from interrupt 2573 * or normal process context. 2574 * 2575 * Returns zero if successful or error if not 2576 * 2577 * Notes: 2578 * This routine transitions the device to the SDEV_BLOCK state 2579 * (which must be a legal transition). When the device is in this 2580 * state, all commands are deferred until the scsi lld reenables 2581 * the device with scsi_device_unblock or device_block_tmo fires. 2582 * This routine assumes the host_lock is held on entry. 2583 */ 2584 int 2585 scsi_internal_device_block(struct scsi_device *sdev) 2586 { 2587 struct request_queue *q = sdev->request_queue; 2588 unsigned long flags; 2589 int err = 0; 2590 2591 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2592 if (err) { 2593 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2594 2595 if (err) 2596 return err; 2597 } 2598 2599 /* 2600 * The device has transitioned to SDEV_BLOCK. Stop the 2601 * block layer from calling the midlayer with this device's 2602 * request queue. 2603 */ 2604 spin_lock_irqsave(q->queue_lock, flags); 2605 blk_stop_queue(q); 2606 spin_unlock_irqrestore(q->queue_lock, flags); 2607 2608 return 0; 2609 } 2610 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2611 2612 /** 2613 * scsi_internal_device_unblock - resume a device after a block request 2614 * @sdev: device to resume 2615 * 2616 * Called by scsi lld's or the midlayer to restart the device queue 2617 * for the previously suspended scsi device. Called from interrupt or 2618 * normal process context. 2619 * 2620 * Returns zero if successful or error if not. 2621 * 2622 * Notes: 2623 * This routine transitions the device to the SDEV_RUNNING state 2624 * (which must be a legal transition) allowing the midlayer to 2625 * goose the queue for this device. This routine assumes the 2626 * host_lock is held upon entry. 2627 */ 2628 int 2629 scsi_internal_device_unblock(struct scsi_device *sdev) 2630 { 2631 struct request_queue *q = sdev->request_queue; 2632 int err; 2633 unsigned long flags; 2634 2635 /* 2636 * Try to transition the scsi device to SDEV_RUNNING 2637 * and goose the device queue if successful. 2638 */ 2639 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2640 if (err) { 2641 err = scsi_device_set_state(sdev, SDEV_CREATED); 2642 2643 if (err) 2644 return err; 2645 } 2646 2647 spin_lock_irqsave(q->queue_lock, flags); 2648 blk_start_queue(q); 2649 spin_unlock_irqrestore(q->queue_lock, flags); 2650 2651 return 0; 2652 } 2653 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2654 2655 static void 2656 device_block(struct scsi_device *sdev, void *data) 2657 { 2658 scsi_internal_device_block(sdev); 2659 } 2660 2661 static int 2662 target_block(struct device *dev, void *data) 2663 { 2664 if (scsi_is_target_device(dev)) 2665 starget_for_each_device(to_scsi_target(dev), NULL, 2666 device_block); 2667 return 0; 2668 } 2669 2670 void 2671 scsi_target_block(struct device *dev) 2672 { 2673 if (scsi_is_target_device(dev)) 2674 starget_for_each_device(to_scsi_target(dev), NULL, 2675 device_block); 2676 else 2677 device_for_each_child(dev, NULL, target_block); 2678 } 2679 EXPORT_SYMBOL_GPL(scsi_target_block); 2680 2681 static void 2682 device_unblock(struct scsi_device *sdev, void *data) 2683 { 2684 scsi_internal_device_unblock(sdev); 2685 } 2686 2687 static int 2688 target_unblock(struct device *dev, void *data) 2689 { 2690 if (scsi_is_target_device(dev)) 2691 starget_for_each_device(to_scsi_target(dev), NULL, 2692 device_unblock); 2693 return 0; 2694 } 2695 2696 void 2697 scsi_target_unblock(struct device *dev) 2698 { 2699 if (scsi_is_target_device(dev)) 2700 starget_for_each_device(to_scsi_target(dev), NULL, 2701 device_unblock); 2702 else 2703 device_for_each_child(dev, NULL, target_unblock); 2704 } 2705 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2706 2707 /** 2708 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2709 * @sgl: scatter-gather list 2710 * @sg_count: number of segments in sg 2711 * @offset: offset in bytes into sg, on return offset into the mapped area 2712 * @len: bytes to map, on return number of bytes mapped 2713 * 2714 * Returns virtual address of the start of the mapped page 2715 */ 2716 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2717 size_t *offset, size_t *len) 2718 { 2719 int i; 2720 size_t sg_len = 0, len_complete = 0; 2721 struct scatterlist *sg; 2722 struct page *page; 2723 2724 WARN_ON(!irqs_disabled()); 2725 2726 for_each_sg(sgl, sg, sg_count, i) { 2727 len_complete = sg_len; /* Complete sg-entries */ 2728 sg_len += sg->length; 2729 if (sg_len > *offset) 2730 break; 2731 } 2732 2733 if (unlikely(i == sg_count)) { 2734 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2735 "elements %d\n", 2736 __func__, sg_len, *offset, sg_count); 2737 WARN_ON(1); 2738 return NULL; 2739 } 2740 2741 /* Offset starting from the beginning of first page in this sg-entry */ 2742 *offset = *offset - len_complete + sg->offset; 2743 2744 /* Assumption: contiguous pages can be accessed as "page + i" */ 2745 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2746 *offset &= ~PAGE_MASK; 2747 2748 /* Bytes in this sg-entry from *offset to the end of the page */ 2749 sg_len = PAGE_SIZE - *offset; 2750 if (*len > sg_len) 2751 *len = sg_len; 2752 2753 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2754 } 2755 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2756 2757 /** 2758 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2759 * @virt: virtual address to be unmapped 2760 */ 2761 void scsi_kunmap_atomic_sg(void *virt) 2762 { 2763 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2764 } 2765 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2766