xref: /linux/drivers/scsi/scsi_lib.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 
41 struct kmem_cache *scsi_sdb_cache;
42 
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY	3
49 
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 	struct Scsi_Host *host = cmd->device->host;
54 	struct scsi_device *device = cmd->device;
55 	struct scsi_target *starget = scsi_target(device);
56 
57 	/*
58 	 * Set the appropriate busy bit for the device/host.
59 	 *
60 	 * If the host/device isn't busy, assume that something actually
61 	 * completed, and that we should be able to queue a command now.
62 	 *
63 	 * Note that the prior mid-layer assumption that any host could
64 	 * always queue at least one command is now broken.  The mid-layer
65 	 * will implement a user specifiable stall (see
66 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 	 * if a command is requeued with no other commands outstanding
68 	 * either for the device or for the host.
69 	 */
70 	switch (reason) {
71 	case SCSI_MLQUEUE_HOST_BUSY:
72 		atomic_set(&host->host_blocked, host->max_host_blocked);
73 		break;
74 	case SCSI_MLQUEUE_DEVICE_BUSY:
75 	case SCSI_MLQUEUE_EH_RETRY:
76 		atomic_set(&device->device_blocked,
77 			   device->max_device_blocked);
78 		break;
79 	case SCSI_MLQUEUE_TARGET_BUSY:
80 		atomic_set(&starget->target_blocked,
81 			   starget->max_target_blocked);
82 		break;
83 	}
84 }
85 
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 	struct scsi_device *sdev = cmd->device;
89 	struct request_queue *q = cmd->request->q;
90 
91 	blk_mq_requeue_request(cmd->request);
92 	blk_mq_kick_requeue_list(q);
93 	put_device(&sdev->sdev_gendev);
94 }
95 
96 /**
97  * __scsi_queue_insert - private queue insertion
98  * @cmd: The SCSI command being requeued
99  * @reason:  The reason for the requeue
100  * @unbusy: Whether the queue should be unbusied
101  *
102  * This is a private queue insertion.  The public interface
103  * scsi_queue_insert() always assumes the queue should be unbusied
104  * because it's always called before the completion.  This function is
105  * for a requeue after completion, which should only occur in this
106  * file.
107  */
108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
109 {
110 	struct scsi_device *device = cmd->device;
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 		"Inserting command %p into mlqueue\n", cmd));
116 
117 	scsi_set_blocked(cmd, reason);
118 
119 	/*
120 	 * Decrement the counters, since these commands are no longer
121 	 * active on the host/device.
122 	 */
123 	if (unbusy)
124 		scsi_device_unbusy(device);
125 
126 	/*
127 	 * Requeue this command.  It will go before all other commands
128 	 * that are already in the queue. Schedule requeue work under
129 	 * lock such that the kblockd_schedule_work() call happens
130 	 * before blk_cleanup_queue() finishes.
131 	 */
132 	cmd->result = 0;
133 	if (q->mq_ops) {
134 		scsi_mq_requeue_cmd(cmd);
135 		return;
136 	}
137 	spin_lock_irqsave(q->queue_lock, flags);
138 	blk_requeue_request(q, cmd->request);
139 	kblockd_schedule_work(&device->requeue_work);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 }
142 
143 /*
144  * Function:    scsi_queue_insert()
145  *
146  * Purpose:     Insert a command in the midlevel queue.
147  *
148  * Arguments:   cmd    - command that we are adding to queue.
149  *              reason - why we are inserting command to queue.
150  *
151  * Lock status: Assumed that lock is not held upon entry.
152  *
153  * Returns:     Nothing.
154  *
155  * Notes:       We do this for one of two cases.  Either the host is busy
156  *              and it cannot accept any more commands for the time being,
157  *              or the device returned QUEUE_FULL and can accept no more
158  *              commands.
159  * Notes:       This could be called either from an interrupt context or a
160  *              normal process context.
161  */
162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
163 {
164 	__scsi_queue_insert(cmd, reason, 1);
165 }
166 /**
167  * scsi_execute - insert request and wait for the result
168  * @sdev:	scsi device
169  * @cmd:	scsi command
170  * @data_direction: data direction
171  * @buffer:	data buffer
172  * @bufflen:	len of buffer
173  * @sense:	optional sense buffer
174  * @timeout:	request timeout in seconds
175  * @retries:	number of times to retry request
176  * @flags:	or into request flags;
177  * @resid:	optional residual length
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, u64 flags,
185 		 int *resid)
186 {
187 	struct request *req;
188 	int write = (data_direction == DMA_TO_DEVICE);
189 	int ret = DRIVER_ERROR << 24;
190 
191 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 	if (IS_ERR(req))
193 		return ret;
194 	blk_rq_set_block_pc(req);
195 
196 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
197 					buffer, bufflen, __GFP_RECLAIM))
198 		goto out;
199 
200 	req->cmd_len = COMMAND_SIZE(cmd[0]);
201 	memcpy(req->cmd, cmd, req->cmd_len);
202 	req->sense = sense;
203 	req->sense_len = 0;
204 	req->retries = retries;
205 	req->timeout = timeout;
206 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
207 
208 	/*
209 	 * head injection *required* here otherwise quiesce won't work
210 	 */
211 	blk_execute_rq(req->q, NULL, req, 1);
212 
213 	/*
214 	 * Some devices (USB mass-storage in particular) may transfer
215 	 * garbage data together with a residue indicating that the data
216 	 * is invalid.  Prevent the garbage from being misinterpreted
217 	 * and prevent security leaks by zeroing out the excess data.
218 	 */
219 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
221 
222 	if (resid)
223 		*resid = req->resid_len;
224 	ret = req->errors;
225  out:
226 	blk_put_request(req);
227 
228 	return ret;
229 }
230 EXPORT_SYMBOL(scsi_execute);
231 
232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 		     int data_direction, void *buffer, unsigned bufflen,
234 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 		     int *resid, u64 flags)
236 {
237 	char *sense = NULL;
238 	int result;
239 
240 	if (sshdr) {
241 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 		if (!sense)
243 			return DRIVER_ERROR << 24;
244 	}
245 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 			      sense, timeout, retries, flags, resid);
247 	if (sshdr)
248 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
249 
250 	kfree(sense);
251 	return result;
252 }
253 EXPORT_SYMBOL(scsi_execute_req_flags);
254 
255 /*
256  * Function:    scsi_init_cmd_errh()
257  *
258  * Purpose:     Initialize cmd fields related to error handling.
259  *
260  * Arguments:   cmd	- command that is ready to be queued.
261  *
262  * Notes:       This function has the job of initializing a number of
263  *              fields related to error handling.   Typically this will
264  *              be called once for each command, as required.
265  */
266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
267 {
268 	cmd->serial_number = 0;
269 	scsi_set_resid(cmd, 0);
270 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 	if (cmd->cmd_len == 0)
272 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
273 }
274 
275 void scsi_device_unbusy(struct scsi_device *sdev)
276 {
277 	struct Scsi_Host *shost = sdev->host;
278 	struct scsi_target *starget = scsi_target(sdev);
279 	unsigned long flags;
280 
281 	atomic_dec(&shost->host_busy);
282 	if (starget->can_queue > 0)
283 		atomic_dec(&starget->target_busy);
284 
285 	if (unlikely(scsi_host_in_recovery(shost) &&
286 		     (shost->host_failed || shost->host_eh_scheduled))) {
287 		spin_lock_irqsave(shost->host_lock, flags);
288 		scsi_eh_wakeup(shost);
289 		spin_unlock_irqrestore(shost->host_lock, flags);
290 	}
291 
292 	atomic_dec(&sdev->device_busy);
293 }
294 
295 static void scsi_kick_queue(struct request_queue *q)
296 {
297 	if (q->mq_ops)
298 		blk_mq_start_hw_queues(q);
299 	else
300 		blk_run_queue(q);
301 }
302 
303 /*
304  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305  * and call blk_run_queue for all the scsi_devices on the target -
306  * including current_sdev first.
307  *
308  * Called with *no* scsi locks held.
309  */
310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
311 {
312 	struct Scsi_Host *shost = current_sdev->host;
313 	struct scsi_device *sdev, *tmp;
314 	struct scsi_target *starget = scsi_target(current_sdev);
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(shost->host_lock, flags);
318 	starget->starget_sdev_user = NULL;
319 	spin_unlock_irqrestore(shost->host_lock, flags);
320 
321 	/*
322 	 * Call blk_run_queue for all LUNs on the target, starting with
323 	 * current_sdev. We race with others (to set starget_sdev_user),
324 	 * but in most cases, we will be first. Ideally, each LU on the
325 	 * target would get some limited time or requests on the target.
326 	 */
327 	scsi_kick_queue(current_sdev->request_queue);
328 
329 	spin_lock_irqsave(shost->host_lock, flags);
330 	if (starget->starget_sdev_user)
331 		goto out;
332 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 			same_target_siblings) {
334 		if (sdev == current_sdev)
335 			continue;
336 		if (scsi_device_get(sdev))
337 			continue;
338 
339 		spin_unlock_irqrestore(shost->host_lock, flags);
340 		scsi_kick_queue(sdev->request_queue);
341 		spin_lock_irqsave(shost->host_lock, flags);
342 
343 		scsi_device_put(sdev);
344 	}
345  out:
346 	spin_unlock_irqrestore(shost->host_lock, flags);
347 }
348 
349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
350 {
351 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 		return true;
353 	if (atomic_read(&sdev->device_blocked) > 0)
354 		return true;
355 	return false;
356 }
357 
358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
359 {
360 	if (starget->can_queue > 0) {
361 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 			return true;
363 		if (atomic_read(&starget->target_blocked) > 0)
364 			return true;
365 	}
366 	return false;
367 }
368 
369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
370 {
371 	if (shost->can_queue > 0 &&
372 	    atomic_read(&shost->host_busy) >= shost->can_queue)
373 		return true;
374 	if (atomic_read(&shost->host_blocked) > 0)
375 		return true;
376 	if (shost->host_self_blocked)
377 		return true;
378 	return false;
379 }
380 
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 	LIST_HEAD(starved_list);
384 	struct scsi_device *sdev;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(shost->host_lock, flags);
388 	list_splice_init(&shost->starved_list, &starved_list);
389 
390 	while (!list_empty(&starved_list)) {
391 		struct request_queue *slq;
392 
393 		/*
394 		 * As long as shost is accepting commands and we have
395 		 * starved queues, call blk_run_queue. scsi_request_fn
396 		 * drops the queue_lock and can add us back to the
397 		 * starved_list.
398 		 *
399 		 * host_lock protects the starved_list and starved_entry.
400 		 * scsi_request_fn must get the host_lock before checking
401 		 * or modifying starved_list or starved_entry.
402 		 */
403 		if (scsi_host_is_busy(shost))
404 			break;
405 
406 		sdev = list_entry(starved_list.next,
407 				  struct scsi_device, starved_entry);
408 		list_del_init(&sdev->starved_entry);
409 		if (scsi_target_is_busy(scsi_target(sdev))) {
410 			list_move_tail(&sdev->starved_entry,
411 				       &shost->starved_list);
412 			continue;
413 		}
414 
415 		/*
416 		 * Once we drop the host lock, a racing scsi_remove_device()
417 		 * call may remove the sdev from the starved list and destroy
418 		 * it and the queue.  Mitigate by taking a reference to the
419 		 * queue and never touching the sdev again after we drop the
420 		 * host lock.  Note: if __scsi_remove_device() invokes
421 		 * blk_cleanup_queue() before the queue is run from this
422 		 * function then blk_run_queue() will return immediately since
423 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 		 */
425 		slq = sdev->request_queue;
426 		if (!blk_get_queue(slq))
427 			continue;
428 		spin_unlock_irqrestore(shost->host_lock, flags);
429 
430 		scsi_kick_queue(slq);
431 		blk_put_queue(slq);
432 
433 		spin_lock_irqsave(shost->host_lock, flags);
434 	}
435 	/* put any unprocessed entries back */
436 	list_splice(&starved_list, &shost->starved_list);
437 	spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439 
440 /*
441  * Function:   scsi_run_queue()
442  *
443  * Purpose:    Select a proper request queue to serve next
444  *
445  * Arguments:  q       - last request's queue
446  *
447  * Returns:     Nothing
448  *
449  * Notes:      The previous command was completely finished, start
450  *             a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	if (q->mq_ops)
462 		blk_mq_start_stopped_hw_queues(q, false);
463 	else
464 		blk_run_queue(q);
465 }
466 
467 void scsi_requeue_run_queue(struct work_struct *work)
468 {
469 	struct scsi_device *sdev;
470 	struct request_queue *q;
471 
472 	sdev = container_of(work, struct scsi_device, requeue_work);
473 	q = sdev->request_queue;
474 	scsi_run_queue(q);
475 }
476 
477 /*
478  * Function:	scsi_requeue_command()
479  *
480  * Purpose:	Handle post-processing of completed commands.
481  *
482  * Arguments:	q	- queue to operate on
483  *		cmd	- command that may need to be requeued.
484  *
485  * Returns:	Nothing
486  *
487  * Notes:	After command completion, there may be blocks left
488  *		over which weren't finished by the previous command
489  *		this can be for a number of reasons - the main one is
490  *		I/O errors in the middle of the request, in which case
491  *		we need to request the blocks that come after the bad
492  *		sector.
493  * Notes:	Upon return, cmd is a stale pointer.
494  */
495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 {
497 	struct scsi_device *sdev = cmd->device;
498 	struct request *req = cmd->request;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(q->queue_lock, flags);
502 	blk_unprep_request(req);
503 	req->special = NULL;
504 	scsi_put_command(cmd);
505 	blk_requeue_request(q, req);
506 	spin_unlock_irqrestore(q->queue_lock, flags);
507 
508 	scsi_run_queue(q);
509 
510 	put_device(&sdev->sdev_gendev);
511 }
512 
513 void scsi_run_host_queues(struct Scsi_Host *shost)
514 {
515 	struct scsi_device *sdev;
516 
517 	shost_for_each_device(sdev, shost)
518 		scsi_run_queue(sdev->request_queue);
519 }
520 
521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
522 {
523 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
525 
526 		if (drv->uninit_command)
527 			drv->uninit_command(cmd);
528 	}
529 }
530 
531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
532 {
533 	struct scsi_data_buffer *sdb;
534 
535 	if (cmd->sdb.table.nents)
536 		sg_free_table_chained(&cmd->sdb.table, true);
537 	if (cmd->request->next_rq) {
538 		sdb = cmd->request->next_rq->special;
539 		if (sdb)
540 			sg_free_table_chained(&sdb->table, true);
541 	}
542 	if (scsi_prot_sg_count(cmd))
543 		sg_free_table_chained(&cmd->prot_sdb->table, true);
544 }
545 
546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 	struct scsi_device *sdev = cmd->device;
549 	struct Scsi_Host *shost = sdev->host;
550 	unsigned long flags;
551 
552 	scsi_mq_free_sgtables(cmd);
553 	scsi_uninit_cmd(cmd);
554 
555 	if (shost->use_cmd_list) {
556 		BUG_ON(list_empty(&cmd->list));
557 		spin_lock_irqsave(&sdev->list_lock, flags);
558 		list_del_init(&cmd->list);
559 		spin_unlock_irqrestore(&sdev->list_lock, flags);
560 	}
561 }
562 
563 /*
564  * Function:    scsi_release_buffers()
565  *
566  * Purpose:     Free resources allocate for a scsi_command.
567  *
568  * Arguments:   cmd	- command that we are bailing.
569  *
570  * Lock status: Assumed that no lock is held upon entry.
571  *
572  * Returns:     Nothing
573  *
574  * Notes:       In the event that an upper level driver rejects a
575  *		command, we must release resources allocated during
576  *		the __init_io() function.  Primarily this would involve
577  *		the scatter-gather table.
578  */
579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
580 {
581 	if (cmd->sdb.table.nents)
582 		sg_free_table_chained(&cmd->sdb.table, false);
583 
584 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
585 
586 	if (scsi_prot_sg_count(cmd))
587 		sg_free_table_chained(&cmd->prot_sdb->table, false);
588 }
589 
590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
591 {
592 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
593 
594 	sg_free_table_chained(&bidi_sdb->table, false);
595 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 	cmd->request->next_rq->special = NULL;
597 }
598 
599 static bool scsi_end_request(struct request *req, int error,
600 		unsigned int bytes, unsigned int bidi_bytes)
601 {
602 	struct scsi_cmnd *cmd = req->special;
603 	struct scsi_device *sdev = cmd->device;
604 	struct request_queue *q = sdev->request_queue;
605 
606 	if (blk_update_request(req, error, bytes))
607 		return true;
608 
609 	/* Bidi request must be completed as a whole */
610 	if (unlikely(bidi_bytes) &&
611 	    blk_update_request(req->next_rq, error, bidi_bytes))
612 		return true;
613 
614 	if (blk_queue_add_random(q))
615 		add_disk_randomness(req->rq_disk);
616 
617 	if (req->mq_ctx) {
618 		/*
619 		 * In the MQ case the command gets freed by __blk_mq_end_request,
620 		 * so we have to do all cleanup that depends on it earlier.
621 		 *
622 		 * We also can't kick the queues from irq context, so we
623 		 * will have to defer it to a workqueue.
624 		 */
625 		scsi_mq_uninit_cmd(cmd);
626 
627 		__blk_mq_end_request(req, error);
628 
629 		if (scsi_target(sdev)->single_lun ||
630 		    !list_empty(&sdev->host->starved_list))
631 			kblockd_schedule_work(&sdev->requeue_work);
632 		else
633 			blk_mq_start_stopped_hw_queues(q, true);
634 	} else {
635 		unsigned long flags;
636 
637 		if (bidi_bytes)
638 			scsi_release_bidi_buffers(cmd);
639 
640 		spin_lock_irqsave(q->queue_lock, flags);
641 		blk_finish_request(req, error);
642 		spin_unlock_irqrestore(q->queue_lock, flags);
643 
644 		scsi_release_buffers(cmd);
645 
646 		scsi_put_command(cmd);
647 		scsi_run_queue(q);
648 	}
649 
650 	put_device(&sdev->sdev_gendev);
651 	return false;
652 }
653 
654 /**
655  * __scsi_error_from_host_byte - translate SCSI error code into errno
656  * @cmd:	SCSI command (unused)
657  * @result:	scsi error code
658  *
659  * Translate SCSI error code into standard UNIX errno.
660  * Return values:
661  * -ENOLINK	temporary transport failure
662  * -EREMOTEIO	permanent target failure, do not retry
663  * -EBADE	permanent nexus failure, retry on other path
664  * -ENOSPC	No write space available
665  * -ENODATA	Medium error
666  * -EIO		unspecified I/O error
667  */
668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
669 {
670 	int error = 0;
671 
672 	switch(host_byte(result)) {
673 	case DID_TRANSPORT_FAILFAST:
674 		error = -ENOLINK;
675 		break;
676 	case DID_TARGET_FAILURE:
677 		set_host_byte(cmd, DID_OK);
678 		error = -EREMOTEIO;
679 		break;
680 	case DID_NEXUS_FAILURE:
681 		set_host_byte(cmd, DID_OK);
682 		error = -EBADE;
683 		break;
684 	case DID_ALLOC_FAILURE:
685 		set_host_byte(cmd, DID_OK);
686 		error = -ENOSPC;
687 		break;
688 	case DID_MEDIUM_ERROR:
689 		set_host_byte(cmd, DID_OK);
690 		error = -ENODATA;
691 		break;
692 	default:
693 		error = -EIO;
694 		break;
695 	}
696 
697 	return error;
698 }
699 
700 /*
701  * Function:    scsi_io_completion()
702  *
703  * Purpose:     Completion processing for block device I/O requests.
704  *
705  * Arguments:   cmd   - command that is finished.
706  *
707  * Lock status: Assumed that no lock is held upon entry.
708  *
709  * Returns:     Nothing
710  *
711  * Notes:       We will finish off the specified number of sectors.  If we
712  *		are done, the command block will be released and the queue
713  *		function will be goosed.  If we are not done then we have to
714  *		figure out what to do next:
715  *
716  *		a) We can call scsi_requeue_command().  The request
717  *		   will be unprepared and put back on the queue.  Then
718  *		   a new command will be created for it.  This should
719  *		   be used if we made forward progress, or if we want
720  *		   to switch from READ(10) to READ(6) for example.
721  *
722  *		b) We can call __scsi_queue_insert().  The request will
723  *		   be put back on the queue and retried using the same
724  *		   command as before, possibly after a delay.
725  *
726  *		c) We can call scsi_end_request() with -EIO to fail
727  *		   the remainder of the request.
728  */
729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
730 {
731 	int result = cmd->result;
732 	struct request_queue *q = cmd->device->request_queue;
733 	struct request *req = cmd->request;
734 	int error = 0;
735 	struct scsi_sense_hdr sshdr;
736 	bool sense_valid = false;
737 	int sense_deferred = 0, level = 0;
738 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 	      ACTION_DELAYED_RETRY} action;
740 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
741 
742 	if (result) {
743 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 		if (sense_valid)
745 			sense_deferred = scsi_sense_is_deferred(&sshdr);
746 	}
747 
748 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 		if (result) {
750 			if (sense_valid && req->sense) {
751 				/*
752 				 * SG_IO wants current and deferred errors
753 				 */
754 				int len = 8 + cmd->sense_buffer[7];
755 
756 				if (len > SCSI_SENSE_BUFFERSIZE)
757 					len = SCSI_SENSE_BUFFERSIZE;
758 				memcpy(req->sense, cmd->sense_buffer,  len);
759 				req->sense_len = len;
760 			}
761 			if (!sense_deferred)
762 				error = __scsi_error_from_host_byte(cmd, result);
763 		}
764 		/*
765 		 * __scsi_error_from_host_byte may have reset the host_byte
766 		 */
767 		req->errors = cmd->result;
768 
769 		req->resid_len = scsi_get_resid(cmd);
770 
771 		if (scsi_bidi_cmnd(cmd)) {
772 			/*
773 			 * Bidi commands Must be complete as a whole,
774 			 * both sides at once.
775 			 */
776 			req->next_rq->resid_len = scsi_in(cmd)->resid;
777 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 					blk_rq_bytes(req->next_rq)))
779 				BUG();
780 			return;
781 		}
782 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
783 		/*
784 		 * Certain non BLOCK_PC requests are commands that don't
785 		 * actually transfer anything (FLUSH), so cannot use
786 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 		 * This sets the error explicitly for the problem case.
788 		 */
789 		error = __scsi_error_from_host_byte(cmd, result);
790 	}
791 
792 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 	BUG_ON(blk_bidi_rq(req));
794 
795 	/*
796 	 * Next deal with any sectors which we were able to correctly
797 	 * handle.
798 	 */
799 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 		"%u sectors total, %d bytes done.\n",
801 		blk_rq_sectors(req), good_bytes));
802 
803 	/*
804 	 * Recovered errors need reporting, but they're always treated
805 	 * as success, so fiddle the result code here.  For BLOCK_PC
806 	 * we already took a copy of the original into rq->errors which
807 	 * is what gets returned to the user
808 	 */
809 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 		 * print since caller wants ATA registers. Only occurs on
812 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
813 		 */
814 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
815 			;
816 		else if (!(req->cmd_flags & REQ_QUIET))
817 			scsi_print_sense(cmd);
818 		result = 0;
819 		/* BLOCK_PC may have set error */
820 		error = 0;
821 	}
822 
823 	/*
824 	 * special case: failed zero length commands always need to
825 	 * drop down into the retry code. Otherwise, if we finished
826 	 * all bytes in the request we are done now.
827 	 */
828 	if (!(blk_rq_bytes(req) == 0 && error) &&
829 	    !scsi_end_request(req, error, good_bytes, 0))
830 		return;
831 
832 	/*
833 	 * Kill remainder if no retrys.
834 	 */
835 	if (error && scsi_noretry_cmd(cmd)) {
836 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
837 			BUG();
838 		return;
839 	}
840 
841 	/*
842 	 * If there had been no error, but we have leftover bytes in the
843 	 * requeues just queue the command up again.
844 	 */
845 	if (result == 0)
846 		goto requeue;
847 
848 	error = __scsi_error_from_host_byte(cmd, result);
849 
850 	if (host_byte(result) == DID_RESET) {
851 		/* Third party bus reset or reset for error recovery
852 		 * reasons.  Just retry the command and see what
853 		 * happens.
854 		 */
855 		action = ACTION_RETRY;
856 	} else if (sense_valid && !sense_deferred) {
857 		switch (sshdr.sense_key) {
858 		case UNIT_ATTENTION:
859 			if (cmd->device->removable) {
860 				/* Detected disc change.  Set a bit
861 				 * and quietly refuse further access.
862 				 */
863 				cmd->device->changed = 1;
864 				action = ACTION_FAIL;
865 			} else {
866 				/* Must have been a power glitch, or a
867 				 * bus reset.  Could not have been a
868 				 * media change, so we just retry the
869 				 * command and see what happens.
870 				 */
871 				action = ACTION_RETRY;
872 			}
873 			break;
874 		case ILLEGAL_REQUEST:
875 			/* If we had an ILLEGAL REQUEST returned, then
876 			 * we may have performed an unsupported
877 			 * command.  The only thing this should be
878 			 * would be a ten byte read where only a six
879 			 * byte read was supported.  Also, on a system
880 			 * where READ CAPACITY failed, we may have
881 			 * read past the end of the disk.
882 			 */
883 			if ((cmd->device->use_10_for_rw &&
884 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 			    (cmd->cmnd[0] == READ_10 ||
886 			     cmd->cmnd[0] == WRITE_10)) {
887 				/* This will issue a new 6-byte command. */
888 				cmd->device->use_10_for_rw = 0;
889 				action = ACTION_REPREP;
890 			} else if (sshdr.asc == 0x10) /* DIX */ {
891 				action = ACTION_FAIL;
892 				error = -EILSEQ;
893 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
894 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
895 				action = ACTION_FAIL;
896 				error = -EREMOTEIO;
897 			} else
898 				action = ACTION_FAIL;
899 			break;
900 		case ABORTED_COMMAND:
901 			action = ACTION_FAIL;
902 			if (sshdr.asc == 0x10) /* DIF */
903 				error = -EILSEQ;
904 			break;
905 		case NOT_READY:
906 			/* If the device is in the process of becoming
907 			 * ready, or has a temporary blockage, retry.
908 			 */
909 			if (sshdr.asc == 0x04) {
910 				switch (sshdr.ascq) {
911 				case 0x01: /* becoming ready */
912 				case 0x04: /* format in progress */
913 				case 0x05: /* rebuild in progress */
914 				case 0x06: /* recalculation in progress */
915 				case 0x07: /* operation in progress */
916 				case 0x08: /* Long write in progress */
917 				case 0x09: /* self test in progress */
918 				case 0x14: /* space allocation in progress */
919 					action = ACTION_DELAYED_RETRY;
920 					break;
921 				default:
922 					action = ACTION_FAIL;
923 					break;
924 				}
925 			} else
926 				action = ACTION_FAIL;
927 			break;
928 		case VOLUME_OVERFLOW:
929 			/* See SSC3rXX or current. */
930 			action = ACTION_FAIL;
931 			break;
932 		default:
933 			action = ACTION_FAIL;
934 			break;
935 		}
936 	} else
937 		action = ACTION_FAIL;
938 
939 	if (action != ACTION_FAIL &&
940 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
941 		action = ACTION_FAIL;
942 
943 	switch (action) {
944 	case ACTION_FAIL:
945 		/* Give up and fail the remainder of the request */
946 		if (!(req->cmd_flags & REQ_QUIET)) {
947 			static DEFINE_RATELIMIT_STATE(_rs,
948 					DEFAULT_RATELIMIT_INTERVAL,
949 					DEFAULT_RATELIMIT_BURST);
950 
951 			if (unlikely(scsi_logging_level))
952 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
953 						       SCSI_LOG_MLCOMPLETE_BITS);
954 
955 			/*
956 			 * if logging is enabled the failure will be printed
957 			 * in scsi_log_completion(), so avoid duplicate messages
958 			 */
959 			if (!level && __ratelimit(&_rs)) {
960 				scsi_print_result(cmd, NULL, FAILED);
961 				if (driver_byte(result) & DRIVER_SENSE)
962 					scsi_print_sense(cmd);
963 				scsi_print_command(cmd);
964 			}
965 		}
966 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
967 			return;
968 		/*FALLTHRU*/
969 	case ACTION_REPREP:
970 	requeue:
971 		/* Unprep the request and put it back at the head of the queue.
972 		 * A new command will be prepared and issued.
973 		 */
974 		if (q->mq_ops) {
975 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
976 			scsi_mq_uninit_cmd(cmd);
977 			scsi_mq_requeue_cmd(cmd);
978 		} else {
979 			scsi_release_buffers(cmd);
980 			scsi_requeue_command(q, cmd);
981 		}
982 		break;
983 	case ACTION_RETRY:
984 		/* Retry the same command immediately */
985 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
986 		break;
987 	case ACTION_DELAYED_RETRY:
988 		/* Retry the same command after a delay */
989 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
990 		break;
991 	}
992 }
993 
994 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
995 {
996 	int count;
997 
998 	/*
999 	 * If sg table allocation fails, requeue request later.
1000 	 */
1001 	if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
1002 					sdb->table.sgl)))
1003 		return BLKPREP_DEFER;
1004 
1005 	/*
1006 	 * Next, walk the list, and fill in the addresses and sizes of
1007 	 * each segment.
1008 	 */
1009 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1010 	BUG_ON(count > sdb->table.nents);
1011 	sdb->table.nents = count;
1012 	sdb->length = blk_rq_bytes(req);
1013 	return BLKPREP_OK;
1014 }
1015 
1016 /*
1017  * Function:    scsi_init_io()
1018  *
1019  * Purpose:     SCSI I/O initialize function.
1020  *
1021  * Arguments:   cmd   - Command descriptor we wish to initialize
1022  *
1023  * Returns:     0 on success
1024  *		BLKPREP_DEFER if the failure is retryable
1025  *		BLKPREP_KILL if the failure is fatal
1026  */
1027 int scsi_init_io(struct scsi_cmnd *cmd)
1028 {
1029 	struct scsi_device *sdev = cmd->device;
1030 	struct request *rq = cmd->request;
1031 	bool is_mq = (rq->mq_ctx != NULL);
1032 	int error;
1033 
1034 	BUG_ON(!rq->nr_phys_segments);
1035 
1036 	error = scsi_init_sgtable(rq, &cmd->sdb);
1037 	if (error)
1038 		goto err_exit;
1039 
1040 	if (blk_bidi_rq(rq)) {
1041 		if (!rq->q->mq_ops) {
1042 			struct scsi_data_buffer *bidi_sdb =
1043 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1044 			if (!bidi_sdb) {
1045 				error = BLKPREP_DEFER;
1046 				goto err_exit;
1047 			}
1048 
1049 			rq->next_rq->special = bidi_sdb;
1050 		}
1051 
1052 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1053 		if (error)
1054 			goto err_exit;
1055 	}
1056 
1057 	if (blk_integrity_rq(rq)) {
1058 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1059 		int ivecs, count;
1060 
1061 		if (prot_sdb == NULL) {
1062 			/*
1063 			 * This can happen if someone (e.g. multipath)
1064 			 * queues a command to a device on an adapter
1065 			 * that does not support DIX.
1066 			 */
1067 			WARN_ON_ONCE(1);
1068 			error = BLKPREP_KILL;
1069 			goto err_exit;
1070 		}
1071 
1072 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073 
1074 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1075 				prot_sdb->table.sgl)) {
1076 			error = BLKPREP_DEFER;
1077 			goto err_exit;
1078 		}
1079 
1080 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1081 						prot_sdb->table.sgl);
1082 		BUG_ON(unlikely(count > ivecs));
1083 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1084 
1085 		cmd->prot_sdb = prot_sdb;
1086 		cmd->prot_sdb->table.nents = count;
1087 	}
1088 
1089 	return BLKPREP_OK;
1090 err_exit:
1091 	if (is_mq) {
1092 		scsi_mq_free_sgtables(cmd);
1093 	} else {
1094 		scsi_release_buffers(cmd);
1095 		cmd->request->special = NULL;
1096 		scsi_put_command(cmd);
1097 		put_device(&sdev->sdev_gendev);
1098 	}
1099 	return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102 
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104 		struct request *req)
1105 {
1106 	struct scsi_cmnd *cmd;
1107 
1108 	if (!req->special) {
1109 		/* Bail if we can't get a reference to the device */
1110 		if (!get_device(&sdev->sdev_gendev))
1111 			return NULL;
1112 
1113 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1114 		if (unlikely(!cmd)) {
1115 			put_device(&sdev->sdev_gendev);
1116 			return NULL;
1117 		}
1118 		req->special = cmd;
1119 	} else {
1120 		cmd = req->special;
1121 	}
1122 
1123 	/* pull a tag out of the request if we have one */
1124 	cmd->tag = req->tag;
1125 	cmd->request = req;
1126 
1127 	cmd->cmnd = req->cmd;
1128 	cmd->prot_op = SCSI_PROT_NORMAL;
1129 
1130 	return cmd;
1131 }
1132 
1133 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1134 {
1135 	struct scsi_cmnd *cmd = req->special;
1136 
1137 	/*
1138 	 * BLOCK_PC requests may transfer data, in which case they must
1139 	 * a bio attached to them.  Or they might contain a SCSI command
1140 	 * that does not transfer data, in which case they may optionally
1141 	 * submit a request without an attached bio.
1142 	 */
1143 	if (req->bio) {
1144 		int ret = scsi_init_io(cmd);
1145 		if (unlikely(ret))
1146 			return ret;
1147 	} else {
1148 		BUG_ON(blk_rq_bytes(req));
1149 
1150 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1151 	}
1152 
1153 	cmd->cmd_len = req->cmd_len;
1154 	cmd->transfersize = blk_rq_bytes(req);
1155 	cmd->allowed = req->retries;
1156 	return BLKPREP_OK;
1157 }
1158 
1159 /*
1160  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1161  * that still need to be translated to SCSI CDBs from the ULD.
1162  */
1163 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1164 {
1165 	struct scsi_cmnd *cmd = req->special;
1166 
1167 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1168 		int ret = sdev->handler->prep_fn(sdev, req);
1169 		if (ret != BLKPREP_OK)
1170 			return ret;
1171 	}
1172 
1173 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1174 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1175 }
1176 
1177 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1178 {
1179 	struct scsi_cmnd *cmd = req->special;
1180 
1181 	if (!blk_rq_bytes(req))
1182 		cmd->sc_data_direction = DMA_NONE;
1183 	else if (rq_data_dir(req) == WRITE)
1184 		cmd->sc_data_direction = DMA_TO_DEVICE;
1185 	else
1186 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1187 
1188 	switch (req->cmd_type) {
1189 	case REQ_TYPE_FS:
1190 		return scsi_setup_fs_cmnd(sdev, req);
1191 	case REQ_TYPE_BLOCK_PC:
1192 		return scsi_setup_blk_pc_cmnd(sdev, req);
1193 	default:
1194 		return BLKPREP_KILL;
1195 	}
1196 }
1197 
1198 static int
1199 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1200 {
1201 	int ret = BLKPREP_OK;
1202 
1203 	/*
1204 	 * If the device is not in running state we will reject some
1205 	 * or all commands.
1206 	 */
1207 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1208 		switch (sdev->sdev_state) {
1209 		case SDEV_OFFLINE:
1210 		case SDEV_TRANSPORT_OFFLINE:
1211 			/*
1212 			 * If the device is offline we refuse to process any
1213 			 * commands.  The device must be brought online
1214 			 * before trying any recovery commands.
1215 			 */
1216 			sdev_printk(KERN_ERR, sdev,
1217 				    "rejecting I/O to offline device\n");
1218 			ret = BLKPREP_KILL;
1219 			break;
1220 		case SDEV_DEL:
1221 			/*
1222 			 * If the device is fully deleted, we refuse to
1223 			 * process any commands as well.
1224 			 */
1225 			sdev_printk(KERN_ERR, sdev,
1226 				    "rejecting I/O to dead device\n");
1227 			ret = BLKPREP_KILL;
1228 			break;
1229 		case SDEV_BLOCK:
1230 		case SDEV_CREATED_BLOCK:
1231 			ret = BLKPREP_DEFER;
1232 			break;
1233 		case SDEV_QUIESCE:
1234 			/*
1235 			 * If the devices is blocked we defer normal commands.
1236 			 */
1237 			if (!(req->cmd_flags & REQ_PREEMPT))
1238 				ret = BLKPREP_DEFER;
1239 			break;
1240 		default:
1241 			/*
1242 			 * For any other not fully online state we only allow
1243 			 * special commands.  In particular any user initiated
1244 			 * command is not allowed.
1245 			 */
1246 			if (!(req->cmd_flags & REQ_PREEMPT))
1247 				ret = BLKPREP_KILL;
1248 			break;
1249 		}
1250 	}
1251 	return ret;
1252 }
1253 
1254 static int
1255 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1256 {
1257 	struct scsi_device *sdev = q->queuedata;
1258 
1259 	switch (ret) {
1260 	case BLKPREP_KILL:
1261 	case BLKPREP_INVALID:
1262 		req->errors = DID_NO_CONNECT << 16;
1263 		/* release the command and kill it */
1264 		if (req->special) {
1265 			struct scsi_cmnd *cmd = req->special;
1266 			scsi_release_buffers(cmd);
1267 			scsi_put_command(cmd);
1268 			put_device(&sdev->sdev_gendev);
1269 			req->special = NULL;
1270 		}
1271 		break;
1272 	case BLKPREP_DEFER:
1273 		/*
1274 		 * If we defer, the blk_peek_request() returns NULL, but the
1275 		 * queue must be restarted, so we schedule a callback to happen
1276 		 * shortly.
1277 		 */
1278 		if (atomic_read(&sdev->device_busy) == 0)
1279 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280 		break;
1281 	default:
1282 		req->cmd_flags |= REQ_DONTPREP;
1283 	}
1284 
1285 	return ret;
1286 }
1287 
1288 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1289 {
1290 	struct scsi_device *sdev = q->queuedata;
1291 	struct scsi_cmnd *cmd;
1292 	int ret;
1293 
1294 	ret = scsi_prep_state_check(sdev, req);
1295 	if (ret != BLKPREP_OK)
1296 		goto out;
1297 
1298 	cmd = scsi_get_cmd_from_req(sdev, req);
1299 	if (unlikely(!cmd)) {
1300 		ret = BLKPREP_DEFER;
1301 		goto out;
1302 	}
1303 
1304 	ret = scsi_setup_cmnd(sdev, req);
1305 out:
1306 	return scsi_prep_return(q, req, ret);
1307 }
1308 
1309 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1310 {
1311 	scsi_uninit_cmd(req->special);
1312 }
1313 
1314 /*
1315  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1316  * return 0.
1317  *
1318  * Called with the queue_lock held.
1319  */
1320 static inline int scsi_dev_queue_ready(struct request_queue *q,
1321 				  struct scsi_device *sdev)
1322 {
1323 	unsigned int busy;
1324 
1325 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1326 	if (atomic_read(&sdev->device_blocked)) {
1327 		if (busy)
1328 			goto out_dec;
1329 
1330 		/*
1331 		 * unblock after device_blocked iterates to zero
1332 		 */
1333 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1334 			/*
1335 			 * For the MQ case we take care of this in the caller.
1336 			 */
1337 			if (!q->mq_ops)
1338 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339 			goto out_dec;
1340 		}
1341 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1342 				   "unblocking device at zero depth\n"));
1343 	}
1344 
1345 	if (busy >= sdev->queue_depth)
1346 		goto out_dec;
1347 
1348 	return 1;
1349 out_dec:
1350 	atomic_dec(&sdev->device_busy);
1351 	return 0;
1352 }
1353 
1354 /*
1355  * scsi_target_queue_ready: checks if there we can send commands to target
1356  * @sdev: scsi device on starget to check.
1357  */
1358 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1359 					   struct scsi_device *sdev)
1360 {
1361 	struct scsi_target *starget = scsi_target(sdev);
1362 	unsigned int busy;
1363 
1364 	if (starget->single_lun) {
1365 		spin_lock_irq(shost->host_lock);
1366 		if (starget->starget_sdev_user &&
1367 		    starget->starget_sdev_user != sdev) {
1368 			spin_unlock_irq(shost->host_lock);
1369 			return 0;
1370 		}
1371 		starget->starget_sdev_user = sdev;
1372 		spin_unlock_irq(shost->host_lock);
1373 	}
1374 
1375 	if (starget->can_queue <= 0)
1376 		return 1;
1377 
1378 	busy = atomic_inc_return(&starget->target_busy) - 1;
1379 	if (atomic_read(&starget->target_blocked) > 0) {
1380 		if (busy)
1381 			goto starved;
1382 
1383 		/*
1384 		 * unblock after target_blocked iterates to zero
1385 		 */
1386 		if (atomic_dec_return(&starget->target_blocked) > 0)
1387 			goto out_dec;
1388 
1389 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1390 				 "unblocking target at zero depth\n"));
1391 	}
1392 
1393 	if (busy >= starget->can_queue)
1394 		goto starved;
1395 
1396 	return 1;
1397 
1398 starved:
1399 	spin_lock_irq(shost->host_lock);
1400 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1401 	spin_unlock_irq(shost->host_lock);
1402 out_dec:
1403 	if (starget->can_queue > 0)
1404 		atomic_dec(&starget->target_busy);
1405 	return 0;
1406 }
1407 
1408 /*
1409  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1410  * return 0. We must end up running the queue again whenever 0 is
1411  * returned, else IO can hang.
1412  */
1413 static inline int scsi_host_queue_ready(struct request_queue *q,
1414 				   struct Scsi_Host *shost,
1415 				   struct scsi_device *sdev)
1416 {
1417 	unsigned int busy;
1418 
1419 	if (scsi_host_in_recovery(shost))
1420 		return 0;
1421 
1422 	busy = atomic_inc_return(&shost->host_busy) - 1;
1423 	if (atomic_read(&shost->host_blocked) > 0) {
1424 		if (busy)
1425 			goto starved;
1426 
1427 		/*
1428 		 * unblock after host_blocked iterates to zero
1429 		 */
1430 		if (atomic_dec_return(&shost->host_blocked) > 0)
1431 			goto out_dec;
1432 
1433 		SCSI_LOG_MLQUEUE(3,
1434 			shost_printk(KERN_INFO, shost,
1435 				     "unblocking host at zero depth\n"));
1436 	}
1437 
1438 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1439 		goto starved;
1440 	if (shost->host_self_blocked)
1441 		goto starved;
1442 
1443 	/* We're OK to process the command, so we can't be starved */
1444 	if (!list_empty(&sdev->starved_entry)) {
1445 		spin_lock_irq(shost->host_lock);
1446 		if (!list_empty(&sdev->starved_entry))
1447 			list_del_init(&sdev->starved_entry);
1448 		spin_unlock_irq(shost->host_lock);
1449 	}
1450 
1451 	return 1;
1452 
1453 starved:
1454 	spin_lock_irq(shost->host_lock);
1455 	if (list_empty(&sdev->starved_entry))
1456 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457 	spin_unlock_irq(shost->host_lock);
1458 out_dec:
1459 	atomic_dec(&shost->host_busy);
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Busy state exporting function for request stacking drivers.
1465  *
1466  * For efficiency, no lock is taken to check the busy state of
1467  * shost/starget/sdev, since the returned value is not guaranteed and
1468  * may be changed after request stacking drivers call the function,
1469  * regardless of taking lock or not.
1470  *
1471  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1472  * needs to return 'not busy'. Otherwise, request stacking drivers
1473  * may hold requests forever.
1474  */
1475 static int scsi_lld_busy(struct request_queue *q)
1476 {
1477 	struct scsi_device *sdev = q->queuedata;
1478 	struct Scsi_Host *shost;
1479 
1480 	if (blk_queue_dying(q))
1481 		return 0;
1482 
1483 	shost = sdev->host;
1484 
1485 	/*
1486 	 * Ignore host/starget busy state.
1487 	 * Since block layer does not have a concept of fairness across
1488 	 * multiple queues, congestion of host/starget needs to be handled
1489 	 * in SCSI layer.
1490 	 */
1491 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1492 		return 1;
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * Kill a request for a dead device
1499  */
1500 static void scsi_kill_request(struct request *req, struct request_queue *q)
1501 {
1502 	struct scsi_cmnd *cmd = req->special;
1503 	struct scsi_device *sdev;
1504 	struct scsi_target *starget;
1505 	struct Scsi_Host *shost;
1506 
1507 	blk_start_request(req);
1508 
1509 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1510 
1511 	sdev = cmd->device;
1512 	starget = scsi_target(sdev);
1513 	shost = sdev->host;
1514 	scsi_init_cmd_errh(cmd);
1515 	cmd->result = DID_NO_CONNECT << 16;
1516 	atomic_inc(&cmd->device->iorequest_cnt);
1517 
1518 	/*
1519 	 * SCSI request completion path will do scsi_device_unbusy(),
1520 	 * bump busy counts.  To bump the counters, we need to dance
1521 	 * with the locks as normal issue path does.
1522 	 */
1523 	atomic_inc(&sdev->device_busy);
1524 	atomic_inc(&shost->host_busy);
1525 	if (starget->can_queue > 0)
1526 		atomic_inc(&starget->target_busy);
1527 
1528 	blk_complete_request(req);
1529 }
1530 
1531 static void scsi_softirq_done(struct request *rq)
1532 {
1533 	struct scsi_cmnd *cmd = rq->special;
1534 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1535 	int disposition;
1536 
1537 	INIT_LIST_HEAD(&cmd->eh_entry);
1538 
1539 	atomic_inc(&cmd->device->iodone_cnt);
1540 	if (cmd->result)
1541 		atomic_inc(&cmd->device->ioerr_cnt);
1542 
1543 	disposition = scsi_decide_disposition(cmd);
1544 	if (disposition != SUCCESS &&
1545 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1546 		sdev_printk(KERN_ERR, cmd->device,
1547 			    "timing out command, waited %lus\n",
1548 			    wait_for/HZ);
1549 		disposition = SUCCESS;
1550 	}
1551 
1552 	scsi_log_completion(cmd, disposition);
1553 
1554 	switch (disposition) {
1555 		case SUCCESS:
1556 			scsi_finish_command(cmd);
1557 			break;
1558 		case NEEDS_RETRY:
1559 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1560 			break;
1561 		case ADD_TO_MLQUEUE:
1562 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1563 			break;
1564 		default:
1565 			if (!scsi_eh_scmd_add(cmd, 0))
1566 				scsi_finish_command(cmd);
1567 	}
1568 }
1569 
1570 /**
1571  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1572  * @cmd: command block we are dispatching.
1573  *
1574  * Return: nonzero return request was rejected and device's queue needs to be
1575  * plugged.
1576  */
1577 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1578 {
1579 	struct Scsi_Host *host = cmd->device->host;
1580 	int rtn = 0;
1581 
1582 	atomic_inc(&cmd->device->iorequest_cnt);
1583 
1584 	/* check if the device is still usable */
1585 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1586 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1587 		 * returns an immediate error upwards, and signals
1588 		 * that the device is no longer present */
1589 		cmd->result = DID_NO_CONNECT << 16;
1590 		goto done;
1591 	}
1592 
1593 	/* Check to see if the scsi lld made this device blocked. */
1594 	if (unlikely(scsi_device_blocked(cmd->device))) {
1595 		/*
1596 		 * in blocked state, the command is just put back on
1597 		 * the device queue.  The suspend state has already
1598 		 * blocked the queue so future requests should not
1599 		 * occur until the device transitions out of the
1600 		 * suspend state.
1601 		 */
1602 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1603 			"queuecommand : device blocked\n"));
1604 		return SCSI_MLQUEUE_DEVICE_BUSY;
1605 	}
1606 
1607 	/* Store the LUN value in cmnd, if needed. */
1608 	if (cmd->device->lun_in_cdb)
1609 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1610 			       (cmd->device->lun << 5 & 0xe0);
1611 
1612 	scsi_log_send(cmd);
1613 
1614 	/*
1615 	 * Before we queue this command, check if the command
1616 	 * length exceeds what the host adapter can handle.
1617 	 */
1618 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1619 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1620 			       "queuecommand : command too long. "
1621 			       "cdb_size=%d host->max_cmd_len=%d\n",
1622 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1623 		cmd->result = (DID_ABORT << 16);
1624 		goto done;
1625 	}
1626 
1627 	if (unlikely(host->shost_state == SHOST_DEL)) {
1628 		cmd->result = (DID_NO_CONNECT << 16);
1629 		goto done;
1630 
1631 	}
1632 
1633 	trace_scsi_dispatch_cmd_start(cmd);
1634 	rtn = host->hostt->queuecommand(host, cmd);
1635 	if (rtn) {
1636 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1637 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1638 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1639 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1640 
1641 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1642 			"queuecommand : request rejected\n"));
1643 	}
1644 
1645 	return rtn;
1646  done:
1647 	cmd->scsi_done(cmd);
1648 	return 0;
1649 }
1650 
1651 /**
1652  * scsi_done - Invoke completion on finished SCSI command.
1653  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1654  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1655  *
1656  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1657  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1658  * calls blk_complete_request() for further processing.
1659  *
1660  * This function is interrupt context safe.
1661  */
1662 static void scsi_done(struct scsi_cmnd *cmd)
1663 {
1664 	trace_scsi_dispatch_cmd_done(cmd);
1665 	blk_complete_request(cmd->request);
1666 }
1667 
1668 /*
1669  * Function:    scsi_request_fn()
1670  *
1671  * Purpose:     Main strategy routine for SCSI.
1672  *
1673  * Arguments:   q       - Pointer to actual queue.
1674  *
1675  * Returns:     Nothing
1676  *
1677  * Lock status: IO request lock assumed to be held when called.
1678  */
1679 static void scsi_request_fn(struct request_queue *q)
1680 	__releases(q->queue_lock)
1681 	__acquires(q->queue_lock)
1682 {
1683 	struct scsi_device *sdev = q->queuedata;
1684 	struct Scsi_Host *shost;
1685 	struct scsi_cmnd *cmd;
1686 	struct request *req;
1687 
1688 	/*
1689 	 * To start with, we keep looping until the queue is empty, or until
1690 	 * the host is no longer able to accept any more requests.
1691 	 */
1692 	shost = sdev->host;
1693 	for (;;) {
1694 		int rtn;
1695 		/*
1696 		 * get next queueable request.  We do this early to make sure
1697 		 * that the request is fully prepared even if we cannot
1698 		 * accept it.
1699 		 */
1700 		req = blk_peek_request(q);
1701 		if (!req)
1702 			break;
1703 
1704 		if (unlikely(!scsi_device_online(sdev))) {
1705 			sdev_printk(KERN_ERR, sdev,
1706 				    "rejecting I/O to offline device\n");
1707 			scsi_kill_request(req, q);
1708 			continue;
1709 		}
1710 
1711 		if (!scsi_dev_queue_ready(q, sdev))
1712 			break;
1713 
1714 		/*
1715 		 * Remove the request from the request list.
1716 		 */
1717 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1718 			blk_start_request(req);
1719 
1720 		spin_unlock_irq(q->queue_lock);
1721 		cmd = req->special;
1722 		if (unlikely(cmd == NULL)) {
1723 			printk(KERN_CRIT "impossible request in %s.\n"
1724 					 "please mail a stack trace to "
1725 					 "linux-scsi@vger.kernel.org\n",
1726 					 __func__);
1727 			blk_dump_rq_flags(req, "foo");
1728 			BUG();
1729 		}
1730 
1731 		/*
1732 		 * We hit this when the driver is using a host wide
1733 		 * tag map. For device level tag maps the queue_depth check
1734 		 * in the device ready fn would prevent us from trying
1735 		 * to allocate a tag. Since the map is a shared host resource
1736 		 * we add the dev to the starved list so it eventually gets
1737 		 * a run when a tag is freed.
1738 		 */
1739 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1740 			spin_lock_irq(shost->host_lock);
1741 			if (list_empty(&sdev->starved_entry))
1742 				list_add_tail(&sdev->starved_entry,
1743 					      &shost->starved_list);
1744 			spin_unlock_irq(shost->host_lock);
1745 			goto not_ready;
1746 		}
1747 
1748 		if (!scsi_target_queue_ready(shost, sdev))
1749 			goto not_ready;
1750 
1751 		if (!scsi_host_queue_ready(q, shost, sdev))
1752 			goto host_not_ready;
1753 
1754 		if (sdev->simple_tags)
1755 			cmd->flags |= SCMD_TAGGED;
1756 		else
1757 			cmd->flags &= ~SCMD_TAGGED;
1758 
1759 		/*
1760 		 * Finally, initialize any error handling parameters, and set up
1761 		 * the timers for timeouts.
1762 		 */
1763 		scsi_init_cmd_errh(cmd);
1764 
1765 		/*
1766 		 * Dispatch the command to the low-level driver.
1767 		 */
1768 		cmd->scsi_done = scsi_done;
1769 		rtn = scsi_dispatch_cmd(cmd);
1770 		if (rtn) {
1771 			scsi_queue_insert(cmd, rtn);
1772 			spin_lock_irq(q->queue_lock);
1773 			goto out_delay;
1774 		}
1775 		spin_lock_irq(q->queue_lock);
1776 	}
1777 
1778 	return;
1779 
1780  host_not_ready:
1781 	if (scsi_target(sdev)->can_queue > 0)
1782 		atomic_dec(&scsi_target(sdev)->target_busy);
1783  not_ready:
1784 	/*
1785 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1786 	 * must return with queue_lock held.
1787 	 *
1788 	 * Decrementing device_busy without checking it is OK, as all such
1789 	 * cases (host limits or settings) should run the queue at some
1790 	 * later time.
1791 	 */
1792 	spin_lock_irq(q->queue_lock);
1793 	blk_requeue_request(q, req);
1794 	atomic_dec(&sdev->device_busy);
1795 out_delay:
1796 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1797 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1798 }
1799 
1800 static inline int prep_to_mq(int ret)
1801 {
1802 	switch (ret) {
1803 	case BLKPREP_OK:
1804 		return 0;
1805 	case BLKPREP_DEFER:
1806 		return BLK_MQ_RQ_QUEUE_BUSY;
1807 	default:
1808 		return BLK_MQ_RQ_QUEUE_ERROR;
1809 	}
1810 }
1811 
1812 static int scsi_mq_prep_fn(struct request *req)
1813 {
1814 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1815 	struct scsi_device *sdev = req->q->queuedata;
1816 	struct Scsi_Host *shost = sdev->host;
1817 	unsigned char *sense_buf = cmd->sense_buffer;
1818 	struct scatterlist *sg;
1819 
1820 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1821 
1822 	req->special = cmd;
1823 
1824 	cmd->request = req;
1825 	cmd->device = sdev;
1826 	cmd->sense_buffer = sense_buf;
1827 
1828 	cmd->tag = req->tag;
1829 
1830 	cmd->cmnd = req->cmd;
1831 	cmd->prot_op = SCSI_PROT_NORMAL;
1832 
1833 	INIT_LIST_HEAD(&cmd->list);
1834 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1835 	cmd->jiffies_at_alloc = jiffies;
1836 
1837 	if (shost->use_cmd_list) {
1838 		spin_lock_irq(&sdev->list_lock);
1839 		list_add_tail(&cmd->list, &sdev->cmd_list);
1840 		spin_unlock_irq(&sdev->list_lock);
1841 	}
1842 
1843 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1844 	cmd->sdb.table.sgl = sg;
1845 
1846 	if (scsi_host_get_prot(shost)) {
1847 		cmd->prot_sdb = (void *)sg +
1848 			min_t(unsigned int,
1849 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1850 			sizeof(struct scatterlist);
1851 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1852 
1853 		cmd->prot_sdb->table.sgl =
1854 			(struct scatterlist *)(cmd->prot_sdb + 1);
1855 	}
1856 
1857 	if (blk_bidi_rq(req)) {
1858 		struct request *next_rq = req->next_rq;
1859 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1860 
1861 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1862 		bidi_sdb->table.sgl =
1863 			(struct scatterlist *)(bidi_sdb + 1);
1864 
1865 		next_rq->special = bidi_sdb;
1866 	}
1867 
1868 	blk_mq_start_request(req);
1869 
1870 	return scsi_setup_cmnd(sdev, req);
1871 }
1872 
1873 static void scsi_mq_done(struct scsi_cmnd *cmd)
1874 {
1875 	trace_scsi_dispatch_cmd_done(cmd);
1876 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1877 }
1878 
1879 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1880 			 const struct blk_mq_queue_data *bd)
1881 {
1882 	struct request *req = bd->rq;
1883 	struct request_queue *q = req->q;
1884 	struct scsi_device *sdev = q->queuedata;
1885 	struct Scsi_Host *shost = sdev->host;
1886 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1887 	int ret;
1888 	int reason;
1889 
1890 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1891 	if (ret)
1892 		goto out;
1893 
1894 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1895 	if (!get_device(&sdev->sdev_gendev))
1896 		goto out;
1897 
1898 	if (!scsi_dev_queue_ready(q, sdev))
1899 		goto out_put_device;
1900 	if (!scsi_target_queue_ready(shost, sdev))
1901 		goto out_dec_device_busy;
1902 	if (!scsi_host_queue_ready(q, shost, sdev))
1903 		goto out_dec_target_busy;
1904 
1905 
1906 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1907 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1908 		if (ret)
1909 			goto out_dec_host_busy;
1910 		req->cmd_flags |= REQ_DONTPREP;
1911 	} else {
1912 		blk_mq_start_request(req);
1913 	}
1914 
1915 	if (sdev->simple_tags)
1916 		cmd->flags |= SCMD_TAGGED;
1917 	else
1918 		cmd->flags &= ~SCMD_TAGGED;
1919 
1920 	scsi_init_cmd_errh(cmd);
1921 	cmd->scsi_done = scsi_mq_done;
1922 
1923 	reason = scsi_dispatch_cmd(cmd);
1924 	if (reason) {
1925 		scsi_set_blocked(cmd, reason);
1926 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1927 		goto out_dec_host_busy;
1928 	}
1929 
1930 	return BLK_MQ_RQ_QUEUE_OK;
1931 
1932 out_dec_host_busy:
1933 	atomic_dec(&shost->host_busy);
1934 out_dec_target_busy:
1935 	if (scsi_target(sdev)->can_queue > 0)
1936 		atomic_dec(&scsi_target(sdev)->target_busy);
1937 out_dec_device_busy:
1938 	atomic_dec(&sdev->device_busy);
1939 out_put_device:
1940 	put_device(&sdev->sdev_gendev);
1941 out:
1942 	switch (ret) {
1943 	case BLK_MQ_RQ_QUEUE_BUSY:
1944 		blk_mq_stop_hw_queue(hctx);
1945 		if (atomic_read(&sdev->device_busy) == 0 &&
1946 		    !scsi_device_blocked(sdev))
1947 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1948 		break;
1949 	case BLK_MQ_RQ_QUEUE_ERROR:
1950 		/*
1951 		 * Make sure to release all allocated ressources when
1952 		 * we hit an error, as we will never see this command
1953 		 * again.
1954 		 */
1955 		if (req->cmd_flags & REQ_DONTPREP)
1956 			scsi_mq_uninit_cmd(cmd);
1957 		break;
1958 	default:
1959 		break;
1960 	}
1961 	return ret;
1962 }
1963 
1964 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1965 		bool reserved)
1966 {
1967 	if (reserved)
1968 		return BLK_EH_RESET_TIMER;
1969 	return scsi_times_out(req);
1970 }
1971 
1972 static int scsi_init_request(void *data, struct request *rq,
1973 		unsigned int hctx_idx, unsigned int request_idx,
1974 		unsigned int numa_node)
1975 {
1976 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977 
1978 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1979 			numa_node);
1980 	if (!cmd->sense_buffer)
1981 		return -ENOMEM;
1982 	return 0;
1983 }
1984 
1985 static void scsi_exit_request(void *data, struct request *rq,
1986 		unsigned int hctx_idx, unsigned int request_idx)
1987 {
1988 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1989 
1990 	kfree(cmd->sense_buffer);
1991 }
1992 
1993 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1994 {
1995 	struct device *host_dev;
1996 	u64 bounce_limit = 0xffffffff;
1997 
1998 	if (shost->unchecked_isa_dma)
1999 		return BLK_BOUNCE_ISA;
2000 	/*
2001 	 * Platforms with virtual-DMA translation
2002 	 * hardware have no practical limit.
2003 	 */
2004 	if (!PCI_DMA_BUS_IS_PHYS)
2005 		return BLK_BOUNCE_ANY;
2006 
2007 	host_dev = scsi_get_device(shost);
2008 	if (host_dev && host_dev->dma_mask)
2009 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2010 
2011 	return bounce_limit;
2012 }
2013 
2014 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2015 {
2016 	struct device *dev = shost->dma_dev;
2017 
2018 	/*
2019 	 * this limit is imposed by hardware restrictions
2020 	 */
2021 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2022 					SG_MAX_SEGMENTS));
2023 
2024 	if (scsi_host_prot_dma(shost)) {
2025 		shost->sg_prot_tablesize =
2026 			min_not_zero(shost->sg_prot_tablesize,
2027 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2028 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2029 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2030 	}
2031 
2032 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2033 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2034 	blk_queue_segment_boundary(q, shost->dma_boundary);
2035 	dma_set_seg_boundary(dev, shost->dma_boundary);
2036 
2037 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2038 
2039 	if (!shost->use_clustering)
2040 		q->limits.cluster = 0;
2041 
2042 	/*
2043 	 * set a reasonable default alignment on word boundaries: the
2044 	 * host and device may alter it using
2045 	 * blk_queue_update_dma_alignment() later.
2046 	 */
2047 	blk_queue_dma_alignment(q, 0x03);
2048 }
2049 
2050 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2051 					 request_fn_proc *request_fn)
2052 {
2053 	struct request_queue *q;
2054 
2055 	q = blk_init_queue(request_fn, NULL);
2056 	if (!q)
2057 		return NULL;
2058 	__scsi_init_queue(shost, q);
2059 	return q;
2060 }
2061 EXPORT_SYMBOL(__scsi_alloc_queue);
2062 
2063 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2064 {
2065 	struct request_queue *q;
2066 
2067 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2068 	if (!q)
2069 		return NULL;
2070 
2071 	blk_queue_prep_rq(q, scsi_prep_fn);
2072 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2073 	blk_queue_softirq_done(q, scsi_softirq_done);
2074 	blk_queue_rq_timed_out(q, scsi_times_out);
2075 	blk_queue_lld_busy(q, scsi_lld_busy);
2076 	return q;
2077 }
2078 
2079 static struct blk_mq_ops scsi_mq_ops = {
2080 	.map_queue	= blk_mq_map_queue,
2081 	.queue_rq	= scsi_queue_rq,
2082 	.complete	= scsi_softirq_done,
2083 	.timeout	= scsi_timeout,
2084 	.init_request	= scsi_init_request,
2085 	.exit_request	= scsi_exit_request,
2086 };
2087 
2088 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2089 {
2090 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2091 	if (IS_ERR(sdev->request_queue))
2092 		return NULL;
2093 
2094 	sdev->request_queue->queuedata = sdev;
2095 	__scsi_init_queue(sdev->host, sdev->request_queue);
2096 	return sdev->request_queue;
2097 }
2098 
2099 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2100 {
2101 	unsigned int cmd_size, sgl_size, tbl_size;
2102 
2103 	tbl_size = shost->sg_tablesize;
2104 	if (tbl_size > SG_CHUNK_SIZE)
2105 		tbl_size = SG_CHUNK_SIZE;
2106 	sgl_size = tbl_size * sizeof(struct scatterlist);
2107 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2108 	if (scsi_host_get_prot(shost))
2109 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2110 
2111 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2112 	shost->tag_set.ops = &scsi_mq_ops;
2113 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2114 	shost->tag_set.queue_depth = shost->can_queue;
2115 	shost->tag_set.cmd_size = cmd_size;
2116 	shost->tag_set.numa_node = NUMA_NO_NODE;
2117 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2118 	shost->tag_set.flags |=
2119 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2120 	shost->tag_set.driver_data = shost;
2121 
2122 	return blk_mq_alloc_tag_set(&shost->tag_set);
2123 }
2124 
2125 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2126 {
2127 	blk_mq_free_tag_set(&shost->tag_set);
2128 }
2129 
2130 /*
2131  * Function:    scsi_block_requests()
2132  *
2133  * Purpose:     Utility function used by low-level drivers to prevent further
2134  *		commands from being queued to the device.
2135  *
2136  * Arguments:   shost       - Host in question
2137  *
2138  * Returns:     Nothing
2139  *
2140  * Lock status: No locks are assumed held.
2141  *
2142  * Notes:       There is no timer nor any other means by which the requests
2143  *		get unblocked other than the low-level driver calling
2144  *		scsi_unblock_requests().
2145  */
2146 void scsi_block_requests(struct Scsi_Host *shost)
2147 {
2148 	shost->host_self_blocked = 1;
2149 }
2150 EXPORT_SYMBOL(scsi_block_requests);
2151 
2152 /*
2153  * Function:    scsi_unblock_requests()
2154  *
2155  * Purpose:     Utility function used by low-level drivers to allow further
2156  *		commands from being queued to the device.
2157  *
2158  * Arguments:   shost       - Host in question
2159  *
2160  * Returns:     Nothing
2161  *
2162  * Lock status: No locks are assumed held.
2163  *
2164  * Notes:       There is no timer nor any other means by which the requests
2165  *		get unblocked other than the low-level driver calling
2166  *		scsi_unblock_requests().
2167  *
2168  *		This is done as an API function so that changes to the
2169  *		internals of the scsi mid-layer won't require wholesale
2170  *		changes to drivers that use this feature.
2171  */
2172 void scsi_unblock_requests(struct Scsi_Host *shost)
2173 {
2174 	shost->host_self_blocked = 0;
2175 	scsi_run_host_queues(shost);
2176 }
2177 EXPORT_SYMBOL(scsi_unblock_requests);
2178 
2179 int __init scsi_init_queue(void)
2180 {
2181 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2182 					   sizeof(struct scsi_data_buffer),
2183 					   0, 0, NULL);
2184 	if (!scsi_sdb_cache) {
2185 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2186 		return -ENOMEM;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 void scsi_exit_queue(void)
2193 {
2194 	kmem_cache_destroy(scsi_sdb_cache);
2195 }
2196 
2197 /**
2198  *	scsi_mode_select - issue a mode select
2199  *	@sdev:	SCSI device to be queried
2200  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2201  *	@sp:	Save page bit (0 == don't save, 1 == save)
2202  *	@modepage: mode page being requested
2203  *	@buffer: request buffer (may not be smaller than eight bytes)
2204  *	@len:	length of request buffer.
2205  *	@timeout: command timeout
2206  *	@retries: number of retries before failing
2207  *	@data: returns a structure abstracting the mode header data
2208  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2209  *		must be SCSI_SENSE_BUFFERSIZE big.
2210  *
2211  *	Returns zero if successful; negative error number or scsi
2212  *	status on error
2213  *
2214  */
2215 int
2216 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2217 		 unsigned char *buffer, int len, int timeout, int retries,
2218 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2219 {
2220 	unsigned char cmd[10];
2221 	unsigned char *real_buffer;
2222 	int ret;
2223 
2224 	memset(cmd, 0, sizeof(cmd));
2225 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2226 
2227 	if (sdev->use_10_for_ms) {
2228 		if (len > 65535)
2229 			return -EINVAL;
2230 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2231 		if (!real_buffer)
2232 			return -ENOMEM;
2233 		memcpy(real_buffer + 8, buffer, len);
2234 		len += 8;
2235 		real_buffer[0] = 0;
2236 		real_buffer[1] = 0;
2237 		real_buffer[2] = data->medium_type;
2238 		real_buffer[3] = data->device_specific;
2239 		real_buffer[4] = data->longlba ? 0x01 : 0;
2240 		real_buffer[5] = 0;
2241 		real_buffer[6] = data->block_descriptor_length >> 8;
2242 		real_buffer[7] = data->block_descriptor_length;
2243 
2244 		cmd[0] = MODE_SELECT_10;
2245 		cmd[7] = len >> 8;
2246 		cmd[8] = len;
2247 	} else {
2248 		if (len > 255 || data->block_descriptor_length > 255 ||
2249 		    data->longlba)
2250 			return -EINVAL;
2251 
2252 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2253 		if (!real_buffer)
2254 			return -ENOMEM;
2255 		memcpy(real_buffer + 4, buffer, len);
2256 		len += 4;
2257 		real_buffer[0] = 0;
2258 		real_buffer[1] = data->medium_type;
2259 		real_buffer[2] = data->device_specific;
2260 		real_buffer[3] = data->block_descriptor_length;
2261 
2262 
2263 		cmd[0] = MODE_SELECT;
2264 		cmd[4] = len;
2265 	}
2266 
2267 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2268 			       sshdr, timeout, retries, NULL);
2269 	kfree(real_buffer);
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(scsi_mode_select);
2273 
2274 /**
2275  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2276  *	@sdev:	SCSI device to be queried
2277  *	@dbd:	set if mode sense will allow block descriptors to be returned
2278  *	@modepage: mode page being requested
2279  *	@buffer: request buffer (may not be smaller than eight bytes)
2280  *	@len:	length of request buffer.
2281  *	@timeout: command timeout
2282  *	@retries: number of retries before failing
2283  *	@data: returns a structure abstracting the mode header data
2284  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2285  *		must be SCSI_SENSE_BUFFERSIZE big.
2286  *
2287  *	Returns zero if unsuccessful, or the header offset (either 4
2288  *	or 8 depending on whether a six or ten byte command was
2289  *	issued) if successful.
2290  */
2291 int
2292 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2293 		  unsigned char *buffer, int len, int timeout, int retries,
2294 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2295 {
2296 	unsigned char cmd[12];
2297 	int use_10_for_ms;
2298 	int header_length;
2299 	int result, retry_count = retries;
2300 	struct scsi_sense_hdr my_sshdr;
2301 
2302 	memset(data, 0, sizeof(*data));
2303 	memset(&cmd[0], 0, 12);
2304 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2305 	cmd[2] = modepage;
2306 
2307 	/* caller might not be interested in sense, but we need it */
2308 	if (!sshdr)
2309 		sshdr = &my_sshdr;
2310 
2311  retry:
2312 	use_10_for_ms = sdev->use_10_for_ms;
2313 
2314 	if (use_10_for_ms) {
2315 		if (len < 8)
2316 			len = 8;
2317 
2318 		cmd[0] = MODE_SENSE_10;
2319 		cmd[8] = len;
2320 		header_length = 8;
2321 	} else {
2322 		if (len < 4)
2323 			len = 4;
2324 
2325 		cmd[0] = MODE_SENSE;
2326 		cmd[4] = len;
2327 		header_length = 4;
2328 	}
2329 
2330 	memset(buffer, 0, len);
2331 
2332 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2333 				  sshdr, timeout, retries, NULL);
2334 
2335 	/* This code looks awful: what it's doing is making sure an
2336 	 * ILLEGAL REQUEST sense return identifies the actual command
2337 	 * byte as the problem.  MODE_SENSE commands can return
2338 	 * ILLEGAL REQUEST if the code page isn't supported */
2339 
2340 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2341 	    (driver_byte(result) & DRIVER_SENSE)) {
2342 		if (scsi_sense_valid(sshdr)) {
2343 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2344 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2345 				/*
2346 				 * Invalid command operation code
2347 				 */
2348 				sdev->use_10_for_ms = 0;
2349 				goto retry;
2350 			}
2351 		}
2352 	}
2353 
2354 	if(scsi_status_is_good(result)) {
2355 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2356 			     (modepage == 6 || modepage == 8))) {
2357 			/* Initio breakage? */
2358 			header_length = 0;
2359 			data->length = 13;
2360 			data->medium_type = 0;
2361 			data->device_specific = 0;
2362 			data->longlba = 0;
2363 			data->block_descriptor_length = 0;
2364 		} else if(use_10_for_ms) {
2365 			data->length = buffer[0]*256 + buffer[1] + 2;
2366 			data->medium_type = buffer[2];
2367 			data->device_specific = buffer[3];
2368 			data->longlba = buffer[4] & 0x01;
2369 			data->block_descriptor_length = buffer[6]*256
2370 				+ buffer[7];
2371 		} else {
2372 			data->length = buffer[0] + 1;
2373 			data->medium_type = buffer[1];
2374 			data->device_specific = buffer[2];
2375 			data->block_descriptor_length = buffer[3];
2376 		}
2377 		data->header_length = header_length;
2378 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2379 		   scsi_sense_valid(sshdr) &&
2380 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2381 		retry_count--;
2382 		goto retry;
2383 	}
2384 
2385 	return result;
2386 }
2387 EXPORT_SYMBOL(scsi_mode_sense);
2388 
2389 /**
2390  *	scsi_test_unit_ready - test if unit is ready
2391  *	@sdev:	scsi device to change the state of.
2392  *	@timeout: command timeout
2393  *	@retries: number of retries before failing
2394  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2395  *		returning sense. Make sure that this is cleared before passing
2396  *		in.
2397  *
2398  *	Returns zero if unsuccessful or an error if TUR failed.  For
2399  *	removable media, UNIT_ATTENTION sets ->changed flag.
2400  **/
2401 int
2402 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2403 		     struct scsi_sense_hdr *sshdr_external)
2404 {
2405 	char cmd[] = {
2406 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2407 	};
2408 	struct scsi_sense_hdr *sshdr;
2409 	int result;
2410 
2411 	if (!sshdr_external)
2412 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2413 	else
2414 		sshdr = sshdr_external;
2415 
2416 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2417 	do {
2418 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2419 					  timeout, retries, NULL);
2420 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2421 		    sshdr->sense_key == UNIT_ATTENTION)
2422 			sdev->changed = 1;
2423 	} while (scsi_sense_valid(sshdr) &&
2424 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2425 
2426 	if (!sshdr_external)
2427 		kfree(sshdr);
2428 	return result;
2429 }
2430 EXPORT_SYMBOL(scsi_test_unit_ready);
2431 
2432 /**
2433  *	scsi_device_set_state - Take the given device through the device state model.
2434  *	@sdev:	scsi device to change the state of.
2435  *	@state:	state to change to.
2436  *
2437  *	Returns zero if unsuccessful or an error if the requested
2438  *	transition is illegal.
2439  */
2440 int
2441 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2442 {
2443 	enum scsi_device_state oldstate = sdev->sdev_state;
2444 
2445 	if (state == oldstate)
2446 		return 0;
2447 
2448 	switch (state) {
2449 	case SDEV_CREATED:
2450 		switch (oldstate) {
2451 		case SDEV_CREATED_BLOCK:
2452 			break;
2453 		default:
2454 			goto illegal;
2455 		}
2456 		break;
2457 
2458 	case SDEV_RUNNING:
2459 		switch (oldstate) {
2460 		case SDEV_CREATED:
2461 		case SDEV_OFFLINE:
2462 		case SDEV_TRANSPORT_OFFLINE:
2463 		case SDEV_QUIESCE:
2464 		case SDEV_BLOCK:
2465 			break;
2466 		default:
2467 			goto illegal;
2468 		}
2469 		break;
2470 
2471 	case SDEV_QUIESCE:
2472 		switch (oldstate) {
2473 		case SDEV_RUNNING:
2474 		case SDEV_OFFLINE:
2475 		case SDEV_TRANSPORT_OFFLINE:
2476 			break;
2477 		default:
2478 			goto illegal;
2479 		}
2480 		break;
2481 
2482 	case SDEV_OFFLINE:
2483 	case SDEV_TRANSPORT_OFFLINE:
2484 		switch (oldstate) {
2485 		case SDEV_CREATED:
2486 		case SDEV_RUNNING:
2487 		case SDEV_QUIESCE:
2488 		case SDEV_BLOCK:
2489 			break;
2490 		default:
2491 			goto illegal;
2492 		}
2493 		break;
2494 
2495 	case SDEV_BLOCK:
2496 		switch (oldstate) {
2497 		case SDEV_RUNNING:
2498 		case SDEV_CREATED_BLOCK:
2499 			break;
2500 		default:
2501 			goto illegal;
2502 		}
2503 		break;
2504 
2505 	case SDEV_CREATED_BLOCK:
2506 		switch (oldstate) {
2507 		case SDEV_CREATED:
2508 			break;
2509 		default:
2510 			goto illegal;
2511 		}
2512 		break;
2513 
2514 	case SDEV_CANCEL:
2515 		switch (oldstate) {
2516 		case SDEV_CREATED:
2517 		case SDEV_RUNNING:
2518 		case SDEV_QUIESCE:
2519 		case SDEV_OFFLINE:
2520 		case SDEV_TRANSPORT_OFFLINE:
2521 		case SDEV_BLOCK:
2522 			break;
2523 		default:
2524 			goto illegal;
2525 		}
2526 		break;
2527 
2528 	case SDEV_DEL:
2529 		switch (oldstate) {
2530 		case SDEV_CREATED:
2531 		case SDEV_RUNNING:
2532 		case SDEV_OFFLINE:
2533 		case SDEV_TRANSPORT_OFFLINE:
2534 		case SDEV_CANCEL:
2535 		case SDEV_CREATED_BLOCK:
2536 			break;
2537 		default:
2538 			goto illegal;
2539 		}
2540 		break;
2541 
2542 	}
2543 	sdev->sdev_state = state;
2544 	return 0;
2545 
2546  illegal:
2547 	SCSI_LOG_ERROR_RECOVERY(1,
2548 				sdev_printk(KERN_ERR, sdev,
2549 					    "Illegal state transition %s->%s",
2550 					    scsi_device_state_name(oldstate),
2551 					    scsi_device_state_name(state))
2552 				);
2553 	return -EINVAL;
2554 }
2555 EXPORT_SYMBOL(scsi_device_set_state);
2556 
2557 /**
2558  * 	sdev_evt_emit - emit a single SCSI device uevent
2559  *	@sdev: associated SCSI device
2560  *	@evt: event to emit
2561  *
2562  *	Send a single uevent (scsi_event) to the associated scsi_device.
2563  */
2564 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2565 {
2566 	int idx = 0;
2567 	char *envp[3];
2568 
2569 	switch (evt->evt_type) {
2570 	case SDEV_EVT_MEDIA_CHANGE:
2571 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2572 		break;
2573 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2574 		scsi_rescan_device(&sdev->sdev_gendev);
2575 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2576 		break;
2577 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2578 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2579 		break;
2580 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2582 		break;
2583 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2584 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2585 		break;
2586 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2587 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2588 		break;
2589 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2590 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2591 		break;
2592 	default:
2593 		/* do nothing */
2594 		break;
2595 	}
2596 
2597 	envp[idx++] = NULL;
2598 
2599 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2600 }
2601 
2602 /**
2603  * 	sdev_evt_thread - send a uevent for each scsi event
2604  *	@work: work struct for scsi_device
2605  *
2606  *	Dispatch queued events to their associated scsi_device kobjects
2607  *	as uevents.
2608  */
2609 void scsi_evt_thread(struct work_struct *work)
2610 {
2611 	struct scsi_device *sdev;
2612 	enum scsi_device_event evt_type;
2613 	LIST_HEAD(event_list);
2614 
2615 	sdev = container_of(work, struct scsi_device, event_work);
2616 
2617 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2618 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2619 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2620 
2621 	while (1) {
2622 		struct scsi_event *evt;
2623 		struct list_head *this, *tmp;
2624 		unsigned long flags;
2625 
2626 		spin_lock_irqsave(&sdev->list_lock, flags);
2627 		list_splice_init(&sdev->event_list, &event_list);
2628 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2629 
2630 		if (list_empty(&event_list))
2631 			break;
2632 
2633 		list_for_each_safe(this, tmp, &event_list) {
2634 			evt = list_entry(this, struct scsi_event, node);
2635 			list_del(&evt->node);
2636 			scsi_evt_emit(sdev, evt);
2637 			kfree(evt);
2638 		}
2639 	}
2640 }
2641 
2642 /**
2643  * 	sdev_evt_send - send asserted event to uevent thread
2644  *	@sdev: scsi_device event occurred on
2645  *	@evt: event to send
2646  *
2647  *	Assert scsi device event asynchronously.
2648  */
2649 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2650 {
2651 	unsigned long flags;
2652 
2653 #if 0
2654 	/* FIXME: currently this check eliminates all media change events
2655 	 * for polled devices.  Need to update to discriminate between AN
2656 	 * and polled events */
2657 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2658 		kfree(evt);
2659 		return;
2660 	}
2661 #endif
2662 
2663 	spin_lock_irqsave(&sdev->list_lock, flags);
2664 	list_add_tail(&evt->node, &sdev->event_list);
2665 	schedule_work(&sdev->event_work);
2666 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2667 }
2668 EXPORT_SYMBOL_GPL(sdev_evt_send);
2669 
2670 /**
2671  * 	sdev_evt_alloc - allocate a new scsi event
2672  *	@evt_type: type of event to allocate
2673  *	@gfpflags: GFP flags for allocation
2674  *
2675  *	Allocates and returns a new scsi_event.
2676  */
2677 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2678 				  gfp_t gfpflags)
2679 {
2680 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2681 	if (!evt)
2682 		return NULL;
2683 
2684 	evt->evt_type = evt_type;
2685 	INIT_LIST_HEAD(&evt->node);
2686 
2687 	/* evt_type-specific initialization, if any */
2688 	switch (evt_type) {
2689 	case SDEV_EVT_MEDIA_CHANGE:
2690 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2691 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2692 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2693 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2694 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2695 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2696 	default:
2697 		/* do nothing */
2698 		break;
2699 	}
2700 
2701 	return evt;
2702 }
2703 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2704 
2705 /**
2706  * 	sdev_evt_send_simple - send asserted event to uevent thread
2707  *	@sdev: scsi_device event occurred on
2708  *	@evt_type: type of event to send
2709  *	@gfpflags: GFP flags for allocation
2710  *
2711  *	Assert scsi device event asynchronously, given an event type.
2712  */
2713 void sdev_evt_send_simple(struct scsi_device *sdev,
2714 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2715 {
2716 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2717 	if (!evt) {
2718 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2719 			    evt_type);
2720 		return;
2721 	}
2722 
2723 	sdev_evt_send(sdev, evt);
2724 }
2725 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2726 
2727 /**
2728  *	scsi_device_quiesce - Block user issued commands.
2729  *	@sdev:	scsi device to quiesce.
2730  *
2731  *	This works by trying to transition to the SDEV_QUIESCE state
2732  *	(which must be a legal transition).  When the device is in this
2733  *	state, only special requests will be accepted, all others will
2734  *	be deferred.  Since special requests may also be requeued requests,
2735  *	a successful return doesn't guarantee the device will be
2736  *	totally quiescent.
2737  *
2738  *	Must be called with user context, may sleep.
2739  *
2740  *	Returns zero if unsuccessful or an error if not.
2741  */
2742 int
2743 scsi_device_quiesce(struct scsi_device *sdev)
2744 {
2745 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2746 	if (err)
2747 		return err;
2748 
2749 	scsi_run_queue(sdev->request_queue);
2750 	while (atomic_read(&sdev->device_busy)) {
2751 		msleep_interruptible(200);
2752 		scsi_run_queue(sdev->request_queue);
2753 	}
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL(scsi_device_quiesce);
2757 
2758 /**
2759  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2760  *	@sdev:	scsi device to resume.
2761  *
2762  *	Moves the device from quiesced back to running and restarts the
2763  *	queues.
2764  *
2765  *	Must be called with user context, may sleep.
2766  */
2767 void scsi_device_resume(struct scsi_device *sdev)
2768 {
2769 	/* check if the device state was mutated prior to resume, and if
2770 	 * so assume the state is being managed elsewhere (for example
2771 	 * device deleted during suspend)
2772 	 */
2773 	if (sdev->sdev_state != SDEV_QUIESCE ||
2774 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2775 		return;
2776 	scsi_run_queue(sdev->request_queue);
2777 }
2778 EXPORT_SYMBOL(scsi_device_resume);
2779 
2780 static void
2781 device_quiesce_fn(struct scsi_device *sdev, void *data)
2782 {
2783 	scsi_device_quiesce(sdev);
2784 }
2785 
2786 void
2787 scsi_target_quiesce(struct scsi_target *starget)
2788 {
2789 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2790 }
2791 EXPORT_SYMBOL(scsi_target_quiesce);
2792 
2793 static void
2794 device_resume_fn(struct scsi_device *sdev, void *data)
2795 {
2796 	scsi_device_resume(sdev);
2797 }
2798 
2799 void
2800 scsi_target_resume(struct scsi_target *starget)
2801 {
2802 	starget_for_each_device(starget, NULL, device_resume_fn);
2803 }
2804 EXPORT_SYMBOL(scsi_target_resume);
2805 
2806 /**
2807  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2808  * @sdev:	device to block
2809  *
2810  * Block request made by scsi lld's to temporarily stop all
2811  * scsi commands on the specified device.  Called from interrupt
2812  * or normal process context.
2813  *
2814  * Returns zero if successful or error if not
2815  *
2816  * Notes:
2817  *	This routine transitions the device to the SDEV_BLOCK state
2818  *	(which must be a legal transition).  When the device is in this
2819  *	state, all commands are deferred until the scsi lld reenables
2820  *	the device with scsi_device_unblock or device_block_tmo fires.
2821  */
2822 int
2823 scsi_internal_device_block(struct scsi_device *sdev)
2824 {
2825 	struct request_queue *q = sdev->request_queue;
2826 	unsigned long flags;
2827 	int err = 0;
2828 
2829 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2830 	if (err) {
2831 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2832 
2833 		if (err)
2834 			return err;
2835 	}
2836 
2837 	/*
2838 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2839 	 * block layer from calling the midlayer with this device's
2840 	 * request queue.
2841 	 */
2842 	if (q->mq_ops) {
2843 		blk_mq_stop_hw_queues(q);
2844 	} else {
2845 		spin_lock_irqsave(q->queue_lock, flags);
2846 		blk_stop_queue(q);
2847 		spin_unlock_irqrestore(q->queue_lock, flags);
2848 	}
2849 
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2853 
2854 /**
2855  * scsi_internal_device_unblock - resume a device after a block request
2856  * @sdev:	device to resume
2857  * @new_state:	state to set devices to after unblocking
2858  *
2859  * Called by scsi lld's or the midlayer to restart the device queue
2860  * for the previously suspended scsi device.  Called from interrupt or
2861  * normal process context.
2862  *
2863  * Returns zero if successful or error if not.
2864  *
2865  * Notes:
2866  *	This routine transitions the device to the SDEV_RUNNING state
2867  *	or to one of the offline states (which must be a legal transition)
2868  *	allowing the midlayer to goose the queue for this device.
2869  */
2870 int
2871 scsi_internal_device_unblock(struct scsi_device *sdev,
2872 			     enum scsi_device_state new_state)
2873 {
2874 	struct request_queue *q = sdev->request_queue;
2875 	unsigned long flags;
2876 
2877 	/*
2878 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2879 	 * offlined states and goose the device queue if successful.
2880 	 */
2881 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2882 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2883 		sdev->sdev_state = new_state;
2884 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2885 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2886 		    new_state == SDEV_OFFLINE)
2887 			sdev->sdev_state = new_state;
2888 		else
2889 			sdev->sdev_state = SDEV_CREATED;
2890 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2891 		 sdev->sdev_state != SDEV_OFFLINE)
2892 		return -EINVAL;
2893 
2894 	if (q->mq_ops) {
2895 		blk_mq_start_stopped_hw_queues(q, false);
2896 	} else {
2897 		spin_lock_irqsave(q->queue_lock, flags);
2898 		blk_start_queue(q);
2899 		spin_unlock_irqrestore(q->queue_lock, flags);
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2905 
2906 static void
2907 device_block(struct scsi_device *sdev, void *data)
2908 {
2909 	scsi_internal_device_block(sdev);
2910 }
2911 
2912 static int
2913 target_block(struct device *dev, void *data)
2914 {
2915 	if (scsi_is_target_device(dev))
2916 		starget_for_each_device(to_scsi_target(dev), NULL,
2917 					device_block);
2918 	return 0;
2919 }
2920 
2921 void
2922 scsi_target_block(struct device *dev)
2923 {
2924 	if (scsi_is_target_device(dev))
2925 		starget_for_each_device(to_scsi_target(dev), NULL,
2926 					device_block);
2927 	else
2928 		device_for_each_child(dev, NULL, target_block);
2929 }
2930 EXPORT_SYMBOL_GPL(scsi_target_block);
2931 
2932 static void
2933 device_unblock(struct scsi_device *sdev, void *data)
2934 {
2935 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2936 }
2937 
2938 static int
2939 target_unblock(struct device *dev, void *data)
2940 {
2941 	if (scsi_is_target_device(dev))
2942 		starget_for_each_device(to_scsi_target(dev), data,
2943 					device_unblock);
2944 	return 0;
2945 }
2946 
2947 void
2948 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2949 {
2950 	if (scsi_is_target_device(dev))
2951 		starget_for_each_device(to_scsi_target(dev), &new_state,
2952 					device_unblock);
2953 	else
2954 		device_for_each_child(dev, &new_state, target_unblock);
2955 }
2956 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2957 
2958 /**
2959  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2960  * @sgl:	scatter-gather list
2961  * @sg_count:	number of segments in sg
2962  * @offset:	offset in bytes into sg, on return offset into the mapped area
2963  * @len:	bytes to map, on return number of bytes mapped
2964  *
2965  * Returns virtual address of the start of the mapped page
2966  */
2967 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2968 			  size_t *offset, size_t *len)
2969 {
2970 	int i;
2971 	size_t sg_len = 0, len_complete = 0;
2972 	struct scatterlist *sg;
2973 	struct page *page;
2974 
2975 	WARN_ON(!irqs_disabled());
2976 
2977 	for_each_sg(sgl, sg, sg_count, i) {
2978 		len_complete = sg_len; /* Complete sg-entries */
2979 		sg_len += sg->length;
2980 		if (sg_len > *offset)
2981 			break;
2982 	}
2983 
2984 	if (unlikely(i == sg_count)) {
2985 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2986 			"elements %d\n",
2987 		       __func__, sg_len, *offset, sg_count);
2988 		WARN_ON(1);
2989 		return NULL;
2990 	}
2991 
2992 	/* Offset starting from the beginning of first page in this sg-entry */
2993 	*offset = *offset - len_complete + sg->offset;
2994 
2995 	/* Assumption: contiguous pages can be accessed as "page + i" */
2996 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2997 	*offset &= ~PAGE_MASK;
2998 
2999 	/* Bytes in this sg-entry from *offset to the end of the page */
3000 	sg_len = PAGE_SIZE - *offset;
3001 	if (*len > sg_len)
3002 		*len = sg_len;
3003 
3004 	return kmap_atomic(page);
3005 }
3006 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3007 
3008 /**
3009  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3010  * @virt:	virtual address to be unmapped
3011  */
3012 void scsi_kunmap_atomic_sg(void *virt)
3013 {
3014 	kunmap_atomic(virt);
3015 }
3016 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3017 
3018 void sdev_disable_disk_events(struct scsi_device *sdev)
3019 {
3020 	atomic_inc(&sdev->disk_events_disable_depth);
3021 }
3022 EXPORT_SYMBOL(sdev_disable_disk_events);
3023 
3024 void sdev_enable_disk_events(struct scsi_device *sdev)
3025 {
3026 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3027 		return;
3028 	atomic_dec(&sdev->disk_events_disable_depth);
3029 }
3030 EXPORT_SYMBOL(sdev_enable_disk_events);
3031 
3032 /**
3033  * scsi_vpd_lun_id - return a unique device identification
3034  * @sdev: SCSI device
3035  * @id:   buffer for the identification
3036  * @id_len:  length of the buffer
3037  *
3038  * Copies a unique device identification into @id based
3039  * on the information in the VPD page 0x83 of the device.
3040  * The string will be formatted as a SCSI name string.
3041  *
3042  * Returns the length of the identification or error on failure.
3043  * If the identifier is longer than the supplied buffer the actual
3044  * identifier length is returned and the buffer is not zero-padded.
3045  */
3046 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3047 {
3048 	u8 cur_id_type = 0xff;
3049 	u8 cur_id_size = 0;
3050 	unsigned char *d, *cur_id_str;
3051 	unsigned char __rcu *vpd_pg83;
3052 	int id_size = -EINVAL;
3053 
3054 	rcu_read_lock();
3055 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3056 	if (!vpd_pg83) {
3057 		rcu_read_unlock();
3058 		return -ENXIO;
3059 	}
3060 
3061 	/*
3062 	 * Look for the correct descriptor.
3063 	 * Order of preference for lun descriptor:
3064 	 * - SCSI name string
3065 	 * - NAA IEEE Registered Extended
3066 	 * - EUI-64 based 16-byte
3067 	 * - EUI-64 based 12-byte
3068 	 * - NAA IEEE Registered
3069 	 * - NAA IEEE Extended
3070 	 * - T10 Vendor ID
3071 	 * as longer descriptors reduce the likelyhood
3072 	 * of identification clashes.
3073 	 */
3074 
3075 	/* The id string must be at least 20 bytes + terminating NULL byte */
3076 	if (id_len < 21) {
3077 		rcu_read_unlock();
3078 		return -EINVAL;
3079 	}
3080 
3081 	memset(id, 0, id_len);
3082 	d = vpd_pg83 + 4;
3083 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3084 		/* Skip designators not referring to the LUN */
3085 		if ((d[1] & 0x30) != 0x00)
3086 			goto next_desig;
3087 
3088 		switch (d[1] & 0xf) {
3089 		case 0x1:
3090 			/* T10 Vendor ID */
3091 			if (cur_id_size > d[3])
3092 				break;
3093 			/* Prefer anything */
3094 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3095 				break;
3096 			cur_id_size = d[3];
3097 			if (cur_id_size + 4 > id_len)
3098 				cur_id_size = id_len - 4;
3099 			cur_id_str = d + 4;
3100 			cur_id_type = d[1] & 0xf;
3101 			id_size = snprintf(id, id_len, "t10.%*pE",
3102 					   cur_id_size, cur_id_str);
3103 			break;
3104 		case 0x2:
3105 			/* EUI-64 */
3106 			if (cur_id_size > d[3])
3107 				break;
3108 			/* Prefer NAA IEEE Registered Extended */
3109 			if (cur_id_type == 0x3 &&
3110 			    cur_id_size == d[3])
3111 				break;
3112 			cur_id_size = d[3];
3113 			cur_id_str = d + 4;
3114 			cur_id_type = d[1] & 0xf;
3115 			switch (cur_id_size) {
3116 			case 8:
3117 				id_size = snprintf(id, id_len,
3118 						   "eui.%8phN",
3119 						   cur_id_str);
3120 				break;
3121 			case 12:
3122 				id_size = snprintf(id, id_len,
3123 						   "eui.%12phN",
3124 						   cur_id_str);
3125 				break;
3126 			case 16:
3127 				id_size = snprintf(id, id_len,
3128 						   "eui.%16phN",
3129 						   cur_id_str);
3130 				break;
3131 			default:
3132 				cur_id_size = 0;
3133 				break;
3134 			}
3135 			break;
3136 		case 0x3:
3137 			/* NAA */
3138 			if (cur_id_size > d[3])
3139 				break;
3140 			cur_id_size = d[3];
3141 			cur_id_str = d + 4;
3142 			cur_id_type = d[1] & 0xf;
3143 			switch (cur_id_size) {
3144 			case 8:
3145 				id_size = snprintf(id, id_len,
3146 						   "naa.%8phN",
3147 						   cur_id_str);
3148 				break;
3149 			case 16:
3150 				id_size = snprintf(id, id_len,
3151 						   "naa.%16phN",
3152 						   cur_id_str);
3153 				break;
3154 			default:
3155 				cur_id_size = 0;
3156 				break;
3157 			}
3158 			break;
3159 		case 0x8:
3160 			/* SCSI name string */
3161 			if (cur_id_size + 4 > d[3])
3162 				break;
3163 			/* Prefer others for truncated descriptor */
3164 			if (cur_id_size && d[3] > id_len)
3165 				break;
3166 			cur_id_size = id_size = d[3];
3167 			cur_id_str = d + 4;
3168 			cur_id_type = d[1] & 0xf;
3169 			if (cur_id_size >= id_len)
3170 				cur_id_size = id_len - 1;
3171 			memcpy(id, cur_id_str, cur_id_size);
3172 			/* Decrease priority for truncated descriptor */
3173 			if (cur_id_size != id_size)
3174 				cur_id_size = 6;
3175 			break;
3176 		default:
3177 			break;
3178 		}
3179 next_desig:
3180 		d += d[3] + 4;
3181 	}
3182 	rcu_read_unlock();
3183 
3184 	return id_size;
3185 }
3186 EXPORT_SYMBOL(scsi_vpd_lun_id);
3187 
3188 /*
3189  * scsi_vpd_tpg_id - return a target port group identifier
3190  * @sdev: SCSI device
3191  *
3192  * Returns the Target Port Group identifier from the information
3193  * froom VPD page 0x83 of the device.
3194  *
3195  * Returns the identifier or error on failure.
3196  */
3197 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3198 {
3199 	unsigned char *d;
3200 	unsigned char __rcu *vpd_pg83;
3201 	int group_id = -EAGAIN, rel_port = -1;
3202 
3203 	rcu_read_lock();
3204 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3205 	if (!vpd_pg83) {
3206 		rcu_read_unlock();
3207 		return -ENXIO;
3208 	}
3209 
3210 	d = sdev->vpd_pg83 + 4;
3211 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3212 		switch (d[1] & 0xf) {
3213 		case 0x4:
3214 			/* Relative target port */
3215 			rel_port = get_unaligned_be16(&d[6]);
3216 			break;
3217 		case 0x5:
3218 			/* Target port group */
3219 			group_id = get_unaligned_be16(&d[6]);
3220 			break;
3221 		default:
3222 			break;
3223 		}
3224 		d += d[3] + 4;
3225 	}
3226 	rcu_read_unlock();
3227 
3228 	if (group_id >= 0 && rel_id && rel_port != -1)
3229 		*rel_id = rel_port;
3230 
3231 	return group_id;
3232 }
3233 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3234