xref: /linux/drivers/scsi/scsi_lib.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 	struct Scsi_Host *host = cmd->device->host;
93 	struct scsi_device *device = cmd->device;
94 	struct scsi_target *starget = scsi_target(device);
95 	struct request_queue *q = device->request_queue;
96 	unsigned long flags;
97 
98 	SCSI_LOG_MLQUEUE(1,
99 		 printk("Inserting command %p into mlqueue\n", cmd));
100 
101 	/*
102 	 * Set the appropriate busy bit for the device/host.
103 	 *
104 	 * If the host/device isn't busy, assume that something actually
105 	 * completed, and that we should be able to queue a command now.
106 	 *
107 	 * Note that the prior mid-layer assumption that any host could
108 	 * always queue at least one command is now broken.  The mid-layer
109 	 * will implement a user specifiable stall (see
110 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 	 * if a command is requeued with no other commands outstanding
112 	 * either for the device or for the host.
113 	 */
114 	switch (reason) {
115 	case SCSI_MLQUEUE_HOST_BUSY:
116 		host->host_blocked = host->max_host_blocked;
117 		break;
118 	case SCSI_MLQUEUE_DEVICE_BUSY:
119 	case SCSI_MLQUEUE_EH_RETRY:
120 		device->device_blocked = device->max_device_blocked;
121 		break;
122 	case SCSI_MLQUEUE_TARGET_BUSY:
123 		starget->target_blocked = starget->max_target_blocked;
124 		break;
125 	}
126 
127 	/*
128 	 * Decrement the counters, since these commands are no longer
129 	 * active on the host/device.
130 	 */
131 	if (unbusy)
132 		scsi_device_unbusy(device);
133 
134 	/*
135 	 * Requeue this command.  It will go before all other commands
136 	 * that are already in the queue. Schedule requeue work under
137 	 * lock such that the kblockd_schedule_work() call happens
138 	 * before blk_cleanup_queue() finishes.
139 	 */
140 	cmd->result = 0;
141 	spin_lock_irqsave(q->queue_lock, flags);
142 	blk_requeue_request(q, cmd->request);
143 	kblockd_schedule_work(q, &device->requeue_work);
144 	spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146 
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168 	__scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:	scsi device
173  * @cmd:	scsi command
174  * @data_direction: data direction
175  * @buffer:	data buffer
176  * @bufflen:	len of buffer
177  * @sense:	optional sense buffer
178  * @timeout:	request timeout in seconds
179  * @retries:	number of times to retry request
180  * @flags:	or into request flags;
181  * @resid:	optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187 		 int data_direction, void *buffer, unsigned bufflen,
188 		 unsigned char *sense, int timeout, int retries, u64 flags,
189 		 int *resid)
190 {
191 	struct request *req;
192 	int write = (data_direction == DMA_TO_DEVICE);
193 	int ret = DRIVER_ERROR << 24;
194 
195 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196 	if (!req)
197 		return ret;
198 
199 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
200 					buffer, bufflen, __GFP_WAIT))
201 		goto out;
202 
203 	req->cmd_len = COMMAND_SIZE(cmd[0]);
204 	memcpy(req->cmd, cmd, req->cmd_len);
205 	req->sense = sense;
206 	req->sense_len = 0;
207 	req->retries = retries;
208 	req->timeout = timeout;
209 	req->cmd_type = REQ_TYPE_BLOCK_PC;
210 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211 
212 	/*
213 	 * head injection *required* here otherwise quiesce won't work
214 	 */
215 	blk_execute_rq(req->q, NULL, req, 1);
216 
217 	/*
218 	 * Some devices (USB mass-storage in particular) may transfer
219 	 * garbage data together with a residue indicating that the data
220 	 * is invalid.  Prevent the garbage from being misinterpreted
221 	 * and prevent security leaks by zeroing out the excess data.
222 	 */
223 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225 
226 	if (resid)
227 		*resid = req->resid_len;
228 	ret = req->errors;
229  out:
230 	blk_put_request(req);
231 
232 	return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235 
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237 		     int data_direction, void *buffer, unsigned bufflen,
238 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
239 		     int *resid, u64 flags)
240 {
241 	char *sense = NULL;
242 	int result;
243 
244 	if (sshdr) {
245 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 		if (!sense)
247 			return DRIVER_ERROR << 24;
248 	}
249 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250 			      sense, timeout, retries, flags, resid);
251 	if (sshdr)
252 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253 
254 	kfree(sense);
255 	return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258 
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd	- command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272 	cmd->serial_number = 0;
273 	scsi_set_resid(cmd, 0);
274 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275 	if (cmd->cmd_len == 0)
276 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278 
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281 	struct Scsi_Host *shost = sdev->host;
282 	struct scsi_target *starget = scsi_target(sdev);
283 	unsigned long flags;
284 
285 	spin_lock_irqsave(shost->host_lock, flags);
286 	shost->host_busy--;
287 	starget->target_busy--;
288 	if (unlikely(scsi_host_in_recovery(shost) &&
289 		     (shost->host_failed || shost->host_eh_scheduled)))
290 		scsi_eh_wakeup(shost);
291 	spin_unlock(shost->host_lock);
292 	spin_lock(sdev->request_queue->queue_lock);
293 	sdev->device_busy--;
294 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296 
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306 	struct Scsi_Host *shost = current_sdev->host;
307 	struct scsi_device *sdev, *tmp;
308 	struct scsi_target *starget = scsi_target(current_sdev);
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(shost->host_lock, flags);
312 	starget->starget_sdev_user = NULL;
313 	spin_unlock_irqrestore(shost->host_lock, flags);
314 
315 	/*
316 	 * Call blk_run_queue for all LUNs on the target, starting with
317 	 * current_sdev. We race with others (to set starget_sdev_user),
318 	 * but in most cases, we will be first. Ideally, each LU on the
319 	 * target would get some limited time or requests on the target.
320 	 */
321 	blk_run_queue(current_sdev->request_queue);
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	if (starget->starget_sdev_user)
325 		goto out;
326 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
327 			same_target_siblings) {
328 		if (sdev == current_sdev)
329 			continue;
330 		if (scsi_device_get(sdev))
331 			continue;
332 
333 		spin_unlock_irqrestore(shost->host_lock, flags);
334 		blk_run_queue(sdev->request_queue);
335 		spin_lock_irqsave(shost->host_lock, flags);
336 
337 		scsi_device_put(sdev);
338 	}
339  out:
340 	spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342 
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346 		return 1;
347 
348 	return 0;
349 }
350 
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353 	return ((starget->can_queue > 0 &&
354 		 starget->target_busy >= starget->can_queue) ||
355 		 starget->target_blocked);
356 }
357 
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361 	    shost->host_blocked || shost->host_self_blocked)
362 		return 1;
363 
364 	return 0;
365 }
366 
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369 	LIST_HEAD(starved_list);
370 	struct scsi_device *sdev;
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(shost->host_lock, flags);
374 	list_splice_init(&shost->starved_list, &starved_list);
375 
376 	while (!list_empty(&starved_list)) {
377 		struct request_queue *slq;
378 
379 		/*
380 		 * As long as shost is accepting commands and we have
381 		 * starved queues, call blk_run_queue. scsi_request_fn
382 		 * drops the queue_lock and can add us back to the
383 		 * starved_list.
384 		 *
385 		 * host_lock protects the starved_list and starved_entry.
386 		 * scsi_request_fn must get the host_lock before checking
387 		 * or modifying starved_list or starved_entry.
388 		 */
389 		if (scsi_host_is_busy(shost))
390 			break;
391 
392 		sdev = list_entry(starved_list.next,
393 				  struct scsi_device, starved_entry);
394 		list_del_init(&sdev->starved_entry);
395 		if (scsi_target_is_busy(scsi_target(sdev))) {
396 			list_move_tail(&sdev->starved_entry,
397 				       &shost->starved_list);
398 			continue;
399 		}
400 
401 		/*
402 		 * Once we drop the host lock, a racing scsi_remove_device()
403 		 * call may remove the sdev from the starved list and destroy
404 		 * it and the queue.  Mitigate by taking a reference to the
405 		 * queue and never touching the sdev again after we drop the
406 		 * host lock.  Note: if __scsi_remove_device() invokes
407 		 * blk_cleanup_queue() before the queue is run from this
408 		 * function then blk_run_queue() will return immediately since
409 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410 		 */
411 		slq = sdev->request_queue;
412 		if (!blk_get_queue(slq))
413 			continue;
414 		spin_unlock_irqrestore(shost->host_lock, flags);
415 
416 		blk_run_queue(slq);
417 		blk_put_queue(slq);
418 
419 		spin_lock_irqsave(shost->host_lock, flags);
420 	}
421 	/* put any unprocessed entries back */
422 	list_splice(&starved_list, &shost->starved_list);
423 	spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425 
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440 	struct scsi_device *sdev = q->queuedata;
441 
442 	if (scsi_target(sdev)->single_lun)
443 		scsi_single_lun_run(sdev);
444 	if (!list_empty(&sdev->host->starved_list))
445 		scsi_starved_list_run(sdev->host);
446 
447 	blk_run_queue(q);
448 }
449 
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452 	struct scsi_device *sdev;
453 	struct request_queue *q;
454 
455 	sdev = container_of(work, struct scsi_device, requeue_work);
456 	q = sdev->request_queue;
457 	scsi_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct scsi_device *sdev = cmd->device;
481 	struct request *req = cmd->request;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(q->queue_lock, flags);
485 	blk_unprep_request(req);
486 	req->special = NULL;
487 	scsi_put_command(cmd);
488 	blk_requeue_request(q, req);
489 	spin_unlock_irqrestore(q->queue_lock, flags);
490 
491 	scsi_run_queue(q);
492 
493 	put_device(&sdev->sdev_gendev);
494 }
495 
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498 	struct scsi_device *sdev = cmd->device;
499 	struct request_queue *q = sdev->request_queue;
500 
501 	scsi_put_command(cmd);
502 	scsi_run_queue(q);
503 
504 	put_device(&sdev->sdev_gendev);
505 }
506 
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509 	struct scsi_device *sdev;
510 
511 	shost_for_each_device(sdev, shost)
512 		scsi_run_queue(sdev->request_queue);
513 }
514 
515 static void __scsi_release_buffers(struct scsi_cmnd *, int);
516 
517 /*
518  * Function:    scsi_end_request()
519  *
520  * Purpose:     Post-processing of completed commands (usually invoked at end
521  *		of upper level post-processing and scsi_io_completion).
522  *
523  * Arguments:   cmd	 - command that is complete.
524  *              error    - 0 if I/O indicates success, < 0 for I/O error.
525  *              bytes    - number of bytes of completed I/O
526  *		requeue  - indicates whether we should requeue leftovers.
527  *
528  * Lock status: Assumed that lock is not held upon entry.
529  *
530  * Returns:     cmd if requeue required, NULL otherwise.
531  *
532  * Notes:       This is called for block device requests in order to
533  *              mark some number of sectors as complete.
534  *
535  *		We are guaranteeing that the request queue will be goosed
536  *		at some point during this call.
537  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
538  */
539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
540 					  int bytes, int requeue)
541 {
542 	struct request_queue *q = cmd->device->request_queue;
543 	struct request *req = cmd->request;
544 
545 	/*
546 	 * If there are blocks left over at the end, set up the command
547 	 * to queue the remainder of them.
548 	 */
549 	if (blk_end_request(req, error, bytes)) {
550 		/* kill remainder if no retrys */
551 		if (error && scsi_noretry_cmd(cmd))
552 			blk_end_request_all(req, error);
553 		else {
554 			if (requeue) {
555 				/*
556 				 * Bleah.  Leftovers again.  Stick the
557 				 * leftovers in the front of the
558 				 * queue, and goose the queue again.
559 				 */
560 				scsi_release_buffers(cmd);
561 				scsi_requeue_command(q, cmd);
562 				cmd = NULL;
563 			}
564 			return cmd;
565 		}
566 	}
567 
568 	/*
569 	 * This will goose the queue request function at the end, so we don't
570 	 * need to worry about launching another command.
571 	 */
572 	__scsi_release_buffers(cmd, 0);
573 	scsi_next_command(cmd);
574 	return NULL;
575 }
576 
577 static inline unsigned int scsi_sgtable_index(unsigned short nents)
578 {
579 	unsigned int index;
580 
581 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
582 
583 	if (nents <= 8)
584 		index = 0;
585 	else
586 		index = get_count_order(nents) - 3;
587 
588 	return index;
589 }
590 
591 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
592 {
593 	struct scsi_host_sg_pool *sgp;
594 
595 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
596 	mempool_free(sgl, sgp->pool);
597 }
598 
599 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
600 {
601 	struct scsi_host_sg_pool *sgp;
602 
603 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
604 	return mempool_alloc(sgp->pool, gfp_mask);
605 }
606 
607 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
608 			      gfp_t gfp_mask)
609 {
610 	int ret;
611 
612 	BUG_ON(!nents);
613 
614 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
615 			       gfp_mask, scsi_sg_alloc);
616 	if (unlikely(ret))
617 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
618 				scsi_sg_free);
619 
620 	return ret;
621 }
622 
623 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
624 {
625 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
626 }
627 
628 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
629 {
630 
631 	if (cmd->sdb.table.nents)
632 		scsi_free_sgtable(&cmd->sdb);
633 
634 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
635 
636 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
637 		struct scsi_data_buffer *bidi_sdb =
638 			cmd->request->next_rq->special;
639 		scsi_free_sgtable(bidi_sdb);
640 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
641 		cmd->request->next_rq->special = NULL;
642 	}
643 
644 	if (scsi_prot_sg_count(cmd))
645 		scsi_free_sgtable(cmd->prot_sdb);
646 }
647 
648 /*
649  * Function:    scsi_release_buffers()
650  *
651  * Purpose:     Completion processing for block device I/O requests.
652  *
653  * Arguments:   cmd	- command that we are bailing.
654  *
655  * Lock status: Assumed that no lock is held upon entry.
656  *
657  * Returns:     Nothing
658  *
659  * Notes:       In the event that an upper level driver rejects a
660  *		command, we must release resources allocated during
661  *		the __init_io() function.  Primarily this would involve
662  *		the scatter-gather table, and potentially any bounce
663  *		buffers.
664  */
665 void scsi_release_buffers(struct scsi_cmnd *cmd)
666 {
667 	__scsi_release_buffers(cmd, 1);
668 }
669 EXPORT_SYMBOL(scsi_release_buffers);
670 
671 /**
672  * __scsi_error_from_host_byte - translate SCSI error code into errno
673  * @cmd:	SCSI command (unused)
674  * @result:	scsi error code
675  *
676  * Translate SCSI error code into standard UNIX errno.
677  * Return values:
678  * -ENOLINK	temporary transport failure
679  * -EREMOTEIO	permanent target failure, do not retry
680  * -EBADE	permanent nexus failure, retry on other path
681  * -ENOSPC	No write space available
682  * -ENODATA	Medium error
683  * -EIO		unspecified I/O error
684  */
685 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
686 {
687 	int error = 0;
688 
689 	switch(host_byte(result)) {
690 	case DID_TRANSPORT_FAILFAST:
691 		error = -ENOLINK;
692 		break;
693 	case DID_TARGET_FAILURE:
694 		set_host_byte(cmd, DID_OK);
695 		error = -EREMOTEIO;
696 		break;
697 	case DID_NEXUS_FAILURE:
698 		set_host_byte(cmd, DID_OK);
699 		error = -EBADE;
700 		break;
701 	case DID_ALLOC_FAILURE:
702 		set_host_byte(cmd, DID_OK);
703 		error = -ENOSPC;
704 		break;
705 	case DID_MEDIUM_ERROR:
706 		set_host_byte(cmd, DID_OK);
707 		error = -ENODATA;
708 		break;
709 	default:
710 		error = -EIO;
711 		break;
712 	}
713 
714 	return error;
715 }
716 
717 /*
718  * Function:    scsi_io_completion()
719  *
720  * Purpose:     Completion processing for block device I/O requests.
721  *
722  * Arguments:   cmd   - command that is finished.
723  *
724  * Lock status: Assumed that no lock is held upon entry.
725  *
726  * Returns:     Nothing
727  *
728  * Notes:       This function is matched in terms of capabilities to
729  *              the function that created the scatter-gather list.
730  *              In other words, if there are no bounce buffers
731  *              (the normal case for most drivers), we don't need
732  *              the logic to deal with cleaning up afterwards.
733  *
734  *		We must call scsi_end_request().  This will finish off
735  *		the specified number of sectors.  If we are done, the
736  *		command block will be released and the queue function
737  *		will be goosed.  If we are not done then we have to
738  *		figure out what to do next:
739  *
740  *		a) We can call scsi_requeue_command().  The request
741  *		   will be unprepared and put back on the queue.  Then
742  *		   a new command will be created for it.  This should
743  *		   be used if we made forward progress, or if we want
744  *		   to switch from READ(10) to READ(6) for example.
745  *
746  *		b) We can call scsi_queue_insert().  The request will
747  *		   be put back on the queue and retried using the same
748  *		   command as before, possibly after a delay.
749  *
750  *		c) We can call blk_end_request() with -EIO to fail
751  *		   the remainder of the request.
752  */
753 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
754 {
755 	int result = cmd->result;
756 	struct request_queue *q = cmd->device->request_queue;
757 	struct request *req = cmd->request;
758 	int error = 0;
759 	struct scsi_sense_hdr sshdr;
760 	int sense_valid = 0;
761 	int sense_deferred = 0;
762 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
763 	      ACTION_DELAYED_RETRY} action;
764 	char *description = NULL;
765 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
766 
767 	if (result) {
768 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
769 		if (sense_valid)
770 			sense_deferred = scsi_sense_is_deferred(&sshdr);
771 	}
772 
773 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
774 		if (result) {
775 			if (sense_valid && req->sense) {
776 				/*
777 				 * SG_IO wants current and deferred errors
778 				 */
779 				int len = 8 + cmd->sense_buffer[7];
780 
781 				if (len > SCSI_SENSE_BUFFERSIZE)
782 					len = SCSI_SENSE_BUFFERSIZE;
783 				memcpy(req->sense, cmd->sense_buffer,  len);
784 				req->sense_len = len;
785 			}
786 			if (!sense_deferred)
787 				error = __scsi_error_from_host_byte(cmd, result);
788 		}
789 		/*
790 		 * __scsi_error_from_host_byte may have reset the host_byte
791 		 */
792 		req->errors = cmd->result;
793 
794 		req->resid_len = scsi_get_resid(cmd);
795 
796 		if (scsi_bidi_cmnd(cmd)) {
797 			/*
798 			 * Bidi commands Must be complete as a whole,
799 			 * both sides at once.
800 			 */
801 			req->next_rq->resid_len = scsi_in(cmd)->resid;
802 
803 			scsi_release_buffers(cmd);
804 			blk_end_request_all(req, 0);
805 
806 			scsi_next_command(cmd);
807 			return;
808 		}
809 	}
810 
811 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
812 	BUG_ON(blk_bidi_rq(req));
813 
814 	/*
815 	 * Next deal with any sectors which we were able to correctly
816 	 * handle.
817 	 */
818 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
819 				      "%d bytes done.\n",
820 				      blk_rq_sectors(req), good_bytes));
821 
822 	/*
823 	 * Recovered errors need reporting, but they're always treated
824 	 * as success, so fiddle the result code here.  For BLOCK_PC
825 	 * we already took a copy of the original into rq->errors which
826 	 * is what gets returned to the user
827 	 */
828 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
829 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
830 		 * print since caller wants ATA registers. Only occurs on
831 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
832 		 */
833 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
834 			;
835 		else if (!(req->cmd_flags & REQ_QUIET))
836 			scsi_print_sense("", cmd);
837 		result = 0;
838 		/* BLOCK_PC may have set error */
839 		error = 0;
840 	}
841 
842 	/*
843 	 * A number of bytes were successfully read.  If there
844 	 * are leftovers and there is some kind of error
845 	 * (result != 0), retry the rest.
846 	 */
847 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
848 		return;
849 
850 	error = __scsi_error_from_host_byte(cmd, result);
851 
852 	if (host_byte(result) == DID_RESET) {
853 		/* Third party bus reset or reset for error recovery
854 		 * reasons.  Just retry the command and see what
855 		 * happens.
856 		 */
857 		action = ACTION_RETRY;
858 	} else if (sense_valid && !sense_deferred) {
859 		switch (sshdr.sense_key) {
860 		case UNIT_ATTENTION:
861 			if (cmd->device->removable) {
862 				/* Detected disc change.  Set a bit
863 				 * and quietly refuse further access.
864 				 */
865 				cmd->device->changed = 1;
866 				description = "Media Changed";
867 				action = ACTION_FAIL;
868 			} else {
869 				/* Must have been a power glitch, or a
870 				 * bus reset.  Could not have been a
871 				 * media change, so we just retry the
872 				 * command and see what happens.
873 				 */
874 				action = ACTION_RETRY;
875 			}
876 			break;
877 		case ILLEGAL_REQUEST:
878 			/* If we had an ILLEGAL REQUEST returned, then
879 			 * we may have performed an unsupported
880 			 * command.  The only thing this should be
881 			 * would be a ten byte read where only a six
882 			 * byte read was supported.  Also, on a system
883 			 * where READ CAPACITY failed, we may have
884 			 * read past the end of the disk.
885 			 */
886 			if ((cmd->device->use_10_for_rw &&
887 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
888 			    (cmd->cmnd[0] == READ_10 ||
889 			     cmd->cmnd[0] == WRITE_10)) {
890 				/* This will issue a new 6-byte command. */
891 				cmd->device->use_10_for_rw = 0;
892 				action = ACTION_REPREP;
893 			} else if (sshdr.asc == 0x10) /* DIX */ {
894 				description = "Host Data Integrity Failure";
895 				action = ACTION_FAIL;
896 				error = -EILSEQ;
897 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
898 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
899 				switch (cmd->cmnd[0]) {
900 				case UNMAP:
901 					description = "Discard failure";
902 					break;
903 				case WRITE_SAME:
904 				case WRITE_SAME_16:
905 					if (cmd->cmnd[1] & 0x8)
906 						description = "Discard failure";
907 					else
908 						description =
909 							"Write same failure";
910 					break;
911 				default:
912 					description = "Invalid command failure";
913 					break;
914 				}
915 				action = ACTION_FAIL;
916 				error = -EREMOTEIO;
917 			} else
918 				action = ACTION_FAIL;
919 			break;
920 		case ABORTED_COMMAND:
921 			action = ACTION_FAIL;
922 			if (sshdr.asc == 0x10) { /* DIF */
923 				description = "Target Data Integrity Failure";
924 				error = -EILSEQ;
925 			}
926 			break;
927 		case NOT_READY:
928 			/* If the device is in the process of becoming
929 			 * ready, or has a temporary blockage, retry.
930 			 */
931 			if (sshdr.asc == 0x04) {
932 				switch (sshdr.ascq) {
933 				case 0x01: /* becoming ready */
934 				case 0x04: /* format in progress */
935 				case 0x05: /* rebuild in progress */
936 				case 0x06: /* recalculation in progress */
937 				case 0x07: /* operation in progress */
938 				case 0x08: /* Long write in progress */
939 				case 0x09: /* self test in progress */
940 				case 0x14: /* space allocation in progress */
941 					action = ACTION_DELAYED_RETRY;
942 					break;
943 				default:
944 					description = "Device not ready";
945 					action = ACTION_FAIL;
946 					break;
947 				}
948 			} else {
949 				description = "Device not ready";
950 				action = ACTION_FAIL;
951 			}
952 			break;
953 		case VOLUME_OVERFLOW:
954 			/* See SSC3rXX or current. */
955 			action = ACTION_FAIL;
956 			break;
957 		default:
958 			description = "Unhandled sense code";
959 			action = ACTION_FAIL;
960 			break;
961 		}
962 	} else {
963 		description = "Unhandled error code";
964 		action = ACTION_FAIL;
965 	}
966 
967 	if (action != ACTION_FAIL &&
968 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
969 		action = ACTION_FAIL;
970 		description = "Command timed out";
971 	}
972 
973 	switch (action) {
974 	case ACTION_FAIL:
975 		/* Give up and fail the remainder of the request */
976 		scsi_release_buffers(cmd);
977 		if (!(req->cmd_flags & REQ_QUIET)) {
978 			if (description)
979 				scmd_printk(KERN_INFO, cmd, "%s\n",
980 					    description);
981 			scsi_print_result(cmd);
982 			if (driver_byte(result) & DRIVER_SENSE)
983 				scsi_print_sense("", cmd);
984 			scsi_print_command(cmd);
985 		}
986 		if (blk_end_request_err(req, error))
987 			scsi_requeue_command(q, cmd);
988 		else
989 			scsi_next_command(cmd);
990 		break;
991 	case ACTION_REPREP:
992 		/* Unprep the request and put it back at the head of the queue.
993 		 * A new command will be prepared and issued.
994 		 */
995 		scsi_release_buffers(cmd);
996 		scsi_requeue_command(q, cmd);
997 		break;
998 	case ACTION_RETRY:
999 		/* Retry the same command immediately */
1000 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001 		break;
1002 	case ACTION_DELAYED_RETRY:
1003 		/* Retry the same command after a delay */
1004 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005 		break;
1006 	}
1007 }
1008 
1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1010 			     gfp_t gfp_mask)
1011 {
1012 	int count;
1013 
1014 	/*
1015 	 * If sg table allocation fails, requeue request later.
1016 	 */
1017 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1018 					gfp_mask))) {
1019 		return BLKPREP_DEFER;
1020 	}
1021 
1022 	req->buffer = NULL;
1023 
1024 	/*
1025 	 * Next, walk the list, and fill in the addresses and sizes of
1026 	 * each segment.
1027 	 */
1028 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1029 	BUG_ON(count > sdb->table.nents);
1030 	sdb->table.nents = count;
1031 	sdb->length = blk_rq_bytes(req);
1032 	return BLKPREP_OK;
1033 }
1034 
1035 /*
1036  * Function:    scsi_init_io()
1037  *
1038  * Purpose:     SCSI I/O initialize function.
1039  *
1040  * Arguments:   cmd   - Command descriptor we wish to initialize
1041  *
1042  * Returns:     0 on success
1043  *		BLKPREP_DEFER if the failure is retryable
1044  *		BLKPREP_KILL if the failure is fatal
1045  */
1046 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1047 {
1048 	struct scsi_device *sdev = cmd->device;
1049 	struct request *rq = cmd->request;
1050 
1051 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1052 	if (error)
1053 		goto err_exit;
1054 
1055 	if (blk_bidi_rq(rq)) {
1056 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1057 			scsi_sdb_cache, GFP_ATOMIC);
1058 		if (!bidi_sdb) {
1059 			error = BLKPREP_DEFER;
1060 			goto err_exit;
1061 		}
1062 
1063 		rq->next_rq->special = bidi_sdb;
1064 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1065 		if (error)
1066 			goto err_exit;
1067 	}
1068 
1069 	if (blk_integrity_rq(rq)) {
1070 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071 		int ivecs, count;
1072 
1073 		BUG_ON(prot_sdb == NULL);
1074 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1075 
1076 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1077 			error = BLKPREP_DEFER;
1078 			goto err_exit;
1079 		}
1080 
1081 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082 						prot_sdb->table.sgl);
1083 		BUG_ON(unlikely(count > ivecs));
1084 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085 
1086 		cmd->prot_sdb = prot_sdb;
1087 		cmd->prot_sdb->table.nents = count;
1088 	}
1089 
1090 	return BLKPREP_OK ;
1091 
1092 err_exit:
1093 	scsi_release_buffers(cmd);
1094 	cmd->request->special = NULL;
1095 	scsi_put_command(cmd);
1096 	put_device(&sdev->sdev_gendev);
1097 	return error;
1098 }
1099 EXPORT_SYMBOL(scsi_init_io);
1100 
1101 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1102 		struct request *req)
1103 {
1104 	struct scsi_cmnd *cmd;
1105 
1106 	if (!req->special) {
1107 		/* Bail if we can't get a reference to the device */
1108 		if (!get_device(&sdev->sdev_gendev))
1109 			return NULL;
1110 
1111 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1112 		if (unlikely(!cmd)) {
1113 			put_device(&sdev->sdev_gendev);
1114 			return NULL;
1115 		}
1116 		req->special = cmd;
1117 	} else {
1118 		cmd = req->special;
1119 	}
1120 
1121 	/* pull a tag out of the request if we have one */
1122 	cmd->tag = req->tag;
1123 	cmd->request = req;
1124 
1125 	cmd->cmnd = req->cmd;
1126 	cmd->prot_op = SCSI_PROT_NORMAL;
1127 
1128 	return cmd;
1129 }
1130 
1131 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1132 {
1133 	struct scsi_cmnd *cmd;
1134 	int ret = scsi_prep_state_check(sdev, req);
1135 
1136 	if (ret != BLKPREP_OK)
1137 		return ret;
1138 
1139 	cmd = scsi_get_cmd_from_req(sdev, req);
1140 	if (unlikely(!cmd))
1141 		return BLKPREP_DEFER;
1142 
1143 	/*
1144 	 * BLOCK_PC requests may transfer data, in which case they must
1145 	 * a bio attached to them.  Or they might contain a SCSI command
1146 	 * that does not transfer data, in which case they may optionally
1147 	 * submit a request without an attached bio.
1148 	 */
1149 	if (req->bio) {
1150 		int ret;
1151 
1152 		BUG_ON(!req->nr_phys_segments);
1153 
1154 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1155 		if (unlikely(ret))
1156 			return ret;
1157 	} else {
1158 		BUG_ON(blk_rq_bytes(req));
1159 
1160 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161 		req->buffer = NULL;
1162 	}
1163 
1164 	cmd->cmd_len = req->cmd_len;
1165 	if (!blk_rq_bytes(req))
1166 		cmd->sc_data_direction = DMA_NONE;
1167 	else if (rq_data_dir(req) == WRITE)
1168 		cmd->sc_data_direction = DMA_TO_DEVICE;
1169 	else
1170 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1171 
1172 	cmd->transfersize = blk_rq_bytes(req);
1173 	cmd->allowed = req->retries;
1174 	return BLKPREP_OK;
1175 }
1176 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1177 
1178 /*
1179  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1180  * from filesystems that still need to be translated to SCSI CDBs from
1181  * the ULD.
1182  */
1183 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1184 {
1185 	struct scsi_cmnd *cmd;
1186 	int ret = scsi_prep_state_check(sdev, req);
1187 
1188 	if (ret != BLKPREP_OK)
1189 		return ret;
1190 
1191 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1192 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1193 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1194 		if (ret != BLKPREP_OK)
1195 			return ret;
1196 	}
1197 
1198 	/*
1199 	 * Filesystem requests must transfer data.
1200 	 */
1201 	BUG_ON(!req->nr_phys_segments);
1202 
1203 	cmd = scsi_get_cmd_from_req(sdev, req);
1204 	if (unlikely(!cmd))
1205 		return BLKPREP_DEFER;
1206 
1207 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1208 	return scsi_init_io(cmd, GFP_ATOMIC);
1209 }
1210 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1211 
1212 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1213 {
1214 	int ret = BLKPREP_OK;
1215 
1216 	/*
1217 	 * If the device is not in running state we will reject some
1218 	 * or all commands.
1219 	 */
1220 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1221 		switch (sdev->sdev_state) {
1222 		case SDEV_OFFLINE:
1223 		case SDEV_TRANSPORT_OFFLINE:
1224 			/*
1225 			 * If the device is offline we refuse to process any
1226 			 * commands.  The device must be brought online
1227 			 * before trying any recovery commands.
1228 			 */
1229 			sdev_printk(KERN_ERR, sdev,
1230 				    "rejecting I/O to offline device\n");
1231 			ret = BLKPREP_KILL;
1232 			break;
1233 		case SDEV_DEL:
1234 			/*
1235 			 * If the device is fully deleted, we refuse to
1236 			 * process any commands as well.
1237 			 */
1238 			sdev_printk(KERN_ERR, sdev,
1239 				    "rejecting I/O to dead device\n");
1240 			ret = BLKPREP_KILL;
1241 			break;
1242 		case SDEV_QUIESCE:
1243 		case SDEV_BLOCK:
1244 		case SDEV_CREATED_BLOCK:
1245 			/*
1246 			 * If the devices is blocked we defer normal commands.
1247 			 */
1248 			if (!(req->cmd_flags & REQ_PREEMPT))
1249 				ret = BLKPREP_DEFER;
1250 			break;
1251 		default:
1252 			/*
1253 			 * For any other not fully online state we only allow
1254 			 * special commands.  In particular any user initiated
1255 			 * command is not allowed.
1256 			 */
1257 			if (!(req->cmd_flags & REQ_PREEMPT))
1258 				ret = BLKPREP_KILL;
1259 			break;
1260 		}
1261 	}
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(scsi_prep_state_check);
1265 
1266 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1267 {
1268 	struct scsi_device *sdev = q->queuedata;
1269 
1270 	switch (ret) {
1271 	case BLKPREP_KILL:
1272 		req->errors = DID_NO_CONNECT << 16;
1273 		/* release the command and kill it */
1274 		if (req->special) {
1275 			struct scsi_cmnd *cmd = req->special;
1276 			scsi_release_buffers(cmd);
1277 			scsi_put_command(cmd);
1278 			put_device(&sdev->sdev_gendev);
1279 			req->special = NULL;
1280 		}
1281 		break;
1282 	case BLKPREP_DEFER:
1283 		/*
1284 		 * If we defer, the blk_peek_request() returns NULL, but the
1285 		 * queue must be restarted, so we schedule a callback to happen
1286 		 * shortly.
1287 		 */
1288 		if (sdev->device_busy == 0)
1289 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290 		break;
1291 	default:
1292 		req->cmd_flags |= REQ_DONTPREP;
1293 	}
1294 
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL(scsi_prep_return);
1298 
1299 int scsi_prep_fn(struct request_queue *q, struct request *req)
1300 {
1301 	struct scsi_device *sdev = q->queuedata;
1302 	int ret = BLKPREP_KILL;
1303 
1304 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1305 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1306 	return scsi_prep_return(q, req, ret);
1307 }
1308 EXPORT_SYMBOL(scsi_prep_fn);
1309 
1310 /*
1311  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1312  * return 0.
1313  *
1314  * Called with the queue_lock held.
1315  */
1316 static inline int scsi_dev_queue_ready(struct request_queue *q,
1317 				  struct scsi_device *sdev)
1318 {
1319 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1320 		/*
1321 		 * unblock after device_blocked iterates to zero
1322 		 */
1323 		if (--sdev->device_blocked == 0) {
1324 			SCSI_LOG_MLQUEUE(3,
1325 				   sdev_printk(KERN_INFO, sdev,
1326 				   "unblocking device at zero depth\n"));
1327 		} else {
1328 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1329 			return 0;
1330 		}
1331 	}
1332 	if (scsi_device_is_busy(sdev))
1333 		return 0;
1334 
1335 	return 1;
1336 }
1337 
1338 
1339 /*
1340  * scsi_target_queue_ready: checks if there we can send commands to target
1341  * @sdev: scsi device on starget to check.
1342  *
1343  * Called with the host lock held.
1344  */
1345 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1346 					   struct scsi_device *sdev)
1347 {
1348 	struct scsi_target *starget = scsi_target(sdev);
1349 
1350 	if (starget->single_lun) {
1351 		if (starget->starget_sdev_user &&
1352 		    starget->starget_sdev_user != sdev)
1353 			return 0;
1354 		starget->starget_sdev_user = sdev;
1355 	}
1356 
1357 	if (starget->target_busy == 0 && starget->target_blocked) {
1358 		/*
1359 		 * unblock after target_blocked iterates to zero
1360 		 */
1361 		if (--starget->target_blocked == 0) {
1362 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1363 					 "unblocking target at zero depth\n"));
1364 		} else
1365 			return 0;
1366 	}
1367 
1368 	if (scsi_target_is_busy(starget)) {
1369 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1370 		return 0;
1371 	}
1372 
1373 	return 1;
1374 }
1375 
1376 /*
1377  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1378  * return 0. We must end up running the queue again whenever 0 is
1379  * returned, else IO can hang.
1380  *
1381  * Called with host_lock held.
1382  */
1383 static inline int scsi_host_queue_ready(struct request_queue *q,
1384 				   struct Scsi_Host *shost,
1385 				   struct scsi_device *sdev)
1386 {
1387 	if (scsi_host_in_recovery(shost))
1388 		return 0;
1389 	if (shost->host_busy == 0 && shost->host_blocked) {
1390 		/*
1391 		 * unblock after host_blocked iterates to zero
1392 		 */
1393 		if (--shost->host_blocked == 0) {
1394 			SCSI_LOG_MLQUEUE(3,
1395 				printk("scsi%d unblocking host at zero depth\n",
1396 					shost->host_no));
1397 		} else {
1398 			return 0;
1399 		}
1400 	}
1401 	if (scsi_host_is_busy(shost)) {
1402 		if (list_empty(&sdev->starved_entry))
1403 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1404 		return 0;
1405 	}
1406 
1407 	/* We're OK to process the command, so we can't be starved */
1408 	if (!list_empty(&sdev->starved_entry))
1409 		list_del_init(&sdev->starved_entry);
1410 
1411 	return 1;
1412 }
1413 
1414 /*
1415  * Busy state exporting function for request stacking drivers.
1416  *
1417  * For efficiency, no lock is taken to check the busy state of
1418  * shost/starget/sdev, since the returned value is not guaranteed and
1419  * may be changed after request stacking drivers call the function,
1420  * regardless of taking lock or not.
1421  *
1422  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1423  * needs to return 'not busy'. Otherwise, request stacking drivers
1424  * may hold requests forever.
1425  */
1426 static int scsi_lld_busy(struct request_queue *q)
1427 {
1428 	struct scsi_device *sdev = q->queuedata;
1429 	struct Scsi_Host *shost;
1430 
1431 	if (blk_queue_dying(q))
1432 		return 0;
1433 
1434 	shost = sdev->host;
1435 
1436 	/*
1437 	 * Ignore host/starget busy state.
1438 	 * Since block layer does not have a concept of fairness across
1439 	 * multiple queues, congestion of host/starget needs to be handled
1440 	 * in SCSI layer.
1441 	 */
1442 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1443 		return 1;
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Kill a request for a dead device
1450  */
1451 static void scsi_kill_request(struct request *req, struct request_queue *q)
1452 {
1453 	struct scsi_cmnd *cmd = req->special;
1454 	struct scsi_device *sdev;
1455 	struct scsi_target *starget;
1456 	struct Scsi_Host *shost;
1457 
1458 	blk_start_request(req);
1459 
1460 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1461 
1462 	sdev = cmd->device;
1463 	starget = scsi_target(sdev);
1464 	shost = sdev->host;
1465 	scsi_init_cmd_errh(cmd);
1466 	cmd->result = DID_NO_CONNECT << 16;
1467 	atomic_inc(&cmd->device->iorequest_cnt);
1468 
1469 	/*
1470 	 * SCSI request completion path will do scsi_device_unbusy(),
1471 	 * bump busy counts.  To bump the counters, we need to dance
1472 	 * with the locks as normal issue path does.
1473 	 */
1474 	sdev->device_busy++;
1475 	spin_unlock(sdev->request_queue->queue_lock);
1476 	spin_lock(shost->host_lock);
1477 	shost->host_busy++;
1478 	starget->target_busy++;
1479 	spin_unlock(shost->host_lock);
1480 	spin_lock(sdev->request_queue->queue_lock);
1481 
1482 	blk_complete_request(req);
1483 }
1484 
1485 static void scsi_softirq_done(struct request *rq)
1486 {
1487 	struct scsi_cmnd *cmd = rq->special;
1488 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1489 	int disposition;
1490 
1491 	INIT_LIST_HEAD(&cmd->eh_entry);
1492 
1493 	atomic_inc(&cmd->device->iodone_cnt);
1494 	if (cmd->result)
1495 		atomic_inc(&cmd->device->ioerr_cnt);
1496 
1497 	disposition = scsi_decide_disposition(cmd);
1498 	if (disposition != SUCCESS &&
1499 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1500 		sdev_printk(KERN_ERR, cmd->device,
1501 			    "timing out command, waited %lus\n",
1502 			    wait_for/HZ);
1503 		disposition = SUCCESS;
1504 	}
1505 
1506 	scsi_log_completion(cmd, disposition);
1507 
1508 	switch (disposition) {
1509 		case SUCCESS:
1510 			scsi_finish_command(cmd);
1511 			break;
1512 		case NEEDS_RETRY:
1513 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1514 			break;
1515 		case ADD_TO_MLQUEUE:
1516 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1517 			break;
1518 		default:
1519 			if (!scsi_eh_scmd_add(cmd, 0))
1520 				scsi_finish_command(cmd);
1521 	}
1522 }
1523 
1524 /*
1525  * Function:    scsi_request_fn()
1526  *
1527  * Purpose:     Main strategy routine for SCSI.
1528  *
1529  * Arguments:   q       - Pointer to actual queue.
1530  *
1531  * Returns:     Nothing
1532  *
1533  * Lock status: IO request lock assumed to be held when called.
1534  */
1535 static void scsi_request_fn(struct request_queue *q)
1536 	__releases(q->queue_lock)
1537 	__acquires(q->queue_lock)
1538 {
1539 	struct scsi_device *sdev = q->queuedata;
1540 	struct Scsi_Host *shost;
1541 	struct scsi_cmnd *cmd;
1542 	struct request *req;
1543 
1544 	/*
1545 	 * To start with, we keep looping until the queue is empty, or until
1546 	 * the host is no longer able to accept any more requests.
1547 	 */
1548 	shost = sdev->host;
1549 	for (;;) {
1550 		int rtn;
1551 		/*
1552 		 * get next queueable request.  We do this early to make sure
1553 		 * that the request is fully prepared even if we cannot
1554 		 * accept it.
1555 		 */
1556 		req = blk_peek_request(q);
1557 		if (!req || !scsi_dev_queue_ready(q, sdev))
1558 			break;
1559 
1560 		if (unlikely(!scsi_device_online(sdev))) {
1561 			sdev_printk(KERN_ERR, sdev,
1562 				    "rejecting I/O to offline device\n");
1563 			scsi_kill_request(req, q);
1564 			continue;
1565 		}
1566 
1567 
1568 		/*
1569 		 * Remove the request from the request list.
1570 		 */
1571 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1572 			blk_start_request(req);
1573 		sdev->device_busy++;
1574 
1575 		spin_unlock(q->queue_lock);
1576 		cmd = req->special;
1577 		if (unlikely(cmd == NULL)) {
1578 			printk(KERN_CRIT "impossible request in %s.\n"
1579 					 "please mail a stack trace to "
1580 					 "linux-scsi@vger.kernel.org\n",
1581 					 __func__);
1582 			blk_dump_rq_flags(req, "foo");
1583 			BUG();
1584 		}
1585 		spin_lock(shost->host_lock);
1586 
1587 		/*
1588 		 * We hit this when the driver is using a host wide
1589 		 * tag map. For device level tag maps the queue_depth check
1590 		 * in the device ready fn would prevent us from trying
1591 		 * to allocate a tag. Since the map is a shared host resource
1592 		 * we add the dev to the starved list so it eventually gets
1593 		 * a run when a tag is freed.
1594 		 */
1595 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1596 			if (list_empty(&sdev->starved_entry))
1597 				list_add_tail(&sdev->starved_entry,
1598 					      &shost->starved_list);
1599 			goto not_ready;
1600 		}
1601 
1602 		if (!scsi_target_queue_ready(shost, sdev))
1603 			goto not_ready;
1604 
1605 		if (!scsi_host_queue_ready(q, shost, sdev))
1606 			goto not_ready;
1607 
1608 		scsi_target(sdev)->target_busy++;
1609 		shost->host_busy++;
1610 
1611 		/*
1612 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1613 		 *		take the lock again.
1614 		 */
1615 		spin_unlock_irq(shost->host_lock);
1616 
1617 		/*
1618 		 * Finally, initialize any error handling parameters, and set up
1619 		 * the timers for timeouts.
1620 		 */
1621 		scsi_init_cmd_errh(cmd);
1622 
1623 		/*
1624 		 * Dispatch the command to the low-level driver.
1625 		 */
1626 		rtn = scsi_dispatch_cmd(cmd);
1627 		spin_lock_irq(q->queue_lock);
1628 		if (rtn)
1629 			goto out_delay;
1630 	}
1631 
1632 	return;
1633 
1634  not_ready:
1635 	spin_unlock_irq(shost->host_lock);
1636 
1637 	/*
1638 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1639 	 * must return with queue_lock held.
1640 	 *
1641 	 * Decrementing device_busy without checking it is OK, as all such
1642 	 * cases (host limits or settings) should run the queue at some
1643 	 * later time.
1644 	 */
1645 	spin_lock_irq(q->queue_lock);
1646 	blk_requeue_request(q, req);
1647 	sdev->device_busy--;
1648 out_delay:
1649 	if (sdev->device_busy == 0)
1650 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1651 }
1652 
1653 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1654 {
1655 	struct device *host_dev;
1656 	u64 bounce_limit = 0xffffffff;
1657 
1658 	if (shost->unchecked_isa_dma)
1659 		return BLK_BOUNCE_ISA;
1660 	/*
1661 	 * Platforms with virtual-DMA translation
1662 	 * hardware have no practical limit.
1663 	 */
1664 	if (!PCI_DMA_BUS_IS_PHYS)
1665 		return BLK_BOUNCE_ANY;
1666 
1667 	host_dev = scsi_get_device(shost);
1668 	if (host_dev && host_dev->dma_mask)
1669 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1670 
1671 	return bounce_limit;
1672 }
1673 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1674 
1675 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1676 					 request_fn_proc *request_fn)
1677 {
1678 	struct request_queue *q;
1679 	struct device *dev = shost->dma_dev;
1680 
1681 	q = blk_init_queue(request_fn, NULL);
1682 	if (!q)
1683 		return NULL;
1684 
1685 	/*
1686 	 * this limit is imposed by hardware restrictions
1687 	 */
1688 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1689 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1690 
1691 	if (scsi_host_prot_dma(shost)) {
1692 		shost->sg_prot_tablesize =
1693 			min_not_zero(shost->sg_prot_tablesize,
1694 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1695 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1696 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1697 	}
1698 
1699 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1700 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1701 	blk_queue_segment_boundary(q, shost->dma_boundary);
1702 	dma_set_seg_boundary(dev, shost->dma_boundary);
1703 
1704 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1705 
1706 	if (!shost->use_clustering)
1707 		q->limits.cluster = 0;
1708 
1709 	/*
1710 	 * set a reasonable default alignment on word boundaries: the
1711 	 * host and device may alter it using
1712 	 * blk_queue_update_dma_alignment() later.
1713 	 */
1714 	blk_queue_dma_alignment(q, 0x03);
1715 
1716 	return q;
1717 }
1718 EXPORT_SYMBOL(__scsi_alloc_queue);
1719 
1720 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1721 {
1722 	struct request_queue *q;
1723 
1724 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1725 	if (!q)
1726 		return NULL;
1727 
1728 	blk_queue_prep_rq(q, scsi_prep_fn);
1729 	blk_queue_softirq_done(q, scsi_softirq_done);
1730 	blk_queue_rq_timed_out(q, scsi_times_out);
1731 	blk_queue_lld_busy(q, scsi_lld_busy);
1732 	return q;
1733 }
1734 
1735 /*
1736  * Function:    scsi_block_requests()
1737  *
1738  * Purpose:     Utility function used by low-level drivers to prevent further
1739  *		commands from being queued to the device.
1740  *
1741  * Arguments:   shost       - Host in question
1742  *
1743  * Returns:     Nothing
1744  *
1745  * Lock status: No locks are assumed held.
1746  *
1747  * Notes:       There is no timer nor any other means by which the requests
1748  *		get unblocked other than the low-level driver calling
1749  *		scsi_unblock_requests().
1750  */
1751 void scsi_block_requests(struct Scsi_Host *shost)
1752 {
1753 	shost->host_self_blocked = 1;
1754 }
1755 EXPORT_SYMBOL(scsi_block_requests);
1756 
1757 /*
1758  * Function:    scsi_unblock_requests()
1759  *
1760  * Purpose:     Utility function used by low-level drivers to allow further
1761  *		commands from being queued to the device.
1762  *
1763  * Arguments:   shost       - Host in question
1764  *
1765  * Returns:     Nothing
1766  *
1767  * Lock status: No locks are assumed held.
1768  *
1769  * Notes:       There is no timer nor any other means by which the requests
1770  *		get unblocked other than the low-level driver calling
1771  *		scsi_unblock_requests().
1772  *
1773  *		This is done as an API function so that changes to the
1774  *		internals of the scsi mid-layer won't require wholesale
1775  *		changes to drivers that use this feature.
1776  */
1777 void scsi_unblock_requests(struct Scsi_Host *shost)
1778 {
1779 	shost->host_self_blocked = 0;
1780 	scsi_run_host_queues(shost);
1781 }
1782 EXPORT_SYMBOL(scsi_unblock_requests);
1783 
1784 int __init scsi_init_queue(void)
1785 {
1786 	int i;
1787 
1788 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1789 					   sizeof(struct scsi_data_buffer),
1790 					   0, 0, NULL);
1791 	if (!scsi_sdb_cache) {
1792 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1793 		return -ENOMEM;
1794 	}
1795 
1796 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798 		int size = sgp->size * sizeof(struct scatterlist);
1799 
1800 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1801 				SLAB_HWCACHE_ALIGN, NULL);
1802 		if (!sgp->slab) {
1803 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1804 					sgp->name);
1805 			goto cleanup_sdb;
1806 		}
1807 
1808 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1809 						     sgp->slab);
1810 		if (!sgp->pool) {
1811 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1812 					sgp->name);
1813 			goto cleanup_sdb;
1814 		}
1815 	}
1816 
1817 	return 0;
1818 
1819 cleanup_sdb:
1820 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1821 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1822 		if (sgp->pool)
1823 			mempool_destroy(sgp->pool);
1824 		if (sgp->slab)
1825 			kmem_cache_destroy(sgp->slab);
1826 	}
1827 	kmem_cache_destroy(scsi_sdb_cache);
1828 
1829 	return -ENOMEM;
1830 }
1831 
1832 void scsi_exit_queue(void)
1833 {
1834 	int i;
1835 
1836 	kmem_cache_destroy(scsi_sdb_cache);
1837 
1838 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840 		mempool_destroy(sgp->pool);
1841 		kmem_cache_destroy(sgp->slab);
1842 	}
1843 }
1844 
1845 /**
1846  *	scsi_mode_select - issue a mode select
1847  *	@sdev:	SCSI device to be queried
1848  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1849  *	@sp:	Save page bit (0 == don't save, 1 == save)
1850  *	@modepage: mode page being requested
1851  *	@buffer: request buffer (may not be smaller than eight bytes)
1852  *	@len:	length of request buffer.
1853  *	@timeout: command timeout
1854  *	@retries: number of retries before failing
1855  *	@data: returns a structure abstracting the mode header data
1856  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1857  *		must be SCSI_SENSE_BUFFERSIZE big.
1858  *
1859  *	Returns zero if successful; negative error number or scsi
1860  *	status on error
1861  *
1862  */
1863 int
1864 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1865 		 unsigned char *buffer, int len, int timeout, int retries,
1866 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1867 {
1868 	unsigned char cmd[10];
1869 	unsigned char *real_buffer;
1870 	int ret;
1871 
1872 	memset(cmd, 0, sizeof(cmd));
1873 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1874 
1875 	if (sdev->use_10_for_ms) {
1876 		if (len > 65535)
1877 			return -EINVAL;
1878 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1879 		if (!real_buffer)
1880 			return -ENOMEM;
1881 		memcpy(real_buffer + 8, buffer, len);
1882 		len += 8;
1883 		real_buffer[0] = 0;
1884 		real_buffer[1] = 0;
1885 		real_buffer[2] = data->medium_type;
1886 		real_buffer[3] = data->device_specific;
1887 		real_buffer[4] = data->longlba ? 0x01 : 0;
1888 		real_buffer[5] = 0;
1889 		real_buffer[6] = data->block_descriptor_length >> 8;
1890 		real_buffer[7] = data->block_descriptor_length;
1891 
1892 		cmd[0] = MODE_SELECT_10;
1893 		cmd[7] = len >> 8;
1894 		cmd[8] = len;
1895 	} else {
1896 		if (len > 255 || data->block_descriptor_length > 255 ||
1897 		    data->longlba)
1898 			return -EINVAL;
1899 
1900 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1901 		if (!real_buffer)
1902 			return -ENOMEM;
1903 		memcpy(real_buffer + 4, buffer, len);
1904 		len += 4;
1905 		real_buffer[0] = 0;
1906 		real_buffer[1] = data->medium_type;
1907 		real_buffer[2] = data->device_specific;
1908 		real_buffer[3] = data->block_descriptor_length;
1909 
1910 
1911 		cmd[0] = MODE_SELECT;
1912 		cmd[4] = len;
1913 	}
1914 
1915 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1916 			       sshdr, timeout, retries, NULL);
1917 	kfree(real_buffer);
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(scsi_mode_select);
1921 
1922 /**
1923  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1924  *	@sdev:	SCSI device to be queried
1925  *	@dbd:	set if mode sense will allow block descriptors to be returned
1926  *	@modepage: mode page being requested
1927  *	@buffer: request buffer (may not be smaller than eight bytes)
1928  *	@len:	length of request buffer.
1929  *	@timeout: command timeout
1930  *	@retries: number of retries before failing
1931  *	@data: returns a structure abstracting the mode header data
1932  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1933  *		must be SCSI_SENSE_BUFFERSIZE big.
1934  *
1935  *	Returns zero if unsuccessful, or the header offset (either 4
1936  *	or 8 depending on whether a six or ten byte command was
1937  *	issued) if successful.
1938  */
1939 int
1940 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1941 		  unsigned char *buffer, int len, int timeout, int retries,
1942 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1943 {
1944 	unsigned char cmd[12];
1945 	int use_10_for_ms;
1946 	int header_length;
1947 	int result;
1948 	struct scsi_sense_hdr my_sshdr;
1949 
1950 	memset(data, 0, sizeof(*data));
1951 	memset(&cmd[0], 0, 12);
1952 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1953 	cmd[2] = modepage;
1954 
1955 	/* caller might not be interested in sense, but we need it */
1956 	if (!sshdr)
1957 		sshdr = &my_sshdr;
1958 
1959  retry:
1960 	use_10_for_ms = sdev->use_10_for_ms;
1961 
1962 	if (use_10_for_ms) {
1963 		if (len < 8)
1964 			len = 8;
1965 
1966 		cmd[0] = MODE_SENSE_10;
1967 		cmd[8] = len;
1968 		header_length = 8;
1969 	} else {
1970 		if (len < 4)
1971 			len = 4;
1972 
1973 		cmd[0] = MODE_SENSE;
1974 		cmd[4] = len;
1975 		header_length = 4;
1976 	}
1977 
1978 	memset(buffer, 0, len);
1979 
1980 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1981 				  sshdr, timeout, retries, NULL);
1982 
1983 	/* This code looks awful: what it's doing is making sure an
1984 	 * ILLEGAL REQUEST sense return identifies the actual command
1985 	 * byte as the problem.  MODE_SENSE commands can return
1986 	 * ILLEGAL REQUEST if the code page isn't supported */
1987 
1988 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1989 	    (driver_byte(result) & DRIVER_SENSE)) {
1990 		if (scsi_sense_valid(sshdr)) {
1991 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1992 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1993 				/*
1994 				 * Invalid command operation code
1995 				 */
1996 				sdev->use_10_for_ms = 0;
1997 				goto retry;
1998 			}
1999 		}
2000 	}
2001 
2002 	if(scsi_status_is_good(result)) {
2003 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2004 			     (modepage == 6 || modepage == 8))) {
2005 			/* Initio breakage? */
2006 			header_length = 0;
2007 			data->length = 13;
2008 			data->medium_type = 0;
2009 			data->device_specific = 0;
2010 			data->longlba = 0;
2011 			data->block_descriptor_length = 0;
2012 		} else if(use_10_for_ms) {
2013 			data->length = buffer[0]*256 + buffer[1] + 2;
2014 			data->medium_type = buffer[2];
2015 			data->device_specific = buffer[3];
2016 			data->longlba = buffer[4] & 0x01;
2017 			data->block_descriptor_length = buffer[6]*256
2018 				+ buffer[7];
2019 		} else {
2020 			data->length = buffer[0] + 1;
2021 			data->medium_type = buffer[1];
2022 			data->device_specific = buffer[2];
2023 			data->block_descriptor_length = buffer[3];
2024 		}
2025 		data->header_length = header_length;
2026 	}
2027 
2028 	return result;
2029 }
2030 EXPORT_SYMBOL(scsi_mode_sense);
2031 
2032 /**
2033  *	scsi_test_unit_ready - test if unit is ready
2034  *	@sdev:	scsi device to change the state of.
2035  *	@timeout: command timeout
2036  *	@retries: number of retries before failing
2037  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2038  *		returning sense. Make sure that this is cleared before passing
2039  *		in.
2040  *
2041  *	Returns zero if unsuccessful or an error if TUR failed.  For
2042  *	removable media, UNIT_ATTENTION sets ->changed flag.
2043  **/
2044 int
2045 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2046 		     struct scsi_sense_hdr *sshdr_external)
2047 {
2048 	char cmd[] = {
2049 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2050 	};
2051 	struct scsi_sense_hdr *sshdr;
2052 	int result;
2053 
2054 	if (!sshdr_external)
2055 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2056 	else
2057 		sshdr = sshdr_external;
2058 
2059 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2060 	do {
2061 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2062 					  timeout, retries, NULL);
2063 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2064 		    sshdr->sense_key == UNIT_ATTENTION)
2065 			sdev->changed = 1;
2066 	} while (scsi_sense_valid(sshdr) &&
2067 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2068 
2069 	if (!sshdr_external)
2070 		kfree(sshdr);
2071 	return result;
2072 }
2073 EXPORT_SYMBOL(scsi_test_unit_ready);
2074 
2075 /**
2076  *	scsi_device_set_state - Take the given device through the device state model.
2077  *	@sdev:	scsi device to change the state of.
2078  *	@state:	state to change to.
2079  *
2080  *	Returns zero if unsuccessful or an error if the requested
2081  *	transition is illegal.
2082  */
2083 int
2084 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2085 {
2086 	enum scsi_device_state oldstate = sdev->sdev_state;
2087 
2088 	if (state == oldstate)
2089 		return 0;
2090 
2091 	switch (state) {
2092 	case SDEV_CREATED:
2093 		switch (oldstate) {
2094 		case SDEV_CREATED_BLOCK:
2095 			break;
2096 		default:
2097 			goto illegal;
2098 		}
2099 		break;
2100 
2101 	case SDEV_RUNNING:
2102 		switch (oldstate) {
2103 		case SDEV_CREATED:
2104 		case SDEV_OFFLINE:
2105 		case SDEV_TRANSPORT_OFFLINE:
2106 		case SDEV_QUIESCE:
2107 		case SDEV_BLOCK:
2108 			break;
2109 		default:
2110 			goto illegal;
2111 		}
2112 		break;
2113 
2114 	case SDEV_QUIESCE:
2115 		switch (oldstate) {
2116 		case SDEV_RUNNING:
2117 		case SDEV_OFFLINE:
2118 		case SDEV_TRANSPORT_OFFLINE:
2119 			break;
2120 		default:
2121 			goto illegal;
2122 		}
2123 		break;
2124 
2125 	case SDEV_OFFLINE:
2126 	case SDEV_TRANSPORT_OFFLINE:
2127 		switch (oldstate) {
2128 		case SDEV_CREATED:
2129 		case SDEV_RUNNING:
2130 		case SDEV_QUIESCE:
2131 		case SDEV_BLOCK:
2132 			break;
2133 		default:
2134 			goto illegal;
2135 		}
2136 		break;
2137 
2138 	case SDEV_BLOCK:
2139 		switch (oldstate) {
2140 		case SDEV_RUNNING:
2141 		case SDEV_CREATED_BLOCK:
2142 			break;
2143 		default:
2144 			goto illegal;
2145 		}
2146 		break;
2147 
2148 	case SDEV_CREATED_BLOCK:
2149 		switch (oldstate) {
2150 		case SDEV_CREATED:
2151 			break;
2152 		default:
2153 			goto illegal;
2154 		}
2155 		break;
2156 
2157 	case SDEV_CANCEL:
2158 		switch (oldstate) {
2159 		case SDEV_CREATED:
2160 		case SDEV_RUNNING:
2161 		case SDEV_QUIESCE:
2162 		case SDEV_OFFLINE:
2163 		case SDEV_TRANSPORT_OFFLINE:
2164 		case SDEV_BLOCK:
2165 			break;
2166 		default:
2167 			goto illegal;
2168 		}
2169 		break;
2170 
2171 	case SDEV_DEL:
2172 		switch (oldstate) {
2173 		case SDEV_CREATED:
2174 		case SDEV_RUNNING:
2175 		case SDEV_OFFLINE:
2176 		case SDEV_TRANSPORT_OFFLINE:
2177 		case SDEV_CANCEL:
2178 		case SDEV_CREATED_BLOCK:
2179 			break;
2180 		default:
2181 			goto illegal;
2182 		}
2183 		break;
2184 
2185 	}
2186 	sdev->sdev_state = state;
2187 	return 0;
2188 
2189  illegal:
2190 	SCSI_LOG_ERROR_RECOVERY(1,
2191 				sdev_printk(KERN_ERR, sdev,
2192 					    "Illegal state transition %s->%s\n",
2193 					    scsi_device_state_name(oldstate),
2194 					    scsi_device_state_name(state))
2195 				);
2196 	return -EINVAL;
2197 }
2198 EXPORT_SYMBOL(scsi_device_set_state);
2199 
2200 /**
2201  * 	sdev_evt_emit - emit a single SCSI device uevent
2202  *	@sdev: associated SCSI device
2203  *	@evt: event to emit
2204  *
2205  *	Send a single uevent (scsi_event) to the associated scsi_device.
2206  */
2207 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2208 {
2209 	int idx = 0;
2210 	char *envp[3];
2211 
2212 	switch (evt->evt_type) {
2213 	case SDEV_EVT_MEDIA_CHANGE:
2214 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2215 		break;
2216 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2217 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2218 		break;
2219 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2220 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2221 		break;
2222 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2223 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2224 		break;
2225 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2226 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2227 		break;
2228 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2229 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2230 		break;
2231 	default:
2232 		/* do nothing */
2233 		break;
2234 	}
2235 
2236 	envp[idx++] = NULL;
2237 
2238 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2239 }
2240 
2241 /**
2242  * 	sdev_evt_thread - send a uevent for each scsi event
2243  *	@work: work struct for scsi_device
2244  *
2245  *	Dispatch queued events to their associated scsi_device kobjects
2246  *	as uevents.
2247  */
2248 void scsi_evt_thread(struct work_struct *work)
2249 {
2250 	struct scsi_device *sdev;
2251 	enum scsi_device_event evt_type;
2252 	LIST_HEAD(event_list);
2253 
2254 	sdev = container_of(work, struct scsi_device, event_work);
2255 
2256 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2257 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2258 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2259 
2260 	while (1) {
2261 		struct scsi_event *evt;
2262 		struct list_head *this, *tmp;
2263 		unsigned long flags;
2264 
2265 		spin_lock_irqsave(&sdev->list_lock, flags);
2266 		list_splice_init(&sdev->event_list, &event_list);
2267 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2268 
2269 		if (list_empty(&event_list))
2270 			break;
2271 
2272 		list_for_each_safe(this, tmp, &event_list) {
2273 			evt = list_entry(this, struct scsi_event, node);
2274 			list_del(&evt->node);
2275 			scsi_evt_emit(sdev, evt);
2276 			kfree(evt);
2277 		}
2278 	}
2279 }
2280 
2281 /**
2282  * 	sdev_evt_send - send asserted event to uevent thread
2283  *	@sdev: scsi_device event occurred on
2284  *	@evt: event to send
2285  *
2286  *	Assert scsi device event asynchronously.
2287  */
2288 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2289 {
2290 	unsigned long flags;
2291 
2292 #if 0
2293 	/* FIXME: currently this check eliminates all media change events
2294 	 * for polled devices.  Need to update to discriminate between AN
2295 	 * and polled events */
2296 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2297 		kfree(evt);
2298 		return;
2299 	}
2300 #endif
2301 
2302 	spin_lock_irqsave(&sdev->list_lock, flags);
2303 	list_add_tail(&evt->node, &sdev->event_list);
2304 	schedule_work(&sdev->event_work);
2305 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2306 }
2307 EXPORT_SYMBOL_GPL(sdev_evt_send);
2308 
2309 /**
2310  * 	sdev_evt_alloc - allocate a new scsi event
2311  *	@evt_type: type of event to allocate
2312  *	@gfpflags: GFP flags for allocation
2313  *
2314  *	Allocates and returns a new scsi_event.
2315  */
2316 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2317 				  gfp_t gfpflags)
2318 {
2319 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2320 	if (!evt)
2321 		return NULL;
2322 
2323 	evt->evt_type = evt_type;
2324 	INIT_LIST_HEAD(&evt->node);
2325 
2326 	/* evt_type-specific initialization, if any */
2327 	switch (evt_type) {
2328 	case SDEV_EVT_MEDIA_CHANGE:
2329 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2330 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2331 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2332 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2333 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2334 	default:
2335 		/* do nothing */
2336 		break;
2337 	}
2338 
2339 	return evt;
2340 }
2341 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2342 
2343 /**
2344  * 	sdev_evt_send_simple - send asserted event to uevent thread
2345  *	@sdev: scsi_device event occurred on
2346  *	@evt_type: type of event to send
2347  *	@gfpflags: GFP flags for allocation
2348  *
2349  *	Assert scsi device event asynchronously, given an event type.
2350  */
2351 void sdev_evt_send_simple(struct scsi_device *sdev,
2352 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2353 {
2354 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2355 	if (!evt) {
2356 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2357 			    evt_type);
2358 		return;
2359 	}
2360 
2361 	sdev_evt_send(sdev, evt);
2362 }
2363 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2364 
2365 /**
2366  *	scsi_device_quiesce - Block user issued commands.
2367  *	@sdev:	scsi device to quiesce.
2368  *
2369  *	This works by trying to transition to the SDEV_QUIESCE state
2370  *	(which must be a legal transition).  When the device is in this
2371  *	state, only special requests will be accepted, all others will
2372  *	be deferred.  Since special requests may also be requeued requests,
2373  *	a successful return doesn't guarantee the device will be
2374  *	totally quiescent.
2375  *
2376  *	Must be called with user context, may sleep.
2377  *
2378  *	Returns zero if unsuccessful or an error if not.
2379  */
2380 int
2381 scsi_device_quiesce(struct scsi_device *sdev)
2382 {
2383 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2384 	if (err)
2385 		return err;
2386 
2387 	scsi_run_queue(sdev->request_queue);
2388 	while (sdev->device_busy) {
2389 		msleep_interruptible(200);
2390 		scsi_run_queue(sdev->request_queue);
2391 	}
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL(scsi_device_quiesce);
2395 
2396 /**
2397  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2398  *	@sdev:	scsi device to resume.
2399  *
2400  *	Moves the device from quiesced back to running and restarts the
2401  *	queues.
2402  *
2403  *	Must be called with user context, may sleep.
2404  */
2405 void scsi_device_resume(struct scsi_device *sdev)
2406 {
2407 	/* check if the device state was mutated prior to resume, and if
2408 	 * so assume the state is being managed elsewhere (for example
2409 	 * device deleted during suspend)
2410 	 */
2411 	if (sdev->sdev_state != SDEV_QUIESCE ||
2412 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2413 		return;
2414 	scsi_run_queue(sdev->request_queue);
2415 }
2416 EXPORT_SYMBOL(scsi_device_resume);
2417 
2418 static void
2419 device_quiesce_fn(struct scsi_device *sdev, void *data)
2420 {
2421 	scsi_device_quiesce(sdev);
2422 }
2423 
2424 void
2425 scsi_target_quiesce(struct scsi_target *starget)
2426 {
2427 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2428 }
2429 EXPORT_SYMBOL(scsi_target_quiesce);
2430 
2431 static void
2432 device_resume_fn(struct scsi_device *sdev, void *data)
2433 {
2434 	scsi_device_resume(sdev);
2435 }
2436 
2437 void
2438 scsi_target_resume(struct scsi_target *starget)
2439 {
2440 	starget_for_each_device(starget, NULL, device_resume_fn);
2441 }
2442 EXPORT_SYMBOL(scsi_target_resume);
2443 
2444 /**
2445  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2446  * @sdev:	device to block
2447  *
2448  * Block request made by scsi lld's to temporarily stop all
2449  * scsi commands on the specified device.  Called from interrupt
2450  * or normal process context.
2451  *
2452  * Returns zero if successful or error if not
2453  *
2454  * Notes:
2455  *	This routine transitions the device to the SDEV_BLOCK state
2456  *	(which must be a legal transition).  When the device is in this
2457  *	state, all commands are deferred until the scsi lld reenables
2458  *	the device with scsi_device_unblock or device_block_tmo fires.
2459  */
2460 int
2461 scsi_internal_device_block(struct scsi_device *sdev)
2462 {
2463 	struct request_queue *q = sdev->request_queue;
2464 	unsigned long flags;
2465 	int err = 0;
2466 
2467 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2468 	if (err) {
2469 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2470 
2471 		if (err)
2472 			return err;
2473 	}
2474 
2475 	/*
2476 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2477 	 * block layer from calling the midlayer with this device's
2478 	 * request queue.
2479 	 */
2480 	spin_lock_irqsave(q->queue_lock, flags);
2481 	blk_stop_queue(q);
2482 	spin_unlock_irqrestore(q->queue_lock, flags);
2483 
2484 	return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2487 
2488 /**
2489  * scsi_internal_device_unblock - resume a device after a block request
2490  * @sdev:	device to resume
2491  * @new_state:	state to set devices to after unblocking
2492  *
2493  * Called by scsi lld's or the midlayer to restart the device queue
2494  * for the previously suspended scsi device.  Called from interrupt or
2495  * normal process context.
2496  *
2497  * Returns zero if successful or error if not.
2498  *
2499  * Notes:
2500  *	This routine transitions the device to the SDEV_RUNNING state
2501  *	or to one of the offline states (which must be a legal transition)
2502  *	allowing the midlayer to goose the queue for this device.
2503  */
2504 int
2505 scsi_internal_device_unblock(struct scsi_device *sdev,
2506 			     enum scsi_device_state new_state)
2507 {
2508 	struct request_queue *q = sdev->request_queue;
2509 	unsigned long flags;
2510 
2511 	/*
2512 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2513 	 * offlined states and goose the device queue if successful.
2514 	 */
2515 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2516 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2517 		sdev->sdev_state = new_state;
2518 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2519 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2520 		    new_state == SDEV_OFFLINE)
2521 			sdev->sdev_state = new_state;
2522 		else
2523 			sdev->sdev_state = SDEV_CREATED;
2524 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2525 		 sdev->sdev_state != SDEV_OFFLINE)
2526 		return -EINVAL;
2527 
2528 	spin_lock_irqsave(q->queue_lock, flags);
2529 	blk_start_queue(q);
2530 	spin_unlock_irqrestore(q->queue_lock, flags);
2531 
2532 	return 0;
2533 }
2534 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2535 
2536 static void
2537 device_block(struct scsi_device *sdev, void *data)
2538 {
2539 	scsi_internal_device_block(sdev);
2540 }
2541 
2542 static int
2543 target_block(struct device *dev, void *data)
2544 {
2545 	if (scsi_is_target_device(dev))
2546 		starget_for_each_device(to_scsi_target(dev), NULL,
2547 					device_block);
2548 	return 0;
2549 }
2550 
2551 void
2552 scsi_target_block(struct device *dev)
2553 {
2554 	if (scsi_is_target_device(dev))
2555 		starget_for_each_device(to_scsi_target(dev), NULL,
2556 					device_block);
2557 	else
2558 		device_for_each_child(dev, NULL, target_block);
2559 }
2560 EXPORT_SYMBOL_GPL(scsi_target_block);
2561 
2562 static void
2563 device_unblock(struct scsi_device *sdev, void *data)
2564 {
2565 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2566 }
2567 
2568 static int
2569 target_unblock(struct device *dev, void *data)
2570 {
2571 	if (scsi_is_target_device(dev))
2572 		starget_for_each_device(to_scsi_target(dev), data,
2573 					device_unblock);
2574 	return 0;
2575 }
2576 
2577 void
2578 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2579 {
2580 	if (scsi_is_target_device(dev))
2581 		starget_for_each_device(to_scsi_target(dev), &new_state,
2582 					device_unblock);
2583 	else
2584 		device_for_each_child(dev, &new_state, target_unblock);
2585 }
2586 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2587 
2588 /**
2589  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2590  * @sgl:	scatter-gather list
2591  * @sg_count:	number of segments in sg
2592  * @offset:	offset in bytes into sg, on return offset into the mapped area
2593  * @len:	bytes to map, on return number of bytes mapped
2594  *
2595  * Returns virtual address of the start of the mapped page
2596  */
2597 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2598 			  size_t *offset, size_t *len)
2599 {
2600 	int i;
2601 	size_t sg_len = 0, len_complete = 0;
2602 	struct scatterlist *sg;
2603 	struct page *page;
2604 
2605 	WARN_ON(!irqs_disabled());
2606 
2607 	for_each_sg(sgl, sg, sg_count, i) {
2608 		len_complete = sg_len; /* Complete sg-entries */
2609 		sg_len += sg->length;
2610 		if (sg_len > *offset)
2611 			break;
2612 	}
2613 
2614 	if (unlikely(i == sg_count)) {
2615 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2616 			"elements %d\n",
2617 		       __func__, sg_len, *offset, sg_count);
2618 		WARN_ON(1);
2619 		return NULL;
2620 	}
2621 
2622 	/* Offset starting from the beginning of first page in this sg-entry */
2623 	*offset = *offset - len_complete + sg->offset;
2624 
2625 	/* Assumption: contiguous pages can be accessed as "page + i" */
2626 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2627 	*offset &= ~PAGE_MASK;
2628 
2629 	/* Bytes in this sg-entry from *offset to the end of the page */
2630 	sg_len = PAGE_SIZE - *offset;
2631 	if (*len > sg_len)
2632 		*len = sg_len;
2633 
2634 	return kmap_atomic(page);
2635 }
2636 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2637 
2638 /**
2639  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2640  * @virt:	virtual address to be unmapped
2641  */
2642 void scsi_kunmap_atomic_sg(void *virt)
2643 {
2644 	kunmap_atomic(virt);
2645 }
2646 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2647 
2648 void sdev_disable_disk_events(struct scsi_device *sdev)
2649 {
2650 	atomic_inc(&sdev->disk_events_disable_depth);
2651 }
2652 EXPORT_SYMBOL(sdev_disable_disk_events);
2653 
2654 void sdev_enable_disk_events(struct scsi_device *sdev)
2655 {
2656 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2657 		return;
2658 	atomic_dec(&sdev->disk_events_disable_depth);
2659 }
2660 EXPORT_SYMBOL(sdev_enable_disk_events);
2661