1 /* 2 * scsi_error.c Copyright (C) 1997 Eric Youngdale 3 * 4 * SCSI error/timeout handling 5 * Initial versions: Eric Youngdale. Based upon conversations with 6 * Leonard Zubkoff and David Miller at Linux Expo, 7 * ideas originating from all over the place. 8 * 9 * Restructured scsi_unjam_host and associated functions. 10 * September 04, 2002 Mike Anderson (andmike@us.ibm.com) 11 * 12 * Forward port of Russell King's (rmk@arm.linux.org.uk) changes and 13 * minor cleanups. 14 * September 30, 2002 Mike Anderson (andmike@us.ibm.com) 15 */ 16 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/gfp.h> 20 #include <linux/timer.h> 21 #include <linux/string.h> 22 #include <linux/kernel.h> 23 #include <linux/freezer.h> 24 #include <linux/kthread.h> 25 #include <linux/interrupt.h> 26 #include <linux/blkdev.h> 27 #include <linux/delay.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_dbg.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_transport.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_ioctl.h> 37 38 #include "scsi_priv.h" 39 #include "scsi_logging.h" 40 #include "scsi_transport_api.h" 41 42 #include <trace/events/scsi.h> 43 44 #define SENSE_TIMEOUT (10*HZ) 45 46 /* 47 * These should *probably* be handled by the host itself. 48 * Since it is allowed to sleep, it probably should. 49 */ 50 #define BUS_RESET_SETTLE_TIME (10) 51 #define HOST_RESET_SETTLE_TIME (10) 52 53 /* called with shost->host_lock held */ 54 void scsi_eh_wakeup(struct Scsi_Host *shost) 55 { 56 if (shost->host_busy == shost->host_failed) { 57 trace_scsi_eh_wakeup(shost); 58 wake_up_process(shost->ehandler); 59 SCSI_LOG_ERROR_RECOVERY(5, 60 printk("Waking error handler thread\n")); 61 } 62 } 63 64 /** 65 * scsi_schedule_eh - schedule EH for SCSI host 66 * @shost: SCSI host to invoke error handling on. 67 * 68 * Schedule SCSI EH without scmd. 69 */ 70 void scsi_schedule_eh(struct Scsi_Host *shost) 71 { 72 unsigned long flags; 73 74 spin_lock_irqsave(shost->host_lock, flags); 75 76 if (scsi_host_set_state(shost, SHOST_RECOVERY) == 0 || 77 scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY) == 0) { 78 shost->host_eh_scheduled++; 79 scsi_eh_wakeup(shost); 80 } 81 82 spin_unlock_irqrestore(shost->host_lock, flags); 83 } 84 EXPORT_SYMBOL_GPL(scsi_schedule_eh); 85 86 /** 87 * scsi_eh_scmd_add - add scsi cmd to error handling. 88 * @scmd: scmd to run eh on. 89 * @eh_flag: optional SCSI_EH flag. 90 * 91 * Return value: 92 * 0 on failure. 93 */ 94 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag) 95 { 96 struct Scsi_Host *shost = scmd->device->host; 97 unsigned long flags; 98 int ret = 0; 99 100 if (!shost->ehandler) 101 return 0; 102 103 spin_lock_irqsave(shost->host_lock, flags); 104 if (scsi_host_set_state(shost, SHOST_RECOVERY)) 105 if (scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY)) 106 goto out_unlock; 107 108 ret = 1; 109 scmd->eh_eflags |= eh_flag; 110 list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q); 111 shost->host_failed++; 112 scsi_eh_wakeup(shost); 113 out_unlock: 114 spin_unlock_irqrestore(shost->host_lock, flags); 115 return ret; 116 } 117 118 /** 119 * scsi_times_out - Timeout function for normal scsi commands. 120 * @req: request that is timing out. 121 * 122 * Notes: 123 * We do not need to lock this. There is the potential for a race 124 * only in that the normal completion handling might run, but if the 125 * normal completion function determines that the timer has already 126 * fired, then it mustn't do anything. 127 */ 128 enum blk_eh_timer_return scsi_times_out(struct request *req) 129 { 130 struct scsi_cmnd *scmd = req->special; 131 enum blk_eh_timer_return rtn = BLK_EH_NOT_HANDLED; 132 133 trace_scsi_dispatch_cmd_timeout(scmd); 134 scsi_log_completion(scmd, TIMEOUT_ERROR); 135 136 if (scmd->device->host->transportt->eh_timed_out) 137 rtn = scmd->device->host->transportt->eh_timed_out(scmd); 138 else if (scmd->device->host->hostt->eh_timed_out) 139 rtn = scmd->device->host->hostt->eh_timed_out(scmd); 140 141 if (unlikely(rtn == BLK_EH_NOT_HANDLED && 142 !scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) { 143 scmd->result |= DID_TIME_OUT << 16; 144 rtn = BLK_EH_HANDLED; 145 } 146 147 return rtn; 148 } 149 150 /** 151 * scsi_block_when_processing_errors - Prevent cmds from being queued. 152 * @sdev: Device on which we are performing recovery. 153 * 154 * Description: 155 * We block until the host is out of error recovery, and then check to 156 * see whether the host or the device is offline. 157 * 158 * Return value: 159 * 0 when dev was taken offline by error recovery. 1 OK to proceed. 160 */ 161 int scsi_block_when_processing_errors(struct scsi_device *sdev) 162 { 163 int online; 164 165 wait_event(sdev->host->host_wait, !scsi_host_in_recovery(sdev->host)); 166 167 online = scsi_device_online(sdev); 168 169 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __func__, 170 online)); 171 172 return online; 173 } 174 EXPORT_SYMBOL(scsi_block_when_processing_errors); 175 176 #ifdef CONFIG_SCSI_LOGGING 177 /** 178 * scsi_eh_prt_fail_stats - Log info on failures. 179 * @shost: scsi host being recovered. 180 * @work_q: Queue of scsi cmds to process. 181 */ 182 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost, 183 struct list_head *work_q) 184 { 185 struct scsi_cmnd *scmd; 186 struct scsi_device *sdev; 187 int total_failures = 0; 188 int cmd_failed = 0; 189 int cmd_cancel = 0; 190 int devices_failed = 0; 191 192 shost_for_each_device(sdev, shost) { 193 list_for_each_entry(scmd, work_q, eh_entry) { 194 if (scmd->device == sdev) { 195 ++total_failures; 196 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) 197 ++cmd_cancel; 198 else 199 ++cmd_failed; 200 } 201 } 202 203 if (cmd_cancel || cmd_failed) { 204 SCSI_LOG_ERROR_RECOVERY(3, 205 sdev_printk(KERN_INFO, sdev, 206 "%s: cmds failed: %d, cancel: %d\n", 207 __func__, cmd_failed, 208 cmd_cancel)); 209 cmd_cancel = 0; 210 cmd_failed = 0; 211 ++devices_failed; 212 } 213 } 214 215 SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d" 216 " devices require eh work\n", 217 total_failures, devices_failed)); 218 } 219 #endif 220 221 /** 222 * scsi_check_sense - Examine scsi cmd sense 223 * @scmd: Cmd to have sense checked. 224 * 225 * Return value: 226 * SUCCESS or FAILED or NEEDS_RETRY or TARGET_ERROR 227 * 228 * Notes: 229 * When a deferred error is detected the current command has 230 * not been executed and needs retrying. 231 */ 232 static int scsi_check_sense(struct scsi_cmnd *scmd) 233 { 234 struct scsi_device *sdev = scmd->device; 235 struct scsi_sense_hdr sshdr; 236 237 if (! scsi_command_normalize_sense(scmd, &sshdr)) 238 return FAILED; /* no valid sense data */ 239 240 if (scsi_sense_is_deferred(&sshdr)) 241 return NEEDS_RETRY; 242 243 if (sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh && 244 sdev->scsi_dh_data->scsi_dh->check_sense) { 245 int rc; 246 247 rc = sdev->scsi_dh_data->scsi_dh->check_sense(sdev, &sshdr); 248 if (rc != SCSI_RETURN_NOT_HANDLED) 249 return rc; 250 /* handler does not care. Drop down to default handling */ 251 } 252 253 /* 254 * Previous logic looked for FILEMARK, EOM or ILI which are 255 * mainly associated with tapes and returned SUCCESS. 256 */ 257 if (sshdr.response_code == 0x70) { 258 /* fixed format */ 259 if (scmd->sense_buffer[2] & 0xe0) 260 return SUCCESS; 261 } else { 262 /* 263 * descriptor format: look for "stream commands sense data 264 * descriptor" (see SSC-3). Assume single sense data 265 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG. 266 */ 267 if ((sshdr.additional_length > 3) && 268 (scmd->sense_buffer[8] == 0x4) && 269 (scmd->sense_buffer[11] & 0xe0)) 270 return SUCCESS; 271 } 272 273 switch (sshdr.sense_key) { 274 case NO_SENSE: 275 return SUCCESS; 276 case RECOVERED_ERROR: 277 return /* soft_error */ SUCCESS; 278 279 case ABORTED_COMMAND: 280 if (sshdr.asc == 0x10) /* DIF */ 281 return SUCCESS; 282 283 return NEEDS_RETRY; 284 case NOT_READY: 285 case UNIT_ATTENTION: 286 /* 287 * if we are expecting a cc/ua because of a bus reset that we 288 * performed, treat this just as a retry. otherwise this is 289 * information that we should pass up to the upper-level driver 290 * so that we can deal with it there. 291 */ 292 if (scmd->device->expecting_cc_ua) { 293 scmd->device->expecting_cc_ua = 0; 294 return NEEDS_RETRY; 295 } 296 /* 297 * if the device is in the process of becoming ready, we 298 * should retry. 299 */ 300 if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01)) 301 return NEEDS_RETRY; 302 /* 303 * if the device is not started, we need to wake 304 * the error handler to start the motor 305 */ 306 if (scmd->device->allow_restart && 307 (sshdr.asc == 0x04) && (sshdr.ascq == 0x02)) 308 return FAILED; 309 310 if (sshdr.asc == 0x3f && sshdr.ascq == 0x0e) 311 scmd_printk(KERN_WARNING, scmd, 312 "Warning! Received an indication that the " 313 "LUN assignments on this target have " 314 "changed. The Linux SCSI layer does not " 315 "automatically remap LUN assignments.\n"); 316 else if (sshdr.asc == 0x3f) 317 scmd_printk(KERN_WARNING, scmd, 318 "Warning! Received an indication that the " 319 "operating parameters on this target have " 320 "changed. The Linux SCSI layer does not " 321 "automatically adjust these parameters.\n"); 322 323 /* 324 * Pass the UA upwards for a determination in the completion 325 * functions. 326 */ 327 return SUCCESS; 328 329 /* these are not supported */ 330 case COPY_ABORTED: 331 case VOLUME_OVERFLOW: 332 case MISCOMPARE: 333 case BLANK_CHECK: 334 case DATA_PROTECT: 335 return TARGET_ERROR; 336 337 case MEDIUM_ERROR: 338 if (sshdr.asc == 0x11 || /* UNRECOVERED READ ERR */ 339 sshdr.asc == 0x13 || /* AMNF DATA FIELD */ 340 sshdr.asc == 0x14) { /* RECORD NOT FOUND */ 341 return TARGET_ERROR; 342 } 343 return NEEDS_RETRY; 344 345 case HARDWARE_ERROR: 346 if (scmd->device->retry_hwerror) 347 return ADD_TO_MLQUEUE; 348 else 349 return TARGET_ERROR; 350 351 case ILLEGAL_REQUEST: 352 default: 353 return SUCCESS; 354 } 355 } 356 357 static void scsi_handle_queue_ramp_up(struct scsi_device *sdev) 358 { 359 struct scsi_host_template *sht = sdev->host->hostt; 360 struct scsi_device *tmp_sdev; 361 362 if (!sht->change_queue_depth || 363 sdev->queue_depth >= sdev->max_queue_depth) 364 return; 365 366 if (time_before(jiffies, 367 sdev->last_queue_ramp_up + sdev->queue_ramp_up_period)) 368 return; 369 370 if (time_before(jiffies, 371 sdev->last_queue_full_time + sdev->queue_ramp_up_period)) 372 return; 373 374 /* 375 * Walk all devices of a target and do 376 * ramp up on them. 377 */ 378 shost_for_each_device(tmp_sdev, sdev->host) { 379 if (tmp_sdev->channel != sdev->channel || 380 tmp_sdev->id != sdev->id || 381 tmp_sdev->queue_depth == sdev->max_queue_depth) 382 continue; 383 /* 384 * call back into LLD to increase queue_depth by one 385 * with ramp up reason code. 386 */ 387 sht->change_queue_depth(tmp_sdev, tmp_sdev->queue_depth + 1, 388 SCSI_QDEPTH_RAMP_UP); 389 sdev->last_queue_ramp_up = jiffies; 390 } 391 } 392 393 static void scsi_handle_queue_full(struct scsi_device *sdev) 394 { 395 struct scsi_host_template *sht = sdev->host->hostt; 396 struct scsi_device *tmp_sdev; 397 398 if (!sht->change_queue_depth) 399 return; 400 401 shost_for_each_device(tmp_sdev, sdev->host) { 402 if (tmp_sdev->channel != sdev->channel || 403 tmp_sdev->id != sdev->id) 404 continue; 405 /* 406 * We do not know the number of commands that were at 407 * the device when we got the queue full so we start 408 * from the highest possible value and work our way down. 409 */ 410 sht->change_queue_depth(tmp_sdev, tmp_sdev->queue_depth - 1, 411 SCSI_QDEPTH_QFULL); 412 } 413 } 414 415 /** 416 * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD. 417 * @scmd: SCSI cmd to examine. 418 * 419 * Notes: 420 * This is *only* called when we are examining the status of commands 421 * queued during error recovery. the main difference here is that we 422 * don't allow for the possibility of retries here, and we are a lot 423 * more restrictive about what we consider acceptable. 424 */ 425 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd) 426 { 427 /* 428 * first check the host byte, to see if there is anything in there 429 * that would indicate what we need to do. 430 */ 431 if (host_byte(scmd->result) == DID_RESET) { 432 /* 433 * rats. we are already in the error handler, so we now 434 * get to try and figure out what to do next. if the sense 435 * is valid, we have a pretty good idea of what to do. 436 * if not, we mark it as FAILED. 437 */ 438 return scsi_check_sense(scmd); 439 } 440 if (host_byte(scmd->result) != DID_OK) 441 return FAILED; 442 443 /* 444 * next, check the message byte. 445 */ 446 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 447 return FAILED; 448 449 /* 450 * now, check the status byte to see if this indicates 451 * anything special. 452 */ 453 switch (status_byte(scmd->result)) { 454 case GOOD: 455 scsi_handle_queue_ramp_up(scmd->device); 456 case COMMAND_TERMINATED: 457 return SUCCESS; 458 case CHECK_CONDITION: 459 return scsi_check_sense(scmd); 460 case CONDITION_GOOD: 461 case INTERMEDIATE_GOOD: 462 case INTERMEDIATE_C_GOOD: 463 /* 464 * who knows? FIXME(eric) 465 */ 466 return SUCCESS; 467 case RESERVATION_CONFLICT: 468 if (scmd->cmnd[0] == TEST_UNIT_READY) 469 /* it is a success, we probed the device and 470 * found it */ 471 return SUCCESS; 472 /* otherwise, we failed to send the command */ 473 return FAILED; 474 case QUEUE_FULL: 475 scsi_handle_queue_full(scmd->device); 476 /* fall through */ 477 case BUSY: 478 return NEEDS_RETRY; 479 default: 480 return FAILED; 481 } 482 return FAILED; 483 } 484 485 /** 486 * scsi_eh_done - Completion function for error handling. 487 * @scmd: Cmd that is done. 488 */ 489 static void scsi_eh_done(struct scsi_cmnd *scmd) 490 { 491 struct completion *eh_action; 492 493 SCSI_LOG_ERROR_RECOVERY(3, 494 printk("%s scmd: %p result: %x\n", 495 __func__, scmd, scmd->result)); 496 497 eh_action = scmd->device->host->eh_action; 498 if (eh_action) 499 complete(eh_action); 500 } 501 502 /** 503 * scsi_try_host_reset - ask host adapter to reset itself 504 * @scmd: SCSI cmd to send hsot reset. 505 */ 506 static int scsi_try_host_reset(struct scsi_cmnd *scmd) 507 { 508 unsigned long flags; 509 int rtn; 510 511 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n", 512 __func__)); 513 514 if (!scmd->device->host->hostt->eh_host_reset_handler) 515 return FAILED; 516 517 rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd); 518 519 if (rtn == SUCCESS) { 520 if (!scmd->device->host->hostt->skip_settle_delay) 521 ssleep(HOST_RESET_SETTLE_TIME); 522 spin_lock_irqsave(scmd->device->host->host_lock, flags); 523 scsi_report_bus_reset(scmd->device->host, 524 scmd_channel(scmd)); 525 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 526 } 527 528 return rtn; 529 } 530 531 /** 532 * scsi_try_bus_reset - ask host to perform a bus reset 533 * @scmd: SCSI cmd to send bus reset. 534 */ 535 static int scsi_try_bus_reset(struct scsi_cmnd *scmd) 536 { 537 unsigned long flags; 538 int rtn; 539 540 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n", 541 __func__)); 542 543 if (!scmd->device->host->hostt->eh_bus_reset_handler) 544 return FAILED; 545 546 rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd); 547 548 if (rtn == SUCCESS) { 549 if (!scmd->device->host->hostt->skip_settle_delay) 550 ssleep(BUS_RESET_SETTLE_TIME); 551 spin_lock_irqsave(scmd->device->host->host_lock, flags); 552 scsi_report_bus_reset(scmd->device->host, 553 scmd_channel(scmd)); 554 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 555 } 556 557 return rtn; 558 } 559 560 static void __scsi_report_device_reset(struct scsi_device *sdev, void *data) 561 { 562 sdev->was_reset = 1; 563 sdev->expecting_cc_ua = 1; 564 } 565 566 /** 567 * scsi_try_target_reset - Ask host to perform a target reset 568 * @scmd: SCSI cmd used to send a target reset 569 * 570 * Notes: 571 * There is no timeout for this operation. if this operation is 572 * unreliable for a given host, then the host itself needs to put a 573 * timer on it, and set the host back to a consistent state prior to 574 * returning. 575 */ 576 static int scsi_try_target_reset(struct scsi_cmnd *scmd) 577 { 578 unsigned long flags; 579 int rtn; 580 581 if (!scmd->device->host->hostt->eh_target_reset_handler) 582 return FAILED; 583 584 rtn = scmd->device->host->hostt->eh_target_reset_handler(scmd); 585 if (rtn == SUCCESS) { 586 spin_lock_irqsave(scmd->device->host->host_lock, flags); 587 __starget_for_each_device(scsi_target(scmd->device), NULL, 588 __scsi_report_device_reset); 589 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 590 } 591 592 return rtn; 593 } 594 595 /** 596 * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev 597 * @scmd: SCSI cmd used to send BDR 598 * 599 * Notes: 600 * There is no timeout for this operation. if this operation is 601 * unreliable for a given host, then the host itself needs to put a 602 * timer on it, and set the host back to a consistent state prior to 603 * returning. 604 */ 605 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd) 606 { 607 int rtn; 608 609 if (!scmd->device->host->hostt->eh_device_reset_handler) 610 return FAILED; 611 612 rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd); 613 if (rtn == SUCCESS) 614 __scsi_report_device_reset(scmd->device, NULL); 615 return rtn; 616 } 617 618 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 619 { 620 if (!scmd->device->host->hostt->eh_abort_handler) 621 return FAILED; 622 623 return scmd->device->host->hostt->eh_abort_handler(scmd); 624 } 625 626 static void scsi_abort_eh_cmnd(struct scsi_cmnd *scmd) 627 { 628 if (scsi_try_to_abort_cmd(scmd) != SUCCESS) 629 if (scsi_try_bus_device_reset(scmd) != SUCCESS) 630 if (scsi_try_target_reset(scmd) != SUCCESS) 631 if (scsi_try_bus_reset(scmd) != SUCCESS) 632 scsi_try_host_reset(scmd); 633 } 634 635 /** 636 * scsi_eh_prep_cmnd - Save a scsi command info as part of error recory 637 * @scmd: SCSI command structure to hijack 638 * @ses: structure to save restore information 639 * @cmnd: CDB to send. Can be NULL if no new cmnd is needed 640 * @cmnd_size: size in bytes of @cmnd (must be <= BLK_MAX_CDB) 641 * @sense_bytes: size of sense data to copy. or 0 (if != 0 @cmnd is ignored) 642 * 643 * This function is used to save a scsi command information before re-execution 644 * as part of the error recovery process. If @sense_bytes is 0 the command 645 * sent must be one that does not transfer any data. If @sense_bytes != 0 646 * @cmnd is ignored and this functions sets up a REQUEST_SENSE command 647 * and cmnd buffers to read @sense_bytes into @scmd->sense_buffer. 648 */ 649 void scsi_eh_prep_cmnd(struct scsi_cmnd *scmd, struct scsi_eh_save *ses, 650 unsigned char *cmnd, int cmnd_size, unsigned sense_bytes) 651 { 652 struct scsi_device *sdev = scmd->device; 653 654 /* 655 * We need saved copies of a number of fields - this is because 656 * error handling may need to overwrite these with different values 657 * to run different commands, and once error handling is complete, 658 * we will need to restore these values prior to running the actual 659 * command. 660 */ 661 ses->cmd_len = scmd->cmd_len; 662 ses->cmnd = scmd->cmnd; 663 ses->data_direction = scmd->sc_data_direction; 664 ses->sdb = scmd->sdb; 665 ses->next_rq = scmd->request->next_rq; 666 ses->result = scmd->result; 667 ses->underflow = scmd->underflow; 668 ses->prot_op = scmd->prot_op; 669 670 scmd->prot_op = SCSI_PROT_NORMAL; 671 scmd->cmnd = ses->eh_cmnd; 672 memset(scmd->cmnd, 0, BLK_MAX_CDB); 673 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 674 scmd->request->next_rq = NULL; 675 676 if (sense_bytes) { 677 scmd->sdb.length = min_t(unsigned, SCSI_SENSE_BUFFERSIZE, 678 sense_bytes); 679 sg_init_one(&ses->sense_sgl, scmd->sense_buffer, 680 scmd->sdb.length); 681 scmd->sdb.table.sgl = &ses->sense_sgl; 682 scmd->sc_data_direction = DMA_FROM_DEVICE; 683 scmd->sdb.table.nents = 1; 684 scmd->cmnd[0] = REQUEST_SENSE; 685 scmd->cmnd[4] = scmd->sdb.length; 686 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 687 } else { 688 scmd->sc_data_direction = DMA_NONE; 689 if (cmnd) { 690 BUG_ON(cmnd_size > BLK_MAX_CDB); 691 memcpy(scmd->cmnd, cmnd, cmnd_size); 692 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 693 } 694 } 695 696 scmd->underflow = 0; 697 698 if (sdev->scsi_level <= SCSI_2 && sdev->scsi_level != SCSI_UNKNOWN) 699 scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) | 700 (sdev->lun << 5 & 0xe0); 701 702 /* 703 * Zero the sense buffer. The scsi spec mandates that any 704 * untransferred sense data should be interpreted as being zero. 705 */ 706 memset(scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 707 } 708 EXPORT_SYMBOL(scsi_eh_prep_cmnd); 709 710 /** 711 * scsi_eh_restore_cmnd - Restore a scsi command info as part of error recory 712 * @scmd: SCSI command structure to restore 713 * @ses: saved information from a coresponding call to scsi_eh_prep_cmnd 714 * 715 * Undo any damage done by above scsi_eh_prep_cmnd(). 716 */ 717 void scsi_eh_restore_cmnd(struct scsi_cmnd* scmd, struct scsi_eh_save *ses) 718 { 719 /* 720 * Restore original data 721 */ 722 scmd->cmd_len = ses->cmd_len; 723 scmd->cmnd = ses->cmnd; 724 scmd->sc_data_direction = ses->data_direction; 725 scmd->sdb = ses->sdb; 726 scmd->request->next_rq = ses->next_rq; 727 scmd->result = ses->result; 728 scmd->underflow = ses->underflow; 729 scmd->prot_op = ses->prot_op; 730 } 731 EXPORT_SYMBOL(scsi_eh_restore_cmnd); 732 733 /** 734 * scsi_send_eh_cmnd - submit a scsi command as part of error recory 735 * @scmd: SCSI command structure to hijack 736 * @cmnd: CDB to send 737 * @cmnd_size: size in bytes of @cmnd 738 * @timeout: timeout for this request 739 * @sense_bytes: size of sense data to copy or 0 740 * 741 * This function is used to send a scsi command down to a target device 742 * as part of the error recovery process. See also scsi_eh_prep_cmnd() above. 743 * 744 * Return value: 745 * SUCCESS or FAILED or NEEDS_RETRY 746 */ 747 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, unsigned char *cmnd, 748 int cmnd_size, int timeout, unsigned sense_bytes) 749 { 750 struct scsi_device *sdev = scmd->device; 751 struct Scsi_Host *shost = sdev->host; 752 DECLARE_COMPLETION_ONSTACK(done); 753 unsigned long timeleft; 754 struct scsi_eh_save ses; 755 int rtn; 756 757 scsi_eh_prep_cmnd(scmd, &ses, cmnd, cmnd_size, sense_bytes); 758 shost->eh_action = &done; 759 760 scsi_log_send(scmd); 761 scmd->scsi_done = scsi_eh_done; 762 shost->hostt->queuecommand(shost, scmd); 763 764 timeleft = wait_for_completion_timeout(&done, timeout); 765 766 shost->eh_action = NULL; 767 768 scsi_log_completion(scmd, SUCCESS); 769 770 SCSI_LOG_ERROR_RECOVERY(3, 771 printk("%s: scmd: %p, timeleft: %ld\n", 772 __func__, scmd, timeleft)); 773 774 /* 775 * If there is time left scsi_eh_done got called, and we will 776 * examine the actual status codes to see whether the command 777 * actually did complete normally, else tell the host to forget 778 * about this command. 779 */ 780 if (timeleft) { 781 rtn = scsi_eh_completed_normally(scmd); 782 SCSI_LOG_ERROR_RECOVERY(3, 783 printk("%s: scsi_eh_completed_normally %x\n", 784 __func__, rtn)); 785 786 switch (rtn) { 787 case SUCCESS: 788 case NEEDS_RETRY: 789 case FAILED: 790 case TARGET_ERROR: 791 break; 792 case ADD_TO_MLQUEUE: 793 rtn = NEEDS_RETRY; 794 break; 795 default: 796 rtn = FAILED; 797 break; 798 } 799 } else { 800 scsi_abort_eh_cmnd(scmd); 801 rtn = FAILED; 802 } 803 804 scsi_eh_restore_cmnd(scmd, &ses); 805 return rtn; 806 } 807 808 /** 809 * scsi_request_sense - Request sense data from a particular target. 810 * @scmd: SCSI cmd for request sense. 811 * 812 * Notes: 813 * Some hosts automatically obtain this information, others require 814 * that we obtain it on our own. This function will *not* return until 815 * the command either times out, or it completes. 816 */ 817 static int scsi_request_sense(struct scsi_cmnd *scmd) 818 { 819 return scsi_send_eh_cmnd(scmd, NULL, 0, SENSE_TIMEOUT, ~0); 820 } 821 822 /** 823 * scsi_eh_finish_cmd - Handle a cmd that eh is finished with. 824 * @scmd: Original SCSI cmd that eh has finished. 825 * @done_q: Queue for processed commands. 826 * 827 * Notes: 828 * We don't want to use the normal command completion while we are are 829 * still handling errors - it may cause other commands to be queued, 830 * and that would disturb what we are doing. Thus we really want to 831 * keep a list of pending commands for final completion, and once we 832 * are ready to leave error handling we handle completion for real. 833 */ 834 void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, struct list_head *done_q) 835 { 836 scmd->device->host->host_failed--; 837 scmd->eh_eflags = 0; 838 list_move_tail(&scmd->eh_entry, done_q); 839 } 840 EXPORT_SYMBOL(scsi_eh_finish_cmd); 841 842 /** 843 * scsi_eh_get_sense - Get device sense data. 844 * @work_q: Queue of commands to process. 845 * @done_q: Queue of processed commands. 846 * 847 * Description: 848 * See if we need to request sense information. if so, then get it 849 * now, so we have a better idea of what to do. 850 * 851 * Notes: 852 * This has the unfortunate side effect that if a shost adapter does 853 * not automatically request sense information, we end up shutting 854 * it down before we request it. 855 * 856 * All drivers should request sense information internally these days, 857 * so for now all I have to say is tough noogies if you end up in here. 858 * 859 * XXX: Long term this code should go away, but that needs an audit of 860 * all LLDDs first. 861 */ 862 int scsi_eh_get_sense(struct list_head *work_q, 863 struct list_head *done_q) 864 { 865 struct scsi_cmnd *scmd, *next; 866 int rtn; 867 868 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 869 if ((scmd->eh_eflags & SCSI_EH_CANCEL_CMD) || 870 SCSI_SENSE_VALID(scmd)) 871 continue; 872 873 SCSI_LOG_ERROR_RECOVERY(2, scmd_printk(KERN_INFO, scmd, 874 "%s: requesting sense\n", 875 current->comm)); 876 rtn = scsi_request_sense(scmd); 877 if (rtn != SUCCESS) 878 continue; 879 880 SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p" 881 " result %x\n", scmd, 882 scmd->result)); 883 SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd)); 884 885 rtn = scsi_decide_disposition(scmd); 886 887 /* 888 * if the result was normal, then just pass it along to the 889 * upper level. 890 */ 891 if (rtn == SUCCESS) 892 /* we don't want this command reissued, just 893 * finished with the sense data, so set 894 * retries to the max allowed to ensure it 895 * won't get reissued */ 896 scmd->retries = scmd->allowed; 897 else if (rtn != NEEDS_RETRY) 898 continue; 899 900 scsi_eh_finish_cmd(scmd, done_q); 901 } 902 903 return list_empty(work_q); 904 } 905 EXPORT_SYMBOL_GPL(scsi_eh_get_sense); 906 907 /** 908 * scsi_eh_tur - Send TUR to device. 909 * @scmd: &scsi_cmnd to send TUR 910 * 911 * Return value: 912 * 0 - Device is ready. 1 - Device NOT ready. 913 */ 914 static int scsi_eh_tur(struct scsi_cmnd *scmd) 915 { 916 static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0}; 917 int retry_cnt = 1, rtn; 918 919 retry_tur: 920 rtn = scsi_send_eh_cmnd(scmd, tur_command, 6, SENSE_TIMEOUT, 0); 921 922 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 923 __func__, scmd, rtn)); 924 925 switch (rtn) { 926 case NEEDS_RETRY: 927 if (retry_cnt--) 928 goto retry_tur; 929 /*FALLTHRU*/ 930 case SUCCESS: 931 return 0; 932 default: 933 return 1; 934 } 935 } 936 937 /** 938 * scsi_eh_abort_cmds - abort pending commands. 939 * @work_q: &list_head for pending commands. 940 * @done_q: &list_head for processed commands. 941 * 942 * Decription: 943 * Try and see whether or not it makes sense to try and abort the 944 * running command. This only works out to be the case if we have one 945 * command that has timed out. If the command simply failed, it makes 946 * no sense to try and abort the command, since as far as the shost 947 * adapter is concerned, it isn't running. 948 */ 949 static int scsi_eh_abort_cmds(struct list_head *work_q, 950 struct list_head *done_q) 951 { 952 struct scsi_cmnd *scmd, *next; 953 int rtn; 954 955 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 956 if (!(scmd->eh_eflags & SCSI_EH_CANCEL_CMD)) 957 continue; 958 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:" 959 "0x%p\n", current->comm, 960 scmd)); 961 rtn = scsi_try_to_abort_cmd(scmd); 962 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 963 scmd->eh_eflags &= ~SCSI_EH_CANCEL_CMD; 964 if (!scsi_device_online(scmd->device) || 965 rtn == FAST_IO_FAIL || 966 !scsi_eh_tur(scmd)) { 967 scsi_eh_finish_cmd(scmd, done_q); 968 } 969 970 } else 971 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting" 972 " cmd failed:" 973 "0x%p\n", 974 current->comm, 975 scmd)); 976 } 977 978 return list_empty(work_q); 979 } 980 981 /** 982 * scsi_eh_try_stu - Send START_UNIT to device. 983 * @scmd: &scsi_cmnd to send START_UNIT 984 * 985 * Return value: 986 * 0 - Device is ready. 1 - Device NOT ready. 987 */ 988 static int scsi_eh_try_stu(struct scsi_cmnd *scmd) 989 { 990 static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0}; 991 992 if (scmd->device->allow_restart) { 993 int i, rtn = NEEDS_RETRY; 994 995 for (i = 0; rtn == NEEDS_RETRY && i < 2; i++) 996 rtn = scsi_send_eh_cmnd(scmd, stu_command, 6, scmd->device->request_queue->rq_timeout, 0); 997 998 if (rtn == SUCCESS) 999 return 0; 1000 } 1001 1002 return 1; 1003 } 1004 1005 /** 1006 * scsi_eh_stu - send START_UNIT if needed 1007 * @shost: &scsi host being recovered. 1008 * @work_q: &list_head for pending commands. 1009 * @done_q: &list_head for processed commands. 1010 * 1011 * Notes: 1012 * If commands are failing due to not ready, initializing command required, 1013 * try revalidating the device, which will end up sending a start unit. 1014 */ 1015 static int scsi_eh_stu(struct Scsi_Host *shost, 1016 struct list_head *work_q, 1017 struct list_head *done_q) 1018 { 1019 struct scsi_cmnd *scmd, *stu_scmd, *next; 1020 struct scsi_device *sdev; 1021 1022 shost_for_each_device(sdev, shost) { 1023 stu_scmd = NULL; 1024 list_for_each_entry(scmd, work_q, eh_entry) 1025 if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) && 1026 scsi_check_sense(scmd) == FAILED ) { 1027 stu_scmd = scmd; 1028 break; 1029 } 1030 1031 if (!stu_scmd) 1032 continue; 1033 1034 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:" 1035 " 0x%p\n", current->comm, sdev)); 1036 1037 if (!scsi_eh_try_stu(stu_scmd)) { 1038 if (!scsi_device_online(sdev) || 1039 !scsi_eh_tur(stu_scmd)) { 1040 list_for_each_entry_safe(scmd, next, 1041 work_q, eh_entry) { 1042 if (scmd->device == sdev) 1043 scsi_eh_finish_cmd(scmd, done_q); 1044 } 1045 } 1046 } else { 1047 SCSI_LOG_ERROR_RECOVERY(3, 1048 printk("%s: START_UNIT failed to sdev:" 1049 " 0x%p\n", current->comm, sdev)); 1050 } 1051 } 1052 1053 return list_empty(work_q); 1054 } 1055 1056 1057 /** 1058 * scsi_eh_bus_device_reset - send bdr if needed 1059 * @shost: scsi host being recovered. 1060 * @work_q: &list_head for pending commands. 1061 * @done_q: &list_head for processed commands. 1062 * 1063 * Notes: 1064 * Try a bus device reset. Still, look to see whether we have multiple 1065 * devices that are jammed or not - if we have multiple devices, it 1066 * makes no sense to try bus_device_reset - we really would need to try 1067 * a bus_reset instead. 1068 */ 1069 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost, 1070 struct list_head *work_q, 1071 struct list_head *done_q) 1072 { 1073 struct scsi_cmnd *scmd, *bdr_scmd, *next; 1074 struct scsi_device *sdev; 1075 int rtn; 1076 1077 shost_for_each_device(sdev, shost) { 1078 bdr_scmd = NULL; 1079 list_for_each_entry(scmd, work_q, eh_entry) 1080 if (scmd->device == sdev) { 1081 bdr_scmd = scmd; 1082 break; 1083 } 1084 1085 if (!bdr_scmd) 1086 continue; 1087 1088 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:" 1089 " 0x%p\n", current->comm, 1090 sdev)); 1091 rtn = scsi_try_bus_device_reset(bdr_scmd); 1092 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1093 if (!scsi_device_online(sdev) || 1094 rtn == FAST_IO_FAIL || 1095 !scsi_eh_tur(bdr_scmd)) { 1096 list_for_each_entry_safe(scmd, next, 1097 work_q, eh_entry) { 1098 if (scmd->device == sdev) 1099 scsi_eh_finish_cmd(scmd, 1100 done_q); 1101 } 1102 } 1103 } else { 1104 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR" 1105 " failed sdev:" 1106 "0x%p\n", 1107 current->comm, 1108 sdev)); 1109 } 1110 } 1111 1112 return list_empty(work_q); 1113 } 1114 1115 /** 1116 * scsi_eh_target_reset - send target reset if needed 1117 * @shost: scsi host being recovered. 1118 * @work_q: &list_head for pending commands. 1119 * @done_q: &list_head for processed commands. 1120 * 1121 * Notes: 1122 * Try a target reset. 1123 */ 1124 static int scsi_eh_target_reset(struct Scsi_Host *shost, 1125 struct list_head *work_q, 1126 struct list_head *done_q) 1127 { 1128 LIST_HEAD(tmp_list); 1129 1130 list_splice_init(work_q, &tmp_list); 1131 1132 while (!list_empty(&tmp_list)) { 1133 struct scsi_cmnd *next, *scmd; 1134 int rtn; 1135 unsigned int id; 1136 1137 scmd = list_entry(tmp_list.next, struct scsi_cmnd, eh_entry); 1138 id = scmd_id(scmd); 1139 1140 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending target reset " 1141 "to target %d\n", 1142 current->comm, id)); 1143 rtn = scsi_try_target_reset(scmd); 1144 if (rtn != SUCCESS && rtn != FAST_IO_FAIL) 1145 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Target reset" 1146 " failed target: " 1147 "%d\n", 1148 current->comm, id)); 1149 list_for_each_entry_safe(scmd, next, &tmp_list, eh_entry) { 1150 if (scmd_id(scmd) != id) 1151 continue; 1152 1153 if ((rtn == SUCCESS || rtn == FAST_IO_FAIL) 1154 && (!scsi_device_online(scmd->device) || 1155 rtn == FAST_IO_FAIL || !scsi_eh_tur(scmd))) 1156 scsi_eh_finish_cmd(scmd, done_q); 1157 else 1158 /* push back on work queue for further processing */ 1159 list_move(&scmd->eh_entry, work_q); 1160 } 1161 } 1162 1163 return list_empty(work_q); 1164 } 1165 1166 /** 1167 * scsi_eh_bus_reset - send a bus reset 1168 * @shost: &scsi host being recovered. 1169 * @work_q: &list_head for pending commands. 1170 * @done_q: &list_head for processed commands. 1171 */ 1172 static int scsi_eh_bus_reset(struct Scsi_Host *shost, 1173 struct list_head *work_q, 1174 struct list_head *done_q) 1175 { 1176 struct scsi_cmnd *scmd, *chan_scmd, *next; 1177 unsigned int channel; 1178 int rtn; 1179 1180 /* 1181 * we really want to loop over the various channels, and do this on 1182 * a channel by channel basis. we should also check to see if any 1183 * of the failed commands are on soft_reset devices, and if so, skip 1184 * the reset. 1185 */ 1186 1187 for (channel = 0; channel <= shost->max_channel; channel++) { 1188 chan_scmd = NULL; 1189 list_for_each_entry(scmd, work_q, eh_entry) { 1190 if (channel == scmd_channel(scmd)) { 1191 chan_scmd = scmd; 1192 break; 1193 /* 1194 * FIXME add back in some support for 1195 * soft_reset devices. 1196 */ 1197 } 1198 } 1199 1200 if (!chan_scmd) 1201 continue; 1202 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:" 1203 " %d\n", current->comm, 1204 channel)); 1205 rtn = scsi_try_bus_reset(chan_scmd); 1206 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1207 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1208 if (channel == scmd_channel(scmd)) 1209 if (!scsi_device_online(scmd->device) || 1210 rtn == FAST_IO_FAIL || 1211 !scsi_eh_tur(scmd)) 1212 scsi_eh_finish_cmd(scmd, 1213 done_q); 1214 } 1215 } else { 1216 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST" 1217 " failed chan: %d\n", 1218 current->comm, 1219 channel)); 1220 } 1221 } 1222 return list_empty(work_q); 1223 } 1224 1225 /** 1226 * scsi_eh_host_reset - send a host reset 1227 * @work_q: list_head for processed commands. 1228 * @done_q: list_head for processed commands. 1229 */ 1230 static int scsi_eh_host_reset(struct list_head *work_q, 1231 struct list_head *done_q) 1232 { 1233 struct scsi_cmnd *scmd, *next; 1234 int rtn; 1235 1236 if (!list_empty(work_q)) { 1237 scmd = list_entry(work_q->next, 1238 struct scsi_cmnd, eh_entry); 1239 1240 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n" 1241 , current->comm)); 1242 1243 rtn = scsi_try_host_reset(scmd); 1244 if (rtn == SUCCESS || rtn == FAST_IO_FAIL) { 1245 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1246 if (!scsi_device_online(scmd->device) || 1247 rtn == FAST_IO_FAIL || 1248 (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) || 1249 !scsi_eh_tur(scmd)) 1250 scsi_eh_finish_cmd(scmd, done_q); 1251 } 1252 } else { 1253 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST" 1254 " failed\n", 1255 current->comm)); 1256 } 1257 } 1258 return list_empty(work_q); 1259 } 1260 1261 /** 1262 * scsi_eh_offline_sdevs - offline scsi devices that fail to recover 1263 * @work_q: list_head for processed commands. 1264 * @done_q: list_head for processed commands. 1265 */ 1266 static void scsi_eh_offline_sdevs(struct list_head *work_q, 1267 struct list_head *done_q) 1268 { 1269 struct scsi_cmnd *scmd, *next; 1270 1271 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1272 sdev_printk(KERN_INFO, scmd->device, "Device offlined - " 1273 "not ready after error recovery\n"); 1274 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1275 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) { 1276 /* 1277 * FIXME: Handle lost cmds. 1278 */ 1279 } 1280 scsi_eh_finish_cmd(scmd, done_q); 1281 } 1282 return; 1283 } 1284 1285 /** 1286 * scsi_noretry_cmd - determinte if command should be failed fast 1287 * @scmd: SCSI cmd to examine. 1288 */ 1289 int scsi_noretry_cmd(struct scsi_cmnd *scmd) 1290 { 1291 switch (host_byte(scmd->result)) { 1292 case DID_OK: 1293 break; 1294 case DID_BUS_BUSY: 1295 return (scmd->request->cmd_flags & REQ_FAILFAST_TRANSPORT); 1296 case DID_PARITY: 1297 return (scmd->request->cmd_flags & REQ_FAILFAST_DEV); 1298 case DID_ERROR: 1299 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1300 status_byte(scmd->result) == RESERVATION_CONFLICT) 1301 return 0; 1302 /* fall through */ 1303 case DID_SOFT_ERROR: 1304 return (scmd->request->cmd_flags & REQ_FAILFAST_DRIVER); 1305 } 1306 1307 switch (status_byte(scmd->result)) { 1308 case CHECK_CONDITION: 1309 /* 1310 * assume caller has checked sense and determinted 1311 * the check condition was retryable. 1312 */ 1313 if (scmd->request->cmd_flags & REQ_FAILFAST_DEV || 1314 scmd->request->cmd_type == REQ_TYPE_BLOCK_PC) 1315 return 1; 1316 } 1317 1318 return 0; 1319 } 1320 1321 /** 1322 * scsi_decide_disposition - Disposition a cmd on return from LLD. 1323 * @scmd: SCSI cmd to examine. 1324 * 1325 * Notes: 1326 * This is *only* called when we are examining the status after sending 1327 * out the actual data command. any commands that are queued for error 1328 * recovery (e.g. test_unit_ready) do *not* come through here. 1329 * 1330 * When this routine returns failed, it means the error handler thread 1331 * is woken. In cases where the error code indicates an error that 1332 * doesn't require the error handler read (i.e. we don't need to 1333 * abort/reset), this function should return SUCCESS. 1334 */ 1335 int scsi_decide_disposition(struct scsi_cmnd *scmd) 1336 { 1337 int rtn; 1338 1339 /* 1340 * if the device is offline, then we clearly just pass the result back 1341 * up to the top level. 1342 */ 1343 if (!scsi_device_online(scmd->device)) { 1344 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report" 1345 " as SUCCESS\n", 1346 __func__)); 1347 return SUCCESS; 1348 } 1349 1350 /* 1351 * first check the host byte, to see if there is anything in there 1352 * that would indicate what we need to do. 1353 */ 1354 switch (host_byte(scmd->result)) { 1355 case DID_PASSTHROUGH: 1356 /* 1357 * no matter what, pass this through to the upper layer. 1358 * nuke this special code so that it looks like we are saying 1359 * did_ok. 1360 */ 1361 scmd->result &= 0xff00ffff; 1362 return SUCCESS; 1363 case DID_OK: 1364 /* 1365 * looks good. drop through, and check the next byte. 1366 */ 1367 break; 1368 case DID_NO_CONNECT: 1369 case DID_BAD_TARGET: 1370 case DID_ABORT: 1371 /* 1372 * note - this means that we just report the status back 1373 * to the top level driver, not that we actually think 1374 * that it indicates SUCCESS. 1375 */ 1376 return SUCCESS; 1377 /* 1378 * when the low level driver returns did_soft_error, 1379 * it is responsible for keeping an internal retry counter 1380 * in order to avoid endless loops (db) 1381 * 1382 * actually this is a bug in this function here. we should 1383 * be mindful of the maximum number of retries specified 1384 * and not get stuck in a loop. 1385 */ 1386 case DID_SOFT_ERROR: 1387 goto maybe_retry; 1388 case DID_IMM_RETRY: 1389 return NEEDS_RETRY; 1390 1391 case DID_REQUEUE: 1392 return ADD_TO_MLQUEUE; 1393 case DID_TRANSPORT_DISRUPTED: 1394 /* 1395 * LLD/transport was disrupted during processing of the IO. 1396 * The transport class is now blocked/blocking, 1397 * and the transport will decide what to do with the IO 1398 * based on its timers and recovery capablilities if 1399 * there are enough retries. 1400 */ 1401 goto maybe_retry; 1402 case DID_TRANSPORT_FAILFAST: 1403 /* 1404 * The transport decided to failfast the IO (most likely 1405 * the fast io fail tmo fired), so send IO directly upwards. 1406 */ 1407 return SUCCESS; 1408 case DID_ERROR: 1409 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1410 status_byte(scmd->result) == RESERVATION_CONFLICT) 1411 /* 1412 * execute reservation conflict processing code 1413 * lower down 1414 */ 1415 break; 1416 /* fallthrough */ 1417 1418 case DID_BUS_BUSY: 1419 case DID_PARITY: 1420 goto maybe_retry; 1421 case DID_TIME_OUT: 1422 /* 1423 * when we scan the bus, we get timeout messages for 1424 * these commands if there is no device available. 1425 * other hosts report did_no_connect for the same thing. 1426 */ 1427 if ((scmd->cmnd[0] == TEST_UNIT_READY || 1428 scmd->cmnd[0] == INQUIRY)) { 1429 return SUCCESS; 1430 } else { 1431 return FAILED; 1432 } 1433 case DID_RESET: 1434 return SUCCESS; 1435 default: 1436 return FAILED; 1437 } 1438 1439 /* 1440 * next, check the message byte. 1441 */ 1442 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 1443 return FAILED; 1444 1445 /* 1446 * check the status byte to see if this indicates anything special. 1447 */ 1448 switch (status_byte(scmd->result)) { 1449 case QUEUE_FULL: 1450 scsi_handle_queue_full(scmd->device); 1451 /* 1452 * the case of trying to send too many commands to a 1453 * tagged queueing device. 1454 */ 1455 case BUSY: 1456 /* 1457 * device can't talk to us at the moment. Should only 1458 * occur (SAM-3) when the task queue is empty, so will cause 1459 * the empty queue handling to trigger a stall in the 1460 * device. 1461 */ 1462 return ADD_TO_MLQUEUE; 1463 case GOOD: 1464 scsi_handle_queue_ramp_up(scmd->device); 1465 case COMMAND_TERMINATED: 1466 return SUCCESS; 1467 case TASK_ABORTED: 1468 goto maybe_retry; 1469 case CHECK_CONDITION: 1470 rtn = scsi_check_sense(scmd); 1471 if (rtn == NEEDS_RETRY) 1472 goto maybe_retry; 1473 else if (rtn == TARGET_ERROR) { 1474 /* 1475 * Need to modify host byte to signal a 1476 * permanent target failure 1477 */ 1478 scmd->result |= (DID_TARGET_FAILURE << 16); 1479 rtn = SUCCESS; 1480 } 1481 /* if rtn == FAILED, we have no sense information; 1482 * returning FAILED will wake the error handler thread 1483 * to collect the sense and redo the decide 1484 * disposition */ 1485 return rtn; 1486 case CONDITION_GOOD: 1487 case INTERMEDIATE_GOOD: 1488 case INTERMEDIATE_C_GOOD: 1489 case ACA_ACTIVE: 1490 /* 1491 * who knows? FIXME(eric) 1492 */ 1493 return SUCCESS; 1494 1495 case RESERVATION_CONFLICT: 1496 sdev_printk(KERN_INFO, scmd->device, 1497 "reservation conflict\n"); 1498 scmd->result |= (DID_NEXUS_FAILURE << 16); 1499 return SUCCESS; /* causes immediate i/o error */ 1500 default: 1501 return FAILED; 1502 } 1503 return FAILED; 1504 1505 maybe_retry: 1506 1507 /* we requeue for retry because the error was retryable, and 1508 * the request was not marked fast fail. Note that above, 1509 * even if the request is marked fast fail, we still requeue 1510 * for queue congestion conditions (QUEUE_FULL or BUSY) */ 1511 if ((++scmd->retries) <= scmd->allowed 1512 && !scsi_noretry_cmd(scmd)) { 1513 return NEEDS_RETRY; 1514 } else { 1515 /* 1516 * no more retries - report this one back to upper level. 1517 */ 1518 return SUCCESS; 1519 } 1520 } 1521 1522 static void eh_lock_door_done(struct request *req, int uptodate) 1523 { 1524 __blk_put_request(req->q, req); 1525 } 1526 1527 /** 1528 * scsi_eh_lock_door - Prevent medium removal for the specified device 1529 * @sdev: SCSI device to prevent medium removal 1530 * 1531 * Locking: 1532 * We must be called from process context. 1533 * 1534 * Notes: 1535 * We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the 1536 * head of the devices request queue, and continue. 1537 */ 1538 static void scsi_eh_lock_door(struct scsi_device *sdev) 1539 { 1540 struct request *req; 1541 1542 /* 1543 * blk_get_request with GFP_KERNEL (__GFP_WAIT) sleeps until a 1544 * request becomes available 1545 */ 1546 req = blk_get_request(sdev->request_queue, READ, GFP_KERNEL); 1547 1548 req->cmd[0] = ALLOW_MEDIUM_REMOVAL; 1549 req->cmd[1] = 0; 1550 req->cmd[2] = 0; 1551 req->cmd[3] = 0; 1552 req->cmd[4] = SCSI_REMOVAL_PREVENT; 1553 req->cmd[5] = 0; 1554 1555 req->cmd_len = COMMAND_SIZE(req->cmd[0]); 1556 1557 req->cmd_type = REQ_TYPE_BLOCK_PC; 1558 req->cmd_flags |= REQ_QUIET; 1559 req->timeout = 10 * HZ; 1560 req->retries = 5; 1561 1562 blk_execute_rq_nowait(req->q, NULL, req, 1, eh_lock_door_done); 1563 } 1564 1565 /** 1566 * scsi_restart_operations - restart io operations to the specified host. 1567 * @shost: Host we are restarting. 1568 * 1569 * Notes: 1570 * When we entered the error handler, we blocked all further i/o to 1571 * this device. we need to 'reverse' this process. 1572 */ 1573 static void scsi_restart_operations(struct Scsi_Host *shost) 1574 { 1575 struct scsi_device *sdev; 1576 unsigned long flags; 1577 1578 /* 1579 * If the door was locked, we need to insert a door lock request 1580 * onto the head of the SCSI request queue for the device. There 1581 * is no point trying to lock the door of an off-line device. 1582 */ 1583 shost_for_each_device(sdev, shost) { 1584 if (scsi_device_online(sdev) && sdev->locked) 1585 scsi_eh_lock_door(sdev); 1586 } 1587 1588 /* 1589 * next free up anything directly waiting upon the host. this 1590 * will be requests for character device operations, and also for 1591 * ioctls to queued block devices. 1592 */ 1593 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n", 1594 __func__)); 1595 1596 spin_lock_irqsave(shost->host_lock, flags); 1597 if (scsi_host_set_state(shost, SHOST_RUNNING)) 1598 if (scsi_host_set_state(shost, SHOST_CANCEL)) 1599 BUG_ON(scsi_host_set_state(shost, SHOST_DEL)); 1600 spin_unlock_irqrestore(shost->host_lock, flags); 1601 1602 wake_up(&shost->host_wait); 1603 1604 /* 1605 * finally we need to re-initiate requests that may be pending. we will 1606 * have had everything blocked while error handling is taking place, and 1607 * now that error recovery is done, we will need to ensure that these 1608 * requests are started. 1609 */ 1610 scsi_run_host_queues(shost); 1611 } 1612 1613 /** 1614 * scsi_eh_ready_devs - check device ready state and recover if not. 1615 * @shost: host to be recovered. 1616 * @work_q: &list_head for pending commands. 1617 * @done_q: &list_head for processed commands. 1618 */ 1619 void scsi_eh_ready_devs(struct Scsi_Host *shost, 1620 struct list_head *work_q, 1621 struct list_head *done_q) 1622 { 1623 if (!scsi_eh_stu(shost, work_q, done_q)) 1624 if (!scsi_eh_bus_device_reset(shost, work_q, done_q)) 1625 if (!scsi_eh_target_reset(shost, work_q, done_q)) 1626 if (!scsi_eh_bus_reset(shost, work_q, done_q)) 1627 if (!scsi_eh_host_reset(work_q, done_q)) 1628 scsi_eh_offline_sdevs(work_q, 1629 done_q); 1630 } 1631 EXPORT_SYMBOL_GPL(scsi_eh_ready_devs); 1632 1633 /** 1634 * scsi_eh_flush_done_q - finish processed commands or retry them. 1635 * @done_q: list_head of processed commands. 1636 */ 1637 void scsi_eh_flush_done_q(struct list_head *done_q) 1638 { 1639 struct scsi_cmnd *scmd, *next; 1640 1641 list_for_each_entry_safe(scmd, next, done_q, eh_entry) { 1642 list_del_init(&scmd->eh_entry); 1643 if (scsi_device_online(scmd->device) && 1644 !scsi_noretry_cmd(scmd) && 1645 (++scmd->retries <= scmd->allowed)) { 1646 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush" 1647 " retry cmd: %p\n", 1648 current->comm, 1649 scmd)); 1650 scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY); 1651 } else { 1652 /* 1653 * If just we got sense for the device (called 1654 * scsi_eh_get_sense), scmd->result is already 1655 * set, do not set DRIVER_TIMEOUT. 1656 */ 1657 if (!scmd->result) 1658 scmd->result |= (DRIVER_TIMEOUT << 24); 1659 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish" 1660 " cmd: %p\n", 1661 current->comm, scmd)); 1662 scsi_finish_command(scmd); 1663 } 1664 } 1665 } 1666 EXPORT_SYMBOL(scsi_eh_flush_done_q); 1667 1668 /** 1669 * scsi_unjam_host - Attempt to fix a host which has a cmd that failed. 1670 * @shost: Host to unjam. 1671 * 1672 * Notes: 1673 * When we come in here, we *know* that all commands on the bus have 1674 * either completed, failed or timed out. we also know that no further 1675 * commands are being sent to the host, so things are relatively quiet 1676 * and we have freedom to fiddle with things as we wish. 1677 * 1678 * This is only the *default* implementation. it is possible for 1679 * individual drivers to supply their own version of this function, and 1680 * if the maintainer wishes to do this, it is strongly suggested that 1681 * this function be taken as a template and modified. this function 1682 * was designed to correctly handle problems for about 95% of the 1683 * different cases out there, and it should always provide at least a 1684 * reasonable amount of error recovery. 1685 * 1686 * Any command marked 'failed' or 'timeout' must eventually have 1687 * scsi_finish_cmd() called for it. we do all of the retry stuff 1688 * here, so when we restart the host after we return it should have an 1689 * empty queue. 1690 */ 1691 static void scsi_unjam_host(struct Scsi_Host *shost) 1692 { 1693 unsigned long flags; 1694 LIST_HEAD(eh_work_q); 1695 LIST_HEAD(eh_done_q); 1696 1697 spin_lock_irqsave(shost->host_lock, flags); 1698 list_splice_init(&shost->eh_cmd_q, &eh_work_q); 1699 spin_unlock_irqrestore(shost->host_lock, flags); 1700 1701 SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q)); 1702 1703 if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q)) 1704 if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q)) 1705 scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q); 1706 1707 scsi_eh_flush_done_q(&eh_done_q); 1708 } 1709 1710 /** 1711 * scsi_error_handler - SCSI error handler thread 1712 * @data: Host for which we are running. 1713 * 1714 * Notes: 1715 * This is the main error handling loop. This is run as a kernel thread 1716 * for every SCSI host and handles all error handling activity. 1717 */ 1718 int scsi_error_handler(void *data) 1719 { 1720 struct Scsi_Host *shost = data; 1721 1722 /* 1723 * We use TASK_INTERRUPTIBLE so that the thread is not 1724 * counted against the load average as a running process. 1725 * We never actually get interrupted because kthread_run 1726 * disables signal delivery for the created thread. 1727 */ 1728 set_current_state(TASK_INTERRUPTIBLE); 1729 while (!kthread_should_stop()) { 1730 if ((shost->host_failed == 0 && shost->host_eh_scheduled == 0) || 1731 shost->host_failed != shost->host_busy) { 1732 SCSI_LOG_ERROR_RECOVERY(1, 1733 printk("Error handler scsi_eh_%d sleeping\n", 1734 shost->host_no)); 1735 schedule(); 1736 set_current_state(TASK_INTERRUPTIBLE); 1737 continue; 1738 } 1739 1740 __set_current_state(TASK_RUNNING); 1741 SCSI_LOG_ERROR_RECOVERY(1, 1742 printk("Error handler scsi_eh_%d waking up\n", 1743 shost->host_no)); 1744 1745 /* 1746 * We have a host that is failing for some reason. Figure out 1747 * what we need to do to get it up and online again (if we can). 1748 * If we fail, we end up taking the thing offline. 1749 */ 1750 if (scsi_autopm_get_host(shost) != 0) { 1751 SCSI_LOG_ERROR_RECOVERY(1, 1752 printk(KERN_ERR "Error handler scsi_eh_%d " 1753 "unable to autoresume\n", 1754 shost->host_no)); 1755 continue; 1756 } 1757 1758 if (shost->transportt->eh_strategy_handler) 1759 shost->transportt->eh_strategy_handler(shost); 1760 else 1761 scsi_unjam_host(shost); 1762 1763 /* 1764 * Note - if the above fails completely, the action is to take 1765 * individual devices offline and flush the queue of any 1766 * outstanding requests that may have been pending. When we 1767 * restart, we restart any I/O to any other devices on the bus 1768 * which are still online. 1769 */ 1770 scsi_restart_operations(shost); 1771 scsi_autopm_put_host(shost); 1772 set_current_state(TASK_INTERRUPTIBLE); 1773 } 1774 __set_current_state(TASK_RUNNING); 1775 1776 SCSI_LOG_ERROR_RECOVERY(1, 1777 printk("Error handler scsi_eh_%d exiting\n", shost->host_no)); 1778 shost->ehandler = NULL; 1779 return 0; 1780 } 1781 1782 /* 1783 * Function: scsi_report_bus_reset() 1784 * 1785 * Purpose: Utility function used by low-level drivers to report that 1786 * they have observed a bus reset on the bus being handled. 1787 * 1788 * Arguments: shost - Host in question 1789 * channel - channel on which reset was observed. 1790 * 1791 * Returns: Nothing 1792 * 1793 * Lock status: Host lock must be held. 1794 * 1795 * Notes: This only needs to be called if the reset is one which 1796 * originates from an unknown location. Resets originated 1797 * by the mid-level itself don't need to call this, but there 1798 * should be no harm. 1799 * 1800 * The main purpose of this is to make sure that a CHECK_CONDITION 1801 * is properly treated. 1802 */ 1803 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel) 1804 { 1805 struct scsi_device *sdev; 1806 1807 __shost_for_each_device(sdev, shost) { 1808 if (channel == sdev_channel(sdev)) 1809 __scsi_report_device_reset(sdev, NULL); 1810 } 1811 } 1812 EXPORT_SYMBOL(scsi_report_bus_reset); 1813 1814 /* 1815 * Function: scsi_report_device_reset() 1816 * 1817 * Purpose: Utility function used by low-level drivers to report that 1818 * they have observed a device reset on the device being handled. 1819 * 1820 * Arguments: shost - Host in question 1821 * channel - channel on which reset was observed 1822 * target - target on which reset was observed 1823 * 1824 * Returns: Nothing 1825 * 1826 * Lock status: Host lock must be held 1827 * 1828 * Notes: This only needs to be called if the reset is one which 1829 * originates from an unknown location. Resets originated 1830 * by the mid-level itself don't need to call this, but there 1831 * should be no harm. 1832 * 1833 * The main purpose of this is to make sure that a CHECK_CONDITION 1834 * is properly treated. 1835 */ 1836 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target) 1837 { 1838 struct scsi_device *sdev; 1839 1840 __shost_for_each_device(sdev, shost) { 1841 if (channel == sdev_channel(sdev) && 1842 target == sdev_id(sdev)) 1843 __scsi_report_device_reset(sdev, NULL); 1844 } 1845 } 1846 EXPORT_SYMBOL(scsi_report_device_reset); 1847 1848 static void 1849 scsi_reset_provider_done_command(struct scsi_cmnd *scmd) 1850 { 1851 } 1852 1853 /* 1854 * Function: scsi_reset_provider 1855 * 1856 * Purpose: Send requested reset to a bus or device at any phase. 1857 * 1858 * Arguments: device - device to send reset to 1859 * flag - reset type (see scsi.h) 1860 * 1861 * Returns: SUCCESS/FAILURE. 1862 * 1863 * Notes: This is used by the SCSI Generic driver to provide 1864 * Bus/Device reset capability. 1865 */ 1866 int 1867 scsi_reset_provider(struct scsi_device *dev, int flag) 1868 { 1869 struct scsi_cmnd *scmd; 1870 struct Scsi_Host *shost = dev->host; 1871 struct request req; 1872 unsigned long flags; 1873 int rtn; 1874 1875 if (scsi_autopm_get_host(shost) < 0) 1876 return FAILED; 1877 1878 scmd = scsi_get_command(dev, GFP_KERNEL); 1879 blk_rq_init(NULL, &req); 1880 scmd->request = &req; 1881 1882 scmd->cmnd = req.cmd; 1883 1884 scmd->scsi_done = scsi_reset_provider_done_command; 1885 memset(&scmd->sdb, 0, sizeof(scmd->sdb)); 1886 1887 scmd->cmd_len = 0; 1888 1889 scmd->sc_data_direction = DMA_BIDIRECTIONAL; 1890 1891 spin_lock_irqsave(shost->host_lock, flags); 1892 shost->tmf_in_progress = 1; 1893 spin_unlock_irqrestore(shost->host_lock, flags); 1894 1895 switch (flag) { 1896 case SCSI_TRY_RESET_DEVICE: 1897 rtn = scsi_try_bus_device_reset(scmd); 1898 if (rtn == SUCCESS) 1899 break; 1900 /* FALLTHROUGH */ 1901 case SCSI_TRY_RESET_TARGET: 1902 rtn = scsi_try_target_reset(scmd); 1903 if (rtn == SUCCESS) 1904 break; 1905 /* FALLTHROUGH */ 1906 case SCSI_TRY_RESET_BUS: 1907 rtn = scsi_try_bus_reset(scmd); 1908 if (rtn == SUCCESS) 1909 break; 1910 /* FALLTHROUGH */ 1911 case SCSI_TRY_RESET_HOST: 1912 rtn = scsi_try_host_reset(scmd); 1913 break; 1914 default: 1915 rtn = FAILED; 1916 } 1917 1918 spin_lock_irqsave(shost->host_lock, flags); 1919 shost->tmf_in_progress = 0; 1920 spin_unlock_irqrestore(shost->host_lock, flags); 1921 1922 /* 1923 * be sure to wake up anyone who was sleeping or had their queue 1924 * suspended while we performed the TMF. 1925 */ 1926 SCSI_LOG_ERROR_RECOVERY(3, 1927 printk("%s: waking up host to restart after TMF\n", 1928 __func__)); 1929 1930 wake_up(&shost->host_wait); 1931 1932 scsi_run_host_queues(shost); 1933 1934 scsi_next_command(scmd); 1935 scsi_autopm_put_host(shost); 1936 return rtn; 1937 } 1938 EXPORT_SYMBOL(scsi_reset_provider); 1939 1940 /** 1941 * scsi_normalize_sense - normalize main elements from either fixed or 1942 * descriptor sense data format into a common format. 1943 * 1944 * @sense_buffer: byte array containing sense data returned by device 1945 * @sb_len: number of valid bytes in sense_buffer 1946 * @sshdr: pointer to instance of structure that common 1947 * elements are written to. 1948 * 1949 * Notes: 1950 * The "main elements" from sense data are: response_code, sense_key, 1951 * asc, ascq and additional_length (only for descriptor format). 1952 * 1953 * Typically this function can be called after a device has 1954 * responded to a SCSI command with the CHECK_CONDITION status. 1955 * 1956 * Return value: 1957 * 1 if valid sense data information found, else 0; 1958 */ 1959 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len, 1960 struct scsi_sense_hdr *sshdr) 1961 { 1962 if (!sense_buffer || !sb_len) 1963 return 0; 1964 1965 memset(sshdr, 0, sizeof(struct scsi_sense_hdr)); 1966 1967 sshdr->response_code = (sense_buffer[0] & 0x7f); 1968 1969 if (!scsi_sense_valid(sshdr)) 1970 return 0; 1971 1972 if (sshdr->response_code >= 0x72) { 1973 /* 1974 * descriptor format 1975 */ 1976 if (sb_len > 1) 1977 sshdr->sense_key = (sense_buffer[1] & 0xf); 1978 if (sb_len > 2) 1979 sshdr->asc = sense_buffer[2]; 1980 if (sb_len > 3) 1981 sshdr->ascq = sense_buffer[3]; 1982 if (sb_len > 7) 1983 sshdr->additional_length = sense_buffer[7]; 1984 } else { 1985 /* 1986 * fixed format 1987 */ 1988 if (sb_len > 2) 1989 sshdr->sense_key = (sense_buffer[2] & 0xf); 1990 if (sb_len > 7) { 1991 sb_len = (sb_len < (sense_buffer[7] + 8)) ? 1992 sb_len : (sense_buffer[7] + 8); 1993 if (sb_len > 12) 1994 sshdr->asc = sense_buffer[12]; 1995 if (sb_len > 13) 1996 sshdr->ascq = sense_buffer[13]; 1997 } 1998 } 1999 2000 return 1; 2001 } 2002 EXPORT_SYMBOL(scsi_normalize_sense); 2003 2004 int scsi_command_normalize_sense(struct scsi_cmnd *cmd, 2005 struct scsi_sense_hdr *sshdr) 2006 { 2007 return scsi_normalize_sense(cmd->sense_buffer, 2008 SCSI_SENSE_BUFFERSIZE, sshdr); 2009 } 2010 EXPORT_SYMBOL(scsi_command_normalize_sense); 2011 2012 /** 2013 * scsi_sense_desc_find - search for a given descriptor type in descriptor sense data format. 2014 * @sense_buffer: byte array of descriptor format sense data 2015 * @sb_len: number of valid bytes in sense_buffer 2016 * @desc_type: value of descriptor type to find 2017 * (e.g. 0 -> information) 2018 * 2019 * Notes: 2020 * only valid when sense data is in descriptor format 2021 * 2022 * Return value: 2023 * pointer to start of (first) descriptor if found else NULL 2024 */ 2025 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, 2026 int desc_type) 2027 { 2028 int add_sen_len, add_len, desc_len, k; 2029 const u8 * descp; 2030 2031 if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7]))) 2032 return NULL; 2033 if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73)) 2034 return NULL; 2035 add_sen_len = (add_sen_len < (sb_len - 8)) ? 2036 add_sen_len : (sb_len - 8); 2037 descp = &sense_buffer[8]; 2038 for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) { 2039 descp += desc_len; 2040 add_len = (k < (add_sen_len - 1)) ? descp[1]: -1; 2041 desc_len = add_len + 2; 2042 if (descp[0] == desc_type) 2043 return descp; 2044 if (add_len < 0) // short descriptor ?? 2045 break; 2046 } 2047 return NULL; 2048 } 2049 EXPORT_SYMBOL(scsi_sense_desc_find); 2050 2051 /** 2052 * scsi_get_sense_info_fld - get information field from sense data (either fixed or descriptor format) 2053 * @sense_buffer: byte array of sense data 2054 * @sb_len: number of valid bytes in sense_buffer 2055 * @info_out: pointer to 64 integer where 8 or 4 byte information 2056 * field will be placed if found. 2057 * 2058 * Return value: 2059 * 1 if information field found, 0 if not found. 2060 */ 2061 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, 2062 u64 * info_out) 2063 { 2064 int j; 2065 const u8 * ucp; 2066 u64 ull; 2067 2068 if (sb_len < 7) 2069 return 0; 2070 switch (sense_buffer[0] & 0x7f) { 2071 case 0x70: 2072 case 0x71: 2073 if (sense_buffer[0] & 0x80) { 2074 *info_out = (sense_buffer[3] << 24) + 2075 (sense_buffer[4] << 16) + 2076 (sense_buffer[5] << 8) + sense_buffer[6]; 2077 return 1; 2078 } else 2079 return 0; 2080 case 0x72: 2081 case 0x73: 2082 ucp = scsi_sense_desc_find(sense_buffer, sb_len, 2083 0 /* info desc */); 2084 if (ucp && (0xa == ucp[1])) { 2085 ull = 0; 2086 for (j = 0; j < 8; ++j) { 2087 if (j > 0) 2088 ull <<= 8; 2089 ull |= ucp[4 + j]; 2090 } 2091 *info_out = ull; 2092 return 1; 2093 } else 2094 return 0; 2095 default: 2096 return 0; 2097 } 2098 } 2099 EXPORT_SYMBOL(scsi_get_sense_info_fld); 2100 2101 /** 2102 * scsi_build_sense_buffer - build sense data in a buffer 2103 * @desc: Sense format (non zero == descriptor format, 2104 * 0 == fixed format) 2105 * @buf: Where to build sense data 2106 * @key: Sense key 2107 * @asc: Additional sense code 2108 * @ascq: Additional sense code qualifier 2109 * 2110 **/ 2111 void scsi_build_sense_buffer(int desc, u8 *buf, u8 key, u8 asc, u8 ascq) 2112 { 2113 if (desc) { 2114 buf[0] = 0x72; /* descriptor, current */ 2115 buf[1] = key; 2116 buf[2] = asc; 2117 buf[3] = ascq; 2118 buf[7] = 0; 2119 } else { 2120 buf[0] = 0x70; /* fixed, current */ 2121 buf[2] = key; 2122 buf[7] = 0xa; 2123 buf[12] = asc; 2124 buf[13] = ascq; 2125 } 2126 } 2127 EXPORT_SYMBOL(scsi_build_sense_buffer); 2128