1 /* 2 * scsi_error.c Copyright (C) 1997 Eric Youngdale 3 * 4 * SCSI error/timeout handling 5 * Initial versions: Eric Youngdale. Based upon conversations with 6 * Leonard Zubkoff and David Miller at Linux Expo, 7 * ideas originating from all over the place. 8 * 9 * Restructured scsi_unjam_host and associated functions. 10 * September 04, 2002 Mike Anderson (andmike@us.ibm.com) 11 * 12 * Forward port of Russell King's (rmk@arm.linux.org.uk) changes and 13 * minor cleanups. 14 * September 30, 2002 Mike Anderson (andmike@us.ibm.com) 15 */ 16 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/timer.h> 20 #include <linux/string.h> 21 #include <linux/kernel.h> 22 #include <linux/freezer.h> 23 #include <linux/kthread.h> 24 #include <linux/interrupt.h> 25 #include <linux/blkdev.h> 26 #include <linux/delay.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_transport.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_ioctl.h> 36 37 #include "scsi_priv.h" 38 #include "scsi_logging.h" 39 #include "scsi_transport_api.h" 40 41 #define SENSE_TIMEOUT (10*HZ) 42 43 /* 44 * These should *probably* be handled by the host itself. 45 * Since it is allowed to sleep, it probably should. 46 */ 47 #define BUS_RESET_SETTLE_TIME (10) 48 #define HOST_RESET_SETTLE_TIME (10) 49 50 /* called with shost->host_lock held */ 51 void scsi_eh_wakeup(struct Scsi_Host *shost) 52 { 53 if (shost->host_busy == shost->host_failed) { 54 wake_up_process(shost->ehandler); 55 SCSI_LOG_ERROR_RECOVERY(5, 56 printk("Waking error handler thread\n")); 57 } 58 } 59 60 /** 61 * scsi_schedule_eh - schedule EH for SCSI host 62 * @shost: SCSI host to invoke error handling on. 63 * 64 * Schedule SCSI EH without scmd. 65 **/ 66 void scsi_schedule_eh(struct Scsi_Host *shost) 67 { 68 unsigned long flags; 69 70 spin_lock_irqsave(shost->host_lock, flags); 71 72 if (scsi_host_set_state(shost, SHOST_RECOVERY) == 0 || 73 scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY) == 0) { 74 shost->host_eh_scheduled++; 75 scsi_eh_wakeup(shost); 76 } 77 78 spin_unlock_irqrestore(shost->host_lock, flags); 79 } 80 EXPORT_SYMBOL_GPL(scsi_schedule_eh); 81 82 /** 83 * scsi_eh_scmd_add - add scsi cmd to error handling. 84 * @scmd: scmd to run eh on. 85 * @eh_flag: optional SCSI_EH flag. 86 * 87 * Return value: 88 * 0 on failure. 89 **/ 90 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag) 91 { 92 struct Scsi_Host *shost = scmd->device->host; 93 unsigned long flags; 94 int ret = 0; 95 96 if (!shost->ehandler) 97 return 0; 98 99 spin_lock_irqsave(shost->host_lock, flags); 100 if (scsi_host_set_state(shost, SHOST_RECOVERY)) 101 if (scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY)) 102 goto out_unlock; 103 104 ret = 1; 105 scmd->eh_eflags |= eh_flag; 106 list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q); 107 shost->host_failed++; 108 scsi_eh_wakeup(shost); 109 out_unlock: 110 spin_unlock_irqrestore(shost->host_lock, flags); 111 return ret; 112 } 113 114 /** 115 * scsi_add_timer - Start timeout timer for a single scsi command. 116 * @scmd: scsi command that is about to start running. 117 * @timeout: amount of time to allow this command to run. 118 * @complete: timeout function to call if timer isn't canceled. 119 * 120 * Notes: 121 * This should be turned into an inline function. Each scsi command 122 * has its own timer, and as it is added to the queue, we set up the 123 * timer. When the command completes, we cancel the timer. 124 **/ 125 void scsi_add_timer(struct scsi_cmnd *scmd, int timeout, 126 void (*complete)(struct scsi_cmnd *)) 127 { 128 129 /* 130 * If the clock was already running for this command, then 131 * first delete the timer. The timer handling code gets rather 132 * confused if we don't do this. 133 */ 134 if (scmd->eh_timeout.function) 135 del_timer(&scmd->eh_timeout); 136 137 scmd->eh_timeout.data = (unsigned long)scmd; 138 scmd->eh_timeout.expires = jiffies + timeout; 139 scmd->eh_timeout.function = (void (*)(unsigned long)) complete; 140 141 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p, time:" 142 " %d, (%p)\n", __FUNCTION__, 143 scmd, timeout, complete)); 144 145 add_timer(&scmd->eh_timeout); 146 } 147 148 /** 149 * scsi_delete_timer - Delete/cancel timer for a given function. 150 * @scmd: Cmd that we are canceling timer for 151 * 152 * Notes: 153 * This should be turned into an inline function. 154 * 155 * Return value: 156 * 1 if we were able to detach the timer. 0 if we blew it, and the 157 * timer function has already started to run. 158 **/ 159 int scsi_delete_timer(struct scsi_cmnd *scmd) 160 { 161 int rtn; 162 163 rtn = del_timer(&scmd->eh_timeout); 164 165 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p," 166 " rtn: %d\n", __FUNCTION__, 167 scmd, rtn)); 168 169 scmd->eh_timeout.data = (unsigned long)NULL; 170 scmd->eh_timeout.function = NULL; 171 172 return rtn; 173 } 174 175 /** 176 * scsi_times_out - Timeout function for normal scsi commands. 177 * @scmd: Cmd that is timing out. 178 * 179 * Notes: 180 * We do not need to lock this. There is the potential for a race 181 * only in that the normal completion handling might run, but if the 182 * normal completion function determines that the timer has already 183 * fired, then it mustn't do anything. 184 **/ 185 void scsi_times_out(struct scsi_cmnd *scmd) 186 { 187 enum scsi_eh_timer_return (* eh_timed_out)(struct scsi_cmnd *); 188 189 scsi_log_completion(scmd, TIMEOUT_ERROR); 190 191 if (scmd->device->host->transportt->eh_timed_out) 192 eh_timed_out = scmd->device->host->transportt->eh_timed_out; 193 else if (scmd->device->host->hostt->eh_timed_out) 194 eh_timed_out = scmd->device->host->hostt->eh_timed_out; 195 else 196 eh_timed_out = NULL; 197 198 if (eh_timed_out) 199 switch (eh_timed_out(scmd)) { 200 case EH_HANDLED: 201 __scsi_done(scmd); 202 return; 203 case EH_RESET_TIMER: 204 scsi_add_timer(scmd, scmd->timeout_per_command, 205 scsi_times_out); 206 return; 207 case EH_NOT_HANDLED: 208 break; 209 } 210 211 if (unlikely(!scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) { 212 scmd->result |= DID_TIME_OUT << 16; 213 __scsi_done(scmd); 214 } 215 } 216 217 /** 218 * scsi_block_when_processing_errors - Prevent cmds from being queued. 219 * @sdev: Device on which we are performing recovery. 220 * 221 * Description: 222 * We block until the host is out of error recovery, and then check to 223 * see whether the host or the device is offline. 224 * 225 * Return value: 226 * 0 when dev was taken offline by error recovery. 1 OK to proceed. 227 **/ 228 int scsi_block_when_processing_errors(struct scsi_device *sdev) 229 { 230 int online; 231 232 wait_event(sdev->host->host_wait, !scsi_host_in_recovery(sdev->host)); 233 234 online = scsi_device_online(sdev); 235 236 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __FUNCTION__, 237 online)); 238 239 return online; 240 } 241 EXPORT_SYMBOL(scsi_block_when_processing_errors); 242 243 #ifdef CONFIG_SCSI_LOGGING 244 /** 245 * scsi_eh_prt_fail_stats - Log info on failures. 246 * @shost: scsi host being recovered. 247 * @work_q: Queue of scsi cmds to process. 248 **/ 249 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost, 250 struct list_head *work_q) 251 { 252 struct scsi_cmnd *scmd; 253 struct scsi_device *sdev; 254 int total_failures = 0; 255 int cmd_failed = 0; 256 int cmd_cancel = 0; 257 int devices_failed = 0; 258 259 shost_for_each_device(sdev, shost) { 260 list_for_each_entry(scmd, work_q, eh_entry) { 261 if (scmd->device == sdev) { 262 ++total_failures; 263 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) 264 ++cmd_cancel; 265 else 266 ++cmd_failed; 267 } 268 } 269 270 if (cmd_cancel || cmd_failed) { 271 SCSI_LOG_ERROR_RECOVERY(3, 272 sdev_printk(KERN_INFO, sdev, 273 "%s: cmds failed: %d, cancel: %d\n", 274 __FUNCTION__, cmd_failed, 275 cmd_cancel)); 276 cmd_cancel = 0; 277 cmd_failed = 0; 278 ++devices_failed; 279 } 280 } 281 282 SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d" 283 " devices require eh work\n", 284 total_failures, devices_failed)); 285 } 286 #endif 287 288 /** 289 * scsi_check_sense - Examine scsi cmd sense 290 * @scmd: Cmd to have sense checked. 291 * 292 * Return value: 293 * SUCCESS or FAILED or NEEDS_RETRY 294 * 295 * Notes: 296 * When a deferred error is detected the current command has 297 * not been executed and needs retrying. 298 **/ 299 static int scsi_check_sense(struct scsi_cmnd *scmd) 300 { 301 struct scsi_sense_hdr sshdr; 302 303 if (! scsi_command_normalize_sense(scmd, &sshdr)) 304 return FAILED; /* no valid sense data */ 305 306 if (scsi_sense_is_deferred(&sshdr)) 307 return NEEDS_RETRY; 308 309 /* 310 * Previous logic looked for FILEMARK, EOM or ILI which are 311 * mainly associated with tapes and returned SUCCESS. 312 */ 313 if (sshdr.response_code == 0x70) { 314 /* fixed format */ 315 if (scmd->sense_buffer[2] & 0xe0) 316 return SUCCESS; 317 } else { 318 /* 319 * descriptor format: look for "stream commands sense data 320 * descriptor" (see SSC-3). Assume single sense data 321 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG. 322 */ 323 if ((sshdr.additional_length > 3) && 324 (scmd->sense_buffer[8] == 0x4) && 325 (scmd->sense_buffer[11] & 0xe0)) 326 return SUCCESS; 327 } 328 329 switch (sshdr.sense_key) { 330 case NO_SENSE: 331 return SUCCESS; 332 case RECOVERED_ERROR: 333 return /* soft_error */ SUCCESS; 334 335 case ABORTED_COMMAND: 336 return NEEDS_RETRY; 337 case NOT_READY: 338 case UNIT_ATTENTION: 339 /* 340 * if we are expecting a cc/ua because of a bus reset that we 341 * performed, treat this just as a retry. otherwise this is 342 * information that we should pass up to the upper-level driver 343 * so that we can deal with it there. 344 */ 345 if (scmd->device->expecting_cc_ua) { 346 scmd->device->expecting_cc_ua = 0; 347 return NEEDS_RETRY; 348 } 349 /* 350 * if the device is in the process of becoming ready, we 351 * should retry. 352 */ 353 if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01)) 354 return NEEDS_RETRY; 355 /* 356 * if the device is not started, we need to wake 357 * the error handler to start the motor 358 */ 359 if (scmd->device->allow_restart && 360 (sshdr.asc == 0x04) && (sshdr.ascq == 0x02)) 361 return FAILED; 362 return SUCCESS; 363 364 /* these three are not supported */ 365 case COPY_ABORTED: 366 case VOLUME_OVERFLOW: 367 case MISCOMPARE: 368 return SUCCESS; 369 370 case MEDIUM_ERROR: 371 if (sshdr.asc == 0x11 || /* UNRECOVERED READ ERR */ 372 sshdr.asc == 0x13 || /* AMNF DATA FIELD */ 373 sshdr.asc == 0x14) { /* RECORD NOT FOUND */ 374 return SUCCESS; 375 } 376 return NEEDS_RETRY; 377 378 case HARDWARE_ERROR: 379 if (scmd->device->retry_hwerror) 380 return NEEDS_RETRY; 381 else 382 return SUCCESS; 383 384 case ILLEGAL_REQUEST: 385 case BLANK_CHECK: 386 case DATA_PROTECT: 387 default: 388 return SUCCESS; 389 } 390 } 391 392 /** 393 * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD. 394 * @scmd: SCSI cmd to examine. 395 * 396 * Notes: 397 * This is *only* called when we are examining the status of commands 398 * queued during error recovery. the main difference here is that we 399 * don't allow for the possibility of retries here, and we are a lot 400 * more restrictive about what we consider acceptable. 401 **/ 402 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd) 403 { 404 /* 405 * first check the host byte, to see if there is anything in there 406 * that would indicate what we need to do. 407 */ 408 if (host_byte(scmd->result) == DID_RESET) { 409 /* 410 * rats. we are already in the error handler, so we now 411 * get to try and figure out what to do next. if the sense 412 * is valid, we have a pretty good idea of what to do. 413 * if not, we mark it as FAILED. 414 */ 415 return scsi_check_sense(scmd); 416 } 417 if (host_byte(scmd->result) != DID_OK) 418 return FAILED; 419 420 /* 421 * next, check the message byte. 422 */ 423 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 424 return FAILED; 425 426 /* 427 * now, check the status byte to see if this indicates 428 * anything special. 429 */ 430 switch (status_byte(scmd->result)) { 431 case GOOD: 432 case COMMAND_TERMINATED: 433 return SUCCESS; 434 case CHECK_CONDITION: 435 return scsi_check_sense(scmd); 436 case CONDITION_GOOD: 437 case INTERMEDIATE_GOOD: 438 case INTERMEDIATE_C_GOOD: 439 /* 440 * who knows? FIXME(eric) 441 */ 442 return SUCCESS; 443 case BUSY: 444 case QUEUE_FULL: 445 case RESERVATION_CONFLICT: 446 default: 447 return FAILED; 448 } 449 return FAILED; 450 } 451 452 /** 453 * scsi_eh_done - Completion function for error handling. 454 * @scmd: Cmd that is done. 455 **/ 456 static void scsi_eh_done(struct scsi_cmnd *scmd) 457 { 458 struct completion *eh_action; 459 460 SCSI_LOG_ERROR_RECOVERY(3, 461 printk("%s scmd: %p result: %x\n", 462 __FUNCTION__, scmd, scmd->result)); 463 464 eh_action = scmd->device->host->eh_action; 465 if (eh_action) 466 complete(eh_action); 467 } 468 469 /** 470 * scsi_try_host_reset - ask host adapter to reset itself 471 * @scmd: SCSI cmd to send hsot reset. 472 **/ 473 static int scsi_try_host_reset(struct scsi_cmnd *scmd) 474 { 475 unsigned long flags; 476 int rtn; 477 478 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n", 479 __FUNCTION__)); 480 481 if (!scmd->device->host->hostt->eh_host_reset_handler) 482 return FAILED; 483 484 rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd); 485 486 if (rtn == SUCCESS) { 487 if (!scmd->device->host->hostt->skip_settle_delay) 488 ssleep(HOST_RESET_SETTLE_TIME); 489 spin_lock_irqsave(scmd->device->host->host_lock, flags); 490 scsi_report_bus_reset(scmd->device->host, 491 scmd_channel(scmd)); 492 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 493 } 494 495 return rtn; 496 } 497 498 /** 499 * scsi_try_bus_reset - ask host to perform a bus reset 500 * @scmd: SCSI cmd to send bus reset. 501 **/ 502 static int scsi_try_bus_reset(struct scsi_cmnd *scmd) 503 { 504 unsigned long flags; 505 int rtn; 506 507 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n", 508 __FUNCTION__)); 509 510 if (!scmd->device->host->hostt->eh_bus_reset_handler) 511 return FAILED; 512 513 rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd); 514 515 if (rtn == SUCCESS) { 516 if (!scmd->device->host->hostt->skip_settle_delay) 517 ssleep(BUS_RESET_SETTLE_TIME); 518 spin_lock_irqsave(scmd->device->host->host_lock, flags); 519 scsi_report_bus_reset(scmd->device->host, 520 scmd_channel(scmd)); 521 spin_unlock_irqrestore(scmd->device->host->host_lock, flags); 522 } 523 524 return rtn; 525 } 526 527 /** 528 * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev 529 * @scmd: SCSI cmd used to send BDR 530 * 531 * Notes: 532 * There is no timeout for this operation. if this operation is 533 * unreliable for a given host, then the host itself needs to put a 534 * timer on it, and set the host back to a consistent state prior to 535 * returning. 536 **/ 537 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd) 538 { 539 int rtn; 540 541 if (!scmd->device->host->hostt->eh_device_reset_handler) 542 return FAILED; 543 544 rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd); 545 if (rtn == SUCCESS) { 546 scmd->device->was_reset = 1; 547 scmd->device->expecting_cc_ua = 1; 548 } 549 550 return rtn; 551 } 552 553 static int __scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 554 { 555 if (!scmd->device->host->hostt->eh_abort_handler) 556 return FAILED; 557 558 return scmd->device->host->hostt->eh_abort_handler(scmd); 559 } 560 561 /** 562 * scsi_try_to_abort_cmd - Ask host to abort a running command. 563 * @scmd: SCSI cmd to abort from Lower Level. 564 * 565 * Notes: 566 * This function will not return until the user's completion function 567 * has been called. there is no timeout on this operation. if the 568 * author of the low-level driver wishes this operation to be timed, 569 * they can provide this facility themselves. helper functions in 570 * scsi_error.c can be supplied to make this easier to do. 571 **/ 572 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd) 573 { 574 /* 575 * scsi_done was called just after the command timed out and before 576 * we had a chance to process it. (db) 577 */ 578 if (scmd->serial_number == 0) 579 return SUCCESS; 580 return __scsi_try_to_abort_cmd(scmd); 581 } 582 583 static void scsi_abort_eh_cmnd(struct scsi_cmnd *scmd) 584 { 585 if (__scsi_try_to_abort_cmd(scmd) != SUCCESS) 586 if (scsi_try_bus_device_reset(scmd) != SUCCESS) 587 if (scsi_try_bus_reset(scmd) != SUCCESS) 588 scsi_try_host_reset(scmd); 589 } 590 591 /** 592 * scsi_eh_prep_cmnd - Save a scsi command info as part of error recory 593 * @scmd: SCSI command structure to hijack 594 * @ses: structure to save restore information 595 * @cmnd: CDB to send. Can be NULL if no new cmnd is needed 596 * @cmnd_size: size in bytes of @cmnd 597 * @sense_bytes: size of sense data to copy. or 0 (if != 0 @cmnd is ignored) 598 * 599 * This function is used to save a scsi command information before re-execution 600 * as part of the error recovery process. If @sense_bytes is 0 the command 601 * sent must be one that does not transfer any data. If @sense_bytes != 0 602 * @cmnd is ignored and this functions sets up a REQUEST_SENSE command 603 * and cmnd buffers to read @sense_bytes into @scmd->sense_buffer. 604 **/ 605 void scsi_eh_prep_cmnd(struct scsi_cmnd *scmd, struct scsi_eh_save *ses, 606 unsigned char *cmnd, int cmnd_size, unsigned sense_bytes) 607 { 608 struct scsi_device *sdev = scmd->device; 609 610 /* 611 * We need saved copies of a number of fields - this is because 612 * error handling may need to overwrite these with different values 613 * to run different commands, and once error handling is complete, 614 * we will need to restore these values prior to running the actual 615 * command. 616 */ 617 ses->cmd_len = scmd->cmd_len; 618 memcpy(ses->cmnd, scmd->cmnd, sizeof(scmd->cmnd)); 619 ses->data_direction = scmd->sc_data_direction; 620 ses->bufflen = scmd->request_bufflen; 621 ses->buffer = scmd->request_buffer; 622 ses->use_sg = scmd->use_sg; 623 ses->resid = scmd->resid; 624 ses->result = scmd->result; 625 626 if (sense_bytes) { 627 scmd->request_bufflen = min_t(unsigned, 628 sizeof(scmd->sense_buffer), sense_bytes); 629 sg_init_one(&ses->sense_sgl, scmd->sense_buffer, 630 scmd->request_bufflen); 631 scmd->request_buffer = &ses->sense_sgl; 632 scmd->sc_data_direction = DMA_FROM_DEVICE; 633 scmd->use_sg = 1; 634 memset(scmd->cmnd, 0, sizeof(scmd->cmnd)); 635 scmd->cmnd[0] = REQUEST_SENSE; 636 scmd->cmnd[4] = scmd->request_bufflen; 637 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 638 } else { 639 scmd->request_buffer = NULL; 640 scmd->request_bufflen = 0; 641 scmd->sc_data_direction = DMA_NONE; 642 scmd->use_sg = 0; 643 if (cmnd) { 644 memset(scmd->cmnd, 0, sizeof(scmd->cmnd)); 645 memcpy(scmd->cmnd, cmnd, cmnd_size); 646 scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]); 647 } 648 } 649 650 scmd->underflow = 0; 651 652 if (sdev->scsi_level <= SCSI_2 && sdev->scsi_level != SCSI_UNKNOWN) 653 scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) | 654 (sdev->lun << 5 & 0xe0); 655 656 /* 657 * Zero the sense buffer. The scsi spec mandates that any 658 * untransferred sense data should be interpreted as being zero. 659 */ 660 memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer)); 661 } 662 EXPORT_SYMBOL(scsi_eh_prep_cmnd); 663 664 /** 665 * scsi_eh_restore_cmnd - Restore a scsi command info as part of error recory 666 * @scmd: SCSI command structure to restore 667 * @ses: saved information from a coresponding call to scsi_prep_eh_cmnd 668 * 669 * Undo any damage done by above scsi_prep_eh_cmnd(). 670 **/ 671 void scsi_eh_restore_cmnd(struct scsi_cmnd* scmd, struct scsi_eh_save *ses) 672 { 673 /* 674 * Restore original data 675 */ 676 scmd->cmd_len = ses->cmd_len; 677 memcpy(scmd->cmnd, ses->cmnd, sizeof(scmd->cmnd)); 678 scmd->sc_data_direction = ses->data_direction; 679 scmd->request_bufflen = ses->bufflen; 680 scmd->request_buffer = ses->buffer; 681 scmd->use_sg = ses->use_sg; 682 scmd->resid = ses->resid; 683 scmd->result = ses->result; 684 } 685 EXPORT_SYMBOL(scsi_eh_restore_cmnd); 686 687 /** 688 * scsi_send_eh_cmnd - submit a scsi command as part of error recory 689 * @scmd: SCSI command structure to hijack 690 * @cmnd: CDB to send 691 * @cmnd_size: size in bytes of @cmnd 692 * @timeout: timeout for this request 693 * @sense_bytes: size of sense data to copy or 0 694 * 695 * This function is used to send a scsi command down to a target device 696 * as part of the error recovery process. See also scsi_eh_prep_cmnd() above. 697 * 698 * Return value: 699 * SUCCESS or FAILED or NEEDS_RETRY 700 **/ 701 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, unsigned char *cmnd, 702 int cmnd_size, int timeout, unsigned sense_bytes) 703 { 704 struct scsi_device *sdev = scmd->device; 705 struct Scsi_Host *shost = sdev->host; 706 DECLARE_COMPLETION_ONSTACK(done); 707 unsigned long timeleft; 708 unsigned long flags; 709 struct scsi_eh_save ses; 710 int rtn; 711 712 scsi_eh_prep_cmnd(scmd, &ses, cmnd, cmnd_size, sense_bytes); 713 shost->eh_action = &done; 714 715 spin_lock_irqsave(shost->host_lock, flags); 716 scsi_log_send(scmd); 717 shost->hostt->queuecommand(scmd, scsi_eh_done); 718 spin_unlock_irqrestore(shost->host_lock, flags); 719 720 timeleft = wait_for_completion_timeout(&done, timeout); 721 722 shost->eh_action = NULL; 723 724 scsi_log_completion(scmd, SUCCESS); 725 726 SCSI_LOG_ERROR_RECOVERY(3, 727 printk("%s: scmd: %p, timeleft: %ld\n", 728 __FUNCTION__, scmd, timeleft)); 729 730 /* 731 * If there is time left scsi_eh_done got called, and we will 732 * examine the actual status codes to see whether the command 733 * actually did complete normally, else tell the host to forget 734 * about this command. 735 */ 736 if (timeleft) { 737 rtn = scsi_eh_completed_normally(scmd); 738 SCSI_LOG_ERROR_RECOVERY(3, 739 printk("%s: scsi_eh_completed_normally %x\n", 740 __FUNCTION__, rtn)); 741 742 switch (rtn) { 743 case SUCCESS: 744 case NEEDS_RETRY: 745 case FAILED: 746 break; 747 default: 748 rtn = FAILED; 749 break; 750 } 751 } else { 752 scsi_abort_eh_cmnd(scmd); 753 rtn = FAILED; 754 } 755 756 scsi_eh_restore_cmnd(scmd, &ses); 757 return rtn; 758 } 759 760 /** 761 * scsi_request_sense - Request sense data from a particular target. 762 * @scmd: SCSI cmd for request sense. 763 * 764 * Notes: 765 * Some hosts automatically obtain this information, others require 766 * that we obtain it on our own. This function will *not* return until 767 * the command either times out, or it completes. 768 **/ 769 static int scsi_request_sense(struct scsi_cmnd *scmd) 770 { 771 return scsi_send_eh_cmnd(scmd, NULL, 0, SENSE_TIMEOUT, ~0); 772 } 773 774 /** 775 * scsi_eh_finish_cmd - Handle a cmd that eh is finished with. 776 * @scmd: Original SCSI cmd that eh has finished. 777 * @done_q: Queue for processed commands. 778 * 779 * Notes: 780 * We don't want to use the normal command completion while we are are 781 * still handling errors - it may cause other commands to be queued, 782 * and that would disturb what we are doing. thus we really want to 783 * keep a list of pending commands for final completion, and once we 784 * are ready to leave error handling we handle completion for real. 785 **/ 786 void scsi_eh_finish_cmd(struct scsi_cmnd *scmd, struct list_head *done_q) 787 { 788 scmd->device->host->host_failed--; 789 scmd->eh_eflags = 0; 790 list_move_tail(&scmd->eh_entry, done_q); 791 } 792 EXPORT_SYMBOL(scsi_eh_finish_cmd); 793 794 /** 795 * scsi_eh_get_sense - Get device sense data. 796 * @work_q: Queue of commands to process. 797 * @done_q: Queue of proccessed commands.. 798 * 799 * Description: 800 * See if we need to request sense information. if so, then get it 801 * now, so we have a better idea of what to do. 802 * 803 * Notes: 804 * This has the unfortunate side effect that if a shost adapter does 805 * not automatically request sense information, that we end up shutting 806 * it down before we request it. 807 * 808 * All drivers should request sense information internally these days, 809 * so for now all I have to say is tough noogies if you end up in here. 810 * 811 * XXX: Long term this code should go away, but that needs an audit of 812 * all LLDDs first. 813 **/ 814 int scsi_eh_get_sense(struct list_head *work_q, 815 struct list_head *done_q) 816 { 817 struct scsi_cmnd *scmd, *next; 818 int rtn; 819 820 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 821 if ((scmd->eh_eflags & SCSI_EH_CANCEL_CMD) || 822 SCSI_SENSE_VALID(scmd)) 823 continue; 824 825 SCSI_LOG_ERROR_RECOVERY(2, scmd_printk(KERN_INFO, scmd, 826 "%s: requesting sense\n", 827 current->comm)); 828 rtn = scsi_request_sense(scmd); 829 if (rtn != SUCCESS) 830 continue; 831 832 SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p" 833 " result %x\n", scmd, 834 scmd->result)); 835 SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd)); 836 837 rtn = scsi_decide_disposition(scmd); 838 839 /* 840 * if the result was normal, then just pass it along to the 841 * upper level. 842 */ 843 if (rtn == SUCCESS) 844 /* we don't want this command reissued, just 845 * finished with the sense data, so set 846 * retries to the max allowed to ensure it 847 * won't get reissued */ 848 scmd->retries = scmd->allowed; 849 else if (rtn != NEEDS_RETRY) 850 continue; 851 852 scsi_eh_finish_cmd(scmd, done_q); 853 } 854 855 return list_empty(work_q); 856 } 857 EXPORT_SYMBOL_GPL(scsi_eh_get_sense); 858 859 /** 860 * scsi_eh_tur - Send TUR to device. 861 * @scmd: Scsi cmd to send TUR 862 * 863 * Return value: 864 * 0 - Device is ready. 1 - Device NOT ready. 865 **/ 866 static int scsi_eh_tur(struct scsi_cmnd *scmd) 867 { 868 static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0}; 869 int retry_cnt = 1, rtn; 870 871 retry_tur: 872 rtn = scsi_send_eh_cmnd(scmd, tur_command, 6, SENSE_TIMEOUT, 0); 873 874 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n", 875 __FUNCTION__, scmd, rtn)); 876 877 switch (rtn) { 878 case NEEDS_RETRY: 879 if (retry_cnt--) 880 goto retry_tur; 881 /*FALLTHRU*/ 882 case SUCCESS: 883 return 0; 884 default: 885 return 1; 886 } 887 } 888 889 /** 890 * scsi_eh_abort_cmds - abort canceled commands. 891 * @shost: scsi host being recovered. 892 * @eh_done_q: list_head for processed commands. 893 * 894 * Decription: 895 * Try and see whether or not it makes sense to try and abort the 896 * running command. this only works out to be the case if we have one 897 * command that has timed out. if the command simply failed, it makes 898 * no sense to try and abort the command, since as far as the shost 899 * adapter is concerned, it isn't running. 900 **/ 901 static int scsi_eh_abort_cmds(struct list_head *work_q, 902 struct list_head *done_q) 903 { 904 struct scsi_cmnd *scmd, *next; 905 int rtn; 906 907 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 908 if (!(scmd->eh_eflags & SCSI_EH_CANCEL_CMD)) 909 continue; 910 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:" 911 "0x%p\n", current->comm, 912 scmd)); 913 rtn = scsi_try_to_abort_cmd(scmd); 914 if (rtn == SUCCESS) { 915 scmd->eh_eflags &= ~SCSI_EH_CANCEL_CMD; 916 if (!scsi_device_online(scmd->device) || 917 !scsi_eh_tur(scmd)) { 918 scsi_eh_finish_cmd(scmd, done_q); 919 } 920 921 } else 922 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting" 923 " cmd failed:" 924 "0x%p\n", 925 current->comm, 926 scmd)); 927 } 928 929 return list_empty(work_q); 930 } 931 932 /** 933 * scsi_eh_try_stu - Send START_UNIT to device. 934 * @scmd: Scsi cmd to send START_UNIT 935 * 936 * Return value: 937 * 0 - Device is ready. 1 - Device NOT ready. 938 **/ 939 static int scsi_eh_try_stu(struct scsi_cmnd *scmd) 940 { 941 static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0}; 942 943 if (scmd->device->allow_restart) { 944 int i, rtn = NEEDS_RETRY; 945 946 for (i = 0; rtn == NEEDS_RETRY && i < 2; i++) 947 rtn = scsi_send_eh_cmnd(scmd, stu_command, 6, 948 scmd->device->timeout, 0); 949 950 if (rtn == SUCCESS) 951 return 0; 952 } 953 954 return 1; 955 } 956 957 /** 958 * scsi_eh_stu - send START_UNIT if needed 959 * @shost: scsi host being recovered. 960 * @eh_done_q: list_head for processed commands. 961 * 962 * Notes: 963 * If commands are failing due to not ready, initializing command required, 964 * try revalidating the device, which will end up sending a start unit. 965 **/ 966 static int scsi_eh_stu(struct Scsi_Host *shost, 967 struct list_head *work_q, 968 struct list_head *done_q) 969 { 970 struct scsi_cmnd *scmd, *stu_scmd, *next; 971 struct scsi_device *sdev; 972 973 shost_for_each_device(sdev, shost) { 974 stu_scmd = NULL; 975 list_for_each_entry(scmd, work_q, eh_entry) 976 if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) && 977 scsi_check_sense(scmd) == FAILED ) { 978 stu_scmd = scmd; 979 break; 980 } 981 982 if (!stu_scmd) 983 continue; 984 985 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:" 986 " 0x%p\n", current->comm, sdev)); 987 988 if (!scsi_eh_try_stu(stu_scmd)) { 989 if (!scsi_device_online(sdev) || 990 !scsi_eh_tur(stu_scmd)) { 991 list_for_each_entry_safe(scmd, next, 992 work_q, eh_entry) { 993 if (scmd->device == sdev) 994 scsi_eh_finish_cmd(scmd, done_q); 995 } 996 } 997 } else { 998 SCSI_LOG_ERROR_RECOVERY(3, 999 printk("%s: START_UNIT failed to sdev:" 1000 " 0x%p\n", current->comm, sdev)); 1001 } 1002 } 1003 1004 return list_empty(work_q); 1005 } 1006 1007 1008 /** 1009 * scsi_eh_bus_device_reset - send bdr if needed 1010 * @shost: scsi host being recovered. 1011 * @eh_done_q: list_head for processed commands. 1012 * 1013 * Notes: 1014 * Try a bus device reset. still, look to see whether we have multiple 1015 * devices that are jammed or not - if we have multiple devices, it 1016 * makes no sense to try bus_device_reset - we really would need to try 1017 * a bus_reset instead. 1018 **/ 1019 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost, 1020 struct list_head *work_q, 1021 struct list_head *done_q) 1022 { 1023 struct scsi_cmnd *scmd, *bdr_scmd, *next; 1024 struct scsi_device *sdev; 1025 int rtn; 1026 1027 shost_for_each_device(sdev, shost) { 1028 bdr_scmd = NULL; 1029 list_for_each_entry(scmd, work_q, eh_entry) 1030 if (scmd->device == sdev) { 1031 bdr_scmd = scmd; 1032 break; 1033 } 1034 1035 if (!bdr_scmd) 1036 continue; 1037 1038 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:" 1039 " 0x%p\n", current->comm, 1040 sdev)); 1041 rtn = scsi_try_bus_device_reset(bdr_scmd); 1042 if (rtn == SUCCESS) { 1043 if (!scsi_device_online(sdev) || 1044 !scsi_eh_tur(bdr_scmd)) { 1045 list_for_each_entry_safe(scmd, next, 1046 work_q, eh_entry) { 1047 if (scmd->device == sdev) 1048 scsi_eh_finish_cmd(scmd, 1049 done_q); 1050 } 1051 } 1052 } else { 1053 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR" 1054 " failed sdev:" 1055 "0x%p\n", 1056 current->comm, 1057 sdev)); 1058 } 1059 } 1060 1061 return list_empty(work_q); 1062 } 1063 1064 /** 1065 * scsi_eh_bus_reset - send a bus reset 1066 * @shost: scsi host being recovered. 1067 * @eh_done_q: list_head for processed commands. 1068 **/ 1069 static int scsi_eh_bus_reset(struct Scsi_Host *shost, 1070 struct list_head *work_q, 1071 struct list_head *done_q) 1072 { 1073 struct scsi_cmnd *scmd, *chan_scmd, *next; 1074 unsigned int channel; 1075 int rtn; 1076 1077 /* 1078 * we really want to loop over the various channels, and do this on 1079 * a channel by channel basis. we should also check to see if any 1080 * of the failed commands are on soft_reset devices, and if so, skip 1081 * the reset. 1082 */ 1083 1084 for (channel = 0; channel <= shost->max_channel; channel++) { 1085 chan_scmd = NULL; 1086 list_for_each_entry(scmd, work_q, eh_entry) { 1087 if (channel == scmd_channel(scmd)) { 1088 chan_scmd = scmd; 1089 break; 1090 /* 1091 * FIXME add back in some support for 1092 * soft_reset devices. 1093 */ 1094 } 1095 } 1096 1097 if (!chan_scmd) 1098 continue; 1099 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:" 1100 " %d\n", current->comm, 1101 channel)); 1102 rtn = scsi_try_bus_reset(chan_scmd); 1103 if (rtn == SUCCESS) { 1104 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1105 if (channel == scmd_channel(scmd)) 1106 if (!scsi_device_online(scmd->device) || 1107 !scsi_eh_tur(scmd)) 1108 scsi_eh_finish_cmd(scmd, 1109 done_q); 1110 } 1111 } else { 1112 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST" 1113 " failed chan: %d\n", 1114 current->comm, 1115 channel)); 1116 } 1117 } 1118 return list_empty(work_q); 1119 } 1120 1121 /** 1122 * scsi_eh_host_reset - send a host reset 1123 * @work_q: list_head for processed commands. 1124 * @done_q: list_head for processed commands. 1125 **/ 1126 static int scsi_eh_host_reset(struct list_head *work_q, 1127 struct list_head *done_q) 1128 { 1129 struct scsi_cmnd *scmd, *next; 1130 int rtn; 1131 1132 if (!list_empty(work_q)) { 1133 scmd = list_entry(work_q->next, 1134 struct scsi_cmnd, eh_entry); 1135 1136 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n" 1137 , current->comm)); 1138 1139 rtn = scsi_try_host_reset(scmd); 1140 if (rtn == SUCCESS) { 1141 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1142 if (!scsi_device_online(scmd->device) || 1143 (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) || 1144 !scsi_eh_tur(scmd)) 1145 scsi_eh_finish_cmd(scmd, done_q); 1146 } 1147 } else { 1148 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST" 1149 " failed\n", 1150 current->comm)); 1151 } 1152 } 1153 return list_empty(work_q); 1154 } 1155 1156 /** 1157 * scsi_eh_offline_sdevs - offline scsi devices that fail to recover 1158 * @work_q: list_head for processed commands. 1159 * @done_q: list_head for processed commands. 1160 * 1161 **/ 1162 static void scsi_eh_offline_sdevs(struct list_head *work_q, 1163 struct list_head *done_q) 1164 { 1165 struct scsi_cmnd *scmd, *next; 1166 1167 list_for_each_entry_safe(scmd, next, work_q, eh_entry) { 1168 sdev_printk(KERN_INFO, scmd->device, "Device offlined - " 1169 "not ready after error recovery\n"); 1170 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1171 if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) { 1172 /* 1173 * FIXME: Handle lost cmds. 1174 */ 1175 } 1176 scsi_eh_finish_cmd(scmd, done_q); 1177 } 1178 return; 1179 } 1180 1181 /** 1182 * scsi_decide_disposition - Disposition a cmd on return from LLD. 1183 * @scmd: SCSI cmd to examine. 1184 * 1185 * Notes: 1186 * This is *only* called when we are examining the status after sending 1187 * out the actual data command. any commands that are queued for error 1188 * recovery (e.g. test_unit_ready) do *not* come through here. 1189 * 1190 * When this routine returns failed, it means the error handler thread 1191 * is woken. In cases where the error code indicates an error that 1192 * doesn't require the error handler read (i.e. we don't need to 1193 * abort/reset), this function should return SUCCESS. 1194 **/ 1195 int scsi_decide_disposition(struct scsi_cmnd *scmd) 1196 { 1197 int rtn; 1198 1199 /* 1200 * if the device is offline, then we clearly just pass the result back 1201 * up to the top level. 1202 */ 1203 if (!scsi_device_online(scmd->device)) { 1204 SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report" 1205 " as SUCCESS\n", 1206 __FUNCTION__)); 1207 return SUCCESS; 1208 } 1209 1210 /* 1211 * first check the host byte, to see if there is anything in there 1212 * that would indicate what we need to do. 1213 */ 1214 switch (host_byte(scmd->result)) { 1215 case DID_PASSTHROUGH: 1216 /* 1217 * no matter what, pass this through to the upper layer. 1218 * nuke this special code so that it looks like we are saying 1219 * did_ok. 1220 */ 1221 scmd->result &= 0xff00ffff; 1222 return SUCCESS; 1223 case DID_OK: 1224 /* 1225 * looks good. drop through, and check the next byte. 1226 */ 1227 break; 1228 case DID_NO_CONNECT: 1229 case DID_BAD_TARGET: 1230 case DID_ABORT: 1231 /* 1232 * note - this means that we just report the status back 1233 * to the top level driver, not that we actually think 1234 * that it indicates SUCCESS. 1235 */ 1236 return SUCCESS; 1237 /* 1238 * when the low level driver returns did_soft_error, 1239 * it is responsible for keeping an internal retry counter 1240 * in order to avoid endless loops (db) 1241 * 1242 * actually this is a bug in this function here. we should 1243 * be mindful of the maximum number of retries specified 1244 * and not get stuck in a loop. 1245 */ 1246 case DID_SOFT_ERROR: 1247 goto maybe_retry; 1248 case DID_IMM_RETRY: 1249 return NEEDS_RETRY; 1250 1251 case DID_REQUEUE: 1252 return ADD_TO_MLQUEUE; 1253 1254 case DID_ERROR: 1255 if (msg_byte(scmd->result) == COMMAND_COMPLETE && 1256 status_byte(scmd->result) == RESERVATION_CONFLICT) 1257 /* 1258 * execute reservation conflict processing code 1259 * lower down 1260 */ 1261 break; 1262 /* fallthrough */ 1263 1264 case DID_BUS_BUSY: 1265 case DID_PARITY: 1266 goto maybe_retry; 1267 case DID_TIME_OUT: 1268 /* 1269 * when we scan the bus, we get timeout messages for 1270 * these commands if there is no device available. 1271 * other hosts report did_no_connect for the same thing. 1272 */ 1273 if ((scmd->cmnd[0] == TEST_UNIT_READY || 1274 scmd->cmnd[0] == INQUIRY)) { 1275 return SUCCESS; 1276 } else { 1277 return FAILED; 1278 } 1279 case DID_RESET: 1280 return SUCCESS; 1281 default: 1282 return FAILED; 1283 } 1284 1285 /* 1286 * next, check the message byte. 1287 */ 1288 if (msg_byte(scmd->result) != COMMAND_COMPLETE) 1289 return FAILED; 1290 1291 /* 1292 * check the status byte to see if this indicates anything special. 1293 */ 1294 switch (status_byte(scmd->result)) { 1295 case QUEUE_FULL: 1296 /* 1297 * the case of trying to send too many commands to a 1298 * tagged queueing device. 1299 */ 1300 case BUSY: 1301 /* 1302 * device can't talk to us at the moment. Should only 1303 * occur (SAM-3) when the task queue is empty, so will cause 1304 * the empty queue handling to trigger a stall in the 1305 * device. 1306 */ 1307 return ADD_TO_MLQUEUE; 1308 case GOOD: 1309 case COMMAND_TERMINATED: 1310 case TASK_ABORTED: 1311 return SUCCESS; 1312 case CHECK_CONDITION: 1313 rtn = scsi_check_sense(scmd); 1314 if (rtn == NEEDS_RETRY) 1315 goto maybe_retry; 1316 /* if rtn == FAILED, we have no sense information; 1317 * returning FAILED will wake the error handler thread 1318 * to collect the sense and redo the decide 1319 * disposition */ 1320 return rtn; 1321 case CONDITION_GOOD: 1322 case INTERMEDIATE_GOOD: 1323 case INTERMEDIATE_C_GOOD: 1324 case ACA_ACTIVE: 1325 /* 1326 * who knows? FIXME(eric) 1327 */ 1328 return SUCCESS; 1329 1330 case RESERVATION_CONFLICT: 1331 sdev_printk(KERN_INFO, scmd->device, 1332 "reservation conflict\n"); 1333 return SUCCESS; /* causes immediate i/o error */ 1334 default: 1335 return FAILED; 1336 } 1337 return FAILED; 1338 1339 maybe_retry: 1340 1341 /* we requeue for retry because the error was retryable, and 1342 * the request was not marked fast fail. Note that above, 1343 * even if the request is marked fast fail, we still requeue 1344 * for queue congestion conditions (QUEUE_FULL or BUSY) */ 1345 if ((++scmd->retries) <= scmd->allowed 1346 && !blk_noretry_request(scmd->request)) { 1347 return NEEDS_RETRY; 1348 } else { 1349 /* 1350 * no more retries - report this one back to upper level. 1351 */ 1352 return SUCCESS; 1353 } 1354 } 1355 1356 /** 1357 * scsi_eh_lock_door - Prevent medium removal for the specified device 1358 * @sdev: SCSI device to prevent medium removal 1359 * 1360 * Locking: 1361 * We must be called from process context; scsi_allocate_request() 1362 * may sleep. 1363 * 1364 * Notes: 1365 * We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the 1366 * head of the devices request queue, and continue. 1367 * 1368 * Bugs: 1369 * scsi_allocate_request() may sleep waiting for existing requests to 1370 * be processed. However, since we haven't kicked off any request 1371 * processing for this host, this may deadlock. 1372 * 1373 * If scsi_allocate_request() fails for what ever reason, we 1374 * completely forget to lock the door. 1375 **/ 1376 static void scsi_eh_lock_door(struct scsi_device *sdev) 1377 { 1378 unsigned char cmnd[MAX_COMMAND_SIZE]; 1379 1380 cmnd[0] = ALLOW_MEDIUM_REMOVAL; 1381 cmnd[1] = 0; 1382 cmnd[2] = 0; 1383 cmnd[3] = 0; 1384 cmnd[4] = SCSI_REMOVAL_PREVENT; 1385 cmnd[5] = 0; 1386 1387 scsi_execute_async(sdev, cmnd, 6, DMA_NONE, NULL, 0, 0, 10 * HZ, 1388 5, NULL, NULL, GFP_KERNEL); 1389 } 1390 1391 1392 /** 1393 * scsi_restart_operations - restart io operations to the specified host. 1394 * @shost: Host we are restarting. 1395 * 1396 * Notes: 1397 * When we entered the error handler, we blocked all further i/o to 1398 * this device. we need to 'reverse' this process. 1399 **/ 1400 static void scsi_restart_operations(struct Scsi_Host *shost) 1401 { 1402 struct scsi_device *sdev; 1403 unsigned long flags; 1404 1405 /* 1406 * If the door was locked, we need to insert a door lock request 1407 * onto the head of the SCSI request queue for the device. There 1408 * is no point trying to lock the door of an off-line device. 1409 */ 1410 shost_for_each_device(sdev, shost) { 1411 if (scsi_device_online(sdev) && sdev->locked) 1412 scsi_eh_lock_door(sdev); 1413 } 1414 1415 /* 1416 * next free up anything directly waiting upon the host. this 1417 * will be requests for character device operations, and also for 1418 * ioctls to queued block devices. 1419 */ 1420 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n", 1421 __FUNCTION__)); 1422 1423 spin_lock_irqsave(shost->host_lock, flags); 1424 if (scsi_host_set_state(shost, SHOST_RUNNING)) 1425 if (scsi_host_set_state(shost, SHOST_CANCEL)) 1426 BUG_ON(scsi_host_set_state(shost, SHOST_DEL)); 1427 spin_unlock_irqrestore(shost->host_lock, flags); 1428 1429 wake_up(&shost->host_wait); 1430 1431 /* 1432 * finally we need to re-initiate requests that may be pending. we will 1433 * have had everything blocked while error handling is taking place, and 1434 * now that error recovery is done, we will need to ensure that these 1435 * requests are started. 1436 */ 1437 scsi_run_host_queues(shost); 1438 } 1439 1440 /** 1441 * scsi_eh_ready_devs - check device ready state and recover if not. 1442 * @shost: host to be recovered. 1443 * @eh_done_q: list_head for processed commands. 1444 * 1445 **/ 1446 void scsi_eh_ready_devs(struct Scsi_Host *shost, 1447 struct list_head *work_q, 1448 struct list_head *done_q) 1449 { 1450 if (!scsi_eh_stu(shost, work_q, done_q)) 1451 if (!scsi_eh_bus_device_reset(shost, work_q, done_q)) 1452 if (!scsi_eh_bus_reset(shost, work_q, done_q)) 1453 if (!scsi_eh_host_reset(work_q, done_q)) 1454 scsi_eh_offline_sdevs(work_q, done_q); 1455 } 1456 EXPORT_SYMBOL_GPL(scsi_eh_ready_devs); 1457 1458 /** 1459 * scsi_eh_flush_done_q - finish processed commands or retry them. 1460 * @done_q: list_head of processed commands. 1461 * 1462 **/ 1463 void scsi_eh_flush_done_q(struct list_head *done_q) 1464 { 1465 struct scsi_cmnd *scmd, *next; 1466 1467 list_for_each_entry_safe(scmd, next, done_q, eh_entry) { 1468 list_del_init(&scmd->eh_entry); 1469 if (scsi_device_online(scmd->device) && 1470 !blk_noretry_request(scmd->request) && 1471 (++scmd->retries <= scmd->allowed)) { 1472 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush" 1473 " retry cmd: %p\n", 1474 current->comm, 1475 scmd)); 1476 scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY); 1477 } else { 1478 /* 1479 * If just we got sense for the device (called 1480 * scsi_eh_get_sense), scmd->result is already 1481 * set, do not set DRIVER_TIMEOUT. 1482 */ 1483 if (!scmd->result) 1484 scmd->result |= (DRIVER_TIMEOUT << 24); 1485 SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish" 1486 " cmd: %p\n", 1487 current->comm, scmd)); 1488 scsi_finish_command(scmd); 1489 } 1490 } 1491 } 1492 EXPORT_SYMBOL(scsi_eh_flush_done_q); 1493 1494 /** 1495 * scsi_unjam_host - Attempt to fix a host which has a cmd that failed. 1496 * @shost: Host to unjam. 1497 * 1498 * Notes: 1499 * When we come in here, we *know* that all commands on the bus have 1500 * either completed, failed or timed out. we also know that no further 1501 * commands are being sent to the host, so things are relatively quiet 1502 * and we have freedom to fiddle with things as we wish. 1503 * 1504 * This is only the *default* implementation. it is possible for 1505 * individual drivers to supply their own version of this function, and 1506 * if the maintainer wishes to do this, it is strongly suggested that 1507 * this function be taken as a template and modified. this function 1508 * was designed to correctly handle problems for about 95% of the 1509 * different cases out there, and it should always provide at least a 1510 * reasonable amount of error recovery. 1511 * 1512 * Any command marked 'failed' or 'timeout' must eventually have 1513 * scsi_finish_cmd() called for it. we do all of the retry stuff 1514 * here, so when we restart the host after we return it should have an 1515 * empty queue. 1516 **/ 1517 static void scsi_unjam_host(struct Scsi_Host *shost) 1518 { 1519 unsigned long flags; 1520 LIST_HEAD(eh_work_q); 1521 LIST_HEAD(eh_done_q); 1522 1523 spin_lock_irqsave(shost->host_lock, flags); 1524 list_splice_init(&shost->eh_cmd_q, &eh_work_q); 1525 spin_unlock_irqrestore(shost->host_lock, flags); 1526 1527 SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q)); 1528 1529 if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q)) 1530 if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q)) 1531 scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q); 1532 1533 scsi_eh_flush_done_q(&eh_done_q); 1534 } 1535 1536 /** 1537 * scsi_error_handler - SCSI error handler thread 1538 * @data: Host for which we are running. 1539 * 1540 * Notes: 1541 * This is the main error handling loop. This is run as a kernel thread 1542 * for every SCSI host and handles all error handling activity. 1543 **/ 1544 int scsi_error_handler(void *data) 1545 { 1546 struct Scsi_Host *shost = data; 1547 1548 /* 1549 * We use TASK_INTERRUPTIBLE so that the thread is not 1550 * counted against the load average as a running process. 1551 * We never actually get interrupted because kthread_run 1552 * disables singal delivery for the created thread. 1553 */ 1554 set_current_state(TASK_INTERRUPTIBLE); 1555 while (!kthread_should_stop()) { 1556 if ((shost->host_failed == 0 && shost->host_eh_scheduled == 0) || 1557 shost->host_failed != shost->host_busy) { 1558 SCSI_LOG_ERROR_RECOVERY(1, 1559 printk("Error handler scsi_eh_%d sleeping\n", 1560 shost->host_no)); 1561 schedule(); 1562 set_current_state(TASK_INTERRUPTIBLE); 1563 continue; 1564 } 1565 1566 __set_current_state(TASK_RUNNING); 1567 SCSI_LOG_ERROR_RECOVERY(1, 1568 printk("Error handler scsi_eh_%d waking up\n", 1569 shost->host_no)); 1570 1571 /* 1572 * We have a host that is failing for some reason. Figure out 1573 * what we need to do to get it up and online again (if we can). 1574 * If we fail, we end up taking the thing offline. 1575 */ 1576 if (shost->transportt->eh_strategy_handler) 1577 shost->transportt->eh_strategy_handler(shost); 1578 else 1579 scsi_unjam_host(shost); 1580 1581 /* 1582 * Note - if the above fails completely, the action is to take 1583 * individual devices offline and flush the queue of any 1584 * outstanding requests that may have been pending. When we 1585 * restart, we restart any I/O to any other devices on the bus 1586 * which are still online. 1587 */ 1588 scsi_restart_operations(shost); 1589 set_current_state(TASK_INTERRUPTIBLE); 1590 } 1591 __set_current_state(TASK_RUNNING); 1592 1593 SCSI_LOG_ERROR_RECOVERY(1, 1594 printk("Error handler scsi_eh_%d exiting\n", shost->host_no)); 1595 shost->ehandler = NULL; 1596 return 0; 1597 } 1598 1599 /* 1600 * Function: scsi_report_bus_reset() 1601 * 1602 * Purpose: Utility function used by low-level drivers to report that 1603 * they have observed a bus reset on the bus being handled. 1604 * 1605 * Arguments: shost - Host in question 1606 * channel - channel on which reset was observed. 1607 * 1608 * Returns: Nothing 1609 * 1610 * Lock status: Host lock must be held. 1611 * 1612 * Notes: This only needs to be called if the reset is one which 1613 * originates from an unknown location. Resets originated 1614 * by the mid-level itself don't need to call this, but there 1615 * should be no harm. 1616 * 1617 * The main purpose of this is to make sure that a CHECK_CONDITION 1618 * is properly treated. 1619 */ 1620 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel) 1621 { 1622 struct scsi_device *sdev; 1623 1624 __shost_for_each_device(sdev, shost) { 1625 if (channel == sdev_channel(sdev)) { 1626 sdev->was_reset = 1; 1627 sdev->expecting_cc_ua = 1; 1628 } 1629 } 1630 } 1631 EXPORT_SYMBOL(scsi_report_bus_reset); 1632 1633 /* 1634 * Function: scsi_report_device_reset() 1635 * 1636 * Purpose: Utility function used by low-level drivers to report that 1637 * they have observed a device reset on the device being handled. 1638 * 1639 * Arguments: shost - Host in question 1640 * channel - channel on which reset was observed 1641 * target - target on which reset was observed 1642 * 1643 * Returns: Nothing 1644 * 1645 * Lock status: Host lock must be held 1646 * 1647 * Notes: This only needs to be called if the reset is one which 1648 * originates from an unknown location. Resets originated 1649 * by the mid-level itself don't need to call this, but there 1650 * should be no harm. 1651 * 1652 * The main purpose of this is to make sure that a CHECK_CONDITION 1653 * is properly treated. 1654 */ 1655 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target) 1656 { 1657 struct scsi_device *sdev; 1658 1659 __shost_for_each_device(sdev, shost) { 1660 if (channel == sdev_channel(sdev) && 1661 target == sdev_id(sdev)) { 1662 sdev->was_reset = 1; 1663 sdev->expecting_cc_ua = 1; 1664 } 1665 } 1666 } 1667 EXPORT_SYMBOL(scsi_report_device_reset); 1668 1669 static void 1670 scsi_reset_provider_done_command(struct scsi_cmnd *scmd) 1671 { 1672 } 1673 1674 /* 1675 * Function: scsi_reset_provider 1676 * 1677 * Purpose: Send requested reset to a bus or device at any phase. 1678 * 1679 * Arguments: device - device to send reset to 1680 * flag - reset type (see scsi.h) 1681 * 1682 * Returns: SUCCESS/FAILURE. 1683 * 1684 * Notes: This is used by the SCSI Generic driver to provide 1685 * Bus/Device reset capability. 1686 */ 1687 int 1688 scsi_reset_provider(struct scsi_device *dev, int flag) 1689 { 1690 struct scsi_cmnd *scmd = scsi_get_command(dev, GFP_KERNEL); 1691 struct Scsi_Host *shost = dev->host; 1692 struct request req; 1693 unsigned long flags; 1694 int rtn; 1695 1696 scmd->request = &req; 1697 memset(&scmd->eh_timeout, 0, sizeof(scmd->eh_timeout)); 1698 1699 memset(&scmd->cmnd, '\0', sizeof(scmd->cmnd)); 1700 1701 scmd->scsi_done = scsi_reset_provider_done_command; 1702 scmd->request_buffer = NULL; 1703 scmd->request_bufflen = 0; 1704 1705 scmd->cmd_len = 0; 1706 1707 scmd->sc_data_direction = DMA_BIDIRECTIONAL; 1708 1709 init_timer(&scmd->eh_timeout); 1710 1711 spin_lock_irqsave(shost->host_lock, flags); 1712 shost->tmf_in_progress = 1; 1713 spin_unlock_irqrestore(shost->host_lock, flags); 1714 1715 switch (flag) { 1716 case SCSI_TRY_RESET_DEVICE: 1717 rtn = scsi_try_bus_device_reset(scmd); 1718 if (rtn == SUCCESS) 1719 break; 1720 /* FALLTHROUGH */ 1721 case SCSI_TRY_RESET_BUS: 1722 rtn = scsi_try_bus_reset(scmd); 1723 if (rtn == SUCCESS) 1724 break; 1725 /* FALLTHROUGH */ 1726 case SCSI_TRY_RESET_HOST: 1727 rtn = scsi_try_host_reset(scmd); 1728 break; 1729 default: 1730 rtn = FAILED; 1731 } 1732 1733 spin_lock_irqsave(shost->host_lock, flags); 1734 shost->tmf_in_progress = 0; 1735 spin_unlock_irqrestore(shost->host_lock, flags); 1736 1737 /* 1738 * be sure to wake up anyone who was sleeping or had their queue 1739 * suspended while we performed the TMF. 1740 */ 1741 SCSI_LOG_ERROR_RECOVERY(3, 1742 printk("%s: waking up host to restart after TMF\n", 1743 __FUNCTION__)); 1744 1745 wake_up(&shost->host_wait); 1746 1747 scsi_run_host_queues(shost); 1748 1749 scsi_next_command(scmd); 1750 return rtn; 1751 } 1752 EXPORT_SYMBOL(scsi_reset_provider); 1753 1754 /** 1755 * scsi_normalize_sense - normalize main elements from either fixed or 1756 * descriptor sense data format into a common format. 1757 * 1758 * @sense_buffer: byte array containing sense data returned by device 1759 * @sb_len: number of valid bytes in sense_buffer 1760 * @sshdr: pointer to instance of structure that common 1761 * elements are written to. 1762 * 1763 * Notes: 1764 * The "main elements" from sense data are: response_code, sense_key, 1765 * asc, ascq and additional_length (only for descriptor format). 1766 * 1767 * Typically this function can be called after a device has 1768 * responded to a SCSI command with the CHECK_CONDITION status. 1769 * 1770 * Return value: 1771 * 1 if valid sense data information found, else 0; 1772 **/ 1773 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len, 1774 struct scsi_sense_hdr *sshdr) 1775 { 1776 if (!sense_buffer || !sb_len) 1777 return 0; 1778 1779 memset(sshdr, 0, sizeof(struct scsi_sense_hdr)); 1780 1781 sshdr->response_code = (sense_buffer[0] & 0x7f); 1782 1783 if (!scsi_sense_valid(sshdr)) 1784 return 0; 1785 1786 if (sshdr->response_code >= 0x72) { 1787 /* 1788 * descriptor format 1789 */ 1790 if (sb_len > 1) 1791 sshdr->sense_key = (sense_buffer[1] & 0xf); 1792 if (sb_len > 2) 1793 sshdr->asc = sense_buffer[2]; 1794 if (sb_len > 3) 1795 sshdr->ascq = sense_buffer[3]; 1796 if (sb_len > 7) 1797 sshdr->additional_length = sense_buffer[7]; 1798 } else { 1799 /* 1800 * fixed format 1801 */ 1802 if (sb_len > 2) 1803 sshdr->sense_key = (sense_buffer[2] & 0xf); 1804 if (sb_len > 7) { 1805 sb_len = (sb_len < (sense_buffer[7] + 8)) ? 1806 sb_len : (sense_buffer[7] + 8); 1807 if (sb_len > 12) 1808 sshdr->asc = sense_buffer[12]; 1809 if (sb_len > 13) 1810 sshdr->ascq = sense_buffer[13]; 1811 } 1812 } 1813 1814 return 1; 1815 } 1816 EXPORT_SYMBOL(scsi_normalize_sense); 1817 1818 int scsi_command_normalize_sense(struct scsi_cmnd *cmd, 1819 struct scsi_sense_hdr *sshdr) 1820 { 1821 return scsi_normalize_sense(cmd->sense_buffer, 1822 sizeof(cmd->sense_buffer), sshdr); 1823 } 1824 EXPORT_SYMBOL(scsi_command_normalize_sense); 1825 1826 /** 1827 * scsi_sense_desc_find - search for a given descriptor type in 1828 * descriptor sense data format. 1829 * 1830 * @sense_buffer: byte array of descriptor format sense data 1831 * @sb_len: number of valid bytes in sense_buffer 1832 * @desc_type: value of descriptor type to find 1833 * (e.g. 0 -> information) 1834 * 1835 * Notes: 1836 * only valid when sense data is in descriptor format 1837 * 1838 * Return value: 1839 * pointer to start of (first) descriptor if found else NULL 1840 **/ 1841 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, 1842 int desc_type) 1843 { 1844 int add_sen_len, add_len, desc_len, k; 1845 const u8 * descp; 1846 1847 if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7]))) 1848 return NULL; 1849 if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73)) 1850 return NULL; 1851 add_sen_len = (add_sen_len < (sb_len - 8)) ? 1852 add_sen_len : (sb_len - 8); 1853 descp = &sense_buffer[8]; 1854 for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) { 1855 descp += desc_len; 1856 add_len = (k < (add_sen_len - 1)) ? descp[1]: -1; 1857 desc_len = add_len + 2; 1858 if (descp[0] == desc_type) 1859 return descp; 1860 if (add_len < 0) // short descriptor ?? 1861 break; 1862 } 1863 return NULL; 1864 } 1865 EXPORT_SYMBOL(scsi_sense_desc_find); 1866 1867 /** 1868 * scsi_get_sense_info_fld - attempts to get information field from 1869 * sense data (either fixed or descriptor format) 1870 * 1871 * @sense_buffer: byte array of sense data 1872 * @sb_len: number of valid bytes in sense_buffer 1873 * @info_out: pointer to 64 integer where 8 or 4 byte information 1874 * field will be placed if found. 1875 * 1876 * Return value: 1877 * 1 if information field found, 0 if not found. 1878 **/ 1879 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, 1880 u64 * info_out) 1881 { 1882 int j; 1883 const u8 * ucp; 1884 u64 ull; 1885 1886 if (sb_len < 7) 1887 return 0; 1888 switch (sense_buffer[0] & 0x7f) { 1889 case 0x70: 1890 case 0x71: 1891 if (sense_buffer[0] & 0x80) { 1892 *info_out = (sense_buffer[3] << 24) + 1893 (sense_buffer[4] << 16) + 1894 (sense_buffer[5] << 8) + sense_buffer[6]; 1895 return 1; 1896 } else 1897 return 0; 1898 case 0x72: 1899 case 0x73: 1900 ucp = scsi_sense_desc_find(sense_buffer, sb_len, 1901 0 /* info desc */); 1902 if (ucp && (0xa == ucp[1])) { 1903 ull = 0; 1904 for (j = 0; j < 8; ++j) { 1905 if (j > 0) 1906 ull <<= 8; 1907 ull |= ucp[4 + j]; 1908 } 1909 *info_out = ull; 1910 return 1; 1911 } else 1912 return 0; 1913 default: 1914 return 0; 1915 } 1916 } 1917 EXPORT_SYMBOL(scsi_get_sense_info_fld); 1918