xref: /linux/drivers/scsi/scsi_error.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *  scsi_error.c Copyright (C) 1997 Eric Youngdale
3  *
4  *  SCSI error/timeout handling
5  *      Initial versions: Eric Youngdale.  Based upon conversations with
6  *                        Leonard Zubkoff and David Miller at Linux Expo,
7  *                        ideas originating from all over the place.
8  *
9  *	Restructured scsi_unjam_host and associated functions.
10  *	September 04, 2002 Mike Anderson (andmike@us.ibm.com)
11  *
12  *	Forward port of Russell King's (rmk@arm.linux.org.uk) changes and
13  *	minor  cleanups.
14  *	September 30, 2002 Mike Anderson (andmike@us.ibm.com)
15  */
16 
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/timer.h>
20 #include <linux/string.h>
21 #include <linux/slab.h>
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_eh.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_ioctl.h>
33 #include <scsi/scsi_request.h>
34 
35 #include "scsi_priv.h"
36 #include "scsi_logging.h"
37 
38 #define SENSE_TIMEOUT		(10*HZ)
39 #define START_UNIT_TIMEOUT	(30*HZ)
40 
41 /*
42  * These should *probably* be handled by the host itself.
43  * Since it is allowed to sleep, it probably should.
44  */
45 #define BUS_RESET_SETTLE_TIME   (10)
46 #define HOST_RESET_SETTLE_TIME  (10)
47 
48 /* called with shost->host_lock held */
49 void scsi_eh_wakeup(struct Scsi_Host *shost)
50 {
51 	if (shost->host_busy == shost->host_failed) {
52 		up(shost->eh_wait);
53 		SCSI_LOG_ERROR_RECOVERY(5,
54 				printk("Waking error handler thread\n"));
55 	}
56 }
57 
58 /**
59  * scsi_eh_scmd_add - add scsi cmd to error handling.
60  * @scmd:	scmd to run eh on.
61  * @eh_flag:	optional SCSI_EH flag.
62  *
63  * Return value:
64  *	0 on failure.
65  **/
66 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag)
67 {
68 	struct Scsi_Host *shost = scmd->device->host;
69 	unsigned long flags;
70 
71 	if (shost->eh_wait == NULL)
72 		return 0;
73 
74 	spin_lock_irqsave(shost->host_lock, flags);
75 
76 	scsi_eh_eflags_set(scmd, eh_flag);
77 	/*
78 	 * FIXME: Can we stop setting owner and state.
79 	 */
80 	scmd->owner = SCSI_OWNER_ERROR_HANDLER;
81 	scmd->state = SCSI_STATE_FAILED;
82 	list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q);
83 	set_bit(SHOST_RECOVERY, &shost->shost_state);
84 	shost->host_failed++;
85 	scsi_eh_wakeup(shost);
86 	spin_unlock_irqrestore(shost->host_lock, flags);
87 	return 1;
88 }
89 
90 /**
91  * scsi_add_timer - Start timeout timer for a single scsi command.
92  * @scmd:	scsi command that is about to start running.
93  * @timeout:	amount of time to allow this command to run.
94  * @complete:	timeout function to call if timer isn't canceled.
95  *
96  * Notes:
97  *    This should be turned into an inline function.  Each scsi command
98  *    has its own timer, and as it is added to the queue, we set up the
99  *    timer.  When the command completes, we cancel the timer.
100  **/
101 void scsi_add_timer(struct scsi_cmnd *scmd, int timeout,
102 		    void (*complete)(struct scsi_cmnd *))
103 {
104 
105 	/*
106 	 * If the clock was already running for this command, then
107 	 * first delete the timer.  The timer handling code gets rather
108 	 * confused if we don't do this.
109 	 */
110 	if (scmd->eh_timeout.function)
111 		del_timer(&scmd->eh_timeout);
112 
113 	scmd->eh_timeout.data = (unsigned long)scmd;
114 	scmd->eh_timeout.expires = jiffies + timeout;
115 	scmd->eh_timeout.function = (void (*)(unsigned long)) complete;
116 
117 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p, time:"
118 					  " %d, (%p)\n", __FUNCTION__,
119 					  scmd, timeout, complete));
120 
121 	add_timer(&scmd->eh_timeout);
122 }
123 EXPORT_SYMBOL(scsi_add_timer);
124 
125 /**
126  * scsi_delete_timer - Delete/cancel timer for a given function.
127  * @scmd:	Cmd that we are canceling timer for
128  *
129  * Notes:
130  *     This should be turned into an inline function.
131  *
132  * Return value:
133  *     1 if we were able to detach the timer.  0 if we blew it, and the
134  *     timer function has already started to run.
135  **/
136 int scsi_delete_timer(struct scsi_cmnd *scmd)
137 {
138 	int rtn;
139 
140 	rtn = del_timer(&scmd->eh_timeout);
141 
142 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p,"
143 					 " rtn: %d\n", __FUNCTION__,
144 					 scmd, rtn));
145 
146 	scmd->eh_timeout.data = (unsigned long)NULL;
147 	scmd->eh_timeout.function = NULL;
148 
149 	return rtn;
150 }
151 EXPORT_SYMBOL(scsi_delete_timer);
152 
153 /**
154  * scsi_times_out - Timeout function for normal scsi commands.
155  * @scmd:	Cmd that is timing out.
156  *
157  * Notes:
158  *     We do not need to lock this.  There is the potential for a race
159  *     only in that the normal completion handling might run, but if the
160  *     normal completion function determines that the timer has already
161  *     fired, then it mustn't do anything.
162  **/
163 void scsi_times_out(struct scsi_cmnd *scmd)
164 {
165 	scsi_log_completion(scmd, TIMEOUT_ERROR);
166 
167 	if (scmd->device->host->hostt->eh_timed_out)
168 		switch (scmd->device->host->hostt->eh_timed_out(scmd)) {
169 		case EH_HANDLED:
170 			__scsi_done(scmd);
171 			return;
172 		case EH_RESET_TIMER:
173 			/* This allows a single retry even of a command
174 			 * with allowed == 0 */
175 			if (scmd->retries++ > scmd->allowed)
176 				break;
177 			scsi_add_timer(scmd, scmd->timeout_per_command,
178 				       scsi_times_out);
179 			return;
180 		case EH_NOT_HANDLED:
181 			break;
182 		}
183 
184 	if (unlikely(!scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) {
185 		panic("Error handler thread not present at %p %p %s %d",
186 		      scmd, scmd->device->host, __FILE__, __LINE__);
187 	}
188 }
189 
190 /**
191  * scsi_block_when_processing_errors - Prevent cmds from being queued.
192  * @sdev:	Device on which we are performing recovery.
193  *
194  * Description:
195  *     We block until the host is out of error recovery, and then check to
196  *     see whether the host or the device is offline.
197  *
198  * Return value:
199  *     0 when dev was taken offline by error recovery. 1 OK to proceed.
200  **/
201 int scsi_block_when_processing_errors(struct scsi_device *sdev)
202 {
203 	int online;
204 
205 	wait_event(sdev->host->host_wait, (!test_bit(SHOST_RECOVERY, &sdev->host->shost_state)));
206 
207 	online = scsi_device_online(sdev);
208 
209 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __FUNCTION__,
210 					  online));
211 
212 	return online;
213 }
214 EXPORT_SYMBOL(scsi_block_when_processing_errors);
215 
216 #ifdef CONFIG_SCSI_LOGGING
217 /**
218  * scsi_eh_prt_fail_stats - Log info on failures.
219  * @shost:	scsi host being recovered.
220  * @work_q:	Queue of scsi cmds to process.
221  **/
222 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost,
223 					  struct list_head *work_q)
224 {
225 	struct scsi_cmnd *scmd;
226 	struct scsi_device *sdev;
227 	int total_failures = 0;
228 	int cmd_failed = 0;
229 	int cmd_cancel = 0;
230 	int devices_failed = 0;
231 
232 	shost_for_each_device(sdev, shost) {
233 		list_for_each_entry(scmd, work_q, eh_entry) {
234 			if (scmd->device == sdev) {
235 				++total_failures;
236 				if (scsi_eh_eflags_chk(scmd,
237 						       SCSI_EH_CANCEL_CMD))
238 					++cmd_cancel;
239 				else
240 					++cmd_failed;
241 			}
242 		}
243 
244 		if (cmd_cancel || cmd_failed) {
245 			SCSI_LOG_ERROR_RECOVERY(3,
246 				printk("%s: %d:%d:%d:%d cmds failed: %d,"
247 				       " cancel: %d\n",
248 				       __FUNCTION__, shost->host_no,
249 				       sdev->channel, sdev->id, sdev->lun,
250 				       cmd_failed, cmd_cancel));
251 			cmd_cancel = 0;
252 			cmd_failed = 0;
253 			++devices_failed;
254 		}
255 	}
256 
257 	SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d"
258 					  " devices require eh work\n",
259 				  total_failures, devices_failed));
260 }
261 #endif
262 
263 /**
264  * scsi_check_sense - Examine scsi cmd sense
265  * @scmd:	Cmd to have sense checked.
266  *
267  * Return value:
268  * 	SUCCESS or FAILED or NEEDS_RETRY
269  *
270  * Notes:
271  *	When a deferred error is detected the current command has
272  *	not been executed and needs retrying.
273  **/
274 static int scsi_check_sense(struct scsi_cmnd *scmd)
275 {
276 	struct scsi_sense_hdr sshdr;
277 
278 	if (! scsi_command_normalize_sense(scmd, &sshdr))
279 		return FAILED;	/* no valid sense data */
280 
281 	if (scsi_sense_is_deferred(&sshdr))
282 		return NEEDS_RETRY;
283 
284 	/*
285 	 * Previous logic looked for FILEMARK, EOM or ILI which are
286 	 * mainly associated with tapes and returned SUCCESS.
287 	 */
288 	if (sshdr.response_code == 0x70) {
289 		/* fixed format */
290 		if (scmd->sense_buffer[2] & 0xe0)
291 			return SUCCESS;
292 	} else {
293 		/*
294 		 * descriptor format: look for "stream commands sense data
295 		 * descriptor" (see SSC-3). Assume single sense data
296 		 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG.
297 		 */
298 		if ((sshdr.additional_length > 3) &&
299 		    (scmd->sense_buffer[8] == 0x4) &&
300 		    (scmd->sense_buffer[11] & 0xe0))
301 			return SUCCESS;
302 	}
303 
304 	switch (sshdr.sense_key) {
305 	case NO_SENSE:
306 		return SUCCESS;
307 	case RECOVERED_ERROR:
308 		return /* soft_error */ SUCCESS;
309 
310 	case ABORTED_COMMAND:
311 		return NEEDS_RETRY;
312 	case NOT_READY:
313 	case UNIT_ATTENTION:
314 		/*
315 		 * if we are expecting a cc/ua because of a bus reset that we
316 		 * performed, treat this just as a retry.  otherwise this is
317 		 * information that we should pass up to the upper-level driver
318 		 * so that we can deal with it there.
319 		 */
320 		if (scmd->device->expecting_cc_ua) {
321 			scmd->device->expecting_cc_ua = 0;
322 			return NEEDS_RETRY;
323 		}
324 		/*
325 		 * if the device is in the process of becoming ready, we
326 		 * should retry.
327 		 */
328 		if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01))
329 			return NEEDS_RETRY;
330 		/*
331 		 * if the device is not started, we need to wake
332 		 * the error handler to start the motor
333 		 */
334 		if (scmd->device->allow_restart &&
335 		    (sshdr.asc == 0x04) && (sshdr.ascq == 0x02))
336 			return FAILED;
337 		return SUCCESS;
338 
339 		/* these three are not supported */
340 	case COPY_ABORTED:
341 	case VOLUME_OVERFLOW:
342 	case MISCOMPARE:
343 		return SUCCESS;
344 
345 	case MEDIUM_ERROR:
346 		return NEEDS_RETRY;
347 
348 	case HARDWARE_ERROR:
349 		if (scmd->device->retry_hwerror)
350 			return NEEDS_RETRY;
351 		else
352 			return SUCCESS;
353 
354 	case ILLEGAL_REQUEST:
355 	case BLANK_CHECK:
356 	case DATA_PROTECT:
357 	default:
358 		return SUCCESS;
359 	}
360 }
361 
362 /**
363  * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD.
364  * @scmd:	SCSI cmd to examine.
365  *
366  * Notes:
367  *    This is *only* called when we are examining the status of commands
368  *    queued during error recovery.  the main difference here is that we
369  *    don't allow for the possibility of retries here, and we are a lot
370  *    more restrictive about what we consider acceptable.
371  **/
372 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd)
373 {
374 	/*
375 	 * first check the host byte, to see if there is anything in there
376 	 * that would indicate what we need to do.
377 	 */
378 	if (host_byte(scmd->result) == DID_RESET) {
379 		/*
380 		 * rats.  we are already in the error handler, so we now
381 		 * get to try and figure out what to do next.  if the sense
382 		 * is valid, we have a pretty good idea of what to do.
383 		 * if not, we mark it as FAILED.
384 		 */
385 		return scsi_check_sense(scmd);
386 	}
387 	if (host_byte(scmd->result) != DID_OK)
388 		return FAILED;
389 
390 	/*
391 	 * next, check the message byte.
392 	 */
393 	if (msg_byte(scmd->result) != COMMAND_COMPLETE)
394 		return FAILED;
395 
396 	/*
397 	 * now, check the status byte to see if this indicates
398 	 * anything special.
399 	 */
400 	switch (status_byte(scmd->result)) {
401 	case GOOD:
402 	case COMMAND_TERMINATED:
403 		return SUCCESS;
404 	case CHECK_CONDITION:
405 		return scsi_check_sense(scmd);
406 	case CONDITION_GOOD:
407 	case INTERMEDIATE_GOOD:
408 	case INTERMEDIATE_C_GOOD:
409 		/*
410 		 * who knows?  FIXME(eric)
411 		 */
412 		return SUCCESS;
413 	case BUSY:
414 	case QUEUE_FULL:
415 	case RESERVATION_CONFLICT:
416 	default:
417 		return FAILED;
418 	}
419 	return FAILED;
420 }
421 
422 /**
423  * scsi_eh_times_out - timeout function for error handling.
424  * @scmd:	Cmd that is timing out.
425  *
426  * Notes:
427  *    During error handling, the kernel thread will be sleeping waiting
428  *    for some action to complete on the device.  our only job is to
429  *    record that it timed out, and to wake up the thread.
430  **/
431 static void scsi_eh_times_out(struct scsi_cmnd *scmd)
432 {
433 	scsi_eh_eflags_set(scmd, SCSI_EH_REC_TIMEOUT);
434 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd:%p\n", __FUNCTION__,
435 					  scmd));
436 
437 	if (scmd->device->host->eh_action)
438 		up(scmd->device->host->eh_action);
439 }
440 
441 /**
442  * scsi_eh_done - Completion function for error handling.
443  * @scmd:	Cmd that is done.
444  **/
445 static void scsi_eh_done(struct scsi_cmnd *scmd)
446 {
447 	/*
448 	 * if the timeout handler is already running, then just set the
449 	 * flag which says we finished late, and return.  we have no
450 	 * way of stopping the timeout handler from running, so we must
451 	 * always defer to it.
452 	 */
453 	if (del_timer(&scmd->eh_timeout)) {
454 		scmd->request->rq_status = RQ_SCSI_DONE;
455 		scmd->owner = SCSI_OWNER_ERROR_HANDLER;
456 
457 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s scmd: %p result: %x\n",
458 					   __FUNCTION__, scmd, scmd->result));
459 
460 		if (scmd->device->host->eh_action)
461 			up(scmd->device->host->eh_action);
462 	}
463 }
464 
465 /**
466  * scsi_send_eh_cmnd  - send a cmd to a device as part of error recovery.
467  * @scmd:	SCSI Cmd to send.
468  * @timeout:	Timeout for cmd.
469  *
470  * Notes:
471  *    The initialization of the structures is quite a bit different in
472  *    this case, and furthermore, there is a different completion handler
473  *    vs scsi_dispatch_cmd.
474  * Return value:
475  *    SUCCESS or FAILED or NEEDS_RETRY
476  **/
477 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, int timeout)
478 {
479 	struct scsi_device *sdev = scmd->device;
480 	struct Scsi_Host *shost = sdev->host;
481 	DECLARE_MUTEX_LOCKED(sem);
482 	unsigned long flags;
483 	int rtn = SUCCESS;
484 
485 	/*
486 	 * we will use a queued command if possible, otherwise we will
487 	 * emulate the queuing and calling of completion function ourselves.
488 	 */
489 	scmd->owner = SCSI_OWNER_LOWLEVEL;
490 
491 	if (sdev->scsi_level <= SCSI_2)
492 		scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) |
493 			(sdev->lun << 5 & 0xe0);
494 
495 	scsi_add_timer(scmd, timeout, scsi_eh_times_out);
496 
497 	/*
498 	 * set up the semaphore so we wait for the command to complete.
499 	 */
500 	shost->eh_action = &sem;
501 	scmd->request->rq_status = RQ_SCSI_BUSY;
502 
503 	spin_lock_irqsave(shost->host_lock, flags);
504 	scsi_log_send(scmd);
505 	shost->hostt->queuecommand(scmd, scsi_eh_done);
506 	spin_unlock_irqrestore(shost->host_lock, flags);
507 
508 	down(&sem);
509 	scsi_log_completion(scmd, SUCCESS);
510 
511 	shost->eh_action = NULL;
512 
513 	/*
514 	 * see if timeout.  if so, tell the host to forget about it.
515 	 * in other words, we don't want a callback any more.
516 	 */
517 	if (scsi_eh_eflags_chk(scmd, SCSI_EH_REC_TIMEOUT)) {
518 		scsi_eh_eflags_clr(scmd,  SCSI_EH_REC_TIMEOUT);
519 		scmd->owner = SCSI_OWNER_LOWLEVEL;
520 
521 		/*
522 		 * as far as the low level driver is
523 		 * concerned, this command is still active, so
524 		 * we must give the low level driver a chance
525 		 * to abort it. (db)
526 		 *
527 		 * FIXME(eric) - we are not tracking whether we could
528 		 * abort a timed out command or not.  not sure how
529 		 * we should treat them differently anyways.
530 		 */
531 		spin_lock_irqsave(shost->host_lock, flags);
532 		if (shost->hostt->eh_abort_handler)
533 			shost->hostt->eh_abort_handler(scmd);
534 		spin_unlock_irqrestore(shost->host_lock, flags);
535 
536 		scmd->request->rq_status = RQ_SCSI_DONE;
537 		scmd->owner = SCSI_OWNER_ERROR_HANDLER;
538 
539 		rtn = FAILED;
540 	}
541 
542 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd: %p, rtn:%x\n",
543 					  __FUNCTION__, scmd, rtn));
544 
545 	/*
546 	 * now examine the actual status codes to see whether the command
547 	 * actually did complete normally.
548 	 */
549 	if (rtn == SUCCESS) {
550 		rtn = scsi_eh_completed_normally(scmd);
551 		SCSI_LOG_ERROR_RECOVERY(3,
552 			printk("%s: scsi_eh_completed_normally %x\n",
553 			       __FUNCTION__, rtn));
554 		switch (rtn) {
555 		case SUCCESS:
556 		case NEEDS_RETRY:
557 		case FAILED:
558 			break;
559 		default:
560 			rtn = FAILED;
561 			break;
562 		}
563 	}
564 
565 	return rtn;
566 }
567 
568 /**
569  * scsi_request_sense - Request sense data from a particular target.
570  * @scmd:	SCSI cmd for request sense.
571  *
572  * Notes:
573  *    Some hosts automatically obtain this information, others require
574  *    that we obtain it on our own. This function will *not* return until
575  *    the command either times out, or it completes.
576  **/
577 static int scsi_request_sense(struct scsi_cmnd *scmd)
578 {
579 	static unsigned char generic_sense[6] =
580 	{REQUEST_SENSE, 0, 0, 0, 252, 0};
581 	unsigned char *scsi_result;
582 	int saved_result;
583 	int rtn;
584 
585 	memcpy(scmd->cmnd, generic_sense, sizeof(generic_sense));
586 
587 	scsi_result = kmalloc(252, GFP_ATOMIC | ((scmd->device->host->hostt->unchecked_isa_dma) ? __GFP_DMA : 0));
588 
589 
590 	if (unlikely(!scsi_result)) {
591 		printk(KERN_ERR "%s: cannot allocate scsi_result.\n",
592 		       __FUNCTION__);
593 		return FAILED;
594 	}
595 
596 	/*
597 	 * zero the sense buffer.  some host adapters automatically always
598 	 * request sense, so it is not a good idea that
599 	 * scmd->request_buffer and scmd->sense_buffer point to the same
600 	 * address (db).  0 is not a valid sense code.
601 	 */
602 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
603 	memset(scsi_result, 0, 252);
604 
605 	saved_result = scmd->result;
606 	scmd->request_buffer = scsi_result;
607 	scmd->request_bufflen = 252;
608 	scmd->use_sg = 0;
609 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
610 	scmd->sc_data_direction = DMA_FROM_DEVICE;
611 	scmd->underflow = 0;
612 
613 	rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT);
614 
615 	/* last chance to have valid sense data */
616 	if(!SCSI_SENSE_VALID(scmd)) {
617 		memcpy(scmd->sense_buffer, scmd->request_buffer,
618 		       sizeof(scmd->sense_buffer));
619 	}
620 
621 	kfree(scsi_result);
622 
623 	/*
624 	 * when we eventually call scsi_finish, we really wish to complete
625 	 * the original request, so let's restore the original data. (db)
626 	 */
627 	scsi_setup_cmd_retry(scmd);
628 	scmd->result = saved_result;
629 	return rtn;
630 }
631 
632 /**
633  * scsi_eh_finish_cmd - Handle a cmd that eh is finished with.
634  * @scmd:	Original SCSI cmd that eh has finished.
635  * @done_q:	Queue for processed commands.
636  *
637  * Notes:
638  *    We don't want to use the normal command completion while we are are
639  *    still handling errors - it may cause other commands to be queued,
640  *    and that would disturb what we are doing.  thus we really want to
641  *    keep a list of pending commands for final completion, and once we
642  *    are ready to leave error handling we handle completion for real.
643  **/
644 static void scsi_eh_finish_cmd(struct scsi_cmnd *scmd,
645 			       struct list_head *done_q)
646 {
647 	scmd->device->host->host_failed--;
648 	scmd->state = SCSI_STATE_BHQUEUE;
649 
650 	scsi_eh_eflags_clr_all(scmd);
651 
652 	/*
653 	 * set this back so that the upper level can correctly free up
654 	 * things.
655 	 */
656 	scsi_setup_cmd_retry(scmd);
657 	list_move_tail(&scmd->eh_entry, done_q);
658 }
659 
660 /**
661  * scsi_eh_get_sense - Get device sense data.
662  * @work_q:	Queue of commands to process.
663  * @done_q:	Queue of proccessed commands..
664  *
665  * Description:
666  *    See if we need to request sense information.  if so, then get it
667  *    now, so we have a better idea of what to do.
668  *
669  * Notes:
670  *    This has the unfortunate side effect that if a shost adapter does
671  *    not automatically request sense information, that we end up shutting
672  *    it down before we request it.
673  *
674  *    All drivers should request sense information internally these days,
675  *    so for now all I have to say is tough noogies if you end up in here.
676  *
677  *    XXX: Long term this code should go away, but that needs an audit of
678  *         all LLDDs first.
679  **/
680 static int scsi_eh_get_sense(struct list_head *work_q,
681 			     struct list_head *done_q)
682 {
683 	struct list_head *lh, *lh_sf;
684 	struct scsi_cmnd *scmd;
685 	int rtn;
686 
687 	list_for_each_safe(lh, lh_sf, work_q) {
688 		scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
689 		if (scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD) ||
690 		    SCSI_SENSE_VALID(scmd))
691 			continue;
692 
693 		SCSI_LOG_ERROR_RECOVERY(2, printk("%s: requesting sense"
694 						  " for id: %d\n",
695 						  current->comm,
696 						  scmd->device->id));
697 		rtn = scsi_request_sense(scmd);
698 		if (rtn != SUCCESS)
699 			continue;
700 
701 		SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p"
702 						  " result %x\n", scmd,
703 						  scmd->result));
704 		SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd));
705 
706 		rtn = scsi_decide_disposition(scmd);
707 
708 		/*
709 		 * if the result was normal, then just pass it along to the
710 		 * upper level.
711 		 */
712 		if (rtn == SUCCESS)
713 			/* we don't want this command reissued, just
714 			 * finished with the sense data, so set
715 			 * retries to the max allowed to ensure it
716 			 * won't get reissued */
717 			scmd->retries = scmd->allowed;
718 		else if (rtn != NEEDS_RETRY)
719 			continue;
720 
721 		scsi_eh_finish_cmd(scmd, done_q);
722 	}
723 
724 	return list_empty(work_q);
725 }
726 
727 /**
728  * scsi_try_to_abort_cmd - Ask host to abort a running command.
729  * @scmd:	SCSI cmd to abort from Lower Level.
730  *
731  * Notes:
732  *    This function will not return until the user's completion function
733  *    has been called.  there is no timeout on this operation.  if the
734  *    author of the low-level driver wishes this operation to be timed,
735  *    they can provide this facility themselves.  helper functions in
736  *    scsi_error.c can be supplied to make this easier to do.
737  **/
738 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd)
739 {
740 	unsigned long flags;
741 	int rtn = FAILED;
742 
743 	if (!scmd->device->host->hostt->eh_abort_handler)
744 		return rtn;
745 
746 	/*
747 	 * scsi_done was called just after the command timed out and before
748 	 * we had a chance to process it. (db)
749 	 */
750 	if (scmd->serial_number == 0)
751 		return SUCCESS;
752 
753 	scmd->owner = SCSI_OWNER_LOWLEVEL;
754 
755 	spin_lock_irqsave(scmd->device->host->host_lock, flags);
756 	rtn = scmd->device->host->hostt->eh_abort_handler(scmd);
757 	spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
758 
759 	return rtn;
760 }
761 
762 /**
763  * scsi_eh_tur - Send TUR to device.
764  * @scmd:	Scsi cmd to send TUR
765  *
766  * Return value:
767  *    0 - Device is ready. 1 - Device NOT ready.
768  **/
769 static int scsi_eh_tur(struct scsi_cmnd *scmd)
770 {
771 	static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0};
772 	int retry_cnt = 1, rtn;
773 
774 retry_tur:
775 	memcpy(scmd->cmnd, tur_command, sizeof(tur_command));
776 
777 	/*
778 	 * zero the sense buffer.  the scsi spec mandates that any
779 	 * untransferred sense data should be interpreted as being zero.
780 	 */
781 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
782 
783 	scmd->request_buffer = NULL;
784 	scmd->request_bufflen = 0;
785 	scmd->use_sg = 0;
786 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
787 	scmd->underflow = 0;
788 	scmd->sc_data_direction = DMA_NONE;
789 
790 	rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT);
791 
792 	/*
793 	 * when we eventually call scsi_finish, we really wish to complete
794 	 * the original request, so let's restore the original data. (db)
795 	 */
796 	scsi_setup_cmd_retry(scmd);
797 
798 	/*
799 	 * hey, we are done.  let's look to see what happened.
800 	 */
801 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n",
802 		__FUNCTION__, scmd, rtn));
803 	if (rtn == SUCCESS)
804 		return 0;
805 	else if (rtn == NEEDS_RETRY)
806 		if (retry_cnt--)
807 			goto retry_tur;
808 	return 1;
809 }
810 
811 /**
812  * scsi_eh_abort_cmds - abort canceled commands.
813  * @shost:	scsi host being recovered.
814  * @eh_done_q:	list_head for processed commands.
815  *
816  * Decription:
817  *    Try and see whether or not it makes sense to try and abort the
818  *    running command.  this only works out to be the case if we have one
819  *    command that has timed out.  if the command simply failed, it makes
820  *    no sense to try and abort the command, since as far as the shost
821  *    adapter is concerned, it isn't running.
822  **/
823 static int scsi_eh_abort_cmds(struct list_head *work_q,
824 			      struct list_head *done_q)
825 {
826 	struct list_head *lh, *lh_sf;
827 	struct scsi_cmnd *scmd;
828 	int rtn;
829 
830 	list_for_each_safe(lh, lh_sf, work_q) {
831 		scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
832 		if (!scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD))
833 			continue;
834 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:"
835 						  "0x%p\n", current->comm,
836 						  scmd));
837 		rtn = scsi_try_to_abort_cmd(scmd);
838 		if (rtn == SUCCESS) {
839 			scsi_eh_eflags_clr(scmd,  SCSI_EH_CANCEL_CMD);
840 			if (!scsi_device_online(scmd->device) ||
841 			    !scsi_eh_tur(scmd)) {
842 				scsi_eh_finish_cmd(scmd, done_q);
843 			}
844 
845 		} else
846 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting"
847 							  " cmd failed:"
848 							  "0x%p\n",
849 							  current->comm,
850 							  scmd));
851 	}
852 
853 	return list_empty(work_q);
854 }
855 
856 /**
857  * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev
858  * @scmd:	SCSI cmd used to send BDR
859  *
860  * Notes:
861  *    There is no timeout for this operation.  if this operation is
862  *    unreliable for a given host, then the host itself needs to put a
863  *    timer on it, and set the host back to a consistent state prior to
864  *    returning.
865  **/
866 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd)
867 {
868 	unsigned long flags;
869 	int rtn = FAILED;
870 
871 	if (!scmd->device->host->hostt->eh_device_reset_handler)
872 		return rtn;
873 
874 	scmd->owner = SCSI_OWNER_LOWLEVEL;
875 
876 	spin_lock_irqsave(scmd->device->host->host_lock, flags);
877 	rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd);
878 	spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
879 
880 	if (rtn == SUCCESS) {
881 		scmd->device->was_reset = 1;
882 		scmd->device->expecting_cc_ua = 1;
883 	}
884 
885 	return rtn;
886 }
887 
888 /**
889  * scsi_eh_try_stu - Send START_UNIT to device.
890  * @scmd:	Scsi cmd to send START_UNIT
891  *
892  * Return value:
893  *    0 - Device is ready. 1 - Device NOT ready.
894  **/
895 static int scsi_eh_try_stu(struct scsi_cmnd *scmd)
896 {
897 	static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0};
898 	int rtn;
899 
900 	if (!scmd->device->allow_restart)
901 		return 1;
902 
903 	memcpy(scmd->cmnd, stu_command, sizeof(stu_command));
904 
905 	/*
906 	 * zero the sense buffer.  the scsi spec mandates that any
907 	 * untransferred sense data should be interpreted as being zero.
908 	 */
909 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
910 
911 	scmd->request_buffer = NULL;
912 	scmd->request_bufflen = 0;
913 	scmd->use_sg = 0;
914 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
915 	scmd->underflow = 0;
916 	scmd->sc_data_direction = DMA_NONE;
917 
918 	rtn = scsi_send_eh_cmnd(scmd, START_UNIT_TIMEOUT);
919 
920 	/*
921 	 * when we eventually call scsi_finish, we really wish to complete
922 	 * the original request, so let's restore the original data. (db)
923 	 */
924 	scsi_setup_cmd_retry(scmd);
925 
926 	/*
927 	 * hey, we are done.  let's look to see what happened.
928 	 */
929 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n",
930 		__FUNCTION__, scmd, rtn));
931 	if (rtn == SUCCESS)
932 		return 0;
933 	return 1;
934 }
935 
936  /**
937  * scsi_eh_stu - send START_UNIT if needed
938  * @shost:	scsi host being recovered.
939  * @eh_done_q:	list_head for processed commands.
940  *
941  * Notes:
942  *    If commands are failing due to not ready, initializing command required,
943  *	try revalidating the device, which will end up sending a start unit.
944  **/
945 static int scsi_eh_stu(struct Scsi_Host *shost,
946 			      struct list_head *work_q,
947 			      struct list_head *done_q)
948 {
949 	struct list_head *lh, *lh_sf;
950 	struct scsi_cmnd *scmd, *stu_scmd;
951 	struct scsi_device *sdev;
952 
953 	shost_for_each_device(sdev, shost) {
954 		stu_scmd = NULL;
955 		list_for_each_entry(scmd, work_q, eh_entry)
956 			if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) &&
957 			    scsi_check_sense(scmd) == FAILED ) {
958 				stu_scmd = scmd;
959 				break;
960 			}
961 
962 		if (!stu_scmd)
963 			continue;
964 
965 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:"
966 						  " 0x%p\n", current->comm, sdev));
967 
968 		if (!scsi_eh_try_stu(stu_scmd)) {
969 			if (!scsi_device_online(sdev) ||
970 			    !scsi_eh_tur(stu_scmd)) {
971 				list_for_each_safe(lh, lh_sf, work_q) {
972 					scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
973 					if (scmd->device == sdev)
974 						scsi_eh_finish_cmd(scmd, done_q);
975 				}
976 			}
977 		} else {
978 			SCSI_LOG_ERROR_RECOVERY(3,
979 						printk("%s: START_UNIT failed to sdev:"
980 						       " 0x%p\n", current->comm, sdev));
981 		}
982 	}
983 
984 	return list_empty(work_q);
985 }
986 
987 
988 /**
989  * scsi_eh_bus_device_reset - send bdr if needed
990  * @shost:	scsi host being recovered.
991  * @eh_done_q:	list_head for processed commands.
992  *
993  * Notes:
994  *    Try a bus device reset.  still, look to see whether we have multiple
995  *    devices that are jammed or not - if we have multiple devices, it
996  *    makes no sense to try bus_device_reset - we really would need to try
997  *    a bus_reset instead.
998  **/
999 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost,
1000 				    struct list_head *work_q,
1001 				    struct list_head *done_q)
1002 {
1003 	struct list_head *lh, *lh_sf;
1004 	struct scsi_cmnd *scmd, *bdr_scmd;
1005 	struct scsi_device *sdev;
1006 	int rtn;
1007 
1008 	shost_for_each_device(sdev, shost) {
1009 		bdr_scmd = NULL;
1010 		list_for_each_entry(scmd, work_q, eh_entry)
1011 			if (scmd->device == sdev) {
1012 				bdr_scmd = scmd;
1013 				break;
1014 			}
1015 
1016 		if (!bdr_scmd)
1017 			continue;
1018 
1019 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:"
1020 						  " 0x%p\n", current->comm,
1021 						  sdev));
1022 		rtn = scsi_try_bus_device_reset(bdr_scmd);
1023 		if (rtn == SUCCESS) {
1024 			if (!scsi_device_online(sdev) ||
1025 			    !scsi_eh_tur(bdr_scmd)) {
1026 				list_for_each_safe(lh, lh_sf,
1027 						   work_q) {
1028 					scmd = list_entry(lh, struct
1029 							  scsi_cmnd,
1030 							  eh_entry);
1031 					if (scmd->device == sdev)
1032 						scsi_eh_finish_cmd(scmd,
1033 								   done_q);
1034 				}
1035 			}
1036 		} else {
1037 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR"
1038 							  " failed sdev:"
1039 							  "0x%p\n",
1040 							  current->comm,
1041 							   sdev));
1042 		}
1043 	}
1044 
1045 	return list_empty(work_q);
1046 }
1047 
1048 /**
1049  * scsi_try_bus_reset - ask host to perform a bus reset
1050  * @scmd:	SCSI cmd to send bus reset.
1051  **/
1052 static int scsi_try_bus_reset(struct scsi_cmnd *scmd)
1053 {
1054 	unsigned long flags;
1055 	int rtn;
1056 
1057 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n",
1058 					  __FUNCTION__));
1059 	scmd->owner = SCSI_OWNER_LOWLEVEL;
1060 
1061 	if (!scmd->device->host->hostt->eh_bus_reset_handler)
1062 		return FAILED;
1063 
1064 	spin_lock_irqsave(scmd->device->host->host_lock, flags);
1065 	rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd);
1066 	spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1067 
1068 	if (rtn == SUCCESS) {
1069 		if (!scmd->device->host->hostt->skip_settle_delay)
1070 			ssleep(BUS_RESET_SETTLE_TIME);
1071 		spin_lock_irqsave(scmd->device->host->host_lock, flags);
1072 		scsi_report_bus_reset(scmd->device->host, scmd->device->channel);
1073 		spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1074 	}
1075 
1076 	return rtn;
1077 }
1078 
1079 /**
1080  * scsi_try_host_reset - ask host adapter to reset itself
1081  * @scmd:	SCSI cmd to send hsot reset.
1082  **/
1083 static int scsi_try_host_reset(struct scsi_cmnd *scmd)
1084 {
1085 	unsigned long flags;
1086 	int rtn;
1087 
1088 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n",
1089 					  __FUNCTION__));
1090 	scmd->owner = SCSI_OWNER_LOWLEVEL;
1091 
1092 	if (!scmd->device->host->hostt->eh_host_reset_handler)
1093 		return FAILED;
1094 
1095 	spin_lock_irqsave(scmd->device->host->host_lock, flags);
1096 	rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd);
1097 	spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1098 
1099 	if (rtn == SUCCESS) {
1100 		if (!scmd->device->host->hostt->skip_settle_delay)
1101 			ssleep(HOST_RESET_SETTLE_TIME);
1102 		spin_lock_irqsave(scmd->device->host->host_lock, flags);
1103 		scsi_report_bus_reset(scmd->device->host, scmd->device->channel);
1104 		spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1105 	}
1106 
1107 	return rtn;
1108 }
1109 
1110 /**
1111  * scsi_eh_bus_reset - send a bus reset
1112  * @shost:	scsi host being recovered.
1113  * @eh_done_q:	list_head for processed commands.
1114  **/
1115 static int scsi_eh_bus_reset(struct Scsi_Host *shost,
1116 			     struct list_head *work_q,
1117 			     struct list_head *done_q)
1118 {
1119 	struct list_head *lh, *lh_sf;
1120 	struct scsi_cmnd *scmd;
1121 	struct scsi_cmnd *chan_scmd;
1122 	unsigned int channel;
1123 	int rtn;
1124 
1125 	/*
1126 	 * we really want to loop over the various channels, and do this on
1127 	 * a channel by channel basis.  we should also check to see if any
1128 	 * of the failed commands are on soft_reset devices, and if so, skip
1129 	 * the reset.
1130 	 */
1131 
1132 	for (channel = 0; channel <= shost->max_channel; channel++) {
1133 		chan_scmd = NULL;
1134 		list_for_each_entry(scmd, work_q, eh_entry) {
1135 			if (channel == scmd->device->channel) {
1136 				chan_scmd = scmd;
1137 				break;
1138 				/*
1139 				 * FIXME add back in some support for
1140 				 * soft_reset devices.
1141 				 */
1142 			}
1143 		}
1144 
1145 		if (!chan_scmd)
1146 			continue;
1147 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:"
1148 						  " %d\n", current->comm,
1149 						  channel));
1150 		rtn = scsi_try_bus_reset(chan_scmd);
1151 		if (rtn == SUCCESS) {
1152 			list_for_each_safe(lh, lh_sf, work_q) {
1153 				scmd = list_entry(lh, struct scsi_cmnd,
1154 						  eh_entry);
1155 				if (channel == scmd->device->channel)
1156 					if (!scsi_device_online(scmd->device) ||
1157 					    !scsi_eh_tur(scmd))
1158 						scsi_eh_finish_cmd(scmd,
1159 								   done_q);
1160 			}
1161 		} else {
1162 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST"
1163 							  " failed chan: %d\n",
1164 							  current->comm,
1165 							  channel));
1166 		}
1167 	}
1168 	return list_empty(work_q);
1169 }
1170 
1171 /**
1172  * scsi_eh_host_reset - send a host reset
1173  * @work_q:	list_head for processed commands.
1174  * @done_q:	list_head for processed commands.
1175  **/
1176 static int scsi_eh_host_reset(struct list_head *work_q,
1177 			      struct list_head *done_q)
1178 {
1179 	int rtn;
1180 	struct list_head *lh, *lh_sf;
1181 	struct scsi_cmnd *scmd;
1182 
1183 	if (!list_empty(work_q)) {
1184 		scmd = list_entry(work_q->next,
1185 				  struct scsi_cmnd, eh_entry);
1186 
1187 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n"
1188 						  , current->comm));
1189 
1190 		rtn = scsi_try_host_reset(scmd);
1191 		if (rtn == SUCCESS) {
1192 			list_for_each_safe(lh, lh_sf, work_q) {
1193 				scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
1194 				if (!scsi_device_online(scmd->device) ||
1195 				    (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) ||
1196 				    !scsi_eh_tur(scmd))
1197 					scsi_eh_finish_cmd(scmd, done_q);
1198 			}
1199 		} else {
1200 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST"
1201 							  " failed\n",
1202 							  current->comm));
1203 		}
1204 	}
1205 	return list_empty(work_q);
1206 }
1207 
1208 /**
1209  * scsi_eh_offline_sdevs - offline scsi devices that fail to recover
1210  * @work_q:	list_head for processed commands.
1211  * @done_q:	list_head for processed commands.
1212  *
1213  **/
1214 static void scsi_eh_offline_sdevs(struct list_head *work_q,
1215 				  struct list_head *done_q)
1216 {
1217 	struct list_head *lh, *lh_sf;
1218 	struct scsi_cmnd *scmd;
1219 
1220 	list_for_each_safe(lh, lh_sf, work_q) {
1221 		scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
1222 		printk(KERN_INFO "scsi: Device offlined - not"
1223 		       		" ready after error recovery: host"
1224 				" %d channel %d id %d lun %d\n",
1225 				scmd->device->host->host_no,
1226 				scmd->device->channel,
1227 				scmd->device->id,
1228 				scmd->device->lun);
1229 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1230 		if (scsi_eh_eflags_chk(scmd, SCSI_EH_CANCEL_CMD)) {
1231 			/*
1232 			 * FIXME: Handle lost cmds.
1233 			 */
1234 		}
1235 		scsi_eh_finish_cmd(scmd, done_q);
1236 	}
1237 	return;
1238 }
1239 
1240 /**
1241  * scsi_decide_disposition - Disposition a cmd on return from LLD.
1242  * @scmd:	SCSI cmd to examine.
1243  *
1244  * Notes:
1245  *    This is *only* called when we are examining the status after sending
1246  *    out the actual data command.  any commands that are queued for error
1247  *    recovery (e.g. test_unit_ready) do *not* come through here.
1248  *
1249  *    When this routine returns failed, it means the error handler thread
1250  *    is woken.  In cases where the error code indicates an error that
1251  *    doesn't require the error handler read (i.e. we don't need to
1252  *    abort/reset), this function should return SUCCESS.
1253  **/
1254 int scsi_decide_disposition(struct scsi_cmnd *scmd)
1255 {
1256 	int rtn;
1257 
1258 	/*
1259 	 * if the device is offline, then we clearly just pass the result back
1260 	 * up to the top level.
1261 	 */
1262 	if (!scsi_device_online(scmd->device)) {
1263 		SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report"
1264 						  " as SUCCESS\n",
1265 						  __FUNCTION__));
1266 		return SUCCESS;
1267 	}
1268 
1269 	/*
1270 	 * first check the host byte, to see if there is anything in there
1271 	 * that would indicate what we need to do.
1272 	 */
1273 	switch (host_byte(scmd->result)) {
1274 	case DID_PASSTHROUGH:
1275 		/*
1276 		 * no matter what, pass this through to the upper layer.
1277 		 * nuke this special code so that it looks like we are saying
1278 		 * did_ok.
1279 		 */
1280 		scmd->result &= 0xff00ffff;
1281 		return SUCCESS;
1282 	case DID_OK:
1283 		/*
1284 		 * looks good.  drop through, and check the next byte.
1285 		 */
1286 		break;
1287 	case DID_NO_CONNECT:
1288 	case DID_BAD_TARGET:
1289 	case DID_ABORT:
1290 		/*
1291 		 * note - this means that we just report the status back
1292 		 * to the top level driver, not that we actually think
1293 		 * that it indicates SUCCESS.
1294 		 */
1295 		return SUCCESS;
1296 		/*
1297 		 * when the low level driver returns did_soft_error,
1298 		 * it is responsible for keeping an internal retry counter
1299 		 * in order to avoid endless loops (db)
1300 		 *
1301 		 * actually this is a bug in this function here.  we should
1302 		 * be mindful of the maximum number of retries specified
1303 		 * and not get stuck in a loop.
1304 		 */
1305 	case DID_SOFT_ERROR:
1306 		goto maybe_retry;
1307 	case DID_IMM_RETRY:
1308 		return NEEDS_RETRY;
1309 
1310 	case DID_REQUEUE:
1311 		return ADD_TO_MLQUEUE;
1312 
1313 	case DID_ERROR:
1314 		if (msg_byte(scmd->result) == COMMAND_COMPLETE &&
1315 		    status_byte(scmd->result) == RESERVATION_CONFLICT)
1316 			/*
1317 			 * execute reservation conflict processing code
1318 			 * lower down
1319 			 */
1320 			break;
1321 		/* fallthrough */
1322 
1323 	case DID_BUS_BUSY:
1324 	case DID_PARITY:
1325 		goto maybe_retry;
1326 	case DID_TIME_OUT:
1327 		/*
1328 		 * when we scan the bus, we get timeout messages for
1329 		 * these commands if there is no device available.
1330 		 * other hosts report did_no_connect for the same thing.
1331 		 */
1332 		if ((scmd->cmnd[0] == TEST_UNIT_READY ||
1333 		     scmd->cmnd[0] == INQUIRY)) {
1334 			return SUCCESS;
1335 		} else {
1336 			return FAILED;
1337 		}
1338 	case DID_RESET:
1339 		return SUCCESS;
1340 	default:
1341 		return FAILED;
1342 	}
1343 
1344 	/*
1345 	 * next, check the message byte.
1346 	 */
1347 	if (msg_byte(scmd->result) != COMMAND_COMPLETE)
1348 		return FAILED;
1349 
1350 	/*
1351 	 * check the status byte to see if this indicates anything special.
1352 	 */
1353 	switch (status_byte(scmd->result)) {
1354 	case QUEUE_FULL:
1355 		/*
1356 		 * the case of trying to send too many commands to a
1357 		 * tagged queueing device.
1358 		 */
1359 	case BUSY:
1360 		/*
1361 		 * device can't talk to us at the moment.  Should only
1362 		 * occur (SAM-3) when the task queue is empty, so will cause
1363 		 * the empty queue handling to trigger a stall in the
1364 		 * device.
1365 		 */
1366 		return ADD_TO_MLQUEUE;
1367 	case GOOD:
1368 	case COMMAND_TERMINATED:
1369 	case TASK_ABORTED:
1370 		return SUCCESS;
1371 	case CHECK_CONDITION:
1372 		rtn = scsi_check_sense(scmd);
1373 		if (rtn == NEEDS_RETRY)
1374 			goto maybe_retry;
1375 		/* if rtn == FAILED, we have no sense information;
1376 		 * returning FAILED will wake the error handler thread
1377 		 * to collect the sense and redo the decide
1378 		 * disposition */
1379 		return rtn;
1380 	case CONDITION_GOOD:
1381 	case INTERMEDIATE_GOOD:
1382 	case INTERMEDIATE_C_GOOD:
1383 	case ACA_ACTIVE:
1384 		/*
1385 		 * who knows?  FIXME(eric)
1386 		 */
1387 		return SUCCESS;
1388 
1389 	case RESERVATION_CONFLICT:
1390 		printk(KERN_INFO "scsi: reservation conflict: host"
1391                                 " %d channel %d id %d lun %d\n",
1392 		       scmd->device->host->host_no, scmd->device->channel,
1393 		       scmd->device->id, scmd->device->lun);
1394 		return SUCCESS; /* causes immediate i/o error */
1395 	default:
1396 		return FAILED;
1397 	}
1398 	return FAILED;
1399 
1400       maybe_retry:
1401 
1402 	/* we requeue for retry because the error was retryable, and
1403 	 * the request was not marked fast fail.  Note that above,
1404 	 * even if the request is marked fast fail, we still requeue
1405 	 * for queue congestion conditions (QUEUE_FULL or BUSY) */
1406 	if ((++scmd->retries) < scmd->allowed
1407 	    && !blk_noretry_request(scmd->request)) {
1408 		return NEEDS_RETRY;
1409 	} else {
1410 		/*
1411 		 * no more retries - report this one back to upper level.
1412 		 */
1413 		return SUCCESS;
1414 	}
1415 }
1416 
1417 /**
1418  * scsi_eh_lock_done - done function for eh door lock request
1419  * @scmd:	SCSI command block for the door lock request
1420  *
1421  * Notes:
1422  * 	We completed the asynchronous door lock request, and it has either
1423  * 	locked the door or failed.  We must free the command structures
1424  * 	associated with this request.
1425  **/
1426 static void scsi_eh_lock_done(struct scsi_cmnd *scmd)
1427 {
1428 	struct scsi_request *sreq = scmd->sc_request;
1429 
1430 	scsi_release_request(sreq);
1431 }
1432 
1433 
1434 /**
1435  * scsi_eh_lock_door - Prevent medium removal for the specified device
1436  * @sdev:	SCSI device to prevent medium removal
1437  *
1438  * Locking:
1439  * 	We must be called from process context; scsi_allocate_request()
1440  * 	may sleep.
1441  *
1442  * Notes:
1443  * 	We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the
1444  * 	head of the devices request queue, and continue.
1445  *
1446  * Bugs:
1447  * 	scsi_allocate_request() may sleep waiting for existing requests to
1448  * 	be processed.  However, since we haven't kicked off any request
1449  * 	processing for this host, this may deadlock.
1450  *
1451  *	If scsi_allocate_request() fails for what ever reason, we
1452  *	completely forget to lock the door.
1453  **/
1454 static void scsi_eh_lock_door(struct scsi_device *sdev)
1455 {
1456 	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1457 
1458 	if (unlikely(!sreq)) {
1459 		printk(KERN_ERR "%s: request allocate failed,"
1460 		       "prevent media removal cmd not sent\n", __FUNCTION__);
1461 		return;
1462 	}
1463 
1464 	sreq->sr_cmnd[0] = ALLOW_MEDIUM_REMOVAL;
1465 	sreq->sr_cmnd[1] = 0;
1466 	sreq->sr_cmnd[2] = 0;
1467 	sreq->sr_cmnd[3] = 0;
1468 	sreq->sr_cmnd[4] = SCSI_REMOVAL_PREVENT;
1469 	sreq->sr_cmnd[5] = 0;
1470 	sreq->sr_data_direction = DMA_NONE;
1471 	sreq->sr_bufflen = 0;
1472 	sreq->sr_buffer = NULL;
1473 	sreq->sr_allowed = 5;
1474 	sreq->sr_done = scsi_eh_lock_done;
1475 	sreq->sr_timeout_per_command = 10 * HZ;
1476 	sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
1477 
1478 	scsi_insert_special_req(sreq, 1);
1479 }
1480 
1481 
1482 /**
1483  * scsi_restart_operations - restart io operations to the specified host.
1484  * @shost:	Host we are restarting.
1485  *
1486  * Notes:
1487  *    When we entered the error handler, we blocked all further i/o to
1488  *    this device.  we need to 'reverse' this process.
1489  **/
1490 static void scsi_restart_operations(struct Scsi_Host *shost)
1491 {
1492 	struct scsi_device *sdev;
1493 
1494 	/*
1495 	 * If the door was locked, we need to insert a door lock request
1496 	 * onto the head of the SCSI request queue for the device.  There
1497 	 * is no point trying to lock the door of an off-line device.
1498 	 */
1499 	shost_for_each_device(sdev, shost) {
1500 		if (scsi_device_online(sdev) && sdev->locked)
1501 			scsi_eh_lock_door(sdev);
1502 	}
1503 
1504 	/*
1505 	 * next free up anything directly waiting upon the host.  this
1506 	 * will be requests for character device operations, and also for
1507 	 * ioctls to queued block devices.
1508 	 */
1509 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n",
1510 					  __FUNCTION__));
1511 
1512 	clear_bit(SHOST_RECOVERY, &shost->shost_state);
1513 
1514 	wake_up(&shost->host_wait);
1515 
1516 	/*
1517 	 * finally we need to re-initiate requests that may be pending.  we will
1518 	 * have had everything blocked while error handling is taking place, and
1519 	 * now that error recovery is done, we will need to ensure that these
1520 	 * requests are started.
1521 	 */
1522 	scsi_run_host_queues(shost);
1523 }
1524 
1525 /**
1526  * scsi_eh_ready_devs - check device ready state and recover if not.
1527  * @shost: 	host to be recovered.
1528  * @eh_done_q:	list_head for processed commands.
1529  *
1530  **/
1531 static void scsi_eh_ready_devs(struct Scsi_Host *shost,
1532 			       struct list_head *work_q,
1533 			       struct list_head *done_q)
1534 {
1535 	if (!scsi_eh_stu(shost, work_q, done_q))
1536 		if (!scsi_eh_bus_device_reset(shost, work_q, done_q))
1537 			if (!scsi_eh_bus_reset(shost, work_q, done_q))
1538 				if (!scsi_eh_host_reset(work_q, done_q))
1539 					scsi_eh_offline_sdevs(work_q, done_q);
1540 }
1541 
1542 /**
1543  * scsi_eh_flush_done_q - finish processed commands or retry them.
1544  * @done_q:	list_head of processed commands.
1545  *
1546  **/
1547 static void scsi_eh_flush_done_q(struct list_head *done_q)
1548 {
1549 	struct list_head *lh, *lh_sf;
1550 	struct scsi_cmnd *scmd;
1551 
1552 	list_for_each_safe(lh, lh_sf, done_q) {
1553 		scmd = list_entry(lh, struct scsi_cmnd, eh_entry);
1554 		list_del_init(lh);
1555 		if (scsi_device_online(scmd->device) &&
1556 		    !blk_noretry_request(scmd->request) &&
1557 		    (++scmd->retries < scmd->allowed)) {
1558 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush"
1559 							  " retry cmd: %p\n",
1560 							  current->comm,
1561 							  scmd));
1562 				scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY);
1563 		} else {
1564 			if (!scmd->result)
1565 				scmd->result |= (DRIVER_TIMEOUT << 24);
1566 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish"
1567 							" cmd: %p\n",
1568 							current->comm, scmd));
1569 			scsi_finish_command(scmd);
1570 		}
1571 	}
1572 }
1573 
1574 /**
1575  * scsi_unjam_host - Attempt to fix a host which has a cmd that failed.
1576  * @shost:	Host to unjam.
1577  *
1578  * Notes:
1579  *    When we come in here, we *know* that all commands on the bus have
1580  *    either completed, failed or timed out.  we also know that no further
1581  *    commands are being sent to the host, so things are relatively quiet
1582  *    and we have freedom to fiddle with things as we wish.
1583  *
1584  *    This is only the *default* implementation.  it is possible for
1585  *    individual drivers to supply their own version of this function, and
1586  *    if the maintainer wishes to do this, it is strongly suggested that
1587  *    this function be taken as a template and modified.  this function
1588  *    was designed to correctly handle problems for about 95% of the
1589  *    different cases out there, and it should always provide at least a
1590  *    reasonable amount of error recovery.
1591  *
1592  *    Any command marked 'failed' or 'timeout' must eventually have
1593  *    scsi_finish_cmd() called for it.  we do all of the retry stuff
1594  *    here, so when we restart the host after we return it should have an
1595  *    empty queue.
1596  **/
1597 static void scsi_unjam_host(struct Scsi_Host *shost)
1598 {
1599 	unsigned long flags;
1600 	LIST_HEAD(eh_work_q);
1601 	LIST_HEAD(eh_done_q);
1602 
1603 	spin_lock_irqsave(shost->host_lock, flags);
1604 	list_splice_init(&shost->eh_cmd_q, &eh_work_q);
1605 	spin_unlock_irqrestore(shost->host_lock, flags);
1606 
1607 	SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q));
1608 
1609 	if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q))
1610 		if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q))
1611 			scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q);
1612 
1613 	scsi_eh_flush_done_q(&eh_done_q);
1614 }
1615 
1616 /**
1617  * scsi_error_handler - Handle errors/timeouts of SCSI cmds.
1618  * @data:	Host for which we are running.
1619  *
1620  * Notes:
1621  *    This is always run in the context of a kernel thread.  The idea is
1622  *    that we start this thing up when the kernel starts up (one per host
1623  *    that we detect), and it immediately goes to sleep and waits for some
1624  *    event (i.e. failure).  When this takes place, we have the job of
1625  *    trying to unjam the bus and restarting things.
1626  **/
1627 int scsi_error_handler(void *data)
1628 {
1629 	struct Scsi_Host *shost = (struct Scsi_Host *) data;
1630 	int rtn;
1631 	DECLARE_MUTEX_LOCKED(sem);
1632 
1633 	/*
1634 	 *    Flush resources
1635 	 */
1636 
1637 	daemonize("scsi_eh_%d", shost->host_no);
1638 
1639 	current->flags |= PF_NOFREEZE;
1640 
1641 	shost->eh_wait = &sem;
1642 	shost->ehandler = current;
1643 
1644 	/*
1645 	 * Wake up the thread that created us.
1646 	 */
1647 	SCSI_LOG_ERROR_RECOVERY(3, printk("Wake up parent of"
1648 					  " scsi_eh_%d\n",shost->host_no));
1649 
1650 	complete(shost->eh_notify);
1651 
1652 	while (1) {
1653 		/*
1654 		 * If we get a signal, it means we are supposed to go
1655 		 * away and die.  This typically happens if the user is
1656 		 * trying to unload a module.
1657 		 */
1658 		SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler"
1659 						  " scsi_eh_%d"
1660 						  " sleeping\n",shost->host_no));
1661 
1662 		/*
1663 		 * Note - we always use down_interruptible with the semaphore
1664 		 * even if the module was loaded as part of the kernel.  The
1665 		 * reason is that down() will cause this thread to be counted
1666 		 * in the load average as a running process, and down
1667 		 * interruptible doesn't.  Given that we need to allow this
1668 		 * thread to die if the driver was loaded as a module, using
1669 		 * semaphores isn't unreasonable.
1670 		 */
1671 		down_interruptible(&sem);
1672 		if (shost->eh_kill)
1673 			break;
1674 
1675 		SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler"
1676 						  " scsi_eh_%d waking"
1677 						  " up\n",shost->host_no));
1678 
1679 		shost->eh_active = 1;
1680 
1681 		/*
1682 		 * We have a host that is failing for some reason.  Figure out
1683 		 * what we need to do to get it up and online again (if we can).
1684 		 * If we fail, we end up taking the thing offline.
1685 		 */
1686 		if (shost->hostt->eh_strategy_handler)
1687 			rtn = shost->hostt->eh_strategy_handler(shost);
1688 		else
1689 			scsi_unjam_host(shost);
1690 
1691 		shost->eh_active = 0;
1692 
1693 		/*
1694 		 * Note - if the above fails completely, the action is to take
1695 		 * individual devices offline and flush the queue of any
1696 		 * outstanding requests that may have been pending.  When we
1697 		 * restart, we restart any I/O to any other devices on the bus
1698 		 * which are still online.
1699 		 */
1700 		scsi_restart_operations(shost);
1701 
1702 	}
1703 
1704 	SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler scsi_eh_%d"
1705 					  " exiting\n",shost->host_no));
1706 
1707 	/*
1708 	 * Make sure that nobody tries to wake us up again.
1709 	 */
1710 	shost->eh_wait = NULL;
1711 
1712 	/*
1713 	 * Knock this down too.  From this point on, the host is flying
1714 	 * without a pilot.  If this is because the module is being unloaded,
1715 	 * that's fine.  If the user sent a signal to this thing, we are
1716 	 * potentially in real danger.
1717 	 */
1718 	shost->eh_active = 0;
1719 	shost->ehandler = NULL;
1720 
1721 	/*
1722 	 * If anyone is waiting for us to exit (i.e. someone trying to unload
1723 	 * a driver), then wake up that process to let them know we are on
1724 	 * the way out the door.
1725 	 */
1726 	complete_and_exit(shost->eh_notify, 0);
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Function:    scsi_report_bus_reset()
1732  *
1733  * Purpose:     Utility function used by low-level drivers to report that
1734  *		they have observed a bus reset on the bus being handled.
1735  *
1736  * Arguments:   shost       - Host in question
1737  *		channel     - channel on which reset was observed.
1738  *
1739  * Returns:     Nothing
1740  *
1741  * Lock status: Host lock must be held.
1742  *
1743  * Notes:       This only needs to be called if the reset is one which
1744  *		originates from an unknown location.  Resets originated
1745  *		by the mid-level itself don't need to call this, but there
1746  *		should be no harm.
1747  *
1748  *		The main purpose of this is to make sure that a CHECK_CONDITION
1749  *		is properly treated.
1750  */
1751 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel)
1752 {
1753 	struct scsi_device *sdev;
1754 
1755 	__shost_for_each_device(sdev, shost) {
1756 		if (channel == sdev->channel) {
1757 			sdev->was_reset = 1;
1758 			sdev->expecting_cc_ua = 1;
1759 		}
1760 	}
1761 }
1762 EXPORT_SYMBOL(scsi_report_bus_reset);
1763 
1764 /*
1765  * Function:    scsi_report_device_reset()
1766  *
1767  * Purpose:     Utility function used by low-level drivers to report that
1768  *		they have observed a device reset on the device being handled.
1769  *
1770  * Arguments:   shost       - Host in question
1771  *		channel     - channel on which reset was observed
1772  *		target	    - target on which reset was observed
1773  *
1774  * Returns:     Nothing
1775  *
1776  * Lock status: Host lock must be held
1777  *
1778  * Notes:       This only needs to be called if the reset is one which
1779  *		originates from an unknown location.  Resets originated
1780  *		by the mid-level itself don't need to call this, but there
1781  *		should be no harm.
1782  *
1783  *		The main purpose of this is to make sure that a CHECK_CONDITION
1784  *		is properly treated.
1785  */
1786 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target)
1787 {
1788 	struct scsi_device *sdev;
1789 
1790 	__shost_for_each_device(sdev, shost) {
1791 		if (channel == sdev->channel &&
1792 		    target == sdev->id) {
1793 			sdev->was_reset = 1;
1794 			sdev->expecting_cc_ua = 1;
1795 		}
1796 	}
1797 }
1798 EXPORT_SYMBOL(scsi_report_device_reset);
1799 
1800 static void
1801 scsi_reset_provider_done_command(struct scsi_cmnd *scmd)
1802 {
1803 }
1804 
1805 /*
1806  * Function:	scsi_reset_provider
1807  *
1808  * Purpose:	Send requested reset to a bus or device at any phase.
1809  *
1810  * Arguments:	device	- device to send reset to
1811  *		flag - reset type (see scsi.h)
1812  *
1813  * Returns:	SUCCESS/FAILURE.
1814  *
1815  * Notes:	This is used by the SCSI Generic driver to provide
1816  *		Bus/Device reset capability.
1817  */
1818 int
1819 scsi_reset_provider(struct scsi_device *dev, int flag)
1820 {
1821 	struct scsi_cmnd *scmd = scsi_get_command(dev, GFP_KERNEL);
1822 	struct request req;
1823 	int rtn;
1824 
1825 	scmd->request = &req;
1826 	memset(&scmd->eh_timeout, 0, sizeof(scmd->eh_timeout));
1827 	scmd->request->rq_status      	= RQ_SCSI_BUSY;
1828 	scmd->state                   	= SCSI_STATE_INITIALIZING;
1829 	scmd->owner	     		= SCSI_OWNER_MIDLEVEL;
1830 
1831 	memset(&scmd->cmnd, '\0', sizeof(scmd->cmnd));
1832 
1833 	scmd->scsi_done		= scsi_reset_provider_done_command;
1834 	scmd->done			= NULL;
1835 	scmd->buffer			= NULL;
1836 	scmd->bufflen			= 0;
1837 	scmd->request_buffer		= NULL;
1838 	scmd->request_bufflen		= 0;
1839 	scmd->abort_reason		= DID_ABORT;
1840 
1841 	scmd->cmd_len			= 0;
1842 
1843 	scmd->sc_data_direction		= DMA_BIDIRECTIONAL;
1844 	scmd->sc_request		= NULL;
1845 	scmd->sc_magic			= SCSI_CMND_MAGIC;
1846 
1847 	init_timer(&scmd->eh_timeout);
1848 
1849 	/*
1850 	 * Sometimes the command can get back into the timer chain,
1851 	 * so use the pid as an identifier.
1852 	 */
1853 	scmd->pid			= 0;
1854 
1855 	switch (flag) {
1856 	case SCSI_TRY_RESET_DEVICE:
1857 		rtn = scsi_try_bus_device_reset(scmd);
1858 		if (rtn == SUCCESS)
1859 			break;
1860 		/* FALLTHROUGH */
1861 	case SCSI_TRY_RESET_BUS:
1862 		rtn = scsi_try_bus_reset(scmd);
1863 		if (rtn == SUCCESS)
1864 			break;
1865 		/* FALLTHROUGH */
1866 	case SCSI_TRY_RESET_HOST:
1867 		rtn = scsi_try_host_reset(scmd);
1868 		break;
1869 	default:
1870 		rtn = FAILED;
1871 	}
1872 
1873 	scsi_delete_timer(scmd);
1874 	scsi_next_command(scmd);
1875 	return rtn;
1876 }
1877 EXPORT_SYMBOL(scsi_reset_provider);
1878 
1879 /**
1880  * scsi_normalize_sense - normalize main elements from either fixed or
1881  *			descriptor sense data format into a common format.
1882  *
1883  * @sense_buffer:	byte array containing sense data returned by device
1884  * @sb_len:		number of valid bytes in sense_buffer
1885  * @sshdr:		pointer to instance of structure that common
1886  *			elements are written to.
1887  *
1888  * Notes:
1889  *	The "main elements" from sense data are: response_code, sense_key,
1890  *	asc, ascq and additional_length (only for descriptor format).
1891  *
1892  *	Typically this function can be called after a device has
1893  *	responded to a SCSI command with the CHECK_CONDITION status.
1894  *
1895  * Return value:
1896  *	1 if valid sense data information found, else 0;
1897  **/
1898 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len,
1899                          struct scsi_sense_hdr *sshdr)
1900 {
1901 	if (!sense_buffer || !sb_len || (sense_buffer[0] & 0x70) != 0x70)
1902 		return 0;
1903 
1904 	memset(sshdr, 0, sizeof(struct scsi_sense_hdr));
1905 
1906 	sshdr->response_code = (sense_buffer[0] & 0x7f);
1907 	if (sshdr->response_code >= 0x72) {
1908 		/*
1909 		 * descriptor format
1910 		 */
1911 		if (sb_len > 1)
1912 			sshdr->sense_key = (sense_buffer[1] & 0xf);
1913 		if (sb_len > 2)
1914 			sshdr->asc = sense_buffer[2];
1915 		if (sb_len > 3)
1916 			sshdr->ascq = sense_buffer[3];
1917 		if (sb_len > 7)
1918 			sshdr->additional_length = sense_buffer[7];
1919 	} else {
1920 		/*
1921 		 * fixed format
1922 		 */
1923 		if (sb_len > 2)
1924 			sshdr->sense_key = (sense_buffer[2] & 0xf);
1925 		if (sb_len > 7) {
1926 			sb_len = (sb_len < (sense_buffer[7] + 8)) ?
1927 					 sb_len : (sense_buffer[7] + 8);
1928 			if (sb_len > 12)
1929 				sshdr->asc = sense_buffer[12];
1930 			if (sb_len > 13)
1931 				sshdr->ascq = sense_buffer[13];
1932 		}
1933 	}
1934 
1935 	return 1;
1936 }
1937 EXPORT_SYMBOL(scsi_normalize_sense);
1938 
1939 int scsi_request_normalize_sense(struct scsi_request *sreq,
1940 				 struct scsi_sense_hdr *sshdr)
1941 {
1942 	return scsi_normalize_sense(sreq->sr_sense_buffer,
1943 			sizeof(sreq->sr_sense_buffer), sshdr);
1944 }
1945 EXPORT_SYMBOL(scsi_request_normalize_sense);
1946 
1947 int scsi_command_normalize_sense(struct scsi_cmnd *cmd,
1948 				 struct scsi_sense_hdr *sshdr)
1949 {
1950 	return scsi_normalize_sense(cmd->sense_buffer,
1951 			sizeof(cmd->sense_buffer), sshdr);
1952 }
1953 EXPORT_SYMBOL(scsi_command_normalize_sense);
1954 
1955 /**
1956  * scsi_sense_desc_find - search for a given descriptor type in
1957  *			descriptor sense data format.
1958  *
1959  * @sense_buffer:	byte array of descriptor format sense data
1960  * @sb_len:		number of valid bytes in sense_buffer
1961  * @desc_type:		value of descriptor type to find
1962  *			(e.g. 0 -> information)
1963  *
1964  * Notes:
1965  *	only valid when sense data is in descriptor format
1966  *
1967  * Return value:
1968  *	pointer to start of (first) descriptor if found else NULL
1969  **/
1970 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len,
1971 				int desc_type)
1972 {
1973 	int add_sen_len, add_len, desc_len, k;
1974 	const u8 * descp;
1975 
1976 	if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7])))
1977 		return NULL;
1978 	if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73))
1979 		return NULL;
1980 	add_sen_len = (add_sen_len < (sb_len - 8)) ?
1981 			add_sen_len : (sb_len - 8);
1982 	descp = &sense_buffer[8];
1983 	for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) {
1984 		descp += desc_len;
1985 		add_len = (k < (add_sen_len - 1)) ? descp[1]: -1;
1986 		desc_len = add_len + 2;
1987 		if (descp[0] == desc_type)
1988 			return descp;
1989 		if (add_len < 0) // short descriptor ??
1990 			break;
1991 	}
1992 	return NULL;
1993 }
1994 EXPORT_SYMBOL(scsi_sense_desc_find);
1995 
1996 /**
1997  * scsi_get_sense_info_fld - attempts to get information field from
1998  *			sense data (either fixed or descriptor format)
1999  *
2000  * @sense_buffer:	byte array of sense data
2001  * @sb_len:		number of valid bytes in sense_buffer
2002  * @info_out:		pointer to 64 integer where 8 or 4 byte information
2003  *			field will be placed if found.
2004  *
2005  * Return value:
2006  *	1 if information field found, 0 if not found.
2007  **/
2008 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len,
2009 			    u64 * info_out)
2010 {
2011 	int j;
2012 	const u8 * ucp;
2013 	u64 ull;
2014 
2015 	if (sb_len < 7)
2016 		return 0;
2017 	switch (sense_buffer[0] & 0x7f) {
2018 	case 0x70:
2019 	case 0x71:
2020 		if (sense_buffer[0] & 0x80) {
2021 			*info_out = (sense_buffer[3] << 24) +
2022 				    (sense_buffer[4] << 16) +
2023 				    (sense_buffer[5] << 8) + sense_buffer[6];
2024 			return 1;
2025 		} else
2026 			return 0;
2027 	case 0x72:
2028 	case 0x73:
2029 		ucp = scsi_sense_desc_find(sense_buffer, sb_len,
2030 					   0 /* info desc */);
2031 		if (ucp && (0xa == ucp[1])) {
2032 			ull = 0;
2033 			for (j = 0; j < 8; ++j) {
2034 				if (j > 0)
2035 					ull <<= 8;
2036 				ull |= ucp[4 + j];
2037 			}
2038 			*info_out = ull;
2039 			return 1;
2040 		} else
2041 			return 0;
2042 	default:
2043 		return 0;
2044 	}
2045 }
2046 EXPORT_SYMBOL(scsi_get_sense_info_fld);
2047