xref: /linux/drivers/scsi/scsi_error.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *  scsi_error.c Copyright (C) 1997 Eric Youngdale
3  *
4  *  SCSI error/timeout handling
5  *      Initial versions: Eric Youngdale.  Based upon conversations with
6  *                        Leonard Zubkoff and David Miller at Linux Expo,
7  *                        ideas originating from all over the place.
8  *
9  *	Restructured scsi_unjam_host and associated functions.
10  *	September 04, 2002 Mike Anderson (andmike@us.ibm.com)
11  *
12  *	Forward port of Russell King's (rmk@arm.linux.org.uk) changes and
13  *	minor  cleanups.
14  *	September 30, 2002 Mike Anderson (andmike@us.ibm.com)
15  */
16 
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/timer.h>
20 #include <linux/string.h>
21 #include <linux/slab.h>
22 #include <linux/kernel.h>
23 #include <linux/interrupt.h>
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_eh.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_ioctl.h>
33 #include <scsi/scsi_request.h>
34 
35 #include "scsi_priv.h"
36 #include "scsi_logging.h"
37 
38 #define SENSE_TIMEOUT		(10*HZ)
39 #define START_UNIT_TIMEOUT	(30*HZ)
40 
41 /*
42  * These should *probably* be handled by the host itself.
43  * Since it is allowed to sleep, it probably should.
44  */
45 #define BUS_RESET_SETTLE_TIME   (10)
46 #define HOST_RESET_SETTLE_TIME  (10)
47 
48 /* called with shost->host_lock held */
49 void scsi_eh_wakeup(struct Scsi_Host *shost)
50 {
51 	if (shost->host_busy == shost->host_failed) {
52 		up(shost->eh_wait);
53 		SCSI_LOG_ERROR_RECOVERY(5,
54 				printk("Waking error handler thread\n"));
55 	}
56 }
57 
58 /**
59  * scsi_eh_scmd_add - add scsi cmd to error handling.
60  * @scmd:	scmd to run eh on.
61  * @eh_flag:	optional SCSI_EH flag.
62  *
63  * Return value:
64  *	0 on failure.
65  **/
66 int scsi_eh_scmd_add(struct scsi_cmnd *scmd, int eh_flag)
67 {
68 	struct Scsi_Host *shost = scmd->device->host;
69 	unsigned long flags;
70 
71 	if (shost->eh_wait == NULL)
72 		return 0;
73 
74 	spin_lock_irqsave(shost->host_lock, flags);
75 
76 	scmd->eh_eflags |= eh_flag;
77 	list_add_tail(&scmd->eh_entry, &shost->eh_cmd_q);
78 	set_bit(SHOST_RECOVERY, &shost->shost_state);
79 	shost->host_failed++;
80 	scsi_eh_wakeup(shost);
81 	spin_unlock_irqrestore(shost->host_lock, flags);
82 	return 1;
83 }
84 
85 /**
86  * scsi_add_timer - Start timeout timer for a single scsi command.
87  * @scmd:	scsi command that is about to start running.
88  * @timeout:	amount of time to allow this command to run.
89  * @complete:	timeout function to call if timer isn't canceled.
90  *
91  * Notes:
92  *    This should be turned into an inline function.  Each scsi command
93  *    has its own timer, and as it is added to the queue, we set up the
94  *    timer.  When the command completes, we cancel the timer.
95  **/
96 void scsi_add_timer(struct scsi_cmnd *scmd, int timeout,
97 		    void (*complete)(struct scsi_cmnd *))
98 {
99 
100 	/*
101 	 * If the clock was already running for this command, then
102 	 * first delete the timer.  The timer handling code gets rather
103 	 * confused if we don't do this.
104 	 */
105 	if (scmd->eh_timeout.function)
106 		del_timer(&scmd->eh_timeout);
107 
108 	scmd->eh_timeout.data = (unsigned long)scmd;
109 	scmd->eh_timeout.expires = jiffies + timeout;
110 	scmd->eh_timeout.function = (void (*)(unsigned long)) complete;
111 
112 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p, time:"
113 					  " %d, (%p)\n", __FUNCTION__,
114 					  scmd, timeout, complete));
115 
116 	add_timer(&scmd->eh_timeout);
117 }
118 EXPORT_SYMBOL(scsi_add_timer);
119 
120 /**
121  * scsi_delete_timer - Delete/cancel timer for a given function.
122  * @scmd:	Cmd that we are canceling timer for
123  *
124  * Notes:
125  *     This should be turned into an inline function.
126  *
127  * Return value:
128  *     1 if we were able to detach the timer.  0 if we blew it, and the
129  *     timer function has already started to run.
130  **/
131 int scsi_delete_timer(struct scsi_cmnd *scmd)
132 {
133 	int rtn;
134 
135 	rtn = del_timer(&scmd->eh_timeout);
136 
137 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: scmd: %p,"
138 					 " rtn: %d\n", __FUNCTION__,
139 					 scmd, rtn));
140 
141 	scmd->eh_timeout.data = (unsigned long)NULL;
142 	scmd->eh_timeout.function = NULL;
143 
144 	return rtn;
145 }
146 EXPORT_SYMBOL(scsi_delete_timer);
147 
148 /**
149  * scsi_times_out - Timeout function for normal scsi commands.
150  * @scmd:	Cmd that is timing out.
151  *
152  * Notes:
153  *     We do not need to lock this.  There is the potential for a race
154  *     only in that the normal completion handling might run, but if the
155  *     normal completion function determines that the timer has already
156  *     fired, then it mustn't do anything.
157  **/
158 void scsi_times_out(struct scsi_cmnd *scmd)
159 {
160 	scsi_log_completion(scmd, TIMEOUT_ERROR);
161 
162 	if (scmd->device->host->hostt->eh_timed_out)
163 		switch (scmd->device->host->hostt->eh_timed_out(scmd)) {
164 		case EH_HANDLED:
165 			__scsi_done(scmd);
166 			return;
167 		case EH_RESET_TIMER:
168 			/* This allows a single retry even of a command
169 			 * with allowed == 0 */
170 			if (scmd->retries++ > scmd->allowed)
171 				break;
172 			scsi_add_timer(scmd, scmd->timeout_per_command,
173 				       scsi_times_out);
174 			return;
175 		case EH_NOT_HANDLED:
176 			break;
177 		}
178 
179 	if (unlikely(!scsi_eh_scmd_add(scmd, SCSI_EH_CANCEL_CMD))) {
180 		panic("Error handler thread not present at %p %p %s %d",
181 		      scmd, scmd->device->host, __FILE__, __LINE__);
182 	}
183 }
184 
185 /**
186  * scsi_block_when_processing_errors - Prevent cmds from being queued.
187  * @sdev:	Device on which we are performing recovery.
188  *
189  * Description:
190  *     We block until the host is out of error recovery, and then check to
191  *     see whether the host or the device is offline.
192  *
193  * Return value:
194  *     0 when dev was taken offline by error recovery. 1 OK to proceed.
195  **/
196 int scsi_block_when_processing_errors(struct scsi_device *sdev)
197 {
198 	int online;
199 
200 	wait_event(sdev->host->host_wait, (!test_bit(SHOST_RECOVERY, &sdev->host->shost_state)));
201 
202 	online = scsi_device_online(sdev);
203 
204 	SCSI_LOG_ERROR_RECOVERY(5, printk("%s: rtn: %d\n", __FUNCTION__,
205 					  online));
206 
207 	return online;
208 }
209 EXPORT_SYMBOL(scsi_block_when_processing_errors);
210 
211 #ifdef CONFIG_SCSI_LOGGING
212 /**
213  * scsi_eh_prt_fail_stats - Log info on failures.
214  * @shost:	scsi host being recovered.
215  * @work_q:	Queue of scsi cmds to process.
216  **/
217 static inline void scsi_eh_prt_fail_stats(struct Scsi_Host *shost,
218 					  struct list_head *work_q)
219 {
220 	struct scsi_cmnd *scmd;
221 	struct scsi_device *sdev;
222 	int total_failures = 0;
223 	int cmd_failed = 0;
224 	int cmd_cancel = 0;
225 	int devices_failed = 0;
226 
227 	shost_for_each_device(sdev, shost) {
228 		list_for_each_entry(scmd, work_q, eh_entry) {
229 			if (scmd->device == sdev) {
230 				++total_failures;
231 				if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD)
232 					++cmd_cancel;
233 				else
234 					++cmd_failed;
235 			}
236 		}
237 
238 		if (cmd_cancel || cmd_failed) {
239 			SCSI_LOG_ERROR_RECOVERY(3,
240 				printk("%s: %d:%d:%d:%d cmds failed: %d,"
241 				       " cancel: %d\n",
242 				       __FUNCTION__, shost->host_no,
243 				       sdev->channel, sdev->id, sdev->lun,
244 				       cmd_failed, cmd_cancel));
245 			cmd_cancel = 0;
246 			cmd_failed = 0;
247 			++devices_failed;
248 		}
249 	}
250 
251 	SCSI_LOG_ERROR_RECOVERY(2, printk("Total of %d commands on %d"
252 					  " devices require eh work\n",
253 				  total_failures, devices_failed));
254 }
255 #endif
256 
257 /**
258  * scsi_check_sense - Examine scsi cmd sense
259  * @scmd:	Cmd to have sense checked.
260  *
261  * Return value:
262  * 	SUCCESS or FAILED or NEEDS_RETRY
263  *
264  * Notes:
265  *	When a deferred error is detected the current command has
266  *	not been executed and needs retrying.
267  **/
268 static int scsi_check_sense(struct scsi_cmnd *scmd)
269 {
270 	struct scsi_sense_hdr sshdr;
271 
272 	if (! scsi_command_normalize_sense(scmd, &sshdr))
273 		return FAILED;	/* no valid sense data */
274 
275 	if (scsi_sense_is_deferred(&sshdr))
276 		return NEEDS_RETRY;
277 
278 	/*
279 	 * Previous logic looked for FILEMARK, EOM or ILI which are
280 	 * mainly associated with tapes and returned SUCCESS.
281 	 */
282 	if (sshdr.response_code == 0x70) {
283 		/* fixed format */
284 		if (scmd->sense_buffer[2] & 0xe0)
285 			return SUCCESS;
286 	} else {
287 		/*
288 		 * descriptor format: look for "stream commands sense data
289 		 * descriptor" (see SSC-3). Assume single sense data
290 		 * descriptor. Ignore ILI from SBC-2 READ LONG and WRITE LONG.
291 		 */
292 		if ((sshdr.additional_length > 3) &&
293 		    (scmd->sense_buffer[8] == 0x4) &&
294 		    (scmd->sense_buffer[11] & 0xe0))
295 			return SUCCESS;
296 	}
297 
298 	switch (sshdr.sense_key) {
299 	case NO_SENSE:
300 		return SUCCESS;
301 	case RECOVERED_ERROR:
302 		return /* soft_error */ SUCCESS;
303 
304 	case ABORTED_COMMAND:
305 		return NEEDS_RETRY;
306 	case NOT_READY:
307 	case UNIT_ATTENTION:
308 		/*
309 		 * if we are expecting a cc/ua because of a bus reset that we
310 		 * performed, treat this just as a retry.  otherwise this is
311 		 * information that we should pass up to the upper-level driver
312 		 * so that we can deal with it there.
313 		 */
314 		if (scmd->device->expecting_cc_ua) {
315 			scmd->device->expecting_cc_ua = 0;
316 			return NEEDS_RETRY;
317 		}
318 		/*
319 		 * if the device is in the process of becoming ready, we
320 		 * should retry.
321 		 */
322 		if ((sshdr.asc == 0x04) && (sshdr.ascq == 0x01))
323 			return NEEDS_RETRY;
324 		/*
325 		 * if the device is not started, we need to wake
326 		 * the error handler to start the motor
327 		 */
328 		if (scmd->device->allow_restart &&
329 		    (sshdr.asc == 0x04) && (sshdr.ascq == 0x02))
330 			return FAILED;
331 		return SUCCESS;
332 
333 		/* these three are not supported */
334 	case COPY_ABORTED:
335 	case VOLUME_OVERFLOW:
336 	case MISCOMPARE:
337 		return SUCCESS;
338 
339 	case MEDIUM_ERROR:
340 		return NEEDS_RETRY;
341 
342 	case HARDWARE_ERROR:
343 		if (scmd->device->retry_hwerror)
344 			return NEEDS_RETRY;
345 		else
346 			return SUCCESS;
347 
348 	case ILLEGAL_REQUEST:
349 	case BLANK_CHECK:
350 	case DATA_PROTECT:
351 	default:
352 		return SUCCESS;
353 	}
354 }
355 
356 /**
357  * scsi_eh_completed_normally - Disposition a eh cmd on return from LLD.
358  * @scmd:	SCSI cmd to examine.
359  *
360  * Notes:
361  *    This is *only* called when we are examining the status of commands
362  *    queued during error recovery.  the main difference here is that we
363  *    don't allow for the possibility of retries here, and we are a lot
364  *    more restrictive about what we consider acceptable.
365  **/
366 static int scsi_eh_completed_normally(struct scsi_cmnd *scmd)
367 {
368 	/*
369 	 * first check the host byte, to see if there is anything in there
370 	 * that would indicate what we need to do.
371 	 */
372 	if (host_byte(scmd->result) == DID_RESET) {
373 		/*
374 		 * rats.  we are already in the error handler, so we now
375 		 * get to try and figure out what to do next.  if the sense
376 		 * is valid, we have a pretty good idea of what to do.
377 		 * if not, we mark it as FAILED.
378 		 */
379 		return scsi_check_sense(scmd);
380 	}
381 	if (host_byte(scmd->result) != DID_OK)
382 		return FAILED;
383 
384 	/*
385 	 * next, check the message byte.
386 	 */
387 	if (msg_byte(scmd->result) != COMMAND_COMPLETE)
388 		return FAILED;
389 
390 	/*
391 	 * now, check the status byte to see if this indicates
392 	 * anything special.
393 	 */
394 	switch (status_byte(scmd->result)) {
395 	case GOOD:
396 	case COMMAND_TERMINATED:
397 		return SUCCESS;
398 	case CHECK_CONDITION:
399 		return scsi_check_sense(scmd);
400 	case CONDITION_GOOD:
401 	case INTERMEDIATE_GOOD:
402 	case INTERMEDIATE_C_GOOD:
403 		/*
404 		 * who knows?  FIXME(eric)
405 		 */
406 		return SUCCESS;
407 	case BUSY:
408 	case QUEUE_FULL:
409 	case RESERVATION_CONFLICT:
410 	default:
411 		return FAILED;
412 	}
413 	return FAILED;
414 }
415 
416 /**
417  * scsi_eh_times_out - timeout function for error handling.
418  * @scmd:	Cmd that is timing out.
419  *
420  * Notes:
421  *    During error handling, the kernel thread will be sleeping waiting
422  *    for some action to complete on the device.  our only job is to
423  *    record that it timed out, and to wake up the thread.
424  **/
425 static void scsi_eh_times_out(struct scsi_cmnd *scmd)
426 {
427 	scmd->eh_eflags |= SCSI_EH_REC_TIMEOUT;
428 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd:%p\n", __FUNCTION__,
429 					  scmd));
430 
431 	up(scmd->device->host->eh_action);
432 }
433 
434 /**
435  * scsi_eh_done - Completion function for error handling.
436  * @scmd:	Cmd that is done.
437  **/
438 static void scsi_eh_done(struct scsi_cmnd *scmd)
439 {
440 	/*
441 	 * if the timeout handler is already running, then just set the
442 	 * flag which says we finished late, and return.  we have no
443 	 * way of stopping the timeout handler from running, so we must
444 	 * always defer to it.
445 	 */
446 	if (del_timer(&scmd->eh_timeout)) {
447 		scmd->request->rq_status = RQ_SCSI_DONE;
448 
449 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s scmd: %p result: %x\n",
450 					   __FUNCTION__, scmd, scmd->result));
451 
452 		up(scmd->device->host->eh_action);
453 	}
454 }
455 
456 /**
457  * scsi_send_eh_cmnd  - send a cmd to a device as part of error recovery.
458  * @scmd:	SCSI Cmd to send.
459  * @timeout:	Timeout for cmd.
460  *
461  * Notes:
462  *    The initialization of the structures is quite a bit different in
463  *    this case, and furthermore, there is a different completion handler
464  *    vs scsi_dispatch_cmd.
465  * Return value:
466  *    SUCCESS or FAILED or NEEDS_RETRY
467  **/
468 static int scsi_send_eh_cmnd(struct scsi_cmnd *scmd, int timeout)
469 {
470 	struct scsi_device *sdev = scmd->device;
471 	struct Scsi_Host *shost = sdev->host;
472 	DECLARE_MUTEX_LOCKED(sem);
473 	unsigned long flags;
474 	int rtn = SUCCESS;
475 
476 	/*
477 	 * we will use a queued command if possible, otherwise we will
478 	 * emulate the queuing and calling of completion function ourselves.
479 	 */
480 	if (sdev->scsi_level <= SCSI_2)
481 		scmd->cmnd[1] = (scmd->cmnd[1] & 0x1f) |
482 			(sdev->lun << 5 & 0xe0);
483 
484 	scsi_add_timer(scmd, timeout, scsi_eh_times_out);
485 
486 	/*
487 	 * set up the semaphore so we wait for the command to complete.
488 	 */
489 	shost->eh_action = &sem;
490 	scmd->request->rq_status = RQ_SCSI_BUSY;
491 
492 	spin_lock_irqsave(shost->host_lock, flags);
493 	scsi_log_send(scmd);
494 	shost->hostt->queuecommand(scmd, scsi_eh_done);
495 	spin_unlock_irqrestore(shost->host_lock, flags);
496 
497 	down(&sem);
498 	scsi_log_completion(scmd, SUCCESS);
499 
500 	shost->eh_action = NULL;
501 
502 	/*
503 	 * see if timeout.  if so, tell the host to forget about it.
504 	 * in other words, we don't want a callback any more.
505 	 */
506 	if (scmd->eh_eflags & SCSI_EH_REC_TIMEOUT) {
507 		scmd->eh_eflags &= ~SCSI_EH_REC_TIMEOUT;
508 
509 		/*
510 		 * as far as the low level driver is
511 		 * concerned, this command is still active, so
512 		 * we must give the low level driver a chance
513 		 * to abort it. (db)
514 		 *
515 		 * FIXME(eric) - we are not tracking whether we could
516 		 * abort a timed out command or not.  not sure how
517 		 * we should treat them differently anyways.
518 		 */
519 		if (shost->hostt->eh_abort_handler)
520 			shost->hostt->eh_abort_handler(scmd);
521 
522 		scmd->request->rq_status = RQ_SCSI_DONE;
523 		rtn = FAILED;
524 	}
525 
526 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd: %p, rtn:%x\n",
527 					  __FUNCTION__, scmd, rtn));
528 
529 	/*
530 	 * now examine the actual status codes to see whether the command
531 	 * actually did complete normally.
532 	 */
533 	if (rtn == SUCCESS) {
534 		rtn = scsi_eh_completed_normally(scmd);
535 		SCSI_LOG_ERROR_RECOVERY(3,
536 			printk("%s: scsi_eh_completed_normally %x\n",
537 			       __FUNCTION__, rtn));
538 		switch (rtn) {
539 		case SUCCESS:
540 		case NEEDS_RETRY:
541 		case FAILED:
542 			break;
543 		default:
544 			rtn = FAILED;
545 			break;
546 		}
547 	}
548 
549 	return rtn;
550 }
551 
552 /**
553  * scsi_request_sense - Request sense data from a particular target.
554  * @scmd:	SCSI cmd for request sense.
555  *
556  * Notes:
557  *    Some hosts automatically obtain this information, others require
558  *    that we obtain it on our own. This function will *not* return until
559  *    the command either times out, or it completes.
560  **/
561 static int scsi_request_sense(struct scsi_cmnd *scmd)
562 {
563 	static unsigned char generic_sense[6] =
564 	{REQUEST_SENSE, 0, 0, 0, 252, 0};
565 	unsigned char *scsi_result;
566 	int saved_result;
567 	int rtn;
568 
569 	memcpy(scmd->cmnd, generic_sense, sizeof(generic_sense));
570 
571 	scsi_result = kmalloc(252, GFP_ATOMIC | ((scmd->device->host->hostt->unchecked_isa_dma) ? __GFP_DMA : 0));
572 
573 
574 	if (unlikely(!scsi_result)) {
575 		printk(KERN_ERR "%s: cannot allocate scsi_result.\n",
576 		       __FUNCTION__);
577 		return FAILED;
578 	}
579 
580 	/*
581 	 * zero the sense buffer.  some host adapters automatically always
582 	 * request sense, so it is not a good idea that
583 	 * scmd->request_buffer and scmd->sense_buffer point to the same
584 	 * address (db).  0 is not a valid sense code.
585 	 */
586 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
587 	memset(scsi_result, 0, 252);
588 
589 	saved_result = scmd->result;
590 	scmd->request_buffer = scsi_result;
591 	scmd->request_bufflen = 252;
592 	scmd->use_sg = 0;
593 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
594 	scmd->sc_data_direction = DMA_FROM_DEVICE;
595 	scmd->underflow = 0;
596 
597 	rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT);
598 
599 	/* last chance to have valid sense data */
600 	if(!SCSI_SENSE_VALID(scmd)) {
601 		memcpy(scmd->sense_buffer, scmd->request_buffer,
602 		       sizeof(scmd->sense_buffer));
603 	}
604 
605 	kfree(scsi_result);
606 
607 	/*
608 	 * when we eventually call scsi_finish, we really wish to complete
609 	 * the original request, so let's restore the original data. (db)
610 	 */
611 	scsi_setup_cmd_retry(scmd);
612 	scmd->result = saved_result;
613 	return rtn;
614 }
615 
616 /**
617  * scsi_eh_finish_cmd - Handle a cmd that eh is finished with.
618  * @scmd:	Original SCSI cmd that eh has finished.
619  * @done_q:	Queue for processed commands.
620  *
621  * Notes:
622  *    We don't want to use the normal command completion while we are are
623  *    still handling errors - it may cause other commands to be queued,
624  *    and that would disturb what we are doing.  thus we really want to
625  *    keep a list of pending commands for final completion, and once we
626  *    are ready to leave error handling we handle completion for real.
627  **/
628 static void scsi_eh_finish_cmd(struct scsi_cmnd *scmd,
629 			       struct list_head *done_q)
630 {
631 	scmd->device->host->host_failed--;
632 	scmd->eh_eflags = 0;
633 
634 	/*
635 	 * set this back so that the upper level can correctly free up
636 	 * things.
637 	 */
638 	scsi_setup_cmd_retry(scmd);
639 	list_move_tail(&scmd->eh_entry, done_q);
640 }
641 
642 /**
643  * scsi_eh_get_sense - Get device sense data.
644  * @work_q:	Queue of commands to process.
645  * @done_q:	Queue of proccessed commands..
646  *
647  * Description:
648  *    See if we need to request sense information.  if so, then get it
649  *    now, so we have a better idea of what to do.
650  *
651  * Notes:
652  *    This has the unfortunate side effect that if a shost adapter does
653  *    not automatically request sense information, that we end up shutting
654  *    it down before we request it.
655  *
656  *    All drivers should request sense information internally these days,
657  *    so for now all I have to say is tough noogies if you end up in here.
658  *
659  *    XXX: Long term this code should go away, but that needs an audit of
660  *         all LLDDs first.
661  **/
662 static int scsi_eh_get_sense(struct list_head *work_q,
663 			     struct list_head *done_q)
664 {
665 	struct scsi_cmnd *scmd, *next;
666 	int rtn;
667 
668 	list_for_each_entry_safe(scmd, next, work_q, eh_entry) {
669 		if ((scmd->eh_eflags & SCSI_EH_CANCEL_CMD) ||
670 		    SCSI_SENSE_VALID(scmd))
671 			continue;
672 
673 		SCSI_LOG_ERROR_RECOVERY(2, printk("%s: requesting sense"
674 						  " for id: %d\n",
675 						  current->comm,
676 						  scmd->device->id));
677 		rtn = scsi_request_sense(scmd);
678 		if (rtn != SUCCESS)
679 			continue;
680 
681 		SCSI_LOG_ERROR_RECOVERY(3, printk("sense requested for %p"
682 						  " result %x\n", scmd,
683 						  scmd->result));
684 		SCSI_LOG_ERROR_RECOVERY(3, scsi_print_sense("bh", scmd));
685 
686 		rtn = scsi_decide_disposition(scmd);
687 
688 		/*
689 		 * if the result was normal, then just pass it along to the
690 		 * upper level.
691 		 */
692 		if (rtn == SUCCESS)
693 			/* we don't want this command reissued, just
694 			 * finished with the sense data, so set
695 			 * retries to the max allowed to ensure it
696 			 * won't get reissued */
697 			scmd->retries = scmd->allowed;
698 		else if (rtn != NEEDS_RETRY)
699 			continue;
700 
701 		scsi_eh_finish_cmd(scmd, done_q);
702 	}
703 
704 	return list_empty(work_q);
705 }
706 
707 /**
708  * scsi_try_to_abort_cmd - Ask host to abort a running command.
709  * @scmd:	SCSI cmd to abort from Lower Level.
710  *
711  * Notes:
712  *    This function will not return until the user's completion function
713  *    has been called.  there is no timeout on this operation.  if the
714  *    author of the low-level driver wishes this operation to be timed,
715  *    they can provide this facility themselves.  helper functions in
716  *    scsi_error.c can be supplied to make this easier to do.
717  **/
718 static int scsi_try_to_abort_cmd(struct scsi_cmnd *scmd)
719 {
720 	if (!scmd->device->host->hostt->eh_abort_handler)
721 		return FAILED;
722 
723 	/*
724 	 * scsi_done was called just after the command timed out and before
725 	 * we had a chance to process it. (db)
726 	 */
727 	if (scmd->serial_number == 0)
728 		return SUCCESS;
729 	return scmd->device->host->hostt->eh_abort_handler(scmd);
730 }
731 
732 /**
733  * scsi_eh_tur - Send TUR to device.
734  * @scmd:	Scsi cmd to send TUR
735  *
736  * Return value:
737  *    0 - Device is ready. 1 - Device NOT ready.
738  **/
739 static int scsi_eh_tur(struct scsi_cmnd *scmd)
740 {
741 	static unsigned char tur_command[6] = {TEST_UNIT_READY, 0, 0, 0, 0, 0};
742 	int retry_cnt = 1, rtn;
743 	int saved_result;
744 
745 retry_tur:
746 	memcpy(scmd->cmnd, tur_command, sizeof(tur_command));
747 
748 	/*
749 	 * zero the sense buffer.  the scsi spec mandates that any
750 	 * untransferred sense data should be interpreted as being zero.
751 	 */
752 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
753 
754 	saved_result = scmd->result;
755 	scmd->request_buffer = NULL;
756 	scmd->request_bufflen = 0;
757 	scmd->use_sg = 0;
758 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
759 	scmd->underflow = 0;
760 	scmd->sc_data_direction = DMA_NONE;
761 
762 	rtn = scsi_send_eh_cmnd(scmd, SENSE_TIMEOUT);
763 
764 	/*
765 	 * when we eventually call scsi_finish, we really wish to complete
766 	 * the original request, so let's restore the original data. (db)
767 	 */
768 	scsi_setup_cmd_retry(scmd);
769 	scmd->result = saved_result;
770 
771 	/*
772 	 * hey, we are done.  let's look to see what happened.
773 	 */
774 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n",
775 		__FUNCTION__, scmd, rtn));
776 	if (rtn == SUCCESS)
777 		return 0;
778 	else if (rtn == NEEDS_RETRY)
779 		if (retry_cnt--)
780 			goto retry_tur;
781 	return 1;
782 }
783 
784 /**
785  * scsi_eh_abort_cmds - abort canceled commands.
786  * @shost:	scsi host being recovered.
787  * @eh_done_q:	list_head for processed commands.
788  *
789  * Decription:
790  *    Try and see whether or not it makes sense to try and abort the
791  *    running command.  this only works out to be the case if we have one
792  *    command that has timed out.  if the command simply failed, it makes
793  *    no sense to try and abort the command, since as far as the shost
794  *    adapter is concerned, it isn't running.
795  **/
796 static int scsi_eh_abort_cmds(struct list_head *work_q,
797 			      struct list_head *done_q)
798 {
799 	struct scsi_cmnd *scmd, *next;
800 	int rtn;
801 
802 	list_for_each_entry_safe(scmd, next, work_q, eh_entry) {
803 		if (!(scmd->eh_eflags & SCSI_EH_CANCEL_CMD))
804 			continue;
805 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting cmd:"
806 						  "0x%p\n", current->comm,
807 						  scmd));
808 		rtn = scsi_try_to_abort_cmd(scmd);
809 		if (rtn == SUCCESS) {
810 			scmd->eh_eflags &= ~SCSI_EH_CANCEL_CMD;
811 			if (!scsi_device_online(scmd->device) ||
812 			    !scsi_eh_tur(scmd)) {
813 				scsi_eh_finish_cmd(scmd, done_q);
814 			}
815 
816 		} else
817 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: aborting"
818 							  " cmd failed:"
819 							  "0x%p\n",
820 							  current->comm,
821 							  scmd));
822 	}
823 
824 	return list_empty(work_q);
825 }
826 
827 /**
828  * scsi_try_bus_device_reset - Ask host to perform a BDR on a dev
829  * @scmd:	SCSI cmd used to send BDR
830  *
831  * Notes:
832  *    There is no timeout for this operation.  if this operation is
833  *    unreliable for a given host, then the host itself needs to put a
834  *    timer on it, and set the host back to a consistent state prior to
835  *    returning.
836  **/
837 static int scsi_try_bus_device_reset(struct scsi_cmnd *scmd)
838 {
839 	int rtn;
840 
841 	if (!scmd->device->host->hostt->eh_device_reset_handler)
842 		return FAILED;
843 
844 	rtn = scmd->device->host->hostt->eh_device_reset_handler(scmd);
845 	if (rtn == SUCCESS) {
846 		scmd->device->was_reset = 1;
847 		scmd->device->expecting_cc_ua = 1;
848 	}
849 
850 	return rtn;
851 }
852 
853 /**
854  * scsi_eh_try_stu - Send START_UNIT to device.
855  * @scmd:	Scsi cmd to send START_UNIT
856  *
857  * Return value:
858  *    0 - Device is ready. 1 - Device NOT ready.
859  **/
860 static int scsi_eh_try_stu(struct scsi_cmnd *scmd)
861 {
862 	static unsigned char stu_command[6] = {START_STOP, 0, 0, 0, 1, 0};
863 	int rtn;
864 	int saved_result;
865 
866 	if (!scmd->device->allow_restart)
867 		return 1;
868 
869 	memcpy(scmd->cmnd, stu_command, sizeof(stu_command));
870 
871 	/*
872 	 * zero the sense buffer.  the scsi spec mandates that any
873 	 * untransferred sense data should be interpreted as being zero.
874 	 */
875 	memset(scmd->sense_buffer, 0, sizeof(scmd->sense_buffer));
876 
877 	saved_result = scmd->result;
878 	scmd->request_buffer = NULL;
879 	scmd->request_bufflen = 0;
880 	scmd->use_sg = 0;
881 	scmd->cmd_len = COMMAND_SIZE(scmd->cmnd[0]);
882 	scmd->underflow = 0;
883 	scmd->sc_data_direction = DMA_NONE;
884 
885 	rtn = scsi_send_eh_cmnd(scmd, START_UNIT_TIMEOUT);
886 
887 	/*
888 	 * when we eventually call scsi_finish, we really wish to complete
889 	 * the original request, so let's restore the original data. (db)
890 	 */
891 	scsi_setup_cmd_retry(scmd);
892 	scmd->result = saved_result;
893 
894 	/*
895 	 * hey, we are done.  let's look to see what happened.
896 	 */
897 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: scmd %p rtn %x\n",
898 		__FUNCTION__, scmd, rtn));
899 	if (rtn == SUCCESS)
900 		return 0;
901 	return 1;
902 }
903 
904  /**
905  * scsi_eh_stu - send START_UNIT if needed
906  * @shost:	scsi host being recovered.
907  * @eh_done_q:	list_head for processed commands.
908  *
909  * Notes:
910  *    If commands are failing due to not ready, initializing command required,
911  *	try revalidating the device, which will end up sending a start unit.
912  **/
913 static int scsi_eh_stu(struct Scsi_Host *shost,
914 			      struct list_head *work_q,
915 			      struct list_head *done_q)
916 {
917 	struct scsi_cmnd *scmd, *stu_scmd, *next;
918 	struct scsi_device *sdev;
919 
920 	shost_for_each_device(sdev, shost) {
921 		stu_scmd = NULL;
922 		list_for_each_entry(scmd, work_q, eh_entry)
923 			if (scmd->device == sdev && SCSI_SENSE_VALID(scmd) &&
924 			    scsi_check_sense(scmd) == FAILED ) {
925 				stu_scmd = scmd;
926 				break;
927 			}
928 
929 		if (!stu_scmd)
930 			continue;
931 
932 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending START_UNIT to sdev:"
933 						  " 0x%p\n", current->comm, sdev));
934 
935 		if (!scsi_eh_try_stu(stu_scmd)) {
936 			if (!scsi_device_online(sdev) ||
937 			    !scsi_eh_tur(stu_scmd)) {
938 				list_for_each_entry_safe(scmd, next,
939 							  work_q, eh_entry) {
940 					if (scmd->device == sdev)
941 						scsi_eh_finish_cmd(scmd, done_q);
942 				}
943 			}
944 		} else {
945 			SCSI_LOG_ERROR_RECOVERY(3,
946 						printk("%s: START_UNIT failed to sdev:"
947 						       " 0x%p\n", current->comm, sdev));
948 		}
949 	}
950 
951 	return list_empty(work_q);
952 }
953 
954 
955 /**
956  * scsi_eh_bus_device_reset - send bdr if needed
957  * @shost:	scsi host being recovered.
958  * @eh_done_q:	list_head for processed commands.
959  *
960  * Notes:
961  *    Try a bus device reset.  still, look to see whether we have multiple
962  *    devices that are jammed or not - if we have multiple devices, it
963  *    makes no sense to try bus_device_reset - we really would need to try
964  *    a bus_reset instead.
965  **/
966 static int scsi_eh_bus_device_reset(struct Scsi_Host *shost,
967 				    struct list_head *work_q,
968 				    struct list_head *done_q)
969 {
970 	struct scsi_cmnd *scmd, *bdr_scmd, *next;
971 	struct scsi_device *sdev;
972 	int rtn;
973 
974 	shost_for_each_device(sdev, shost) {
975 		bdr_scmd = NULL;
976 		list_for_each_entry(scmd, work_q, eh_entry)
977 			if (scmd->device == sdev) {
978 				bdr_scmd = scmd;
979 				break;
980 			}
981 
982 		if (!bdr_scmd)
983 			continue;
984 
985 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BDR sdev:"
986 						  " 0x%p\n", current->comm,
987 						  sdev));
988 		rtn = scsi_try_bus_device_reset(bdr_scmd);
989 		if (rtn == SUCCESS) {
990 			if (!scsi_device_online(sdev) ||
991 			    !scsi_eh_tur(bdr_scmd)) {
992 				list_for_each_entry_safe(scmd, next,
993 							 work_q, eh_entry) {
994 					if (scmd->device == sdev)
995 						scsi_eh_finish_cmd(scmd,
996 								   done_q);
997 				}
998 			}
999 		} else {
1000 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BDR"
1001 							  " failed sdev:"
1002 							  "0x%p\n",
1003 							  current->comm,
1004 							   sdev));
1005 		}
1006 	}
1007 
1008 	return list_empty(work_q);
1009 }
1010 
1011 /**
1012  * scsi_try_bus_reset - ask host to perform a bus reset
1013  * @scmd:	SCSI cmd to send bus reset.
1014  **/
1015 static int scsi_try_bus_reset(struct scsi_cmnd *scmd)
1016 {
1017 	unsigned long flags;
1018 	int rtn;
1019 
1020 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Bus RST\n",
1021 					  __FUNCTION__));
1022 
1023 	if (!scmd->device->host->hostt->eh_bus_reset_handler)
1024 		return FAILED;
1025 
1026 	rtn = scmd->device->host->hostt->eh_bus_reset_handler(scmd);
1027 
1028 	if (rtn == SUCCESS) {
1029 		if (!scmd->device->host->hostt->skip_settle_delay)
1030 			ssleep(BUS_RESET_SETTLE_TIME);
1031 		spin_lock_irqsave(scmd->device->host->host_lock, flags);
1032 		scsi_report_bus_reset(scmd->device->host, scmd->device->channel);
1033 		spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1034 	}
1035 
1036 	return rtn;
1037 }
1038 
1039 /**
1040  * scsi_try_host_reset - ask host adapter to reset itself
1041  * @scmd:	SCSI cmd to send hsot reset.
1042  **/
1043 static int scsi_try_host_reset(struct scsi_cmnd *scmd)
1044 {
1045 	unsigned long flags;
1046 	int rtn;
1047 
1048 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Snd Host RST\n",
1049 					  __FUNCTION__));
1050 
1051 	if (!scmd->device->host->hostt->eh_host_reset_handler)
1052 		return FAILED;
1053 
1054 	rtn = scmd->device->host->hostt->eh_host_reset_handler(scmd);
1055 
1056 	if (rtn == SUCCESS) {
1057 		if (!scmd->device->host->hostt->skip_settle_delay)
1058 			ssleep(HOST_RESET_SETTLE_TIME);
1059 		spin_lock_irqsave(scmd->device->host->host_lock, flags);
1060 		scsi_report_bus_reset(scmd->device->host, scmd->device->channel);
1061 		spin_unlock_irqrestore(scmd->device->host->host_lock, flags);
1062 	}
1063 
1064 	return rtn;
1065 }
1066 
1067 /**
1068  * scsi_eh_bus_reset - send a bus reset
1069  * @shost:	scsi host being recovered.
1070  * @eh_done_q:	list_head for processed commands.
1071  **/
1072 static int scsi_eh_bus_reset(struct Scsi_Host *shost,
1073 			     struct list_head *work_q,
1074 			     struct list_head *done_q)
1075 {
1076 	struct scsi_cmnd *scmd, *chan_scmd, *next;
1077 	unsigned int channel;
1078 	int rtn;
1079 
1080 	/*
1081 	 * we really want to loop over the various channels, and do this on
1082 	 * a channel by channel basis.  we should also check to see if any
1083 	 * of the failed commands are on soft_reset devices, and if so, skip
1084 	 * the reset.
1085 	 */
1086 
1087 	for (channel = 0; channel <= shost->max_channel; channel++) {
1088 		chan_scmd = NULL;
1089 		list_for_each_entry(scmd, work_q, eh_entry) {
1090 			if (channel == scmd->device->channel) {
1091 				chan_scmd = scmd;
1092 				break;
1093 				/*
1094 				 * FIXME add back in some support for
1095 				 * soft_reset devices.
1096 				 */
1097 			}
1098 		}
1099 
1100 		if (!chan_scmd)
1101 			continue;
1102 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending BRST chan:"
1103 						  " %d\n", current->comm,
1104 						  channel));
1105 		rtn = scsi_try_bus_reset(chan_scmd);
1106 		if (rtn == SUCCESS) {
1107 			list_for_each_entry_safe(scmd, next, work_q, eh_entry) {
1108 				if (channel == scmd->device->channel)
1109 					if (!scsi_device_online(scmd->device) ||
1110 					    !scsi_eh_tur(scmd))
1111 						scsi_eh_finish_cmd(scmd,
1112 								   done_q);
1113 			}
1114 		} else {
1115 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: BRST"
1116 							  " failed chan: %d\n",
1117 							  current->comm,
1118 							  channel));
1119 		}
1120 	}
1121 	return list_empty(work_q);
1122 }
1123 
1124 /**
1125  * scsi_eh_host_reset - send a host reset
1126  * @work_q:	list_head for processed commands.
1127  * @done_q:	list_head for processed commands.
1128  **/
1129 static int scsi_eh_host_reset(struct list_head *work_q,
1130 			      struct list_head *done_q)
1131 {
1132 	struct scsi_cmnd *scmd, *next;
1133 	int rtn;
1134 
1135 	if (!list_empty(work_q)) {
1136 		scmd = list_entry(work_q->next,
1137 				  struct scsi_cmnd, eh_entry);
1138 
1139 		SCSI_LOG_ERROR_RECOVERY(3, printk("%s: Sending HRST\n"
1140 						  , current->comm));
1141 
1142 		rtn = scsi_try_host_reset(scmd);
1143 		if (rtn == SUCCESS) {
1144 			list_for_each_entry_safe(scmd, next, work_q, eh_entry) {
1145 				if (!scsi_device_online(scmd->device) ||
1146 				    (!scsi_eh_try_stu(scmd) && !scsi_eh_tur(scmd)) ||
1147 				    !scsi_eh_tur(scmd))
1148 					scsi_eh_finish_cmd(scmd, done_q);
1149 			}
1150 		} else {
1151 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: HRST"
1152 							  " failed\n",
1153 							  current->comm));
1154 		}
1155 	}
1156 	return list_empty(work_q);
1157 }
1158 
1159 /**
1160  * scsi_eh_offline_sdevs - offline scsi devices that fail to recover
1161  * @work_q:	list_head for processed commands.
1162  * @done_q:	list_head for processed commands.
1163  *
1164  **/
1165 static void scsi_eh_offline_sdevs(struct list_head *work_q,
1166 				  struct list_head *done_q)
1167 {
1168 	struct scsi_cmnd *scmd, *next;
1169 
1170 	list_for_each_entry_safe(scmd, next, work_q, eh_entry) {
1171 		printk(KERN_INFO "scsi: Device offlined - not"
1172 		       		" ready after error recovery: host"
1173 				" %d channel %d id %d lun %d\n",
1174 				scmd->device->host->host_no,
1175 				scmd->device->channel,
1176 				scmd->device->id,
1177 				scmd->device->lun);
1178 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1179 		if (scmd->eh_eflags & SCSI_EH_CANCEL_CMD) {
1180 			/*
1181 			 * FIXME: Handle lost cmds.
1182 			 */
1183 		}
1184 		scsi_eh_finish_cmd(scmd, done_q);
1185 	}
1186 	return;
1187 }
1188 
1189 /**
1190  * scsi_decide_disposition - Disposition a cmd on return from LLD.
1191  * @scmd:	SCSI cmd to examine.
1192  *
1193  * Notes:
1194  *    This is *only* called when we are examining the status after sending
1195  *    out the actual data command.  any commands that are queued for error
1196  *    recovery (e.g. test_unit_ready) do *not* come through here.
1197  *
1198  *    When this routine returns failed, it means the error handler thread
1199  *    is woken.  In cases where the error code indicates an error that
1200  *    doesn't require the error handler read (i.e. we don't need to
1201  *    abort/reset), this function should return SUCCESS.
1202  **/
1203 int scsi_decide_disposition(struct scsi_cmnd *scmd)
1204 {
1205 	int rtn;
1206 
1207 	/*
1208 	 * if the device is offline, then we clearly just pass the result back
1209 	 * up to the top level.
1210 	 */
1211 	if (!scsi_device_online(scmd->device)) {
1212 		SCSI_LOG_ERROR_RECOVERY(5, printk("%s: device offline - report"
1213 						  " as SUCCESS\n",
1214 						  __FUNCTION__));
1215 		return SUCCESS;
1216 	}
1217 
1218 	/*
1219 	 * first check the host byte, to see if there is anything in there
1220 	 * that would indicate what we need to do.
1221 	 */
1222 	switch (host_byte(scmd->result)) {
1223 	case DID_PASSTHROUGH:
1224 		/*
1225 		 * no matter what, pass this through to the upper layer.
1226 		 * nuke this special code so that it looks like we are saying
1227 		 * did_ok.
1228 		 */
1229 		scmd->result &= 0xff00ffff;
1230 		return SUCCESS;
1231 	case DID_OK:
1232 		/*
1233 		 * looks good.  drop through, and check the next byte.
1234 		 */
1235 		break;
1236 	case DID_NO_CONNECT:
1237 	case DID_BAD_TARGET:
1238 	case DID_ABORT:
1239 		/*
1240 		 * note - this means that we just report the status back
1241 		 * to the top level driver, not that we actually think
1242 		 * that it indicates SUCCESS.
1243 		 */
1244 		return SUCCESS;
1245 		/*
1246 		 * when the low level driver returns did_soft_error,
1247 		 * it is responsible for keeping an internal retry counter
1248 		 * in order to avoid endless loops (db)
1249 		 *
1250 		 * actually this is a bug in this function here.  we should
1251 		 * be mindful of the maximum number of retries specified
1252 		 * and not get stuck in a loop.
1253 		 */
1254 	case DID_SOFT_ERROR:
1255 		goto maybe_retry;
1256 	case DID_IMM_RETRY:
1257 		return NEEDS_RETRY;
1258 
1259 	case DID_REQUEUE:
1260 		return ADD_TO_MLQUEUE;
1261 
1262 	case DID_ERROR:
1263 		if (msg_byte(scmd->result) == COMMAND_COMPLETE &&
1264 		    status_byte(scmd->result) == RESERVATION_CONFLICT)
1265 			/*
1266 			 * execute reservation conflict processing code
1267 			 * lower down
1268 			 */
1269 			break;
1270 		/* fallthrough */
1271 
1272 	case DID_BUS_BUSY:
1273 	case DID_PARITY:
1274 		goto maybe_retry;
1275 	case DID_TIME_OUT:
1276 		/*
1277 		 * when we scan the bus, we get timeout messages for
1278 		 * these commands if there is no device available.
1279 		 * other hosts report did_no_connect for the same thing.
1280 		 */
1281 		if ((scmd->cmnd[0] == TEST_UNIT_READY ||
1282 		     scmd->cmnd[0] == INQUIRY)) {
1283 			return SUCCESS;
1284 		} else {
1285 			return FAILED;
1286 		}
1287 	case DID_RESET:
1288 		return SUCCESS;
1289 	default:
1290 		return FAILED;
1291 	}
1292 
1293 	/*
1294 	 * next, check the message byte.
1295 	 */
1296 	if (msg_byte(scmd->result) != COMMAND_COMPLETE)
1297 		return FAILED;
1298 
1299 	/*
1300 	 * check the status byte to see if this indicates anything special.
1301 	 */
1302 	switch (status_byte(scmd->result)) {
1303 	case QUEUE_FULL:
1304 		/*
1305 		 * the case of trying to send too many commands to a
1306 		 * tagged queueing device.
1307 		 */
1308 	case BUSY:
1309 		/*
1310 		 * device can't talk to us at the moment.  Should only
1311 		 * occur (SAM-3) when the task queue is empty, so will cause
1312 		 * the empty queue handling to trigger a stall in the
1313 		 * device.
1314 		 */
1315 		return ADD_TO_MLQUEUE;
1316 	case GOOD:
1317 	case COMMAND_TERMINATED:
1318 	case TASK_ABORTED:
1319 		return SUCCESS;
1320 	case CHECK_CONDITION:
1321 		rtn = scsi_check_sense(scmd);
1322 		if (rtn == NEEDS_RETRY)
1323 			goto maybe_retry;
1324 		/* if rtn == FAILED, we have no sense information;
1325 		 * returning FAILED will wake the error handler thread
1326 		 * to collect the sense and redo the decide
1327 		 * disposition */
1328 		return rtn;
1329 	case CONDITION_GOOD:
1330 	case INTERMEDIATE_GOOD:
1331 	case INTERMEDIATE_C_GOOD:
1332 	case ACA_ACTIVE:
1333 		/*
1334 		 * who knows?  FIXME(eric)
1335 		 */
1336 		return SUCCESS;
1337 
1338 	case RESERVATION_CONFLICT:
1339 		printk(KERN_INFO "scsi: reservation conflict: host"
1340                                 " %d channel %d id %d lun %d\n",
1341 		       scmd->device->host->host_no, scmd->device->channel,
1342 		       scmd->device->id, scmd->device->lun);
1343 		return SUCCESS; /* causes immediate i/o error */
1344 	default:
1345 		return FAILED;
1346 	}
1347 	return FAILED;
1348 
1349       maybe_retry:
1350 
1351 	/* we requeue for retry because the error was retryable, and
1352 	 * the request was not marked fast fail.  Note that above,
1353 	 * even if the request is marked fast fail, we still requeue
1354 	 * for queue congestion conditions (QUEUE_FULL or BUSY) */
1355 	if ((++scmd->retries) < scmd->allowed
1356 	    && !blk_noretry_request(scmd->request)) {
1357 		return NEEDS_RETRY;
1358 	} else {
1359 		/*
1360 		 * no more retries - report this one back to upper level.
1361 		 */
1362 		return SUCCESS;
1363 	}
1364 }
1365 
1366 /**
1367  * scsi_eh_lock_done - done function for eh door lock request
1368  * @scmd:	SCSI command block for the door lock request
1369  *
1370  * Notes:
1371  * 	We completed the asynchronous door lock request, and it has either
1372  * 	locked the door or failed.  We must free the command structures
1373  * 	associated with this request.
1374  **/
1375 static void scsi_eh_lock_done(struct scsi_cmnd *scmd)
1376 {
1377 	struct scsi_request *sreq = scmd->sc_request;
1378 
1379 	scsi_release_request(sreq);
1380 }
1381 
1382 
1383 /**
1384  * scsi_eh_lock_door - Prevent medium removal for the specified device
1385  * @sdev:	SCSI device to prevent medium removal
1386  *
1387  * Locking:
1388  * 	We must be called from process context; scsi_allocate_request()
1389  * 	may sleep.
1390  *
1391  * Notes:
1392  * 	We queue up an asynchronous "ALLOW MEDIUM REMOVAL" request on the
1393  * 	head of the devices request queue, and continue.
1394  *
1395  * Bugs:
1396  * 	scsi_allocate_request() may sleep waiting for existing requests to
1397  * 	be processed.  However, since we haven't kicked off any request
1398  * 	processing for this host, this may deadlock.
1399  *
1400  *	If scsi_allocate_request() fails for what ever reason, we
1401  *	completely forget to lock the door.
1402  **/
1403 static void scsi_eh_lock_door(struct scsi_device *sdev)
1404 {
1405 	struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1406 
1407 	if (unlikely(!sreq)) {
1408 		printk(KERN_ERR "%s: request allocate failed,"
1409 		       "prevent media removal cmd not sent\n", __FUNCTION__);
1410 		return;
1411 	}
1412 
1413 	sreq->sr_cmnd[0] = ALLOW_MEDIUM_REMOVAL;
1414 	sreq->sr_cmnd[1] = 0;
1415 	sreq->sr_cmnd[2] = 0;
1416 	sreq->sr_cmnd[3] = 0;
1417 	sreq->sr_cmnd[4] = SCSI_REMOVAL_PREVENT;
1418 	sreq->sr_cmnd[5] = 0;
1419 	sreq->sr_data_direction = DMA_NONE;
1420 	sreq->sr_bufflen = 0;
1421 	sreq->sr_buffer = NULL;
1422 	sreq->sr_allowed = 5;
1423 	sreq->sr_done = scsi_eh_lock_done;
1424 	sreq->sr_timeout_per_command = 10 * HZ;
1425 	sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
1426 
1427 	scsi_insert_special_req(sreq, 1);
1428 }
1429 
1430 
1431 /**
1432  * scsi_restart_operations - restart io operations to the specified host.
1433  * @shost:	Host we are restarting.
1434  *
1435  * Notes:
1436  *    When we entered the error handler, we blocked all further i/o to
1437  *    this device.  we need to 'reverse' this process.
1438  **/
1439 static void scsi_restart_operations(struct Scsi_Host *shost)
1440 {
1441 	struct scsi_device *sdev;
1442 
1443 	/*
1444 	 * If the door was locked, we need to insert a door lock request
1445 	 * onto the head of the SCSI request queue for the device.  There
1446 	 * is no point trying to lock the door of an off-line device.
1447 	 */
1448 	shost_for_each_device(sdev, shost) {
1449 		if (scsi_device_online(sdev) && sdev->locked)
1450 			scsi_eh_lock_door(sdev);
1451 	}
1452 
1453 	/*
1454 	 * next free up anything directly waiting upon the host.  this
1455 	 * will be requests for character device operations, and also for
1456 	 * ioctls to queued block devices.
1457 	 */
1458 	SCSI_LOG_ERROR_RECOVERY(3, printk("%s: waking up host to restart\n",
1459 					  __FUNCTION__));
1460 
1461 	clear_bit(SHOST_RECOVERY, &shost->shost_state);
1462 
1463 	wake_up(&shost->host_wait);
1464 
1465 	/*
1466 	 * finally we need to re-initiate requests that may be pending.  we will
1467 	 * have had everything blocked while error handling is taking place, and
1468 	 * now that error recovery is done, we will need to ensure that these
1469 	 * requests are started.
1470 	 */
1471 	scsi_run_host_queues(shost);
1472 }
1473 
1474 /**
1475  * scsi_eh_ready_devs - check device ready state and recover if not.
1476  * @shost: 	host to be recovered.
1477  * @eh_done_q:	list_head for processed commands.
1478  *
1479  **/
1480 static void scsi_eh_ready_devs(struct Scsi_Host *shost,
1481 			       struct list_head *work_q,
1482 			       struct list_head *done_q)
1483 {
1484 	if (!scsi_eh_stu(shost, work_q, done_q))
1485 		if (!scsi_eh_bus_device_reset(shost, work_q, done_q))
1486 			if (!scsi_eh_bus_reset(shost, work_q, done_q))
1487 				if (!scsi_eh_host_reset(work_q, done_q))
1488 					scsi_eh_offline_sdevs(work_q, done_q);
1489 }
1490 
1491 /**
1492  * scsi_eh_flush_done_q - finish processed commands or retry them.
1493  * @done_q:	list_head of processed commands.
1494  *
1495  **/
1496 static void scsi_eh_flush_done_q(struct list_head *done_q)
1497 {
1498 	struct scsi_cmnd *scmd, *next;
1499 
1500 	list_for_each_entry_safe(scmd, next, done_q, eh_entry) {
1501 		list_del_init(&scmd->eh_entry);
1502 		if (scsi_device_online(scmd->device) &&
1503 		    !blk_noretry_request(scmd->request) &&
1504 		    (++scmd->retries < scmd->allowed)) {
1505 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush"
1506 							  " retry cmd: %p\n",
1507 							  current->comm,
1508 							  scmd));
1509 				scsi_queue_insert(scmd, SCSI_MLQUEUE_EH_RETRY);
1510 		} else {
1511 			/*
1512 			 * If just we got sense for the device (called
1513 			 * scsi_eh_get_sense), scmd->result is already
1514 			 * set, do not set DRIVER_TIMEOUT.
1515 			 */
1516 			if (!scmd->result)
1517 				scmd->result |= (DRIVER_TIMEOUT << 24);
1518 			SCSI_LOG_ERROR_RECOVERY(3, printk("%s: flush finish"
1519 							" cmd: %p\n",
1520 							current->comm, scmd));
1521 			scsi_finish_command(scmd);
1522 		}
1523 	}
1524 }
1525 
1526 /**
1527  * scsi_unjam_host - Attempt to fix a host which has a cmd that failed.
1528  * @shost:	Host to unjam.
1529  *
1530  * Notes:
1531  *    When we come in here, we *know* that all commands on the bus have
1532  *    either completed, failed or timed out.  we also know that no further
1533  *    commands are being sent to the host, so things are relatively quiet
1534  *    and we have freedom to fiddle with things as we wish.
1535  *
1536  *    This is only the *default* implementation.  it is possible for
1537  *    individual drivers to supply their own version of this function, and
1538  *    if the maintainer wishes to do this, it is strongly suggested that
1539  *    this function be taken as a template and modified.  this function
1540  *    was designed to correctly handle problems for about 95% of the
1541  *    different cases out there, and it should always provide at least a
1542  *    reasonable amount of error recovery.
1543  *
1544  *    Any command marked 'failed' or 'timeout' must eventually have
1545  *    scsi_finish_cmd() called for it.  we do all of the retry stuff
1546  *    here, so when we restart the host after we return it should have an
1547  *    empty queue.
1548  **/
1549 static void scsi_unjam_host(struct Scsi_Host *shost)
1550 {
1551 	unsigned long flags;
1552 	LIST_HEAD(eh_work_q);
1553 	LIST_HEAD(eh_done_q);
1554 
1555 	spin_lock_irqsave(shost->host_lock, flags);
1556 	list_splice_init(&shost->eh_cmd_q, &eh_work_q);
1557 	spin_unlock_irqrestore(shost->host_lock, flags);
1558 
1559 	SCSI_LOG_ERROR_RECOVERY(1, scsi_eh_prt_fail_stats(shost, &eh_work_q));
1560 
1561 	if (!scsi_eh_get_sense(&eh_work_q, &eh_done_q))
1562 		if (!scsi_eh_abort_cmds(&eh_work_q, &eh_done_q))
1563 			scsi_eh_ready_devs(shost, &eh_work_q, &eh_done_q);
1564 
1565 	scsi_eh_flush_done_q(&eh_done_q);
1566 }
1567 
1568 /**
1569  * scsi_error_handler - Handle errors/timeouts of SCSI cmds.
1570  * @data:	Host for which we are running.
1571  *
1572  * Notes:
1573  *    This is always run in the context of a kernel thread.  The idea is
1574  *    that we start this thing up when the kernel starts up (one per host
1575  *    that we detect), and it immediately goes to sleep and waits for some
1576  *    event (i.e. failure).  When this takes place, we have the job of
1577  *    trying to unjam the bus and restarting things.
1578  **/
1579 int scsi_error_handler(void *data)
1580 {
1581 	struct Scsi_Host *shost = (struct Scsi_Host *) data;
1582 	int rtn;
1583 	DECLARE_MUTEX_LOCKED(sem);
1584 
1585 	/*
1586 	 *    Flush resources
1587 	 */
1588 
1589 	daemonize("scsi_eh_%d", shost->host_no);
1590 
1591 	current->flags |= PF_NOFREEZE;
1592 
1593 	shost->eh_wait = &sem;
1594 	shost->ehandler = current;
1595 
1596 	/*
1597 	 * Wake up the thread that created us.
1598 	 */
1599 	SCSI_LOG_ERROR_RECOVERY(3, printk("Wake up parent of"
1600 					  " scsi_eh_%d\n",shost->host_no));
1601 
1602 	complete(shost->eh_notify);
1603 
1604 	while (1) {
1605 		/*
1606 		 * If we get a signal, it means we are supposed to go
1607 		 * away and die.  This typically happens if the user is
1608 		 * trying to unload a module.
1609 		 */
1610 		SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler"
1611 						  " scsi_eh_%d"
1612 						  " sleeping\n",shost->host_no));
1613 
1614 		/*
1615 		 * Note - we always use down_interruptible with the semaphore
1616 		 * even if the module was loaded as part of the kernel.  The
1617 		 * reason is that down() will cause this thread to be counted
1618 		 * in the load average as a running process, and down
1619 		 * interruptible doesn't.  Given that we need to allow this
1620 		 * thread to die if the driver was loaded as a module, using
1621 		 * semaphores isn't unreasonable.
1622 		 */
1623 		down_interruptible(&sem);
1624 		if (shost->eh_kill)
1625 			break;
1626 
1627 		SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler"
1628 						  " scsi_eh_%d waking"
1629 						  " up\n",shost->host_no));
1630 
1631 		shost->eh_active = 1;
1632 
1633 		/*
1634 		 * We have a host that is failing for some reason.  Figure out
1635 		 * what we need to do to get it up and online again (if we can).
1636 		 * If we fail, we end up taking the thing offline.
1637 		 */
1638 		if (shost->hostt->eh_strategy_handler)
1639 			rtn = shost->hostt->eh_strategy_handler(shost);
1640 		else
1641 			scsi_unjam_host(shost);
1642 
1643 		shost->eh_active = 0;
1644 
1645 		/*
1646 		 * Note - if the above fails completely, the action is to take
1647 		 * individual devices offline and flush the queue of any
1648 		 * outstanding requests that may have been pending.  When we
1649 		 * restart, we restart any I/O to any other devices on the bus
1650 		 * which are still online.
1651 		 */
1652 		scsi_restart_operations(shost);
1653 
1654 	}
1655 
1656 	SCSI_LOG_ERROR_RECOVERY(1, printk("Error handler scsi_eh_%d"
1657 					  " exiting\n",shost->host_no));
1658 
1659 	/*
1660 	 * Make sure that nobody tries to wake us up again.
1661 	 */
1662 	shost->eh_wait = NULL;
1663 
1664 	/*
1665 	 * Knock this down too.  From this point on, the host is flying
1666 	 * without a pilot.  If this is because the module is being unloaded,
1667 	 * that's fine.  If the user sent a signal to this thing, we are
1668 	 * potentially in real danger.
1669 	 */
1670 	shost->eh_active = 0;
1671 	shost->ehandler = NULL;
1672 
1673 	/*
1674 	 * If anyone is waiting for us to exit (i.e. someone trying to unload
1675 	 * a driver), then wake up that process to let them know we are on
1676 	 * the way out the door.
1677 	 */
1678 	complete_and_exit(shost->eh_notify, 0);
1679 	return 0;
1680 }
1681 
1682 /*
1683  * Function:    scsi_report_bus_reset()
1684  *
1685  * Purpose:     Utility function used by low-level drivers to report that
1686  *		they have observed a bus reset on the bus being handled.
1687  *
1688  * Arguments:   shost       - Host in question
1689  *		channel     - channel on which reset was observed.
1690  *
1691  * Returns:     Nothing
1692  *
1693  * Lock status: Host lock must be held.
1694  *
1695  * Notes:       This only needs to be called if the reset is one which
1696  *		originates from an unknown location.  Resets originated
1697  *		by the mid-level itself don't need to call this, but there
1698  *		should be no harm.
1699  *
1700  *		The main purpose of this is to make sure that a CHECK_CONDITION
1701  *		is properly treated.
1702  */
1703 void scsi_report_bus_reset(struct Scsi_Host *shost, int channel)
1704 {
1705 	struct scsi_device *sdev;
1706 
1707 	__shost_for_each_device(sdev, shost) {
1708 		if (channel == sdev->channel) {
1709 			sdev->was_reset = 1;
1710 			sdev->expecting_cc_ua = 1;
1711 		}
1712 	}
1713 }
1714 EXPORT_SYMBOL(scsi_report_bus_reset);
1715 
1716 /*
1717  * Function:    scsi_report_device_reset()
1718  *
1719  * Purpose:     Utility function used by low-level drivers to report that
1720  *		they have observed a device reset on the device being handled.
1721  *
1722  * Arguments:   shost       - Host in question
1723  *		channel     - channel on which reset was observed
1724  *		target	    - target on which reset was observed
1725  *
1726  * Returns:     Nothing
1727  *
1728  * Lock status: Host lock must be held
1729  *
1730  * Notes:       This only needs to be called if the reset is one which
1731  *		originates from an unknown location.  Resets originated
1732  *		by the mid-level itself don't need to call this, but there
1733  *		should be no harm.
1734  *
1735  *		The main purpose of this is to make sure that a CHECK_CONDITION
1736  *		is properly treated.
1737  */
1738 void scsi_report_device_reset(struct Scsi_Host *shost, int channel, int target)
1739 {
1740 	struct scsi_device *sdev;
1741 
1742 	__shost_for_each_device(sdev, shost) {
1743 		if (channel == sdev->channel &&
1744 		    target == sdev->id) {
1745 			sdev->was_reset = 1;
1746 			sdev->expecting_cc_ua = 1;
1747 		}
1748 	}
1749 }
1750 EXPORT_SYMBOL(scsi_report_device_reset);
1751 
1752 static void
1753 scsi_reset_provider_done_command(struct scsi_cmnd *scmd)
1754 {
1755 }
1756 
1757 /*
1758  * Function:	scsi_reset_provider
1759  *
1760  * Purpose:	Send requested reset to a bus or device at any phase.
1761  *
1762  * Arguments:	device	- device to send reset to
1763  *		flag - reset type (see scsi.h)
1764  *
1765  * Returns:	SUCCESS/FAILURE.
1766  *
1767  * Notes:	This is used by the SCSI Generic driver to provide
1768  *		Bus/Device reset capability.
1769  */
1770 int
1771 scsi_reset_provider(struct scsi_device *dev, int flag)
1772 {
1773 	struct scsi_cmnd *scmd = scsi_get_command(dev, GFP_KERNEL);
1774 	struct request req;
1775 	int rtn;
1776 
1777 	scmd->request = &req;
1778 	memset(&scmd->eh_timeout, 0, sizeof(scmd->eh_timeout));
1779 	scmd->request->rq_status      	= RQ_SCSI_BUSY;
1780 
1781 	memset(&scmd->cmnd, '\0', sizeof(scmd->cmnd));
1782 
1783 	scmd->scsi_done		= scsi_reset_provider_done_command;
1784 	scmd->done			= NULL;
1785 	scmd->buffer			= NULL;
1786 	scmd->bufflen			= 0;
1787 	scmd->request_buffer		= NULL;
1788 	scmd->request_bufflen		= 0;
1789 
1790 	scmd->cmd_len			= 0;
1791 
1792 	scmd->sc_data_direction		= DMA_BIDIRECTIONAL;
1793 	scmd->sc_request		= NULL;
1794 	scmd->sc_magic			= SCSI_CMND_MAGIC;
1795 
1796 	init_timer(&scmd->eh_timeout);
1797 
1798 	/*
1799 	 * Sometimes the command can get back into the timer chain,
1800 	 * so use the pid as an identifier.
1801 	 */
1802 	scmd->pid			= 0;
1803 
1804 	switch (flag) {
1805 	case SCSI_TRY_RESET_DEVICE:
1806 		rtn = scsi_try_bus_device_reset(scmd);
1807 		if (rtn == SUCCESS)
1808 			break;
1809 		/* FALLTHROUGH */
1810 	case SCSI_TRY_RESET_BUS:
1811 		rtn = scsi_try_bus_reset(scmd);
1812 		if (rtn == SUCCESS)
1813 			break;
1814 		/* FALLTHROUGH */
1815 	case SCSI_TRY_RESET_HOST:
1816 		rtn = scsi_try_host_reset(scmd);
1817 		break;
1818 	default:
1819 		rtn = FAILED;
1820 	}
1821 
1822 	scsi_next_command(scmd);
1823 	return rtn;
1824 }
1825 EXPORT_SYMBOL(scsi_reset_provider);
1826 
1827 /**
1828  * scsi_normalize_sense - normalize main elements from either fixed or
1829  *			descriptor sense data format into a common format.
1830  *
1831  * @sense_buffer:	byte array containing sense data returned by device
1832  * @sb_len:		number of valid bytes in sense_buffer
1833  * @sshdr:		pointer to instance of structure that common
1834  *			elements are written to.
1835  *
1836  * Notes:
1837  *	The "main elements" from sense data are: response_code, sense_key,
1838  *	asc, ascq and additional_length (only for descriptor format).
1839  *
1840  *	Typically this function can be called after a device has
1841  *	responded to a SCSI command with the CHECK_CONDITION status.
1842  *
1843  * Return value:
1844  *	1 if valid sense data information found, else 0;
1845  **/
1846 int scsi_normalize_sense(const u8 *sense_buffer, int sb_len,
1847                          struct scsi_sense_hdr *sshdr)
1848 {
1849 	if (!sense_buffer || !sb_len || (sense_buffer[0] & 0x70) != 0x70)
1850 		return 0;
1851 
1852 	memset(sshdr, 0, sizeof(struct scsi_sense_hdr));
1853 
1854 	sshdr->response_code = (sense_buffer[0] & 0x7f);
1855 	if (sshdr->response_code >= 0x72) {
1856 		/*
1857 		 * descriptor format
1858 		 */
1859 		if (sb_len > 1)
1860 			sshdr->sense_key = (sense_buffer[1] & 0xf);
1861 		if (sb_len > 2)
1862 			sshdr->asc = sense_buffer[2];
1863 		if (sb_len > 3)
1864 			sshdr->ascq = sense_buffer[3];
1865 		if (sb_len > 7)
1866 			sshdr->additional_length = sense_buffer[7];
1867 	} else {
1868 		/*
1869 		 * fixed format
1870 		 */
1871 		if (sb_len > 2)
1872 			sshdr->sense_key = (sense_buffer[2] & 0xf);
1873 		if (sb_len > 7) {
1874 			sb_len = (sb_len < (sense_buffer[7] + 8)) ?
1875 					 sb_len : (sense_buffer[7] + 8);
1876 			if (sb_len > 12)
1877 				sshdr->asc = sense_buffer[12];
1878 			if (sb_len > 13)
1879 				sshdr->ascq = sense_buffer[13];
1880 		}
1881 	}
1882 
1883 	return 1;
1884 }
1885 EXPORT_SYMBOL(scsi_normalize_sense);
1886 
1887 int scsi_request_normalize_sense(struct scsi_request *sreq,
1888 				 struct scsi_sense_hdr *sshdr)
1889 {
1890 	return scsi_normalize_sense(sreq->sr_sense_buffer,
1891 			sizeof(sreq->sr_sense_buffer), sshdr);
1892 }
1893 EXPORT_SYMBOL(scsi_request_normalize_sense);
1894 
1895 int scsi_command_normalize_sense(struct scsi_cmnd *cmd,
1896 				 struct scsi_sense_hdr *sshdr)
1897 {
1898 	return scsi_normalize_sense(cmd->sense_buffer,
1899 			sizeof(cmd->sense_buffer), sshdr);
1900 }
1901 EXPORT_SYMBOL(scsi_command_normalize_sense);
1902 
1903 /**
1904  * scsi_sense_desc_find - search for a given descriptor type in
1905  *			descriptor sense data format.
1906  *
1907  * @sense_buffer:	byte array of descriptor format sense data
1908  * @sb_len:		number of valid bytes in sense_buffer
1909  * @desc_type:		value of descriptor type to find
1910  *			(e.g. 0 -> information)
1911  *
1912  * Notes:
1913  *	only valid when sense data is in descriptor format
1914  *
1915  * Return value:
1916  *	pointer to start of (first) descriptor if found else NULL
1917  **/
1918 const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len,
1919 				int desc_type)
1920 {
1921 	int add_sen_len, add_len, desc_len, k;
1922 	const u8 * descp;
1923 
1924 	if ((sb_len < 8) || (0 == (add_sen_len = sense_buffer[7])))
1925 		return NULL;
1926 	if ((sense_buffer[0] < 0x72) || (sense_buffer[0] > 0x73))
1927 		return NULL;
1928 	add_sen_len = (add_sen_len < (sb_len - 8)) ?
1929 			add_sen_len : (sb_len - 8);
1930 	descp = &sense_buffer[8];
1931 	for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) {
1932 		descp += desc_len;
1933 		add_len = (k < (add_sen_len - 1)) ? descp[1]: -1;
1934 		desc_len = add_len + 2;
1935 		if (descp[0] == desc_type)
1936 			return descp;
1937 		if (add_len < 0) // short descriptor ??
1938 			break;
1939 	}
1940 	return NULL;
1941 }
1942 EXPORT_SYMBOL(scsi_sense_desc_find);
1943 
1944 /**
1945  * scsi_get_sense_info_fld - attempts to get information field from
1946  *			sense data (either fixed or descriptor format)
1947  *
1948  * @sense_buffer:	byte array of sense data
1949  * @sb_len:		number of valid bytes in sense_buffer
1950  * @info_out:		pointer to 64 integer where 8 or 4 byte information
1951  *			field will be placed if found.
1952  *
1953  * Return value:
1954  *	1 if information field found, 0 if not found.
1955  **/
1956 int scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len,
1957 			    u64 * info_out)
1958 {
1959 	int j;
1960 	const u8 * ucp;
1961 	u64 ull;
1962 
1963 	if (sb_len < 7)
1964 		return 0;
1965 	switch (sense_buffer[0] & 0x7f) {
1966 	case 0x70:
1967 	case 0x71:
1968 		if (sense_buffer[0] & 0x80) {
1969 			*info_out = (sense_buffer[3] << 24) +
1970 				    (sense_buffer[4] << 16) +
1971 				    (sense_buffer[5] << 8) + sense_buffer[6];
1972 			return 1;
1973 		} else
1974 			return 0;
1975 	case 0x72:
1976 	case 0x73:
1977 		ucp = scsi_sense_desc_find(sense_buffer, sb_len,
1978 					   0 /* info desc */);
1979 		if (ucp && (0xa == ucp[1])) {
1980 			ull = 0;
1981 			for (j = 0; j < 8; ++j) {
1982 				if (j > 0)
1983 					ull <<= 8;
1984 				ull |= ucp[4 + j];
1985 			}
1986 			*info_out = ull;
1987 			return 1;
1988 		} else
1989 			return 0;
1990 	default:
1991 		return 0;
1992 	}
1993 }
1994 EXPORT_SYMBOL(scsi_get_sense_info_fld);
1995