xref: /linux/drivers/scsi/qla2xxx/qla_sup.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2011 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8 
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13 
14 /*
15  * NVRAM support routines
16  */
17 
18 /**
19  * qla2x00_lock_nvram_access() -
20  * @ha: HA context
21  */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 	uint16_t data;
26 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27 
28 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 		data = RD_REG_WORD(&reg->nvram);
30 		while (data & NVR_BUSY) {
31 			udelay(100);
32 			data = RD_REG_WORD(&reg->nvram);
33 		}
34 
35 		/* Lock resource */
36 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 		udelay(5);
39 		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 		while ((data & BIT_0) == 0) {
41 			/* Lock failed */
42 			udelay(100);
43 			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 			udelay(5);
46 			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 		}
48 	}
49 }
50 
51 /**
52  * qla2x00_unlock_nvram_access() -
53  * @ha: HA context
54  */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59 
60 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 	}
64 }
65 
66 /**
67  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68  * @ha: HA context
69  * @data: Serial interface selector
70  */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75 
76 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
78 	NVRAM_DELAY();
79 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 	    NVR_WRT_ENABLE);
81 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
82 	NVRAM_DELAY();
83 	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
85 	NVRAM_DELAY();
86 }
87 
88 /**
89  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90  *	NVRAM.
91  * @ha: HA context
92  * @nv_cmd: NVRAM command
93  *
94  * Bit definitions for NVRAM command:
95  *
96  *	Bit 26     = start bit
97  *	Bit 25, 24 = opcode
98  *	Bit 23-16  = address
99  *	Bit 15-0   = write data
100  *
101  * Returns the word read from nvram @addr.
102  */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 	uint8_t		cnt;
107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 	uint16_t	data = 0;
109 	uint16_t	reg_data;
110 
111 	/* Send command to NVRAM. */
112 	nv_cmd <<= 5;
113 	for (cnt = 0; cnt < 11; cnt++) {
114 		if (nv_cmd & BIT_31)
115 			qla2x00_nv_write(ha, NVR_DATA_OUT);
116 		else
117 			qla2x00_nv_write(ha, 0);
118 		nv_cmd <<= 1;
119 	}
120 
121 	/* Read data from NVRAM. */
122 	for (cnt = 0; cnt < 16; cnt++) {
123 		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
125 		NVRAM_DELAY();
126 		data <<= 1;
127 		reg_data = RD_REG_WORD(&reg->nvram);
128 		if (reg_data & NVR_DATA_IN)
129 			data |= BIT_0;
130 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
132 		NVRAM_DELAY();
133 	}
134 
135 	/* Deselect chip. */
136 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
138 	NVRAM_DELAY();
139 
140 	return data;
141 }
142 
143 
144 /**
145  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146  *	request routine to get the word from NVRAM.
147  * @ha: HA context
148  * @addr: Address in NVRAM to read
149  *
150  * Returns the word read from nvram @addr.
151  */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 	uint16_t	data;
156 	uint32_t	nv_cmd;
157 
158 	nv_cmd = addr << 16;
159 	nv_cmd |= NV_READ_OP;
160 	data = qla2x00_nvram_request(ha, nv_cmd);
161 
162 	return (data);
163 }
164 
165 /**
166  * qla2x00_nv_deselect() - Deselect NVRAM operations.
167  * @ha: HA context
168  */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173 
174 	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
176 	NVRAM_DELAY();
177 }
178 
179 /**
180  * qla2x00_write_nvram_word() - Write NVRAM data.
181  * @ha: HA context
182  * @addr: Address in NVRAM to write
183  * @data: word to program
184  */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 	int count;
189 	uint16_t word;
190 	uint32_t nv_cmd, wait_cnt;
191 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193 
194 	qla2x00_nv_write(ha, NVR_DATA_OUT);
195 	qla2x00_nv_write(ha, 0);
196 	qla2x00_nv_write(ha, 0);
197 
198 	for (word = 0; word < 8; word++)
199 		qla2x00_nv_write(ha, NVR_DATA_OUT);
200 
201 	qla2x00_nv_deselect(ha);
202 
203 	/* Write data */
204 	nv_cmd = (addr << 16) | NV_WRITE_OP;
205 	nv_cmd |= data;
206 	nv_cmd <<= 5;
207 	for (count = 0; count < 27; count++) {
208 		if (nv_cmd & BIT_31)
209 			qla2x00_nv_write(ha, NVR_DATA_OUT);
210 		else
211 			qla2x00_nv_write(ha, 0);
212 
213 		nv_cmd <<= 1;
214 	}
215 
216 	qla2x00_nv_deselect(ha);
217 
218 	/* Wait for NVRAM to become ready */
219 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221 	wait_cnt = NVR_WAIT_CNT;
222 	do {
223 		if (!--wait_cnt) {
224 			ql_dbg(ql_dbg_user, vha, 0x708d,
225 			    "NVRAM didn't go ready...\n");
226 			break;
227 		}
228 		NVRAM_DELAY();
229 		word = RD_REG_WORD(&reg->nvram);
230 	} while ((word & NVR_DATA_IN) == 0);
231 
232 	qla2x00_nv_deselect(ha);
233 
234 	/* Disable writes */
235 	qla2x00_nv_write(ha, NVR_DATA_OUT);
236 	for (count = 0; count < 10; count++)
237 		qla2x00_nv_write(ha, 0);
238 
239 	qla2x00_nv_deselect(ha);
240 }
241 
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 	uint16_t data, uint32_t tmo)
245 {
246 	int ret, count;
247 	uint16_t word;
248 	uint32_t nv_cmd;
249 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 
251 	ret = QLA_SUCCESS;
252 
253 	qla2x00_nv_write(ha, NVR_DATA_OUT);
254 	qla2x00_nv_write(ha, 0);
255 	qla2x00_nv_write(ha, 0);
256 
257 	for (word = 0; word < 8; word++)
258 		qla2x00_nv_write(ha, NVR_DATA_OUT);
259 
260 	qla2x00_nv_deselect(ha);
261 
262 	/* Write data */
263 	nv_cmd = (addr << 16) | NV_WRITE_OP;
264 	nv_cmd |= data;
265 	nv_cmd <<= 5;
266 	for (count = 0; count < 27; count++) {
267 		if (nv_cmd & BIT_31)
268 			qla2x00_nv_write(ha, NVR_DATA_OUT);
269 		else
270 			qla2x00_nv_write(ha, 0);
271 
272 		nv_cmd <<= 1;
273 	}
274 
275 	qla2x00_nv_deselect(ha);
276 
277 	/* Wait for NVRAM to become ready */
278 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 	do {
281 		NVRAM_DELAY();
282 		word = RD_REG_WORD(&reg->nvram);
283 		if (!--tmo) {
284 			ret = QLA_FUNCTION_FAILED;
285 			break;
286 		}
287 	} while ((word & NVR_DATA_IN) == 0);
288 
289 	qla2x00_nv_deselect(ha);
290 
291 	/* Disable writes */
292 	qla2x00_nv_write(ha, NVR_DATA_OUT);
293 	for (count = 0; count < 10; count++)
294 		qla2x00_nv_write(ha, 0);
295 
296 	qla2x00_nv_deselect(ha);
297 
298 	return ret;
299 }
300 
301 /**
302  * qla2x00_clear_nvram_protection() -
303  * @ha: HA context
304  */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 	int ret, stat;
309 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 	uint32_t word, wait_cnt;
311 	uint16_t wprot, wprot_old;
312 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 
314 	/* Clear NVRAM write protection. */
315 	ret = QLA_FUNCTION_FAILED;
316 
317 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 	    __constant_cpu_to_le16(0x1234), 100000);
320 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 		/* Write enable. */
323 		qla2x00_nv_write(ha, NVR_DATA_OUT);
324 		qla2x00_nv_write(ha, 0);
325 		qla2x00_nv_write(ha, 0);
326 		for (word = 0; word < 8; word++)
327 			qla2x00_nv_write(ha, NVR_DATA_OUT);
328 
329 		qla2x00_nv_deselect(ha);
330 
331 		/* Enable protection register. */
332 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 		for (word = 0; word < 8; word++)
336 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337 
338 		qla2x00_nv_deselect(ha);
339 
340 		/* Clear protection register (ffff is cleared). */
341 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 		for (word = 0; word < 8; word++)
345 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346 
347 		qla2x00_nv_deselect(ha);
348 
349 		/* Wait for NVRAM to become ready. */
350 		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352 		wait_cnt = NVR_WAIT_CNT;
353 		do {
354 			if (!--wait_cnt) {
355 				ql_dbg(ql_dbg_user, vha, 0x708e,
356 				    "NVRAM didn't go ready...\n");
357 				break;
358 			}
359 			NVRAM_DELAY();
360 			word = RD_REG_WORD(&reg->nvram);
361 		} while ((word & NVR_DATA_IN) == 0);
362 
363 		if (wait_cnt)
364 			ret = QLA_SUCCESS;
365 	} else
366 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 
368 	return ret;
369 }
370 
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 	uint32_t word, wait_cnt;
376 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 
378 	if (stat != QLA_SUCCESS)
379 		return;
380 
381 	/* Set NVRAM write protection. */
382 	/* Write enable. */
383 	qla2x00_nv_write(ha, NVR_DATA_OUT);
384 	qla2x00_nv_write(ha, 0);
385 	qla2x00_nv_write(ha, 0);
386 	for (word = 0; word < 8; word++)
387 		qla2x00_nv_write(ha, NVR_DATA_OUT);
388 
389 	qla2x00_nv_deselect(ha);
390 
391 	/* Enable protection register. */
392 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 	for (word = 0; word < 8; word++)
396 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397 
398 	qla2x00_nv_deselect(ha);
399 
400 	/* Enable protection register. */
401 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 	qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 	for (word = 0; word < 8; word++)
405 		qla2x00_nv_write(ha, NVR_PR_ENABLE);
406 
407 	qla2x00_nv_deselect(ha);
408 
409 	/* Wait for NVRAM to become ready. */
410 	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412 	wait_cnt = NVR_WAIT_CNT;
413 	do {
414 		if (!--wait_cnt) {
415 			ql_dbg(ql_dbg_user, vha, 0x708f,
416 			    "NVRAM didn't go ready...\n");
417 			break;
418 		}
419 		NVRAM_DELAY();
420 		word = RD_REG_WORD(&reg->nvram);
421 	} while ((word & NVR_DATA_IN) == 0);
422 }
423 
424 
425 /*****************************************************************************/
426 /* Flash Manipulation Routines                                               */
427 /*****************************************************************************/
428 
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 	return ha->flash_conf_off | faddr;
433 }
434 
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 	return ha->flash_data_off | faddr;
439 }
440 
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 	return ha->nvram_conf_off | naddr;
445 }
446 
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 	return ha->nvram_data_off | naddr;
451 }
452 
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 	int rval;
457 	uint32_t cnt, data;
458 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459 
460 	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 	/* Wait for READ cycle to complete. */
462 	rval = QLA_SUCCESS;
463 	for (cnt = 3000;
464 	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 	    rval == QLA_SUCCESS; cnt--) {
466 		if (cnt)
467 			udelay(10);
468 		else
469 			rval = QLA_FUNCTION_TIMEOUT;
470 		cond_resched();
471 	}
472 
473 	/* TODO: What happens if we time out? */
474 	data = 0xDEADDEAD;
475 	if (rval == QLA_SUCCESS)
476 		data = RD_REG_DWORD(&reg->flash_data);
477 
478 	return data;
479 }
480 
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483     uint32_t dwords)
484 {
485 	uint32_t i;
486 	struct qla_hw_data *ha = vha->hw;
487 
488 	/* Dword reads to flash. */
489 	for (i = 0; i < dwords; i++, faddr++)
490 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 		    flash_data_addr(ha, faddr)));
492 
493 	return dwptr;
494 }
495 
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 	int rval;
500 	uint32_t cnt;
501 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502 
503 	WRT_REG_DWORD(&reg->flash_data, data);
504 	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
505 	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 	/* Wait for Write cycle to complete. */
507 	rval = QLA_SUCCESS;
508 	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 	    rval == QLA_SUCCESS; cnt--) {
510 		if (cnt)
511 			udelay(10);
512 		else
513 			rval = QLA_FUNCTION_TIMEOUT;
514 		cond_resched();
515 	}
516 	return rval;
517 }
518 
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521     uint8_t *flash_id)
522 {
523 	uint32_t ids;
524 
525 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 	*man_id = LSB(ids);
527 	*flash_id = MSB(ids);
528 
529 	/* Check if man_id and flash_id are valid. */
530 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 		/* Read information using 0x9f opcode
532 		 * Device ID, Mfg ID would be read in the format:
533 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 		 * Example: ATMEL 0x00 01 45 1F
535 		 * Extract MFG and Dev ID from last two bytes.
536 		 */
537 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 		*man_id = LSB(ids);
539 		*flash_id = MSB(ids);
540 	}
541 }
542 
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 	const char *loc, *locations[] = { "DEF", "PCI" };
547 	uint32_t pcihdr, pcids;
548 	uint32_t *dcode;
549 	uint8_t *buf, *bcode, last_image;
550 	uint16_t cnt, chksum, *wptr;
551 	struct qla_flt_location *fltl;
552 	struct qla_hw_data *ha = vha->hw;
553 	struct req_que *req = ha->req_q_map[0];
554 
555 	/*
556 	 * FLT-location structure resides after the last PCI region.
557 	 */
558 
559 	/* Begin with sane defaults. */
560 	loc = locations[0];
561 	*start = 0;
562 	if (IS_QLA24XX_TYPE(ha))
563 		*start = FA_FLASH_LAYOUT_ADDR_24;
564 	else if (IS_QLA25XX(ha))
565 		*start = FA_FLASH_LAYOUT_ADDR;
566 	else if (IS_QLA81XX(ha))
567 		*start = FA_FLASH_LAYOUT_ADDR_81;
568 	else if (IS_QLA82XX(ha)) {
569 		*start = FA_FLASH_LAYOUT_ADDR_82;
570 		goto end;
571 	}
572 	/* Begin with first PCI expansion ROM header. */
573 	buf = (uint8_t *)req->ring;
574 	dcode = (uint32_t *)req->ring;
575 	pcihdr = 0;
576 	last_image = 1;
577 	do {
578 		/* Verify PCI expansion ROM header. */
579 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
580 		bcode = buf + (pcihdr % 4);
581 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
582 			goto end;
583 
584 		/* Locate PCI data structure. */
585 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
586 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
587 		bcode = buf + (pcihdr % 4);
588 
589 		/* Validate signature of PCI data structure. */
590 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
591 		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
592 			goto end;
593 
594 		last_image = bcode[0x15] & BIT_7;
595 
596 		/* Locate next PCI expansion ROM. */
597 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
598 	} while (!last_image);
599 
600 	/* Now verify FLT-location structure. */
601 	fltl = (struct qla_flt_location *)req->ring;
602 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
603 	    sizeof(struct qla_flt_location) >> 2);
604 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
605 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
606 		goto end;
607 
608 	wptr = (uint16_t *)req->ring;
609 	cnt = sizeof(struct qla_flt_location) >> 1;
610 	for (chksum = 0; cnt; cnt--)
611 		chksum += le16_to_cpu(*wptr++);
612 	if (chksum) {
613 		ql_log(ql_log_fatal, vha, 0x0045,
614 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
615 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
616 		    buf, sizeof(struct qla_flt_location));
617 		return QLA_FUNCTION_FAILED;
618 	}
619 
620 	/* Good data.  Use specified location. */
621 	loc = locations[1];
622 	*start = (le16_to_cpu(fltl->start_hi) << 16 |
623 	    le16_to_cpu(fltl->start_lo)) >> 2;
624 end:
625 	ql_dbg(ql_dbg_init, vha, 0x0046,
626 	    "FLTL[%s] = 0x%x.\n",
627 	    loc, *start);
628 	return QLA_SUCCESS;
629 }
630 
631 static void
632 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
633 {
634 	const char *loc, *locations[] = { "DEF", "FLT" };
635 	const uint32_t def_fw[] =
636 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
637 	const uint32_t def_boot[] =
638 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
639 	const uint32_t def_vpd_nvram[] =
640 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
641 	const uint32_t def_vpd0[] =
642 		{ 0, 0, FA_VPD0_ADDR_81 };
643 	const uint32_t def_vpd1[] =
644 		{ 0, 0, FA_VPD1_ADDR_81 };
645 	const uint32_t def_nvram0[] =
646 		{ 0, 0, FA_NVRAM0_ADDR_81 };
647 	const uint32_t def_nvram1[] =
648 		{ 0, 0, FA_NVRAM1_ADDR_81 };
649 	const uint32_t def_fdt[] =
650 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
651 			FA_FLASH_DESCR_ADDR_81 };
652 	const uint32_t def_npiv_conf0[] =
653 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
654 			FA_NPIV_CONF0_ADDR_81 };
655 	const uint32_t def_npiv_conf1[] =
656 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
657 			FA_NPIV_CONF1_ADDR_81 };
658 	const uint32_t fcp_prio_cfg0[] =
659 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
660 			0 };
661 	const uint32_t fcp_prio_cfg1[] =
662 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
663 			0 };
664 	uint32_t def;
665 	uint16_t *wptr;
666 	uint16_t cnt, chksum;
667 	uint32_t start;
668 	struct qla_flt_header *flt;
669 	struct qla_flt_region *region;
670 	struct qla_hw_data *ha = vha->hw;
671 	struct req_que *req = ha->req_q_map[0];
672 
673 	def = 0;
674 	if (IS_QLA25XX(ha))
675 		def = 1;
676 	else if (IS_QLA81XX(ha))
677 		def = 2;
678 
679 	/* Assign FCP prio region since older adapters may not have FLT, or
680 	   FCP prio region in it's FLT.
681 	 */
682 	ha->flt_region_fcp_prio = ha->flags.port0 ?
683 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
684 
685 	ha->flt_region_flt = flt_addr;
686 	wptr = (uint16_t *)req->ring;
687 	flt = (struct qla_flt_header *)req->ring;
688 	region = (struct qla_flt_region *)&flt[1];
689 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
690 	    flt_addr << 2, OPTROM_BURST_SIZE);
691 	if (*wptr == __constant_cpu_to_le16(0xffff))
692 		goto no_flash_data;
693 	if (flt->version != __constant_cpu_to_le16(1)) {
694 		ql_log(ql_log_warn, vha, 0x0047,
695 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
697 		    le16_to_cpu(flt->checksum));
698 		goto no_flash_data;
699 	}
700 
701 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
702 	for (chksum = 0; cnt; cnt--)
703 		chksum += le16_to_cpu(*wptr++);
704 	if (chksum) {
705 		ql_log(ql_log_fatal, vha, 0x0048,
706 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
708 		    le16_to_cpu(flt->checksum));
709 		goto no_flash_data;
710 	}
711 
712 	loc = locations[1];
713 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
714 	for ( ; cnt; cnt--, region++) {
715 		/* Store addresses as DWORD offsets. */
716 		start = le32_to_cpu(region->start) >> 2;
717 		ql_dbg(ql_dbg_init, vha, 0x0049,
718 		    "FLT[%02x]: start=0x%x "
719 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
720 		    start, le32_to_cpu(region->end) >> 2,
721 		    le32_to_cpu(region->size));
722 
723 		switch (le32_to_cpu(region->code) & 0xff) {
724 		case FLT_REG_FW:
725 			ha->flt_region_fw = start;
726 			break;
727 		case FLT_REG_BOOT_CODE:
728 			ha->flt_region_boot = start;
729 			break;
730 		case FLT_REG_VPD_0:
731 			ha->flt_region_vpd_nvram = start;
732 			if (IS_QLA82XX(ha))
733 				break;
734 			if (ha->flags.port0)
735 				ha->flt_region_vpd = start;
736 			break;
737 		case FLT_REG_VPD_1:
738 			if (IS_QLA82XX(ha))
739 				break;
740 			if (!ha->flags.port0)
741 				ha->flt_region_vpd = start;
742 			break;
743 		case FLT_REG_NVRAM_0:
744 			if (ha->flags.port0)
745 				ha->flt_region_nvram = start;
746 			break;
747 		case FLT_REG_NVRAM_1:
748 			if (!ha->flags.port0)
749 				ha->flt_region_nvram = start;
750 			break;
751 		case FLT_REG_FDT:
752 			ha->flt_region_fdt = start;
753 			break;
754 		case FLT_REG_NPIV_CONF_0:
755 			if (ha->flags.port0)
756 				ha->flt_region_npiv_conf = start;
757 			break;
758 		case FLT_REG_NPIV_CONF_1:
759 			if (!ha->flags.port0)
760 				ha->flt_region_npiv_conf = start;
761 			break;
762 		case FLT_REG_GOLD_FW:
763 			ha->flt_region_gold_fw = start;
764 			break;
765 		case FLT_REG_FCP_PRIO_0:
766 			if (ha->flags.port0)
767 				ha->flt_region_fcp_prio = start;
768 			break;
769 		case FLT_REG_FCP_PRIO_1:
770 			if (!ha->flags.port0)
771 				ha->flt_region_fcp_prio = start;
772 			break;
773 		case FLT_REG_BOOT_CODE_82XX:
774 			ha->flt_region_boot = start;
775 			break;
776 		case FLT_REG_FW_82XX:
777 			ha->flt_region_fw = start;
778 			break;
779 		case FLT_REG_GOLD_FW_82XX:
780 			ha->flt_region_gold_fw = start;
781 			break;
782 		case FLT_REG_BOOTLOAD_82XX:
783 			ha->flt_region_bootload = start;
784 			break;
785 		case FLT_REG_VPD_82XX:
786 			ha->flt_region_vpd = start;
787 			break;
788 		}
789 	}
790 	goto done;
791 
792 no_flash_data:
793 	/* Use hardcoded defaults. */
794 	loc = locations[0];
795 	ha->flt_region_fw = def_fw[def];
796 	ha->flt_region_boot = def_boot[def];
797 	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
798 	ha->flt_region_vpd = ha->flags.port0 ?
799 	    def_vpd0[def] : def_vpd1[def];
800 	ha->flt_region_nvram = ha->flags.port0 ?
801 	    def_nvram0[def] : def_nvram1[def];
802 	ha->flt_region_fdt = def_fdt[def];
803 	ha->flt_region_npiv_conf = ha->flags.port0 ?
804 	    def_npiv_conf0[def] : def_npiv_conf1[def];
805 done:
806 	ql_dbg(ql_dbg_init, vha, 0x004a,
807 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
808 	    loc, ha->flt_region_boot,
809 	    ha->flt_region_fw, ha->flt_region_vpd_nvram,
810 	    ha->flt_region_vpd);
811 	ql_dbg(ql_dbg_init, vha, 0x004b,
812 	    "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
813 	    ha->flt_region_nvram,
814 	    ha->flt_region_fdt, ha->flt_region_flt,
815 	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio);
816 }
817 
818 static void
819 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
820 {
821 #define FLASH_BLK_SIZE_4K	0x1000
822 #define FLASH_BLK_SIZE_32K	0x8000
823 #define FLASH_BLK_SIZE_64K	0x10000
824 	const char *loc, *locations[] = { "MID", "FDT" };
825 	uint16_t cnt, chksum;
826 	uint16_t *wptr;
827 	struct qla_fdt_layout *fdt;
828 	uint8_t	man_id, flash_id;
829 	uint16_t mid = 0, fid = 0;
830 	struct qla_hw_data *ha = vha->hw;
831 	struct req_que *req = ha->req_q_map[0];
832 
833 	wptr = (uint16_t *)req->ring;
834 	fdt = (struct qla_fdt_layout *)req->ring;
835 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
836 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
837 	if (*wptr == __constant_cpu_to_le16(0xffff))
838 		goto no_flash_data;
839 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
840 	    fdt->sig[3] != 'D')
841 		goto no_flash_data;
842 
843 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
844 	    cnt++)
845 		chksum += le16_to_cpu(*wptr++);
846 	if (chksum) {
847 		ql_dbg(ql_dbg_init, vha, 0x004c,
848 		    "Inconsistent FDT detected:"
849 		    " checksum=0x%x id=%c version0x%x.\n", chksum,
850 		    fdt->sig[0], le16_to_cpu(fdt->version));
851 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
852 		    (uint8_t *)fdt, sizeof(*fdt));
853 		goto no_flash_data;
854 	}
855 
856 	loc = locations[1];
857 	mid = le16_to_cpu(fdt->man_id);
858 	fid = le16_to_cpu(fdt->id);
859 	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
860 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
861 	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
862 	if (fdt->unprotect_sec_cmd) {
863 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
864 		    fdt->unprotect_sec_cmd);
865 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
866 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
867 		    flash_conf_addr(ha, 0x0336);
868 	}
869 	goto done;
870 no_flash_data:
871 	loc = locations[0];
872 	if (IS_QLA82XX(ha)) {
873 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
874 		goto done;
875 	}
876 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
877 	mid = man_id;
878 	fid = flash_id;
879 	ha->fdt_wrt_disable = 0x9c;
880 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
881 	switch (man_id) {
882 	case 0xbf: /* STT flash. */
883 		if (flash_id == 0x8e)
884 			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
885 		else
886 			ha->fdt_block_size = FLASH_BLK_SIZE_32K;
887 
888 		if (flash_id == 0x80)
889 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
890 		break;
891 	case 0x13: /* ST M25P80. */
892 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
893 		break;
894 	case 0x1f: /* Atmel 26DF081A. */
895 		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
896 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
897 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
898 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
899 		break;
900 	default:
901 		/* Default to 64 kb sector size. */
902 		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
903 		break;
904 	}
905 done:
906 	ql_dbg(ql_dbg_init, vha, 0x004d,
907 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
908 	    "pr=%x wrtd=0x%x blk=0x%x.\n",
909 	    loc, mid, fid,
910 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
911 	    ha->fdt_wrt_disable, ha->fdt_block_size);
912 
913 }
914 
915 static void
916 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
917 {
918 #define QLA82XX_IDC_PARAM_ADDR       0x003e885c
919 	uint32_t *wptr;
920 	struct qla_hw_data *ha = vha->hw;
921 	struct req_que *req = ha->req_q_map[0];
922 
923 	if (!IS_QLA82XX(ha))
924 		return;
925 
926 	wptr = (uint32_t *)req->ring;
927 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
928 		QLA82XX_IDC_PARAM_ADDR , 8);
929 
930 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
931 		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
932 		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
933 	} else {
934 		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
935 		ha->nx_reset_timeout = le32_to_cpu(*wptr);
936 	}
937 	ql_dbg(ql_dbg_init, vha, 0x004e,
938 	    "nx_dev_init_timeout=%d "
939 	    "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
940 	    ha->nx_reset_timeout);
941 	return;
942 }
943 
944 int
945 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
946 {
947 	int ret;
948 	uint32_t flt_addr;
949 	struct qla_hw_data *ha = vha->hw;
950 
951 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
952 		return QLA_SUCCESS;
953 
954 	ret = qla2xxx_find_flt_start(vha, &flt_addr);
955 	if (ret != QLA_SUCCESS)
956 		return ret;
957 
958 	qla2xxx_get_flt_info(vha, flt_addr);
959 	qla2xxx_get_fdt_info(vha);
960 	qla2xxx_get_idc_param(vha);
961 
962 	return QLA_SUCCESS;
963 }
964 
965 void
966 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
967 {
968 #define NPIV_CONFIG_SIZE	(16*1024)
969 	void *data;
970 	uint16_t *wptr;
971 	uint16_t cnt, chksum;
972 	int i;
973 	struct qla_npiv_header hdr;
974 	struct qla_npiv_entry *entry;
975 	struct qla_hw_data *ha = vha->hw;
976 
977 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
978 		return;
979 
980 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
981 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
982 	if (hdr.version == __constant_cpu_to_le16(0xffff))
983 		return;
984 	if (hdr.version != __constant_cpu_to_le16(1)) {
985 		ql_dbg(ql_dbg_user, vha, 0x7090,
986 		    "Unsupported NPIV-Config "
987 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
988 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
989 		    le16_to_cpu(hdr.checksum));
990 		return;
991 	}
992 
993 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
994 	if (!data) {
995 		ql_log(ql_log_warn, vha, 0x7091,
996 		    "Unable to allocate memory for data.\n");
997 		return;
998 	}
999 
1000 	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1001 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1002 
1003 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1004 	    sizeof(struct qla_npiv_entry)) >> 1;
1005 	for (wptr = data, chksum = 0; cnt; cnt--)
1006 		chksum += le16_to_cpu(*wptr++);
1007 	if (chksum) {
1008 		ql_dbg(ql_dbg_user, vha, 0x7092,
1009 		    "Inconsistent NPIV-Config "
1010 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1011 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1012 		    le16_to_cpu(hdr.checksum));
1013 		goto done;
1014 	}
1015 
1016 	entry = data + sizeof(struct qla_npiv_header);
1017 	cnt = le16_to_cpu(hdr.entries);
1018 	for (i = 0; cnt; cnt--, entry++, i++) {
1019 		uint16_t flags;
1020 		struct fc_vport_identifiers vid;
1021 		struct fc_vport *vport;
1022 
1023 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1024 
1025 		flags = le16_to_cpu(entry->flags);
1026 		if (flags == 0xffff)
1027 			continue;
1028 		if ((flags & BIT_0) == 0)
1029 			continue;
1030 
1031 		memset(&vid, 0, sizeof(vid));
1032 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1033 		vid.vport_type = FC_PORTTYPE_NPIV;
1034 		vid.disable = false;
1035 		vid.port_name = wwn_to_u64(entry->port_name);
1036 		vid.node_name = wwn_to_u64(entry->node_name);
1037 
1038 		ql_dbg(ql_dbg_user, vha, 0x7093,
1039 		    "NPIV[%02x]: wwpn=%llx "
1040 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1041 		    (unsigned long long)vid.port_name,
1042 		    (unsigned long long)vid.node_name,
1043 		    le16_to_cpu(entry->vf_id),
1044 		    entry->q_qos, entry->f_qos);
1045 
1046 		if (i < QLA_PRECONFIG_VPORTS) {
1047 			vport = fc_vport_create(vha->host, 0, &vid);
1048 			if (!vport)
1049 				ql_log(ql_log_warn, vha, 0x7094,
1050 				    "NPIV-Config Failed to create vport [%02x]: "
1051 				    "wwpn=%llx wwnn=%llx.\n", cnt,
1052 				    (unsigned long long)vid.port_name,
1053 				    (unsigned long long)vid.node_name);
1054 		}
1055 	}
1056 done:
1057 	kfree(data);
1058 }
1059 
1060 static int
1061 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1062 {
1063 	struct qla_hw_data *ha = vha->hw;
1064 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1065 
1066 	if (ha->flags.fac_supported)
1067 		return qla81xx_fac_do_write_enable(vha, 1);
1068 
1069 	/* Enable flash write. */
1070 	WRT_REG_DWORD(&reg->ctrl_status,
1071 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1072 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1073 
1074 	if (!ha->fdt_wrt_disable)
1075 		goto done;
1076 
1077 	/* Disable flash write-protection, first clear SR protection bit */
1078 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1079 	/* Then write zero again to clear remaining SR bits.*/
1080 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1081 done:
1082 	return QLA_SUCCESS;
1083 }
1084 
1085 static int
1086 qla24xx_protect_flash(scsi_qla_host_t *vha)
1087 {
1088 	uint32_t cnt;
1089 	struct qla_hw_data *ha = vha->hw;
1090 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1091 
1092 	if (ha->flags.fac_supported)
1093 		return qla81xx_fac_do_write_enable(vha, 0);
1094 
1095 	if (!ha->fdt_wrt_disable)
1096 		goto skip_wrt_protect;
1097 
1098 	/* Enable flash write-protection and wait for completion. */
1099 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1100 	    ha->fdt_wrt_disable);
1101 	for (cnt = 300; cnt &&
1102 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1103 	    cnt--) {
1104 		udelay(10);
1105 	}
1106 
1107 skip_wrt_protect:
1108 	/* Disable flash write. */
1109 	WRT_REG_DWORD(&reg->ctrl_status,
1110 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1111 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1112 
1113 	return QLA_SUCCESS;
1114 }
1115 
1116 static int
1117 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1118 {
1119 	struct qla_hw_data *ha = vha->hw;
1120 	uint32_t start, finish;
1121 
1122 	if (ha->flags.fac_supported) {
1123 		start = fdata >> 2;
1124 		finish = start + (ha->fdt_block_size >> 2) - 1;
1125 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1126 		    start), flash_data_addr(ha, finish));
1127 	}
1128 
1129 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1130 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1131 	    ((fdata >> 16) & 0xff));
1132 }
1133 
1134 static int
1135 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1136     uint32_t dwords)
1137 {
1138 	int ret;
1139 	uint32_t liter;
1140 	uint32_t sec_mask, rest_addr;
1141 	uint32_t fdata;
1142 	dma_addr_t optrom_dma;
1143 	void *optrom = NULL;
1144 	struct qla_hw_data *ha = vha->hw;
1145 
1146 	/* Prepare burst-capable write on supported ISPs. */
1147 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1148 	    dwords > OPTROM_BURST_DWORDS) {
1149 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1150 		    &optrom_dma, GFP_KERNEL);
1151 		if (!optrom) {
1152 			ql_log(ql_log_warn, vha, 0x7095,
1153 			    "Unable to allocate "
1154 			    "memory for optrom burst write (%x KB).\n",
1155 			    OPTROM_BURST_SIZE / 1024);
1156 		}
1157 	}
1158 
1159 	rest_addr = (ha->fdt_block_size >> 2) - 1;
1160 	sec_mask = ~rest_addr;
1161 
1162 	ret = qla24xx_unprotect_flash(vha);
1163 	if (ret != QLA_SUCCESS) {
1164 		ql_log(ql_log_warn, vha, 0x7096,
1165 		    "Unable to unprotect flash for update.\n");
1166 		goto done;
1167 	}
1168 
1169 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1170 		fdata = (faddr & sec_mask) << 2;
1171 
1172 		/* Are we at the beginning of a sector? */
1173 		if ((faddr & rest_addr) == 0) {
1174 			/* Do sector unprotect. */
1175 			if (ha->fdt_unprotect_sec_cmd)
1176 				qla24xx_write_flash_dword(ha,
1177 				    ha->fdt_unprotect_sec_cmd,
1178 				    (fdata & 0xff00) | ((fdata << 16) &
1179 				    0xff0000) | ((fdata >> 16) & 0xff));
1180 			ret = qla24xx_erase_sector(vha, fdata);
1181 			if (ret != QLA_SUCCESS) {
1182 				ql_dbg(ql_dbg_user, vha, 0x7007,
1183 				    "Unable to erase erase sector: address=%x.\n",
1184 				    faddr);
1185 				break;
1186 			}
1187 		}
1188 
1189 		/* Go with burst-write. */
1190 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1191 			/* Copy data to DMA'ble buffer. */
1192 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1193 
1194 			ret = qla2x00_load_ram(vha, optrom_dma,
1195 			    flash_data_addr(ha, faddr),
1196 			    OPTROM_BURST_DWORDS);
1197 			if (ret != QLA_SUCCESS) {
1198 				ql_log(ql_log_warn, vha, 0x7097,
1199 				    "Unable to burst-write optrom segment "
1200 				    "(%x/%x/%llx).\n", ret,
1201 				    flash_data_addr(ha, faddr),
1202 				    (unsigned long long)optrom_dma);
1203 				ql_log(ql_log_warn, vha, 0x7098,
1204 				    "Reverting to slow-write.\n");
1205 
1206 				dma_free_coherent(&ha->pdev->dev,
1207 				    OPTROM_BURST_SIZE, optrom, optrom_dma);
1208 				optrom = NULL;
1209 			} else {
1210 				liter += OPTROM_BURST_DWORDS - 1;
1211 				faddr += OPTROM_BURST_DWORDS - 1;
1212 				dwptr += OPTROM_BURST_DWORDS - 1;
1213 				continue;
1214 			}
1215 		}
1216 
1217 		ret = qla24xx_write_flash_dword(ha,
1218 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1219 		if (ret != QLA_SUCCESS) {
1220 			ql_dbg(ql_dbg_user, vha, 0x7006,
1221 			    "Unable to program flash address=%x data=%x.\n",
1222 			    faddr, *dwptr);
1223 			break;
1224 		}
1225 
1226 		/* Do sector protect. */
1227 		if (ha->fdt_unprotect_sec_cmd &&
1228 		    ((faddr & rest_addr) == rest_addr))
1229 			qla24xx_write_flash_dword(ha,
1230 			    ha->fdt_protect_sec_cmd,
1231 			    (fdata & 0xff00) | ((fdata << 16) &
1232 			    0xff0000) | ((fdata >> 16) & 0xff));
1233 	}
1234 
1235 	ret = qla24xx_protect_flash(vha);
1236 	if (ret != QLA_SUCCESS)
1237 		ql_log(ql_log_warn, vha, 0x7099,
1238 		    "Unable to protect flash after update.\n");
1239 done:
1240 	if (optrom)
1241 		dma_free_coherent(&ha->pdev->dev,
1242 		    OPTROM_BURST_SIZE, optrom, optrom_dma);
1243 
1244 	return ret;
1245 }
1246 
1247 uint8_t *
1248 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1249     uint32_t bytes)
1250 {
1251 	uint32_t i;
1252 	uint16_t *wptr;
1253 	struct qla_hw_data *ha = vha->hw;
1254 
1255 	/* Word reads to NVRAM via registers. */
1256 	wptr = (uint16_t *)buf;
1257 	qla2x00_lock_nvram_access(ha);
1258 	for (i = 0; i < bytes >> 1; i++, naddr++)
1259 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1260 		    naddr));
1261 	qla2x00_unlock_nvram_access(ha);
1262 
1263 	return buf;
1264 }
1265 
1266 uint8_t *
1267 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1268     uint32_t bytes)
1269 {
1270 	uint32_t i;
1271 	uint32_t *dwptr;
1272 	struct qla_hw_data *ha = vha->hw;
1273 
1274 	if (IS_QLA82XX(ha))
1275 		return  buf;
1276 
1277 	/* Dword reads to flash. */
1278 	dwptr = (uint32_t *)buf;
1279 	for (i = 0; i < bytes >> 2; i++, naddr++)
1280 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1281 		    nvram_data_addr(ha, naddr)));
1282 
1283 	return buf;
1284 }
1285 
1286 int
1287 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1288     uint32_t bytes)
1289 {
1290 	int ret, stat;
1291 	uint32_t i;
1292 	uint16_t *wptr;
1293 	unsigned long flags;
1294 	struct qla_hw_data *ha = vha->hw;
1295 
1296 	ret = QLA_SUCCESS;
1297 
1298 	spin_lock_irqsave(&ha->hardware_lock, flags);
1299 	qla2x00_lock_nvram_access(ha);
1300 
1301 	/* Disable NVRAM write-protection. */
1302 	stat = qla2x00_clear_nvram_protection(ha);
1303 
1304 	wptr = (uint16_t *)buf;
1305 	for (i = 0; i < bytes >> 1; i++, naddr++) {
1306 		qla2x00_write_nvram_word(ha, naddr,
1307 		    cpu_to_le16(*wptr));
1308 		wptr++;
1309 	}
1310 
1311 	/* Enable NVRAM write-protection. */
1312 	qla2x00_set_nvram_protection(ha, stat);
1313 
1314 	qla2x00_unlock_nvram_access(ha);
1315 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1316 
1317 	return ret;
1318 }
1319 
1320 int
1321 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322     uint32_t bytes)
1323 {
1324 	int ret;
1325 	uint32_t i;
1326 	uint32_t *dwptr;
1327 	struct qla_hw_data *ha = vha->hw;
1328 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1329 
1330 	ret = QLA_SUCCESS;
1331 
1332 	if (IS_QLA82XX(ha))
1333 		return ret;
1334 
1335 	/* Enable flash write. */
1336 	WRT_REG_DWORD(&reg->ctrl_status,
1337 	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1338 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1339 
1340 	/* Disable NVRAM write-protection. */
1341 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1342 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1343 
1344 	/* Dword writes to flash. */
1345 	dwptr = (uint32_t *)buf;
1346 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1347 		ret = qla24xx_write_flash_dword(ha,
1348 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1349 		if (ret != QLA_SUCCESS) {
1350 			ql_dbg(ql_dbg_user, vha, 0x709a,
1351 			    "Unable to program nvram address=%x data=%x.\n",
1352 			    naddr, *dwptr);
1353 			break;
1354 		}
1355 	}
1356 
1357 	/* Enable NVRAM write-protection. */
1358 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1359 
1360 	/* Disable flash write. */
1361 	WRT_REG_DWORD(&reg->ctrl_status,
1362 	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1363 	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1364 
1365 	return ret;
1366 }
1367 
1368 uint8_t *
1369 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1370     uint32_t bytes)
1371 {
1372 	uint32_t i;
1373 	uint32_t *dwptr;
1374 	struct qla_hw_data *ha = vha->hw;
1375 
1376 	/* Dword reads to flash. */
1377 	dwptr = (uint32_t *)buf;
1378 	for (i = 0; i < bytes >> 2; i++, naddr++)
1379 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1380 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1381 
1382 	return buf;
1383 }
1384 
1385 int
1386 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1387     uint32_t bytes)
1388 {
1389 	struct qla_hw_data *ha = vha->hw;
1390 #define RMW_BUFFER_SIZE	(64 * 1024)
1391 	uint8_t *dbuf;
1392 
1393 	dbuf = vmalloc(RMW_BUFFER_SIZE);
1394 	if (!dbuf)
1395 		return QLA_MEMORY_ALLOC_FAILED;
1396 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1397 	    RMW_BUFFER_SIZE);
1398 	memcpy(dbuf + (naddr << 2), buf, bytes);
1399 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1400 	    RMW_BUFFER_SIZE);
1401 	vfree(dbuf);
1402 
1403 	return QLA_SUCCESS;
1404 }
1405 
1406 static inline void
1407 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1408 {
1409 	if (IS_QLA2322(ha)) {
1410 		/* Flip all colors. */
1411 		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1412 			/* Turn off. */
1413 			ha->beacon_color_state = 0;
1414 			*pflags = GPIO_LED_ALL_OFF;
1415 		} else {
1416 			/* Turn on. */
1417 			ha->beacon_color_state = QLA_LED_ALL_ON;
1418 			*pflags = GPIO_LED_RGA_ON;
1419 		}
1420 	} else {
1421 		/* Flip green led only. */
1422 		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1423 			/* Turn off. */
1424 			ha->beacon_color_state = 0;
1425 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1426 		} else {
1427 			/* Turn on. */
1428 			ha->beacon_color_state = QLA_LED_GRN_ON;
1429 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1430 		}
1431 	}
1432 }
1433 
1434 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1435 
1436 void
1437 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1438 {
1439 	uint16_t gpio_enable;
1440 	uint16_t gpio_data;
1441 	uint16_t led_color = 0;
1442 	unsigned long flags;
1443 	struct qla_hw_data *ha = vha->hw;
1444 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1445 
1446 	if (IS_QLA82XX(ha))
1447 		return;
1448 
1449 	spin_lock_irqsave(&ha->hardware_lock, flags);
1450 
1451 	/* Save the Original GPIOE. */
1452 	if (ha->pio_address) {
1453 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1454 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1455 	} else {
1456 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1457 		gpio_data = RD_REG_WORD(&reg->gpiod);
1458 	}
1459 
1460 	/* Set the modified gpio_enable values */
1461 	gpio_enable |= GPIO_LED_MASK;
1462 
1463 	if (ha->pio_address) {
1464 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1465 	} else {
1466 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1467 		RD_REG_WORD(&reg->gpioe);
1468 	}
1469 
1470 	qla2x00_flip_colors(ha, &led_color);
1471 
1472 	/* Clear out any previously set LED color. */
1473 	gpio_data &= ~GPIO_LED_MASK;
1474 
1475 	/* Set the new input LED color to GPIOD. */
1476 	gpio_data |= led_color;
1477 
1478 	/* Set the modified gpio_data values */
1479 	if (ha->pio_address) {
1480 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1481 	} else {
1482 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1483 		RD_REG_WORD(&reg->gpiod);
1484 	}
1485 
1486 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1487 }
1488 
1489 int
1490 qla2x00_beacon_on(struct scsi_qla_host *vha)
1491 {
1492 	uint16_t gpio_enable;
1493 	uint16_t gpio_data;
1494 	unsigned long flags;
1495 	struct qla_hw_data *ha = vha->hw;
1496 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1497 
1498 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1499 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1500 
1501 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1502 		ql_log(ql_log_warn, vha, 0x709b,
1503 		    "Unable to update fw options (beacon on).\n");
1504 		return QLA_FUNCTION_FAILED;
1505 	}
1506 
1507 	/* Turn off LEDs. */
1508 	spin_lock_irqsave(&ha->hardware_lock, flags);
1509 	if (ha->pio_address) {
1510 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1511 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1512 	} else {
1513 		gpio_enable = RD_REG_WORD(&reg->gpioe);
1514 		gpio_data = RD_REG_WORD(&reg->gpiod);
1515 	}
1516 	gpio_enable |= GPIO_LED_MASK;
1517 
1518 	/* Set the modified gpio_enable values. */
1519 	if (ha->pio_address) {
1520 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1521 	} else {
1522 		WRT_REG_WORD(&reg->gpioe, gpio_enable);
1523 		RD_REG_WORD(&reg->gpioe);
1524 	}
1525 
1526 	/* Clear out previously set LED colour. */
1527 	gpio_data &= ~GPIO_LED_MASK;
1528 	if (ha->pio_address) {
1529 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1530 	} else {
1531 		WRT_REG_WORD(&reg->gpiod, gpio_data);
1532 		RD_REG_WORD(&reg->gpiod);
1533 	}
1534 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1535 
1536 	/*
1537 	 * Let the per HBA timer kick off the blinking process based on
1538 	 * the following flags. No need to do anything else now.
1539 	 */
1540 	ha->beacon_blink_led = 1;
1541 	ha->beacon_color_state = 0;
1542 
1543 	return QLA_SUCCESS;
1544 }
1545 
1546 int
1547 qla2x00_beacon_off(struct scsi_qla_host *vha)
1548 {
1549 	int rval = QLA_SUCCESS;
1550 	struct qla_hw_data *ha = vha->hw;
1551 
1552 	ha->beacon_blink_led = 0;
1553 
1554 	/* Set the on flag so when it gets flipped it will be off. */
1555 	if (IS_QLA2322(ha))
1556 		ha->beacon_color_state = QLA_LED_ALL_ON;
1557 	else
1558 		ha->beacon_color_state = QLA_LED_GRN_ON;
1559 
1560 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1561 
1562 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1563 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1564 
1565 	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1566 	if (rval != QLA_SUCCESS)
1567 		ql_log(ql_log_warn, vha, 0x709c,
1568 		    "Unable to update fw options (beacon off).\n");
1569 	return rval;
1570 }
1571 
1572 
1573 static inline void
1574 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1575 {
1576 	/* Flip all colors. */
1577 	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1578 		/* Turn off. */
1579 		ha->beacon_color_state = 0;
1580 		*pflags = 0;
1581 	} else {
1582 		/* Turn on. */
1583 		ha->beacon_color_state = QLA_LED_ALL_ON;
1584 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1585 	}
1586 }
1587 
1588 void
1589 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1590 {
1591 	uint16_t led_color = 0;
1592 	uint32_t gpio_data;
1593 	unsigned long flags;
1594 	struct qla_hw_data *ha = vha->hw;
1595 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1596 
1597 	/* Save the Original GPIOD. */
1598 	spin_lock_irqsave(&ha->hardware_lock, flags);
1599 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1600 
1601 	/* Enable the gpio_data reg for update. */
1602 	gpio_data |= GPDX_LED_UPDATE_MASK;
1603 
1604 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1605 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1606 
1607 	/* Set the color bits. */
1608 	qla24xx_flip_colors(ha, &led_color);
1609 
1610 	/* Clear out any previously set LED color. */
1611 	gpio_data &= ~GPDX_LED_COLOR_MASK;
1612 
1613 	/* Set the new input LED color to GPIOD. */
1614 	gpio_data |= led_color;
1615 
1616 	/* Set the modified gpio_data values. */
1617 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1618 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1619 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1620 }
1621 
1622 int
1623 qla24xx_beacon_on(struct scsi_qla_host *vha)
1624 {
1625 	uint32_t gpio_data;
1626 	unsigned long flags;
1627 	struct qla_hw_data *ha = vha->hw;
1628 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1629 
1630 	if (IS_QLA82XX(ha))
1631 		return QLA_SUCCESS;
1632 
1633 	if (ha->beacon_blink_led == 0) {
1634 		/* Enable firmware for update */
1635 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1636 
1637 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1638 			return QLA_FUNCTION_FAILED;
1639 
1640 		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1641 		    QLA_SUCCESS) {
1642 			ql_log(ql_log_warn, vha, 0x7009,
1643 			    "Unable to update fw options (beacon on).\n");
1644 			return QLA_FUNCTION_FAILED;
1645 		}
1646 
1647 		spin_lock_irqsave(&ha->hardware_lock, flags);
1648 		gpio_data = RD_REG_DWORD(&reg->gpiod);
1649 
1650 		/* Enable the gpio_data reg for update. */
1651 		gpio_data |= GPDX_LED_UPDATE_MASK;
1652 		WRT_REG_DWORD(&reg->gpiod, gpio_data);
1653 		RD_REG_DWORD(&reg->gpiod);
1654 
1655 		spin_unlock_irqrestore(&ha->hardware_lock, flags);
1656 	}
1657 
1658 	/* So all colors blink together. */
1659 	ha->beacon_color_state = 0;
1660 
1661 	/* Let the per HBA timer kick off the blinking process. */
1662 	ha->beacon_blink_led = 1;
1663 
1664 	return QLA_SUCCESS;
1665 }
1666 
1667 int
1668 qla24xx_beacon_off(struct scsi_qla_host *vha)
1669 {
1670 	uint32_t gpio_data;
1671 	unsigned long flags;
1672 	struct qla_hw_data *ha = vha->hw;
1673 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1674 
1675 	if (IS_QLA82XX(ha))
1676 		return QLA_SUCCESS;
1677 
1678 	ha->beacon_blink_led = 0;
1679 	ha->beacon_color_state = QLA_LED_ALL_ON;
1680 
1681 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1682 
1683 	/* Give control back to firmware. */
1684 	spin_lock_irqsave(&ha->hardware_lock, flags);
1685 	gpio_data = RD_REG_DWORD(&reg->gpiod);
1686 
1687 	/* Disable the gpio_data reg for update. */
1688 	gpio_data &= ~GPDX_LED_UPDATE_MASK;
1689 	WRT_REG_DWORD(&reg->gpiod, gpio_data);
1690 	RD_REG_DWORD(&reg->gpiod);
1691 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1692 
1693 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1694 
1695 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1696 		ql_log(ql_log_warn, vha, 0x704d,
1697 		    "Unable to update fw options (beacon on).\n");
1698 		return QLA_FUNCTION_FAILED;
1699 	}
1700 
1701 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1702 		ql_log(ql_log_warn, vha, 0x704e,
1703 		    "Unable to update fw options (beacon on).\n");
1704 		return QLA_FUNCTION_FAILED;
1705 	}
1706 
1707 	return QLA_SUCCESS;
1708 }
1709 
1710 
1711 /*
1712  * Flash support routines
1713  */
1714 
1715 /**
1716  * qla2x00_flash_enable() - Setup flash for reading and writing.
1717  * @ha: HA context
1718  */
1719 static void
1720 qla2x00_flash_enable(struct qla_hw_data *ha)
1721 {
1722 	uint16_t data;
1723 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1724 
1725 	data = RD_REG_WORD(&reg->ctrl_status);
1726 	data |= CSR_FLASH_ENABLE;
1727 	WRT_REG_WORD(&reg->ctrl_status, data);
1728 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1729 }
1730 
1731 /**
1732  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1733  * @ha: HA context
1734  */
1735 static void
1736 qla2x00_flash_disable(struct qla_hw_data *ha)
1737 {
1738 	uint16_t data;
1739 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1740 
1741 	data = RD_REG_WORD(&reg->ctrl_status);
1742 	data &= ~(CSR_FLASH_ENABLE);
1743 	WRT_REG_WORD(&reg->ctrl_status, data);
1744 	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1745 }
1746 
1747 /**
1748  * qla2x00_read_flash_byte() - Reads a byte from flash
1749  * @ha: HA context
1750  * @addr: Address in flash to read
1751  *
1752  * A word is read from the chip, but, only the lower byte is valid.
1753  *
1754  * Returns the byte read from flash @addr.
1755  */
1756 static uint8_t
1757 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1758 {
1759 	uint16_t data;
1760 	uint16_t bank_select;
1761 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1762 
1763 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1764 
1765 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1766 		/* Specify 64K address range: */
1767 		/*  clear out Module Select and Flash Address bits [19:16]. */
1768 		bank_select &= ~0xf8;
1769 		bank_select |= addr >> 12 & 0xf0;
1770 		bank_select |= CSR_FLASH_64K_BANK;
1771 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1772 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1773 
1774 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1775 		data = RD_REG_WORD(&reg->flash_data);
1776 
1777 		return (uint8_t)data;
1778 	}
1779 
1780 	/* Setup bit 16 of flash address. */
1781 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1782 		bank_select |= CSR_FLASH_64K_BANK;
1783 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1784 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1785 	} else if (((addr & BIT_16) == 0) &&
1786 	    (bank_select & CSR_FLASH_64K_BANK)) {
1787 		bank_select &= ~(CSR_FLASH_64K_BANK);
1788 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1789 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1790 	}
1791 
1792 	/* Always perform IO mapped accesses to the FLASH registers. */
1793 	if (ha->pio_address) {
1794 		uint16_t data2;
1795 
1796 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1797 		do {
1798 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1799 			barrier();
1800 			cpu_relax();
1801 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1802 		} while (data != data2);
1803 	} else {
1804 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1805 		data = qla2x00_debounce_register(&reg->flash_data);
1806 	}
1807 
1808 	return (uint8_t)data;
1809 }
1810 
1811 /**
1812  * qla2x00_write_flash_byte() - Write a byte to flash
1813  * @ha: HA context
1814  * @addr: Address in flash to write
1815  * @data: Data to write
1816  */
1817 static void
1818 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1819 {
1820 	uint16_t bank_select;
1821 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1822 
1823 	bank_select = RD_REG_WORD(&reg->ctrl_status);
1824 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1825 		/* Specify 64K address range: */
1826 		/*  clear out Module Select and Flash Address bits [19:16]. */
1827 		bank_select &= ~0xf8;
1828 		bank_select |= addr >> 12 & 0xf0;
1829 		bank_select |= CSR_FLASH_64K_BANK;
1830 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1831 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1832 
1833 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1834 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1835 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1836 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1837 
1838 		return;
1839 	}
1840 
1841 	/* Setup bit 16 of flash address. */
1842 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1843 		bank_select |= CSR_FLASH_64K_BANK;
1844 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1845 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1846 	} else if (((addr & BIT_16) == 0) &&
1847 	    (bank_select & CSR_FLASH_64K_BANK)) {
1848 		bank_select &= ~(CSR_FLASH_64K_BANK);
1849 		WRT_REG_WORD(&reg->ctrl_status, bank_select);
1850 		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
1851 	}
1852 
1853 	/* Always perform IO mapped accesses to the FLASH registers. */
1854 	if (ha->pio_address) {
1855 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1856 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1857 	} else {
1858 		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1859 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1860 		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1861 		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
1862 	}
1863 }
1864 
1865 /**
1866  * qla2x00_poll_flash() - Polls flash for completion.
1867  * @ha: HA context
1868  * @addr: Address in flash to poll
1869  * @poll_data: Data to be polled
1870  * @man_id: Flash manufacturer ID
1871  * @flash_id: Flash ID
1872  *
1873  * This function polls the device until bit 7 of what is read matches data
1874  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1875  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1876  * reading bit 5 as a 1.
1877  *
1878  * Returns 0 on success, else non-zero.
1879  */
1880 static int
1881 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1882     uint8_t man_id, uint8_t flash_id)
1883 {
1884 	int status;
1885 	uint8_t flash_data;
1886 	uint32_t cnt;
1887 
1888 	status = 1;
1889 
1890 	/* Wait for 30 seconds for command to finish. */
1891 	poll_data &= BIT_7;
1892 	for (cnt = 3000000; cnt; cnt--) {
1893 		flash_data = qla2x00_read_flash_byte(ha, addr);
1894 		if ((flash_data & BIT_7) == poll_data) {
1895 			status = 0;
1896 			break;
1897 		}
1898 
1899 		if (man_id != 0x40 && man_id != 0xda) {
1900 			if ((flash_data & BIT_5) && cnt > 2)
1901 				cnt = 2;
1902 		}
1903 		udelay(10);
1904 		barrier();
1905 		cond_resched();
1906 	}
1907 	return status;
1908 }
1909 
1910 /**
1911  * qla2x00_program_flash_address() - Programs a flash address
1912  * @ha: HA context
1913  * @addr: Address in flash to program
1914  * @data: Data to be written in flash
1915  * @man_id: Flash manufacturer ID
1916  * @flash_id: Flash ID
1917  *
1918  * Returns 0 on success, else non-zero.
1919  */
1920 static int
1921 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1922     uint8_t data, uint8_t man_id, uint8_t flash_id)
1923 {
1924 	/* Write Program Command Sequence. */
1925 	if (IS_OEM_001(ha)) {
1926 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1927 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1928 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1929 		qla2x00_write_flash_byte(ha, addr, data);
1930 	} else {
1931 		if (man_id == 0xda && flash_id == 0xc1) {
1932 			qla2x00_write_flash_byte(ha, addr, data);
1933 			if (addr & 0x7e)
1934 				return 0;
1935 		} else {
1936 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1937 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1938 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1939 			qla2x00_write_flash_byte(ha, addr, data);
1940 		}
1941 	}
1942 
1943 	udelay(150);
1944 
1945 	/* Wait for write to complete. */
1946 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1947 }
1948 
1949 /**
1950  * qla2x00_erase_flash() - Erase the flash.
1951  * @ha: HA context
1952  * @man_id: Flash manufacturer ID
1953  * @flash_id: Flash ID
1954  *
1955  * Returns 0 on success, else non-zero.
1956  */
1957 static int
1958 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1959 {
1960 	/* Individual Sector Erase Command Sequence */
1961 	if (IS_OEM_001(ha)) {
1962 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1963 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1964 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1965 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1966 		qla2x00_write_flash_byte(ha, 0x555, 0x55);
1967 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1968 	} else {
1969 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1970 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1971 		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1972 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1973 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1974 		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1975 	}
1976 
1977 	udelay(150);
1978 
1979 	/* Wait for erase to complete. */
1980 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1981 }
1982 
1983 /**
1984  * qla2x00_erase_flash_sector() - Erase a flash sector.
1985  * @ha: HA context
1986  * @addr: Flash sector to erase
1987  * @sec_mask: Sector address mask
1988  * @man_id: Flash manufacturer ID
1989  * @flash_id: Flash ID
1990  *
1991  * Returns 0 on success, else non-zero.
1992  */
1993 static int
1994 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1995     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1996 {
1997 	/* Individual Sector Erase Command Sequence */
1998 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1999 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2000 	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2001 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2002 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2003 	if (man_id == 0x1f && flash_id == 0x13)
2004 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2005 	else
2006 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2007 
2008 	udelay(150);
2009 
2010 	/* Wait for erase to complete. */
2011 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2012 }
2013 
2014 /**
2015  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2016  * @man_id: Flash manufacturer ID
2017  * @flash_id: Flash ID
2018  */
2019 static void
2020 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2021     uint8_t *flash_id)
2022 {
2023 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2024 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2025 	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2026 	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
2027 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2028 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2029 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2030 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2031 }
2032 
2033 static void
2034 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2035 	uint32_t saddr, uint32_t length)
2036 {
2037 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2038 	uint32_t midpoint, ilength;
2039 	uint8_t data;
2040 
2041 	midpoint = length / 2;
2042 
2043 	WRT_REG_WORD(&reg->nvram, 0);
2044 	RD_REG_WORD(&reg->nvram);
2045 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2046 		if (ilength == midpoint) {
2047 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2048 			RD_REG_WORD(&reg->nvram);
2049 		}
2050 		data = qla2x00_read_flash_byte(ha, saddr);
2051 		if (saddr % 100)
2052 			udelay(10);
2053 		*tmp_buf = data;
2054 		cond_resched();
2055 	}
2056 }
2057 
2058 static inline void
2059 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2060 {
2061 	int cnt;
2062 	unsigned long flags;
2063 	struct qla_hw_data *ha = vha->hw;
2064 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2065 
2066 	/* Suspend HBA. */
2067 	scsi_block_requests(vha->host);
2068 	ha->isp_ops->disable_intrs(ha);
2069 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2070 
2071 	/* Pause RISC. */
2072 	spin_lock_irqsave(&ha->hardware_lock, flags);
2073 	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2074 	RD_REG_WORD(&reg->hccr);
2075 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2076 		for (cnt = 0; cnt < 30000; cnt++) {
2077 			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2078 				break;
2079 			udelay(100);
2080 		}
2081 	} else {
2082 		udelay(10);
2083 	}
2084 	spin_unlock_irqrestore(&ha->hardware_lock, flags);
2085 }
2086 
2087 static inline void
2088 qla2x00_resume_hba(struct scsi_qla_host *vha)
2089 {
2090 	struct qla_hw_data *ha = vha->hw;
2091 
2092 	/* Resume HBA. */
2093 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2094 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2095 	qla2xxx_wake_dpc(vha);
2096 	qla2x00_wait_for_chip_reset(vha);
2097 	scsi_unblock_requests(vha->host);
2098 }
2099 
2100 uint8_t *
2101 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2102     uint32_t offset, uint32_t length)
2103 {
2104 	uint32_t addr, midpoint;
2105 	uint8_t *data;
2106 	struct qla_hw_data *ha = vha->hw;
2107 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2108 
2109 	/* Suspend HBA. */
2110 	qla2x00_suspend_hba(vha);
2111 
2112 	/* Go with read. */
2113 	midpoint = ha->optrom_size / 2;
2114 
2115 	qla2x00_flash_enable(ha);
2116 	WRT_REG_WORD(&reg->nvram, 0);
2117 	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
2118 	for (addr = offset, data = buf; addr < length; addr++, data++) {
2119 		if (addr == midpoint) {
2120 			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2121 			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
2122 		}
2123 
2124 		*data = qla2x00_read_flash_byte(ha, addr);
2125 	}
2126 	qla2x00_flash_disable(ha);
2127 
2128 	/* Resume HBA. */
2129 	qla2x00_resume_hba(vha);
2130 
2131 	return buf;
2132 }
2133 
2134 int
2135 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2136     uint32_t offset, uint32_t length)
2137 {
2138 
2139 	int rval;
2140 	uint8_t man_id, flash_id, sec_number, data;
2141 	uint16_t wd;
2142 	uint32_t addr, liter, sec_mask, rest_addr;
2143 	struct qla_hw_data *ha = vha->hw;
2144 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2145 
2146 	/* Suspend HBA. */
2147 	qla2x00_suspend_hba(vha);
2148 
2149 	rval = QLA_SUCCESS;
2150 	sec_number = 0;
2151 
2152 	/* Reset ISP chip. */
2153 	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2154 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2155 
2156 	/* Go with write. */
2157 	qla2x00_flash_enable(ha);
2158 	do {	/* Loop once to provide quick error exit */
2159 		/* Structure of flash memory based on manufacturer */
2160 		if (IS_OEM_001(ha)) {
2161 			/* OEM variant with special flash part. */
2162 			man_id = flash_id = 0;
2163 			rest_addr = 0xffff;
2164 			sec_mask   = 0x10000;
2165 			goto update_flash;
2166 		}
2167 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2168 		switch (man_id) {
2169 		case 0x20: /* ST flash. */
2170 			if (flash_id == 0xd2 || flash_id == 0xe3) {
2171 				/*
2172 				 * ST m29w008at part - 64kb sector size with
2173 				 * 32kb,8kb,8kb,16kb sectors at memory address
2174 				 * 0xf0000.
2175 				 */
2176 				rest_addr = 0xffff;
2177 				sec_mask = 0x10000;
2178 				break;
2179 			}
2180 			/*
2181 			 * ST m29w010b part - 16kb sector size
2182 			 * Default to 16kb sectors
2183 			 */
2184 			rest_addr = 0x3fff;
2185 			sec_mask = 0x1c000;
2186 			break;
2187 		case 0x40: /* Mostel flash. */
2188 			/* Mostel v29c51001 part - 512 byte sector size. */
2189 			rest_addr = 0x1ff;
2190 			sec_mask = 0x1fe00;
2191 			break;
2192 		case 0xbf: /* SST flash. */
2193 			/* SST39sf10 part - 4kb sector size. */
2194 			rest_addr = 0xfff;
2195 			sec_mask = 0x1f000;
2196 			break;
2197 		case 0xda: /* Winbond flash. */
2198 			/* Winbond W29EE011 part - 256 byte sector size. */
2199 			rest_addr = 0x7f;
2200 			sec_mask = 0x1ff80;
2201 			break;
2202 		case 0xc2: /* Macronix flash. */
2203 			/* 64k sector size. */
2204 			if (flash_id == 0x38 || flash_id == 0x4f) {
2205 				rest_addr = 0xffff;
2206 				sec_mask = 0x10000;
2207 				break;
2208 			}
2209 			/* Fall through... */
2210 
2211 		case 0x1f: /* Atmel flash. */
2212 			/* 512k sector size. */
2213 			if (flash_id == 0x13) {
2214 				rest_addr = 0x7fffffff;
2215 				sec_mask =   0x80000000;
2216 				break;
2217 			}
2218 			/* Fall through... */
2219 
2220 		case 0x01: /* AMD flash. */
2221 			if (flash_id == 0x38 || flash_id == 0x40 ||
2222 			    flash_id == 0x4f) {
2223 				/* Am29LV081 part - 64kb sector size. */
2224 				/* Am29LV002BT part - 64kb sector size. */
2225 				rest_addr = 0xffff;
2226 				sec_mask = 0x10000;
2227 				break;
2228 			} else if (flash_id == 0x3e) {
2229 				/*
2230 				 * Am29LV008b part - 64kb sector size with
2231 				 * 32kb,8kb,8kb,16kb sector at memory address
2232 				 * h0xf0000.
2233 				 */
2234 				rest_addr = 0xffff;
2235 				sec_mask = 0x10000;
2236 				break;
2237 			} else if (flash_id == 0x20 || flash_id == 0x6e) {
2238 				/*
2239 				 * Am29LV010 part or AM29f010 - 16kb sector
2240 				 * size.
2241 				 */
2242 				rest_addr = 0x3fff;
2243 				sec_mask = 0x1c000;
2244 				break;
2245 			} else if (flash_id == 0x6d) {
2246 				/* Am29LV001 part - 8kb sector size. */
2247 				rest_addr = 0x1fff;
2248 				sec_mask = 0x1e000;
2249 				break;
2250 			}
2251 		default:
2252 			/* Default to 16 kb sector size. */
2253 			rest_addr = 0x3fff;
2254 			sec_mask = 0x1c000;
2255 			break;
2256 		}
2257 
2258 update_flash:
2259 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2260 			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2261 				rval = QLA_FUNCTION_FAILED;
2262 				break;
2263 			}
2264 		}
2265 
2266 		for (addr = offset, liter = 0; liter < length; liter++,
2267 		    addr++) {
2268 			data = buf[liter];
2269 			/* Are we at the beginning of a sector? */
2270 			if ((addr & rest_addr) == 0) {
2271 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2272 					if (addr >= 0x10000UL) {
2273 						if (((addr >> 12) & 0xf0) &&
2274 						    ((man_id == 0x01 &&
2275 							flash_id == 0x3e) ||
2276 						     (man_id == 0x20 &&
2277 							 flash_id == 0xd2))) {
2278 							sec_number++;
2279 							if (sec_number == 1) {
2280 								rest_addr =
2281 								    0x7fff;
2282 								sec_mask =
2283 								    0x18000;
2284 							} else if (
2285 							    sec_number == 2 ||
2286 							    sec_number == 3) {
2287 								rest_addr =
2288 								    0x1fff;
2289 								sec_mask =
2290 								    0x1e000;
2291 							} else if (
2292 							    sec_number == 4) {
2293 								rest_addr =
2294 								    0x3fff;
2295 								sec_mask =
2296 								    0x1c000;
2297 							}
2298 						}
2299 					}
2300 				} else if (addr == ha->optrom_size / 2) {
2301 					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2302 					RD_REG_WORD(&reg->nvram);
2303 				}
2304 
2305 				if (flash_id == 0xda && man_id == 0xc1) {
2306 					qla2x00_write_flash_byte(ha, 0x5555,
2307 					    0xaa);
2308 					qla2x00_write_flash_byte(ha, 0x2aaa,
2309 					    0x55);
2310 					qla2x00_write_flash_byte(ha, 0x5555,
2311 					    0xa0);
2312 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2313 					/* Then erase it */
2314 					if (qla2x00_erase_flash_sector(ha,
2315 					    addr, sec_mask, man_id,
2316 					    flash_id)) {
2317 						rval = QLA_FUNCTION_FAILED;
2318 						break;
2319 					}
2320 					if (man_id == 0x01 && flash_id == 0x6d)
2321 						sec_number++;
2322 				}
2323 			}
2324 
2325 			if (man_id == 0x01 && flash_id == 0x6d) {
2326 				if (sec_number == 1 &&
2327 				    addr == (rest_addr - 1)) {
2328 					rest_addr = 0x0fff;
2329 					sec_mask   = 0x1f000;
2330 				} else if (sec_number == 3 && (addr & 0x7ffe)) {
2331 					rest_addr = 0x3fff;
2332 					sec_mask   = 0x1c000;
2333 				}
2334 			}
2335 
2336 			if (qla2x00_program_flash_address(ha, addr, data,
2337 			    man_id, flash_id)) {
2338 				rval = QLA_FUNCTION_FAILED;
2339 				break;
2340 			}
2341 			cond_resched();
2342 		}
2343 	} while (0);
2344 	qla2x00_flash_disable(ha);
2345 
2346 	/* Resume HBA. */
2347 	qla2x00_resume_hba(vha);
2348 
2349 	return rval;
2350 }
2351 
2352 uint8_t *
2353 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2354     uint32_t offset, uint32_t length)
2355 {
2356 	struct qla_hw_data *ha = vha->hw;
2357 
2358 	/* Suspend HBA. */
2359 	scsi_block_requests(vha->host);
2360 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2361 
2362 	/* Go with read. */
2363 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2364 
2365 	/* Resume HBA. */
2366 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2367 	scsi_unblock_requests(vha->host);
2368 
2369 	return buf;
2370 }
2371 
2372 int
2373 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2374     uint32_t offset, uint32_t length)
2375 {
2376 	int rval;
2377 	struct qla_hw_data *ha = vha->hw;
2378 
2379 	/* Suspend HBA. */
2380 	scsi_block_requests(vha->host);
2381 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2382 
2383 	/* Go with write. */
2384 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2385 	    length >> 2);
2386 
2387 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2388 	scsi_unblock_requests(vha->host);
2389 
2390 	return rval;
2391 }
2392 
2393 uint8_t *
2394 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2395     uint32_t offset, uint32_t length)
2396 {
2397 	int rval;
2398 	dma_addr_t optrom_dma;
2399 	void *optrom;
2400 	uint8_t *pbuf;
2401 	uint32_t faddr, left, burst;
2402 	struct qla_hw_data *ha = vha->hw;
2403 
2404 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2405 		goto try_fast;
2406 	if (offset & 0xfff)
2407 		goto slow_read;
2408 	if (length < OPTROM_BURST_SIZE)
2409 		goto slow_read;
2410 
2411 try_fast:
2412 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2413 	    &optrom_dma, GFP_KERNEL);
2414 	if (!optrom) {
2415 		ql_log(ql_log_warn, vha, 0x00cc,
2416 		    "Unable to allocate memory for optrom burst read (%x KB).\n",
2417 		    OPTROM_BURST_SIZE / 1024);
2418 		goto slow_read;
2419 	}
2420 
2421 	pbuf = buf;
2422 	faddr = offset >> 2;
2423 	left = length >> 2;
2424 	burst = OPTROM_BURST_DWORDS;
2425 	while (left != 0) {
2426 		if (burst > left)
2427 			burst = left;
2428 
2429 		rval = qla2x00_dump_ram(vha, optrom_dma,
2430 		    flash_data_addr(ha, faddr), burst);
2431 		if (rval) {
2432 			ql_log(ql_log_warn, vha, 0x00f5,
2433 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2434 			    rval, flash_data_addr(ha, faddr),
2435 			    (unsigned long long)optrom_dma);
2436 			ql_log(ql_log_warn, vha, 0x00f6,
2437 			    "Reverting to slow-read.\n");
2438 
2439 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2440 			    optrom, optrom_dma);
2441 			goto slow_read;
2442 		}
2443 
2444 		memcpy(pbuf, optrom, burst * 4);
2445 
2446 		left -= burst;
2447 		faddr += burst;
2448 		pbuf += burst * 4;
2449 	}
2450 
2451 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2452 	    optrom_dma);
2453 
2454 	return buf;
2455 
2456 slow_read:
2457     return qla24xx_read_optrom_data(vha, buf, offset, length);
2458 }
2459 
2460 /**
2461  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2462  * @ha: HA context
2463  * @pcids: Pointer to the FCODE PCI data structure
2464  *
2465  * The process of retrieving the FCODE version information is at best
2466  * described as interesting.
2467  *
2468  * Within the first 100h bytes of the image an ASCII string is present
2469  * which contains several pieces of information including the FCODE
2470  * version.  Unfortunately it seems the only reliable way to retrieve
2471  * the version is by scanning for another sentinel within the string,
2472  * the FCODE build date:
2473  *
2474  *	... 2.00.02 10/17/02 ...
2475  *
2476  * Returns QLA_SUCCESS on successful retrieval of version.
2477  */
2478 static void
2479 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2480 {
2481 	int ret = QLA_FUNCTION_FAILED;
2482 	uint32_t istart, iend, iter, vend;
2483 	uint8_t do_next, rbyte, *vbyte;
2484 
2485 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2486 
2487 	/* Skip the PCI data structure. */
2488 	istart = pcids +
2489 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2490 		qla2x00_read_flash_byte(ha, pcids + 0x0A));
2491 	iend = istart + 0x100;
2492 	do {
2493 		/* Scan for the sentinel date string...eeewww. */
2494 		do_next = 0;
2495 		iter = istart;
2496 		while ((iter < iend) && !do_next) {
2497 			iter++;
2498 			if (qla2x00_read_flash_byte(ha, iter) == '/') {
2499 				if (qla2x00_read_flash_byte(ha, iter + 2) ==
2500 				    '/')
2501 					do_next++;
2502 				else if (qla2x00_read_flash_byte(ha,
2503 				    iter + 3) == '/')
2504 					do_next++;
2505 			}
2506 		}
2507 		if (!do_next)
2508 			break;
2509 
2510 		/* Backtrack to previous ' ' (space). */
2511 		do_next = 0;
2512 		while ((iter > istart) && !do_next) {
2513 			iter--;
2514 			if (qla2x00_read_flash_byte(ha, iter) == ' ')
2515 				do_next++;
2516 		}
2517 		if (!do_next)
2518 			break;
2519 
2520 		/*
2521 		 * Mark end of version tag, and find previous ' ' (space) or
2522 		 * string length (recent FCODE images -- major hack ahead!!!).
2523 		 */
2524 		vend = iter - 1;
2525 		do_next = 0;
2526 		while ((iter > istart) && !do_next) {
2527 			iter--;
2528 			rbyte = qla2x00_read_flash_byte(ha, iter);
2529 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2530 				do_next++;
2531 		}
2532 		if (!do_next)
2533 			break;
2534 
2535 		/* Mark beginning of version tag, and copy data. */
2536 		iter++;
2537 		if ((vend - iter) &&
2538 		    ((vend - iter) < sizeof(ha->fcode_revision))) {
2539 			vbyte = ha->fcode_revision;
2540 			while (iter <= vend) {
2541 				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
2542 				iter++;
2543 			}
2544 			ret = QLA_SUCCESS;
2545 		}
2546 	} while (0);
2547 
2548 	if (ret != QLA_SUCCESS)
2549 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2550 }
2551 
2552 int
2553 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2554 {
2555 	int ret = QLA_SUCCESS;
2556 	uint8_t code_type, last_image;
2557 	uint32_t pcihdr, pcids;
2558 	uint8_t *dbyte;
2559 	uint16_t *dcode;
2560 	struct qla_hw_data *ha = vha->hw;
2561 
2562 	if (!ha->pio_address || !mbuf)
2563 		return QLA_FUNCTION_FAILED;
2564 
2565 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2566 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2567 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2568 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2569 
2570 	qla2x00_flash_enable(ha);
2571 
2572 	/* Begin with first PCI expansion ROM header. */
2573 	pcihdr = 0;
2574 	last_image = 1;
2575 	do {
2576 		/* Verify PCI expansion ROM header. */
2577 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2578 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2579 			/* No signature */
2580 			ql_log(ql_log_fatal, vha, 0x0050,
2581 			    "No matching ROM signature.\n");
2582 			ret = QLA_FUNCTION_FAILED;
2583 			break;
2584 		}
2585 
2586 		/* Locate PCI data structure. */
2587 		pcids = pcihdr +
2588 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2589 			qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2590 
2591 		/* Validate signature of PCI data structure. */
2592 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2593 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2594 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2595 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2596 			/* Incorrect header. */
2597 			ql_log(ql_log_fatal, vha, 0x0051,
2598 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2599 			ret = QLA_FUNCTION_FAILED;
2600 			break;
2601 		}
2602 
2603 		/* Read version */
2604 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2605 		switch (code_type) {
2606 		case ROM_CODE_TYPE_BIOS:
2607 			/* Intel x86, PC-AT compatible. */
2608 			ha->bios_revision[0] =
2609 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2610 			ha->bios_revision[1] =
2611 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2612 			ql_dbg(ql_dbg_init, vha, 0x0052,
2613 			    "Read BIOS %d.%d.\n",
2614 			    ha->bios_revision[1], ha->bios_revision[0]);
2615 			break;
2616 		case ROM_CODE_TYPE_FCODE:
2617 			/* Open Firmware standard for PCI (FCode). */
2618 			/* Eeeewww... */
2619 			qla2x00_get_fcode_version(ha, pcids);
2620 			break;
2621 		case ROM_CODE_TYPE_EFI:
2622 			/* Extensible Firmware Interface (EFI). */
2623 			ha->efi_revision[0] =
2624 			    qla2x00_read_flash_byte(ha, pcids + 0x12);
2625 			ha->efi_revision[1] =
2626 			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2627 			ql_dbg(ql_dbg_init, vha, 0x0053,
2628 			    "Read EFI %d.%d.\n",
2629 			    ha->efi_revision[1], ha->efi_revision[0]);
2630 			break;
2631 		default:
2632 			ql_log(ql_log_warn, vha, 0x0054,
2633 			    "Unrecognized code type %x at pcids %x.\n",
2634 			    code_type, pcids);
2635 			break;
2636 		}
2637 
2638 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2639 
2640 		/* Locate next PCI expansion ROM. */
2641 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2642 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2643 	} while (!last_image);
2644 
2645 	if (IS_QLA2322(ha)) {
2646 		/* Read firmware image information. */
2647 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2648 		dbyte = mbuf;
2649 		memset(dbyte, 0, 8);
2650 		dcode = (uint16_t *)dbyte;
2651 
2652 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2653 		    8);
2654 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2655 		    "Dumping fw "
2656 		    "ver from flash:.\n");
2657 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2658 		    (uint8_t *)dbyte, 8);
2659 
2660 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2661 		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2662 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2663 		    dcode[3] == 0)) {
2664 			ql_log(ql_log_warn, vha, 0x0057,
2665 			    "Unrecognized fw revision at %x.\n",
2666 			    ha->flt_region_fw * 4);
2667 		} else {
2668 			/* values are in big endian */
2669 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2670 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2671 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2672 			ql_dbg(ql_dbg_init, vha, 0x0058,
2673 			    "FW Version: "
2674 			    "%d.%d.%d.\n", ha->fw_revision[0],
2675 			    ha->fw_revision[1], ha->fw_revision[2]);
2676 		}
2677 	}
2678 
2679 	qla2x00_flash_disable(ha);
2680 
2681 	return ret;
2682 }
2683 
2684 int
2685 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2686 {
2687 	int ret = QLA_SUCCESS;
2688 	uint32_t pcihdr, pcids;
2689 	uint32_t *dcode;
2690 	uint8_t *bcode;
2691 	uint8_t code_type, last_image;
2692 	int i;
2693 	struct qla_hw_data *ha = vha->hw;
2694 
2695 	if (IS_QLA82XX(ha))
2696 		return ret;
2697 
2698 	if (!mbuf)
2699 		return QLA_FUNCTION_FAILED;
2700 
2701 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2702 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2703 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2704 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2705 
2706 	dcode = mbuf;
2707 
2708 	/* Begin with first PCI expansion ROM header. */
2709 	pcihdr = ha->flt_region_boot << 2;
2710 	last_image = 1;
2711 	do {
2712 		/* Verify PCI expansion ROM header. */
2713 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2714 		bcode = mbuf + (pcihdr % 4);
2715 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2716 			/* No signature */
2717 			ql_log(ql_log_fatal, vha, 0x0059,
2718 			    "No matching ROM signature.\n");
2719 			ret = QLA_FUNCTION_FAILED;
2720 			break;
2721 		}
2722 
2723 		/* Locate PCI data structure. */
2724 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2725 
2726 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2727 		bcode = mbuf + (pcihdr % 4);
2728 
2729 		/* Validate signature of PCI data structure. */
2730 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2731 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2732 			/* Incorrect header. */
2733 			ql_log(ql_log_fatal, vha, 0x005a,
2734 			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2735 			ret = QLA_FUNCTION_FAILED;
2736 			break;
2737 		}
2738 
2739 		/* Read version */
2740 		code_type = bcode[0x14];
2741 		switch (code_type) {
2742 		case ROM_CODE_TYPE_BIOS:
2743 			/* Intel x86, PC-AT compatible. */
2744 			ha->bios_revision[0] = bcode[0x12];
2745 			ha->bios_revision[1] = bcode[0x13];
2746 			ql_dbg(ql_dbg_init, vha, 0x005b,
2747 			    "Read BIOS %d.%d.\n",
2748 			    ha->bios_revision[1], ha->bios_revision[0]);
2749 			break;
2750 		case ROM_CODE_TYPE_FCODE:
2751 			/* Open Firmware standard for PCI (FCode). */
2752 			ha->fcode_revision[0] = bcode[0x12];
2753 			ha->fcode_revision[1] = bcode[0x13];
2754 			ql_dbg(ql_dbg_init, vha, 0x005c,
2755 			    "Read FCODE %d.%d.\n",
2756 			    ha->fcode_revision[1], ha->fcode_revision[0]);
2757 			break;
2758 		case ROM_CODE_TYPE_EFI:
2759 			/* Extensible Firmware Interface (EFI). */
2760 			ha->efi_revision[0] = bcode[0x12];
2761 			ha->efi_revision[1] = bcode[0x13];
2762 			ql_dbg(ql_dbg_init, vha, 0x005d,
2763 			    "Read EFI %d.%d.\n",
2764 			    ha->efi_revision[1], ha->efi_revision[0]);
2765 			break;
2766 		default:
2767 			ql_log(ql_log_warn, vha, 0x005e,
2768 			    "Unrecognized code type %x at pcids %x.\n",
2769 			    code_type, pcids);
2770 			break;
2771 		}
2772 
2773 		last_image = bcode[0x15] & BIT_7;
2774 
2775 		/* Locate next PCI expansion ROM. */
2776 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2777 	} while (!last_image);
2778 
2779 	/* Read firmware image information. */
2780 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2781 	dcode = mbuf;
2782 
2783 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2784 	for (i = 0; i < 4; i++)
2785 		dcode[i] = be32_to_cpu(dcode[i]);
2786 
2787 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2788 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2789 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2790 	    dcode[3] == 0)) {
2791 		ql_log(ql_log_warn, vha, 0x005f,
2792 		    "Unrecognized fw revision at %x.\n",
2793 		    ha->flt_region_fw * 4);
2794 	} else {
2795 		ha->fw_revision[0] = dcode[0];
2796 		ha->fw_revision[1] = dcode[1];
2797 		ha->fw_revision[2] = dcode[2];
2798 		ha->fw_revision[3] = dcode[3];
2799 		ql_dbg(ql_dbg_init, vha, 0x0060,
2800 		    "Firmware revision %d.%d.%d.%d.\n",
2801 		    ha->fw_revision[0], ha->fw_revision[1],
2802 		    ha->fw_revision[2], ha->fw_revision[3]);
2803 	}
2804 
2805 	/* Check for golden firmware and get version if available */
2806 	if (!IS_QLA81XX(ha)) {
2807 		/* Golden firmware is not present in non 81XX adapters */
2808 		return ret;
2809 	}
2810 
2811 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2812 	dcode = mbuf;
2813 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2814 	    ha->flt_region_gold_fw << 2, 32);
2815 
2816 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2817 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2818 		ql_log(ql_log_warn, vha, 0x0056,
2819 		    "Unrecognized golden fw at 0x%x.\n",
2820 		    ha->flt_region_gold_fw * 4);
2821 		return ret;
2822 	}
2823 
2824 	for (i = 4; i < 8; i++)
2825 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2826 
2827 	return ret;
2828 }
2829 
2830 static int
2831 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2832 {
2833 	if (pos >= end || *pos != 0x82)
2834 		return 0;
2835 
2836 	pos += 3 + pos[1];
2837 	if (pos >= end || *pos != 0x90)
2838 		return 0;
2839 
2840 	pos += 3 + pos[1];
2841 	if (pos >= end || *pos != 0x78)
2842 		return 0;
2843 
2844 	return 1;
2845 }
2846 
2847 int
2848 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2849 {
2850 	struct qla_hw_data *ha = vha->hw;
2851 	uint8_t *pos = ha->vpd;
2852 	uint8_t *end = pos + ha->vpd_size;
2853 	int len = 0;
2854 
2855 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2856 		return 0;
2857 
2858 	while (pos < end && *pos != 0x78) {
2859 		len = (*pos == 0x82) ? pos[1] : pos[2];
2860 
2861 		if (!strncmp(pos, key, strlen(key)))
2862 			break;
2863 
2864 		if (*pos != 0x90 && *pos != 0x91)
2865 			pos += len;
2866 
2867 		pos += 3;
2868 	}
2869 
2870 	if (pos < end - len && *pos != 0x78)
2871 		return snprintf(str, size, "%.*s", len, pos + 3);
2872 
2873 	return 0;
2874 }
2875 
2876 int
2877 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2878 {
2879 	int len, max_len;
2880 	uint32_t fcp_prio_addr;
2881 	struct qla_hw_data *ha = vha->hw;
2882 
2883 	if (!ha->fcp_prio_cfg) {
2884 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2885 		if (!ha->fcp_prio_cfg) {
2886 			ql_log(ql_log_warn, vha, 0x00d5,
2887 			    "Unable to allocate memory for fcp priorty data (%x).\n",
2888 			    FCP_PRIO_CFG_SIZE);
2889 			return QLA_FUNCTION_FAILED;
2890 		}
2891 	}
2892 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2893 
2894 	fcp_prio_addr = ha->flt_region_fcp_prio;
2895 
2896 	/* first read the fcp priority data header from flash */
2897 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2898 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2899 
2900 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
2901 		goto fail;
2902 
2903 	/* read remaining FCP CMD config data from flash */
2904 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2905 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2906 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2907 
2908 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2909 			fcp_prio_addr << 2, (len < max_len ? len : max_len));
2910 
2911 	/* revalidate the entire FCP priority config data, including entries */
2912 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
2913 		goto fail;
2914 
2915 	ha->flags.fcp_prio_enabled = 1;
2916 	return QLA_SUCCESS;
2917 fail:
2918 	vfree(ha->fcp_prio_cfg);
2919 	ha->fcp_prio_cfg = NULL;
2920 	return QLA_FUNCTION_FAILED;
2921 }
2922