xref: /linux/drivers/scsi/qedf/qedf_io.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  QLogic FCoE Offload Driver
3  *  Copyright (c) 2016 Cavium Inc.
4  *
5  *  This software is available under the terms of the GNU General Public License
6  *  (GPL) Version 2, available from the file COPYING in the main directory of
7  *  this source tree.
8  */
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "qedf.h"
12 #include <scsi/scsi_tcq.h>
13 
14 void qedf_cmd_timer_set(struct qedf_ctx *qedf, struct qedf_ioreq *io_req,
15 	unsigned int timer_msec)
16 {
17 	queue_delayed_work(qedf->timer_work_queue, &io_req->timeout_work,
18 	    msecs_to_jiffies(timer_msec));
19 }
20 
21 static void qedf_cmd_timeout(struct work_struct *work)
22 {
23 
24 	struct qedf_ioreq *io_req =
25 	    container_of(work, struct qedf_ioreq, timeout_work.work);
26 	struct qedf_ctx *qedf = io_req->fcport->qedf;
27 	struct qedf_rport *fcport = io_req->fcport;
28 	u8 op = 0;
29 
30 	switch (io_req->cmd_type) {
31 	case QEDF_ABTS:
32 		QEDF_ERR((&qedf->dbg_ctx), "ABTS timeout, xid=0x%x.\n",
33 		    io_req->xid);
34 		/* Cleanup timed out ABTS */
35 		qedf_initiate_cleanup(io_req, true);
36 		complete(&io_req->abts_done);
37 
38 		/*
39 		 * Need to call kref_put for reference taken when initiate_abts
40 		 * was called since abts_compl won't be called now that we've
41 		 * cleaned up the task.
42 		 */
43 		kref_put(&io_req->refcount, qedf_release_cmd);
44 
45 		/*
46 		 * Now that the original I/O and the ABTS are complete see
47 		 * if we need to reconnect to the target.
48 		 */
49 		qedf_restart_rport(fcport);
50 		break;
51 	case QEDF_ELS:
52 		kref_get(&io_req->refcount);
53 		/*
54 		 * Don't attempt to clean an ELS timeout as any subseqeunt
55 		 * ABTS or cleanup requests just hang.  For now just free
56 		 * the resources of the original I/O and the RRQ
57 		 */
58 		QEDF_ERR(&(qedf->dbg_ctx), "ELS timeout, xid=0x%x.\n",
59 			  io_req->xid);
60 		io_req->event = QEDF_IOREQ_EV_ELS_TMO;
61 		/* Call callback function to complete command */
62 		if (io_req->cb_func && io_req->cb_arg) {
63 			op = io_req->cb_arg->op;
64 			io_req->cb_func(io_req->cb_arg);
65 			io_req->cb_arg = NULL;
66 		}
67 		qedf_initiate_cleanup(io_req, true);
68 		kref_put(&io_req->refcount, qedf_release_cmd);
69 		break;
70 	case QEDF_SEQ_CLEANUP:
71 		QEDF_ERR(&(qedf->dbg_ctx), "Sequence cleanup timeout, "
72 		    "xid=0x%x.\n", io_req->xid);
73 		qedf_initiate_cleanup(io_req, true);
74 		io_req->event = QEDF_IOREQ_EV_ELS_TMO;
75 		qedf_process_seq_cleanup_compl(qedf, NULL, io_req);
76 		break;
77 	default:
78 		break;
79 	}
80 }
81 
82 void qedf_cmd_mgr_free(struct qedf_cmd_mgr *cmgr)
83 {
84 	struct io_bdt *bdt_info;
85 	struct qedf_ctx *qedf = cmgr->qedf;
86 	size_t bd_tbl_sz;
87 	u16 min_xid = QEDF_MIN_XID;
88 	u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1);
89 	int num_ios;
90 	int i;
91 	struct qedf_ioreq *io_req;
92 
93 	num_ios = max_xid - min_xid + 1;
94 
95 	/* Free fcoe_bdt_ctx structures */
96 	if (!cmgr->io_bdt_pool)
97 		goto free_cmd_pool;
98 
99 	bd_tbl_sz = QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge);
100 	for (i = 0; i < num_ios; i++) {
101 		bdt_info = cmgr->io_bdt_pool[i];
102 		if (bdt_info->bd_tbl) {
103 			dma_free_coherent(&qedf->pdev->dev, bd_tbl_sz,
104 			    bdt_info->bd_tbl, bdt_info->bd_tbl_dma);
105 			bdt_info->bd_tbl = NULL;
106 		}
107 	}
108 
109 	/* Destroy io_bdt pool */
110 	for (i = 0; i < num_ios; i++) {
111 		kfree(cmgr->io_bdt_pool[i]);
112 		cmgr->io_bdt_pool[i] = NULL;
113 	}
114 
115 	kfree(cmgr->io_bdt_pool);
116 	cmgr->io_bdt_pool = NULL;
117 
118 free_cmd_pool:
119 
120 	for (i = 0; i < num_ios; i++) {
121 		io_req = &cmgr->cmds[i];
122 		kfree(io_req->sgl_task_params);
123 		kfree(io_req->task_params);
124 		/* Make sure we free per command sense buffer */
125 		if (io_req->sense_buffer)
126 			dma_free_coherent(&qedf->pdev->dev,
127 			    QEDF_SCSI_SENSE_BUFFERSIZE, io_req->sense_buffer,
128 			    io_req->sense_buffer_dma);
129 		cancel_delayed_work_sync(&io_req->rrq_work);
130 	}
131 
132 	/* Free command manager itself */
133 	vfree(cmgr);
134 }
135 
136 static void qedf_handle_rrq(struct work_struct *work)
137 {
138 	struct qedf_ioreq *io_req =
139 	    container_of(work, struct qedf_ioreq, rrq_work.work);
140 
141 	qedf_send_rrq(io_req);
142 
143 }
144 
145 struct qedf_cmd_mgr *qedf_cmd_mgr_alloc(struct qedf_ctx *qedf)
146 {
147 	struct qedf_cmd_mgr *cmgr;
148 	struct io_bdt *bdt_info;
149 	struct qedf_ioreq *io_req;
150 	u16 xid;
151 	int i;
152 	int num_ios;
153 	u16 min_xid = QEDF_MIN_XID;
154 	u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1);
155 
156 	/* Make sure num_queues is already set before calling this function */
157 	if (!qedf->num_queues) {
158 		QEDF_ERR(&(qedf->dbg_ctx), "num_queues is not set.\n");
159 		return NULL;
160 	}
161 
162 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
163 		QEDF_WARN(&(qedf->dbg_ctx), "Invalid min_xid 0x%x and "
164 			   "max_xid 0x%x.\n", min_xid, max_xid);
165 		return NULL;
166 	}
167 
168 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "min xid 0x%x, max xid "
169 		   "0x%x.\n", min_xid, max_xid);
170 
171 	num_ios = max_xid - min_xid + 1;
172 
173 	cmgr = vzalloc(sizeof(struct qedf_cmd_mgr));
174 	if (!cmgr) {
175 		QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc cmd mgr.\n");
176 		return NULL;
177 	}
178 
179 	cmgr->qedf = qedf;
180 	spin_lock_init(&cmgr->lock);
181 
182 	/*
183 	 * Initialize I/O request fields.
184 	 */
185 	xid = QEDF_MIN_XID;
186 
187 	for (i = 0; i < num_ios; i++) {
188 		io_req = &cmgr->cmds[i];
189 		INIT_DELAYED_WORK(&io_req->timeout_work, qedf_cmd_timeout);
190 
191 		io_req->xid = xid++;
192 
193 		INIT_DELAYED_WORK(&io_req->rrq_work, qedf_handle_rrq);
194 
195 		/* Allocate DMA memory to hold sense buffer */
196 		io_req->sense_buffer = dma_alloc_coherent(&qedf->pdev->dev,
197 		    QEDF_SCSI_SENSE_BUFFERSIZE, &io_req->sense_buffer_dma,
198 		    GFP_KERNEL);
199 		if (!io_req->sense_buffer)
200 			goto mem_err;
201 
202 		/* Allocate task parameters to pass to f/w init funcions */
203 		io_req->task_params = kzalloc(sizeof(*io_req->task_params),
204 					      GFP_KERNEL);
205 		if (!io_req->task_params) {
206 			QEDF_ERR(&(qedf->dbg_ctx),
207 				 "Failed to allocate task_params for xid=0x%x\n",
208 				 i);
209 			goto mem_err;
210 		}
211 
212 		/*
213 		 * Allocate scatter/gather list info to pass to f/w init
214 		 * functions.
215 		 */
216 		io_req->sgl_task_params = kzalloc(
217 		    sizeof(struct scsi_sgl_task_params), GFP_KERNEL);
218 		if (!io_req->sgl_task_params) {
219 			QEDF_ERR(&(qedf->dbg_ctx),
220 				 "Failed to allocate sgl_task_params for xid=0x%x\n",
221 				 i);
222 			goto mem_err;
223 		}
224 	}
225 
226 	/* Allocate pool of io_bdts - one for each qedf_ioreq */
227 	cmgr->io_bdt_pool = kmalloc_array(num_ios, sizeof(struct io_bdt *),
228 	    GFP_KERNEL);
229 
230 	if (!cmgr->io_bdt_pool) {
231 		QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc io_bdt_pool.\n");
232 		goto mem_err;
233 	}
234 
235 	for (i = 0; i < num_ios; i++) {
236 		cmgr->io_bdt_pool[i] = kmalloc(sizeof(struct io_bdt),
237 		    GFP_KERNEL);
238 		if (!cmgr->io_bdt_pool[i]) {
239 			QEDF_WARN(&(qedf->dbg_ctx),
240 				  "Failed to alloc io_bdt_pool[%d].\n", i);
241 			goto mem_err;
242 		}
243 	}
244 
245 	for (i = 0; i < num_ios; i++) {
246 		bdt_info = cmgr->io_bdt_pool[i];
247 		bdt_info->bd_tbl = dma_alloc_coherent(&qedf->pdev->dev,
248 		    QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge),
249 		    &bdt_info->bd_tbl_dma, GFP_KERNEL);
250 		if (!bdt_info->bd_tbl) {
251 			QEDF_WARN(&(qedf->dbg_ctx),
252 				  "Failed to alloc bdt_tbl[%d].\n", i);
253 			goto mem_err;
254 		}
255 	}
256 	atomic_set(&cmgr->free_list_cnt, num_ios);
257 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
258 	    "cmgr->free_list_cnt=%d.\n",
259 	    atomic_read(&cmgr->free_list_cnt));
260 
261 	return cmgr;
262 
263 mem_err:
264 	qedf_cmd_mgr_free(cmgr);
265 	return NULL;
266 }
267 
268 struct qedf_ioreq *qedf_alloc_cmd(struct qedf_rport *fcport, u8 cmd_type)
269 {
270 	struct qedf_ctx *qedf = fcport->qedf;
271 	struct qedf_cmd_mgr *cmd_mgr = qedf->cmd_mgr;
272 	struct qedf_ioreq *io_req = NULL;
273 	struct io_bdt *bd_tbl;
274 	u16 xid;
275 	uint32_t free_sqes;
276 	int i;
277 	unsigned long flags;
278 
279 	free_sqes = atomic_read(&fcport->free_sqes);
280 
281 	if (!free_sqes) {
282 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
283 		    "Returning NULL, free_sqes=%d.\n ",
284 		    free_sqes);
285 		goto out_failed;
286 	}
287 
288 	/* Limit the number of outstanding R/W tasks */
289 	if ((atomic_read(&fcport->num_active_ios) >=
290 	    NUM_RW_TASKS_PER_CONNECTION)) {
291 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
292 		    "Returning NULL, num_active_ios=%d.\n",
293 		    atomic_read(&fcport->num_active_ios));
294 		goto out_failed;
295 	}
296 
297 	/* Limit global TIDs certain tasks */
298 	if (atomic_read(&cmd_mgr->free_list_cnt) <= GBL_RSVD_TASKS) {
299 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
300 		    "Returning NULL, free_list_cnt=%d.\n",
301 		    atomic_read(&cmd_mgr->free_list_cnt));
302 		goto out_failed;
303 	}
304 
305 	spin_lock_irqsave(&cmd_mgr->lock, flags);
306 	for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) {
307 		io_req = &cmd_mgr->cmds[cmd_mgr->idx];
308 		cmd_mgr->idx++;
309 		if (cmd_mgr->idx == FCOE_PARAMS_NUM_TASKS)
310 			cmd_mgr->idx = 0;
311 
312 		/* Check to make sure command was previously freed */
313 		if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags))
314 			break;
315 	}
316 
317 	if (i == FCOE_PARAMS_NUM_TASKS) {
318 		spin_unlock_irqrestore(&cmd_mgr->lock, flags);
319 		goto out_failed;
320 	}
321 
322 	set_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
323 	spin_unlock_irqrestore(&cmd_mgr->lock, flags);
324 
325 	atomic_inc(&fcport->num_active_ios);
326 	atomic_dec(&fcport->free_sqes);
327 	xid = io_req->xid;
328 	atomic_dec(&cmd_mgr->free_list_cnt);
329 
330 	io_req->cmd_mgr = cmd_mgr;
331 	io_req->fcport = fcport;
332 
333 	/* Hold the io_req against deletion */
334 	kref_init(&io_req->refcount);
335 
336 	/* Bind io_bdt for this io_req */
337 	/* Have a static link between io_req and io_bdt_pool */
338 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
339 	if (bd_tbl == NULL) {
340 		QEDF_ERR(&(qedf->dbg_ctx), "bd_tbl is NULL, xid=%x.\n", xid);
341 		kref_put(&io_req->refcount, qedf_release_cmd);
342 		goto out_failed;
343 	}
344 	bd_tbl->io_req = io_req;
345 	io_req->cmd_type = cmd_type;
346 	io_req->tm_flags = 0;
347 
348 	/* Reset sequence offset data */
349 	io_req->rx_buf_off = 0;
350 	io_req->tx_buf_off = 0;
351 	io_req->rx_id = 0xffff; /* No OX_ID */
352 
353 	return io_req;
354 
355 out_failed:
356 	/* Record failure for stats and return NULL to caller */
357 	qedf->alloc_failures++;
358 	return NULL;
359 }
360 
361 static void qedf_free_mp_resc(struct qedf_ioreq *io_req)
362 {
363 	struct qedf_mp_req *mp_req = &(io_req->mp_req);
364 	struct qedf_ctx *qedf = io_req->fcport->qedf;
365 	uint64_t sz = sizeof(struct scsi_sge);
366 
367 	/* clear tm flags */
368 	if (mp_req->mp_req_bd) {
369 		dma_free_coherent(&qedf->pdev->dev, sz,
370 		    mp_req->mp_req_bd, mp_req->mp_req_bd_dma);
371 		mp_req->mp_req_bd = NULL;
372 	}
373 	if (mp_req->mp_resp_bd) {
374 		dma_free_coherent(&qedf->pdev->dev, sz,
375 		    mp_req->mp_resp_bd, mp_req->mp_resp_bd_dma);
376 		mp_req->mp_resp_bd = NULL;
377 	}
378 	if (mp_req->req_buf) {
379 		dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
380 		    mp_req->req_buf, mp_req->req_buf_dma);
381 		mp_req->req_buf = NULL;
382 	}
383 	if (mp_req->resp_buf) {
384 		dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
385 		    mp_req->resp_buf, mp_req->resp_buf_dma);
386 		mp_req->resp_buf = NULL;
387 	}
388 }
389 
390 void qedf_release_cmd(struct kref *ref)
391 {
392 	struct qedf_ioreq *io_req =
393 	    container_of(ref, struct qedf_ioreq, refcount);
394 	struct qedf_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
395 	struct qedf_rport *fcport = io_req->fcport;
396 
397 	if (io_req->cmd_type == QEDF_ELS ||
398 	    io_req->cmd_type == QEDF_TASK_MGMT_CMD)
399 		qedf_free_mp_resc(io_req);
400 
401 	atomic_inc(&cmd_mgr->free_list_cnt);
402 	atomic_dec(&fcport->num_active_ios);
403 	if (atomic_read(&fcport->num_active_ios) < 0)
404 		QEDF_WARN(&(fcport->qedf->dbg_ctx), "active_ios < 0.\n");
405 
406 	/* Increment task retry identifier now that the request is released */
407 	io_req->task_retry_identifier++;
408 
409 	clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags);
410 }
411 
412 static int qedf_split_bd(struct qedf_ioreq *io_req, u64 addr, int sg_len,
413 	int bd_index)
414 {
415 	struct scsi_sge *bd = io_req->bd_tbl->bd_tbl;
416 	int frag_size, sg_frags;
417 
418 	sg_frags = 0;
419 	while (sg_len) {
420 		if (sg_len > QEDF_BD_SPLIT_SZ)
421 			frag_size = QEDF_BD_SPLIT_SZ;
422 		else
423 			frag_size = sg_len;
424 		bd[bd_index + sg_frags].sge_addr.lo = U64_LO(addr);
425 		bd[bd_index + sg_frags].sge_addr.hi = U64_HI(addr);
426 		bd[bd_index + sg_frags].sge_len = (uint16_t)frag_size;
427 
428 		addr += (u64)frag_size;
429 		sg_frags++;
430 		sg_len -= frag_size;
431 	}
432 	return sg_frags;
433 }
434 
435 static int qedf_map_sg(struct qedf_ioreq *io_req)
436 {
437 	struct scsi_cmnd *sc = io_req->sc_cmd;
438 	struct Scsi_Host *host = sc->device->host;
439 	struct fc_lport *lport = shost_priv(host);
440 	struct qedf_ctx *qedf = lport_priv(lport);
441 	struct scsi_sge *bd = io_req->bd_tbl->bd_tbl;
442 	struct scatterlist *sg;
443 	int byte_count = 0;
444 	int sg_count = 0;
445 	int bd_count = 0;
446 	int sg_frags;
447 	unsigned int sg_len;
448 	u64 addr, end_addr;
449 	int i;
450 
451 	sg_count = dma_map_sg(&qedf->pdev->dev, scsi_sglist(sc),
452 	    scsi_sg_count(sc), sc->sc_data_direction);
453 
454 	sg = scsi_sglist(sc);
455 
456 	/*
457 	 * New condition to send single SGE as cached-SGL with length less
458 	 * than 64k.
459 	 */
460 	if ((sg_count == 1) && (sg_dma_len(sg) <=
461 	    QEDF_MAX_SGLEN_FOR_CACHESGL)) {
462 		sg_len = sg_dma_len(sg);
463 		addr = (u64)sg_dma_address(sg);
464 
465 		bd[bd_count].sge_addr.lo = (addr & 0xffffffff);
466 		bd[bd_count].sge_addr.hi = (addr >> 32);
467 		bd[bd_count].sge_len = (u16)sg_len;
468 
469 		return ++bd_count;
470 	}
471 
472 	scsi_for_each_sg(sc, sg, sg_count, i) {
473 		sg_len = sg_dma_len(sg);
474 		addr = (u64)sg_dma_address(sg);
475 		end_addr = (u64)(addr + sg_len);
476 
477 		/*
478 		 * First s/g element in the list so check if the end_addr
479 		 * is paged aligned. Also check to make sure the length is
480 		 * at least page size.
481 		 */
482 		if ((i == 0) && (sg_count > 1) &&
483 		    ((end_addr % QEDF_PAGE_SIZE) ||
484 		    sg_len < QEDF_PAGE_SIZE))
485 			io_req->use_slowpath = true;
486 		/*
487 		 * Last s/g element so check if the start address is paged
488 		 * aligned.
489 		 */
490 		else if ((i == (sg_count - 1)) && (sg_count > 1) &&
491 		    (addr % QEDF_PAGE_SIZE))
492 			io_req->use_slowpath = true;
493 		/*
494 		 * Intermediate s/g element so check if start and end address
495 		 * is page aligned.
496 		 */
497 		else if ((i != 0) && (i != (sg_count - 1)) &&
498 		    ((addr % QEDF_PAGE_SIZE) || (end_addr % QEDF_PAGE_SIZE)))
499 			io_req->use_slowpath = true;
500 
501 		if (sg_len > QEDF_MAX_BD_LEN) {
502 			sg_frags = qedf_split_bd(io_req, addr, sg_len,
503 			    bd_count);
504 		} else {
505 			sg_frags = 1;
506 			bd[bd_count].sge_addr.lo = U64_LO(addr);
507 			bd[bd_count].sge_addr.hi  = U64_HI(addr);
508 			bd[bd_count].sge_len = (uint16_t)sg_len;
509 		}
510 
511 		bd_count += sg_frags;
512 		byte_count += sg_len;
513 	}
514 
515 	if (byte_count != scsi_bufflen(sc))
516 		QEDF_ERR(&(qedf->dbg_ctx), "byte_count = %d != "
517 			  "scsi_bufflen = %d, task_id = 0x%x.\n", byte_count,
518 			   scsi_bufflen(sc), io_req->xid);
519 
520 	return bd_count;
521 }
522 
523 static int qedf_build_bd_list_from_sg(struct qedf_ioreq *io_req)
524 {
525 	struct scsi_cmnd *sc = io_req->sc_cmd;
526 	struct scsi_sge *bd = io_req->bd_tbl->bd_tbl;
527 	int bd_count;
528 
529 	if (scsi_sg_count(sc)) {
530 		bd_count = qedf_map_sg(io_req);
531 		if (bd_count == 0)
532 			return -ENOMEM;
533 	} else {
534 		bd_count = 0;
535 		bd[0].sge_addr.lo = bd[0].sge_addr.hi = 0;
536 		bd[0].sge_len = 0;
537 	}
538 	io_req->bd_tbl->bd_valid = bd_count;
539 
540 	return 0;
541 }
542 
543 static void qedf_build_fcp_cmnd(struct qedf_ioreq *io_req,
544 				  struct fcp_cmnd *fcp_cmnd)
545 {
546 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
547 
548 	/* fcp_cmnd is 32 bytes */
549 	memset(fcp_cmnd, 0, FCP_CMND_LEN);
550 
551 	/* 8 bytes: SCSI LUN info */
552 	int_to_scsilun(sc_cmd->device->lun,
553 			(struct scsi_lun *)&fcp_cmnd->fc_lun);
554 
555 	/* 4 bytes: flag info */
556 	fcp_cmnd->fc_pri_ta = 0;
557 	fcp_cmnd->fc_tm_flags = io_req->tm_flags;
558 	fcp_cmnd->fc_flags = io_req->io_req_flags;
559 	fcp_cmnd->fc_cmdref = 0;
560 
561 	/* Populate data direction */
562 	if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) {
563 		fcp_cmnd->fc_flags |= FCP_CFL_RDDATA;
564 	} else {
565 		if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
566 			fcp_cmnd->fc_flags |= FCP_CFL_WRDATA;
567 		else if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE)
568 			fcp_cmnd->fc_flags |= FCP_CFL_RDDATA;
569 	}
570 
571 	fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
572 
573 	/* 16 bytes: CDB information */
574 	if (io_req->cmd_type != QEDF_TASK_MGMT_CMD)
575 		memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
576 
577 	/* 4 bytes: FCP data length */
578 	fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
579 }
580 
581 static void  qedf_init_task(struct qedf_rport *fcport, struct fc_lport *lport,
582 	struct qedf_ioreq *io_req, struct fcoe_task_context *task_ctx,
583 	struct fcoe_wqe *sqe)
584 {
585 	enum fcoe_task_type task_type;
586 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
587 	struct io_bdt *bd_tbl = io_req->bd_tbl;
588 	u8 fcp_cmnd[32];
589 	u32 tmp_fcp_cmnd[8];
590 	int bd_count = 0;
591 	struct qedf_ctx *qedf = fcport->qedf;
592 	uint16_t cq_idx = smp_processor_id() % qedf->num_queues;
593 	struct regpair sense_data_buffer_phys_addr;
594 	u32 tx_io_size = 0;
595 	u32 rx_io_size = 0;
596 	int i, cnt;
597 
598 	/* Note init_initiator_rw_fcoe_task memsets the task context */
599 	io_req->task = task_ctx;
600 	memset(task_ctx, 0, sizeof(struct fcoe_task_context));
601 	memset(io_req->task_params, 0, sizeof(struct fcoe_task_params));
602 	memset(io_req->sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
603 
604 	/* Set task type bassed on DMA directio of command */
605 	if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) {
606 		task_type = FCOE_TASK_TYPE_READ_INITIATOR;
607 	} else {
608 		if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
609 			task_type = FCOE_TASK_TYPE_WRITE_INITIATOR;
610 			tx_io_size = io_req->data_xfer_len;
611 		} else {
612 			task_type = FCOE_TASK_TYPE_READ_INITIATOR;
613 			rx_io_size = io_req->data_xfer_len;
614 		}
615 	}
616 
617 	/* Setup the fields for fcoe_task_params */
618 	io_req->task_params->context = task_ctx;
619 	io_req->task_params->sqe = sqe;
620 	io_req->task_params->task_type = task_type;
621 	io_req->task_params->tx_io_size = tx_io_size;
622 	io_req->task_params->rx_io_size = rx_io_size;
623 	io_req->task_params->conn_cid = fcport->fw_cid;
624 	io_req->task_params->itid = io_req->xid;
625 	io_req->task_params->cq_rss_number = cq_idx;
626 	io_req->task_params->is_tape_device = fcport->dev_type;
627 
628 	/* Fill in information for scatter/gather list */
629 	if (io_req->cmd_type != QEDF_TASK_MGMT_CMD) {
630 		bd_count = bd_tbl->bd_valid;
631 		io_req->sgl_task_params->sgl = bd_tbl->bd_tbl;
632 		io_req->sgl_task_params->sgl_phys_addr.lo =
633 			U64_LO(bd_tbl->bd_tbl_dma);
634 		io_req->sgl_task_params->sgl_phys_addr.hi =
635 			U64_HI(bd_tbl->bd_tbl_dma);
636 		io_req->sgl_task_params->num_sges = bd_count;
637 		io_req->sgl_task_params->total_buffer_size =
638 		    scsi_bufflen(io_req->sc_cmd);
639 		io_req->sgl_task_params->small_mid_sge =
640 			io_req->use_slowpath;
641 	}
642 
643 	/* Fill in physical address of sense buffer */
644 	sense_data_buffer_phys_addr.lo = U64_LO(io_req->sense_buffer_dma);
645 	sense_data_buffer_phys_addr.hi = U64_HI(io_req->sense_buffer_dma);
646 
647 	/* fill FCP_CMND IU */
648 	qedf_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tmp_fcp_cmnd);
649 
650 	/* Swap fcp_cmnd since FC is big endian */
651 	cnt = sizeof(struct fcp_cmnd) / sizeof(u32);
652 	for (i = 0; i < cnt; i++) {
653 		tmp_fcp_cmnd[i] = cpu_to_be32(tmp_fcp_cmnd[i]);
654 	}
655 	memcpy(fcp_cmnd, tmp_fcp_cmnd, sizeof(struct fcp_cmnd));
656 
657 	init_initiator_rw_fcoe_task(io_req->task_params,
658 				    io_req->sgl_task_params,
659 				    sense_data_buffer_phys_addr,
660 				    io_req->task_retry_identifier, fcp_cmnd);
661 
662 	/* Increment SGL type counters */
663 	if (bd_count == 1) {
664 		qedf->single_sge_ios++;
665 		io_req->sge_type = QEDF_IOREQ_SINGLE_SGE;
666 	} else if (io_req->use_slowpath) {
667 		qedf->slow_sge_ios++;
668 		io_req->sge_type = QEDF_IOREQ_SLOW_SGE;
669 	} else {
670 		qedf->fast_sge_ios++;
671 		io_req->sge_type = QEDF_IOREQ_FAST_SGE;
672 	}
673 }
674 
675 void qedf_init_mp_task(struct qedf_ioreq *io_req,
676 	struct fcoe_task_context *task_ctx, struct fcoe_wqe *sqe)
677 {
678 	struct qedf_mp_req *mp_req = &(io_req->mp_req);
679 	struct qedf_rport *fcport = io_req->fcport;
680 	struct qedf_ctx *qedf = io_req->fcport->qedf;
681 	struct fc_frame_header *fc_hdr;
682 	struct fcoe_tx_mid_path_params task_fc_hdr;
683 	struct scsi_sgl_task_params tx_sgl_task_params;
684 	struct scsi_sgl_task_params rx_sgl_task_params;
685 
686 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
687 		  "Initializing MP task for cmd_type=%d\n",
688 		  io_req->cmd_type);
689 
690 	qedf->control_requests++;
691 
692 	memset(&tx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
693 	memset(&rx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params));
694 	memset(task_ctx, 0, sizeof(struct fcoe_task_context));
695 	memset(&task_fc_hdr, 0, sizeof(struct fcoe_tx_mid_path_params));
696 
697 	/* Setup the task from io_req for easy reference */
698 	io_req->task = task_ctx;
699 
700 	/* Setup the fields for fcoe_task_params */
701 	io_req->task_params->context = task_ctx;
702 	io_req->task_params->sqe = sqe;
703 	io_req->task_params->task_type = FCOE_TASK_TYPE_MIDPATH;
704 	io_req->task_params->tx_io_size = io_req->data_xfer_len;
705 	/* rx_io_size tells the f/w how large a response buffer we have */
706 	io_req->task_params->rx_io_size = PAGE_SIZE;
707 	io_req->task_params->conn_cid = fcport->fw_cid;
708 	io_req->task_params->itid = io_req->xid;
709 	/* Return middle path commands on CQ 0 */
710 	io_req->task_params->cq_rss_number = 0;
711 	io_req->task_params->is_tape_device = fcport->dev_type;
712 
713 	fc_hdr = &(mp_req->req_fc_hdr);
714 	/* Set OX_ID and RX_ID based on driver task id */
715 	fc_hdr->fh_ox_id = io_req->xid;
716 	fc_hdr->fh_rx_id = htons(0xffff);
717 
718 	/* Set up FC header information */
719 	task_fc_hdr.parameter = fc_hdr->fh_parm_offset;
720 	task_fc_hdr.r_ctl = fc_hdr->fh_r_ctl;
721 	task_fc_hdr.type = fc_hdr->fh_type;
722 	task_fc_hdr.cs_ctl = fc_hdr->fh_cs_ctl;
723 	task_fc_hdr.df_ctl = fc_hdr->fh_df_ctl;
724 	task_fc_hdr.rx_id = fc_hdr->fh_rx_id;
725 	task_fc_hdr.ox_id = fc_hdr->fh_ox_id;
726 
727 	/* Set up s/g list parameters for request buffer */
728 	tx_sgl_task_params.sgl = mp_req->mp_req_bd;
729 	tx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_req_bd_dma);
730 	tx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_req_bd_dma);
731 	tx_sgl_task_params.num_sges = 1;
732 	/* Set PAGE_SIZE for now since sg element is that size ??? */
733 	tx_sgl_task_params.total_buffer_size = io_req->data_xfer_len;
734 	tx_sgl_task_params.small_mid_sge = 0;
735 
736 	/* Set up s/g list parameters for request buffer */
737 	rx_sgl_task_params.sgl = mp_req->mp_resp_bd;
738 	rx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_resp_bd_dma);
739 	rx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_resp_bd_dma);
740 	rx_sgl_task_params.num_sges = 1;
741 	/* Set PAGE_SIZE for now since sg element is that size ??? */
742 	rx_sgl_task_params.total_buffer_size = PAGE_SIZE;
743 	rx_sgl_task_params.small_mid_sge = 0;
744 
745 
746 	/*
747 	 * Last arg is 0 as previous code did not set that we wanted the
748 	 * fc header information.
749 	 */
750 	init_initiator_midpath_unsolicited_fcoe_task(io_req->task_params,
751 						     &task_fc_hdr,
752 						     &tx_sgl_task_params,
753 						     &rx_sgl_task_params, 0);
754 
755 	/* Midpath requests always consume 1 SGE */
756 	qedf->single_sge_ios++;
757 }
758 
759 /* Presumed that fcport->rport_lock is held */
760 u16 qedf_get_sqe_idx(struct qedf_rport *fcport)
761 {
762 	uint16_t total_sqe = (fcport->sq_mem_size)/(sizeof(struct fcoe_wqe));
763 	u16 rval;
764 
765 	rval = fcport->sq_prod_idx;
766 
767 	/* Adjust ring index */
768 	fcport->sq_prod_idx++;
769 	fcport->fw_sq_prod_idx++;
770 	if (fcport->sq_prod_idx == total_sqe)
771 		fcport->sq_prod_idx = 0;
772 
773 	return rval;
774 }
775 
776 void qedf_ring_doorbell(struct qedf_rport *fcport)
777 {
778 	struct fcoe_db_data dbell = { 0 };
779 
780 	dbell.agg_flags = 0;
781 
782 	dbell.params |= DB_DEST_XCM << FCOE_DB_DATA_DEST_SHIFT;
783 	dbell.params |= DB_AGG_CMD_SET << FCOE_DB_DATA_AGG_CMD_SHIFT;
784 	dbell.params |= DQ_XCM_FCOE_SQ_PROD_CMD <<
785 	    FCOE_DB_DATA_AGG_VAL_SEL_SHIFT;
786 
787 	dbell.sq_prod = fcport->fw_sq_prod_idx;
788 	writel(*(u32 *)&dbell, fcport->p_doorbell);
789 	/* Make sure SQ index is updated so f/w prcesses requests in order */
790 	wmb();
791 	mmiowb();
792 }
793 
794 static void qedf_trace_io(struct qedf_rport *fcport, struct qedf_ioreq *io_req,
795 			  int8_t direction)
796 {
797 	struct qedf_ctx *qedf = fcport->qedf;
798 	struct qedf_io_log *io_log;
799 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
800 	unsigned long flags;
801 	uint8_t op;
802 
803 	spin_lock_irqsave(&qedf->io_trace_lock, flags);
804 
805 	io_log = &qedf->io_trace_buf[qedf->io_trace_idx];
806 	io_log->direction = direction;
807 	io_log->task_id = io_req->xid;
808 	io_log->port_id = fcport->rdata->ids.port_id;
809 	io_log->lun = sc_cmd->device->lun;
810 	io_log->op = op = sc_cmd->cmnd[0];
811 	io_log->lba[0] = sc_cmd->cmnd[2];
812 	io_log->lba[1] = sc_cmd->cmnd[3];
813 	io_log->lba[2] = sc_cmd->cmnd[4];
814 	io_log->lba[3] = sc_cmd->cmnd[5];
815 	io_log->bufflen = scsi_bufflen(sc_cmd);
816 	io_log->sg_count = scsi_sg_count(sc_cmd);
817 	io_log->result = sc_cmd->result;
818 	io_log->jiffies = jiffies;
819 	io_log->refcount = kref_read(&io_req->refcount);
820 
821 	if (direction == QEDF_IO_TRACE_REQ) {
822 		/* For requests we only care abot the submission CPU */
823 		io_log->req_cpu = io_req->cpu;
824 		io_log->int_cpu = 0;
825 		io_log->rsp_cpu = 0;
826 	} else if (direction == QEDF_IO_TRACE_RSP) {
827 		io_log->req_cpu = io_req->cpu;
828 		io_log->int_cpu = io_req->int_cpu;
829 		io_log->rsp_cpu = smp_processor_id();
830 	}
831 
832 	io_log->sge_type = io_req->sge_type;
833 
834 	qedf->io_trace_idx++;
835 	if (qedf->io_trace_idx == QEDF_IO_TRACE_SIZE)
836 		qedf->io_trace_idx = 0;
837 
838 	spin_unlock_irqrestore(&qedf->io_trace_lock, flags);
839 }
840 
841 int qedf_post_io_req(struct qedf_rport *fcport, struct qedf_ioreq *io_req)
842 {
843 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
844 	struct Scsi_Host *host = sc_cmd->device->host;
845 	struct fc_lport *lport = shost_priv(host);
846 	struct qedf_ctx *qedf = lport_priv(lport);
847 	struct fcoe_task_context *task_ctx;
848 	u16 xid;
849 	enum fcoe_task_type req_type = 0;
850 	struct fcoe_wqe *sqe;
851 	u16 sqe_idx;
852 
853 	/* Initialize rest of io_req fileds */
854 	io_req->data_xfer_len = scsi_bufflen(sc_cmd);
855 	sc_cmd->SCp.ptr = (char *)io_req;
856 	io_req->use_slowpath = false; /* Assume fast SGL by default */
857 
858 	/* Record which cpu this request is associated with */
859 	io_req->cpu = smp_processor_id();
860 
861 	if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
862 		req_type = FCOE_TASK_TYPE_READ_INITIATOR;
863 		io_req->io_req_flags = QEDF_READ;
864 		qedf->input_requests++;
865 	} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
866 		req_type = FCOE_TASK_TYPE_WRITE_INITIATOR;
867 		io_req->io_req_flags = QEDF_WRITE;
868 		qedf->output_requests++;
869 	} else {
870 		io_req->io_req_flags = 0;
871 		qedf->control_requests++;
872 	}
873 
874 	xid = io_req->xid;
875 
876 	/* Build buffer descriptor list for firmware from sg list */
877 	if (qedf_build_bd_list_from_sg(io_req)) {
878 		QEDF_ERR(&(qedf->dbg_ctx), "BD list creation failed.\n");
879 		kref_put(&io_req->refcount, qedf_release_cmd);
880 		return -EAGAIN;
881 	}
882 
883 	if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
884 		QEDF_ERR(&(qedf->dbg_ctx), "Session not offloaded yet.\n");
885 		kref_put(&io_req->refcount, qedf_release_cmd);
886 	}
887 
888 	/* Obtain free SQE */
889 	sqe_idx = qedf_get_sqe_idx(fcport);
890 	sqe = &fcport->sq[sqe_idx];
891 	memset(sqe, 0, sizeof(struct fcoe_wqe));
892 
893 	/* Get the task context */
894 	task_ctx = qedf_get_task_mem(&qedf->tasks, xid);
895 	if (!task_ctx) {
896 		QEDF_WARN(&(qedf->dbg_ctx), "task_ctx is NULL, xid=%d.\n",
897 			   xid);
898 		kref_put(&io_req->refcount, qedf_release_cmd);
899 		return -EINVAL;
900 	}
901 
902 	qedf_init_task(fcport, lport, io_req, task_ctx, sqe);
903 
904 	/* Ring doorbell */
905 	qedf_ring_doorbell(fcport);
906 
907 	if (qedf_io_tracing && io_req->sc_cmd)
908 		qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_REQ);
909 
910 	return false;
911 }
912 
913 int
914 qedf_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *sc_cmd)
915 {
916 	struct fc_lport *lport = shost_priv(host);
917 	struct qedf_ctx *qedf = lport_priv(lport);
918 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
919 	struct fc_rport_libfc_priv *rp = rport->dd_data;
920 	struct qedf_rport *fcport = rport->dd_data;
921 	struct qedf_ioreq *io_req;
922 	int rc = 0;
923 	int rval;
924 	unsigned long flags = 0;
925 
926 
927 	if (test_bit(QEDF_UNLOADING, &qedf->flags) ||
928 	    test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) {
929 		sc_cmd->result = DID_NO_CONNECT << 16;
930 		sc_cmd->scsi_done(sc_cmd);
931 		return 0;
932 	}
933 
934 	rval = fc_remote_port_chkready(rport);
935 	if (rval) {
936 		sc_cmd->result = rval;
937 		sc_cmd->scsi_done(sc_cmd);
938 		return 0;
939 	}
940 
941 	/* Retry command if we are doing a qed drain operation */
942 	if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) {
943 		rc = SCSI_MLQUEUE_HOST_BUSY;
944 		goto exit_qcmd;
945 	}
946 
947 	if (lport->state != LPORT_ST_READY ||
948 	    atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
949 		rc = SCSI_MLQUEUE_HOST_BUSY;
950 		goto exit_qcmd;
951 	}
952 
953 	/* rport and tgt are allocated together, so tgt should be non-NULL */
954 	fcport = (struct qedf_rport *)&rp[1];
955 
956 	if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
957 		/*
958 		 * Session is not offloaded yet. Let SCSI-ml retry
959 		 * the command.
960 		 */
961 		rc = SCSI_MLQUEUE_TARGET_BUSY;
962 		goto exit_qcmd;
963 	}
964 	if (fcport->retry_delay_timestamp) {
965 		if (time_after(jiffies, fcport->retry_delay_timestamp)) {
966 			fcport->retry_delay_timestamp = 0;
967 		} else {
968 			/* If retry_delay timer is active, flow off the ML */
969 			rc = SCSI_MLQUEUE_TARGET_BUSY;
970 			goto exit_qcmd;
971 		}
972 	}
973 
974 	io_req = qedf_alloc_cmd(fcport, QEDF_SCSI_CMD);
975 	if (!io_req) {
976 		rc = SCSI_MLQUEUE_HOST_BUSY;
977 		goto exit_qcmd;
978 	}
979 
980 	io_req->sc_cmd = sc_cmd;
981 
982 	/* Take fcport->rport_lock for posting to fcport send queue */
983 	spin_lock_irqsave(&fcport->rport_lock, flags);
984 	if (qedf_post_io_req(fcport, io_req)) {
985 		QEDF_WARN(&(qedf->dbg_ctx), "Unable to post io_req\n");
986 		/* Return SQE to pool */
987 		atomic_inc(&fcport->free_sqes);
988 		rc = SCSI_MLQUEUE_HOST_BUSY;
989 	}
990 	spin_unlock_irqrestore(&fcport->rport_lock, flags);
991 
992 exit_qcmd:
993 	return rc;
994 }
995 
996 static void qedf_parse_fcp_rsp(struct qedf_ioreq *io_req,
997 				 struct fcoe_cqe_rsp_info *fcp_rsp)
998 {
999 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1000 	struct qedf_ctx *qedf = io_req->fcport->qedf;
1001 	u8 rsp_flags = fcp_rsp->rsp_flags.flags;
1002 	int fcp_sns_len = 0;
1003 	int fcp_rsp_len = 0;
1004 	uint8_t *rsp_info, *sense_data;
1005 
1006 	io_req->fcp_status = FC_GOOD;
1007 	io_req->fcp_resid = 0;
1008 	if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
1009 	    FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
1010 		io_req->fcp_resid = fcp_rsp->fcp_resid;
1011 
1012 	io_req->scsi_comp_flags = rsp_flags;
1013 	CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
1014 	    fcp_rsp->scsi_status_code;
1015 
1016 	if (rsp_flags &
1017 	    FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID)
1018 		fcp_rsp_len = fcp_rsp->fcp_rsp_len;
1019 
1020 	if (rsp_flags &
1021 	    FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID)
1022 		fcp_sns_len = fcp_rsp->fcp_sns_len;
1023 
1024 	io_req->fcp_rsp_len = fcp_rsp_len;
1025 	io_req->fcp_sns_len = fcp_sns_len;
1026 	rsp_info = sense_data = io_req->sense_buffer;
1027 
1028 	/* fetch fcp_rsp_code */
1029 	if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
1030 		/* Only for task management function */
1031 		io_req->fcp_rsp_code = rsp_info[3];
1032 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
1033 		    "fcp_rsp_code = %d\n", io_req->fcp_rsp_code);
1034 		/* Adjust sense-data location. */
1035 		sense_data += fcp_rsp_len;
1036 	}
1037 
1038 	if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
1039 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
1040 		    "Truncating sense buffer\n");
1041 		fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
1042 	}
1043 
1044 	memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1045 	if (fcp_sns_len)
1046 		memcpy(sc_cmd->sense_buffer, sense_data,
1047 		    fcp_sns_len);
1048 }
1049 
1050 static void qedf_unmap_sg_list(struct qedf_ctx *qedf, struct qedf_ioreq *io_req)
1051 {
1052 	struct scsi_cmnd *sc = io_req->sc_cmd;
1053 
1054 	if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
1055 		dma_unmap_sg(&qedf->pdev->dev, scsi_sglist(sc),
1056 		    scsi_sg_count(sc), sc->sc_data_direction);
1057 		io_req->bd_tbl->bd_valid = 0;
1058 	}
1059 }
1060 
1061 void qedf_scsi_completion(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1062 	struct qedf_ioreq *io_req)
1063 {
1064 	u16 xid, rval;
1065 	struct fcoe_task_context *task_ctx;
1066 	struct scsi_cmnd *sc_cmd;
1067 	struct fcoe_cqe_rsp_info *fcp_rsp;
1068 	struct qedf_rport *fcport;
1069 	int refcount;
1070 	u16 scope, qualifier = 0;
1071 	u8 fw_residual_flag = 0;
1072 
1073 	if (!io_req)
1074 		return;
1075 	if (!cqe)
1076 		return;
1077 
1078 	xid = io_req->xid;
1079 	task_ctx = qedf_get_task_mem(&qedf->tasks, xid);
1080 	sc_cmd = io_req->sc_cmd;
1081 	fcp_rsp = &cqe->cqe_info.rsp_info;
1082 
1083 	if (!sc_cmd) {
1084 		QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n");
1085 		return;
1086 	}
1087 
1088 	if (!sc_cmd->SCp.ptr) {
1089 		QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in "
1090 		    "another context.\n");
1091 		return;
1092 	}
1093 
1094 	if (!sc_cmd->request) {
1095 		QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd->request is NULL, "
1096 		    "sc_cmd=%p.\n", sc_cmd);
1097 		return;
1098 	}
1099 
1100 	if (!sc_cmd->request->special) {
1101 		QEDF_WARN(&(qedf->dbg_ctx), "request->special is NULL so "
1102 		    "request not valid, sc_cmd=%p.\n", sc_cmd);
1103 		return;
1104 	}
1105 
1106 	if (!sc_cmd->request->q) {
1107 		QEDF_WARN(&(qedf->dbg_ctx), "request->q is NULL so request "
1108 		   "is not valid, sc_cmd=%p.\n", sc_cmd);
1109 		return;
1110 	}
1111 
1112 	fcport = io_req->fcport;
1113 
1114 	qedf_parse_fcp_rsp(io_req, fcp_rsp);
1115 
1116 	qedf_unmap_sg_list(qedf, io_req);
1117 
1118 	/* Check for FCP transport error */
1119 	if (io_req->fcp_rsp_len > 3 && io_req->fcp_rsp_code) {
1120 		QEDF_ERR(&(qedf->dbg_ctx),
1121 		    "FCP I/O protocol failure xid=0x%x fcp_rsp_len=%d "
1122 		    "fcp_rsp_code=%d.\n", io_req->xid, io_req->fcp_rsp_len,
1123 		    io_req->fcp_rsp_code);
1124 		sc_cmd->result = DID_BUS_BUSY << 16;
1125 		goto out;
1126 	}
1127 
1128 	fw_residual_flag = GET_FIELD(cqe->cqe_info.rsp_info.fw_error_flags,
1129 	    FCOE_CQE_RSP_INFO_FW_UNDERRUN);
1130 	if (fw_residual_flag) {
1131 		QEDF_ERR(&(qedf->dbg_ctx),
1132 		    "Firmware detected underrun: xid=0x%x fcp_rsp.flags=0x%02x "
1133 		    "fcp_resid=%d fw_residual=0x%x.\n", io_req->xid,
1134 		    fcp_rsp->rsp_flags.flags, io_req->fcp_resid,
1135 		    cqe->cqe_info.rsp_info.fw_residual);
1136 
1137 		if (io_req->cdb_status == 0)
1138 			sc_cmd->result = (DID_ERROR << 16) | io_req->cdb_status;
1139 		else
1140 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1141 
1142 		/* Abort the command since we did not get all the data */
1143 		init_completion(&io_req->abts_done);
1144 		rval = qedf_initiate_abts(io_req, true);
1145 		if (rval) {
1146 			QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
1147 			sc_cmd->result = (DID_ERROR << 16) | io_req->cdb_status;
1148 		}
1149 
1150 		/*
1151 		 * Set resid to the whole buffer length so we won't try to resue
1152 		 * any previously data.
1153 		 */
1154 		scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
1155 		goto out;
1156 	}
1157 
1158 	switch (io_req->fcp_status) {
1159 	case FC_GOOD:
1160 		if (io_req->cdb_status == 0) {
1161 			/* Good I/O completion */
1162 			sc_cmd->result = DID_OK << 16;
1163 		} else {
1164 			refcount = kref_read(&io_req->refcount);
1165 			QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
1166 			    "%d:0:%d:%lld xid=0x%0x op=0x%02x "
1167 			    "lba=%02x%02x%02x%02x cdb_status=%d "
1168 			    "fcp_resid=0x%x refcount=%d.\n",
1169 			    qedf->lport->host->host_no, sc_cmd->device->id,
1170 			    sc_cmd->device->lun, io_req->xid,
1171 			    sc_cmd->cmnd[0], sc_cmd->cmnd[2], sc_cmd->cmnd[3],
1172 			    sc_cmd->cmnd[4], sc_cmd->cmnd[5],
1173 			    io_req->cdb_status, io_req->fcp_resid,
1174 			    refcount);
1175 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1176 
1177 			if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
1178 			    io_req->cdb_status == SAM_STAT_BUSY) {
1179 				/*
1180 				 * Check whether we need to set retry_delay at
1181 				 * all based on retry_delay module parameter
1182 				 * and the status qualifier.
1183 				 */
1184 
1185 				/* Upper 2 bits */
1186 				scope = fcp_rsp->retry_delay_timer & 0xC000;
1187 				/* Lower 14 bits */
1188 				qualifier = fcp_rsp->retry_delay_timer & 0x3FFF;
1189 
1190 				if (qedf_retry_delay &&
1191 				    scope > 0 && qualifier > 0 &&
1192 				    qualifier <= 0x3FEF) {
1193 					/* Check we don't go over the max */
1194 					if (qualifier > QEDF_RETRY_DELAY_MAX)
1195 						qualifier =
1196 						    QEDF_RETRY_DELAY_MAX;
1197 					fcport->retry_delay_timestamp =
1198 					    jiffies + (qualifier * HZ / 10);
1199 				}
1200 			}
1201 		}
1202 		if (io_req->fcp_resid)
1203 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
1204 		break;
1205 	default:
1206 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "fcp_status=%d.\n",
1207 			   io_req->fcp_status);
1208 		break;
1209 	}
1210 
1211 out:
1212 	if (qedf_io_tracing)
1213 		qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_RSP);
1214 
1215 	io_req->sc_cmd = NULL;
1216 	sc_cmd->SCp.ptr =  NULL;
1217 	sc_cmd->scsi_done(sc_cmd);
1218 	kref_put(&io_req->refcount, qedf_release_cmd);
1219 }
1220 
1221 /* Return a SCSI command in some other context besides a normal completion */
1222 void qedf_scsi_done(struct qedf_ctx *qedf, struct qedf_ioreq *io_req,
1223 	int result)
1224 {
1225 	u16 xid;
1226 	struct scsi_cmnd *sc_cmd;
1227 	int refcount;
1228 
1229 	if (!io_req)
1230 		return;
1231 
1232 	xid = io_req->xid;
1233 	sc_cmd = io_req->sc_cmd;
1234 
1235 	if (!sc_cmd) {
1236 		QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n");
1237 		return;
1238 	}
1239 
1240 	if (!sc_cmd->SCp.ptr) {
1241 		QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in "
1242 		    "another context.\n");
1243 		return;
1244 	}
1245 
1246 	qedf_unmap_sg_list(qedf, io_req);
1247 
1248 	sc_cmd->result = result << 16;
1249 	refcount = kref_read(&io_req->refcount);
1250 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "%d:0:%d:%lld: Completing "
1251 	    "sc_cmd=%p result=0x%08x op=0x%02x lba=0x%02x%02x%02x%02x, "
1252 	    "allowed=%d retries=%d refcount=%d.\n",
1253 	    qedf->lport->host->host_no, sc_cmd->device->id,
1254 	    sc_cmd->device->lun, sc_cmd, sc_cmd->result, sc_cmd->cmnd[0],
1255 	    sc_cmd->cmnd[2], sc_cmd->cmnd[3], sc_cmd->cmnd[4],
1256 	    sc_cmd->cmnd[5], sc_cmd->allowed, sc_cmd->retries,
1257 	    refcount);
1258 
1259 	/*
1260 	 * Set resid to the whole buffer length so we won't try to resue any
1261 	 * previously read data
1262 	 */
1263 	scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
1264 
1265 	if (qedf_io_tracing)
1266 		qedf_trace_io(io_req->fcport, io_req, QEDF_IO_TRACE_RSP);
1267 
1268 	io_req->sc_cmd = NULL;
1269 	sc_cmd->SCp.ptr = NULL;
1270 	sc_cmd->scsi_done(sc_cmd);
1271 	kref_put(&io_req->refcount, qedf_release_cmd);
1272 }
1273 
1274 /*
1275  * Handle warning type CQE completions. This is mainly used for REC timer
1276  * popping.
1277  */
1278 void qedf_process_warning_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1279 	struct qedf_ioreq *io_req)
1280 {
1281 	int rval, i;
1282 	struct qedf_rport *fcport = io_req->fcport;
1283 	u64 err_warn_bit_map;
1284 	u8 err_warn = 0xff;
1285 
1286 	if (!cqe)
1287 		return;
1288 
1289 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Warning CQE, "
1290 		  "xid=0x%x\n", io_req->xid);
1291 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx),
1292 		  "err_warn_bitmap=%08x:%08x\n",
1293 		  le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi),
1294 		  le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo));
1295 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, "
1296 		  "rx_buff_off=%08x, rx_id=%04x\n",
1297 		  le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off),
1298 		  le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off),
1299 		  le32_to_cpu(cqe->cqe_info.err_info.rx_id));
1300 
1301 	/* Normalize the error bitmap value to an just an unsigned int */
1302 	err_warn_bit_map = (u64)
1303 	    ((u64)cqe->cqe_info.err_info.err_warn_bitmap_hi << 32) |
1304 	    (u64)cqe->cqe_info.err_info.err_warn_bitmap_lo;
1305 	for (i = 0; i < 64; i++) {
1306 		if (err_warn_bit_map & (u64)((u64)1 << i)) {
1307 			err_warn = i;
1308 			break;
1309 		}
1310 	}
1311 
1312 	/* Check if REC TOV expired if this is a tape device */
1313 	if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) {
1314 		if (err_warn ==
1315 		    FCOE_WARNING_CODE_REC_TOV_TIMER_EXPIRATION) {
1316 			QEDF_ERR(&(qedf->dbg_ctx), "REC timer expired.\n");
1317 			if (!test_bit(QEDF_CMD_SRR_SENT, &io_req->flags)) {
1318 				io_req->rx_buf_off =
1319 				    cqe->cqe_info.err_info.rx_buf_off;
1320 				io_req->tx_buf_off =
1321 				    cqe->cqe_info.err_info.tx_buf_off;
1322 				io_req->rx_id = cqe->cqe_info.err_info.rx_id;
1323 				rval = qedf_send_rec(io_req);
1324 				/*
1325 				 * We only want to abort the io_req if we
1326 				 * can't queue the REC command as we want to
1327 				 * keep the exchange open for recovery.
1328 				 */
1329 				if (rval)
1330 					goto send_abort;
1331 			}
1332 			return;
1333 		}
1334 	}
1335 
1336 send_abort:
1337 	init_completion(&io_req->abts_done);
1338 	rval = qedf_initiate_abts(io_req, true);
1339 	if (rval)
1340 		QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
1341 }
1342 
1343 /* Cleanup a command when we receive an error detection completion */
1344 void qedf_process_error_detect(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1345 	struct qedf_ioreq *io_req)
1346 {
1347 	int rval;
1348 
1349 	if (!cqe)
1350 		return;
1351 
1352 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Error detection CQE, "
1353 		  "xid=0x%x\n", io_req->xid);
1354 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx),
1355 		  "err_warn_bitmap=%08x:%08x\n",
1356 		  le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi),
1357 		  le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo));
1358 	QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, "
1359 		  "rx_buff_off=%08x, rx_id=%04x\n",
1360 		  le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off),
1361 		  le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off),
1362 		  le32_to_cpu(cqe->cqe_info.err_info.rx_id));
1363 
1364 	if (qedf->stop_io_on_error) {
1365 		qedf_stop_all_io(qedf);
1366 		return;
1367 	}
1368 
1369 	init_completion(&io_req->abts_done);
1370 	rval = qedf_initiate_abts(io_req, true);
1371 	if (rval)
1372 		QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
1373 }
1374 
1375 static void qedf_flush_els_req(struct qedf_ctx *qedf,
1376 	struct qedf_ioreq *els_req)
1377 {
1378 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
1379 	    "Flushing ELS request xid=0x%x refcount=%d.\n", els_req->xid,
1380 	    kref_read(&els_req->refcount));
1381 
1382 	/*
1383 	 * Need to distinguish this from a timeout when calling the
1384 	 * els_req->cb_func.
1385 	 */
1386 	els_req->event = QEDF_IOREQ_EV_ELS_FLUSH;
1387 
1388 	/* Cancel the timer */
1389 	cancel_delayed_work_sync(&els_req->timeout_work);
1390 
1391 	/* Call callback function to complete command */
1392 	if (els_req->cb_func && els_req->cb_arg) {
1393 		els_req->cb_func(els_req->cb_arg);
1394 		els_req->cb_arg = NULL;
1395 	}
1396 
1397 	/* Release kref for original initiate_els */
1398 	kref_put(&els_req->refcount, qedf_release_cmd);
1399 }
1400 
1401 /* A value of -1 for lun is a wild card that means flush all
1402  * active SCSI I/Os for the target.
1403  */
1404 void qedf_flush_active_ios(struct qedf_rport *fcport, int lun)
1405 {
1406 	struct qedf_ioreq *io_req;
1407 	struct qedf_ctx *qedf;
1408 	struct qedf_cmd_mgr *cmd_mgr;
1409 	int i, rc;
1410 
1411 	if (!fcport)
1412 		return;
1413 
1414 	qedf = fcport->qedf;
1415 	cmd_mgr = qedf->cmd_mgr;
1416 
1417 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Flush active i/o's.\n");
1418 
1419 	for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) {
1420 		io_req = &cmd_mgr->cmds[i];
1421 
1422 		if (!io_req)
1423 			continue;
1424 		if (io_req->fcport != fcport)
1425 			continue;
1426 		if (io_req->cmd_type == QEDF_ELS) {
1427 			rc = kref_get_unless_zero(&io_req->refcount);
1428 			if (!rc) {
1429 				QEDF_ERR(&(qedf->dbg_ctx),
1430 				    "Could not get kref for io_req=0x%p.\n",
1431 				    io_req);
1432 				continue;
1433 			}
1434 			qedf_flush_els_req(qedf, io_req);
1435 			/*
1436 			 * Release the kref and go back to the top of the
1437 			 * loop.
1438 			 */
1439 			goto free_cmd;
1440 		}
1441 
1442 		if (!io_req->sc_cmd)
1443 			continue;
1444 		if (lun > 0) {
1445 			if (io_req->sc_cmd->device->lun !=
1446 			    (u64)lun)
1447 				continue;
1448 		}
1449 
1450 		/*
1451 		 * Use kref_get_unless_zero in the unlikely case the command
1452 		 * we're about to flush was completed in the normal SCSI path
1453 		 */
1454 		rc = kref_get_unless_zero(&io_req->refcount);
1455 		if (!rc) {
1456 			QEDF_ERR(&(qedf->dbg_ctx), "Could not get kref for "
1457 			    "io_req=0x%p\n", io_req);
1458 			continue;
1459 		}
1460 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
1461 		    "Cleanup xid=0x%x.\n", io_req->xid);
1462 
1463 		/* Cleanup task and return I/O mid-layer */
1464 		qedf_initiate_cleanup(io_req, true);
1465 
1466 free_cmd:
1467 		kref_put(&io_req->refcount, qedf_release_cmd);
1468 	}
1469 }
1470 
1471 /*
1472  * Initiate a ABTS middle path command. Note that we don't have to initialize
1473  * the task context for an ABTS task.
1474  */
1475 int qedf_initiate_abts(struct qedf_ioreq *io_req, bool return_scsi_cmd_on_abts)
1476 {
1477 	struct fc_lport *lport;
1478 	struct qedf_rport *fcport = io_req->fcport;
1479 	struct fc_rport_priv *rdata = fcport->rdata;
1480 	struct qedf_ctx *qedf = fcport->qedf;
1481 	u16 xid;
1482 	u32 r_a_tov = 0;
1483 	int rc = 0;
1484 	unsigned long flags;
1485 	struct fcoe_wqe *sqe;
1486 	u16 sqe_idx;
1487 
1488 	r_a_tov = rdata->r_a_tov;
1489 	lport = qedf->lport;
1490 
1491 	if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
1492 		QEDF_ERR(&(qedf->dbg_ctx), "tgt not offloaded\n");
1493 		rc = 1;
1494 		goto abts_err;
1495 	}
1496 
1497 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
1498 		QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n");
1499 		rc = 1;
1500 		goto abts_err;
1501 	}
1502 
1503 	if (atomic_read(&qedf->link_down_tmo_valid) > 0) {
1504 		QEDF_ERR(&(qedf->dbg_ctx), "link_down_tmo active.\n");
1505 		rc = 1;
1506 		goto abts_err;
1507 	}
1508 
1509 	/* Ensure room on SQ */
1510 	if (!atomic_read(&fcport->free_sqes)) {
1511 		QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n");
1512 		rc = 1;
1513 		goto abts_err;
1514 	}
1515 
1516 
1517 	kref_get(&io_req->refcount);
1518 
1519 	xid = io_req->xid;
1520 	qedf->control_requests++;
1521 	qedf->packet_aborts++;
1522 
1523 	/* Set the return CPU to be the same as the request one */
1524 	io_req->cpu = smp_processor_id();
1525 
1526 	/* Set the command type to abort */
1527 	io_req->cmd_type = QEDF_ABTS;
1528 	io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts;
1529 
1530 	set_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
1531 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "ABTS io_req xid = "
1532 		   "0x%x\n", xid);
1533 
1534 	qedf_cmd_timer_set(qedf, io_req, QEDF_ABORT_TIMEOUT * HZ);
1535 
1536 	spin_lock_irqsave(&fcport->rport_lock, flags);
1537 
1538 	sqe_idx = qedf_get_sqe_idx(fcport);
1539 	sqe = &fcport->sq[sqe_idx];
1540 	memset(sqe, 0, sizeof(struct fcoe_wqe));
1541 	io_req->task_params->sqe = sqe;
1542 
1543 	init_initiator_abort_fcoe_task(io_req->task_params);
1544 	qedf_ring_doorbell(fcport);
1545 
1546 	spin_unlock_irqrestore(&fcport->rport_lock, flags);
1547 
1548 	return rc;
1549 abts_err:
1550 	/*
1551 	 * If the ABTS task fails to queue then we need to cleanup the
1552 	 * task at the firmware.
1553 	 */
1554 	qedf_initiate_cleanup(io_req, return_scsi_cmd_on_abts);
1555 	return rc;
1556 }
1557 
1558 void qedf_process_abts_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1559 	struct qedf_ioreq *io_req)
1560 {
1561 	uint32_t r_ctl;
1562 	uint16_t xid;
1563 
1564 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "Entered with xid = "
1565 		   "0x%x cmd_type = %d\n", io_req->xid, io_req->cmd_type);
1566 
1567 	cancel_delayed_work(&io_req->timeout_work);
1568 
1569 	xid = io_req->xid;
1570 	r_ctl = cqe->cqe_info.abts_info.r_ctl;
1571 
1572 	switch (r_ctl) {
1573 	case FC_RCTL_BA_ACC:
1574 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM,
1575 		    "ABTS response - ACC Send RRQ after R_A_TOV\n");
1576 		io_req->event = QEDF_IOREQ_EV_ABORT_SUCCESS;
1577 		/*
1578 		 * Dont release this cmd yet. It will be relesed
1579 		 * after we get RRQ response
1580 		 */
1581 		kref_get(&io_req->refcount);
1582 		queue_delayed_work(qedf->dpc_wq, &io_req->rrq_work,
1583 		    msecs_to_jiffies(qedf->lport->r_a_tov));
1584 		break;
1585 	/* For error cases let the cleanup return the command */
1586 	case FC_RCTL_BA_RJT:
1587 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM,
1588 		   "ABTS response - RJT\n");
1589 		io_req->event = QEDF_IOREQ_EV_ABORT_FAILED;
1590 		break;
1591 	default:
1592 		QEDF_ERR(&(qedf->dbg_ctx), "Unknown ABTS response\n");
1593 		break;
1594 	}
1595 
1596 	clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags);
1597 
1598 	if (io_req->sc_cmd) {
1599 		if (io_req->return_scsi_cmd_on_abts)
1600 			qedf_scsi_done(qedf, io_req, DID_ERROR);
1601 	}
1602 
1603 	/* Notify eh_abort handler that ABTS is complete */
1604 	complete(&io_req->abts_done);
1605 
1606 	kref_put(&io_req->refcount, qedf_release_cmd);
1607 }
1608 
1609 int qedf_init_mp_req(struct qedf_ioreq *io_req)
1610 {
1611 	struct qedf_mp_req *mp_req;
1612 	struct scsi_sge *mp_req_bd;
1613 	struct scsi_sge *mp_resp_bd;
1614 	struct qedf_ctx *qedf = io_req->fcport->qedf;
1615 	dma_addr_t addr;
1616 	uint64_t sz;
1617 
1618 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_MP_REQ, "Entered.\n");
1619 
1620 	mp_req = (struct qedf_mp_req *)&(io_req->mp_req);
1621 	memset(mp_req, 0, sizeof(struct qedf_mp_req));
1622 
1623 	if (io_req->cmd_type != QEDF_ELS) {
1624 		mp_req->req_len = sizeof(struct fcp_cmnd);
1625 		io_req->data_xfer_len = mp_req->req_len;
1626 	} else
1627 		mp_req->req_len = io_req->data_xfer_len;
1628 
1629 	mp_req->req_buf = dma_alloc_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
1630 	    &mp_req->req_buf_dma, GFP_KERNEL);
1631 	if (!mp_req->req_buf) {
1632 		QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req buffer\n");
1633 		qedf_free_mp_resc(io_req);
1634 		return -ENOMEM;
1635 	}
1636 
1637 	mp_req->resp_buf = dma_alloc_coherent(&qedf->pdev->dev,
1638 	    QEDF_PAGE_SIZE, &mp_req->resp_buf_dma, GFP_KERNEL);
1639 	if (!mp_req->resp_buf) {
1640 		QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc TM resp "
1641 			  "buffer\n");
1642 		qedf_free_mp_resc(io_req);
1643 		return -ENOMEM;
1644 	}
1645 
1646 	/* Allocate and map mp_req_bd and mp_resp_bd */
1647 	sz = sizeof(struct scsi_sge);
1648 	mp_req->mp_req_bd = dma_alloc_coherent(&qedf->pdev->dev, sz,
1649 	    &mp_req->mp_req_bd_dma, GFP_KERNEL);
1650 	if (!mp_req->mp_req_bd) {
1651 		QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req bd\n");
1652 		qedf_free_mp_resc(io_req);
1653 		return -ENOMEM;
1654 	}
1655 
1656 	mp_req->mp_resp_bd = dma_alloc_coherent(&qedf->pdev->dev, sz,
1657 	    &mp_req->mp_resp_bd_dma, GFP_KERNEL);
1658 	if (!mp_req->mp_resp_bd) {
1659 		QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP resp bd\n");
1660 		qedf_free_mp_resc(io_req);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	/* Fill bd table */
1665 	addr = mp_req->req_buf_dma;
1666 	mp_req_bd = mp_req->mp_req_bd;
1667 	mp_req_bd->sge_addr.lo = U64_LO(addr);
1668 	mp_req_bd->sge_addr.hi = U64_HI(addr);
1669 	mp_req_bd->sge_len = QEDF_PAGE_SIZE;
1670 
1671 	/*
1672 	 * MP buffer is either a task mgmt command or an ELS.
1673 	 * So the assumption is that it consumes a single bd
1674 	 * entry in the bd table
1675 	 */
1676 	mp_resp_bd = mp_req->mp_resp_bd;
1677 	addr = mp_req->resp_buf_dma;
1678 	mp_resp_bd->sge_addr.lo = U64_LO(addr);
1679 	mp_resp_bd->sge_addr.hi = U64_HI(addr);
1680 	mp_resp_bd->sge_len = QEDF_PAGE_SIZE;
1681 
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Last ditch effort to clear the port if it's stuck. Used only after a
1687  * cleanup task times out.
1688  */
1689 static void qedf_drain_request(struct qedf_ctx *qedf)
1690 {
1691 	if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) {
1692 		QEDF_ERR(&(qedf->dbg_ctx), "MCP drain already active.\n");
1693 		return;
1694 	}
1695 
1696 	/* Set bit to return all queuecommand requests as busy */
1697 	set_bit(QEDF_DRAIN_ACTIVE, &qedf->flags);
1698 
1699 	/* Call qed drain request for function. Should be synchronous */
1700 	qed_ops->common->drain(qedf->cdev);
1701 
1702 	/* Settle time for CQEs to be returned */
1703 	msleep(100);
1704 
1705 	/* Unplug and continue */
1706 	clear_bit(QEDF_DRAIN_ACTIVE, &qedf->flags);
1707 }
1708 
1709 /*
1710  * Returns SUCCESS if the cleanup task does not timeout, otherwise return
1711  * FAILURE.
1712  */
1713 int qedf_initiate_cleanup(struct qedf_ioreq *io_req,
1714 	bool return_scsi_cmd_on_abts)
1715 {
1716 	struct qedf_rport *fcport;
1717 	struct qedf_ctx *qedf;
1718 	uint16_t xid;
1719 	struct fcoe_task_context *task;
1720 	int tmo = 0;
1721 	int rc = SUCCESS;
1722 	unsigned long flags;
1723 	struct fcoe_wqe *sqe;
1724 	u16 sqe_idx;
1725 
1726 	fcport = io_req->fcport;
1727 	if (!fcport) {
1728 		QEDF_ERR(NULL, "fcport is NULL.\n");
1729 		return SUCCESS;
1730 	}
1731 
1732 	qedf = fcport->qedf;
1733 	if (!qedf) {
1734 		QEDF_ERR(NULL, "qedf is NULL.\n");
1735 		return SUCCESS;
1736 	}
1737 
1738 	if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) ||
1739 	    test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags)) {
1740 		QEDF_ERR(&(qedf->dbg_ctx), "io_req xid=0x%x already in "
1741 			  "cleanup processing or already completed.\n",
1742 			  io_req->xid);
1743 		return SUCCESS;
1744 	}
1745 
1746 	/* Ensure room on SQ */
1747 	if (!atomic_read(&fcport->free_sqes)) {
1748 		QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n");
1749 		return FAILED;
1750 	}
1751 
1752 
1753 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Entered xid=0x%x\n",
1754 	    io_req->xid);
1755 
1756 	/* Cleanup cmds re-use the same TID as the original I/O */
1757 	xid = io_req->xid;
1758 	io_req->cmd_type = QEDF_CLEANUP;
1759 	io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts;
1760 
1761 	/* Set the return CPU to be the same as the request one */
1762 	io_req->cpu = smp_processor_id();
1763 
1764 	set_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
1765 
1766 	task = qedf_get_task_mem(&qedf->tasks, xid);
1767 
1768 	init_completion(&io_req->tm_done);
1769 
1770 	spin_lock_irqsave(&fcport->rport_lock, flags);
1771 
1772 	sqe_idx = qedf_get_sqe_idx(fcport);
1773 	sqe = &fcport->sq[sqe_idx];
1774 	memset(sqe, 0, sizeof(struct fcoe_wqe));
1775 	io_req->task_params->sqe = sqe;
1776 
1777 	init_initiator_cleanup_fcoe_task(io_req->task_params);
1778 	qedf_ring_doorbell(fcport);
1779 
1780 	spin_unlock_irqrestore(&fcport->rport_lock, flags);
1781 
1782 	tmo = wait_for_completion_timeout(&io_req->tm_done,
1783 	    QEDF_CLEANUP_TIMEOUT * HZ);
1784 
1785 	if (!tmo) {
1786 		rc = FAILED;
1787 		/* Timeout case */
1788 		QEDF_ERR(&(qedf->dbg_ctx), "Cleanup command timeout, "
1789 			  "xid=%x.\n", io_req->xid);
1790 		clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
1791 		/* Issue a drain request if cleanup task times out */
1792 		QEDF_ERR(&(qedf->dbg_ctx), "Issuing MCP drain request.\n");
1793 		qedf_drain_request(qedf);
1794 	}
1795 
1796 	if (io_req->sc_cmd) {
1797 		if (io_req->return_scsi_cmd_on_abts)
1798 			qedf_scsi_done(qedf, io_req, DID_ERROR);
1799 	}
1800 
1801 	if (rc == SUCCESS)
1802 		io_req->event = QEDF_IOREQ_EV_CLEANUP_SUCCESS;
1803 	else
1804 		io_req->event = QEDF_IOREQ_EV_CLEANUP_FAILED;
1805 
1806 	return rc;
1807 }
1808 
1809 void qedf_process_cleanup_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1810 	struct qedf_ioreq *io_req)
1811 {
1812 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Entered xid = 0x%x\n",
1813 		   io_req->xid);
1814 
1815 	clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags);
1816 
1817 	/* Complete so we can finish cleaning up the I/O */
1818 	complete(&io_req->tm_done);
1819 }
1820 
1821 static int qedf_execute_tmf(struct qedf_rport *fcport, struct scsi_cmnd *sc_cmd,
1822 	uint8_t tm_flags)
1823 {
1824 	struct qedf_ioreq *io_req;
1825 	struct fcoe_task_context *task;
1826 	struct qedf_ctx *qedf = fcport->qedf;
1827 	struct fc_lport *lport = qedf->lport;
1828 	int rc = 0;
1829 	uint16_t xid;
1830 	int tmo = 0;
1831 	unsigned long flags;
1832 	struct fcoe_wqe *sqe;
1833 	u16 sqe_idx;
1834 
1835 	if (!sc_cmd) {
1836 		QEDF_ERR(&(qedf->dbg_ctx), "invalid arg\n");
1837 		return FAILED;
1838 	}
1839 
1840 	if (!(test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags))) {
1841 		QEDF_ERR(&(qedf->dbg_ctx), "fcport not offloaded\n");
1842 		rc = FAILED;
1843 		return FAILED;
1844 	}
1845 
1846 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "portid = 0x%x "
1847 		   "tm_flags = %d\n", fcport->rdata->ids.port_id, tm_flags);
1848 
1849 	io_req = qedf_alloc_cmd(fcport, QEDF_TASK_MGMT_CMD);
1850 	if (!io_req) {
1851 		QEDF_ERR(&(qedf->dbg_ctx), "Failed TMF");
1852 		rc = -EAGAIN;
1853 		goto reset_tmf_err;
1854 	}
1855 
1856 	/* Initialize rest of io_req fields */
1857 	io_req->sc_cmd = sc_cmd;
1858 	io_req->fcport = fcport;
1859 	io_req->cmd_type = QEDF_TASK_MGMT_CMD;
1860 
1861 	/* Set the return CPU to be the same as the request one */
1862 	io_req->cpu = smp_processor_id();
1863 
1864 	/* Set TM flags */
1865 	io_req->io_req_flags = QEDF_READ;
1866 	io_req->data_xfer_len = 0;
1867 	io_req->tm_flags = tm_flags;
1868 
1869 	/* Default is to return a SCSI command when an error occurs */
1870 	io_req->return_scsi_cmd_on_abts = true;
1871 
1872 	/* Obtain exchange id */
1873 	xid = io_req->xid;
1874 
1875 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "TMF io_req xid = "
1876 		   "0x%x\n", xid);
1877 
1878 	/* Initialize task context for this IO request */
1879 	task = qedf_get_task_mem(&qedf->tasks, xid);
1880 
1881 	init_completion(&io_req->tm_done);
1882 
1883 	spin_lock_irqsave(&fcport->rport_lock, flags);
1884 
1885 	sqe_idx = qedf_get_sqe_idx(fcport);
1886 	sqe = &fcport->sq[sqe_idx];
1887 	memset(sqe, 0, sizeof(struct fcoe_wqe));
1888 
1889 	qedf_init_task(fcport, lport, io_req, task, sqe);
1890 	qedf_ring_doorbell(fcport);
1891 
1892 	spin_unlock_irqrestore(&fcport->rport_lock, flags);
1893 
1894 	tmo = wait_for_completion_timeout(&io_req->tm_done,
1895 	    QEDF_TM_TIMEOUT * HZ);
1896 
1897 	if (!tmo) {
1898 		rc = FAILED;
1899 		QEDF_ERR(&(qedf->dbg_ctx), "wait for tm_cmpl timeout!\n");
1900 	} else {
1901 		/* Check TMF response code */
1902 		if (io_req->fcp_rsp_code == 0)
1903 			rc = SUCCESS;
1904 		else
1905 			rc = FAILED;
1906 	}
1907 
1908 	if (tm_flags == FCP_TMF_LUN_RESET)
1909 		qedf_flush_active_ios(fcport, (int)sc_cmd->device->lun);
1910 	else
1911 		qedf_flush_active_ios(fcport, -1);
1912 
1913 	kref_put(&io_req->refcount, qedf_release_cmd);
1914 
1915 	if (rc != SUCCESS) {
1916 		QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command failed...\n");
1917 		rc = FAILED;
1918 	} else {
1919 		QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command success...\n");
1920 		rc = SUCCESS;
1921 	}
1922 reset_tmf_err:
1923 	return rc;
1924 }
1925 
1926 int qedf_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
1927 {
1928 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1929 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1930 	struct qedf_rport *fcport = (struct qedf_rport *)&rp[1];
1931 	struct qedf_ctx *qedf;
1932 	struct fc_lport *lport;
1933 	int rc = SUCCESS;
1934 	int rval;
1935 
1936 	rval = fc_remote_port_chkready(rport);
1937 
1938 	if (rval) {
1939 		QEDF_ERR(NULL, "device_reset rport not ready\n");
1940 		rc = FAILED;
1941 		goto tmf_err;
1942 	}
1943 
1944 	if (fcport == NULL) {
1945 		QEDF_ERR(NULL, "device_reset: rport is NULL\n");
1946 		rc = FAILED;
1947 		goto tmf_err;
1948 	}
1949 
1950 	qedf = fcport->qedf;
1951 	lport = qedf->lport;
1952 
1953 	if (test_bit(QEDF_UNLOADING, &qedf->flags) ||
1954 	    test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) {
1955 		rc = SUCCESS;
1956 		goto tmf_err;
1957 	}
1958 
1959 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
1960 		QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n");
1961 		rc = FAILED;
1962 		goto tmf_err;
1963 	}
1964 
1965 	rc = qedf_execute_tmf(fcport, sc_cmd, tm_flags);
1966 
1967 tmf_err:
1968 	return rc;
1969 }
1970 
1971 void qedf_process_tmf_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe,
1972 	struct qedf_ioreq *io_req)
1973 {
1974 	struct fcoe_cqe_rsp_info *fcp_rsp;
1975 
1976 	fcp_rsp = &cqe->cqe_info.rsp_info;
1977 	qedf_parse_fcp_rsp(io_req, fcp_rsp);
1978 
1979 	io_req->sc_cmd = NULL;
1980 	complete(&io_req->tm_done);
1981 }
1982 
1983 void qedf_process_unsol_compl(struct qedf_ctx *qedf, uint16_t que_idx,
1984 	struct fcoe_cqe *cqe)
1985 {
1986 	unsigned long flags;
1987 	uint16_t tmp;
1988 	uint16_t pktlen = cqe->cqe_info.unsolic_info.pkt_len;
1989 	u32 payload_len, crc;
1990 	struct fc_frame_header *fh;
1991 	struct fc_frame *fp;
1992 	struct qedf_io_work *io_work;
1993 	u32 bdq_idx;
1994 	void *bdq_addr;
1995 
1996 	QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
1997 	    "address.hi=%x address.lo=%x opaque_data.hi=%x "
1998 	    "opaque_data.lo=%x bdq_prod_idx=%u len=%u.\n",
1999 	    le32_to_cpu(cqe->cqe_info.unsolic_info.bd_info.address.hi),
2000 	    le32_to_cpu(cqe->cqe_info.unsolic_info.bd_info.address.lo),
2001 	    le32_to_cpu(cqe->cqe_info.unsolic_info.bd_info.opaque.hi),
2002 	    le32_to_cpu(cqe->cqe_info.unsolic_info.bd_info.opaque.lo),
2003 	    qedf->bdq_prod_idx, pktlen);
2004 
2005 	bdq_idx = le32_to_cpu(cqe->cqe_info.unsolic_info.bd_info.opaque.lo);
2006 	if (bdq_idx >= QEDF_BDQ_SIZE) {
2007 		QEDF_ERR(&(qedf->dbg_ctx), "bdq_idx is out of range %d.\n",
2008 		    bdq_idx);
2009 		goto increment_prod;
2010 	}
2011 
2012 	bdq_addr = qedf->bdq[bdq_idx].buf_addr;
2013 	if (!bdq_addr) {
2014 		QEDF_ERR(&(qedf->dbg_ctx), "bdq_addr is NULL, dropping "
2015 		    "unsolicited packet.\n");
2016 		goto increment_prod;
2017 	}
2018 
2019 	if (qedf_dump_frames) {
2020 		QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
2021 		    "BDQ frame is at addr=%p.\n", bdq_addr);
2022 		print_hex_dump(KERN_WARNING, "bdq ", DUMP_PREFIX_OFFSET, 16, 1,
2023 		    (void *)bdq_addr, pktlen, false);
2024 	}
2025 
2026 	/* Allocate frame */
2027 	payload_len = pktlen - sizeof(struct fc_frame_header);
2028 	fp = fc_frame_alloc(qedf->lport, payload_len);
2029 	if (!fp) {
2030 		QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate fp.\n");
2031 		goto increment_prod;
2032 	}
2033 
2034 	/* Copy data from BDQ buffer into fc_frame struct */
2035 	fh = (struct fc_frame_header *)fc_frame_header_get(fp);
2036 	memcpy(fh, (void *)bdq_addr, pktlen);
2037 
2038 	/* Initialize the frame so libfc sees it as a valid frame */
2039 	crc = fcoe_fc_crc(fp);
2040 	fc_frame_init(fp);
2041 	fr_dev(fp) = qedf->lport;
2042 	fr_sof(fp) = FC_SOF_I3;
2043 	fr_eof(fp) = FC_EOF_T;
2044 	fr_crc(fp) = cpu_to_le32(~crc);
2045 
2046 	/*
2047 	 * We need to return the frame back up to libfc in a non-atomic
2048 	 * context
2049 	 */
2050 	io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC);
2051 	if (!io_work) {
2052 		QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate "
2053 			   "work for I/O completion.\n");
2054 		fc_frame_free(fp);
2055 		goto increment_prod;
2056 	}
2057 	memset(io_work, 0, sizeof(struct qedf_io_work));
2058 
2059 	INIT_WORK(&io_work->work, qedf_fp_io_handler);
2060 
2061 	/* Copy contents of CQE for deferred processing */
2062 	memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe));
2063 
2064 	io_work->qedf = qedf;
2065 	io_work->fp = fp;
2066 
2067 	queue_work_on(smp_processor_id(), qedf_io_wq, &io_work->work);
2068 increment_prod:
2069 	spin_lock_irqsave(&qedf->hba_lock, flags);
2070 
2071 	/* Increment producer to let f/w know we've handled the frame */
2072 	qedf->bdq_prod_idx++;
2073 
2074 	/* Producer index wraps at uint16_t boundary */
2075 	if (qedf->bdq_prod_idx == 0xffff)
2076 		qedf->bdq_prod_idx = 0;
2077 
2078 	writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod);
2079 	tmp = readw(qedf->bdq_primary_prod);
2080 	writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod);
2081 	tmp = readw(qedf->bdq_secondary_prod);
2082 
2083 	spin_unlock_irqrestore(&qedf->hba_lock, flags);
2084 }
2085