1 /* 2 * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 41 #include <linux/slab.h> 42 #include "pm8001_sas.h" 43 #include "pm8001_chips.h" 44 45 static struct scsi_transport_template *pm8001_stt; 46 47 /** 48 * chip info structure to identify chip key functionality as 49 * encryption available/not, no of ports, hw specific function ref 50 */ 51 static const struct pm8001_chip_info pm8001_chips[] = { 52 [chip_8001] = {0, 8, &pm8001_8001_dispatch,}, 53 [chip_8008] = {0, 8, &pm8001_80xx_dispatch,}, 54 [chip_8009] = {1, 8, &pm8001_80xx_dispatch,}, 55 [chip_8018] = {0, 16, &pm8001_80xx_dispatch,}, 56 [chip_8019] = {1, 16, &pm8001_80xx_dispatch,}, 57 [chip_8074] = {0, 8, &pm8001_80xx_dispatch,}, 58 [chip_8076] = {0, 16, &pm8001_80xx_dispatch,}, 59 [chip_8077] = {0, 16, &pm8001_80xx_dispatch,}, 60 [chip_8006] = {0, 16, &pm8001_80xx_dispatch,}, 61 }; 62 static int pm8001_id; 63 64 LIST_HEAD(hba_list); 65 66 struct workqueue_struct *pm8001_wq; 67 68 /** 69 * The main structure which LLDD must register for scsi core. 70 */ 71 static struct scsi_host_template pm8001_sht = { 72 .module = THIS_MODULE, 73 .name = DRV_NAME, 74 .queuecommand = sas_queuecommand, 75 .target_alloc = sas_target_alloc, 76 .slave_configure = sas_slave_configure, 77 .scan_finished = pm8001_scan_finished, 78 .scan_start = pm8001_scan_start, 79 .change_queue_depth = sas_change_queue_depth, 80 .bios_param = sas_bios_param, 81 .can_queue = 1, 82 .this_id = -1, 83 .sg_tablesize = SG_ALL, 84 .max_sectors = SCSI_DEFAULT_MAX_SECTORS, 85 .use_clustering = ENABLE_CLUSTERING, 86 .eh_device_reset_handler = sas_eh_device_reset_handler, 87 .eh_bus_reset_handler = sas_eh_bus_reset_handler, 88 .target_destroy = sas_target_destroy, 89 .ioctl = sas_ioctl, 90 .shost_attrs = pm8001_host_attrs, 91 .use_blk_tags = 1, 92 .track_queue_depth = 1, 93 }; 94 95 /** 96 * Sas layer call this function to execute specific task. 97 */ 98 static struct sas_domain_function_template pm8001_transport_ops = { 99 .lldd_dev_found = pm8001_dev_found, 100 .lldd_dev_gone = pm8001_dev_gone, 101 102 .lldd_execute_task = pm8001_queue_command, 103 .lldd_control_phy = pm8001_phy_control, 104 105 .lldd_abort_task = pm8001_abort_task, 106 .lldd_abort_task_set = pm8001_abort_task_set, 107 .lldd_clear_aca = pm8001_clear_aca, 108 .lldd_clear_task_set = pm8001_clear_task_set, 109 .lldd_I_T_nexus_reset = pm8001_I_T_nexus_reset, 110 .lldd_lu_reset = pm8001_lu_reset, 111 .lldd_query_task = pm8001_query_task, 112 }; 113 114 /** 115 *pm8001_phy_init - initiate our adapter phys 116 *@pm8001_ha: our hba structure. 117 *@phy_id: phy id. 118 */ 119 static void pm8001_phy_init(struct pm8001_hba_info *pm8001_ha, int phy_id) 120 { 121 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 122 struct asd_sas_phy *sas_phy = &phy->sas_phy; 123 phy->phy_state = 0; 124 phy->pm8001_ha = pm8001_ha; 125 sas_phy->enabled = (phy_id < pm8001_ha->chip->n_phy) ? 1 : 0; 126 sas_phy->class = SAS; 127 sas_phy->iproto = SAS_PROTOCOL_ALL; 128 sas_phy->tproto = 0; 129 sas_phy->type = PHY_TYPE_PHYSICAL; 130 sas_phy->role = PHY_ROLE_INITIATOR; 131 sas_phy->oob_mode = OOB_NOT_CONNECTED; 132 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; 133 sas_phy->id = phy_id; 134 sas_phy->sas_addr = &pm8001_ha->sas_addr[0]; 135 sas_phy->frame_rcvd = &phy->frame_rcvd[0]; 136 sas_phy->ha = (struct sas_ha_struct *)pm8001_ha->shost->hostdata; 137 sas_phy->lldd_phy = phy; 138 } 139 140 /** 141 *pm8001_free - free hba 142 *@pm8001_ha: our hba structure. 143 * 144 */ 145 static void pm8001_free(struct pm8001_hba_info *pm8001_ha) 146 { 147 int i; 148 149 if (!pm8001_ha) 150 return; 151 152 for (i = 0; i < USI_MAX_MEMCNT; i++) { 153 if (pm8001_ha->memoryMap.region[i].virt_ptr != NULL) { 154 pci_free_consistent(pm8001_ha->pdev, 155 (pm8001_ha->memoryMap.region[i].total_len + 156 pm8001_ha->memoryMap.region[i].alignment), 157 pm8001_ha->memoryMap.region[i].virt_ptr, 158 pm8001_ha->memoryMap.region[i].phys_addr); 159 } 160 } 161 PM8001_CHIP_DISP->chip_iounmap(pm8001_ha); 162 if (pm8001_ha->shost) 163 scsi_host_put(pm8001_ha->shost); 164 flush_workqueue(pm8001_wq); 165 kfree(pm8001_ha->tags); 166 kfree(pm8001_ha); 167 } 168 169 #ifdef PM8001_USE_TASKLET 170 171 /** 172 * tasklet for 64 msi-x interrupt handler 173 * @opaque: the passed general host adapter struct 174 * Note: pm8001_tasklet is common for pm8001 & pm80xx 175 */ 176 static void pm8001_tasklet(unsigned long opaque) 177 { 178 struct pm8001_hba_info *pm8001_ha; 179 struct isr_param *irq_vector; 180 181 irq_vector = (struct isr_param *)opaque; 182 pm8001_ha = irq_vector->drv_inst; 183 if (unlikely(!pm8001_ha)) 184 BUG_ON(1); 185 PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id); 186 } 187 #endif 188 189 /** 190 * pm8001_interrupt_handler_msix - main MSIX interrupt handler. 191 * It obtains the vector number and calls the equivalent bottom 192 * half or services directly. 193 * @opaque: the passed outbound queue/vector. Host structure is 194 * retrieved from the same. 195 */ 196 static irqreturn_t pm8001_interrupt_handler_msix(int irq, void *opaque) 197 { 198 struct isr_param *irq_vector; 199 struct pm8001_hba_info *pm8001_ha; 200 irqreturn_t ret = IRQ_HANDLED; 201 irq_vector = (struct isr_param *)opaque; 202 pm8001_ha = irq_vector->drv_inst; 203 204 if (unlikely(!pm8001_ha)) 205 return IRQ_NONE; 206 if (!PM8001_CHIP_DISP->is_our_interupt(pm8001_ha)) 207 return IRQ_NONE; 208 #ifdef PM8001_USE_TASKLET 209 tasklet_schedule(&pm8001_ha->tasklet[irq_vector->irq_id]); 210 #else 211 ret = PM8001_CHIP_DISP->isr(pm8001_ha, irq_vector->irq_id); 212 #endif 213 return ret; 214 } 215 216 /** 217 * pm8001_interrupt_handler_intx - main INTx interrupt handler. 218 * @dev_id: sas_ha structure. The HBA is retrieved from sas_has structure. 219 */ 220 221 static irqreturn_t pm8001_interrupt_handler_intx(int irq, void *dev_id) 222 { 223 struct pm8001_hba_info *pm8001_ha; 224 irqreturn_t ret = IRQ_HANDLED; 225 struct sas_ha_struct *sha = dev_id; 226 pm8001_ha = sha->lldd_ha; 227 if (unlikely(!pm8001_ha)) 228 return IRQ_NONE; 229 if (!PM8001_CHIP_DISP->is_our_interupt(pm8001_ha)) 230 return IRQ_NONE; 231 232 #ifdef PM8001_USE_TASKLET 233 tasklet_schedule(&pm8001_ha->tasklet[0]); 234 #else 235 ret = PM8001_CHIP_DISP->isr(pm8001_ha, 0); 236 #endif 237 return ret; 238 } 239 240 /** 241 * pm8001_alloc - initiate our hba structure and 6 DMAs area. 242 * @pm8001_ha:our hba structure. 243 * 244 */ 245 static int pm8001_alloc(struct pm8001_hba_info *pm8001_ha, 246 const struct pci_device_id *ent) 247 { 248 int i; 249 spin_lock_init(&pm8001_ha->lock); 250 spin_lock_init(&pm8001_ha->bitmap_lock); 251 PM8001_INIT_DBG(pm8001_ha, 252 pm8001_printk("pm8001_alloc: PHY:%x\n", 253 pm8001_ha->chip->n_phy)); 254 for (i = 0; i < pm8001_ha->chip->n_phy; i++) { 255 pm8001_phy_init(pm8001_ha, i); 256 pm8001_ha->port[i].wide_port_phymap = 0; 257 pm8001_ha->port[i].port_attached = 0; 258 pm8001_ha->port[i].port_state = 0; 259 INIT_LIST_HEAD(&pm8001_ha->port[i].list); 260 } 261 262 pm8001_ha->tags = kzalloc(PM8001_MAX_CCB, GFP_KERNEL); 263 if (!pm8001_ha->tags) 264 goto err_out; 265 /* MPI Memory region 1 for AAP Event Log for fw */ 266 pm8001_ha->memoryMap.region[AAP1].num_elements = 1; 267 pm8001_ha->memoryMap.region[AAP1].element_size = PM8001_EVENT_LOG_SIZE; 268 pm8001_ha->memoryMap.region[AAP1].total_len = PM8001_EVENT_LOG_SIZE; 269 pm8001_ha->memoryMap.region[AAP1].alignment = 32; 270 271 /* MPI Memory region 2 for IOP Event Log for fw */ 272 pm8001_ha->memoryMap.region[IOP].num_elements = 1; 273 pm8001_ha->memoryMap.region[IOP].element_size = PM8001_EVENT_LOG_SIZE; 274 pm8001_ha->memoryMap.region[IOP].total_len = PM8001_EVENT_LOG_SIZE; 275 pm8001_ha->memoryMap.region[IOP].alignment = 32; 276 277 for (i = 0; i < PM8001_MAX_SPCV_INB_NUM; i++) { 278 /* MPI Memory region 3 for consumer Index of inbound queues */ 279 pm8001_ha->memoryMap.region[CI+i].num_elements = 1; 280 pm8001_ha->memoryMap.region[CI+i].element_size = 4; 281 pm8001_ha->memoryMap.region[CI+i].total_len = 4; 282 pm8001_ha->memoryMap.region[CI+i].alignment = 4; 283 284 if ((ent->driver_data) != chip_8001) { 285 /* MPI Memory region 5 inbound queues */ 286 pm8001_ha->memoryMap.region[IB+i].num_elements = 287 PM8001_MPI_QUEUE; 288 pm8001_ha->memoryMap.region[IB+i].element_size = 128; 289 pm8001_ha->memoryMap.region[IB+i].total_len = 290 PM8001_MPI_QUEUE * 128; 291 pm8001_ha->memoryMap.region[IB+i].alignment = 128; 292 } else { 293 pm8001_ha->memoryMap.region[IB+i].num_elements = 294 PM8001_MPI_QUEUE; 295 pm8001_ha->memoryMap.region[IB+i].element_size = 64; 296 pm8001_ha->memoryMap.region[IB+i].total_len = 297 PM8001_MPI_QUEUE * 64; 298 pm8001_ha->memoryMap.region[IB+i].alignment = 64; 299 } 300 } 301 302 for (i = 0; i < PM8001_MAX_SPCV_OUTB_NUM; i++) { 303 /* MPI Memory region 4 for producer Index of outbound queues */ 304 pm8001_ha->memoryMap.region[PI+i].num_elements = 1; 305 pm8001_ha->memoryMap.region[PI+i].element_size = 4; 306 pm8001_ha->memoryMap.region[PI+i].total_len = 4; 307 pm8001_ha->memoryMap.region[PI+i].alignment = 4; 308 309 if (ent->driver_data != chip_8001) { 310 /* MPI Memory region 6 Outbound queues */ 311 pm8001_ha->memoryMap.region[OB+i].num_elements = 312 PM8001_MPI_QUEUE; 313 pm8001_ha->memoryMap.region[OB+i].element_size = 128; 314 pm8001_ha->memoryMap.region[OB+i].total_len = 315 PM8001_MPI_QUEUE * 128; 316 pm8001_ha->memoryMap.region[OB+i].alignment = 128; 317 } else { 318 /* MPI Memory region 6 Outbound queues */ 319 pm8001_ha->memoryMap.region[OB+i].num_elements = 320 PM8001_MPI_QUEUE; 321 pm8001_ha->memoryMap.region[OB+i].element_size = 64; 322 pm8001_ha->memoryMap.region[OB+i].total_len = 323 PM8001_MPI_QUEUE * 64; 324 pm8001_ha->memoryMap.region[OB+i].alignment = 64; 325 } 326 327 } 328 /* Memory region write DMA*/ 329 pm8001_ha->memoryMap.region[NVMD].num_elements = 1; 330 pm8001_ha->memoryMap.region[NVMD].element_size = 4096; 331 pm8001_ha->memoryMap.region[NVMD].total_len = 4096; 332 /* Memory region for devices*/ 333 pm8001_ha->memoryMap.region[DEV_MEM].num_elements = 1; 334 pm8001_ha->memoryMap.region[DEV_MEM].element_size = PM8001_MAX_DEVICES * 335 sizeof(struct pm8001_device); 336 pm8001_ha->memoryMap.region[DEV_MEM].total_len = PM8001_MAX_DEVICES * 337 sizeof(struct pm8001_device); 338 339 /* Memory region for ccb_info*/ 340 pm8001_ha->memoryMap.region[CCB_MEM].num_elements = 1; 341 pm8001_ha->memoryMap.region[CCB_MEM].element_size = PM8001_MAX_CCB * 342 sizeof(struct pm8001_ccb_info); 343 pm8001_ha->memoryMap.region[CCB_MEM].total_len = PM8001_MAX_CCB * 344 sizeof(struct pm8001_ccb_info); 345 346 /* Memory region for fw flash */ 347 pm8001_ha->memoryMap.region[FW_FLASH].total_len = 4096; 348 349 pm8001_ha->memoryMap.region[FORENSIC_MEM].num_elements = 1; 350 pm8001_ha->memoryMap.region[FORENSIC_MEM].total_len = 0x10000; 351 pm8001_ha->memoryMap.region[FORENSIC_MEM].element_size = 0x10000; 352 pm8001_ha->memoryMap.region[FORENSIC_MEM].alignment = 0x10000; 353 for (i = 0; i < USI_MAX_MEMCNT; i++) { 354 if (pm8001_mem_alloc(pm8001_ha->pdev, 355 &pm8001_ha->memoryMap.region[i].virt_ptr, 356 &pm8001_ha->memoryMap.region[i].phys_addr, 357 &pm8001_ha->memoryMap.region[i].phys_addr_hi, 358 &pm8001_ha->memoryMap.region[i].phys_addr_lo, 359 pm8001_ha->memoryMap.region[i].total_len, 360 pm8001_ha->memoryMap.region[i].alignment) != 0) { 361 PM8001_FAIL_DBG(pm8001_ha, 362 pm8001_printk("Mem%d alloc failed\n", 363 i)); 364 goto err_out; 365 } 366 } 367 368 pm8001_ha->devices = pm8001_ha->memoryMap.region[DEV_MEM].virt_ptr; 369 for (i = 0; i < PM8001_MAX_DEVICES; i++) { 370 pm8001_ha->devices[i].dev_type = SAS_PHY_UNUSED; 371 pm8001_ha->devices[i].id = i; 372 pm8001_ha->devices[i].device_id = PM8001_MAX_DEVICES; 373 pm8001_ha->devices[i].running_req = 0; 374 } 375 pm8001_ha->ccb_info = pm8001_ha->memoryMap.region[CCB_MEM].virt_ptr; 376 for (i = 0; i < PM8001_MAX_CCB; i++) { 377 pm8001_ha->ccb_info[i].ccb_dma_handle = 378 pm8001_ha->memoryMap.region[CCB_MEM].phys_addr + 379 i * sizeof(struct pm8001_ccb_info); 380 pm8001_ha->ccb_info[i].task = NULL; 381 pm8001_ha->ccb_info[i].ccb_tag = 0xffffffff; 382 pm8001_ha->ccb_info[i].device = NULL; 383 ++pm8001_ha->tags_num; 384 } 385 pm8001_ha->flags = PM8001F_INIT_TIME; 386 /* Initialize tags */ 387 pm8001_tag_init(pm8001_ha); 388 return 0; 389 err_out: 390 return 1; 391 } 392 393 /** 394 * pm8001_ioremap - remap the pci high physical address to kernal virtual 395 * address so that we can access them. 396 * @pm8001_ha:our hba structure. 397 */ 398 static int pm8001_ioremap(struct pm8001_hba_info *pm8001_ha) 399 { 400 u32 bar; 401 u32 logicalBar = 0; 402 struct pci_dev *pdev; 403 404 pdev = pm8001_ha->pdev; 405 /* map pci mem (PMC pci base 0-3)*/ 406 for (bar = 0; bar < 6; bar++) { 407 /* 408 ** logical BARs for SPC: 409 ** bar 0 and 1 - logical BAR0 410 ** bar 2 and 3 - logical BAR1 411 ** bar4 - logical BAR2 412 ** bar5 - logical BAR3 413 ** Skip the appropriate assignments: 414 */ 415 if ((bar == 1) || (bar == 3)) 416 continue; 417 if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 418 pm8001_ha->io_mem[logicalBar].membase = 419 pci_resource_start(pdev, bar); 420 pm8001_ha->io_mem[logicalBar].membase &= 421 (u32)PCI_BASE_ADDRESS_MEM_MASK; 422 pm8001_ha->io_mem[logicalBar].memsize = 423 pci_resource_len(pdev, bar); 424 pm8001_ha->io_mem[logicalBar].memvirtaddr = 425 ioremap(pm8001_ha->io_mem[logicalBar].membase, 426 pm8001_ha->io_mem[logicalBar].memsize); 427 PM8001_INIT_DBG(pm8001_ha, 428 pm8001_printk("PCI: bar %d, logicalBar %d ", 429 bar, logicalBar)); 430 PM8001_INIT_DBG(pm8001_ha, pm8001_printk( 431 "base addr %llx virt_addr=%llx len=%d\n", 432 (u64)pm8001_ha->io_mem[logicalBar].membase, 433 (u64)(unsigned long) 434 pm8001_ha->io_mem[logicalBar].memvirtaddr, 435 pm8001_ha->io_mem[logicalBar].memsize)); 436 } else { 437 pm8001_ha->io_mem[logicalBar].membase = 0; 438 pm8001_ha->io_mem[logicalBar].memsize = 0; 439 pm8001_ha->io_mem[logicalBar].memvirtaddr = 0; 440 } 441 logicalBar++; 442 } 443 return 0; 444 } 445 446 /** 447 * pm8001_pci_alloc - initialize our ha card structure 448 * @pdev: pci device. 449 * @ent: ent 450 * @shost: scsi host struct which has been initialized before. 451 */ 452 static struct pm8001_hba_info *pm8001_pci_alloc(struct pci_dev *pdev, 453 const struct pci_device_id *ent, 454 struct Scsi_Host *shost) 455 456 { 457 struct pm8001_hba_info *pm8001_ha; 458 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 459 int j; 460 461 pm8001_ha = sha->lldd_ha; 462 if (!pm8001_ha) 463 return NULL; 464 465 pm8001_ha->pdev = pdev; 466 pm8001_ha->dev = &pdev->dev; 467 pm8001_ha->chip_id = ent->driver_data; 468 pm8001_ha->chip = &pm8001_chips[pm8001_ha->chip_id]; 469 pm8001_ha->irq = pdev->irq; 470 pm8001_ha->sas = sha; 471 pm8001_ha->shost = shost; 472 pm8001_ha->id = pm8001_id++; 473 pm8001_ha->logging_level = 0x01; 474 sprintf(pm8001_ha->name, "%s%d", DRV_NAME, pm8001_ha->id); 475 /* IOMB size is 128 for 8088/89 controllers */ 476 if (pm8001_ha->chip_id != chip_8001) 477 pm8001_ha->iomb_size = IOMB_SIZE_SPCV; 478 else 479 pm8001_ha->iomb_size = IOMB_SIZE_SPC; 480 481 #ifdef PM8001_USE_TASKLET 482 /* Tasklet for non msi-x interrupt handler */ 483 if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001)) 484 tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet, 485 (unsigned long)&(pm8001_ha->irq_vector[0])); 486 else 487 for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) 488 tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet, 489 (unsigned long)&(pm8001_ha->irq_vector[j])); 490 #endif 491 pm8001_ioremap(pm8001_ha); 492 if (!pm8001_alloc(pm8001_ha, ent)) 493 return pm8001_ha; 494 pm8001_free(pm8001_ha); 495 return NULL; 496 } 497 498 /** 499 * pci_go_44 - pm8001 specified, its DMA is 44 bit rather than 64 bit 500 * @pdev: pci device. 501 */ 502 static int pci_go_44(struct pci_dev *pdev) 503 { 504 int rc; 505 506 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(44))) { 507 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(44)); 508 if (rc) { 509 rc = pci_set_consistent_dma_mask(pdev, 510 DMA_BIT_MASK(32)); 511 if (rc) { 512 dev_printk(KERN_ERR, &pdev->dev, 513 "44-bit DMA enable failed\n"); 514 return rc; 515 } 516 } 517 } else { 518 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 519 if (rc) { 520 dev_printk(KERN_ERR, &pdev->dev, 521 "32-bit DMA enable failed\n"); 522 return rc; 523 } 524 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 525 if (rc) { 526 dev_printk(KERN_ERR, &pdev->dev, 527 "32-bit consistent DMA enable failed\n"); 528 return rc; 529 } 530 } 531 return rc; 532 } 533 534 /** 535 * pm8001_prep_sas_ha_init - allocate memory in general hba struct && init them. 536 * @shost: scsi host which has been allocated outside. 537 * @chip_info: our ha struct. 538 */ 539 static int pm8001_prep_sas_ha_init(struct Scsi_Host *shost, 540 const struct pm8001_chip_info *chip_info) 541 { 542 int phy_nr, port_nr; 543 struct asd_sas_phy **arr_phy; 544 struct asd_sas_port **arr_port; 545 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 546 547 phy_nr = chip_info->n_phy; 548 port_nr = phy_nr; 549 memset(sha, 0x00, sizeof(*sha)); 550 arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL); 551 if (!arr_phy) 552 goto exit; 553 arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL); 554 if (!arr_port) 555 goto exit_free2; 556 557 sha->sas_phy = arr_phy; 558 sha->sas_port = arr_port; 559 sha->lldd_ha = kzalloc(sizeof(struct pm8001_hba_info), GFP_KERNEL); 560 if (!sha->lldd_ha) 561 goto exit_free1; 562 563 shost->transportt = pm8001_stt; 564 shost->max_id = PM8001_MAX_DEVICES; 565 shost->max_lun = 8; 566 shost->max_channel = 0; 567 shost->unique_id = pm8001_id; 568 shost->max_cmd_len = 16; 569 shost->can_queue = PM8001_CAN_QUEUE; 570 shost->cmd_per_lun = 32; 571 return 0; 572 exit_free1: 573 kfree(arr_port); 574 exit_free2: 575 kfree(arr_phy); 576 exit: 577 return -1; 578 } 579 580 /** 581 * pm8001_post_sas_ha_init - initialize general hba struct defined in libsas 582 * @shost: scsi host which has been allocated outside 583 * @chip_info: our ha struct. 584 */ 585 static void pm8001_post_sas_ha_init(struct Scsi_Host *shost, 586 const struct pm8001_chip_info *chip_info) 587 { 588 int i = 0; 589 struct pm8001_hba_info *pm8001_ha; 590 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 591 592 pm8001_ha = sha->lldd_ha; 593 for (i = 0; i < chip_info->n_phy; i++) { 594 sha->sas_phy[i] = &pm8001_ha->phy[i].sas_phy; 595 sha->sas_port[i] = &pm8001_ha->port[i].sas_port; 596 } 597 sha->sas_ha_name = DRV_NAME; 598 sha->dev = pm8001_ha->dev; 599 600 sha->lldd_module = THIS_MODULE; 601 sha->sas_addr = &pm8001_ha->sas_addr[0]; 602 sha->num_phys = chip_info->n_phy; 603 sha->core.shost = shost; 604 } 605 606 /** 607 * pm8001_init_sas_add - initialize sas address 608 * @chip_info: our ha struct. 609 * 610 * Currently we just set the fixed SAS address to our HBA,for manufacture, 611 * it should read from the EEPROM 612 */ 613 static void pm8001_init_sas_add(struct pm8001_hba_info *pm8001_ha) 614 { 615 u8 i, j; 616 #ifdef PM8001_READ_VPD 617 /* For new SPC controllers WWN is stored in flash vpd 618 * For SPC/SPCve controllers WWN is stored in EEPROM 619 * For Older SPC WWN is stored in NVMD 620 */ 621 DECLARE_COMPLETION_ONSTACK(completion); 622 struct pm8001_ioctl_payload payload; 623 u16 deviceid; 624 int rc; 625 626 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 627 pm8001_ha->nvmd_completion = &completion; 628 629 if (pm8001_ha->chip_id == chip_8001) { 630 if (deviceid == 0x8081 || deviceid == 0x0042) { 631 payload.minor_function = 4; 632 payload.length = 4096; 633 } else { 634 payload.minor_function = 0; 635 payload.length = 128; 636 } 637 } else { 638 payload.minor_function = 1; 639 payload.length = 4096; 640 } 641 payload.offset = 0; 642 payload.func_specific = kzalloc(payload.length, GFP_KERNEL); 643 if (!payload.func_specific) { 644 PM8001_INIT_DBG(pm8001_ha, pm8001_printk("mem alloc fail\n")); 645 return; 646 } 647 rc = PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload); 648 if (rc) { 649 kfree(payload.func_specific); 650 PM8001_INIT_DBG(pm8001_ha, pm8001_printk("nvmd failed\n")); 651 return; 652 } 653 wait_for_completion(&completion); 654 655 for (i = 0, j = 0; i <= 7; i++, j++) { 656 if (pm8001_ha->chip_id == chip_8001) { 657 if (deviceid == 0x8081) 658 pm8001_ha->sas_addr[j] = 659 payload.func_specific[0x704 + i]; 660 else if (deviceid == 0x0042) 661 pm8001_ha->sas_addr[j] = 662 payload.func_specific[0x010 + i]; 663 } else 664 pm8001_ha->sas_addr[j] = 665 payload.func_specific[0x804 + i]; 666 } 667 668 for (i = 0; i < pm8001_ha->chip->n_phy; i++) { 669 memcpy(&pm8001_ha->phy[i].dev_sas_addr, 670 pm8001_ha->sas_addr, SAS_ADDR_SIZE); 671 PM8001_INIT_DBG(pm8001_ha, 672 pm8001_printk("phy %d sas_addr = %016llx\n", i, 673 pm8001_ha->phy[i].dev_sas_addr)); 674 } 675 kfree(payload.func_specific); 676 #else 677 for (i = 0; i < pm8001_ha->chip->n_phy; i++) { 678 pm8001_ha->phy[i].dev_sas_addr = 0x50010c600047f9d0ULL; 679 pm8001_ha->phy[i].dev_sas_addr = 680 cpu_to_be64((u64) 681 (*(u64 *)&pm8001_ha->phy[i].dev_sas_addr)); 682 } 683 memcpy(pm8001_ha->sas_addr, &pm8001_ha->phy[0].dev_sas_addr, 684 SAS_ADDR_SIZE); 685 #endif 686 } 687 688 /* 689 * pm8001_get_phy_settings_info : Read phy setting values. 690 * @pm8001_ha : our hba. 691 */ 692 static int pm8001_get_phy_settings_info(struct pm8001_hba_info *pm8001_ha) 693 { 694 695 #ifdef PM8001_READ_VPD 696 /*OPTION ROM FLASH read for the SPC cards */ 697 DECLARE_COMPLETION_ONSTACK(completion); 698 struct pm8001_ioctl_payload payload; 699 int rc; 700 701 pm8001_ha->nvmd_completion = &completion; 702 /* SAS ADDRESS read from flash / EEPROM */ 703 payload.minor_function = 6; 704 payload.offset = 0; 705 payload.length = 4096; 706 payload.func_specific = kzalloc(4096, GFP_KERNEL); 707 if (!payload.func_specific) 708 return -ENOMEM; 709 /* Read phy setting values from flash */ 710 rc = PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, &payload); 711 if (rc) { 712 kfree(payload.func_specific); 713 PM8001_INIT_DBG(pm8001_ha, pm8001_printk("nvmd failed\n")); 714 return -ENOMEM; 715 } 716 wait_for_completion(&completion); 717 pm8001_set_phy_profile(pm8001_ha, sizeof(u8), payload.func_specific); 718 kfree(payload.func_specific); 719 #endif 720 return 0; 721 } 722 723 #ifdef PM8001_USE_MSIX 724 /** 725 * pm8001_setup_msix - enable MSI-X interrupt 726 * @chip_info: our ha struct. 727 * @irq_handler: irq_handler 728 */ 729 static u32 pm8001_setup_msix(struct pm8001_hba_info *pm8001_ha) 730 { 731 u32 i = 0, j = 0; 732 u32 number_of_intr; 733 int flag = 0; 734 u32 max_entry; 735 int rc; 736 static char intr_drvname[PM8001_MAX_MSIX_VEC][sizeof(DRV_NAME)+3]; 737 738 /* SPCv controllers supports 64 msi-x */ 739 if (pm8001_ha->chip_id == chip_8001) { 740 number_of_intr = 1; 741 } else { 742 number_of_intr = PM8001_MAX_MSIX_VEC; 743 flag &= ~IRQF_SHARED; 744 } 745 746 max_entry = sizeof(pm8001_ha->msix_entries) / 747 sizeof(pm8001_ha->msix_entries[0]); 748 for (i = 0; i < max_entry ; i++) 749 pm8001_ha->msix_entries[i].entry = i; 750 rc = pci_enable_msix_exact(pm8001_ha->pdev, pm8001_ha->msix_entries, 751 number_of_intr); 752 pm8001_ha->number_of_intr = number_of_intr; 753 if (rc) 754 return rc; 755 756 PM8001_INIT_DBG(pm8001_ha, pm8001_printk( 757 "pci_enable_msix_exact request ret:%d no of intr %d\n", 758 rc, pm8001_ha->number_of_intr)); 759 760 for (i = 0; i < number_of_intr; i++) { 761 snprintf(intr_drvname[i], sizeof(intr_drvname[0]), 762 DRV_NAME"%d", i); 763 pm8001_ha->irq_vector[i].irq_id = i; 764 pm8001_ha->irq_vector[i].drv_inst = pm8001_ha; 765 766 rc = request_irq(pm8001_ha->msix_entries[i].vector, 767 pm8001_interrupt_handler_msix, flag, 768 intr_drvname[i], &(pm8001_ha->irq_vector[i])); 769 if (rc) { 770 for (j = 0; j < i; j++) { 771 free_irq(pm8001_ha->msix_entries[j].vector, 772 &(pm8001_ha->irq_vector[i])); 773 } 774 pci_disable_msix(pm8001_ha->pdev); 775 break; 776 } 777 } 778 779 return rc; 780 } 781 #endif 782 783 /** 784 * pm8001_request_irq - register interrupt 785 * @chip_info: our ha struct. 786 */ 787 static u32 pm8001_request_irq(struct pm8001_hba_info *pm8001_ha) 788 { 789 struct pci_dev *pdev; 790 int rc; 791 792 pdev = pm8001_ha->pdev; 793 794 #ifdef PM8001_USE_MSIX 795 if (pdev->msix_cap) 796 return pm8001_setup_msix(pm8001_ha); 797 else { 798 PM8001_INIT_DBG(pm8001_ha, 799 pm8001_printk("MSIX not supported!!!\n")); 800 goto intx; 801 } 802 #endif 803 804 intx: 805 /* initialize the INT-X interrupt */ 806 rc = request_irq(pdev->irq, pm8001_interrupt_handler_intx, IRQF_SHARED, 807 DRV_NAME, SHOST_TO_SAS_HA(pm8001_ha->shost)); 808 return rc; 809 } 810 811 /** 812 * pm8001_pci_probe - probe supported device 813 * @pdev: pci device which kernel has been prepared for. 814 * @ent: pci device id 815 * 816 * This function is the main initialization function, when register a new 817 * pci driver it is invoked, all struct an hardware initilization should be done 818 * here, also, register interrupt 819 */ 820 static int pm8001_pci_probe(struct pci_dev *pdev, 821 const struct pci_device_id *ent) 822 { 823 unsigned int rc; 824 u32 pci_reg; 825 u8 i = 0; 826 struct pm8001_hba_info *pm8001_ha; 827 struct Scsi_Host *shost = NULL; 828 const struct pm8001_chip_info *chip; 829 830 dev_printk(KERN_INFO, &pdev->dev, 831 "pm80xx: driver version %s\n", DRV_VERSION); 832 rc = pci_enable_device(pdev); 833 if (rc) 834 goto err_out_enable; 835 pci_set_master(pdev); 836 /* 837 * Enable pci slot busmaster by setting pci command register. 838 * This is required by FW for Cyclone card. 839 */ 840 841 pci_read_config_dword(pdev, PCI_COMMAND, &pci_reg); 842 pci_reg |= 0x157; 843 pci_write_config_dword(pdev, PCI_COMMAND, pci_reg); 844 rc = pci_request_regions(pdev, DRV_NAME); 845 if (rc) 846 goto err_out_disable; 847 rc = pci_go_44(pdev); 848 if (rc) 849 goto err_out_regions; 850 851 shost = scsi_host_alloc(&pm8001_sht, sizeof(void *)); 852 if (!shost) { 853 rc = -ENOMEM; 854 goto err_out_regions; 855 } 856 chip = &pm8001_chips[ent->driver_data]; 857 SHOST_TO_SAS_HA(shost) = 858 kzalloc(sizeof(struct sas_ha_struct), GFP_KERNEL); 859 if (!SHOST_TO_SAS_HA(shost)) { 860 rc = -ENOMEM; 861 goto err_out_free_host; 862 } 863 864 rc = pm8001_prep_sas_ha_init(shost, chip); 865 if (rc) { 866 rc = -ENOMEM; 867 goto err_out_free; 868 } 869 pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost)); 870 /* ent->driver variable is used to differentiate between controllers */ 871 pm8001_ha = pm8001_pci_alloc(pdev, ent, shost); 872 if (!pm8001_ha) { 873 rc = -ENOMEM; 874 goto err_out_free; 875 } 876 list_add_tail(&pm8001_ha->list, &hba_list); 877 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); 878 rc = PM8001_CHIP_DISP->chip_init(pm8001_ha); 879 if (rc) { 880 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk( 881 "chip_init failed [ret: %d]\n", rc)); 882 goto err_out_ha_free; 883 } 884 885 rc = scsi_add_host(shost, &pdev->dev); 886 if (rc) 887 goto err_out_ha_free; 888 rc = pm8001_request_irq(pm8001_ha); 889 if (rc) { 890 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk( 891 "pm8001_request_irq failed [ret: %d]\n", rc)); 892 goto err_out_shost; 893 } 894 895 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0); 896 if (pm8001_ha->chip_id != chip_8001) { 897 for (i = 1; i < pm8001_ha->number_of_intr; i++) 898 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i); 899 /* setup thermal configuration. */ 900 pm80xx_set_thermal_config(pm8001_ha); 901 } 902 903 pm8001_init_sas_add(pm8001_ha); 904 /* phy setting support for motherboard controller */ 905 if (pdev->subsystem_vendor != PCI_VENDOR_ID_ADAPTEC2 && 906 pdev->subsystem_vendor != 0) { 907 rc = pm8001_get_phy_settings_info(pm8001_ha); 908 if (rc) 909 goto err_out_shost; 910 } 911 pm8001_post_sas_ha_init(shost, chip); 912 rc = sas_register_ha(SHOST_TO_SAS_HA(shost)); 913 if (rc) 914 goto err_out_shost; 915 scsi_scan_host(pm8001_ha->shost); 916 return 0; 917 918 err_out_shost: 919 scsi_remove_host(pm8001_ha->shost); 920 err_out_ha_free: 921 pm8001_free(pm8001_ha); 922 err_out_free: 923 kfree(SHOST_TO_SAS_HA(shost)); 924 err_out_free_host: 925 kfree(shost); 926 err_out_regions: 927 pci_release_regions(pdev); 928 err_out_disable: 929 pci_disable_device(pdev); 930 err_out_enable: 931 return rc; 932 } 933 934 static void pm8001_pci_remove(struct pci_dev *pdev) 935 { 936 struct sas_ha_struct *sha = pci_get_drvdata(pdev); 937 struct pm8001_hba_info *pm8001_ha; 938 int i, j; 939 pm8001_ha = sha->lldd_ha; 940 sas_unregister_ha(sha); 941 sas_remove_host(pm8001_ha->shost); 942 list_del(&pm8001_ha->list); 943 scsi_remove_host(pm8001_ha->shost); 944 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); 945 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); 946 947 #ifdef PM8001_USE_MSIX 948 for (i = 0; i < pm8001_ha->number_of_intr; i++) 949 synchronize_irq(pm8001_ha->msix_entries[i].vector); 950 for (i = 0; i < pm8001_ha->number_of_intr; i++) 951 free_irq(pm8001_ha->msix_entries[i].vector, 952 &(pm8001_ha->irq_vector[i])); 953 pci_disable_msix(pdev); 954 #else 955 free_irq(pm8001_ha->irq, sha); 956 #endif 957 #ifdef PM8001_USE_TASKLET 958 /* For non-msix and msix interrupts */ 959 if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001)) 960 tasklet_kill(&pm8001_ha->tasklet[0]); 961 else 962 for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) 963 tasklet_kill(&pm8001_ha->tasklet[j]); 964 #endif 965 pm8001_free(pm8001_ha); 966 kfree(sha->sas_phy); 967 kfree(sha->sas_port); 968 kfree(sha); 969 pci_release_regions(pdev); 970 pci_disable_device(pdev); 971 } 972 973 /** 974 * pm8001_pci_suspend - power management suspend main entry point 975 * @pdev: PCI device struct 976 * @state: PM state change to (usually PCI_D3) 977 * 978 * Returns 0 success, anything else error. 979 */ 980 static int pm8001_pci_suspend(struct pci_dev *pdev, pm_message_t state) 981 { 982 struct sas_ha_struct *sha = pci_get_drvdata(pdev); 983 struct pm8001_hba_info *pm8001_ha; 984 int i, j; 985 u32 device_state; 986 pm8001_ha = sha->lldd_ha; 987 sas_suspend_ha(sha); 988 flush_workqueue(pm8001_wq); 989 scsi_block_requests(pm8001_ha->shost); 990 if (!pdev->pm_cap) { 991 dev_err(&pdev->dev, " PCI PM not supported\n"); 992 return -ENODEV; 993 } 994 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); 995 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); 996 #ifdef PM8001_USE_MSIX 997 for (i = 0; i < pm8001_ha->number_of_intr; i++) 998 synchronize_irq(pm8001_ha->msix_entries[i].vector); 999 for (i = 0; i < pm8001_ha->number_of_intr; i++) 1000 free_irq(pm8001_ha->msix_entries[i].vector, 1001 &(pm8001_ha->irq_vector[i])); 1002 pci_disable_msix(pdev); 1003 #else 1004 free_irq(pm8001_ha->irq, sha); 1005 #endif 1006 #ifdef PM8001_USE_TASKLET 1007 /* For non-msix and msix interrupts */ 1008 if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001)) 1009 tasklet_kill(&pm8001_ha->tasklet[0]); 1010 else 1011 for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) 1012 tasklet_kill(&pm8001_ha->tasklet[j]); 1013 #endif 1014 device_state = pci_choose_state(pdev, state); 1015 pm8001_printk("pdev=0x%p, slot=%s, entering " 1016 "operating state [D%d]\n", pdev, 1017 pm8001_ha->name, device_state); 1018 pci_save_state(pdev); 1019 pci_disable_device(pdev); 1020 pci_set_power_state(pdev, device_state); 1021 return 0; 1022 } 1023 1024 /** 1025 * pm8001_pci_resume - power management resume main entry point 1026 * @pdev: PCI device struct 1027 * 1028 * Returns 0 success, anything else error. 1029 */ 1030 static int pm8001_pci_resume(struct pci_dev *pdev) 1031 { 1032 struct sas_ha_struct *sha = pci_get_drvdata(pdev); 1033 struct pm8001_hba_info *pm8001_ha; 1034 int rc; 1035 u8 i = 0, j; 1036 u32 device_state; 1037 DECLARE_COMPLETION_ONSTACK(completion); 1038 pm8001_ha = sha->lldd_ha; 1039 device_state = pdev->current_state; 1040 1041 pm8001_printk("pdev=0x%p, slot=%s, resuming from previous " 1042 "operating state [D%d]\n", pdev, pm8001_ha->name, device_state); 1043 1044 pci_set_power_state(pdev, PCI_D0); 1045 pci_enable_wake(pdev, PCI_D0, 0); 1046 pci_restore_state(pdev); 1047 rc = pci_enable_device(pdev); 1048 if (rc) { 1049 pm8001_printk("slot=%s Enable device failed during resume\n", 1050 pm8001_ha->name); 1051 goto err_out_enable; 1052 } 1053 1054 pci_set_master(pdev); 1055 rc = pci_go_44(pdev); 1056 if (rc) 1057 goto err_out_disable; 1058 sas_prep_resume_ha(sha); 1059 /* chip soft rst only for spc */ 1060 if (pm8001_ha->chip_id == chip_8001) { 1061 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha); 1062 PM8001_INIT_DBG(pm8001_ha, 1063 pm8001_printk("chip soft reset successful\n")); 1064 } 1065 rc = PM8001_CHIP_DISP->chip_init(pm8001_ha); 1066 if (rc) 1067 goto err_out_disable; 1068 1069 /* disable all the interrupt bits */ 1070 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha, 0xFF); 1071 1072 rc = pm8001_request_irq(pm8001_ha); 1073 if (rc) 1074 goto err_out_disable; 1075 #ifdef PM8001_USE_TASKLET 1076 /* Tasklet for non msi-x interrupt handler */ 1077 if ((!pdev->msix_cap) || (pm8001_ha->chip_id == chip_8001)) 1078 tasklet_init(&pm8001_ha->tasklet[0], pm8001_tasklet, 1079 (unsigned long)&(pm8001_ha->irq_vector[0])); 1080 else 1081 for (j = 0; j < PM8001_MAX_MSIX_VEC; j++) 1082 tasklet_init(&pm8001_ha->tasklet[j], pm8001_tasklet, 1083 (unsigned long)&(pm8001_ha->irq_vector[j])); 1084 #endif 1085 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, 0); 1086 if (pm8001_ha->chip_id != chip_8001) { 1087 for (i = 1; i < pm8001_ha->number_of_intr; i++) 1088 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha, i); 1089 } 1090 pm8001_ha->flags = PM8001F_RUN_TIME; 1091 for (i = 0; i < pm8001_ha->chip->n_phy; i++) { 1092 pm8001_ha->phy[i].enable_completion = &completion; 1093 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); 1094 wait_for_completion(&completion); 1095 } 1096 sas_resume_ha(sha); 1097 return 0; 1098 1099 err_out_disable: 1100 scsi_remove_host(pm8001_ha->shost); 1101 pci_disable_device(pdev); 1102 err_out_enable: 1103 return rc; 1104 } 1105 1106 /* update of pci device, vendor id and driver data with 1107 * unique value for each of the controller 1108 */ 1109 static struct pci_device_id pm8001_pci_table[] = { 1110 { PCI_VDEVICE(PMC_Sierra, 0x8001), chip_8001 }, 1111 { PCI_VDEVICE(PMC_Sierra, 0x8006), chip_8006 }, 1112 { PCI_VDEVICE(ADAPTEC2, 0x8006), chip_8006 }, 1113 { PCI_VDEVICE(ATTO, 0x0042), chip_8001 }, 1114 /* Support for SPC/SPCv/SPCve controllers */ 1115 { PCI_VDEVICE(ADAPTEC2, 0x8001), chip_8001 }, 1116 { PCI_VDEVICE(PMC_Sierra, 0x8008), chip_8008 }, 1117 { PCI_VDEVICE(ADAPTEC2, 0x8008), chip_8008 }, 1118 { PCI_VDEVICE(PMC_Sierra, 0x8018), chip_8018 }, 1119 { PCI_VDEVICE(ADAPTEC2, 0x8018), chip_8018 }, 1120 { PCI_VDEVICE(PMC_Sierra, 0x8009), chip_8009 }, 1121 { PCI_VDEVICE(ADAPTEC2, 0x8009), chip_8009 }, 1122 { PCI_VDEVICE(PMC_Sierra, 0x8019), chip_8019 }, 1123 { PCI_VDEVICE(ADAPTEC2, 0x8019), chip_8019 }, 1124 { PCI_VDEVICE(PMC_Sierra, 0x8074), chip_8074 }, 1125 { PCI_VDEVICE(ADAPTEC2, 0x8074), chip_8074 }, 1126 { PCI_VDEVICE(PMC_Sierra, 0x8076), chip_8076 }, 1127 { PCI_VDEVICE(ADAPTEC2, 0x8076), chip_8076 }, 1128 { PCI_VDEVICE(PMC_Sierra, 0x8077), chip_8077 }, 1129 { PCI_VDEVICE(ADAPTEC2, 0x8077), chip_8077 }, 1130 { PCI_VENDOR_ID_ADAPTEC2, 0x8081, 1131 PCI_VENDOR_ID_ADAPTEC2, 0x0400, 0, 0, chip_8001 }, 1132 { PCI_VENDOR_ID_ADAPTEC2, 0x8081, 1133 PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8001 }, 1134 { PCI_VENDOR_ID_ADAPTEC2, 0x8088, 1135 PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8008 }, 1136 { PCI_VENDOR_ID_ADAPTEC2, 0x8088, 1137 PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8008 }, 1138 { PCI_VENDOR_ID_ADAPTEC2, 0x8089, 1139 PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8009 }, 1140 { PCI_VENDOR_ID_ADAPTEC2, 0x8089, 1141 PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8009 }, 1142 { PCI_VENDOR_ID_ADAPTEC2, 0x8088, 1143 PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8018 }, 1144 { PCI_VENDOR_ID_ADAPTEC2, 0x8088, 1145 PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8018 }, 1146 { PCI_VENDOR_ID_ADAPTEC2, 0x8089, 1147 PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8019 }, 1148 { PCI_VENDOR_ID_ADAPTEC2, 0x8089, 1149 PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8019 }, 1150 { PCI_VENDOR_ID_ADAPTEC2, 0x8074, 1151 PCI_VENDOR_ID_ADAPTEC2, 0x0800, 0, 0, chip_8074 }, 1152 { PCI_VENDOR_ID_ADAPTEC2, 0x8076, 1153 PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8076 }, 1154 { PCI_VENDOR_ID_ADAPTEC2, 0x8077, 1155 PCI_VENDOR_ID_ADAPTEC2, 0x1600, 0, 0, chip_8077 }, 1156 { PCI_VENDOR_ID_ADAPTEC2, 0x8074, 1157 PCI_VENDOR_ID_ADAPTEC2, 0x0008, 0, 0, chip_8074 }, 1158 { PCI_VENDOR_ID_ADAPTEC2, 0x8076, 1159 PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8076 }, 1160 { PCI_VENDOR_ID_ADAPTEC2, 0x8077, 1161 PCI_VENDOR_ID_ADAPTEC2, 0x0016, 0, 0, chip_8077 }, 1162 { PCI_VENDOR_ID_ADAPTEC2, 0x8076, 1163 PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8076 }, 1164 { PCI_VENDOR_ID_ADAPTEC2, 0x8077, 1165 PCI_VENDOR_ID_ADAPTEC2, 0x0808, 0, 0, chip_8077 }, 1166 { PCI_VENDOR_ID_ADAPTEC2, 0x8074, 1167 PCI_VENDOR_ID_ADAPTEC2, 0x0404, 0, 0, chip_8074 }, 1168 {} /* terminate list */ 1169 }; 1170 1171 static struct pci_driver pm8001_pci_driver = { 1172 .name = DRV_NAME, 1173 .id_table = pm8001_pci_table, 1174 .probe = pm8001_pci_probe, 1175 .remove = pm8001_pci_remove, 1176 .suspend = pm8001_pci_suspend, 1177 .resume = pm8001_pci_resume, 1178 }; 1179 1180 /** 1181 * pm8001_init - initialize scsi transport template 1182 */ 1183 static int __init pm8001_init(void) 1184 { 1185 int rc = -ENOMEM; 1186 1187 pm8001_wq = alloc_workqueue("pm80xx", 0, 0); 1188 if (!pm8001_wq) 1189 goto err; 1190 1191 pm8001_id = 0; 1192 pm8001_stt = sas_domain_attach_transport(&pm8001_transport_ops); 1193 if (!pm8001_stt) 1194 goto err_wq; 1195 rc = pci_register_driver(&pm8001_pci_driver); 1196 if (rc) 1197 goto err_tp; 1198 return 0; 1199 1200 err_tp: 1201 sas_release_transport(pm8001_stt); 1202 err_wq: 1203 destroy_workqueue(pm8001_wq); 1204 err: 1205 return rc; 1206 } 1207 1208 static void __exit pm8001_exit(void) 1209 { 1210 pci_unregister_driver(&pm8001_pci_driver); 1211 sas_release_transport(pm8001_stt); 1212 destroy_workqueue(pm8001_wq); 1213 } 1214 1215 module_init(pm8001_init); 1216 module_exit(pm8001_exit); 1217 1218 MODULE_AUTHOR("Jack Wang <jack_wang@usish.com>"); 1219 MODULE_AUTHOR("Anand Kumar Santhanam <AnandKumar.Santhanam@pmcs.com>"); 1220 MODULE_AUTHOR("Sangeetha Gnanasekaran <Sangeetha.Gnanasekaran@pmcs.com>"); 1221 MODULE_AUTHOR("Nikith Ganigarakoppal <Nikith.Ganigarakoppal@pmcs.com>"); 1222 MODULE_DESCRIPTION( 1223 "PMC-Sierra PM8001/8006/8081/8088/8089/8074/8076/8077 " 1224 "SAS/SATA controller driver"); 1225 MODULE_VERSION(DRV_VERSION); 1226 MODULE_LICENSE("GPL"); 1227 MODULE_DEVICE_TABLE(pci, pm8001_pci_table); 1228 1229