1 /* 2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver 3 * 4 * Copyright (c) 2008-2009 USI Co., Ltd. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * Alternatively, this software may be distributed under the terms of the 23 * GNU General Public License ("GPL") version 2 as published by the Free 24 * Software Foundation. 25 * 26 * NO WARRANTY 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGES. 38 * 39 */ 40 #include <linux/slab.h> 41 #include "pm8001_sas.h" 42 #include "pm8001_hwi.h" 43 #include "pm8001_chips.h" 44 #include "pm8001_ctl.h" 45 #include "pm80xx_tracepoints.h" 46 47 /** 48 * read_main_config_table - read the configure table and save it. 49 * @pm8001_ha: our hba card information 50 */ 51 static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) 52 { 53 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 54 pm8001_ha->main_cfg_tbl.pm8001_tbl.signature = 55 pm8001_mr32(address, 0x00); 56 pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev = 57 pm8001_mr32(address, 0x04); 58 pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev = 59 pm8001_mr32(address, 0x08); 60 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io = 61 pm8001_mr32(address, 0x0C); 62 pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl = 63 pm8001_mr32(address, 0x10); 64 pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag = 65 pm8001_mr32(address, 0x14); 66 pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset = 67 pm8001_mr32(address, 0x18); 68 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset = 69 pm8001_mr32(address, MAIN_IBQ_OFFSET); 70 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset = 71 pm8001_mr32(address, MAIN_OBQ_OFFSET); 72 pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag = 73 pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); 74 75 /* read analog Setting offset from the configuration table */ 76 pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset = 77 pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); 78 79 /* read Error Dump Offset and Length */ 80 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 = 81 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); 82 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 = 83 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); 84 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 = 85 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); 86 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 = 87 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); 88 } 89 90 /** 91 * read_general_status_table - read the general status table and save it. 92 * @pm8001_ha: our hba card information 93 */ 94 static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) 95 { 96 void __iomem *address = pm8001_ha->general_stat_tbl_addr; 97 pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate = 98 pm8001_mr32(address, 0x00); 99 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 = 100 pm8001_mr32(address, 0x04); 101 pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 = 102 pm8001_mr32(address, 0x08); 103 pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt = 104 pm8001_mr32(address, 0x0C); 105 pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt = 106 pm8001_mr32(address, 0x10); 107 pm8001_ha->gs_tbl.pm8001_tbl.rsvd = 108 pm8001_mr32(address, 0x14); 109 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] = 110 pm8001_mr32(address, 0x18); 111 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] = 112 pm8001_mr32(address, 0x1C); 113 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] = 114 pm8001_mr32(address, 0x20); 115 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] = 116 pm8001_mr32(address, 0x24); 117 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] = 118 pm8001_mr32(address, 0x28); 119 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] = 120 pm8001_mr32(address, 0x2C); 121 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] = 122 pm8001_mr32(address, 0x30); 123 pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] = 124 pm8001_mr32(address, 0x34); 125 pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val = 126 pm8001_mr32(address, 0x38); 127 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] = 128 pm8001_mr32(address, 0x3C); 129 pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] = 130 pm8001_mr32(address, 0x40); 131 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] = 132 pm8001_mr32(address, 0x44); 133 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] = 134 pm8001_mr32(address, 0x48); 135 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] = 136 pm8001_mr32(address, 0x4C); 137 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] = 138 pm8001_mr32(address, 0x50); 139 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] = 140 pm8001_mr32(address, 0x54); 141 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] = 142 pm8001_mr32(address, 0x58); 143 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] = 144 pm8001_mr32(address, 0x5C); 145 pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] = 146 pm8001_mr32(address, 0x60); 147 } 148 149 /** 150 * read_inbnd_queue_table - read the inbound queue table and save it. 151 * @pm8001_ha: our hba card information 152 */ 153 static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 154 { 155 int i; 156 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 157 for (i = 0; i < PM8001_MAX_INB_NUM; i++) { 158 u32 offset = i * 0x20; 159 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 160 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 161 pm8001_ha->inbnd_q_tbl[i].pi_offset = 162 pm8001_mr32(address, (offset + 0x18)); 163 } 164 } 165 166 /** 167 * read_outbnd_queue_table - read the outbound queue table and save it. 168 * @pm8001_ha: our hba card information 169 */ 170 static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) 171 { 172 int i; 173 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 174 for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { 175 u32 offset = i * 0x24; 176 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 177 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); 178 pm8001_ha->outbnd_q_tbl[i].ci_offset = 179 pm8001_mr32(address, (offset + 0x18)); 180 } 181 } 182 183 /** 184 * init_default_table_values - init the default table. 185 * @pm8001_ha: our hba card information 186 */ 187 static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) 188 { 189 int i; 190 u32 offsetib, offsetob; 191 void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; 192 void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; 193 u32 ib_offset = pm8001_ha->ib_offset; 194 u32 ob_offset = pm8001_ha->ob_offset; 195 u32 ci_offset = pm8001_ha->ci_offset; 196 u32 pi_offset = pm8001_ha->pi_offset; 197 198 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0; 199 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0; 200 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0; 201 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0; 202 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0; 203 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 = 204 0; 205 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 = 206 0; 207 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0; 208 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0; 209 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0; 210 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0; 211 212 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr = 213 pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; 214 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr = 215 pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; 216 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size = 217 PM8001_EVENT_LOG_SIZE; 218 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01; 219 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr = 220 pm8001_ha->memoryMap.region[IOP].phys_addr_hi; 221 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr = 222 pm8001_ha->memoryMap.region[IOP].phys_addr_lo; 223 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size = 224 PM8001_EVENT_LOG_SIZE; 225 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01; 226 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01; 227 for (i = 0; i < pm8001_ha->max_q_num; i++) { 228 pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = 229 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); 230 pm8001_ha->inbnd_q_tbl[i].upper_base_addr = 231 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi; 232 pm8001_ha->inbnd_q_tbl[i].lower_base_addr = 233 pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo; 234 pm8001_ha->inbnd_q_tbl[i].base_virt = 235 (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr; 236 pm8001_ha->inbnd_q_tbl[i].total_length = 237 pm8001_ha->memoryMap.region[ib_offset + i].total_len; 238 pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = 239 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi; 240 pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = 241 pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo; 242 pm8001_ha->inbnd_q_tbl[i].ci_virt = 243 pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr; 244 pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0); 245 offsetib = i * 0x20; 246 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = 247 get_pci_bar_index(pm8001_mr32(addressib, 248 (offsetib + 0x14))); 249 pm8001_ha->inbnd_q_tbl[i].pi_offset = 250 pm8001_mr32(addressib, (offsetib + 0x18)); 251 pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; 252 pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; 253 } 254 for (i = 0; i < pm8001_ha->max_q_num; i++) { 255 pm8001_ha->outbnd_q_tbl[i].element_size_cnt = 256 PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); 257 pm8001_ha->outbnd_q_tbl[i].upper_base_addr = 258 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi; 259 pm8001_ha->outbnd_q_tbl[i].lower_base_addr = 260 pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo; 261 pm8001_ha->outbnd_q_tbl[i].base_virt = 262 (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr; 263 pm8001_ha->outbnd_q_tbl[i].total_length = 264 pm8001_ha->memoryMap.region[ob_offset + i].total_len; 265 pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = 266 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi; 267 pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = 268 pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo; 269 pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = 270 0 | (10 << 16) | (i << 24); 271 pm8001_ha->outbnd_q_tbl[i].pi_virt = 272 pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr; 273 pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0); 274 offsetob = i * 0x24; 275 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = 276 get_pci_bar_index(pm8001_mr32(addressob, 277 offsetob + 0x14)); 278 pm8001_ha->outbnd_q_tbl[i].ci_offset = 279 pm8001_mr32(addressob, (offsetob + 0x18)); 280 pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; 281 pm8001_ha->outbnd_q_tbl[i].producer_index = 0; 282 } 283 } 284 285 /** 286 * update_main_config_table - update the main default table to the HBA. 287 * @pm8001_ha: our hba card information 288 */ 289 static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) 290 { 291 void __iomem *address = pm8001_ha->main_cfg_tbl_addr; 292 pm8001_mw32(address, 0x24, 293 pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd); 294 pm8001_mw32(address, 0x28, 295 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3); 296 pm8001_mw32(address, 0x2C, 297 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7); 298 pm8001_mw32(address, 0x30, 299 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3); 300 pm8001_mw32(address, 0x34, 301 pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7); 302 pm8001_mw32(address, 0x38, 303 pm8001_ha->main_cfg_tbl.pm8001_tbl. 304 outbound_tgt_ITNexus_event_pid0_3); 305 pm8001_mw32(address, 0x3C, 306 pm8001_ha->main_cfg_tbl.pm8001_tbl. 307 outbound_tgt_ITNexus_event_pid4_7); 308 pm8001_mw32(address, 0x40, 309 pm8001_ha->main_cfg_tbl.pm8001_tbl. 310 outbound_tgt_ssp_event_pid0_3); 311 pm8001_mw32(address, 0x44, 312 pm8001_ha->main_cfg_tbl.pm8001_tbl. 313 outbound_tgt_ssp_event_pid4_7); 314 pm8001_mw32(address, 0x48, 315 pm8001_ha->main_cfg_tbl.pm8001_tbl. 316 outbound_tgt_smp_event_pid0_3); 317 pm8001_mw32(address, 0x4C, 318 pm8001_ha->main_cfg_tbl.pm8001_tbl. 319 outbound_tgt_smp_event_pid4_7); 320 pm8001_mw32(address, 0x50, 321 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr); 322 pm8001_mw32(address, 0x54, 323 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr); 324 pm8001_mw32(address, 0x58, 325 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size); 326 pm8001_mw32(address, 0x5C, 327 pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option); 328 pm8001_mw32(address, 0x60, 329 pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr); 330 pm8001_mw32(address, 0x64, 331 pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr); 332 pm8001_mw32(address, 0x68, 333 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size); 334 pm8001_mw32(address, 0x6C, 335 pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option); 336 pm8001_mw32(address, 0x70, 337 pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt); 338 } 339 340 /** 341 * update_inbnd_queue_table - update the inbound queue table to the HBA. 342 * @pm8001_ha: our hba card information 343 * @number: entry in the queue 344 */ 345 static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 346 int number) 347 { 348 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; 349 u16 offset = number * 0x20; 350 pm8001_mw32(address, offset + 0x00, 351 pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); 352 pm8001_mw32(address, offset + 0x04, 353 pm8001_ha->inbnd_q_tbl[number].upper_base_addr); 354 pm8001_mw32(address, offset + 0x08, 355 pm8001_ha->inbnd_q_tbl[number].lower_base_addr); 356 pm8001_mw32(address, offset + 0x0C, 357 pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); 358 pm8001_mw32(address, offset + 0x10, 359 pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); 360 } 361 362 /** 363 * update_outbnd_queue_table - update the outbound queue table to the HBA. 364 * @pm8001_ha: our hba card information 365 * @number: entry in the queue 366 */ 367 static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, 368 int number) 369 { 370 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; 371 u16 offset = number * 0x24; 372 pm8001_mw32(address, offset + 0x00, 373 pm8001_ha->outbnd_q_tbl[number].element_size_cnt); 374 pm8001_mw32(address, offset + 0x04, 375 pm8001_ha->outbnd_q_tbl[number].upper_base_addr); 376 pm8001_mw32(address, offset + 0x08, 377 pm8001_ha->outbnd_q_tbl[number].lower_base_addr); 378 pm8001_mw32(address, offset + 0x0C, 379 pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); 380 pm8001_mw32(address, offset + 0x10, 381 pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); 382 pm8001_mw32(address, offset + 0x1C, 383 pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); 384 } 385 386 /** 387 * pm8001_bar4_shift - function is called to shift BAR base address 388 * @pm8001_ha : our hba card information 389 * @shiftValue : shifting value in memory bar. 390 */ 391 int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) 392 { 393 u32 regVal; 394 unsigned long start; 395 396 /* program the inbound AXI translation Lower Address */ 397 pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); 398 399 /* confirm the setting is written */ 400 start = jiffies + HZ; /* 1 sec */ 401 do { 402 regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); 403 } while ((regVal != shiftValue) && time_before(jiffies, start)); 404 405 if (regVal != shiftValue) { 406 pm8001_dbg(pm8001_ha, INIT, 407 "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n", 408 regVal); 409 return -1; 410 } 411 return 0; 412 } 413 414 /** 415 * mpi_set_phys_g3_with_ssc 416 * @pm8001_ha: our hba card information 417 * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. 418 */ 419 static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, 420 u32 SSCbit) 421 { 422 u32 offset, i; 423 unsigned long flags; 424 425 #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 426 #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 427 #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 428 #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 429 #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 430 #define PHY_G3_WITH_SSC_BIT_SHIFT 13 431 #define SNW3_PHY_CAPABILITIES_PARITY 31 432 433 /* 434 * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) 435 * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) 436 */ 437 spin_lock_irqsave(&pm8001_ha->lock, flags); 438 if (-1 == pm8001_bar4_shift(pm8001_ha, 439 SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) { 440 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 441 return; 442 } 443 444 for (i = 0; i < 4; i++) { 445 offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; 446 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 447 } 448 /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ 449 if (-1 == pm8001_bar4_shift(pm8001_ha, 450 SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) { 451 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 452 return; 453 } 454 for (i = 4; i < 8; i++) { 455 offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 456 pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); 457 } 458 /************************************************************* 459 Change the SSC upspreading value to 0x0 so that upspreading is disabled. 460 Device MABC SMOD0 Controls 461 Address: (via MEMBASE-III): 462 Using shifted destination address 0x0_0000: with Offset 0xD8 463 464 31:28 R/W Reserved Do not change 465 27:24 R/W SAS_SMOD_SPRDUP 0000 466 23:20 R/W SAS_SMOD_SPRDDN 0000 467 19:0 R/W Reserved Do not change 468 Upon power-up this register will read as 0x8990c016, 469 and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 470 so that the written value will be 0x8090c016. 471 This will ensure only down-spreading SSC is enabled on the SPC. 472 *************************************************************/ 473 pm8001_cr32(pm8001_ha, 2, 0xd8); 474 pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); 475 476 /*set the shifted destination address to 0x0 to avoid error operation */ 477 pm8001_bar4_shift(pm8001_ha, 0x0); 478 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 479 return; 480 } 481 482 /** 483 * mpi_set_open_retry_interval_reg 484 * @pm8001_ha: our hba card information 485 * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us. 486 */ 487 static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, 488 u32 interval) 489 { 490 u32 offset; 491 u32 value; 492 u32 i; 493 unsigned long flags; 494 495 #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 496 #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 497 #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 498 #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 499 #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF 500 501 value = interval & OPEN_RETRY_INTERVAL_REG_MASK; 502 spin_lock_irqsave(&pm8001_ha->lock, flags); 503 /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ 504 if (-1 == pm8001_bar4_shift(pm8001_ha, 505 OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) { 506 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 507 return; 508 } 509 for (i = 0; i < 4; i++) { 510 offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; 511 pm8001_cw32(pm8001_ha, 2, offset, value); 512 } 513 514 if (-1 == pm8001_bar4_shift(pm8001_ha, 515 OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) { 516 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 517 return; 518 } 519 for (i = 4; i < 8; i++) { 520 offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); 521 pm8001_cw32(pm8001_ha, 2, offset, value); 522 } 523 /*set the shifted destination address to 0x0 to avoid error operation */ 524 pm8001_bar4_shift(pm8001_ha, 0x0); 525 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 526 return; 527 } 528 529 /** 530 * mpi_init_check - check firmware initialization status. 531 * @pm8001_ha: our hba card information 532 */ 533 static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) 534 { 535 u32 max_wait_count; 536 u32 value; 537 u32 gst_len_mpistate; 538 /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the 539 table is updated */ 540 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); 541 /* wait until Inbound DoorBell Clear Register toggled */ 542 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 543 do { 544 udelay(1); 545 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 546 value &= SPC_MSGU_CFG_TABLE_UPDATE; 547 } while ((value != 0) && (--max_wait_count)); 548 549 if (!max_wait_count) 550 return -1; 551 /* check the MPI-State for initialization */ 552 gst_len_mpistate = 553 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 554 GST_GSTLEN_MPIS_OFFSET); 555 if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) 556 return -1; 557 /* check MPI Initialization error */ 558 gst_len_mpistate = gst_len_mpistate >> 16; 559 if (0x0000 != gst_len_mpistate) 560 return -1; 561 return 0; 562 } 563 564 /** 565 * check_fw_ready - The LLDD check if the FW is ready, if not, return error. 566 * @pm8001_ha: our hba card information 567 */ 568 static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) 569 { 570 u32 value, value1; 571 u32 max_wait_count; 572 /* check error state */ 573 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 574 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 575 /* check AAP error */ 576 if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { 577 /* error state */ 578 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 579 return -1; 580 } 581 582 /* check IOP error */ 583 if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { 584 /* error state */ 585 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); 586 return -1; 587 } 588 589 /* bit 4-31 of scratch pad1 should be zeros if it is not 590 in error state*/ 591 if (value & SCRATCH_PAD1_STATE_MASK) { 592 /* error case */ 593 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); 594 return -1; 595 } 596 597 /* bit 2, 4-31 of scratch pad2 should be zeros if it is not 598 in error state */ 599 if (value1 & SCRATCH_PAD2_STATE_MASK) { 600 /* error case */ 601 return -1; 602 } 603 604 max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ 605 606 /* wait until scratch pad 1 and 2 registers in ready state */ 607 do { 608 udelay(1); 609 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 610 & SCRATCH_PAD1_RDY; 611 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 612 & SCRATCH_PAD2_RDY; 613 if ((--max_wait_count) == 0) 614 return -1; 615 } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); 616 return 0; 617 } 618 619 static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) 620 { 621 void __iomem *base_addr; 622 u32 value; 623 u32 offset; 624 u32 pcibar; 625 u32 pcilogic; 626 627 value = pm8001_cr32(pm8001_ha, 0, 0x44); 628 offset = value & 0x03FFFFFF; 629 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset); 630 pcilogic = (value & 0xFC000000) >> 26; 631 pcibar = get_pci_bar_index(pcilogic); 632 pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar); 633 pm8001_ha->main_cfg_tbl_addr = base_addr = 634 pm8001_ha->io_mem[pcibar].memvirtaddr + offset; 635 pm8001_ha->general_stat_tbl_addr = 636 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); 637 pm8001_ha->inbnd_q_tbl_addr = 638 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); 639 pm8001_ha->outbnd_q_tbl_addr = 640 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); 641 } 642 643 /** 644 * pm8001_chip_init - the main init function that initialize whole PM8001 chip. 645 * @pm8001_ha: our hba card information 646 */ 647 static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) 648 { 649 u32 i = 0; 650 u16 deviceid; 651 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 652 /* 8081 controllers need BAR shift to access MPI space 653 * as this is shared with BIOS data */ 654 if (deviceid == 0x8081 || deviceid == 0x0042) { 655 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 656 pm8001_dbg(pm8001_ha, FAIL, 657 "Shift Bar4 to 0x%x failed\n", 658 GSM_SM_BASE); 659 return -1; 660 } 661 } 662 /* check the firmware status */ 663 if (-1 == check_fw_ready(pm8001_ha)) { 664 pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); 665 return -EBUSY; 666 } 667 668 /* Initialize pci space address eg: mpi offset */ 669 init_pci_device_addresses(pm8001_ha); 670 init_default_table_values(pm8001_ha); 671 read_main_config_table(pm8001_ha); 672 read_general_status_table(pm8001_ha); 673 read_inbnd_queue_table(pm8001_ha); 674 read_outbnd_queue_table(pm8001_ha); 675 /* update main config table ,inbound table and outbound table */ 676 update_main_config_table(pm8001_ha); 677 for (i = 0; i < pm8001_ha->max_q_num; i++) 678 update_inbnd_queue_table(pm8001_ha, i); 679 for (i = 0; i < pm8001_ha->max_q_num; i++) 680 update_outbnd_queue_table(pm8001_ha, i); 681 /* 8081 controller donot require these operations */ 682 if (deviceid != 0x8081 && deviceid != 0x0042) { 683 mpi_set_phys_g3_with_ssc(pm8001_ha, 0); 684 /* 7->130ms, 34->500ms, 119->1.5s */ 685 mpi_set_open_retry_interval_reg(pm8001_ha, 119); 686 } 687 /* notify firmware update finished and check initialization status */ 688 if (0 == mpi_init_check(pm8001_ha)) { 689 pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n"); 690 } else 691 return -EBUSY; 692 /*This register is a 16-bit timer with a resolution of 1us. This is the 693 timer used for interrupt delay/coalescing in the PCIe Application Layer. 694 Zero is not a valid value. A value of 1 in the register will cause the 695 interrupts to be normal. A value greater than 1 will cause coalescing 696 delays.*/ 697 pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); 698 pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); 699 return 0; 700 } 701 702 static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) 703 { 704 u32 max_wait_count; 705 u32 value; 706 u32 gst_len_mpistate; 707 u16 deviceid; 708 pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); 709 if (deviceid == 0x8081 || deviceid == 0x0042) { 710 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { 711 pm8001_dbg(pm8001_ha, FAIL, 712 "Shift Bar4 to 0x%x failed\n", 713 GSM_SM_BASE); 714 return -1; 715 } 716 } 717 init_pci_device_addresses(pm8001_ha); 718 /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the 719 table is stop */ 720 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); 721 722 /* wait until Inbound DoorBell Clear Register toggled */ 723 max_wait_count = 1 * 1000 * 1000;/* 1 sec */ 724 do { 725 udelay(1); 726 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); 727 value &= SPC_MSGU_CFG_TABLE_RESET; 728 } while ((value != 0) && (--max_wait_count)); 729 730 if (!max_wait_count) { 731 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n", 732 value); 733 return -1; 734 } 735 736 /* check the MPI-State for termination in progress */ 737 /* wait until Inbound DoorBell Clear Register toggled */ 738 max_wait_count = 1 * 1000 * 1000; /* 1 sec */ 739 do { 740 udelay(1); 741 gst_len_mpistate = 742 pm8001_mr32(pm8001_ha->general_stat_tbl_addr, 743 GST_GSTLEN_MPIS_OFFSET); 744 if (GST_MPI_STATE_UNINIT == 745 (gst_len_mpistate & GST_MPI_STATE_MASK)) 746 break; 747 } while (--max_wait_count); 748 if (!max_wait_count) { 749 pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n", 750 gst_len_mpistate & GST_MPI_STATE_MASK); 751 return -1; 752 } 753 return 0; 754 } 755 756 /** 757 * soft_reset_ready_check - Function to check FW is ready for soft reset. 758 * @pm8001_ha: our hba card information 759 */ 760 static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) 761 { 762 u32 regVal, regVal1, regVal2; 763 if (mpi_uninit_check(pm8001_ha) != 0) { 764 pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n"); 765 return -1; 766 } 767 /* read the scratch pad 2 register bit 2 */ 768 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) 769 & SCRATCH_PAD2_FWRDY_RST; 770 if (regVal == SCRATCH_PAD2_FWRDY_RST) { 771 pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n"); 772 } else { 773 unsigned long flags; 774 /* Trigger NMI twice via RB6 */ 775 spin_lock_irqsave(&pm8001_ha->lock, flags); 776 if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { 777 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 778 pm8001_dbg(pm8001_ha, FAIL, 779 "Shift Bar4 to 0x%x failed\n", 780 RB6_ACCESS_REG); 781 return -1; 782 } 783 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, 784 RB6_MAGIC_NUMBER_RST); 785 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); 786 /* wait for 100 ms */ 787 mdelay(100); 788 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & 789 SCRATCH_PAD2_FWRDY_RST; 790 if (regVal != SCRATCH_PAD2_FWRDY_RST) { 791 regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 792 regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 793 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", 794 regVal1, regVal2); 795 pm8001_dbg(pm8001_ha, FAIL, 796 "SCRATCH_PAD0 value = 0x%x\n", 797 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); 798 pm8001_dbg(pm8001_ha, FAIL, 799 "SCRATCH_PAD3 value = 0x%x\n", 800 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); 801 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 802 return -1; 803 } 804 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 805 } 806 return 0; 807 } 808 809 /** 810 * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all 811 * the FW register status to the originated status. 812 * @pm8001_ha: our hba card information 813 */ 814 static int 815 pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) 816 { 817 u32 regVal, toggleVal; 818 u32 max_wait_count; 819 u32 regVal1, regVal2, regVal3; 820 u32 signature = 0x252acbcd; /* for host scratch pad0 */ 821 unsigned long flags; 822 823 /* step1: Check FW is ready for soft reset */ 824 if (soft_reset_ready_check(pm8001_ha) != 0) { 825 pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n"); 826 return -1; 827 } 828 829 /* step 2: clear NMI status register on AAP1 and IOP, write the same 830 value to clear */ 831 /* map 0x60000 to BAR4(0x20), BAR2(win) */ 832 spin_lock_irqsave(&pm8001_ha->lock, flags); 833 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { 834 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 835 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 836 MBIC_AAP1_ADDR_BASE); 837 return -1; 838 } 839 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); 840 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", 841 regVal); 842 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); 843 /* map 0x70000 to BAR4(0x20), BAR2(win) */ 844 if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { 845 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 846 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 847 MBIC_IOP_ADDR_BASE); 848 return -1; 849 } 850 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); 851 pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", 852 regVal); 853 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); 854 855 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); 856 pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n", 857 regVal); 858 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); 859 860 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); 861 pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt = 0x%x\n", 862 regVal); 863 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); 864 865 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); 866 pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n", 867 regVal); 868 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); 869 870 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); 871 pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal); 872 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); 873 874 /* read the scratch pad 1 register bit 2 */ 875 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) 876 & SCRATCH_PAD1_RST; 877 toggleVal = regVal ^ SCRATCH_PAD1_RST; 878 879 /* set signature in host scratch pad0 register to tell SPC that the 880 host performs the soft reset */ 881 pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); 882 883 /* read required registers for confirmming */ 884 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 885 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 886 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 887 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 888 GSM_ADDR_BASE); 889 return -1; 890 } 891 pm8001_dbg(pm8001_ha, INIT, 892 "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n", 893 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 894 895 /* step 3: host read GSM Configuration and Reset register */ 896 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 897 /* Put those bits to low */ 898 /* GSM XCBI offset = 0x70 0000 899 0x00 Bit 13 COM_SLV_SW_RSTB 1 900 0x00 Bit 12 QSSP_SW_RSTB 1 901 0x00 Bit 11 RAAE_SW_RSTB 1 902 0x00 Bit 9 RB_1_SW_RSTB 1 903 0x00 Bit 8 SM_SW_RSTB 1 904 */ 905 regVal &= ~(0x00003b00); 906 /* host write GSM Configuration and Reset register */ 907 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 908 pm8001_dbg(pm8001_ha, INIT, 909 "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n", 910 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 911 912 /* step 4: */ 913 /* disable GSM - Read Address Parity Check */ 914 regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 915 pm8001_dbg(pm8001_ha, INIT, 916 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 917 regVal1); 918 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); 919 pm8001_dbg(pm8001_ha, INIT, 920 "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 921 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 922 923 /* disable GSM - Write Address Parity Check */ 924 regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 925 pm8001_dbg(pm8001_ha, INIT, 926 "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n", 927 regVal2); 928 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); 929 pm8001_dbg(pm8001_ha, INIT, 930 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 931 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 932 933 /* disable GSM - Write Data Parity Check */ 934 regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 935 pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n", 936 regVal3); 937 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); 938 pm8001_dbg(pm8001_ha, INIT, 939 "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n", 940 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 941 942 /* step 5: delay 10 usec */ 943 udelay(10); 944 /* step 5-b: set GPIO-0 output control to tristate anyway */ 945 if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { 946 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 947 pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n", 948 GPIO_ADDR_BASE); 949 return -1; 950 } 951 regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); 952 pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n", 953 regVal); 954 /* set GPIO-0 output control to tri-state */ 955 regVal &= 0xFFFFFFFC; 956 pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); 957 958 /* Step 6: Reset the IOP and AAP1 */ 959 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 960 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 961 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 962 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 963 SPC_TOP_LEVEL_ADDR_BASE); 964 return -1; 965 } 966 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 967 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n", 968 regVal); 969 regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 970 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 971 972 /* step 7: Reset the BDMA/OSSP */ 973 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 974 pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n", 975 regVal); 976 regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 977 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 978 979 /* step 8: delay 10 usec */ 980 udelay(10); 981 982 /* step 9: bring the BDMA and OSSP out of reset */ 983 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 984 pm8001_dbg(pm8001_ha, INIT, 985 "Top Register before bringing up BDMA/OSSP:= 0x%x\n", 986 regVal); 987 regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); 988 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 989 990 /* step 10: delay 10 usec */ 991 udelay(10); 992 993 /* step 11: reads and sets the GSM Configuration and Reset Register */ 994 /* map 0x0700000 to BAR4(0x20), BAR2(win) */ 995 if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { 996 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 997 pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", 998 GSM_ADDR_BASE); 999 return -1; 1000 } 1001 pm8001_dbg(pm8001_ha, INIT, 1002 "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n", 1003 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1004 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); 1005 /* Put those bits to high */ 1006 /* GSM XCBI offset = 0x70 0000 1007 0x00 Bit 13 COM_SLV_SW_RSTB 1 1008 0x00 Bit 12 QSSP_SW_RSTB 1 1009 0x00 Bit 11 RAAE_SW_RSTB 1 1010 0x00 Bit 9 RB_1_SW_RSTB 1 1011 0x00 Bit 8 SM_SW_RSTB 1 1012 */ 1013 regVal |= (GSM_CONFIG_RESET_VALUE); 1014 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); 1015 pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n", 1016 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); 1017 1018 /* step 12: Restore GSM - Read Address Parity Check */ 1019 regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); 1020 /* just for debugging */ 1021 pm8001_dbg(pm8001_ha, INIT, 1022 "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", 1023 regVal); 1024 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); 1025 pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", 1026 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); 1027 /* Restore GSM - Write Address Parity Check */ 1028 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); 1029 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); 1030 pm8001_dbg(pm8001_ha, INIT, 1031 "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", 1032 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); 1033 /* Restore GSM - Write Data Parity Check */ 1034 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); 1035 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); 1036 pm8001_dbg(pm8001_ha, INIT, 1037 "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n", 1038 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); 1039 1040 /* step 13: bring the IOP and AAP1 out of reset */ 1041 /* map 0x00000 to BAR4(0x20), BAR2(win) */ 1042 if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { 1043 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1044 pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", 1045 SPC_TOP_LEVEL_ADDR_BASE); 1046 return -1; 1047 } 1048 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); 1049 regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); 1050 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); 1051 1052 /* step 14: delay 10 usec - Normal Mode */ 1053 udelay(10); 1054 /* check Soft Reset Normal mode or Soft Reset HDA mode */ 1055 if (signature == SPC_SOFT_RESET_SIGNATURE) { 1056 /* step 15 (Normal Mode): wait until scratch pad1 register 1057 bit 2 toggled */ 1058 max_wait_count = 2 * 1000 * 1000;/* 2 sec */ 1059 do { 1060 udelay(1); 1061 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & 1062 SCRATCH_PAD1_RST; 1063 } while ((regVal != toggleVal) && (--max_wait_count)); 1064 1065 if (!max_wait_count) { 1066 regVal = pm8001_cr32(pm8001_ha, 0, 1067 MSGU_SCRATCH_PAD_1); 1068 pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n", 1069 toggleVal, regVal); 1070 pm8001_dbg(pm8001_ha, FAIL, 1071 "SCRATCH_PAD0 value = 0x%x\n", 1072 pm8001_cr32(pm8001_ha, 0, 1073 MSGU_SCRATCH_PAD_0)); 1074 pm8001_dbg(pm8001_ha, FAIL, 1075 "SCRATCH_PAD2 value = 0x%x\n", 1076 pm8001_cr32(pm8001_ha, 0, 1077 MSGU_SCRATCH_PAD_2)); 1078 pm8001_dbg(pm8001_ha, FAIL, 1079 "SCRATCH_PAD3 value = 0x%x\n", 1080 pm8001_cr32(pm8001_ha, 0, 1081 MSGU_SCRATCH_PAD_3)); 1082 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1083 return -1; 1084 } 1085 1086 /* step 16 (Normal) - Clear ODMR and ODCR */ 1087 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1088 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1089 1090 /* step 17 (Normal Mode): wait for the FW and IOP to get 1091 ready - 1 sec timeout */ 1092 /* Wait for the SPC Configuration Table to be ready */ 1093 if (check_fw_ready(pm8001_ha) == -1) { 1094 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); 1095 /* return error if MPI Configuration Table not ready */ 1096 pm8001_dbg(pm8001_ha, INIT, 1097 "FW not ready SCRATCH_PAD1 = 0x%x\n", 1098 regVal); 1099 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); 1100 /* return error if MPI Configuration Table not ready */ 1101 pm8001_dbg(pm8001_ha, INIT, 1102 "FW not ready SCRATCH_PAD2 = 0x%x\n", 1103 regVal); 1104 pm8001_dbg(pm8001_ha, INIT, 1105 "SCRATCH_PAD0 value = 0x%x\n", 1106 pm8001_cr32(pm8001_ha, 0, 1107 MSGU_SCRATCH_PAD_0)); 1108 pm8001_dbg(pm8001_ha, INIT, 1109 "SCRATCH_PAD3 value = 0x%x\n", 1110 pm8001_cr32(pm8001_ha, 0, 1111 MSGU_SCRATCH_PAD_3)); 1112 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1113 return -1; 1114 } 1115 } 1116 pm8001_bar4_shift(pm8001_ha, 0); 1117 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1118 1119 pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n"); 1120 return 0; 1121 } 1122 1123 static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) 1124 { 1125 u32 i; 1126 u32 regVal; 1127 pm8001_dbg(pm8001_ha, INIT, "chip reset start\n"); 1128 1129 /* do SPC chip reset. */ 1130 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1131 regVal &= ~(SPC_REG_RESET_DEVICE); 1132 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1133 1134 /* delay 10 usec */ 1135 udelay(10); 1136 1137 /* bring chip reset out of reset */ 1138 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); 1139 regVal |= SPC_REG_RESET_DEVICE; 1140 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); 1141 1142 /* delay 10 usec */ 1143 udelay(10); 1144 1145 /* wait for 20 msec until the firmware gets reloaded */ 1146 i = 20; 1147 do { 1148 mdelay(1); 1149 } while ((--i) != 0); 1150 1151 pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n"); 1152 } 1153 1154 /** 1155 * pm8001_chip_iounmap - which mapped when initialized. 1156 * @pm8001_ha: our hba card information 1157 */ 1158 void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) 1159 { 1160 s8 bar, logical = 0; 1161 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { 1162 /* 1163 ** logical BARs for SPC: 1164 ** bar 0 and 1 - logical BAR0 1165 ** bar 2 and 3 - logical BAR1 1166 ** bar4 - logical BAR2 1167 ** bar5 - logical BAR3 1168 ** Skip the appropriate assignments: 1169 */ 1170 if ((bar == 1) || (bar == 3)) 1171 continue; 1172 if (pm8001_ha->io_mem[logical].memvirtaddr) { 1173 iounmap(pm8001_ha->io_mem[logical].memvirtaddr); 1174 logical++; 1175 } 1176 } 1177 } 1178 1179 #ifndef PM8001_USE_MSIX 1180 /** 1181 * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt 1182 * @pm8001_ha: our hba card information 1183 */ 1184 static void 1185 pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) 1186 { 1187 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); 1188 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); 1189 } 1190 1191 /** 1192 * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt 1193 * @pm8001_ha: our hba card information 1194 */ 1195 static void 1196 pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) 1197 { 1198 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); 1199 } 1200 1201 #else 1202 1203 /** 1204 * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt 1205 * @pm8001_ha: our hba card information 1206 * @int_vec_idx: interrupt number to enable 1207 */ 1208 static void 1209 pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, 1210 u32 int_vec_idx) 1211 { 1212 u32 msi_index; 1213 u32 value; 1214 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1215 msi_index += MSIX_TABLE_BASE; 1216 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); 1217 value = (1 << int_vec_idx); 1218 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value); 1219 1220 } 1221 1222 /** 1223 * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt 1224 * @pm8001_ha: our hba card information 1225 * @int_vec_idx: interrupt number to disable 1226 */ 1227 static void 1228 pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, 1229 u32 int_vec_idx) 1230 { 1231 u32 msi_index; 1232 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; 1233 msi_index += MSIX_TABLE_BASE; 1234 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE); 1235 } 1236 #endif 1237 1238 /** 1239 * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt 1240 * @pm8001_ha: our hba card information 1241 * @vec: unused 1242 */ 1243 static void 1244 pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1245 { 1246 #ifdef PM8001_USE_MSIX 1247 pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); 1248 #else 1249 pm8001_chip_intx_interrupt_enable(pm8001_ha); 1250 #endif 1251 } 1252 1253 /** 1254 * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt 1255 * @pm8001_ha: our hba card information 1256 * @vec: unused 1257 */ 1258 static void 1259 pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) 1260 { 1261 #ifdef PM8001_USE_MSIX 1262 pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); 1263 #else 1264 pm8001_chip_intx_interrupt_disable(pm8001_ha); 1265 #endif 1266 } 1267 1268 /** 1269 * pm8001_mpi_msg_free_get - get the free message buffer for transfer 1270 * inbound queue. 1271 * @circularQ: the inbound queue we want to transfer to HBA. 1272 * @messageSize: the message size of this transfer, normally it is 64 bytes 1273 * @messagePtr: the pointer to message. 1274 */ 1275 int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ, 1276 u16 messageSize, void **messagePtr) 1277 { 1278 u32 offset, consumer_index; 1279 struct mpi_msg_hdr *msgHeader; 1280 u8 bcCount = 1; /* only support single buffer */ 1281 1282 /* Checks is the requested message size can be allocated in this queue*/ 1283 if (messageSize > IOMB_SIZE_SPCV) { 1284 *messagePtr = NULL; 1285 return -1; 1286 } 1287 1288 /* Stores the new consumer index */ 1289 consumer_index = pm8001_read_32(circularQ->ci_virt); 1290 circularQ->consumer_index = cpu_to_le32(consumer_index); 1291 if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) == 1292 le32_to_cpu(circularQ->consumer_index)) { 1293 *messagePtr = NULL; 1294 return -1; 1295 } 1296 /* get memory IOMB buffer address */ 1297 offset = circularQ->producer_idx * messageSize; 1298 /* increment to next bcCount element */ 1299 circularQ->producer_idx = (circularQ->producer_idx + bcCount) 1300 % PM8001_MPI_QUEUE; 1301 /* Adds that distance to the base of the region virtual address plus 1302 the message header size*/ 1303 msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset); 1304 *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); 1305 return 0; 1306 } 1307 1308 /** 1309 * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to 1310 * FW to tell the fw to get this message from IOMB. 1311 * @pm8001_ha: our hba card information 1312 * @q_index: the index in the inbound queue we want to transfer to HBA. 1313 * @opCode: the operation code represents commands which LLDD and fw recognized. 1314 * @payload: the command payload of each operation command. 1315 * @nb: size in bytes of the command payload 1316 * @responseQueue: queue to interrupt on w/ command response (if any) 1317 */ 1318 int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, 1319 u32 q_index, u32 opCode, void *payload, size_t nb, 1320 u32 responseQueue) 1321 { 1322 u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; 1323 void *pMessage; 1324 unsigned long flags; 1325 struct inbound_queue_table *circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; 1326 int rv; 1327 u32 htag = le32_to_cpu(*(__le32 *)payload); 1328 1329 trace_pm80xx_mpi_build_cmd(pm8001_ha->id, opCode, htag, q_index, 1330 circularQ->producer_idx, le32_to_cpu(circularQ->consumer_index)); 1331 1332 if (WARN_ON(q_index >= pm8001_ha->max_q_num)) 1333 return -EINVAL; 1334 1335 spin_lock_irqsave(&circularQ->iq_lock, flags); 1336 rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size, 1337 &pMessage); 1338 if (rv < 0) { 1339 pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n"); 1340 rv = -ENOMEM; 1341 goto done; 1342 } 1343 1344 if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr))) 1345 nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr); 1346 memcpy(pMessage, payload, nb); 1347 if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size) 1348 memset(pMessage + nb, 0, pm8001_ha->iomb_size - 1349 (nb + sizeof(struct mpi_msg_hdr))); 1350 1351 /*Build the header*/ 1352 Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) 1353 | ((responseQueue & 0x3F) << 16) 1354 | ((category & 0xF) << 12) | (opCode & 0xFFF)); 1355 1356 pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); 1357 /*Update the PI to the firmware*/ 1358 pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, 1359 circularQ->pi_offset, circularQ->producer_idx); 1360 pm8001_dbg(pm8001_ha, DEVIO, 1361 "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n", 1362 responseQueue, opCode, circularQ->producer_idx, 1363 circularQ->consumer_index); 1364 done: 1365 spin_unlock_irqrestore(&circularQ->iq_lock, flags); 1366 return rv; 1367 } 1368 1369 u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, 1370 struct outbound_queue_table *circularQ, u8 bc) 1371 { 1372 u32 producer_index; 1373 struct mpi_msg_hdr *msgHeader; 1374 struct mpi_msg_hdr *pOutBoundMsgHeader; 1375 1376 msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); 1377 pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + 1378 circularQ->consumer_idx * pm8001_ha->iomb_size); 1379 if (pOutBoundMsgHeader != msgHeader) { 1380 pm8001_dbg(pm8001_ha, FAIL, 1381 "consumer_idx = %d msgHeader = %p\n", 1382 circularQ->consumer_idx, msgHeader); 1383 1384 /* Update the producer index from SPC */ 1385 producer_index = pm8001_read_32(circularQ->pi_virt); 1386 circularQ->producer_index = cpu_to_le32(producer_index); 1387 pm8001_dbg(pm8001_ha, FAIL, 1388 "consumer_idx = %d producer_index = %dmsgHeader = %p\n", 1389 circularQ->consumer_idx, 1390 circularQ->producer_index, msgHeader); 1391 return 0; 1392 } 1393 /* free the circular queue buffer elements associated with the message*/ 1394 circularQ->consumer_idx = (circularQ->consumer_idx + bc) 1395 % PM8001_MPI_QUEUE; 1396 /* update the CI of outbound queue */ 1397 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, 1398 circularQ->consumer_idx); 1399 /* Update the producer index from SPC*/ 1400 producer_index = pm8001_read_32(circularQ->pi_virt); 1401 circularQ->producer_index = cpu_to_le32(producer_index); 1402 pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n", 1403 circularQ->consumer_idx, circularQ->producer_index); 1404 return 0; 1405 } 1406 1407 /** 1408 * pm8001_mpi_msg_consume- get the MPI message from outbound queue 1409 * message table. 1410 * @pm8001_ha: our hba card information 1411 * @circularQ: the outbound queue table. 1412 * @messagePtr1: the message contents of this outbound message. 1413 * @pBC: the message size. 1414 */ 1415 u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, 1416 struct outbound_queue_table *circularQ, 1417 void **messagePtr1, u8 *pBC) 1418 { 1419 struct mpi_msg_hdr *msgHeader; 1420 __le32 msgHeader_tmp; 1421 u32 header_tmp; 1422 do { 1423 /* If there are not-yet-delivered messages ... */ 1424 if (le32_to_cpu(circularQ->producer_index) 1425 != circularQ->consumer_idx) { 1426 /*Get the pointer to the circular queue buffer element*/ 1427 msgHeader = (struct mpi_msg_hdr *) 1428 (circularQ->base_virt + 1429 circularQ->consumer_idx * pm8001_ha->iomb_size); 1430 /* read header */ 1431 header_tmp = pm8001_read_32(msgHeader); 1432 msgHeader_tmp = cpu_to_le32(header_tmp); 1433 pm8001_dbg(pm8001_ha, DEVIO, 1434 "outbound opcode msgheader:%x ci=%d pi=%d\n", 1435 msgHeader_tmp, circularQ->consumer_idx, 1436 circularQ->producer_index); 1437 if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) { 1438 if (OPC_OUB_SKIP_ENTRY != 1439 (le32_to_cpu(msgHeader_tmp) & 0xfff)) { 1440 *messagePtr1 = 1441 ((u8 *)msgHeader) + 1442 sizeof(struct mpi_msg_hdr); 1443 *pBC = (u8)((le32_to_cpu(msgHeader_tmp) 1444 >> 24) & 0x1f); 1445 pm8001_dbg(pm8001_ha, IO, 1446 ": CI=%d PI=%d msgHeader=%x\n", 1447 circularQ->consumer_idx, 1448 circularQ->producer_index, 1449 msgHeader_tmp); 1450 return MPI_IO_STATUS_SUCCESS; 1451 } else { 1452 circularQ->consumer_idx = 1453 (circularQ->consumer_idx + 1454 ((le32_to_cpu(msgHeader_tmp) 1455 >> 24) & 0x1f)) 1456 % PM8001_MPI_QUEUE; 1457 msgHeader_tmp = 0; 1458 pm8001_write_32(msgHeader, 0, 0); 1459 /* update the CI of outbound queue */ 1460 pm8001_cw32(pm8001_ha, 1461 circularQ->ci_pci_bar, 1462 circularQ->ci_offset, 1463 circularQ->consumer_idx); 1464 } 1465 } else { 1466 circularQ->consumer_idx = 1467 (circularQ->consumer_idx + 1468 ((le32_to_cpu(msgHeader_tmp) >> 24) & 1469 0x1f)) % PM8001_MPI_QUEUE; 1470 msgHeader_tmp = 0; 1471 pm8001_write_32(msgHeader, 0, 0); 1472 /* update the CI of outbound queue */ 1473 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, 1474 circularQ->ci_offset, 1475 circularQ->consumer_idx); 1476 return MPI_IO_STATUS_FAIL; 1477 } 1478 } else { 1479 u32 producer_index; 1480 void *pi_virt = circularQ->pi_virt; 1481 /* spurious interrupt during setup if 1482 * kexec-ing and driver doing a doorbell access 1483 * with the pre-kexec oq interrupt setup 1484 */ 1485 if (!pi_virt) 1486 break; 1487 /* Update the producer index from SPC */ 1488 producer_index = pm8001_read_32(pi_virt); 1489 circularQ->producer_index = cpu_to_le32(producer_index); 1490 } 1491 } while (le32_to_cpu(circularQ->producer_index) != 1492 circularQ->consumer_idx); 1493 /* while we don't have any more not-yet-delivered message */ 1494 /* report empty */ 1495 return MPI_IO_STATUS_BUSY; 1496 } 1497 1498 void pm8001_work_fn(struct work_struct *work) 1499 { 1500 struct pm8001_work *pw = container_of(work, struct pm8001_work, work); 1501 struct pm8001_device *pm8001_dev; 1502 struct domain_device *dev; 1503 1504 /* 1505 * So far, all users of this stash an associated structure here. 1506 * If we get here, and this pointer is null, then the action 1507 * was cancelled. This nullification happens when the device 1508 * goes away. 1509 */ 1510 if (pw->handler != IO_FATAL_ERROR) { 1511 pm8001_dev = pw->data; /* Most stash device structure */ 1512 if ((pm8001_dev == NULL) 1513 || ((pw->handler != IO_XFER_ERROR_BREAK) 1514 && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) { 1515 kfree(pw); 1516 return; 1517 } 1518 } 1519 1520 switch (pw->handler) { 1521 case IO_XFER_ERROR_BREAK: 1522 { /* This one stashes the sas_task instead */ 1523 struct sas_task *t = (struct sas_task *)pm8001_dev; 1524 struct pm8001_ccb_info *ccb; 1525 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1526 unsigned long flags, flags1; 1527 struct task_status_struct *ts; 1528 int i; 1529 1530 if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC) 1531 break; /* Task still on lu */ 1532 spin_lock_irqsave(&pm8001_ha->lock, flags); 1533 1534 spin_lock_irqsave(&t->task_state_lock, flags1); 1535 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1536 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1537 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1538 break; /* Task got completed by another */ 1539 } 1540 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1541 1542 /* Search for a possible ccb that matches the task */ 1543 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1544 ccb = &pm8001_ha->ccb_info[i]; 1545 if ((ccb->ccb_tag != PM8001_INVALID_TAG) && 1546 (ccb->task == t)) 1547 break; 1548 } 1549 if (!ccb) { 1550 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1551 break; /* Task got freed by another */ 1552 } 1553 ts = &t->task_status; 1554 ts->resp = SAS_TASK_COMPLETE; 1555 /* Force the midlayer to retry */ 1556 ts->stat = SAS_QUEUE_FULL; 1557 pm8001_dev = ccb->device; 1558 if (pm8001_dev) 1559 atomic_dec(&pm8001_dev->running_req); 1560 spin_lock_irqsave(&t->task_state_lock, flags1); 1561 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 1562 t->task_state_flags |= SAS_TASK_STATE_DONE; 1563 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 1564 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1565 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 1566 t, pw->handler, ts->resp, ts->stat); 1567 pm8001_ccb_task_free(pm8001_ha, ccb); 1568 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1569 } else { 1570 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1571 pm8001_ccb_task_free(pm8001_ha, ccb); 1572 mb();/* in order to force CPU ordering */ 1573 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1574 t->task_done(t); 1575 } 1576 } break; 1577 case IO_XFER_OPEN_RETRY_TIMEOUT: 1578 { /* This one stashes the sas_task instead */ 1579 struct sas_task *t = (struct sas_task *)pm8001_dev; 1580 struct pm8001_ccb_info *ccb; 1581 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1582 unsigned long flags, flags1; 1583 int i, ret = 0; 1584 1585 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 1586 1587 ret = pm8001_query_task(t); 1588 1589 if (ret == TMF_RESP_FUNC_SUCC) 1590 pm8001_dbg(pm8001_ha, IO, "...Task on lu\n"); 1591 else if (ret == TMF_RESP_FUNC_COMPLETE) 1592 pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n"); 1593 else 1594 pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n"); 1595 1596 spin_lock_irqsave(&pm8001_ha->lock, flags); 1597 1598 spin_lock_irqsave(&t->task_state_lock, flags1); 1599 1600 if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { 1601 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1602 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1603 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1604 (void)pm8001_abort_task(t); 1605 break; /* Task got completed by another */ 1606 } 1607 1608 spin_unlock_irqrestore(&t->task_state_lock, flags1); 1609 1610 /* Search for a possible ccb that matches the task */ 1611 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1612 ccb = &pm8001_ha->ccb_info[i]; 1613 if ((ccb->ccb_tag != PM8001_INVALID_TAG) && 1614 (ccb->task == t)) 1615 break; 1616 } 1617 if (!ccb) { 1618 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1619 if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ 1620 (void)pm8001_abort_task(t); 1621 break; /* Task got freed by another */ 1622 } 1623 1624 pm8001_dev = ccb->device; 1625 dev = pm8001_dev->sas_device; 1626 1627 switch (ret) { 1628 case TMF_RESP_FUNC_SUCC: /* task on lu */ 1629 ccb->open_retry = 1; /* Snub completion */ 1630 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1631 ret = pm8001_abort_task(t); 1632 ccb->open_retry = 0; 1633 switch (ret) { 1634 case TMF_RESP_FUNC_SUCC: 1635 case TMF_RESP_FUNC_COMPLETE: 1636 break; 1637 default: /* device misbehavior */ 1638 ret = TMF_RESP_FUNC_FAILED; 1639 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1640 pm8001_I_T_nexus_reset(dev); 1641 break; 1642 } 1643 break; 1644 1645 case TMF_RESP_FUNC_COMPLETE: /* task not on lu */ 1646 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1647 /* Do we need to abort the task locally? */ 1648 break; 1649 1650 default: /* device misbehavior */ 1651 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 1652 ret = TMF_RESP_FUNC_FAILED; 1653 pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); 1654 pm8001_I_T_nexus_reset(dev); 1655 } 1656 1657 if (ret == TMF_RESP_FUNC_FAILED) 1658 t = NULL; 1659 pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev); 1660 pm8001_dbg(pm8001_ha, IO, "...Complete\n"); 1661 } break; 1662 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1663 dev = pm8001_dev->sas_device; 1664 pm8001_I_T_nexus_event_handler(dev); 1665 break; 1666 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 1667 dev = pm8001_dev->sas_device; 1668 pm8001_I_T_nexus_reset(dev); 1669 break; 1670 case IO_DS_IN_ERROR: 1671 dev = pm8001_dev->sas_device; 1672 pm8001_I_T_nexus_reset(dev); 1673 break; 1674 case IO_DS_NON_OPERATIONAL: 1675 dev = pm8001_dev->sas_device; 1676 pm8001_I_T_nexus_reset(dev); 1677 break; 1678 case IO_FATAL_ERROR: 1679 { 1680 struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; 1681 struct pm8001_ccb_info *ccb; 1682 struct task_status_struct *ts; 1683 struct sas_task *task; 1684 int i; 1685 u32 device_id; 1686 1687 for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { 1688 ccb = &pm8001_ha->ccb_info[i]; 1689 task = ccb->task; 1690 ts = &task->task_status; 1691 1692 if (task != NULL) { 1693 dev = task->dev; 1694 if (!dev) { 1695 pm8001_dbg(pm8001_ha, FAIL, 1696 "dev is NULL\n"); 1697 continue; 1698 } 1699 /*complete sas task and update to top layer */ 1700 pm8001_ccb_task_free(pm8001_ha, ccb); 1701 ts->resp = SAS_TASK_COMPLETE; 1702 task->task_done(task); 1703 } else if (ccb->ccb_tag != PM8001_INVALID_TAG) { 1704 /* complete the internal commands/non-sas task */ 1705 pm8001_dev = ccb->device; 1706 if (pm8001_dev->dcompletion) { 1707 complete(pm8001_dev->dcompletion); 1708 pm8001_dev->dcompletion = NULL; 1709 } 1710 complete(pm8001_ha->nvmd_completion); 1711 pm8001_ccb_free(pm8001_ha, ccb); 1712 } 1713 } 1714 /* Deregister all the device ids */ 1715 for (i = 0; i < PM8001_MAX_DEVICES; i++) { 1716 pm8001_dev = &pm8001_ha->devices[i]; 1717 device_id = pm8001_dev->device_id; 1718 if (device_id) { 1719 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); 1720 pm8001_free_dev(pm8001_dev); 1721 } 1722 } 1723 } break; 1724 } 1725 kfree(pw); 1726 } 1727 1728 int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, 1729 int handler) 1730 { 1731 struct pm8001_work *pw; 1732 int ret = 0; 1733 1734 pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); 1735 if (pw) { 1736 pw->pm8001_ha = pm8001_ha; 1737 pw->data = data; 1738 pw->handler = handler; 1739 INIT_WORK(&pw->work, pm8001_work_fn); 1740 queue_work(pm8001_wq, &pw->work); 1741 } else 1742 ret = -ENOMEM; 1743 1744 return ret; 1745 } 1746 1747 static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha, 1748 struct pm8001_device *pm8001_ha_dev) 1749 { 1750 struct pm8001_ccb_info *ccb; 1751 struct sas_task *task; 1752 struct task_abort_req task_abort; 1753 u32 opc = OPC_INB_SATA_ABORT; 1754 int ret; 1755 1756 pm8001_ha_dev->id |= NCQ_ABORT_ALL_FLAG; 1757 pm8001_ha_dev->id &= ~NCQ_READ_LOG_FLAG; 1758 1759 task = sas_alloc_slow_task(GFP_ATOMIC); 1760 if (!task) { 1761 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n"); 1762 return; 1763 } 1764 1765 task->task_done = pm8001_task_done; 1766 1767 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task); 1768 if (!ccb) { 1769 sas_free_task(task); 1770 return; 1771 } 1772 1773 memset(&task_abort, 0, sizeof(task_abort)); 1774 task_abort.abort_all = cpu_to_le32(1); 1775 task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1776 task_abort.tag = cpu_to_le32(ccb->ccb_tag); 1777 1778 ret = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort, 1779 sizeof(task_abort), 0); 1780 if (ret) { 1781 sas_free_task(task); 1782 pm8001_ccb_free(pm8001_ha, ccb); 1783 } 1784 } 1785 1786 static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha, 1787 struct pm8001_device *pm8001_ha_dev) 1788 { 1789 struct sata_start_req sata_cmd; 1790 int res; 1791 struct pm8001_ccb_info *ccb; 1792 struct sas_task *task = NULL; 1793 struct host_to_dev_fis fis; 1794 struct domain_device *dev; 1795 u32 opc = OPC_INB_SATA_HOST_OPSTART; 1796 1797 task = sas_alloc_slow_task(GFP_ATOMIC); 1798 if (!task) { 1799 pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n"); 1800 return; 1801 } 1802 task->task_done = pm8001_task_done; 1803 1804 /* 1805 * Allocate domain device by ourselves as libsas is not going to 1806 * provide any. 1807 */ 1808 dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); 1809 if (!dev) { 1810 sas_free_task(task); 1811 pm8001_dbg(pm8001_ha, FAIL, 1812 "Domain device cannot be allocated\n"); 1813 return; 1814 } 1815 task->dev = dev; 1816 task->dev->lldd_dev = pm8001_ha_dev; 1817 1818 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_ha_dev, task); 1819 if (!ccb) { 1820 sas_free_task(task); 1821 kfree(dev); 1822 return; 1823 } 1824 1825 pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; 1826 pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; 1827 1828 /* construct read log FIS */ 1829 memset(&fis, 0, sizeof(struct host_to_dev_fis)); 1830 fis.fis_type = 0x27; 1831 fis.flags = 0x80; 1832 fis.command = ATA_CMD_READ_LOG_EXT; 1833 fis.lbal = 0x10; 1834 fis.sector_count = 0x1; 1835 1836 memset(&sata_cmd, 0, sizeof(sata_cmd)); 1837 sata_cmd.tag = cpu_to_le32(ccb->ccb_tag); 1838 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 1839 sata_cmd.ncqtag_atap_dir_m = cpu_to_le32((0x1 << 7) | (0x5 << 9)); 1840 memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); 1841 1842 res = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd, 1843 sizeof(sata_cmd), 0); 1844 if (res) { 1845 sas_free_task(task); 1846 pm8001_ccb_free(pm8001_ha, ccb); 1847 kfree(dev); 1848 } 1849 } 1850 1851 /** 1852 * mpi_ssp_completion- process the event that FW response to the SSP request. 1853 * @pm8001_ha: our hba card information 1854 * @piomb: the message contents of this outbound message. 1855 * 1856 * When FW has completed a ssp request for example a IO request, after it has 1857 * filled the SG data with the data, it will trigger this event representing 1858 * that he has finished the job; please check the corresponding buffer. 1859 * So we will tell the caller who maybe waiting the result to tell upper layer 1860 * that the task has been finished. 1861 */ 1862 static void 1863 mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 1864 { 1865 struct sas_task *t; 1866 struct pm8001_ccb_info *ccb; 1867 unsigned long flags; 1868 u32 status; 1869 u32 param; 1870 u32 tag; 1871 struct ssp_completion_resp *psspPayload; 1872 struct task_status_struct *ts; 1873 struct ssp_response_iu *iu; 1874 struct pm8001_device *pm8001_dev; 1875 psspPayload = (struct ssp_completion_resp *)(piomb + 4); 1876 status = le32_to_cpu(psspPayload->status); 1877 tag = le32_to_cpu(psspPayload->tag); 1878 ccb = &pm8001_ha->ccb_info[tag]; 1879 if ((status == IO_ABORTED) && ccb->open_retry) { 1880 /* Being completed by another */ 1881 ccb->open_retry = 0; 1882 return; 1883 } 1884 pm8001_dev = ccb->device; 1885 param = le32_to_cpu(psspPayload->param); 1886 1887 t = ccb->task; 1888 1889 if (status && status != IO_UNDERFLOW) 1890 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status); 1891 if (unlikely(!t || !t->lldd_task || !t->dev)) 1892 return; 1893 ts = &t->task_status; 1894 /* Print sas address of IO failed device */ 1895 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 1896 (status != IO_UNDERFLOW)) 1897 pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", 1898 SAS_ADDR(t->dev->sas_addr)); 1899 1900 if (status) 1901 pm8001_dbg(pm8001_ha, IOERR, 1902 "status:0x%x, tag:0x%x, task:0x%p\n", 1903 status, tag, t); 1904 1905 switch (status) { 1906 case IO_SUCCESS: 1907 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n", 1908 param); 1909 if (param == 0) { 1910 ts->resp = SAS_TASK_COMPLETE; 1911 ts->stat = SAS_SAM_STAT_GOOD; 1912 } else { 1913 ts->resp = SAS_TASK_COMPLETE; 1914 ts->stat = SAS_PROTO_RESPONSE; 1915 ts->residual = param; 1916 iu = &psspPayload->ssp_resp_iu; 1917 sas_ssp_task_response(pm8001_ha->dev, t, iu); 1918 } 1919 if (pm8001_dev) 1920 atomic_dec(&pm8001_dev->running_req); 1921 break; 1922 case IO_ABORTED: 1923 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 1924 ts->resp = SAS_TASK_COMPLETE; 1925 ts->stat = SAS_ABORTED_TASK; 1926 break; 1927 case IO_UNDERFLOW: 1928 /* SSP Completion with error */ 1929 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n", 1930 param); 1931 ts->resp = SAS_TASK_COMPLETE; 1932 ts->stat = SAS_DATA_UNDERRUN; 1933 ts->residual = param; 1934 if (pm8001_dev) 1935 atomic_dec(&pm8001_dev->running_req); 1936 break; 1937 case IO_NO_DEVICE: 1938 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 1939 ts->resp = SAS_TASK_UNDELIVERED; 1940 ts->stat = SAS_PHY_DOWN; 1941 break; 1942 case IO_XFER_ERROR_BREAK: 1943 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 1944 ts->resp = SAS_TASK_COMPLETE; 1945 ts->stat = SAS_OPEN_REJECT; 1946 /* Force the midlayer to retry */ 1947 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1948 break; 1949 case IO_XFER_ERROR_PHY_NOT_READY: 1950 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 1951 ts->resp = SAS_TASK_COMPLETE; 1952 ts->stat = SAS_OPEN_REJECT; 1953 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1954 break; 1955 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 1956 pm8001_dbg(pm8001_ha, IO, 1957 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 1958 ts->resp = SAS_TASK_COMPLETE; 1959 ts->stat = SAS_OPEN_REJECT; 1960 ts->open_rej_reason = SAS_OREJ_EPROTO; 1961 break; 1962 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 1963 pm8001_dbg(pm8001_ha, IO, 1964 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 1965 ts->resp = SAS_TASK_COMPLETE; 1966 ts->stat = SAS_OPEN_REJECT; 1967 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 1968 break; 1969 case IO_OPEN_CNX_ERROR_BREAK: 1970 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 1971 ts->resp = SAS_TASK_COMPLETE; 1972 ts->stat = SAS_OPEN_REJECT; 1973 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 1974 break; 1975 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 1976 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 1977 ts->resp = SAS_TASK_COMPLETE; 1978 ts->stat = SAS_OPEN_REJECT; 1979 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 1980 if (!t->uldd_task) 1981 pm8001_handle_event(pm8001_ha, 1982 pm8001_dev, 1983 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 1984 break; 1985 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 1986 pm8001_dbg(pm8001_ha, IO, 1987 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 1988 ts->resp = SAS_TASK_COMPLETE; 1989 ts->stat = SAS_OPEN_REJECT; 1990 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 1991 break; 1992 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 1993 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 1994 ts->resp = SAS_TASK_COMPLETE; 1995 ts->stat = SAS_OPEN_REJECT; 1996 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 1997 break; 1998 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 1999 pm8001_dbg(pm8001_ha, IO, 2000 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2001 ts->resp = SAS_TASK_UNDELIVERED; 2002 ts->stat = SAS_OPEN_REJECT; 2003 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2004 break; 2005 case IO_XFER_ERROR_NAK_RECEIVED: 2006 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2007 ts->resp = SAS_TASK_COMPLETE; 2008 ts->stat = SAS_OPEN_REJECT; 2009 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2010 break; 2011 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2012 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2013 ts->resp = SAS_TASK_COMPLETE; 2014 ts->stat = SAS_NAK_R_ERR; 2015 break; 2016 case IO_XFER_ERROR_DMA: 2017 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2018 ts->resp = SAS_TASK_COMPLETE; 2019 ts->stat = SAS_OPEN_REJECT; 2020 break; 2021 case IO_XFER_OPEN_RETRY_TIMEOUT: 2022 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2023 ts->resp = SAS_TASK_COMPLETE; 2024 ts->stat = SAS_OPEN_REJECT; 2025 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2026 break; 2027 case IO_XFER_ERROR_OFFSET_MISMATCH: 2028 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2029 ts->resp = SAS_TASK_COMPLETE; 2030 ts->stat = SAS_OPEN_REJECT; 2031 break; 2032 case IO_PORT_IN_RESET: 2033 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2034 ts->resp = SAS_TASK_COMPLETE; 2035 ts->stat = SAS_OPEN_REJECT; 2036 break; 2037 case IO_DS_NON_OPERATIONAL: 2038 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2039 ts->resp = SAS_TASK_COMPLETE; 2040 ts->stat = SAS_OPEN_REJECT; 2041 if (!t->uldd_task) 2042 pm8001_handle_event(pm8001_ha, 2043 pm8001_dev, 2044 IO_DS_NON_OPERATIONAL); 2045 break; 2046 case IO_DS_IN_RECOVERY: 2047 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 2048 ts->resp = SAS_TASK_COMPLETE; 2049 ts->stat = SAS_OPEN_REJECT; 2050 break; 2051 case IO_TM_TAG_NOT_FOUND: 2052 pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n"); 2053 ts->resp = SAS_TASK_COMPLETE; 2054 ts->stat = SAS_OPEN_REJECT; 2055 break; 2056 case IO_SSP_EXT_IU_ZERO_LEN_ERROR: 2057 pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"); 2058 ts->resp = SAS_TASK_COMPLETE; 2059 ts->stat = SAS_OPEN_REJECT; 2060 break; 2061 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2062 pm8001_dbg(pm8001_ha, IO, 2063 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2064 ts->resp = SAS_TASK_COMPLETE; 2065 ts->stat = SAS_OPEN_REJECT; 2066 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2067 break; 2068 default: 2069 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2070 /* not allowed case. Therefore, return failed status */ 2071 ts->resp = SAS_TASK_COMPLETE; 2072 ts->stat = SAS_OPEN_REJECT; 2073 break; 2074 } 2075 pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n", 2076 psspPayload->ssp_resp_iu.status); 2077 spin_lock_irqsave(&t->task_state_lock, flags); 2078 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2079 t->task_state_flags |= SAS_TASK_STATE_DONE; 2080 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2081 spin_unlock_irqrestore(&t->task_state_lock, flags); 2082 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2083 t, status, ts->resp, ts->stat); 2084 pm8001_ccb_task_free(pm8001_ha, ccb); 2085 } else { 2086 spin_unlock_irqrestore(&t->task_state_lock, flags); 2087 pm8001_ccb_task_free(pm8001_ha, ccb); 2088 mb();/* in order to force CPU ordering */ 2089 t->task_done(t); 2090 } 2091 } 2092 2093 /*See the comments for mpi_ssp_completion */ 2094 static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2095 { 2096 struct sas_task *t; 2097 unsigned long flags; 2098 struct task_status_struct *ts; 2099 struct pm8001_ccb_info *ccb; 2100 struct pm8001_device *pm8001_dev; 2101 struct ssp_event_resp *psspPayload = 2102 (struct ssp_event_resp *)(piomb + 4); 2103 u32 event = le32_to_cpu(psspPayload->event); 2104 u32 tag = le32_to_cpu(psspPayload->tag); 2105 u32 port_id = le32_to_cpu(psspPayload->port_id); 2106 u32 dev_id = le32_to_cpu(psspPayload->device_id); 2107 2108 ccb = &pm8001_ha->ccb_info[tag]; 2109 t = ccb->task; 2110 pm8001_dev = ccb->device; 2111 if (event) 2112 pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event); 2113 if (unlikely(!t || !t->lldd_task || !t->dev)) 2114 return; 2115 ts = &t->task_status; 2116 pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n", 2117 port_id, dev_id); 2118 switch (event) { 2119 case IO_OVERFLOW: 2120 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2121 ts->resp = SAS_TASK_COMPLETE; 2122 ts->stat = SAS_DATA_OVERRUN; 2123 ts->residual = 0; 2124 if (pm8001_dev) 2125 atomic_dec(&pm8001_dev->running_req); 2126 break; 2127 case IO_XFER_ERROR_BREAK: 2128 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2129 pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); 2130 return; 2131 case IO_XFER_ERROR_PHY_NOT_READY: 2132 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2133 ts->resp = SAS_TASK_COMPLETE; 2134 ts->stat = SAS_OPEN_REJECT; 2135 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2136 break; 2137 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2138 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2139 ts->resp = SAS_TASK_COMPLETE; 2140 ts->stat = SAS_OPEN_REJECT; 2141 ts->open_rej_reason = SAS_OREJ_EPROTO; 2142 break; 2143 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2144 pm8001_dbg(pm8001_ha, IO, 2145 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2146 ts->resp = SAS_TASK_COMPLETE; 2147 ts->stat = SAS_OPEN_REJECT; 2148 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2149 break; 2150 case IO_OPEN_CNX_ERROR_BREAK: 2151 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2152 ts->resp = SAS_TASK_COMPLETE; 2153 ts->stat = SAS_OPEN_REJECT; 2154 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2155 break; 2156 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2157 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2158 ts->resp = SAS_TASK_COMPLETE; 2159 ts->stat = SAS_OPEN_REJECT; 2160 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2161 if (!t->uldd_task) 2162 pm8001_handle_event(pm8001_ha, 2163 pm8001_dev, 2164 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2165 break; 2166 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2167 pm8001_dbg(pm8001_ha, IO, 2168 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2169 ts->resp = SAS_TASK_COMPLETE; 2170 ts->stat = SAS_OPEN_REJECT; 2171 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2172 break; 2173 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2174 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2175 ts->resp = SAS_TASK_COMPLETE; 2176 ts->stat = SAS_OPEN_REJECT; 2177 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2178 break; 2179 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2180 pm8001_dbg(pm8001_ha, IO, 2181 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2182 ts->resp = SAS_TASK_COMPLETE; 2183 ts->stat = SAS_OPEN_REJECT; 2184 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2185 break; 2186 case IO_XFER_ERROR_NAK_RECEIVED: 2187 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2188 ts->resp = SAS_TASK_COMPLETE; 2189 ts->stat = SAS_OPEN_REJECT; 2190 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2191 break; 2192 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2193 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2194 ts->resp = SAS_TASK_COMPLETE; 2195 ts->stat = SAS_NAK_R_ERR; 2196 break; 2197 case IO_XFER_OPEN_RETRY_TIMEOUT: 2198 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2199 pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); 2200 return; 2201 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2202 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2203 ts->resp = SAS_TASK_COMPLETE; 2204 ts->stat = SAS_DATA_OVERRUN; 2205 break; 2206 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2207 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2208 ts->resp = SAS_TASK_COMPLETE; 2209 ts->stat = SAS_DATA_OVERRUN; 2210 break; 2211 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2212 pm8001_dbg(pm8001_ha, IO, 2213 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2214 ts->resp = SAS_TASK_COMPLETE; 2215 ts->stat = SAS_DATA_OVERRUN; 2216 break; 2217 case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: 2218 pm8001_dbg(pm8001_ha, IO, 2219 "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"); 2220 ts->resp = SAS_TASK_COMPLETE; 2221 ts->stat = SAS_DATA_OVERRUN; 2222 break; 2223 case IO_XFER_ERROR_OFFSET_MISMATCH: 2224 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2225 ts->resp = SAS_TASK_COMPLETE; 2226 ts->stat = SAS_DATA_OVERRUN; 2227 break; 2228 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2229 pm8001_dbg(pm8001_ha, IO, 2230 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2231 ts->resp = SAS_TASK_COMPLETE; 2232 ts->stat = SAS_DATA_OVERRUN; 2233 break; 2234 case IO_XFER_CMD_FRAME_ISSUED: 2235 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2236 return; 2237 default: 2238 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2239 /* not allowed case. Therefore, return failed status */ 2240 ts->resp = SAS_TASK_COMPLETE; 2241 ts->stat = SAS_DATA_OVERRUN; 2242 break; 2243 } 2244 spin_lock_irqsave(&t->task_state_lock, flags); 2245 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2246 t->task_state_flags |= SAS_TASK_STATE_DONE; 2247 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2248 spin_unlock_irqrestore(&t->task_state_lock, flags); 2249 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2250 t, event, ts->resp, ts->stat); 2251 pm8001_ccb_task_free(pm8001_ha, ccb); 2252 } else { 2253 spin_unlock_irqrestore(&t->task_state_lock, flags); 2254 pm8001_ccb_task_free(pm8001_ha, ccb); 2255 mb();/* in order to force CPU ordering */ 2256 t->task_done(t); 2257 } 2258 } 2259 2260 /*See the comments for mpi_ssp_completion */ 2261 static void 2262 mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2263 { 2264 struct sas_task *t; 2265 struct pm8001_ccb_info *ccb; 2266 u32 param; 2267 u32 status; 2268 u32 tag; 2269 int i, j; 2270 u8 sata_addr_low[4]; 2271 u32 temp_sata_addr_low; 2272 u8 sata_addr_hi[4]; 2273 u32 temp_sata_addr_hi; 2274 struct sata_completion_resp *psataPayload; 2275 struct task_status_struct *ts; 2276 struct ata_task_resp *resp ; 2277 u32 *sata_resp; 2278 struct pm8001_device *pm8001_dev; 2279 unsigned long flags; 2280 2281 psataPayload = (struct sata_completion_resp *)(piomb + 4); 2282 status = le32_to_cpu(psataPayload->status); 2283 param = le32_to_cpu(psataPayload->param); 2284 tag = le32_to_cpu(psataPayload->tag); 2285 2286 ccb = &pm8001_ha->ccb_info[tag]; 2287 t = ccb->task; 2288 pm8001_dev = ccb->device; 2289 2290 if (t) { 2291 if (t->dev && (t->dev->lldd_dev)) 2292 pm8001_dev = t->dev->lldd_dev; 2293 } else { 2294 pm8001_dbg(pm8001_ha, FAIL, "task null\n"); 2295 return; 2296 } 2297 2298 if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) 2299 && unlikely(!t || !t->lldd_task || !t->dev)) { 2300 pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); 2301 return; 2302 } 2303 2304 ts = &t->task_status; 2305 2306 if (status) 2307 pm8001_dbg(pm8001_ha, IOERR, 2308 "status:0x%x, tag:0x%x, task::0x%p\n", 2309 status, tag, t); 2310 2311 /* Print sas address of IO failed device */ 2312 if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && 2313 (status != IO_UNDERFLOW)) { 2314 if (!((t->dev->parent) && 2315 (dev_is_expander(t->dev->parent->dev_type)))) { 2316 for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++) 2317 sata_addr_low[i] = pm8001_ha->sas_addr[j]; 2318 for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++) 2319 sata_addr_hi[i] = pm8001_ha->sas_addr[j]; 2320 memcpy(&temp_sata_addr_low, sata_addr_low, 2321 sizeof(sata_addr_low)); 2322 memcpy(&temp_sata_addr_hi, sata_addr_hi, 2323 sizeof(sata_addr_hi)); 2324 temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) 2325 |((temp_sata_addr_hi << 8) & 2326 0xff0000) | 2327 ((temp_sata_addr_hi >> 8) 2328 & 0xff00) | 2329 ((temp_sata_addr_hi << 24) & 2330 0xff000000)); 2331 temp_sata_addr_low = ((((temp_sata_addr_low >> 24) 2332 & 0xff) | 2333 ((temp_sata_addr_low << 8) 2334 & 0xff0000) | 2335 ((temp_sata_addr_low >> 8) 2336 & 0xff00) | 2337 ((temp_sata_addr_low << 24) 2338 & 0xff000000)) + 2339 pm8001_dev->attached_phy + 2340 0x10); 2341 pm8001_dbg(pm8001_ha, FAIL, 2342 "SAS Address of IO Failure Drive:%08x%08x\n", 2343 temp_sata_addr_hi, 2344 temp_sata_addr_low); 2345 } else { 2346 pm8001_dbg(pm8001_ha, FAIL, 2347 "SAS Address of IO Failure Drive:%016llx\n", 2348 SAS_ADDR(t->dev->sas_addr)); 2349 } 2350 } 2351 switch (status) { 2352 case IO_SUCCESS: 2353 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2354 if (param == 0) { 2355 ts->resp = SAS_TASK_COMPLETE; 2356 ts->stat = SAS_SAM_STAT_GOOD; 2357 /* check if response is for SEND READ LOG */ 2358 if (pm8001_dev && 2359 (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { 2360 pm8001_send_abort_all(pm8001_ha, pm8001_dev); 2361 /* Free the tag */ 2362 pm8001_tag_free(pm8001_ha, tag); 2363 sas_free_task(t); 2364 return; 2365 } 2366 } else { 2367 u8 len; 2368 ts->resp = SAS_TASK_COMPLETE; 2369 ts->stat = SAS_PROTO_RESPONSE; 2370 ts->residual = param; 2371 pm8001_dbg(pm8001_ha, IO, 2372 "SAS_PROTO_RESPONSE len = %d\n", 2373 param); 2374 sata_resp = &psataPayload->sata_resp[0]; 2375 resp = (struct ata_task_resp *)ts->buf; 2376 if (t->ata_task.dma_xfer == 0 && 2377 t->data_dir == DMA_FROM_DEVICE) { 2378 len = sizeof(struct pio_setup_fis); 2379 pm8001_dbg(pm8001_ha, IO, 2380 "PIO read len = %d\n", len); 2381 } else if (t->ata_task.use_ncq && 2382 t->data_dir != DMA_NONE) { 2383 len = sizeof(struct set_dev_bits_fis); 2384 pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n", 2385 len); 2386 } else { 2387 len = sizeof(struct dev_to_host_fis); 2388 pm8001_dbg(pm8001_ha, IO, "other len = %d\n", 2389 len); 2390 } 2391 if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { 2392 resp->frame_len = len; 2393 memcpy(&resp->ending_fis[0], sata_resp, len); 2394 ts->buf_valid_size = sizeof(*resp); 2395 } else 2396 pm8001_dbg(pm8001_ha, IO, 2397 "response too large\n"); 2398 } 2399 if (pm8001_dev) 2400 atomic_dec(&pm8001_dev->running_req); 2401 break; 2402 case IO_ABORTED: 2403 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); 2404 ts->resp = SAS_TASK_COMPLETE; 2405 ts->stat = SAS_ABORTED_TASK; 2406 if (pm8001_dev) 2407 atomic_dec(&pm8001_dev->running_req); 2408 break; 2409 /* following cases are to do cases */ 2410 case IO_UNDERFLOW: 2411 /* SATA Completion with error */ 2412 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param); 2413 ts->resp = SAS_TASK_COMPLETE; 2414 ts->stat = SAS_DATA_UNDERRUN; 2415 ts->residual = param; 2416 if (pm8001_dev) 2417 atomic_dec(&pm8001_dev->running_req); 2418 break; 2419 case IO_NO_DEVICE: 2420 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2421 ts->resp = SAS_TASK_UNDELIVERED; 2422 ts->stat = SAS_PHY_DOWN; 2423 if (pm8001_dev) 2424 atomic_dec(&pm8001_dev->running_req); 2425 break; 2426 case IO_XFER_ERROR_BREAK: 2427 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2428 ts->resp = SAS_TASK_COMPLETE; 2429 ts->stat = SAS_INTERRUPTED; 2430 if (pm8001_dev) 2431 atomic_dec(&pm8001_dev->running_req); 2432 break; 2433 case IO_XFER_ERROR_PHY_NOT_READY: 2434 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2435 ts->resp = SAS_TASK_COMPLETE; 2436 ts->stat = SAS_OPEN_REJECT; 2437 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2438 if (pm8001_dev) 2439 atomic_dec(&pm8001_dev->running_req); 2440 break; 2441 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2442 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2443 ts->resp = SAS_TASK_COMPLETE; 2444 ts->stat = SAS_OPEN_REJECT; 2445 ts->open_rej_reason = SAS_OREJ_EPROTO; 2446 if (pm8001_dev) 2447 atomic_dec(&pm8001_dev->running_req); 2448 break; 2449 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2450 pm8001_dbg(pm8001_ha, IO, 2451 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2452 ts->resp = SAS_TASK_COMPLETE; 2453 ts->stat = SAS_OPEN_REJECT; 2454 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2455 if (pm8001_dev) 2456 atomic_dec(&pm8001_dev->running_req); 2457 break; 2458 case IO_OPEN_CNX_ERROR_BREAK: 2459 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2460 ts->resp = SAS_TASK_COMPLETE; 2461 ts->stat = SAS_OPEN_REJECT; 2462 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2463 if (pm8001_dev) 2464 atomic_dec(&pm8001_dev->running_req); 2465 break; 2466 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2467 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2468 ts->resp = SAS_TASK_COMPLETE; 2469 ts->stat = SAS_DEV_NO_RESPONSE; 2470 if (!t->uldd_task) { 2471 pm8001_handle_event(pm8001_ha, 2472 pm8001_dev, 2473 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2474 ts->resp = SAS_TASK_UNDELIVERED; 2475 ts->stat = SAS_QUEUE_FULL; 2476 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2477 return; 2478 } 2479 break; 2480 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2481 pm8001_dbg(pm8001_ha, IO, 2482 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2483 ts->resp = SAS_TASK_UNDELIVERED; 2484 ts->stat = SAS_OPEN_REJECT; 2485 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2486 if (!t->uldd_task) { 2487 pm8001_handle_event(pm8001_ha, 2488 pm8001_dev, 2489 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2490 ts->resp = SAS_TASK_UNDELIVERED; 2491 ts->stat = SAS_QUEUE_FULL; 2492 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2493 return; 2494 } 2495 break; 2496 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2497 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2498 ts->resp = SAS_TASK_COMPLETE; 2499 ts->stat = SAS_OPEN_REJECT; 2500 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2501 if (pm8001_dev) 2502 atomic_dec(&pm8001_dev->running_req); 2503 break; 2504 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: 2505 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n"); 2506 ts->resp = SAS_TASK_COMPLETE; 2507 ts->stat = SAS_DEV_NO_RESPONSE; 2508 if (!t->uldd_task) { 2509 pm8001_handle_event(pm8001_ha, 2510 pm8001_dev, 2511 IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); 2512 ts->resp = SAS_TASK_UNDELIVERED; 2513 ts->stat = SAS_QUEUE_FULL; 2514 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2515 return; 2516 } 2517 break; 2518 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2519 pm8001_dbg(pm8001_ha, IO, 2520 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2521 ts->resp = SAS_TASK_COMPLETE; 2522 ts->stat = SAS_OPEN_REJECT; 2523 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2524 if (pm8001_dev) 2525 atomic_dec(&pm8001_dev->running_req); 2526 break; 2527 case IO_XFER_ERROR_NAK_RECEIVED: 2528 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2529 ts->resp = SAS_TASK_COMPLETE; 2530 ts->stat = SAS_NAK_R_ERR; 2531 if (pm8001_dev) 2532 atomic_dec(&pm8001_dev->running_req); 2533 break; 2534 case IO_XFER_ERROR_ACK_NAK_TIMEOUT: 2535 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); 2536 ts->resp = SAS_TASK_COMPLETE; 2537 ts->stat = SAS_NAK_R_ERR; 2538 if (pm8001_dev) 2539 atomic_dec(&pm8001_dev->running_req); 2540 break; 2541 case IO_XFER_ERROR_DMA: 2542 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); 2543 ts->resp = SAS_TASK_COMPLETE; 2544 ts->stat = SAS_ABORTED_TASK; 2545 if (pm8001_dev) 2546 atomic_dec(&pm8001_dev->running_req); 2547 break; 2548 case IO_XFER_ERROR_SATA_LINK_TIMEOUT: 2549 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"); 2550 ts->resp = SAS_TASK_UNDELIVERED; 2551 ts->stat = SAS_DEV_NO_RESPONSE; 2552 if (pm8001_dev) 2553 atomic_dec(&pm8001_dev->running_req); 2554 break; 2555 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2556 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2557 ts->resp = SAS_TASK_COMPLETE; 2558 ts->stat = SAS_DATA_UNDERRUN; 2559 if (pm8001_dev) 2560 atomic_dec(&pm8001_dev->running_req); 2561 break; 2562 case IO_XFER_OPEN_RETRY_TIMEOUT: 2563 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2564 ts->resp = SAS_TASK_COMPLETE; 2565 ts->stat = SAS_OPEN_TO; 2566 if (pm8001_dev) 2567 atomic_dec(&pm8001_dev->running_req); 2568 break; 2569 case IO_PORT_IN_RESET: 2570 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2571 ts->resp = SAS_TASK_COMPLETE; 2572 ts->stat = SAS_DEV_NO_RESPONSE; 2573 if (pm8001_dev) 2574 atomic_dec(&pm8001_dev->running_req); 2575 break; 2576 case IO_DS_NON_OPERATIONAL: 2577 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2578 ts->resp = SAS_TASK_COMPLETE; 2579 ts->stat = SAS_DEV_NO_RESPONSE; 2580 if (!t->uldd_task) { 2581 pm8001_handle_event(pm8001_ha, pm8001_dev, 2582 IO_DS_NON_OPERATIONAL); 2583 ts->resp = SAS_TASK_UNDELIVERED; 2584 ts->stat = SAS_QUEUE_FULL; 2585 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2586 return; 2587 } 2588 break; 2589 case IO_DS_IN_RECOVERY: 2590 pm8001_dbg(pm8001_ha, IO, " IO_DS_IN_RECOVERY\n"); 2591 ts->resp = SAS_TASK_COMPLETE; 2592 ts->stat = SAS_DEV_NO_RESPONSE; 2593 if (pm8001_dev) 2594 atomic_dec(&pm8001_dev->running_req); 2595 break; 2596 case IO_DS_IN_ERROR: 2597 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n"); 2598 ts->resp = SAS_TASK_COMPLETE; 2599 ts->stat = SAS_DEV_NO_RESPONSE; 2600 if (!t->uldd_task) { 2601 pm8001_handle_event(pm8001_ha, pm8001_dev, 2602 IO_DS_IN_ERROR); 2603 ts->resp = SAS_TASK_UNDELIVERED; 2604 ts->stat = SAS_QUEUE_FULL; 2605 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2606 return; 2607 } 2608 break; 2609 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2610 pm8001_dbg(pm8001_ha, IO, 2611 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2612 ts->resp = SAS_TASK_COMPLETE; 2613 ts->stat = SAS_OPEN_REJECT; 2614 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2615 if (pm8001_dev) 2616 atomic_dec(&pm8001_dev->running_req); 2617 break; 2618 default: 2619 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2620 /* not allowed case. Therefore, return failed status */ 2621 ts->resp = SAS_TASK_COMPLETE; 2622 ts->stat = SAS_DEV_NO_RESPONSE; 2623 if (pm8001_dev) 2624 atomic_dec(&pm8001_dev->running_req); 2625 break; 2626 } 2627 spin_lock_irqsave(&t->task_state_lock, flags); 2628 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2629 t->task_state_flags |= SAS_TASK_STATE_DONE; 2630 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2631 spin_unlock_irqrestore(&t->task_state_lock, flags); 2632 pm8001_dbg(pm8001_ha, FAIL, 2633 "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2634 t, status, ts->resp, ts->stat); 2635 pm8001_ccb_task_free(pm8001_ha, ccb); 2636 } else { 2637 spin_unlock_irqrestore(&t->task_state_lock, flags); 2638 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2639 } 2640 } 2641 2642 /*See the comments for mpi_ssp_completion */ 2643 static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 2644 { 2645 struct sas_task *t; 2646 struct task_status_struct *ts; 2647 struct pm8001_ccb_info *ccb; 2648 struct pm8001_device *pm8001_dev; 2649 struct sata_event_resp *psataPayload = 2650 (struct sata_event_resp *)(piomb + 4); 2651 u32 event = le32_to_cpu(psataPayload->event); 2652 u32 tag = le32_to_cpu(psataPayload->tag); 2653 u32 port_id = le32_to_cpu(psataPayload->port_id); 2654 u32 dev_id = le32_to_cpu(psataPayload->device_id); 2655 2656 if (event) 2657 pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event); 2658 2659 /* Check if this is NCQ error */ 2660 if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { 2661 /* find device using device id */ 2662 pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); 2663 /* send read log extension */ 2664 if (pm8001_dev) 2665 pm8001_send_read_log(pm8001_ha, pm8001_dev); 2666 return; 2667 } 2668 2669 ccb = &pm8001_ha->ccb_info[tag]; 2670 t = ccb->task; 2671 pm8001_dev = ccb->device; 2672 if (event) 2673 pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event); 2674 if (unlikely(!t || !t->lldd_task || !t->dev)) 2675 return; 2676 ts = &t->task_status; 2677 pm8001_dbg(pm8001_ha, DEVIO, 2678 "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n", 2679 port_id, dev_id, tag, event); 2680 switch (event) { 2681 case IO_OVERFLOW: 2682 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2683 ts->resp = SAS_TASK_COMPLETE; 2684 ts->stat = SAS_DATA_OVERRUN; 2685 ts->residual = 0; 2686 break; 2687 case IO_XFER_ERROR_BREAK: 2688 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2689 ts->resp = SAS_TASK_COMPLETE; 2690 ts->stat = SAS_INTERRUPTED; 2691 break; 2692 case IO_XFER_ERROR_PHY_NOT_READY: 2693 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2694 ts->resp = SAS_TASK_COMPLETE; 2695 ts->stat = SAS_OPEN_REJECT; 2696 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2697 break; 2698 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2699 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2700 ts->resp = SAS_TASK_COMPLETE; 2701 ts->stat = SAS_OPEN_REJECT; 2702 ts->open_rej_reason = SAS_OREJ_EPROTO; 2703 break; 2704 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2705 pm8001_dbg(pm8001_ha, IO, 2706 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2707 ts->resp = SAS_TASK_COMPLETE; 2708 ts->stat = SAS_OPEN_REJECT; 2709 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2710 break; 2711 case IO_OPEN_CNX_ERROR_BREAK: 2712 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2713 ts->resp = SAS_TASK_COMPLETE; 2714 ts->stat = SAS_OPEN_REJECT; 2715 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2716 break; 2717 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2718 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2719 ts->resp = SAS_TASK_UNDELIVERED; 2720 ts->stat = SAS_DEV_NO_RESPONSE; 2721 if (!t->uldd_task) { 2722 pm8001_handle_event(pm8001_ha, 2723 pm8001_dev, 2724 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2725 ts->resp = SAS_TASK_COMPLETE; 2726 ts->stat = SAS_QUEUE_FULL; 2727 return; 2728 } 2729 break; 2730 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2731 pm8001_dbg(pm8001_ha, IO, 2732 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2733 ts->resp = SAS_TASK_UNDELIVERED; 2734 ts->stat = SAS_OPEN_REJECT; 2735 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2736 break; 2737 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2738 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2739 ts->resp = SAS_TASK_COMPLETE; 2740 ts->stat = SAS_OPEN_REJECT; 2741 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2742 break; 2743 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2744 pm8001_dbg(pm8001_ha, IO, 2745 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2746 ts->resp = SAS_TASK_COMPLETE; 2747 ts->stat = SAS_OPEN_REJECT; 2748 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2749 break; 2750 case IO_XFER_ERROR_NAK_RECEIVED: 2751 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); 2752 ts->resp = SAS_TASK_COMPLETE; 2753 ts->stat = SAS_NAK_R_ERR; 2754 break; 2755 case IO_XFER_ERROR_PEER_ABORTED: 2756 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n"); 2757 ts->resp = SAS_TASK_COMPLETE; 2758 ts->stat = SAS_NAK_R_ERR; 2759 break; 2760 case IO_XFER_ERROR_REJECTED_NCQ_MODE: 2761 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); 2762 ts->resp = SAS_TASK_COMPLETE; 2763 ts->stat = SAS_DATA_UNDERRUN; 2764 break; 2765 case IO_XFER_OPEN_RETRY_TIMEOUT: 2766 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2767 ts->resp = SAS_TASK_COMPLETE; 2768 ts->stat = SAS_OPEN_TO; 2769 break; 2770 case IO_XFER_ERROR_UNEXPECTED_PHASE: 2771 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); 2772 ts->resp = SAS_TASK_COMPLETE; 2773 ts->stat = SAS_OPEN_TO; 2774 break; 2775 case IO_XFER_ERROR_XFER_RDY_OVERRUN: 2776 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); 2777 ts->resp = SAS_TASK_COMPLETE; 2778 ts->stat = SAS_OPEN_TO; 2779 break; 2780 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: 2781 pm8001_dbg(pm8001_ha, IO, 2782 "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); 2783 ts->resp = SAS_TASK_COMPLETE; 2784 ts->stat = SAS_OPEN_TO; 2785 break; 2786 case IO_XFER_ERROR_OFFSET_MISMATCH: 2787 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); 2788 ts->resp = SAS_TASK_COMPLETE; 2789 ts->stat = SAS_OPEN_TO; 2790 break; 2791 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: 2792 pm8001_dbg(pm8001_ha, IO, 2793 "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); 2794 ts->resp = SAS_TASK_COMPLETE; 2795 ts->stat = SAS_OPEN_TO; 2796 break; 2797 case IO_XFER_CMD_FRAME_ISSUED: 2798 pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); 2799 break; 2800 case IO_XFER_PIO_SETUP_ERROR: 2801 pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n"); 2802 ts->resp = SAS_TASK_COMPLETE; 2803 ts->stat = SAS_OPEN_TO; 2804 break; 2805 default: 2806 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); 2807 /* not allowed case. Therefore, return failed status */ 2808 ts->resp = SAS_TASK_COMPLETE; 2809 ts->stat = SAS_OPEN_TO; 2810 break; 2811 } 2812 } 2813 2814 /*See the comments for mpi_ssp_completion */ 2815 static void 2816 mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) 2817 { 2818 struct sas_task *t; 2819 struct pm8001_ccb_info *ccb; 2820 unsigned long flags; 2821 u32 status; 2822 u32 tag; 2823 struct smp_completion_resp *psmpPayload; 2824 struct task_status_struct *ts; 2825 struct pm8001_device *pm8001_dev; 2826 2827 psmpPayload = (struct smp_completion_resp *)(piomb + 4); 2828 status = le32_to_cpu(psmpPayload->status); 2829 tag = le32_to_cpu(psmpPayload->tag); 2830 2831 ccb = &pm8001_ha->ccb_info[tag]; 2832 t = ccb->task; 2833 ts = &t->task_status; 2834 pm8001_dev = ccb->device; 2835 if (status) { 2836 pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status); 2837 pm8001_dbg(pm8001_ha, IOERR, 2838 "status:0x%x, tag:0x%x, task:0x%p\n", 2839 status, tag, t); 2840 } 2841 if (unlikely(!t || !t->lldd_task || !t->dev)) 2842 return; 2843 2844 switch (status) { 2845 case IO_SUCCESS: 2846 pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); 2847 ts->resp = SAS_TASK_COMPLETE; 2848 ts->stat = SAS_SAM_STAT_GOOD; 2849 if (pm8001_dev) 2850 atomic_dec(&pm8001_dev->running_req); 2851 break; 2852 case IO_ABORTED: 2853 pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n"); 2854 ts->resp = SAS_TASK_COMPLETE; 2855 ts->stat = SAS_ABORTED_TASK; 2856 if (pm8001_dev) 2857 atomic_dec(&pm8001_dev->running_req); 2858 break; 2859 case IO_OVERFLOW: 2860 pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); 2861 ts->resp = SAS_TASK_COMPLETE; 2862 ts->stat = SAS_DATA_OVERRUN; 2863 ts->residual = 0; 2864 if (pm8001_dev) 2865 atomic_dec(&pm8001_dev->running_req); 2866 break; 2867 case IO_NO_DEVICE: 2868 pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); 2869 ts->resp = SAS_TASK_COMPLETE; 2870 ts->stat = SAS_PHY_DOWN; 2871 break; 2872 case IO_ERROR_HW_TIMEOUT: 2873 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n"); 2874 ts->resp = SAS_TASK_COMPLETE; 2875 ts->stat = SAS_SAM_STAT_BUSY; 2876 break; 2877 case IO_XFER_ERROR_BREAK: 2878 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); 2879 ts->resp = SAS_TASK_COMPLETE; 2880 ts->stat = SAS_SAM_STAT_BUSY; 2881 break; 2882 case IO_XFER_ERROR_PHY_NOT_READY: 2883 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); 2884 ts->resp = SAS_TASK_COMPLETE; 2885 ts->stat = SAS_SAM_STAT_BUSY; 2886 break; 2887 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: 2888 pm8001_dbg(pm8001_ha, IO, 2889 "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); 2890 ts->resp = SAS_TASK_COMPLETE; 2891 ts->stat = SAS_OPEN_REJECT; 2892 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2893 break; 2894 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: 2895 pm8001_dbg(pm8001_ha, IO, 2896 "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); 2897 ts->resp = SAS_TASK_COMPLETE; 2898 ts->stat = SAS_OPEN_REJECT; 2899 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2900 break; 2901 case IO_OPEN_CNX_ERROR_BREAK: 2902 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); 2903 ts->resp = SAS_TASK_COMPLETE; 2904 ts->stat = SAS_OPEN_REJECT; 2905 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; 2906 break; 2907 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: 2908 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); 2909 ts->resp = SAS_TASK_COMPLETE; 2910 ts->stat = SAS_OPEN_REJECT; 2911 ts->open_rej_reason = SAS_OREJ_UNKNOWN; 2912 pm8001_handle_event(pm8001_ha, 2913 pm8001_dev, 2914 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); 2915 break; 2916 case IO_OPEN_CNX_ERROR_BAD_DESTINATION: 2917 pm8001_dbg(pm8001_ha, IO, 2918 "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); 2919 ts->resp = SAS_TASK_COMPLETE; 2920 ts->stat = SAS_OPEN_REJECT; 2921 ts->open_rej_reason = SAS_OREJ_BAD_DEST; 2922 break; 2923 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: 2924 pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); 2925 ts->resp = SAS_TASK_COMPLETE; 2926 ts->stat = SAS_OPEN_REJECT; 2927 ts->open_rej_reason = SAS_OREJ_CONN_RATE; 2928 break; 2929 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: 2930 pm8001_dbg(pm8001_ha, IO, 2931 "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); 2932 ts->resp = SAS_TASK_COMPLETE; 2933 ts->stat = SAS_OPEN_REJECT; 2934 ts->open_rej_reason = SAS_OREJ_WRONG_DEST; 2935 break; 2936 case IO_XFER_ERROR_RX_FRAME: 2937 pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n"); 2938 ts->resp = SAS_TASK_COMPLETE; 2939 ts->stat = SAS_DEV_NO_RESPONSE; 2940 break; 2941 case IO_XFER_OPEN_RETRY_TIMEOUT: 2942 pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); 2943 ts->resp = SAS_TASK_COMPLETE; 2944 ts->stat = SAS_OPEN_REJECT; 2945 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2946 break; 2947 case IO_ERROR_INTERNAL_SMP_RESOURCE: 2948 pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n"); 2949 ts->resp = SAS_TASK_COMPLETE; 2950 ts->stat = SAS_QUEUE_FULL; 2951 break; 2952 case IO_PORT_IN_RESET: 2953 pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); 2954 ts->resp = SAS_TASK_COMPLETE; 2955 ts->stat = SAS_OPEN_REJECT; 2956 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2957 break; 2958 case IO_DS_NON_OPERATIONAL: 2959 pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); 2960 ts->resp = SAS_TASK_COMPLETE; 2961 ts->stat = SAS_DEV_NO_RESPONSE; 2962 break; 2963 case IO_DS_IN_RECOVERY: 2964 pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); 2965 ts->resp = SAS_TASK_COMPLETE; 2966 ts->stat = SAS_OPEN_REJECT; 2967 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2968 break; 2969 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: 2970 pm8001_dbg(pm8001_ha, IO, 2971 "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); 2972 ts->resp = SAS_TASK_COMPLETE; 2973 ts->stat = SAS_OPEN_REJECT; 2974 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; 2975 break; 2976 default: 2977 pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); 2978 ts->resp = SAS_TASK_COMPLETE; 2979 ts->stat = SAS_DEV_NO_RESPONSE; 2980 /* not allowed case. Therefore, return failed status */ 2981 break; 2982 } 2983 spin_lock_irqsave(&t->task_state_lock, flags); 2984 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 2985 t->task_state_flags |= SAS_TASK_STATE_DONE; 2986 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { 2987 spin_unlock_irqrestore(&t->task_state_lock, flags); 2988 pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", 2989 t, status, ts->resp, ts->stat); 2990 pm8001_ccb_task_free(pm8001_ha, ccb); 2991 } else { 2992 spin_unlock_irqrestore(&t->task_state_lock, flags); 2993 pm8001_ccb_task_free_done(pm8001_ha, ccb); 2994 } 2995 } 2996 2997 void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, 2998 void *piomb) 2999 { 3000 struct set_dev_state_resp *pPayload = 3001 (struct set_dev_state_resp *)(piomb + 4); 3002 u32 tag = le32_to_cpu(pPayload->tag); 3003 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3004 struct pm8001_device *pm8001_dev = ccb->device; 3005 u32 status = le32_to_cpu(pPayload->status); 3006 u32 device_id = le32_to_cpu(pPayload->device_id); 3007 u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS; 3008 u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS; 3009 3010 pm8001_dbg(pm8001_ha, MSG, 3011 "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n", 3012 device_id, pds, nds, status); 3013 complete(pm8001_dev->setds_completion); 3014 pm8001_ccb_free(pm8001_ha, ccb); 3015 } 3016 3017 void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3018 { 3019 struct get_nvm_data_resp *pPayload = 3020 (struct get_nvm_data_resp *)(piomb + 4); 3021 u32 tag = le32_to_cpu(pPayload->tag); 3022 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3023 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3024 3025 complete(pm8001_ha->nvmd_completion); 3026 pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n"); 3027 if ((dlen_status & NVMD_STAT) != 0) { 3028 pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n", 3029 dlen_status); 3030 } 3031 pm8001_ccb_free(pm8001_ha, ccb); 3032 } 3033 3034 void 3035 pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3036 { 3037 struct fw_control_ex *fw_control_context; 3038 struct get_nvm_data_resp *pPayload = 3039 (struct get_nvm_data_resp *)(piomb + 4); 3040 u32 tag = le32_to_cpu(pPayload->tag); 3041 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3042 u32 dlen_status = le32_to_cpu(pPayload->dlen_status); 3043 u32 ir_tds_bn_dps_das_nvm = 3044 le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); 3045 void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; 3046 fw_control_context = ccb->fw_control_context; 3047 3048 pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n"); 3049 if ((dlen_status & NVMD_STAT) != 0) { 3050 pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n", 3051 dlen_status); 3052 complete(pm8001_ha->nvmd_completion); 3053 /* We should free tag during failure also, the tag is not being 3054 * freed by requesting path anywhere. 3055 */ 3056 pm8001_ccb_free(pm8001_ha, ccb); 3057 return; 3058 } 3059 if (ir_tds_bn_dps_das_nvm & IPMode) { 3060 /* indirect mode - IR bit set */ 3061 pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n"); 3062 if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { 3063 if (ir_tds_bn_dps_das_nvm == 0x80a80200) { 3064 memcpy(pm8001_ha->sas_addr, 3065 ((u8 *)virt_addr + 4), 3066 SAS_ADDR_SIZE); 3067 pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n"); 3068 } 3069 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) 3070 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || 3071 ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { 3072 ; 3073 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) 3074 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { 3075 ; 3076 } else { 3077 /* Should not be happened*/ 3078 pm8001_dbg(pm8001_ha, MSG, 3079 "(IR=1)Wrong Device type 0x%x\n", 3080 ir_tds_bn_dps_das_nvm); 3081 } 3082 } else /* direct mode */{ 3083 pm8001_dbg(pm8001_ha, MSG, 3084 "Get NVMD success, IR=0, dataLen=%d\n", 3085 (dlen_status & NVMD_LEN) >> 24); 3086 } 3087 /* Though fw_control_context is freed below, usrAddr still needs 3088 * to be updated as this holds the response to the request function 3089 */ 3090 memcpy(fw_control_context->usrAddr, 3091 pm8001_ha->memoryMap.region[NVMD].virt_ptr, 3092 fw_control_context->len); 3093 kfree(ccb->fw_control_context); 3094 /* To avoid race condition, complete should be 3095 * called after the message is copied to 3096 * fw_control_context->usrAddr 3097 */ 3098 complete(pm8001_ha->nvmd_completion); 3099 pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n"); 3100 pm8001_ccb_free(pm8001_ha, ccb); 3101 } 3102 3103 int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) 3104 { 3105 u32 tag; 3106 struct local_phy_ctl_resp *pPayload = 3107 (struct local_phy_ctl_resp *)(piomb + 4); 3108 u32 status = le32_to_cpu(pPayload->status); 3109 u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; 3110 u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; 3111 tag = le32_to_cpu(pPayload->tag); 3112 if (status != 0) { 3113 pm8001_dbg(pm8001_ha, MSG, 3114 "%x phy execute %x phy op failed!\n", 3115 phy_id, phy_op); 3116 } else { 3117 pm8001_dbg(pm8001_ha, MSG, 3118 "%x phy execute %x phy op success!\n", 3119 phy_id, phy_op); 3120 pm8001_ha->phy[phy_id].reset_success = true; 3121 } 3122 if (pm8001_ha->phy[phy_id].enable_completion) { 3123 complete(pm8001_ha->phy[phy_id].enable_completion); 3124 pm8001_ha->phy[phy_id].enable_completion = NULL; 3125 } 3126 pm8001_tag_free(pm8001_ha, tag); 3127 return 0; 3128 } 3129 3130 /** 3131 * pm8001_bytes_dmaed - one of the interface function communication with libsas 3132 * @pm8001_ha: our hba card information 3133 * @i: which phy that received the event. 3134 * 3135 * when HBA driver received the identify done event or initiate FIS received 3136 * event(for SATA), it will invoke this function to notify the sas layer that 3137 * the sas toplogy has formed, please discover the the whole sas domain, 3138 * while receive a broadcast(change) primitive just tell the sas 3139 * layer to discover the changed domain rather than the whole domain. 3140 */ 3141 void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) 3142 { 3143 struct pm8001_phy *phy = &pm8001_ha->phy[i]; 3144 struct asd_sas_phy *sas_phy = &phy->sas_phy; 3145 if (!phy->phy_attached) 3146 return; 3147 3148 if (sas_phy->phy) { 3149 struct sas_phy *sphy = sas_phy->phy; 3150 sphy->negotiated_linkrate = sas_phy->linkrate; 3151 sphy->minimum_linkrate = phy->minimum_linkrate; 3152 sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3153 sphy->maximum_linkrate = phy->maximum_linkrate; 3154 sphy->maximum_linkrate_hw = phy->maximum_linkrate; 3155 } 3156 3157 if (phy->phy_type & PORT_TYPE_SAS) { 3158 struct sas_identify_frame *id; 3159 id = (struct sas_identify_frame *)phy->frame_rcvd; 3160 id->dev_type = phy->identify.device_type; 3161 id->initiator_bits = SAS_PROTOCOL_ALL; 3162 id->target_bits = phy->identify.target_port_protocols; 3163 } else if (phy->phy_type & PORT_TYPE_SATA) { 3164 /*Nothing*/ 3165 } 3166 pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i); 3167 3168 sas_phy->frame_rcvd_size = phy->frame_rcvd_size; 3169 sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC); 3170 } 3171 3172 /* Get the link rate speed */ 3173 void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) 3174 { 3175 struct sas_phy *sas_phy = phy->sas_phy.phy; 3176 3177 switch (link_rate) { 3178 case PHY_SPEED_120: 3179 phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS; 3180 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS; 3181 break; 3182 case PHY_SPEED_60: 3183 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; 3184 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; 3185 break; 3186 case PHY_SPEED_30: 3187 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; 3188 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; 3189 break; 3190 case PHY_SPEED_15: 3191 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; 3192 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; 3193 break; 3194 } 3195 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; 3196 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; 3197 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 3198 sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; 3199 sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; 3200 } 3201 3202 /** 3203 * pm8001_get_attached_sas_addr - extract/generate attached SAS address 3204 * @phy: pointer to asd_phy 3205 * @sas_addr: pointer to buffer where the SAS address is to be written 3206 * 3207 * This function extracts the SAS address from an IDENTIFY frame 3208 * received. If OOB is SATA, then a SAS address is generated from the 3209 * HA tables. 3210 * 3211 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame 3212 * buffer. 3213 */ 3214 void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, 3215 u8 *sas_addr) 3216 { 3217 if (phy->sas_phy.frame_rcvd[0] == 0x34 3218 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { 3219 struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; 3220 /* FIS device-to-host */ 3221 u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); 3222 addr += phy->sas_phy.id; 3223 *(__be64 *)sas_addr = cpu_to_be64(addr); 3224 } else { 3225 struct sas_identify_frame *idframe = 3226 (void *) phy->sas_phy.frame_rcvd; 3227 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); 3228 } 3229 } 3230 3231 /** 3232 * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. 3233 * @pm8001_ha: our hba card information 3234 * @Qnum: the outbound queue message number. 3235 * @SEA: source of event to ack 3236 * @port_id: port id. 3237 * @phyId: phy id. 3238 * @param0: parameter 0. 3239 * @param1: parameter 1. 3240 */ 3241 static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, 3242 u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) 3243 { 3244 struct hw_event_ack_req payload; 3245 u32 opc = OPC_INB_SAS_HW_EVENT_ACK; 3246 3247 memset((u8 *)&payload, 0, sizeof(payload)); 3248 payload.tag = cpu_to_le32(1); 3249 payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | 3250 ((phyId & 0x0F) << 4) | (port_id & 0x0F)); 3251 payload.param0 = cpu_to_le32(param0); 3252 payload.param1 = cpu_to_le32(param1); 3253 3254 pm8001_mpi_build_cmd(pm8001_ha, Qnum, opc, &payload, sizeof(payload), 0); 3255 } 3256 3257 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 3258 u32 phyId, u32 phy_op); 3259 3260 /** 3261 * hw_event_sas_phy_up -FW tells me a SAS phy up event. 3262 * @pm8001_ha: our hba card information 3263 * @piomb: IO message buffer 3264 */ 3265 static void 3266 hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3267 { 3268 struct hw_event_resp *pPayload = 3269 (struct hw_event_resp *)(piomb + 4); 3270 u32 lr_evt_status_phyid_portid = 3271 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3272 u8 link_rate = 3273 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3274 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3275 u8 phy_id = 3276 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3277 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3278 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3279 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3280 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3281 unsigned long flags; 3282 u8 deviceType = pPayload->sas_identify.dev_type; 3283 phy->port = port; 3284 port->port_id = port_id; 3285 port->port_state = portstate; 3286 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3287 pm8001_dbg(pm8001_ha, MSG, 3288 "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", 3289 port_id, phy_id); 3290 3291 switch (deviceType) { 3292 case SAS_PHY_UNUSED: 3293 pm8001_dbg(pm8001_ha, MSG, "device type no device.\n"); 3294 break; 3295 case SAS_END_DEVICE: 3296 pm8001_dbg(pm8001_ha, MSG, "end device.\n"); 3297 pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, 3298 PHY_NOTIFY_ENABLE_SPINUP); 3299 port->port_attached = 1; 3300 pm8001_get_lrate_mode(phy, link_rate); 3301 break; 3302 case SAS_EDGE_EXPANDER_DEVICE: 3303 pm8001_dbg(pm8001_ha, MSG, "expander device.\n"); 3304 port->port_attached = 1; 3305 pm8001_get_lrate_mode(phy, link_rate); 3306 break; 3307 case SAS_FANOUT_EXPANDER_DEVICE: 3308 pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n"); 3309 port->port_attached = 1; 3310 pm8001_get_lrate_mode(phy, link_rate); 3311 break; 3312 default: 3313 pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n", 3314 deviceType); 3315 break; 3316 } 3317 phy->phy_type |= PORT_TYPE_SAS; 3318 phy->identify.device_type = deviceType; 3319 phy->phy_attached = 1; 3320 if (phy->identify.device_type == SAS_END_DEVICE) 3321 phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; 3322 else if (phy->identify.device_type != SAS_PHY_UNUSED) 3323 phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; 3324 phy->sas_phy.oob_mode = SAS_OOB_MODE; 3325 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3326 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3327 memcpy(phy->frame_rcvd, &pPayload->sas_identify, 3328 sizeof(struct sas_identify_frame)-4); 3329 phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; 3330 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3331 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3332 if (pm8001_ha->flags == PM8001F_RUN_TIME) 3333 mdelay(200);/*delay a moment to wait disk to spinup*/ 3334 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3335 } 3336 3337 /** 3338 * hw_event_sata_phy_up -FW tells me a SATA phy up event. 3339 * @pm8001_ha: our hba card information 3340 * @piomb: IO message buffer 3341 */ 3342 static void 3343 hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) 3344 { 3345 struct hw_event_resp *pPayload = 3346 (struct hw_event_resp *)(piomb + 4); 3347 u32 lr_evt_status_phyid_portid = 3348 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3349 u8 link_rate = 3350 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); 3351 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3352 u8 phy_id = 3353 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3354 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3355 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3356 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3357 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3358 unsigned long flags; 3359 pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n", 3360 port_id, phy_id); 3361 phy->port = port; 3362 port->port_id = port_id; 3363 port->port_state = portstate; 3364 phy->phy_state = PHY_STATE_LINK_UP_SPC; 3365 port->port_attached = 1; 3366 pm8001_get_lrate_mode(phy, link_rate); 3367 phy->phy_type |= PORT_TYPE_SATA; 3368 phy->phy_attached = 1; 3369 phy->sas_phy.oob_mode = SATA_OOB_MODE; 3370 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); 3371 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); 3372 memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), 3373 sizeof(struct dev_to_host_fis)); 3374 phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); 3375 phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; 3376 phy->identify.device_type = SAS_SATA_DEV; 3377 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); 3378 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); 3379 pm8001_bytes_dmaed(pm8001_ha, phy_id); 3380 } 3381 3382 /** 3383 * hw_event_phy_down -we should notify the libsas the phy is down. 3384 * @pm8001_ha: our hba card information 3385 * @piomb: IO message buffer 3386 */ 3387 static void 3388 hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) 3389 { 3390 struct hw_event_resp *pPayload = 3391 (struct hw_event_resp *)(piomb + 4); 3392 u32 lr_evt_status_phyid_portid = 3393 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3394 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3395 u8 phy_id = 3396 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3397 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); 3398 u8 portstate = (u8)(npip_portstate & 0x0000000F); 3399 struct pm8001_port *port = &pm8001_ha->port[port_id]; 3400 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3401 port->port_state = portstate; 3402 phy->phy_type = 0; 3403 phy->identify.device_type = 0; 3404 phy->phy_attached = 0; 3405 memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); 3406 switch (portstate) { 3407 case PORT_VALID: 3408 break; 3409 case PORT_INVALID: 3410 pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n", 3411 port_id); 3412 pm8001_dbg(pm8001_ha, MSG, 3413 " Last phy Down and port invalid\n"); 3414 port->port_attached = 0; 3415 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3416 port_id, phy_id, 0, 0); 3417 break; 3418 case PORT_IN_RESET: 3419 pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n", 3420 port_id); 3421 break; 3422 case PORT_NOT_ESTABLISHED: 3423 pm8001_dbg(pm8001_ha, MSG, 3424 " phy Down and PORT_NOT_ESTABLISHED\n"); 3425 port->port_attached = 0; 3426 break; 3427 case PORT_LOSTCOMM: 3428 pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n"); 3429 pm8001_dbg(pm8001_ha, MSG, 3430 " Last phy Down and port invalid\n"); 3431 port->port_attached = 0; 3432 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, 3433 port_id, phy_id, 0, 0); 3434 break; 3435 default: 3436 port->port_attached = 0; 3437 pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n", 3438 portstate); 3439 break; 3440 3441 } 3442 } 3443 3444 /** 3445 * pm8001_mpi_reg_resp -process register device ID response. 3446 * @pm8001_ha: our hba card information 3447 * @piomb: IO message buffer 3448 * 3449 * when sas layer find a device it will notify LLDD, then the driver register 3450 * the domain device to FW, this event is the return device ID which the FW 3451 * has assigned, from now, inter-communication with FW is no longer using the 3452 * SAS address, use device ID which FW assigned. 3453 */ 3454 int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3455 { 3456 u32 status; 3457 u32 device_id; 3458 u32 htag; 3459 struct pm8001_ccb_info *ccb; 3460 struct pm8001_device *pm8001_dev; 3461 struct dev_reg_resp *registerRespPayload = 3462 (struct dev_reg_resp *)(piomb + 4); 3463 3464 htag = le32_to_cpu(registerRespPayload->tag); 3465 ccb = &pm8001_ha->ccb_info[htag]; 3466 pm8001_dev = ccb->device; 3467 status = le32_to_cpu(registerRespPayload->status); 3468 device_id = le32_to_cpu(registerRespPayload->device_id); 3469 pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n", 3470 status); 3471 switch (status) { 3472 case DEVREG_SUCCESS: 3473 pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n"); 3474 pm8001_dev->device_id = device_id; 3475 break; 3476 case DEVREG_FAILURE_OUT_OF_RESOURCE: 3477 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n"); 3478 break; 3479 case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: 3480 pm8001_dbg(pm8001_ha, MSG, 3481 "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"); 3482 break; 3483 case DEVREG_FAILURE_INVALID_PHY_ID: 3484 pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n"); 3485 break; 3486 case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: 3487 pm8001_dbg(pm8001_ha, MSG, 3488 "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"); 3489 break; 3490 case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: 3491 pm8001_dbg(pm8001_ha, MSG, 3492 "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"); 3493 break; 3494 case DEVREG_FAILURE_PORT_NOT_VALID_STATE: 3495 pm8001_dbg(pm8001_ha, MSG, 3496 "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"); 3497 break; 3498 case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: 3499 pm8001_dbg(pm8001_ha, MSG, 3500 "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"); 3501 break; 3502 default: 3503 pm8001_dbg(pm8001_ha, MSG, 3504 "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n"); 3505 break; 3506 } 3507 complete(pm8001_dev->dcompletion); 3508 pm8001_ccb_free(pm8001_ha, ccb); 3509 return 0; 3510 } 3511 3512 int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3513 { 3514 u32 status; 3515 u32 device_id; 3516 struct dev_reg_resp *registerRespPayload = 3517 (struct dev_reg_resp *)(piomb + 4); 3518 3519 status = le32_to_cpu(registerRespPayload->status); 3520 device_id = le32_to_cpu(registerRespPayload->device_id); 3521 if (status != 0) 3522 pm8001_dbg(pm8001_ha, MSG, 3523 " deregister device failed ,status = %x, device_id = %x\n", 3524 status, device_id); 3525 return 0; 3526 } 3527 3528 /** 3529 * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command. 3530 * @pm8001_ha: our hba card information 3531 * @piomb: IO message buffer 3532 */ 3533 int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, 3534 void *piomb) 3535 { 3536 u32 status; 3537 struct fw_flash_Update_resp *ppayload = 3538 (struct fw_flash_Update_resp *)(piomb + 4); 3539 u32 tag = le32_to_cpu(ppayload->tag); 3540 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; 3541 3542 status = le32_to_cpu(ppayload->status); 3543 switch (status) { 3544 case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: 3545 pm8001_dbg(pm8001_ha, MSG, 3546 ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"); 3547 break; 3548 case FLASH_UPDATE_IN_PROGRESS: 3549 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n"); 3550 break; 3551 case FLASH_UPDATE_HDR_ERR: 3552 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n"); 3553 break; 3554 case FLASH_UPDATE_OFFSET_ERR: 3555 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n"); 3556 break; 3557 case FLASH_UPDATE_CRC_ERR: 3558 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n"); 3559 break; 3560 case FLASH_UPDATE_LENGTH_ERR: 3561 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n"); 3562 break; 3563 case FLASH_UPDATE_HW_ERR: 3564 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n"); 3565 break; 3566 case FLASH_UPDATE_DNLD_NOT_SUPPORTED: 3567 pm8001_dbg(pm8001_ha, MSG, 3568 ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"); 3569 break; 3570 case FLASH_UPDATE_DISABLED: 3571 pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n"); 3572 break; 3573 default: 3574 pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n", 3575 status); 3576 break; 3577 } 3578 kfree(ccb->fw_control_context); 3579 pm8001_ccb_free(pm8001_ha, ccb); 3580 complete(pm8001_ha->nvmd_completion); 3581 return 0; 3582 } 3583 3584 int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3585 { 3586 u32 status; 3587 int i; 3588 struct general_event_resp *pPayload = 3589 (struct general_event_resp *)(piomb + 4); 3590 status = le32_to_cpu(pPayload->status); 3591 pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status); 3592 for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) 3593 pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n", 3594 i, 3595 pPayload->inb_IOMB_payload[i]); 3596 return 0; 3597 } 3598 3599 int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) 3600 { 3601 struct sas_task *t; 3602 struct pm8001_ccb_info *ccb; 3603 unsigned long flags; 3604 u32 status ; 3605 u32 tag, scp; 3606 struct task_status_struct *ts; 3607 struct pm8001_device *pm8001_dev; 3608 3609 struct task_abort_resp *pPayload = 3610 (struct task_abort_resp *)(piomb + 4); 3611 3612 status = le32_to_cpu(pPayload->status); 3613 tag = le32_to_cpu(pPayload->tag); 3614 3615 scp = le32_to_cpu(pPayload->scp); 3616 ccb = &pm8001_ha->ccb_info[tag]; 3617 t = ccb->task; 3618 pm8001_dev = ccb->device; /* retrieve device */ 3619 3620 if (!t) { 3621 pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n"); 3622 return -1; 3623 } 3624 ts = &t->task_status; 3625 if (status != 0) 3626 pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n", 3627 status, tag, scp); 3628 switch (status) { 3629 case IO_SUCCESS: 3630 pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n"); 3631 ts->resp = SAS_TASK_COMPLETE; 3632 ts->stat = SAS_SAM_STAT_GOOD; 3633 break; 3634 case IO_NOT_VALID: 3635 pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n"); 3636 ts->resp = TMF_RESP_FUNC_FAILED; 3637 break; 3638 } 3639 spin_lock_irqsave(&t->task_state_lock, flags); 3640 t->task_state_flags &= ~SAS_TASK_STATE_PENDING; 3641 t->task_state_flags |= SAS_TASK_STATE_DONE; 3642 spin_unlock_irqrestore(&t->task_state_lock, flags); 3643 pm8001_ccb_task_free(pm8001_ha, ccb); 3644 mb(); 3645 3646 if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) { 3647 sas_free_task(t); 3648 pm8001_dev->id &= ~NCQ_ABORT_ALL_FLAG; 3649 } else { 3650 t->task_done(t); 3651 } 3652 3653 return 0; 3654 } 3655 3656 /** 3657 * mpi_hw_event -The hw event has come. 3658 * @pm8001_ha: our hba card information 3659 * @piomb: IO message buffer 3660 */ 3661 static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) 3662 { 3663 unsigned long flags; 3664 struct hw_event_resp *pPayload = 3665 (struct hw_event_resp *)(piomb + 4); 3666 u32 lr_evt_status_phyid_portid = 3667 le32_to_cpu(pPayload->lr_evt_status_phyid_portid); 3668 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); 3669 u8 phy_id = 3670 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); 3671 u16 eventType = 3672 (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); 3673 u8 status = 3674 (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); 3675 struct sas_ha_struct *sas_ha = pm8001_ha->sas; 3676 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; 3677 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; 3678 pm8001_dbg(pm8001_ha, DEVIO, 3679 "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n", 3680 port_id, phy_id, eventType, status); 3681 switch (eventType) { 3682 case HW_EVENT_PHY_START_STATUS: 3683 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n", 3684 status); 3685 if (status == 0) 3686 phy->phy_state = 1; 3687 3688 if (pm8001_ha->flags == PM8001F_RUN_TIME && 3689 phy->enable_completion != NULL) { 3690 complete(phy->enable_completion); 3691 phy->enable_completion = NULL; 3692 } 3693 break; 3694 case HW_EVENT_SAS_PHY_UP: 3695 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n"); 3696 hw_event_sas_phy_up(pm8001_ha, piomb); 3697 break; 3698 case HW_EVENT_SATA_PHY_UP: 3699 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n"); 3700 hw_event_sata_phy_up(pm8001_ha, piomb); 3701 break; 3702 case HW_EVENT_PHY_STOP_STATUS: 3703 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n", 3704 status); 3705 if (status == 0) 3706 phy->phy_state = 0; 3707 break; 3708 case HW_EVENT_SATA_SPINUP_HOLD: 3709 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n"); 3710 sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, 3711 GFP_ATOMIC); 3712 break; 3713 case HW_EVENT_PHY_DOWN: 3714 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n"); 3715 sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, 3716 GFP_ATOMIC); 3717 phy->phy_attached = 0; 3718 phy->phy_state = 0; 3719 hw_event_phy_down(pm8001_ha, piomb); 3720 break; 3721 case HW_EVENT_PORT_INVALID: 3722 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n"); 3723 sas_phy_disconnected(sas_phy); 3724 phy->phy_attached = 0; 3725 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3726 GFP_ATOMIC); 3727 break; 3728 /* the broadcast change primitive received, tell the LIBSAS this event 3729 to revalidate the sas domain*/ 3730 case HW_EVENT_BROADCAST_CHANGE: 3731 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n"); 3732 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, 3733 port_id, phy_id, 1, 0); 3734 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3735 sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; 3736 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3737 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3738 GFP_ATOMIC); 3739 break; 3740 case HW_EVENT_PHY_ERROR: 3741 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n"); 3742 sas_phy_disconnected(&phy->sas_phy); 3743 phy->phy_attached = 0; 3744 sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); 3745 break; 3746 case HW_EVENT_BROADCAST_EXP: 3747 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n"); 3748 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3749 sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; 3750 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3751 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3752 GFP_ATOMIC); 3753 break; 3754 case HW_EVENT_LINK_ERR_INVALID_DWORD: 3755 pm8001_dbg(pm8001_ha, MSG, 3756 "HW_EVENT_LINK_ERR_INVALID_DWORD\n"); 3757 pm8001_hw_event_ack_req(pm8001_ha, 0, 3758 HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); 3759 sas_phy_disconnected(sas_phy); 3760 phy->phy_attached = 0; 3761 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3762 GFP_ATOMIC); 3763 break; 3764 case HW_EVENT_LINK_ERR_DISPARITY_ERROR: 3765 pm8001_dbg(pm8001_ha, MSG, 3766 "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"); 3767 pm8001_hw_event_ack_req(pm8001_ha, 0, 3768 HW_EVENT_LINK_ERR_DISPARITY_ERROR, 3769 port_id, phy_id, 0, 0); 3770 sas_phy_disconnected(sas_phy); 3771 phy->phy_attached = 0; 3772 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3773 GFP_ATOMIC); 3774 break; 3775 case HW_EVENT_LINK_ERR_CODE_VIOLATION: 3776 pm8001_dbg(pm8001_ha, MSG, 3777 "HW_EVENT_LINK_ERR_CODE_VIOLATION\n"); 3778 pm8001_hw_event_ack_req(pm8001_ha, 0, 3779 HW_EVENT_LINK_ERR_CODE_VIOLATION, 3780 port_id, phy_id, 0, 0); 3781 sas_phy_disconnected(sas_phy); 3782 phy->phy_attached = 0; 3783 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3784 GFP_ATOMIC); 3785 break; 3786 case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: 3787 pm8001_dbg(pm8001_ha, MSG, 3788 "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"); 3789 pm8001_hw_event_ack_req(pm8001_ha, 0, 3790 HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, 3791 port_id, phy_id, 0, 0); 3792 sas_phy_disconnected(sas_phy); 3793 phy->phy_attached = 0; 3794 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3795 GFP_ATOMIC); 3796 break; 3797 case HW_EVENT_MALFUNCTION: 3798 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n"); 3799 break; 3800 case HW_EVENT_BROADCAST_SES: 3801 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n"); 3802 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); 3803 sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; 3804 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); 3805 sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, 3806 GFP_ATOMIC); 3807 break; 3808 case HW_EVENT_INBOUND_CRC_ERROR: 3809 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n"); 3810 pm8001_hw_event_ack_req(pm8001_ha, 0, 3811 HW_EVENT_INBOUND_CRC_ERROR, 3812 port_id, phy_id, 0, 0); 3813 break; 3814 case HW_EVENT_HARD_RESET_RECEIVED: 3815 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n"); 3816 sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC); 3817 break; 3818 case HW_EVENT_ID_FRAME_TIMEOUT: 3819 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n"); 3820 sas_phy_disconnected(sas_phy); 3821 phy->phy_attached = 0; 3822 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3823 GFP_ATOMIC); 3824 break; 3825 case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: 3826 pm8001_dbg(pm8001_ha, MSG, 3827 "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n"); 3828 pm8001_hw_event_ack_req(pm8001_ha, 0, 3829 HW_EVENT_LINK_ERR_PHY_RESET_FAILED, 3830 port_id, phy_id, 0, 0); 3831 sas_phy_disconnected(sas_phy); 3832 phy->phy_attached = 0; 3833 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3834 GFP_ATOMIC); 3835 break; 3836 case HW_EVENT_PORT_RESET_TIMER_TMO: 3837 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n"); 3838 sas_phy_disconnected(sas_phy); 3839 phy->phy_attached = 0; 3840 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3841 GFP_ATOMIC); 3842 break; 3843 case HW_EVENT_PORT_RECOVERY_TIMER_TMO: 3844 pm8001_dbg(pm8001_ha, MSG, 3845 "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n"); 3846 sas_phy_disconnected(sas_phy); 3847 phy->phy_attached = 0; 3848 sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, 3849 GFP_ATOMIC); 3850 break; 3851 case HW_EVENT_PORT_RECOVER: 3852 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n"); 3853 break; 3854 case HW_EVENT_PORT_RESET_COMPLETE: 3855 pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n"); 3856 break; 3857 case EVENT_BROADCAST_ASYNCH_EVENT: 3858 pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n"); 3859 break; 3860 default: 3861 pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n", 3862 eventType); 3863 break; 3864 } 3865 return 0; 3866 } 3867 3868 /** 3869 * process_one_iomb - process one outbound Queue memory block 3870 * @pm8001_ha: our hba card information 3871 * @piomb: IO message buffer 3872 */ 3873 static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) 3874 { 3875 __le32 pHeader = *(__le32 *)piomb; 3876 u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); 3877 3878 pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n"); 3879 3880 switch (opc) { 3881 case OPC_OUB_ECHO: 3882 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n"); 3883 break; 3884 case OPC_OUB_HW_EVENT: 3885 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n"); 3886 mpi_hw_event(pm8001_ha, piomb); 3887 break; 3888 case OPC_OUB_SSP_COMP: 3889 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n"); 3890 mpi_ssp_completion(pm8001_ha, piomb); 3891 break; 3892 case OPC_OUB_SMP_COMP: 3893 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n"); 3894 mpi_smp_completion(pm8001_ha, piomb); 3895 break; 3896 case OPC_OUB_LOCAL_PHY_CNTRL: 3897 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n"); 3898 pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); 3899 break; 3900 case OPC_OUB_DEV_REGIST: 3901 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n"); 3902 pm8001_mpi_reg_resp(pm8001_ha, piomb); 3903 break; 3904 case OPC_OUB_DEREG_DEV: 3905 pm8001_dbg(pm8001_ha, MSG, "unregister the device\n"); 3906 pm8001_mpi_dereg_resp(pm8001_ha, piomb); 3907 break; 3908 case OPC_OUB_GET_DEV_HANDLE: 3909 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n"); 3910 break; 3911 case OPC_OUB_SATA_COMP: 3912 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n"); 3913 mpi_sata_completion(pm8001_ha, piomb); 3914 break; 3915 case OPC_OUB_SATA_EVENT: 3916 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n"); 3917 mpi_sata_event(pm8001_ha, piomb); 3918 break; 3919 case OPC_OUB_SSP_EVENT: 3920 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n"); 3921 mpi_ssp_event(pm8001_ha, piomb); 3922 break; 3923 case OPC_OUB_DEV_HANDLE_ARRIV: 3924 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n"); 3925 /*This is for target*/ 3926 break; 3927 case OPC_OUB_SSP_RECV_EVENT: 3928 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n"); 3929 /*This is for target*/ 3930 break; 3931 case OPC_OUB_DEV_INFO: 3932 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n"); 3933 break; 3934 case OPC_OUB_FW_FLASH_UPDATE: 3935 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n"); 3936 pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); 3937 break; 3938 case OPC_OUB_GPIO_RESPONSE: 3939 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n"); 3940 break; 3941 case OPC_OUB_GPIO_EVENT: 3942 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n"); 3943 break; 3944 case OPC_OUB_GENERAL_EVENT: 3945 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n"); 3946 pm8001_mpi_general_event(pm8001_ha, piomb); 3947 break; 3948 case OPC_OUB_SSP_ABORT_RSP: 3949 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n"); 3950 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3951 break; 3952 case OPC_OUB_SATA_ABORT_RSP: 3953 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n"); 3954 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3955 break; 3956 case OPC_OUB_SAS_DIAG_MODE_START_END: 3957 pm8001_dbg(pm8001_ha, MSG, 3958 "OPC_OUB_SAS_DIAG_MODE_START_END\n"); 3959 break; 3960 case OPC_OUB_SAS_DIAG_EXECUTE: 3961 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n"); 3962 break; 3963 case OPC_OUB_GET_TIME_STAMP: 3964 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n"); 3965 break; 3966 case OPC_OUB_SAS_HW_EVENT_ACK: 3967 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n"); 3968 break; 3969 case OPC_OUB_PORT_CONTROL: 3970 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n"); 3971 break; 3972 case OPC_OUB_SMP_ABORT_RSP: 3973 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n"); 3974 pm8001_mpi_task_abort_resp(pm8001_ha, piomb); 3975 break; 3976 case OPC_OUB_GET_NVMD_DATA: 3977 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n"); 3978 pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); 3979 break; 3980 case OPC_OUB_SET_NVMD_DATA: 3981 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n"); 3982 pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); 3983 break; 3984 case OPC_OUB_DEVICE_HANDLE_REMOVAL: 3985 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n"); 3986 break; 3987 case OPC_OUB_SET_DEVICE_STATE: 3988 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n"); 3989 pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); 3990 break; 3991 case OPC_OUB_GET_DEVICE_STATE: 3992 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n"); 3993 break; 3994 case OPC_OUB_SET_DEV_INFO: 3995 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n"); 3996 break; 3997 case OPC_OUB_SAS_RE_INITIALIZE: 3998 pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n"); 3999 break; 4000 default: 4001 pm8001_dbg(pm8001_ha, DEVIO, 4002 "Unknown outbound Queue IOMB OPC = %x\n", 4003 opc); 4004 break; 4005 } 4006 } 4007 4008 static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) 4009 { 4010 struct outbound_queue_table *circularQ; 4011 void *pMsg1 = NULL; 4012 u8 bc; 4013 u32 ret = MPI_IO_STATUS_FAIL; 4014 unsigned long flags; 4015 4016 spin_lock_irqsave(&pm8001_ha->lock, flags); 4017 circularQ = &pm8001_ha->outbnd_q_tbl[vec]; 4018 do { 4019 ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); 4020 if (MPI_IO_STATUS_SUCCESS == ret) { 4021 /* process the outbound message */ 4022 process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); 4023 /* free the message from the outbound circular buffer */ 4024 pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, 4025 circularQ, bc); 4026 } 4027 if (MPI_IO_STATUS_BUSY == ret) { 4028 /* Update the producer index from SPC */ 4029 circularQ->producer_index = 4030 cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); 4031 if (le32_to_cpu(circularQ->producer_index) == 4032 circularQ->consumer_idx) 4033 /* OQ is empty */ 4034 break; 4035 } 4036 } while (1); 4037 spin_unlock_irqrestore(&pm8001_ha->lock, flags); 4038 return ret; 4039 } 4040 4041 /* DMA_... to our direction translation. */ 4042 static const u8 data_dir_flags[] = { 4043 [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ 4044 [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ 4045 [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ 4046 [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ 4047 }; 4048 void 4049 pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) 4050 { 4051 int i; 4052 struct scatterlist *sg; 4053 struct pm8001_prd *buf_prd = prd; 4054 4055 for_each_sg(scatter, sg, nr, i) { 4056 buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); 4057 buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); 4058 buf_prd->im_len.e = 0; 4059 buf_prd++; 4060 } 4061 } 4062 4063 static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd) 4064 { 4065 psmp_cmd->tag = hTag; 4066 psmp_cmd->device_id = cpu_to_le32(deviceID); 4067 psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); 4068 } 4069 4070 /** 4071 * pm8001_chip_smp_req - send a SMP task to FW 4072 * @pm8001_ha: our hba card information. 4073 * @ccb: the ccb information this request used. 4074 */ 4075 static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, 4076 struct pm8001_ccb_info *ccb) 4077 { 4078 int elem, rc; 4079 struct sas_task *task = ccb->task; 4080 struct domain_device *dev = task->dev; 4081 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4082 struct scatterlist *sg_req, *sg_resp; 4083 u32 req_len, resp_len; 4084 struct smp_req smp_cmd; 4085 u32 opc; 4086 4087 memset(&smp_cmd, 0, sizeof(smp_cmd)); 4088 /* 4089 * DMA-map SMP request, response buffers 4090 */ 4091 sg_req = &task->smp_task.smp_req; 4092 elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); 4093 if (!elem) 4094 return -ENOMEM; 4095 req_len = sg_dma_len(sg_req); 4096 4097 sg_resp = &task->smp_task.smp_resp; 4098 elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); 4099 if (!elem) { 4100 rc = -ENOMEM; 4101 goto err_out; 4102 } 4103 resp_len = sg_dma_len(sg_resp); 4104 /* must be in dwords */ 4105 if ((req_len & 0x3) || (resp_len & 0x3)) { 4106 rc = -EINVAL; 4107 goto err_out_2; 4108 } 4109 4110 opc = OPC_INB_SMP_REQUEST; 4111 smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); 4112 smp_cmd.long_smp_req.long_req_addr = 4113 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); 4114 smp_cmd.long_smp_req.long_req_size = 4115 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); 4116 smp_cmd.long_smp_req.long_resp_addr = 4117 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); 4118 smp_cmd.long_smp_req.long_resp_size = 4119 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); 4120 build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); 4121 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, 4122 &smp_cmd, sizeof(smp_cmd), 0); 4123 if (rc) 4124 goto err_out_2; 4125 4126 return 0; 4127 4128 err_out_2: 4129 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, 4130 DMA_FROM_DEVICE); 4131 err_out: 4132 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, 4133 DMA_TO_DEVICE); 4134 return rc; 4135 } 4136 4137 /** 4138 * pm8001_chip_ssp_io_req - send a SSP task to FW 4139 * @pm8001_ha: our hba card information. 4140 * @ccb: the ccb information this request used. 4141 */ 4142 static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, 4143 struct pm8001_ccb_info *ccb) 4144 { 4145 struct sas_task *task = ccb->task; 4146 struct domain_device *dev = task->dev; 4147 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4148 struct ssp_ini_io_start_req ssp_cmd; 4149 u32 tag = ccb->ccb_tag; 4150 u64 phys_addr; 4151 u32 opc = OPC_INB_SSPINIIOSTART; 4152 memset(&ssp_cmd, 0, sizeof(ssp_cmd)); 4153 memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); 4154 ssp_cmd.dir_m_tlr = 4155 cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for 4156 SAS 1.1 compatible TLR*/ 4157 ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4158 ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4159 ssp_cmd.tag = cpu_to_le32(tag); 4160 if (task->ssp_task.enable_first_burst) 4161 ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; 4162 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); 4163 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); 4164 memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, 4165 task->ssp_task.cmd->cmd_len); 4166 4167 /* fill in PRD (scatter/gather) table, if any */ 4168 if (task->num_scatter > 1) { 4169 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4170 phys_addr = ccb->ccb_dma_handle; 4171 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); 4172 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); 4173 ssp_cmd.esgl = cpu_to_le32(1<<31); 4174 } else if (task->num_scatter == 1) { 4175 u64 dma_addr = sg_dma_address(task->scatter); 4176 ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); 4177 ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); 4178 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4179 ssp_cmd.esgl = 0; 4180 } else if (task->num_scatter == 0) { 4181 ssp_cmd.addr_low = 0; 4182 ssp_cmd.addr_high = 0; 4183 ssp_cmd.len = cpu_to_le32(task->total_xfer_len); 4184 ssp_cmd.esgl = 0; 4185 } 4186 4187 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &ssp_cmd, 4188 sizeof(ssp_cmd), 0); 4189 } 4190 4191 static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, 4192 struct pm8001_ccb_info *ccb) 4193 { 4194 struct sas_task *task = ccb->task; 4195 struct domain_device *dev = task->dev; 4196 struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; 4197 u32 tag = ccb->ccb_tag; 4198 struct sata_start_req sata_cmd; 4199 u32 hdr_tag, ncg_tag = 0; 4200 u64 phys_addr; 4201 u32 ATAP = 0x0; 4202 u32 dir; 4203 unsigned long flags; 4204 u32 opc = OPC_INB_SATA_HOST_OPSTART; 4205 4206 memset(&sata_cmd, 0, sizeof(sata_cmd)); 4207 4208 if (task->data_dir == DMA_NONE && !task->ata_task.use_ncq) { 4209 ATAP = 0x04; /* no data*/ 4210 pm8001_dbg(pm8001_ha, IO, "no data\n"); 4211 } else if (likely(!task->ata_task.device_control_reg_update)) { 4212 if (task->ata_task.use_ncq && 4213 dev->sata_dev.class != ATA_DEV_ATAPI) { 4214 ATAP = 0x07; /* FPDMA */ 4215 pm8001_dbg(pm8001_ha, IO, "FPDMA\n"); 4216 } else if (task->ata_task.dma_xfer) { 4217 ATAP = 0x06; /* DMA */ 4218 pm8001_dbg(pm8001_ha, IO, "DMA\n"); 4219 } else { 4220 ATAP = 0x05; /* PIO*/ 4221 pm8001_dbg(pm8001_ha, IO, "PIO\n"); 4222 } 4223 } 4224 if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { 4225 task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); 4226 ncg_tag = hdr_tag; 4227 } 4228 dir = data_dir_flags[task->data_dir] << 8; 4229 sata_cmd.tag = cpu_to_le32(tag); 4230 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); 4231 sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); 4232 sata_cmd.ncqtag_atap_dir_m = 4233 cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); 4234 sata_cmd.sata_fis = task->ata_task.fis; 4235 if (likely(!task->ata_task.device_control_reg_update)) 4236 sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ 4237 sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ 4238 /* fill in PRD (scatter/gather) table, if any */ 4239 if (task->num_scatter > 1) { 4240 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); 4241 phys_addr = ccb->ccb_dma_handle; 4242 sata_cmd.addr_low = lower_32_bits(phys_addr); 4243 sata_cmd.addr_high = upper_32_bits(phys_addr); 4244 sata_cmd.esgl = cpu_to_le32(1 << 31); 4245 } else if (task->num_scatter == 1) { 4246 u64 dma_addr = sg_dma_address(task->scatter); 4247 sata_cmd.addr_low = lower_32_bits(dma_addr); 4248 sata_cmd.addr_high = upper_32_bits(dma_addr); 4249 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4250 sata_cmd.esgl = 0; 4251 } else if (task->num_scatter == 0) { 4252 sata_cmd.addr_low = 0; 4253 sata_cmd.addr_high = 0; 4254 sata_cmd.len = cpu_to_le32(task->total_xfer_len); 4255 sata_cmd.esgl = 0; 4256 } 4257 4258 /* Check for read log for failed drive and return */ 4259 if (sata_cmd.sata_fis.command == 0x2f) { 4260 if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || 4261 (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || 4262 (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { 4263 struct task_status_struct *ts; 4264 4265 pm8001_ha_dev->id &= 0xDFFFFFFF; 4266 ts = &task->task_status; 4267 4268 spin_lock_irqsave(&task->task_state_lock, flags); 4269 ts->resp = SAS_TASK_COMPLETE; 4270 ts->stat = SAS_SAM_STAT_GOOD; 4271 task->task_state_flags &= ~SAS_TASK_STATE_PENDING; 4272 task->task_state_flags |= SAS_TASK_STATE_DONE; 4273 if (unlikely((task->task_state_flags & 4274 SAS_TASK_STATE_ABORTED))) { 4275 spin_unlock_irqrestore(&task->task_state_lock, 4276 flags); 4277 pm8001_dbg(pm8001_ha, FAIL, 4278 "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n", 4279 task, ts->resp, 4280 ts->stat); 4281 pm8001_ccb_task_free(pm8001_ha, ccb); 4282 } else { 4283 spin_unlock_irqrestore(&task->task_state_lock, 4284 flags); 4285 pm8001_ccb_task_free_done(pm8001_ha, ccb); 4286 return 0; 4287 } 4288 } 4289 } 4290 4291 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sata_cmd, 4292 sizeof(sata_cmd), 0); 4293 } 4294 4295 /** 4296 * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND 4297 * @pm8001_ha: our hba card information. 4298 * @phy_id: the phy id which we wanted to start up. 4299 */ 4300 static int 4301 pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) 4302 { 4303 struct phy_start_req payload; 4304 u32 tag = 0x01; 4305 u32 opcode = OPC_INB_PHYSTART; 4306 4307 memset(&payload, 0, sizeof(payload)); 4308 payload.tag = cpu_to_le32(tag); 4309 /* 4310 ** [0:7] PHY Identifier 4311 ** [8:11] link rate 1.5G, 3G, 6G 4312 ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both 4313 ** [14] 0b disable spin up hold; 1b enable spin up hold 4314 */ 4315 payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | 4316 LINKMODE_AUTO | LINKRATE_15 | 4317 LINKRATE_30 | LINKRATE_60 | phy_id); 4318 payload.sas_identify.dev_type = SAS_END_DEVICE; 4319 payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; 4320 memcpy(payload.sas_identify.sas_addr, 4321 pm8001_ha->sas_addr, SAS_ADDR_SIZE); 4322 payload.sas_identify.phy_id = phy_id; 4323 4324 return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload, 4325 sizeof(payload), 0); 4326 } 4327 4328 /** 4329 * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND 4330 * @pm8001_ha: our hba card information. 4331 * @phy_id: the phy id which we wanted to start up. 4332 */ 4333 static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, 4334 u8 phy_id) 4335 { 4336 struct phy_stop_req payload; 4337 u32 tag = 0x01; 4338 u32 opcode = OPC_INB_PHYSTOP; 4339 4340 memset(&payload, 0, sizeof(payload)); 4341 payload.tag = cpu_to_le32(tag); 4342 payload.phy_id = cpu_to_le32(phy_id); 4343 4344 return pm8001_mpi_build_cmd(pm8001_ha, 0, opcode, &payload, 4345 sizeof(payload), 0); 4346 } 4347 4348 /* 4349 * see comments on pm8001_mpi_reg_resp. 4350 */ 4351 static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, 4352 struct pm8001_device *pm8001_dev, u32 flag) 4353 { 4354 struct reg_dev_req payload; 4355 u32 opc; 4356 u32 stp_sspsmp_sata = 0x4; 4357 u32 linkrate, phy_id; 4358 int rc; 4359 struct pm8001_ccb_info *ccb; 4360 u8 retryFlag = 0x1; 4361 u16 firstBurstSize = 0; 4362 u16 ITNT = 2000; 4363 struct domain_device *dev = pm8001_dev->sas_device; 4364 struct domain_device *parent_dev = dev->parent; 4365 struct pm8001_port *port = dev->port->lldd_port; 4366 4367 memset(&payload, 0, sizeof(payload)); 4368 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL); 4369 if (!ccb) 4370 return -SAS_QUEUE_FULL; 4371 4372 payload.tag = cpu_to_le32(ccb->ccb_tag); 4373 if (flag == 1) 4374 stp_sspsmp_sata = 0x02; /*direct attached sata */ 4375 else { 4376 if (pm8001_dev->dev_type == SAS_SATA_DEV) 4377 stp_sspsmp_sata = 0x00; /* stp*/ 4378 else if (pm8001_dev->dev_type == SAS_END_DEVICE || 4379 dev_is_expander(pm8001_dev->dev_type)) 4380 stp_sspsmp_sata = 0x01; /*ssp or smp*/ 4381 } 4382 if (parent_dev && dev_is_expander(parent_dev->dev_type)) 4383 phy_id = parent_dev->ex_dev.ex_phy->phy_id; 4384 else 4385 phy_id = pm8001_dev->attached_phy; 4386 opc = OPC_INB_REG_DEV; 4387 linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? 4388 pm8001_dev->sas_device->linkrate : dev->port->linkrate; 4389 payload.phyid_portid = 4390 cpu_to_le32(((port->port_id) & 0x0F) | 4391 ((phy_id & 0x0F) << 4)); 4392 payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | 4393 ((linkrate & 0x0F) * 0x1000000) | 4394 ((stp_sspsmp_sata & 0x03) * 0x10000000)); 4395 payload.firstburstsize_ITNexustimeout = 4396 cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); 4397 memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, 4398 SAS_ADDR_SIZE); 4399 4400 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4401 sizeof(payload), 0); 4402 if (rc) 4403 pm8001_ccb_free(pm8001_ha, ccb); 4404 4405 return rc; 4406 } 4407 4408 /* 4409 * see comments on pm8001_mpi_reg_resp. 4410 */ 4411 int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, 4412 u32 device_id) 4413 { 4414 struct dereg_dev_req payload; 4415 u32 opc = OPC_INB_DEREG_DEV_HANDLE; 4416 4417 memset(&payload, 0, sizeof(payload)); 4418 payload.tag = cpu_to_le32(1); 4419 payload.device_id = cpu_to_le32(device_id); 4420 pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n", 4421 device_id); 4422 4423 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4424 sizeof(payload), 0); 4425 } 4426 4427 /** 4428 * pm8001_chip_phy_ctl_req - support the local phy operation 4429 * @pm8001_ha: our hba card information. 4430 * @phyId: the phy id which we wanted to operate 4431 * @phy_op: the phy operation to request 4432 */ 4433 static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, 4434 u32 phyId, u32 phy_op) 4435 { 4436 struct local_phy_ctl_req payload; 4437 u32 opc = OPC_INB_LOCAL_PHY_CONTROL; 4438 4439 memset(&payload, 0, sizeof(payload)); 4440 payload.tag = cpu_to_le32(1); 4441 payload.phyop_phyid = 4442 cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); 4443 4444 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4445 sizeof(payload), 0); 4446 } 4447 4448 static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) 4449 { 4450 #ifdef PM8001_USE_MSIX 4451 return 1; 4452 #else 4453 u32 value; 4454 4455 value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); 4456 if (value) 4457 return 1; 4458 return 0; 4459 #endif 4460 } 4461 4462 /** 4463 * pm8001_chip_isr - PM8001 isr handler. 4464 * @pm8001_ha: our hba card information. 4465 * @vec: IRQ number 4466 */ 4467 static irqreturn_t 4468 pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) 4469 { 4470 pm8001_chip_interrupt_disable(pm8001_ha, vec); 4471 pm8001_dbg(pm8001_ha, DEVIO, 4472 "irq vec %d, ODMR:0x%x\n", 4473 vec, pm8001_cr32(pm8001_ha, 0, 0x30)); 4474 process_oq(pm8001_ha, vec); 4475 pm8001_chip_interrupt_enable(pm8001_ha, vec); 4476 return IRQ_HANDLED; 4477 } 4478 4479 static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, 4480 u32 dev_id, enum sas_internal_abort type, u32 task_tag, u32 cmd_tag) 4481 { 4482 struct task_abort_req task_abort; 4483 4484 memset(&task_abort, 0, sizeof(task_abort)); 4485 if (type == SAS_INTERNAL_ABORT_SINGLE) { 4486 task_abort.abort_all = 0; 4487 task_abort.device_id = cpu_to_le32(dev_id); 4488 task_abort.tag_to_abort = cpu_to_le32(task_tag); 4489 } else if (type == SAS_INTERNAL_ABORT_DEV) { 4490 task_abort.abort_all = cpu_to_le32(1); 4491 task_abort.device_id = cpu_to_le32(dev_id); 4492 } else { 4493 pm8001_dbg(pm8001_ha, EH, "unknown type (%d)\n", type); 4494 return -EIO; 4495 } 4496 4497 task_abort.tag = cpu_to_le32(cmd_tag); 4498 4499 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &task_abort, 4500 sizeof(task_abort), 0); 4501 } 4502 4503 /* 4504 * pm8001_chip_abort_task - SAS abort task when error or exception happened. 4505 */ 4506 int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, 4507 struct pm8001_ccb_info *ccb) 4508 { 4509 struct sas_task *task = ccb->task; 4510 struct sas_internal_abort_task *abort = &task->abort_task; 4511 struct pm8001_device *pm8001_dev = ccb->device; 4512 int rc = TMF_RESP_FUNC_FAILED; 4513 u32 opc, device_id; 4514 4515 pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n", 4516 ccb->ccb_tag, abort->tag); 4517 if (pm8001_dev->dev_type == SAS_END_DEVICE) 4518 opc = OPC_INB_SSP_ABORT; 4519 else if (pm8001_dev->dev_type == SAS_SATA_DEV) 4520 opc = OPC_INB_SATA_ABORT; 4521 else 4522 opc = OPC_INB_SMP_ABORT;/* SMP */ 4523 device_id = pm8001_dev->device_id; 4524 rc = send_task_abort(pm8001_ha, opc, device_id, abort->type, 4525 abort->tag, ccb->ccb_tag); 4526 if (rc != TMF_RESP_FUNC_COMPLETE) 4527 pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc); 4528 return rc; 4529 } 4530 4531 /** 4532 * pm8001_chip_ssp_tm_req - built the task management command. 4533 * @pm8001_ha: our hba card information. 4534 * @ccb: the ccb information. 4535 * @tmf: task management function. 4536 */ 4537 int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, 4538 struct pm8001_ccb_info *ccb, struct sas_tmf_task *tmf) 4539 { 4540 struct sas_task *task = ccb->task; 4541 struct domain_device *dev = task->dev; 4542 struct pm8001_device *pm8001_dev = dev->lldd_dev; 4543 u32 opc = OPC_INB_SSPINITMSTART; 4544 struct ssp_ini_tm_start_req sspTMCmd; 4545 4546 memset(&sspTMCmd, 0, sizeof(sspTMCmd)); 4547 sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); 4548 sspTMCmd.relate_tag = cpu_to_le32((u32)tmf->tag_of_task_to_be_managed); 4549 sspTMCmd.tmf = cpu_to_le32(tmf->tmf); 4550 memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); 4551 sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); 4552 if (pm8001_ha->chip_id != chip_8001) 4553 sspTMCmd.ds_ads_m = cpu_to_le32(0x08); 4554 4555 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &sspTMCmd, 4556 sizeof(sspTMCmd), 0); 4557 } 4558 4559 int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4560 void *payload) 4561 { 4562 u32 opc = OPC_INB_GET_NVMD_DATA; 4563 u32 nvmd_type; 4564 int rc; 4565 struct pm8001_ccb_info *ccb; 4566 struct get_nvm_data_req nvmd_req; 4567 struct fw_control_ex *fw_control_context; 4568 struct pm8001_ioctl_payload *ioctl_payload = payload; 4569 4570 nvmd_type = ioctl_payload->minor_function; 4571 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4572 if (!fw_control_context) 4573 return -ENOMEM; 4574 fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific; 4575 fw_control_context->len = ioctl_payload->rd_length; 4576 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4577 4578 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4579 if (!ccb) { 4580 kfree(fw_control_context); 4581 return -SAS_QUEUE_FULL; 4582 } 4583 ccb->fw_control_context = fw_control_context; 4584 4585 nvmd_req.tag = cpu_to_le32(ccb->ccb_tag); 4586 4587 switch (nvmd_type) { 4588 case TWI_DEVICE: { 4589 u32 twi_addr, twi_page_size; 4590 twi_addr = 0xa8; 4591 twi_page_size = 2; 4592 4593 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4594 twi_page_size << 8 | TWI_DEVICE); 4595 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4596 nvmd_req.resp_addr_hi = 4597 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4598 nvmd_req.resp_addr_lo = 4599 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4600 break; 4601 } 4602 case C_SEEPROM: { 4603 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4604 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4605 nvmd_req.resp_addr_hi = 4606 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4607 nvmd_req.resp_addr_lo = 4608 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4609 break; 4610 } 4611 case VPD_FLASH: { 4612 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4613 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4614 nvmd_req.resp_addr_hi = 4615 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4616 nvmd_req.resp_addr_lo = 4617 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4618 break; 4619 } 4620 case EXPAN_ROM: { 4621 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4622 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4623 nvmd_req.resp_addr_hi = 4624 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4625 nvmd_req.resp_addr_lo = 4626 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4627 break; 4628 } 4629 case IOP_RDUMP: { 4630 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP); 4631 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); 4632 nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset); 4633 nvmd_req.resp_addr_hi = 4634 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4635 nvmd_req.resp_addr_lo = 4636 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4637 break; 4638 } 4639 default: 4640 break; 4641 } 4642 4643 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req, 4644 sizeof(nvmd_req), 0); 4645 if (rc) { 4646 kfree(fw_control_context); 4647 pm8001_ccb_free(pm8001_ha, ccb); 4648 } 4649 return rc; 4650 } 4651 4652 int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, 4653 void *payload) 4654 { 4655 u32 opc = OPC_INB_SET_NVMD_DATA; 4656 u32 nvmd_type; 4657 int rc; 4658 struct pm8001_ccb_info *ccb; 4659 struct set_nvm_data_req nvmd_req; 4660 struct fw_control_ex *fw_control_context; 4661 struct pm8001_ioctl_payload *ioctl_payload = payload; 4662 4663 nvmd_type = ioctl_payload->minor_function; 4664 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4665 if (!fw_control_context) 4666 return -ENOMEM; 4667 4668 memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, 4669 &ioctl_payload->func_specific, 4670 ioctl_payload->wr_length); 4671 memset(&nvmd_req, 0, sizeof(nvmd_req)); 4672 4673 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4674 if (!ccb) { 4675 kfree(fw_control_context); 4676 return -SAS_QUEUE_FULL; 4677 } 4678 ccb->fw_control_context = fw_control_context; 4679 4680 nvmd_req.tag = cpu_to_le32(ccb->ccb_tag); 4681 switch (nvmd_type) { 4682 case TWI_DEVICE: { 4683 u32 twi_addr, twi_page_size; 4684 twi_addr = 0xa8; 4685 twi_page_size = 2; 4686 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4687 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | 4688 twi_page_size << 8 | TWI_DEVICE); 4689 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4690 nvmd_req.resp_addr_hi = 4691 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4692 nvmd_req.resp_addr_lo = 4693 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4694 break; 4695 } 4696 case C_SEEPROM: 4697 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); 4698 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4699 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4700 nvmd_req.resp_addr_hi = 4701 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4702 nvmd_req.resp_addr_lo = 4703 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4704 break; 4705 case VPD_FLASH: 4706 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); 4707 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4708 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4709 nvmd_req.resp_addr_hi = 4710 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4711 nvmd_req.resp_addr_lo = 4712 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4713 break; 4714 case EXPAN_ROM: 4715 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); 4716 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); 4717 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); 4718 nvmd_req.resp_addr_hi = 4719 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); 4720 nvmd_req.resp_addr_lo = 4721 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); 4722 break; 4723 default: 4724 break; 4725 } 4726 4727 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &nvmd_req, 4728 sizeof(nvmd_req), 0); 4729 if (rc) { 4730 kfree(fw_control_context); 4731 pm8001_ccb_free(pm8001_ha, ccb); 4732 } 4733 return rc; 4734 } 4735 4736 /** 4737 * pm8001_chip_fw_flash_update_build - support the firmware update operation 4738 * @pm8001_ha: our hba card information. 4739 * @fw_flash_updata_info: firmware flash update param 4740 * @tag: Tag to apply to the payload 4741 */ 4742 int 4743 pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, 4744 void *fw_flash_updata_info, u32 tag) 4745 { 4746 struct fw_flash_Update_req payload; 4747 struct fw_flash_updata_info *info; 4748 u32 opc = OPC_INB_FW_FLASH_UPDATE; 4749 4750 memset(&payload, 0, sizeof(struct fw_flash_Update_req)); 4751 info = fw_flash_updata_info; 4752 payload.tag = cpu_to_le32(tag); 4753 payload.cur_image_len = cpu_to_le32(info->cur_image_len); 4754 payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); 4755 payload.total_image_len = cpu_to_le32(info->total_image_len); 4756 payload.len = info->sgl.im_len.len ; 4757 payload.sgl_addr_lo = 4758 cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr))); 4759 payload.sgl_addr_hi = 4760 cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr))); 4761 4762 return pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4763 sizeof(payload), 0); 4764 } 4765 4766 int 4767 pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, 4768 void *payload) 4769 { 4770 struct fw_flash_updata_info flash_update_info; 4771 struct fw_control_info *fw_control; 4772 struct fw_control_ex *fw_control_context; 4773 int rc; 4774 struct pm8001_ccb_info *ccb; 4775 void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr; 4776 dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr; 4777 struct pm8001_ioctl_payload *ioctl_payload = payload; 4778 4779 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); 4780 if (!fw_control_context) 4781 return -ENOMEM; 4782 fw_control = (struct fw_control_info *)&ioctl_payload->func_specific; 4783 pm8001_dbg(pm8001_ha, DEVIO, 4784 "dma fw_control context input length :%x\n", 4785 fw_control->len); 4786 memcpy(buffer, fw_control->buffer, fw_control->len); 4787 flash_update_info.sgl.addr = cpu_to_le64(phys_addr); 4788 flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); 4789 flash_update_info.sgl.im_len.e = 0; 4790 flash_update_info.cur_image_offset = fw_control->offset; 4791 flash_update_info.cur_image_len = fw_control->len; 4792 flash_update_info.total_image_len = fw_control->size; 4793 fw_control_context->fw_control = fw_control; 4794 fw_control_context->virtAddr = buffer; 4795 fw_control_context->phys_addr = phys_addr; 4796 fw_control_context->len = fw_control->len; 4797 4798 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4799 if (!ccb) { 4800 kfree(fw_control_context); 4801 return -SAS_QUEUE_FULL; 4802 } 4803 ccb->fw_control_context = fw_control_context; 4804 4805 rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, 4806 ccb->ccb_tag); 4807 if (rc) { 4808 kfree(fw_control_context); 4809 pm8001_ccb_free(pm8001_ha, ccb); 4810 } 4811 4812 return rc; 4813 } 4814 4815 ssize_t 4816 pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf) 4817 { 4818 u32 value, rem, offset = 0, bar = 0; 4819 u32 index, work_offset, dw_length; 4820 u32 shift_value, gsm_base, gsm_dump_offset; 4821 char *direct_data; 4822 struct Scsi_Host *shost = class_to_shost(cdev); 4823 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 4824 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; 4825 4826 direct_data = buf; 4827 gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset; 4828 4829 /* check max is 1 Mbytes */ 4830 if ((length > 0x100000) || (gsm_dump_offset & 3) || 4831 ((gsm_dump_offset + length) > 0x1000000)) 4832 return -EINVAL; 4833 4834 if (pm8001_ha->chip_id == chip_8001) 4835 bar = 2; 4836 else 4837 bar = 1; 4838 4839 work_offset = gsm_dump_offset & 0xFFFF0000; 4840 offset = gsm_dump_offset & 0x0000FFFF; 4841 gsm_dump_offset = work_offset; 4842 /* adjust length to dword boundary */ 4843 rem = length & 3; 4844 dw_length = length >> 2; 4845 4846 for (index = 0; index < dw_length; index++) { 4847 if ((work_offset + offset) & 0xFFFF0000) { 4848 if (pm8001_ha->chip_id == chip_8001) 4849 shift_value = ((gsm_dump_offset + offset) & 4850 SHIFT_REG_64K_MASK); 4851 else 4852 shift_value = (((gsm_dump_offset + offset) & 4853 SHIFT_REG_64K_MASK) >> 4854 SHIFT_REG_BIT_SHIFT); 4855 4856 if (pm8001_ha->chip_id == chip_8001) { 4857 gsm_base = GSM_BASE; 4858 if (-1 == pm8001_bar4_shift(pm8001_ha, 4859 (gsm_base + shift_value))) 4860 return -EIO; 4861 } else { 4862 gsm_base = 0; 4863 if (-1 == pm80xx_bar4_shift(pm8001_ha, 4864 (gsm_base + shift_value))) 4865 return -EIO; 4866 } 4867 gsm_dump_offset = (gsm_dump_offset + offset) & 4868 0xFFFF0000; 4869 work_offset = 0; 4870 offset = offset & 0x0000FFFF; 4871 } 4872 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4873 0x0000FFFF); 4874 direct_data += sprintf(direct_data, "%08x ", value); 4875 offset += 4; 4876 } 4877 if (rem != 0) { 4878 value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 4879 0x0000FFFF); 4880 /* xfr for non_dw */ 4881 direct_data += sprintf(direct_data, "%08x ", value); 4882 } 4883 /* Shift back to BAR4 original address */ 4884 if (-1 == pm8001_bar4_shift(pm8001_ha, 0)) 4885 return -EIO; 4886 pm8001_ha->fatal_forensic_shift_offset += 1024; 4887 4888 if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000) 4889 pm8001_ha->fatal_forensic_shift_offset = 0; 4890 return direct_data - buf; 4891 } 4892 4893 int 4894 pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, 4895 struct pm8001_device *pm8001_dev, u32 state) 4896 { 4897 struct set_dev_state_req payload; 4898 struct pm8001_ccb_info *ccb; 4899 int rc; 4900 u32 opc = OPC_INB_SET_DEVICE_STATE; 4901 4902 memset(&payload, 0, sizeof(payload)); 4903 4904 ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, NULL); 4905 if (!ccb) 4906 return -SAS_QUEUE_FULL; 4907 4908 payload.tag = cpu_to_le32(ccb->ccb_tag); 4909 payload.device_id = cpu_to_le32(pm8001_dev->device_id); 4910 payload.nds = cpu_to_le32(state); 4911 4912 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4913 sizeof(payload), 0); 4914 if (rc) 4915 pm8001_ccb_free(pm8001_ha, ccb); 4916 4917 return rc; 4918 } 4919 4920 static int 4921 pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) 4922 { 4923 struct sas_re_initialization_req payload; 4924 struct pm8001_ccb_info *ccb; 4925 int rc; 4926 u32 opc = OPC_INB_SAS_RE_INITIALIZE; 4927 4928 memset(&payload, 0, sizeof(payload)); 4929 4930 ccb = pm8001_ccb_alloc(pm8001_ha, NULL, NULL); 4931 if (!ccb) 4932 return -SAS_QUEUE_FULL; 4933 4934 payload.tag = cpu_to_le32(ccb->ccb_tag); 4935 payload.SSAHOLT = cpu_to_le32(0xd << 25); 4936 payload.sata_hol_tmo = cpu_to_le32(80); 4937 payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); 4938 4939 rc = pm8001_mpi_build_cmd(pm8001_ha, 0, opc, &payload, 4940 sizeof(payload), 0); 4941 if (rc) 4942 pm8001_ccb_free(pm8001_ha, ccb); 4943 4944 return rc; 4945 } 4946 4947 const struct pm8001_dispatch pm8001_8001_dispatch = { 4948 .name = "pmc8001", 4949 .chip_init = pm8001_chip_init, 4950 .chip_soft_rst = pm8001_chip_soft_rst, 4951 .chip_rst = pm8001_hw_chip_rst, 4952 .chip_iounmap = pm8001_chip_iounmap, 4953 .isr = pm8001_chip_isr, 4954 .is_our_interrupt = pm8001_chip_is_our_interrupt, 4955 .isr_process_oq = process_oq, 4956 .interrupt_enable = pm8001_chip_interrupt_enable, 4957 .interrupt_disable = pm8001_chip_interrupt_disable, 4958 .make_prd = pm8001_chip_make_sg, 4959 .smp_req = pm8001_chip_smp_req, 4960 .ssp_io_req = pm8001_chip_ssp_io_req, 4961 .sata_req = pm8001_chip_sata_req, 4962 .phy_start_req = pm8001_chip_phy_start_req, 4963 .phy_stop_req = pm8001_chip_phy_stop_req, 4964 .reg_dev_req = pm8001_chip_reg_dev_req, 4965 .dereg_dev_req = pm8001_chip_dereg_dev_req, 4966 .phy_ctl_req = pm8001_chip_phy_ctl_req, 4967 .task_abort = pm8001_chip_abort_task, 4968 .ssp_tm_req = pm8001_chip_ssp_tm_req, 4969 .get_nvmd_req = pm8001_chip_get_nvmd_req, 4970 .set_nvmd_req = pm8001_chip_set_nvmd_req, 4971 .fw_flash_update_req = pm8001_chip_fw_flash_update_req, 4972 .set_dev_state_req = pm8001_chip_set_dev_state_req, 4973 .sas_re_init_req = pm8001_chip_sas_re_initialization, 4974 .fatal_errors = pm80xx_fatal_errors, 4975 }; 4976