1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers 4 * 5 * This driver supports the newer, SCSI-based firmware interface only. 6 * 7 * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com> 8 * 9 * Based on the original DAC960 driver, which has 10 * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com> 11 * Portions Copyright 2002 by Mylex (An IBM Business Unit) 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 #include <linux/pci.h> 19 #include <linux/raid_class.h> 20 #include <asm/unaligned.h> 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_host.h> 23 #include <scsi/scsi_device.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_tcq.h> 26 #include "myrs.h" 27 28 static struct raid_template *myrs_raid_template; 29 30 static struct myrs_devstate_name_entry { 31 enum myrs_devstate state; 32 char *name; 33 } myrs_devstate_name_list[] = { 34 { MYRS_DEVICE_UNCONFIGURED, "Unconfigured" }, 35 { MYRS_DEVICE_ONLINE, "Online" }, 36 { MYRS_DEVICE_REBUILD, "Rebuild" }, 37 { MYRS_DEVICE_MISSING, "Missing" }, 38 { MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" }, 39 { MYRS_DEVICE_OFFLINE, "Offline" }, 40 { MYRS_DEVICE_CRITICAL, "Critical" }, 41 { MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" }, 42 { MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" }, 43 { MYRS_DEVICE_STANDBY, "Standby" }, 44 { MYRS_DEVICE_INVALID_STATE, "Invalid" }, 45 }; 46 47 static char *myrs_devstate_name(enum myrs_devstate state) 48 { 49 struct myrs_devstate_name_entry *entry = myrs_devstate_name_list; 50 int i; 51 52 for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) { 53 if (entry[i].state == state) 54 return entry[i].name; 55 } 56 return NULL; 57 } 58 59 static struct myrs_raid_level_name_entry { 60 enum myrs_raid_level level; 61 char *name; 62 } myrs_raid_level_name_list[] = { 63 { MYRS_RAID_LEVEL0, "RAID0" }, 64 { MYRS_RAID_LEVEL1, "RAID1" }, 65 { MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" }, 66 { MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" }, 67 { MYRS_RAID_LEVEL6, "RAID6" }, 68 { MYRS_RAID_JBOD, "JBOD" }, 69 { MYRS_RAID_NEWSPAN, "New Mylex SPAN" }, 70 { MYRS_RAID_LEVEL3F, "RAID3 fixed parity" }, 71 { MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" }, 72 { MYRS_RAID_SPAN, "Mylex SPAN" }, 73 { MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" }, 74 { MYRS_RAID_LEVELE, "RAIDE (concatenation)" }, 75 { MYRS_RAID_PHYSICAL, "Physical device" }, 76 }; 77 78 static char *myrs_raid_level_name(enum myrs_raid_level level) 79 { 80 struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list; 81 int i; 82 83 for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) { 84 if (entry[i].level == level) 85 return entry[i].name; 86 } 87 return NULL; 88 } 89 90 /* 91 * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk 92 */ 93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk) 94 { 95 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 96 97 memset(mbox, 0, sizeof(union myrs_cmd_mbox)); 98 cmd_blk->status = 0; 99 } 100 101 /* 102 * myrs_qcmd - queues Command for DAC960 V2 Series Controllers. 103 */ 104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) 105 { 106 void __iomem *base = cs->io_base; 107 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 108 union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox; 109 110 cs->write_cmd_mbox(next_mbox, mbox); 111 112 if (cs->prev_cmd_mbox1->words[0] == 0 || 113 cs->prev_cmd_mbox2->words[0] == 0) 114 cs->get_cmd_mbox(base); 115 116 cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1; 117 cs->prev_cmd_mbox1 = next_mbox; 118 119 if (++next_mbox > cs->last_cmd_mbox) 120 next_mbox = cs->first_cmd_mbox; 121 122 cs->next_cmd_mbox = next_mbox; 123 } 124 125 /* 126 * myrs_exec_cmd - executes V2 Command and waits for completion. 127 */ 128 static void myrs_exec_cmd(struct myrs_hba *cs, 129 struct myrs_cmdblk *cmd_blk) 130 { 131 DECLARE_COMPLETION_ONSTACK(complete); 132 unsigned long flags; 133 134 cmd_blk->complete = &complete; 135 spin_lock_irqsave(&cs->queue_lock, flags); 136 myrs_qcmd(cs, cmd_blk); 137 spin_unlock_irqrestore(&cs->queue_lock, flags); 138 139 wait_for_completion(&complete); 140 } 141 142 /* 143 * myrs_report_progress - prints progress message 144 */ 145 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num, 146 unsigned char *msg, unsigned long blocks, 147 unsigned long size) 148 { 149 shost_printk(KERN_INFO, cs->host, 150 "Logical Drive %d: %s in Progress: %d%% completed\n", 151 ldev_num, msg, 152 (100 * (int)(blocks >> 7)) / (int)(size >> 7)); 153 } 154 155 /* 156 * myrs_get_ctlr_info - executes a Controller Information IOCTL Command 157 */ 158 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs) 159 { 160 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 161 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 162 dma_addr_t ctlr_info_addr; 163 union myrs_sgl *sgl; 164 unsigned char status; 165 unsigned short ldev_present, ldev_critical, ldev_offline; 166 167 ldev_present = cs->ctlr_info->ldev_present; 168 ldev_critical = cs->ctlr_info->ldev_critical; 169 ldev_offline = cs->ctlr_info->ldev_offline; 170 171 ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info, 172 sizeof(struct myrs_ctlr_info), 173 DMA_FROM_DEVICE); 174 if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr)) 175 return MYRS_STATUS_FAILED; 176 177 mutex_lock(&cs->dcmd_mutex); 178 myrs_reset_cmd(cmd_blk); 179 mbox->ctlr_info.id = MYRS_DCMD_TAG; 180 mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL; 181 mbox->ctlr_info.control.dma_ctrl_to_host = true; 182 mbox->ctlr_info.control.no_autosense = true; 183 mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info); 184 mbox->ctlr_info.ctlr_num = 0; 185 mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO; 186 sgl = &mbox->ctlr_info.dma_addr; 187 sgl->sge[0].sge_addr = ctlr_info_addr; 188 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; 189 dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n"); 190 myrs_exec_cmd(cs, cmd_blk); 191 status = cmd_blk->status; 192 mutex_unlock(&cs->dcmd_mutex); 193 dma_unmap_single(&cs->pdev->dev, ctlr_info_addr, 194 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE); 195 if (status == MYRS_STATUS_SUCCESS) { 196 if (cs->ctlr_info->bg_init_active + 197 cs->ctlr_info->ldev_init_active + 198 cs->ctlr_info->pdev_init_active + 199 cs->ctlr_info->cc_active + 200 cs->ctlr_info->rbld_active + 201 cs->ctlr_info->exp_active != 0) 202 cs->needs_update = true; 203 if (cs->ctlr_info->ldev_present != ldev_present || 204 cs->ctlr_info->ldev_critical != ldev_critical || 205 cs->ctlr_info->ldev_offline != ldev_offline) 206 shost_printk(KERN_INFO, cs->host, 207 "Logical drive count changes (%d/%d/%d)\n", 208 cs->ctlr_info->ldev_critical, 209 cs->ctlr_info->ldev_offline, 210 cs->ctlr_info->ldev_present); 211 } 212 213 return status; 214 } 215 216 /* 217 * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command 218 */ 219 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs, 220 unsigned short ldev_num, struct myrs_ldev_info *ldev_info) 221 { 222 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 223 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 224 dma_addr_t ldev_info_addr; 225 struct myrs_ldev_info ldev_info_orig; 226 union myrs_sgl *sgl; 227 unsigned char status; 228 229 memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info)); 230 ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info, 231 sizeof(struct myrs_ldev_info), 232 DMA_FROM_DEVICE); 233 if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr)) 234 return MYRS_STATUS_FAILED; 235 236 mutex_lock(&cs->dcmd_mutex); 237 myrs_reset_cmd(cmd_blk); 238 mbox->ldev_info.id = MYRS_DCMD_TAG; 239 mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL; 240 mbox->ldev_info.control.dma_ctrl_to_host = true; 241 mbox->ldev_info.control.no_autosense = true; 242 mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info); 243 mbox->ldev_info.ldev.ldev_num = ldev_num; 244 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID; 245 sgl = &mbox->ldev_info.dma_addr; 246 sgl->sge[0].sge_addr = ldev_info_addr; 247 sgl->sge[0].sge_count = mbox->ldev_info.dma_size; 248 dev_dbg(&cs->host->shost_gendev, 249 "Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num); 250 myrs_exec_cmd(cs, cmd_blk); 251 status = cmd_blk->status; 252 mutex_unlock(&cs->dcmd_mutex); 253 dma_unmap_single(&cs->pdev->dev, ldev_info_addr, 254 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE); 255 if (status == MYRS_STATUS_SUCCESS) { 256 unsigned short ldev_num = ldev_info->ldev_num; 257 struct myrs_ldev_info *new = ldev_info; 258 struct myrs_ldev_info *old = &ldev_info_orig; 259 unsigned long ldev_size = new->cfg_devsize; 260 261 if (new->dev_state != old->dev_state) { 262 const char *name; 263 264 name = myrs_devstate_name(new->dev_state); 265 shost_printk(KERN_INFO, cs->host, 266 "Logical Drive %d is now %s\n", 267 ldev_num, name ? name : "Invalid"); 268 } 269 if ((new->soft_errs != old->soft_errs) || 270 (new->cmds_failed != old->cmds_failed) || 271 (new->deferred_write_errs != old->deferred_write_errs)) 272 shost_printk(KERN_INFO, cs->host, 273 "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n", 274 ldev_num, new->soft_errs, 275 new->cmds_failed, 276 new->deferred_write_errs); 277 if (new->bg_init_active) 278 myrs_report_progress(cs, ldev_num, 279 "Background Initialization", 280 new->bg_init_lba, ldev_size); 281 else if (new->fg_init_active) 282 myrs_report_progress(cs, ldev_num, 283 "Foreground Initialization", 284 new->fg_init_lba, ldev_size); 285 else if (new->migration_active) 286 myrs_report_progress(cs, ldev_num, 287 "Data Migration", 288 new->migration_lba, ldev_size); 289 else if (new->patrol_active) 290 myrs_report_progress(cs, ldev_num, 291 "Patrol Operation", 292 new->patrol_lba, ldev_size); 293 if (old->bg_init_active && !new->bg_init_active) 294 shost_printk(KERN_INFO, cs->host, 295 "Logical Drive %d: Background Initialization %s\n", 296 ldev_num, 297 (new->ldev_control.ldev_init_done ? 298 "Completed" : "Failed")); 299 } 300 return status; 301 } 302 303 /* 304 * myrs_get_pdev_info - executes a "Read Physical Device Information" Command 305 */ 306 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs, 307 unsigned char channel, unsigned char target, unsigned char lun, 308 struct myrs_pdev_info *pdev_info) 309 { 310 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 311 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 312 dma_addr_t pdev_info_addr; 313 union myrs_sgl *sgl; 314 unsigned char status; 315 316 pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info, 317 sizeof(struct myrs_pdev_info), 318 DMA_FROM_DEVICE); 319 if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr)) 320 return MYRS_STATUS_FAILED; 321 322 mutex_lock(&cs->dcmd_mutex); 323 myrs_reset_cmd(cmd_blk); 324 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; 325 mbox->pdev_info.id = MYRS_DCMD_TAG; 326 mbox->pdev_info.control.dma_ctrl_to_host = true; 327 mbox->pdev_info.control.no_autosense = true; 328 mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info); 329 mbox->pdev_info.pdev.lun = lun; 330 mbox->pdev_info.pdev.target = target; 331 mbox->pdev_info.pdev.channel = channel; 332 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID; 333 sgl = &mbox->pdev_info.dma_addr; 334 sgl->sge[0].sge_addr = pdev_info_addr; 335 sgl->sge[0].sge_count = mbox->pdev_info.dma_size; 336 dev_dbg(&cs->host->shost_gendev, 337 "Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n", 338 channel, target, lun); 339 myrs_exec_cmd(cs, cmd_blk); 340 status = cmd_blk->status; 341 mutex_unlock(&cs->dcmd_mutex); 342 dma_unmap_single(&cs->pdev->dev, pdev_info_addr, 343 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE); 344 return status; 345 } 346 347 /* 348 * myrs_dev_op - executes a "Device Operation" Command 349 */ 350 static unsigned char myrs_dev_op(struct myrs_hba *cs, 351 enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev) 352 { 353 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 354 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 355 unsigned char status; 356 357 mutex_lock(&cs->dcmd_mutex); 358 myrs_reset_cmd(cmd_blk); 359 mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL; 360 mbox->dev_op.id = MYRS_DCMD_TAG; 361 mbox->dev_op.control.dma_ctrl_to_host = true; 362 mbox->dev_op.control.no_autosense = true; 363 mbox->dev_op.ioctl_opcode = opcode; 364 mbox->dev_op.opdev = opdev; 365 myrs_exec_cmd(cs, cmd_blk); 366 status = cmd_blk->status; 367 mutex_unlock(&cs->dcmd_mutex); 368 return status; 369 } 370 371 /* 372 * myrs_translate_pdev - translates a Physical Device Channel and 373 * TargetID into a Logical Device. 374 */ 375 static unsigned char myrs_translate_pdev(struct myrs_hba *cs, 376 unsigned char channel, unsigned char target, unsigned char lun, 377 struct myrs_devmap *devmap) 378 { 379 struct pci_dev *pdev = cs->pdev; 380 dma_addr_t devmap_addr; 381 struct myrs_cmdblk *cmd_blk; 382 union myrs_cmd_mbox *mbox; 383 union myrs_sgl *sgl; 384 unsigned char status; 385 386 memset(devmap, 0x0, sizeof(struct myrs_devmap)); 387 devmap_addr = dma_map_single(&pdev->dev, devmap, 388 sizeof(struct myrs_devmap), 389 DMA_FROM_DEVICE); 390 if (dma_mapping_error(&pdev->dev, devmap_addr)) 391 return MYRS_STATUS_FAILED; 392 393 mutex_lock(&cs->dcmd_mutex); 394 cmd_blk = &cs->dcmd_blk; 395 mbox = &cmd_blk->mbox; 396 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; 397 mbox->pdev_info.control.dma_ctrl_to_host = true; 398 mbox->pdev_info.control.no_autosense = true; 399 mbox->pdev_info.dma_size = sizeof(struct myrs_devmap); 400 mbox->pdev_info.pdev.target = target; 401 mbox->pdev_info.pdev.channel = channel; 402 mbox->pdev_info.pdev.lun = lun; 403 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV; 404 sgl = &mbox->pdev_info.dma_addr; 405 sgl->sge[0].sge_addr = devmap_addr; 406 sgl->sge[0].sge_count = mbox->pdev_info.dma_size; 407 408 myrs_exec_cmd(cs, cmd_blk); 409 status = cmd_blk->status; 410 mutex_unlock(&cs->dcmd_mutex); 411 dma_unmap_single(&pdev->dev, devmap_addr, 412 sizeof(struct myrs_devmap), DMA_FROM_DEVICE); 413 return status; 414 } 415 416 /* 417 * myrs_get_event - executes a Get Event Command 418 */ 419 static unsigned char myrs_get_event(struct myrs_hba *cs, 420 unsigned int event_num, struct myrs_event *event_buf) 421 { 422 struct pci_dev *pdev = cs->pdev; 423 dma_addr_t event_addr; 424 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; 425 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 426 union myrs_sgl *sgl; 427 unsigned char status; 428 429 event_addr = dma_map_single(&pdev->dev, event_buf, 430 sizeof(struct myrs_event), DMA_FROM_DEVICE); 431 if (dma_mapping_error(&pdev->dev, event_addr)) 432 return MYRS_STATUS_FAILED; 433 434 mbox->get_event.opcode = MYRS_CMD_OP_IOCTL; 435 mbox->get_event.dma_size = sizeof(struct myrs_event); 436 mbox->get_event.evnum_upper = event_num >> 16; 437 mbox->get_event.ctlr_num = 0; 438 mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT; 439 mbox->get_event.evnum_lower = event_num & 0xFFFF; 440 sgl = &mbox->get_event.dma_addr; 441 sgl->sge[0].sge_addr = event_addr; 442 sgl->sge[0].sge_count = mbox->get_event.dma_size; 443 myrs_exec_cmd(cs, cmd_blk); 444 status = cmd_blk->status; 445 dma_unmap_single(&pdev->dev, event_addr, 446 sizeof(struct myrs_event), DMA_FROM_DEVICE); 447 448 return status; 449 } 450 451 /* 452 * myrs_get_fwstatus - executes a Get Health Status Command 453 */ 454 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs) 455 { 456 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; 457 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 458 union myrs_sgl *sgl; 459 unsigned char status = cmd_blk->status; 460 461 myrs_reset_cmd(cmd_blk); 462 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 463 mbox->common.id = MYRS_MCMD_TAG; 464 mbox->common.control.dma_ctrl_to_host = true; 465 mbox->common.control.no_autosense = true; 466 mbox->common.dma_size = sizeof(struct myrs_fwstat); 467 mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS; 468 sgl = &mbox->common.dma_addr; 469 sgl->sge[0].sge_addr = cs->fwstat_addr; 470 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; 471 dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n"); 472 myrs_exec_cmd(cs, cmd_blk); 473 status = cmd_blk->status; 474 475 return status; 476 } 477 478 /* 479 * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface 480 */ 481 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs, 482 enable_mbox_t enable_mbox_fn) 483 { 484 void __iomem *base = cs->io_base; 485 struct pci_dev *pdev = cs->pdev; 486 union myrs_cmd_mbox *cmd_mbox; 487 struct myrs_stat_mbox *stat_mbox; 488 union myrs_cmd_mbox *mbox; 489 dma_addr_t mbox_addr; 490 unsigned char status = MYRS_STATUS_FAILED; 491 492 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) 493 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 494 dev_err(&pdev->dev, "DMA mask out of range\n"); 495 return false; 496 } 497 498 /* Temporary dma mapping, used only in the scope of this function */ 499 mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), 500 &mbox_addr, GFP_KERNEL); 501 if (dma_mapping_error(&pdev->dev, mbox_addr)) 502 return false; 503 504 /* These are the base addresses for the command memory mailbox array */ 505 cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox); 506 cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size, 507 &cs->cmd_mbox_addr, GFP_KERNEL); 508 if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) { 509 dev_err(&pdev->dev, "Failed to map command mailbox\n"); 510 goto out_free; 511 } 512 cs->first_cmd_mbox = cmd_mbox; 513 cmd_mbox += MYRS_MAX_CMD_MBOX - 1; 514 cs->last_cmd_mbox = cmd_mbox; 515 cs->next_cmd_mbox = cs->first_cmd_mbox; 516 cs->prev_cmd_mbox1 = cs->last_cmd_mbox; 517 cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1; 518 519 /* These are the base addresses for the status memory mailbox array */ 520 cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox); 521 stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size, 522 &cs->stat_mbox_addr, GFP_KERNEL); 523 if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) { 524 dev_err(&pdev->dev, "Failed to map status mailbox\n"); 525 goto out_free; 526 } 527 528 cs->first_stat_mbox = stat_mbox; 529 stat_mbox += MYRS_MAX_STAT_MBOX - 1; 530 cs->last_stat_mbox = stat_mbox; 531 cs->next_stat_mbox = cs->first_stat_mbox; 532 533 cs->fwstat_buf = dma_alloc_coherent(&pdev->dev, 534 sizeof(struct myrs_fwstat), 535 &cs->fwstat_addr, GFP_KERNEL); 536 if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) { 537 dev_err(&pdev->dev, "Failed to map firmware health buffer\n"); 538 cs->fwstat_buf = NULL; 539 goto out_free; 540 } 541 cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), GFP_KERNEL); 542 if (!cs->ctlr_info) 543 goto out_free; 544 545 cs->event_buf = kzalloc(sizeof(struct myrs_event), GFP_KERNEL); 546 if (!cs->event_buf) 547 goto out_free; 548 549 /* Enable the Memory Mailbox Interface. */ 550 memset(mbox, 0, sizeof(union myrs_cmd_mbox)); 551 mbox->set_mbox.id = 1; 552 mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL; 553 mbox->set_mbox.control.no_autosense = true; 554 mbox->set_mbox.first_cmd_mbox_size_kb = 555 (MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10; 556 mbox->set_mbox.first_stat_mbox_size_kb = 557 (MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10; 558 mbox->set_mbox.second_cmd_mbox_size_kb = 0; 559 mbox->set_mbox.second_stat_mbox_size_kb = 0; 560 mbox->set_mbox.sense_len = 0; 561 mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX; 562 mbox->set_mbox.fwstat_buf_size_kb = 1; 563 mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr; 564 mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr; 565 mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr; 566 status = enable_mbox_fn(base, mbox_addr); 567 568 out_free: 569 dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), 570 mbox, mbox_addr); 571 if (status != MYRS_STATUS_SUCCESS) 572 dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n", 573 status); 574 return (status == MYRS_STATUS_SUCCESS); 575 } 576 577 /* 578 * myrs_get_config - reads the Configuration Information 579 */ 580 static int myrs_get_config(struct myrs_hba *cs) 581 { 582 struct myrs_ctlr_info *info = cs->ctlr_info; 583 struct Scsi_Host *shost = cs->host; 584 unsigned char status; 585 unsigned char model[20]; 586 unsigned char fw_version[12]; 587 int i, model_len; 588 589 /* Get data into dma-able area, then copy into permanent location */ 590 mutex_lock(&cs->cinfo_mutex); 591 status = myrs_get_ctlr_info(cs); 592 mutex_unlock(&cs->cinfo_mutex); 593 if (status != MYRS_STATUS_SUCCESS) { 594 shost_printk(KERN_ERR, shost, 595 "Failed to get controller information\n"); 596 return -ENODEV; 597 } 598 599 /* Initialize the Controller Model Name and Full Model Name fields. */ 600 model_len = sizeof(info->ctlr_name); 601 if (model_len > sizeof(model)-1) 602 model_len = sizeof(model)-1; 603 memcpy(model, info->ctlr_name, model_len); 604 model_len--; 605 while (model[model_len] == ' ' || model[model_len] == '\0') 606 model_len--; 607 model[++model_len] = '\0'; 608 strcpy(cs->model_name, "DAC960 "); 609 strcat(cs->model_name, model); 610 /* Initialize the Controller Firmware Version field. */ 611 sprintf(fw_version, "%d.%02d-%02d", 612 info->fw_major_version, info->fw_minor_version, 613 info->fw_turn_number); 614 if (info->fw_major_version == 6 && 615 info->fw_minor_version == 0 && 616 info->fw_turn_number < 1) { 617 shost_printk(KERN_WARNING, shost, 618 "FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n" 619 "STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n" 620 "PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n", 621 fw_version); 622 return -ENODEV; 623 } 624 /* Initialize the Controller Channels and Targets. */ 625 shost->max_channel = info->physchan_present + info->virtchan_present; 626 shost->max_id = info->max_targets[0]; 627 for (i = 1; i < 16; i++) { 628 if (!info->max_targets[i]) 629 continue; 630 if (shost->max_id < info->max_targets[i]) 631 shost->max_id = info->max_targets[i]; 632 } 633 634 /* 635 * Initialize the Controller Queue Depth, Driver Queue Depth, 636 * Logical Drive Count, Maximum Blocks per Command, Controller 637 * Scatter/Gather Limit, and Driver Scatter/Gather Limit. 638 * The Driver Queue Depth must be at most three less than 639 * the Controller Queue Depth; tag '1' is reserved for 640 * direct commands, and tag '2' for monitoring commands. 641 */ 642 shost->can_queue = info->max_tcq - 3; 643 if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3) 644 shost->can_queue = MYRS_MAX_CMD_MBOX - 3; 645 shost->max_sectors = info->max_transfer_size; 646 shost->sg_tablesize = info->max_sge; 647 if (shost->sg_tablesize > MYRS_SG_LIMIT) 648 shost->sg_tablesize = MYRS_SG_LIMIT; 649 650 shost_printk(KERN_INFO, shost, 651 "Configuring %s PCI RAID Controller\n", model); 652 shost_printk(KERN_INFO, shost, 653 " Firmware Version: %s, Channels: %d, Memory Size: %dMB\n", 654 fw_version, info->physchan_present, info->mem_size_mb); 655 656 shost_printk(KERN_INFO, shost, 657 " Controller Queue Depth: %d, Maximum Blocks per Command: %d\n", 658 shost->can_queue, shost->max_sectors); 659 660 shost_printk(KERN_INFO, shost, 661 " Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n", 662 shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT); 663 for (i = 0; i < info->physchan_max; i++) { 664 if (!info->max_targets[i]) 665 continue; 666 shost_printk(KERN_INFO, shost, 667 " Device Channel %d: max %d devices\n", 668 i, info->max_targets[i]); 669 } 670 shost_printk(KERN_INFO, shost, 671 " Physical: %d/%d channels, %d disks, %d devices\n", 672 info->physchan_present, info->physchan_max, 673 info->pdisk_present, info->pdev_present); 674 675 shost_printk(KERN_INFO, shost, 676 " Logical: %d/%d channels, %d disks\n", 677 info->virtchan_present, info->virtchan_max, 678 info->ldev_present); 679 return 0; 680 } 681 682 /* 683 * myrs_log_event - prints a Controller Event message 684 */ 685 static struct { 686 int ev_code; 687 unsigned char *ev_msg; 688 } myrs_ev_list[] = { 689 /* Physical Device Events (0x0000 - 0x007F) */ 690 { 0x0001, "P Online" }, 691 { 0x0002, "P Standby" }, 692 { 0x0005, "P Automatic Rebuild Started" }, 693 { 0x0006, "P Manual Rebuild Started" }, 694 { 0x0007, "P Rebuild Completed" }, 695 { 0x0008, "P Rebuild Cancelled" }, 696 { 0x0009, "P Rebuild Failed for Unknown Reasons" }, 697 { 0x000A, "P Rebuild Failed due to New Physical Device" }, 698 { 0x000B, "P Rebuild Failed due to Logical Drive Failure" }, 699 { 0x000C, "S Offline" }, 700 { 0x000D, "P Found" }, 701 { 0x000E, "P Removed" }, 702 { 0x000F, "P Unconfigured" }, 703 { 0x0010, "P Expand Capacity Started" }, 704 { 0x0011, "P Expand Capacity Completed" }, 705 { 0x0012, "P Expand Capacity Failed" }, 706 { 0x0013, "P Command Timed Out" }, 707 { 0x0014, "P Command Aborted" }, 708 { 0x0015, "P Command Retried" }, 709 { 0x0016, "P Parity Error" }, 710 { 0x0017, "P Soft Error" }, 711 { 0x0018, "P Miscellaneous Error" }, 712 { 0x0019, "P Reset" }, 713 { 0x001A, "P Active Spare Found" }, 714 { 0x001B, "P Warm Spare Found" }, 715 { 0x001C, "S Sense Data Received" }, 716 { 0x001D, "P Initialization Started" }, 717 { 0x001E, "P Initialization Completed" }, 718 { 0x001F, "P Initialization Failed" }, 719 { 0x0020, "P Initialization Cancelled" }, 720 { 0x0021, "P Failed because Write Recovery Failed" }, 721 { 0x0022, "P Failed because SCSI Bus Reset Failed" }, 722 { 0x0023, "P Failed because of Double Check Condition" }, 723 { 0x0024, "P Failed because Device Cannot Be Accessed" }, 724 { 0x0025, "P Failed because of Gross Error on SCSI Processor" }, 725 { 0x0026, "P Failed because of Bad Tag from Device" }, 726 { 0x0027, "P Failed because of Command Timeout" }, 727 { 0x0028, "P Failed because of System Reset" }, 728 { 0x0029, "P Failed because of Busy Status or Parity Error" }, 729 { 0x002A, "P Failed because Host Set Device to Failed State" }, 730 { 0x002B, "P Failed because of Selection Timeout" }, 731 { 0x002C, "P Failed because of SCSI Bus Phase Error" }, 732 { 0x002D, "P Failed because Device Returned Unknown Status" }, 733 { 0x002E, "P Failed because Device Not Ready" }, 734 { 0x002F, "P Failed because Device Not Found at Startup" }, 735 { 0x0030, "P Failed because COD Write Operation Failed" }, 736 { 0x0031, "P Failed because BDT Write Operation Failed" }, 737 { 0x0039, "P Missing at Startup" }, 738 { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" }, 739 { 0x003C, "P Temporarily Offline Device Automatically Made Online" }, 740 { 0x003D, "P Standby Rebuild Started" }, 741 /* Logical Device Events (0x0080 - 0x00FF) */ 742 { 0x0080, "M Consistency Check Started" }, 743 { 0x0081, "M Consistency Check Completed" }, 744 { 0x0082, "M Consistency Check Cancelled" }, 745 { 0x0083, "M Consistency Check Completed With Errors" }, 746 { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" }, 747 { 0x0085, "M Consistency Check Failed due to Physical Device Failure" }, 748 { 0x0086, "L Offline" }, 749 { 0x0087, "L Critical" }, 750 { 0x0088, "L Online" }, 751 { 0x0089, "M Automatic Rebuild Started" }, 752 { 0x008A, "M Manual Rebuild Started" }, 753 { 0x008B, "M Rebuild Completed" }, 754 { 0x008C, "M Rebuild Cancelled" }, 755 { 0x008D, "M Rebuild Failed for Unknown Reasons" }, 756 { 0x008E, "M Rebuild Failed due to New Physical Device" }, 757 { 0x008F, "M Rebuild Failed due to Logical Drive Failure" }, 758 { 0x0090, "M Initialization Started" }, 759 { 0x0091, "M Initialization Completed" }, 760 { 0x0092, "M Initialization Cancelled" }, 761 { 0x0093, "M Initialization Failed" }, 762 { 0x0094, "L Found" }, 763 { 0x0095, "L Deleted" }, 764 { 0x0096, "M Expand Capacity Started" }, 765 { 0x0097, "M Expand Capacity Completed" }, 766 { 0x0098, "M Expand Capacity Failed" }, 767 { 0x0099, "L Bad Block Found" }, 768 { 0x009A, "L Size Changed" }, 769 { 0x009B, "L Type Changed" }, 770 { 0x009C, "L Bad Data Block Found" }, 771 { 0x009E, "L Read of Data Block in BDT" }, 772 { 0x009F, "L Write Back Data for Disk Block Lost" }, 773 { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" }, 774 { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" }, 775 { 0x00A2, "L Standby Rebuild Started" }, 776 /* Fault Management Events (0x0100 - 0x017F) */ 777 { 0x0140, "E Fan %d Failed" }, 778 { 0x0141, "E Fan %d OK" }, 779 { 0x0142, "E Fan %d Not Present" }, 780 { 0x0143, "E Power Supply %d Failed" }, 781 { 0x0144, "E Power Supply %d OK" }, 782 { 0x0145, "E Power Supply %d Not Present" }, 783 { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" }, 784 { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" }, 785 { 0x0148, "E Temperature Sensor %d Temperature Normal" }, 786 { 0x0149, "E Temperature Sensor %d Not Present" }, 787 { 0x014A, "E Enclosure Management Unit %d Access Critical" }, 788 { 0x014B, "E Enclosure Management Unit %d Access OK" }, 789 { 0x014C, "E Enclosure Management Unit %d Access Offline" }, 790 /* Controller Events (0x0180 - 0x01FF) */ 791 { 0x0181, "C Cache Write Back Error" }, 792 { 0x0188, "C Battery Backup Unit Found" }, 793 { 0x0189, "C Battery Backup Unit Charge Level Low" }, 794 { 0x018A, "C Battery Backup Unit Charge Level OK" }, 795 { 0x0193, "C Installation Aborted" }, 796 { 0x0195, "C Battery Backup Unit Physically Removed" }, 797 { 0x0196, "C Memory Error During Warm Boot" }, 798 { 0x019E, "C Memory Soft ECC Error Corrected" }, 799 { 0x019F, "C Memory Hard ECC Error Corrected" }, 800 { 0x01A2, "C Battery Backup Unit Failed" }, 801 { 0x01AB, "C Mirror Race Recovery Failed" }, 802 { 0x01AC, "C Mirror Race on Critical Drive" }, 803 /* Controller Internal Processor Events */ 804 { 0x0380, "C Internal Controller Hung" }, 805 { 0x0381, "C Internal Controller Firmware Breakpoint" }, 806 { 0x0390, "C Internal Controller i960 Processor Specific Error" }, 807 { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" }, 808 { 0, "" } 809 }; 810 811 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev) 812 { 813 unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE]; 814 int ev_idx = 0, ev_code; 815 unsigned char ev_type, *ev_msg; 816 struct Scsi_Host *shost = cs->host; 817 struct scsi_device *sdev; 818 struct scsi_sense_hdr sshdr = {0}; 819 unsigned char sense_info[4]; 820 unsigned char cmd_specific[4]; 821 822 if (ev->ev_code == 0x1C) { 823 if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) { 824 memset(&sshdr, 0x0, sizeof(sshdr)); 825 memset(sense_info, 0x0, sizeof(sense_info)); 826 memset(cmd_specific, 0x0, sizeof(cmd_specific)); 827 } else { 828 memcpy(sense_info, &ev->sense_data[3], 4); 829 memcpy(cmd_specific, &ev->sense_data[7], 4); 830 } 831 } 832 if (sshdr.sense_key == VENDOR_SPECIFIC && 833 (sshdr.asc == 0x80 || sshdr.asc == 0x81)) 834 ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq); 835 while (true) { 836 ev_code = myrs_ev_list[ev_idx].ev_code; 837 if (ev_code == ev->ev_code || ev_code == 0) 838 break; 839 ev_idx++; 840 } 841 ev_type = myrs_ev_list[ev_idx].ev_msg[0]; 842 ev_msg = &myrs_ev_list[ev_idx].ev_msg[2]; 843 if (ev_code == 0) { 844 shost_printk(KERN_WARNING, shost, 845 "Unknown Controller Event Code %04X\n", 846 ev->ev_code); 847 return; 848 } 849 switch (ev_type) { 850 case 'P': 851 sdev = scsi_device_lookup(shost, ev->channel, 852 ev->target, 0); 853 sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n", 854 ev->ev_seq, ev_msg); 855 if (sdev && sdev->hostdata && 856 sdev->channel < cs->ctlr_info->physchan_present) { 857 struct myrs_pdev_info *pdev_info = sdev->hostdata; 858 859 switch (ev->ev_code) { 860 case 0x0001: 861 case 0x0007: 862 pdev_info->dev_state = MYRS_DEVICE_ONLINE; 863 break; 864 case 0x0002: 865 pdev_info->dev_state = MYRS_DEVICE_STANDBY; 866 break; 867 case 0x000C: 868 pdev_info->dev_state = MYRS_DEVICE_OFFLINE; 869 break; 870 case 0x000E: 871 pdev_info->dev_state = MYRS_DEVICE_MISSING; 872 break; 873 case 0x000F: 874 pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED; 875 break; 876 } 877 } 878 break; 879 case 'L': 880 shost_printk(KERN_INFO, shost, 881 "event %d: Logical Drive %d %s\n", 882 ev->ev_seq, ev->lun, ev_msg); 883 cs->needs_update = true; 884 break; 885 case 'M': 886 shost_printk(KERN_INFO, shost, 887 "event %d: Logical Drive %d %s\n", 888 ev->ev_seq, ev->lun, ev_msg); 889 cs->needs_update = true; 890 break; 891 case 'S': 892 if (sshdr.sense_key == NO_SENSE || 893 (sshdr.sense_key == NOT_READY && 894 sshdr.asc == 0x04 && (sshdr.ascq == 0x01 || 895 sshdr.ascq == 0x02))) 896 break; 897 shost_printk(KERN_INFO, shost, 898 "event %d: Physical Device %d:%d %s\n", 899 ev->ev_seq, ev->channel, ev->target, ev_msg); 900 shost_printk(KERN_INFO, shost, 901 "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n", 902 ev->channel, ev->target, 903 sshdr.sense_key, sshdr.asc, sshdr.ascq); 904 shost_printk(KERN_INFO, shost, 905 "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n", 906 ev->channel, ev->target, 907 sense_info[0], sense_info[1], 908 sense_info[2], sense_info[3], 909 cmd_specific[0], cmd_specific[1], 910 cmd_specific[2], cmd_specific[3]); 911 break; 912 case 'E': 913 if (cs->disable_enc_msg) 914 break; 915 sprintf(msg_buf, ev_msg, ev->lun); 916 shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n", 917 ev->ev_seq, ev->target, msg_buf); 918 break; 919 case 'C': 920 shost_printk(KERN_INFO, shost, "event %d: Controller %s\n", 921 ev->ev_seq, ev_msg); 922 break; 923 default: 924 shost_printk(KERN_INFO, shost, 925 "event %d: Unknown Event Code %04X\n", 926 ev->ev_seq, ev->ev_code); 927 break; 928 } 929 } 930 931 /* 932 * SCSI sysfs interface functions 933 */ 934 static ssize_t raid_state_show(struct device *dev, 935 struct device_attribute *attr, char *buf) 936 { 937 struct scsi_device *sdev = to_scsi_device(dev); 938 struct myrs_hba *cs = shost_priv(sdev->host); 939 int ret; 940 941 if (!sdev->hostdata) 942 return snprintf(buf, 16, "Unknown\n"); 943 944 if (sdev->channel >= cs->ctlr_info->physchan_present) { 945 struct myrs_ldev_info *ldev_info = sdev->hostdata; 946 const char *name; 947 948 name = myrs_devstate_name(ldev_info->dev_state); 949 if (name) 950 ret = snprintf(buf, 32, "%s\n", name); 951 else 952 ret = snprintf(buf, 32, "Invalid (%02X)\n", 953 ldev_info->dev_state); 954 } else { 955 struct myrs_pdev_info *pdev_info; 956 const char *name; 957 958 pdev_info = sdev->hostdata; 959 name = myrs_devstate_name(pdev_info->dev_state); 960 if (name) 961 ret = snprintf(buf, 32, "%s\n", name); 962 else 963 ret = snprintf(buf, 32, "Invalid (%02X)\n", 964 pdev_info->dev_state); 965 } 966 return ret; 967 } 968 969 static ssize_t raid_state_store(struct device *dev, 970 struct device_attribute *attr, const char *buf, size_t count) 971 { 972 struct scsi_device *sdev = to_scsi_device(dev); 973 struct myrs_hba *cs = shost_priv(sdev->host); 974 struct myrs_cmdblk *cmd_blk; 975 union myrs_cmd_mbox *mbox; 976 enum myrs_devstate new_state; 977 unsigned short ldev_num; 978 unsigned char status; 979 980 if (!strncmp(buf, "offline", 7) || 981 !strncmp(buf, "kill", 4)) 982 new_state = MYRS_DEVICE_OFFLINE; 983 else if (!strncmp(buf, "online", 6)) 984 new_state = MYRS_DEVICE_ONLINE; 985 else if (!strncmp(buf, "standby", 7)) 986 new_state = MYRS_DEVICE_STANDBY; 987 else 988 return -EINVAL; 989 990 if (sdev->channel < cs->ctlr_info->physchan_present) { 991 struct myrs_pdev_info *pdev_info = sdev->hostdata; 992 struct myrs_devmap *pdev_devmap = 993 (struct myrs_devmap *)&pdev_info->rsvd13; 994 995 if (pdev_info->dev_state == new_state) { 996 sdev_printk(KERN_INFO, sdev, 997 "Device already in %s\n", 998 myrs_devstate_name(new_state)); 999 return count; 1000 } 1001 status = myrs_translate_pdev(cs, sdev->channel, sdev->id, 1002 sdev->lun, pdev_devmap); 1003 if (status != MYRS_STATUS_SUCCESS) 1004 return -ENXIO; 1005 ldev_num = pdev_devmap->ldev_num; 1006 } else { 1007 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1008 1009 if (ldev_info->dev_state == new_state) { 1010 sdev_printk(KERN_INFO, sdev, 1011 "Device already in %s\n", 1012 myrs_devstate_name(new_state)); 1013 return count; 1014 } 1015 ldev_num = ldev_info->ldev_num; 1016 } 1017 mutex_lock(&cs->dcmd_mutex); 1018 cmd_blk = &cs->dcmd_blk; 1019 myrs_reset_cmd(cmd_blk); 1020 mbox = &cmd_blk->mbox; 1021 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1022 mbox->common.id = MYRS_DCMD_TAG; 1023 mbox->common.control.dma_ctrl_to_host = true; 1024 mbox->common.control.no_autosense = true; 1025 mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE; 1026 mbox->set_devstate.state = new_state; 1027 mbox->set_devstate.ldev.ldev_num = ldev_num; 1028 myrs_exec_cmd(cs, cmd_blk); 1029 status = cmd_blk->status; 1030 mutex_unlock(&cs->dcmd_mutex); 1031 if (status == MYRS_STATUS_SUCCESS) { 1032 if (sdev->channel < cs->ctlr_info->physchan_present) { 1033 struct myrs_pdev_info *pdev_info = sdev->hostdata; 1034 1035 pdev_info->dev_state = new_state; 1036 } else { 1037 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1038 1039 ldev_info->dev_state = new_state; 1040 } 1041 sdev_printk(KERN_INFO, sdev, 1042 "Set device state to %s\n", 1043 myrs_devstate_name(new_state)); 1044 return count; 1045 } 1046 sdev_printk(KERN_INFO, sdev, 1047 "Failed to set device state to %s, status 0x%02x\n", 1048 myrs_devstate_name(new_state), status); 1049 return -EINVAL; 1050 } 1051 static DEVICE_ATTR_RW(raid_state); 1052 1053 static ssize_t raid_level_show(struct device *dev, 1054 struct device_attribute *attr, char *buf) 1055 { 1056 struct scsi_device *sdev = to_scsi_device(dev); 1057 struct myrs_hba *cs = shost_priv(sdev->host); 1058 const char *name = NULL; 1059 1060 if (!sdev->hostdata) 1061 return snprintf(buf, 16, "Unknown\n"); 1062 1063 if (sdev->channel >= cs->ctlr_info->physchan_present) { 1064 struct myrs_ldev_info *ldev_info; 1065 1066 ldev_info = sdev->hostdata; 1067 name = myrs_raid_level_name(ldev_info->raid_level); 1068 if (!name) 1069 return snprintf(buf, 32, "Invalid (%02X)\n", 1070 ldev_info->dev_state); 1071 1072 } else 1073 name = myrs_raid_level_name(MYRS_RAID_PHYSICAL); 1074 1075 return snprintf(buf, 32, "%s\n", name); 1076 } 1077 static DEVICE_ATTR_RO(raid_level); 1078 1079 static ssize_t rebuild_show(struct device *dev, 1080 struct device_attribute *attr, char *buf) 1081 { 1082 struct scsi_device *sdev = to_scsi_device(dev); 1083 struct myrs_hba *cs = shost_priv(sdev->host); 1084 struct myrs_ldev_info *ldev_info; 1085 unsigned short ldev_num; 1086 unsigned char status; 1087 1088 if (sdev->channel < cs->ctlr_info->physchan_present) 1089 return snprintf(buf, 32, "physical device - not rebuilding\n"); 1090 1091 ldev_info = sdev->hostdata; 1092 ldev_num = ldev_info->ldev_num; 1093 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1094 if (status != MYRS_STATUS_SUCCESS) { 1095 sdev_printk(KERN_INFO, sdev, 1096 "Failed to get device information, status 0x%02x\n", 1097 status); 1098 return -EIO; 1099 } 1100 if (ldev_info->rbld_active) { 1101 return snprintf(buf, 32, "rebuilding block %zu of %zu\n", 1102 (size_t)ldev_info->rbld_lba, 1103 (size_t)ldev_info->cfg_devsize); 1104 } else 1105 return snprintf(buf, 32, "not rebuilding\n"); 1106 } 1107 1108 static ssize_t rebuild_store(struct device *dev, 1109 struct device_attribute *attr, const char *buf, size_t count) 1110 { 1111 struct scsi_device *sdev = to_scsi_device(dev); 1112 struct myrs_hba *cs = shost_priv(sdev->host); 1113 struct myrs_ldev_info *ldev_info; 1114 struct myrs_cmdblk *cmd_blk; 1115 union myrs_cmd_mbox *mbox; 1116 unsigned short ldev_num; 1117 unsigned char status; 1118 int rebuild, ret; 1119 1120 if (sdev->channel < cs->ctlr_info->physchan_present) 1121 return -EINVAL; 1122 1123 ldev_info = sdev->hostdata; 1124 if (!ldev_info) 1125 return -ENXIO; 1126 ldev_num = ldev_info->ldev_num; 1127 1128 ret = kstrtoint(buf, 0, &rebuild); 1129 if (ret) 1130 return ret; 1131 1132 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1133 if (status != MYRS_STATUS_SUCCESS) { 1134 sdev_printk(KERN_INFO, sdev, 1135 "Failed to get device information, status 0x%02x\n", 1136 status); 1137 return -EIO; 1138 } 1139 1140 if (rebuild && ldev_info->rbld_active) { 1141 sdev_printk(KERN_INFO, sdev, 1142 "Rebuild Not Initiated; already in progress\n"); 1143 return -EALREADY; 1144 } 1145 if (!rebuild && !ldev_info->rbld_active) { 1146 sdev_printk(KERN_INFO, sdev, 1147 "Rebuild Not Cancelled; no rebuild in progress\n"); 1148 return count; 1149 } 1150 1151 mutex_lock(&cs->dcmd_mutex); 1152 cmd_blk = &cs->dcmd_blk; 1153 myrs_reset_cmd(cmd_blk); 1154 mbox = &cmd_blk->mbox; 1155 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1156 mbox->common.id = MYRS_DCMD_TAG; 1157 mbox->common.control.dma_ctrl_to_host = true; 1158 mbox->common.control.no_autosense = true; 1159 if (rebuild) { 1160 mbox->ldev_info.ldev.ldev_num = ldev_num; 1161 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START; 1162 } else { 1163 mbox->ldev_info.ldev.ldev_num = ldev_num; 1164 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP; 1165 } 1166 myrs_exec_cmd(cs, cmd_blk); 1167 status = cmd_blk->status; 1168 mutex_unlock(&cs->dcmd_mutex); 1169 if (status) { 1170 sdev_printk(KERN_INFO, sdev, 1171 "Rebuild Not %s, status 0x%02x\n", 1172 rebuild ? "Initiated" : "Cancelled", status); 1173 ret = -EIO; 1174 } else { 1175 sdev_printk(KERN_INFO, sdev, "Rebuild %s\n", 1176 rebuild ? "Initiated" : "Cancelled"); 1177 ret = count; 1178 } 1179 1180 return ret; 1181 } 1182 static DEVICE_ATTR_RW(rebuild); 1183 1184 static ssize_t consistency_check_show(struct device *dev, 1185 struct device_attribute *attr, char *buf) 1186 { 1187 struct scsi_device *sdev = to_scsi_device(dev); 1188 struct myrs_hba *cs = shost_priv(sdev->host); 1189 struct myrs_ldev_info *ldev_info; 1190 unsigned short ldev_num; 1191 1192 if (sdev->channel < cs->ctlr_info->physchan_present) 1193 return snprintf(buf, 32, "physical device - not checking\n"); 1194 1195 ldev_info = sdev->hostdata; 1196 if (!ldev_info) 1197 return -ENXIO; 1198 ldev_num = ldev_info->ldev_num; 1199 myrs_get_ldev_info(cs, ldev_num, ldev_info); 1200 if (ldev_info->cc_active) 1201 return snprintf(buf, 32, "checking block %zu of %zu\n", 1202 (size_t)ldev_info->cc_lba, 1203 (size_t)ldev_info->cfg_devsize); 1204 else 1205 return snprintf(buf, 32, "not checking\n"); 1206 } 1207 1208 static ssize_t consistency_check_store(struct device *dev, 1209 struct device_attribute *attr, const char *buf, size_t count) 1210 { 1211 struct scsi_device *sdev = to_scsi_device(dev); 1212 struct myrs_hba *cs = shost_priv(sdev->host); 1213 struct myrs_ldev_info *ldev_info; 1214 struct myrs_cmdblk *cmd_blk; 1215 union myrs_cmd_mbox *mbox; 1216 unsigned short ldev_num; 1217 unsigned char status; 1218 int check, ret; 1219 1220 if (sdev->channel < cs->ctlr_info->physchan_present) 1221 return -EINVAL; 1222 1223 ldev_info = sdev->hostdata; 1224 if (!ldev_info) 1225 return -ENXIO; 1226 ldev_num = ldev_info->ldev_num; 1227 1228 ret = kstrtoint(buf, 0, &check); 1229 if (ret) 1230 return ret; 1231 1232 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1233 if (status != MYRS_STATUS_SUCCESS) { 1234 sdev_printk(KERN_INFO, sdev, 1235 "Failed to get device information, status 0x%02x\n", 1236 status); 1237 return -EIO; 1238 } 1239 if (check && ldev_info->cc_active) { 1240 sdev_printk(KERN_INFO, sdev, 1241 "Consistency Check Not Initiated; " 1242 "already in progress\n"); 1243 return -EALREADY; 1244 } 1245 if (!check && !ldev_info->cc_active) { 1246 sdev_printk(KERN_INFO, sdev, 1247 "Consistency Check Not Cancelled; " 1248 "check not in progress\n"); 1249 return count; 1250 } 1251 1252 mutex_lock(&cs->dcmd_mutex); 1253 cmd_blk = &cs->dcmd_blk; 1254 myrs_reset_cmd(cmd_blk); 1255 mbox = &cmd_blk->mbox; 1256 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1257 mbox->common.id = MYRS_DCMD_TAG; 1258 mbox->common.control.dma_ctrl_to_host = true; 1259 mbox->common.control.no_autosense = true; 1260 if (check) { 1261 mbox->cc.ldev.ldev_num = ldev_num; 1262 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START; 1263 mbox->cc.restore_consistency = true; 1264 mbox->cc.initialized_area_only = false; 1265 } else { 1266 mbox->cc.ldev.ldev_num = ldev_num; 1267 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP; 1268 } 1269 myrs_exec_cmd(cs, cmd_blk); 1270 status = cmd_blk->status; 1271 mutex_unlock(&cs->dcmd_mutex); 1272 if (status != MYRS_STATUS_SUCCESS) { 1273 sdev_printk(KERN_INFO, sdev, 1274 "Consistency Check Not %s, status 0x%02x\n", 1275 check ? "Initiated" : "Cancelled", status); 1276 ret = -EIO; 1277 } else { 1278 sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n", 1279 check ? "Initiated" : "Cancelled"); 1280 ret = count; 1281 } 1282 1283 return ret; 1284 } 1285 static DEVICE_ATTR_RW(consistency_check); 1286 1287 static struct attribute *myrs_sdev_attrs[] = { 1288 &dev_attr_consistency_check.attr, 1289 &dev_attr_rebuild.attr, 1290 &dev_attr_raid_state.attr, 1291 &dev_attr_raid_level.attr, 1292 NULL, 1293 }; 1294 1295 ATTRIBUTE_GROUPS(myrs_sdev); 1296 1297 static ssize_t serial_show(struct device *dev, 1298 struct device_attribute *attr, char *buf) 1299 { 1300 struct Scsi_Host *shost = class_to_shost(dev); 1301 struct myrs_hba *cs = shost_priv(shost); 1302 char serial[17]; 1303 1304 memcpy(serial, cs->ctlr_info->serial_number, 16); 1305 serial[16] = '\0'; 1306 return snprintf(buf, 16, "%s\n", serial); 1307 } 1308 static DEVICE_ATTR_RO(serial); 1309 1310 static ssize_t ctlr_num_show(struct device *dev, 1311 struct device_attribute *attr, char *buf) 1312 { 1313 struct Scsi_Host *shost = class_to_shost(dev); 1314 struct myrs_hba *cs = shost_priv(shost); 1315 1316 return snprintf(buf, 20, "%d\n", cs->host->host_no); 1317 } 1318 static DEVICE_ATTR_RO(ctlr_num); 1319 1320 static struct myrs_cpu_type_tbl { 1321 enum myrs_cpu_type type; 1322 char *name; 1323 } myrs_cpu_type_names[] = { 1324 { MYRS_CPUTYPE_i960CA, "i960CA" }, 1325 { MYRS_CPUTYPE_i960RD, "i960RD" }, 1326 { MYRS_CPUTYPE_i960RN, "i960RN" }, 1327 { MYRS_CPUTYPE_i960RP, "i960RP" }, 1328 { MYRS_CPUTYPE_NorthBay, "NorthBay" }, 1329 { MYRS_CPUTYPE_StrongArm, "StrongARM" }, 1330 { MYRS_CPUTYPE_i960RM, "i960RM" }, 1331 }; 1332 1333 static ssize_t processor_show(struct device *dev, 1334 struct device_attribute *attr, char *buf) 1335 { 1336 struct Scsi_Host *shost = class_to_shost(dev); 1337 struct myrs_hba *cs = shost_priv(shost); 1338 struct myrs_cpu_type_tbl *tbl; 1339 const char *first_processor = NULL; 1340 const char *second_processor = NULL; 1341 struct myrs_ctlr_info *info = cs->ctlr_info; 1342 ssize_t ret; 1343 int i; 1344 1345 if (info->cpu[0].cpu_count) { 1346 tbl = myrs_cpu_type_names; 1347 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { 1348 if (tbl[i].type == info->cpu[0].cpu_type) { 1349 first_processor = tbl[i].name; 1350 break; 1351 } 1352 } 1353 } 1354 if (info->cpu[1].cpu_count) { 1355 tbl = myrs_cpu_type_names; 1356 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { 1357 if (tbl[i].type == info->cpu[1].cpu_type) { 1358 second_processor = tbl[i].name; 1359 break; 1360 } 1361 } 1362 } 1363 if (first_processor && second_processor) 1364 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n" 1365 "2: %s (%s, %d cpus)\n", 1366 info->cpu[0].cpu_name, 1367 first_processor, info->cpu[0].cpu_count, 1368 info->cpu[1].cpu_name, 1369 second_processor, info->cpu[1].cpu_count); 1370 else if (first_processor && !second_processor) 1371 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n", 1372 info->cpu[0].cpu_name, 1373 first_processor, info->cpu[0].cpu_count); 1374 else if (!first_processor && second_processor) 1375 ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n", 1376 info->cpu[1].cpu_name, 1377 second_processor, info->cpu[1].cpu_count); 1378 else 1379 ret = snprintf(buf, 64, "1: absent\n2: absent\n"); 1380 1381 return ret; 1382 } 1383 static DEVICE_ATTR_RO(processor); 1384 1385 static ssize_t model_show(struct device *dev, 1386 struct device_attribute *attr, char *buf) 1387 { 1388 struct Scsi_Host *shost = class_to_shost(dev); 1389 struct myrs_hba *cs = shost_priv(shost); 1390 1391 return snprintf(buf, 28, "%s\n", cs->model_name); 1392 } 1393 static DEVICE_ATTR_RO(model); 1394 1395 static ssize_t ctlr_type_show(struct device *dev, 1396 struct device_attribute *attr, char *buf) 1397 { 1398 struct Scsi_Host *shost = class_to_shost(dev); 1399 struct myrs_hba *cs = shost_priv(shost); 1400 1401 return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type); 1402 } 1403 static DEVICE_ATTR_RO(ctlr_type); 1404 1405 static ssize_t cache_size_show(struct device *dev, 1406 struct device_attribute *attr, char *buf) 1407 { 1408 struct Scsi_Host *shost = class_to_shost(dev); 1409 struct myrs_hba *cs = shost_priv(shost); 1410 1411 return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb); 1412 } 1413 static DEVICE_ATTR_RO(cache_size); 1414 1415 static ssize_t firmware_show(struct device *dev, 1416 struct device_attribute *attr, char *buf) 1417 { 1418 struct Scsi_Host *shost = class_to_shost(dev); 1419 struct myrs_hba *cs = shost_priv(shost); 1420 1421 return snprintf(buf, 16, "%d.%02d-%02d\n", 1422 cs->ctlr_info->fw_major_version, 1423 cs->ctlr_info->fw_minor_version, 1424 cs->ctlr_info->fw_turn_number); 1425 } 1426 static DEVICE_ATTR_RO(firmware); 1427 1428 static ssize_t discovery_store(struct device *dev, 1429 struct device_attribute *attr, const char *buf, size_t count) 1430 { 1431 struct Scsi_Host *shost = class_to_shost(dev); 1432 struct myrs_hba *cs = shost_priv(shost); 1433 struct myrs_cmdblk *cmd_blk; 1434 union myrs_cmd_mbox *mbox; 1435 unsigned char status; 1436 1437 mutex_lock(&cs->dcmd_mutex); 1438 cmd_blk = &cs->dcmd_blk; 1439 myrs_reset_cmd(cmd_blk); 1440 mbox = &cmd_blk->mbox; 1441 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1442 mbox->common.id = MYRS_DCMD_TAG; 1443 mbox->common.control.dma_ctrl_to_host = true; 1444 mbox->common.control.no_autosense = true; 1445 mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY; 1446 myrs_exec_cmd(cs, cmd_blk); 1447 status = cmd_blk->status; 1448 mutex_unlock(&cs->dcmd_mutex); 1449 if (status != MYRS_STATUS_SUCCESS) { 1450 shost_printk(KERN_INFO, shost, 1451 "Discovery Not Initiated, status %02X\n", 1452 status); 1453 return -EINVAL; 1454 } 1455 shost_printk(KERN_INFO, shost, "Discovery Initiated\n"); 1456 cs->next_evseq = 0; 1457 cs->needs_update = true; 1458 queue_delayed_work(cs->work_q, &cs->monitor_work, 1); 1459 flush_delayed_work(&cs->monitor_work); 1460 shost_printk(KERN_INFO, shost, "Discovery Completed\n"); 1461 1462 return count; 1463 } 1464 static DEVICE_ATTR_WO(discovery); 1465 1466 static ssize_t flush_cache_store(struct device *dev, 1467 struct device_attribute *attr, const char *buf, size_t count) 1468 { 1469 struct Scsi_Host *shost = class_to_shost(dev); 1470 struct myrs_hba *cs = shost_priv(shost); 1471 unsigned char status; 1472 1473 status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, 1474 MYRS_RAID_CONTROLLER); 1475 if (status == MYRS_STATUS_SUCCESS) { 1476 shost_printk(KERN_INFO, shost, "Cache Flush Completed\n"); 1477 return count; 1478 } 1479 shost_printk(KERN_INFO, shost, 1480 "Cache Flush failed, status 0x%02x\n", status); 1481 return -EIO; 1482 } 1483 static DEVICE_ATTR_WO(flush_cache); 1484 1485 static ssize_t disable_enclosure_messages_show(struct device *dev, 1486 struct device_attribute *attr, char *buf) 1487 { 1488 struct Scsi_Host *shost = class_to_shost(dev); 1489 struct myrs_hba *cs = shost_priv(shost); 1490 1491 return snprintf(buf, 3, "%d\n", cs->disable_enc_msg); 1492 } 1493 1494 static ssize_t disable_enclosure_messages_store(struct device *dev, 1495 struct device_attribute *attr, const char *buf, size_t count) 1496 { 1497 struct scsi_device *sdev = to_scsi_device(dev); 1498 struct myrs_hba *cs = shost_priv(sdev->host); 1499 int value, ret; 1500 1501 ret = kstrtoint(buf, 0, &value); 1502 if (ret) 1503 return ret; 1504 1505 if (value > 2) 1506 return -EINVAL; 1507 1508 cs->disable_enc_msg = value; 1509 return count; 1510 } 1511 static DEVICE_ATTR_RW(disable_enclosure_messages); 1512 1513 static struct attribute *myrs_shost_attrs[] = { 1514 &dev_attr_serial.attr, 1515 &dev_attr_ctlr_num.attr, 1516 &dev_attr_processor.attr, 1517 &dev_attr_model.attr, 1518 &dev_attr_ctlr_type.attr, 1519 &dev_attr_cache_size.attr, 1520 &dev_attr_firmware.attr, 1521 &dev_attr_discovery.attr, 1522 &dev_attr_flush_cache.attr, 1523 &dev_attr_disable_enclosure_messages.attr, 1524 NULL, 1525 }; 1526 1527 ATTRIBUTE_GROUPS(myrs_shost); 1528 1529 /* 1530 * SCSI midlayer interface 1531 */ 1532 static int myrs_host_reset(struct scsi_cmnd *scmd) 1533 { 1534 struct Scsi_Host *shost = scmd->device->host; 1535 struct myrs_hba *cs = shost_priv(shost); 1536 1537 cs->reset(cs->io_base); 1538 return SUCCESS; 1539 } 1540 1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd, 1542 struct myrs_ldev_info *ldev_info) 1543 { 1544 unsigned char modes[32], *mode_pg; 1545 bool dbd; 1546 size_t mode_len; 1547 1548 dbd = (scmd->cmnd[1] & 0x08) == 0x08; 1549 if (dbd) { 1550 mode_len = 24; 1551 mode_pg = &modes[4]; 1552 } else { 1553 mode_len = 32; 1554 mode_pg = &modes[12]; 1555 } 1556 memset(modes, 0, sizeof(modes)); 1557 modes[0] = mode_len - 1; 1558 modes[2] = 0x10; /* Enable FUA */ 1559 if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO) 1560 modes[2] |= 0x80; 1561 if (!dbd) { 1562 unsigned char *block_desc = &modes[4]; 1563 1564 modes[3] = 8; 1565 put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]); 1566 put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]); 1567 } 1568 mode_pg[0] = 0x08; 1569 mode_pg[1] = 0x12; 1570 if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED) 1571 mode_pg[2] |= 0x01; 1572 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || 1573 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) 1574 mode_pg[2] |= 0x04; 1575 if (ldev_info->cacheline_size) { 1576 mode_pg[2] |= 0x08; 1577 put_unaligned_be16(1 << ldev_info->cacheline_size, 1578 &mode_pg[14]); 1579 } 1580 1581 scsi_sg_copy_from_buffer(scmd, modes, mode_len); 1582 } 1583 1584 static int myrs_queuecommand(struct Scsi_Host *shost, 1585 struct scsi_cmnd *scmd) 1586 { 1587 struct request *rq = scsi_cmd_to_rq(scmd); 1588 struct myrs_hba *cs = shost_priv(shost); 1589 struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd); 1590 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 1591 struct scsi_device *sdev = scmd->device; 1592 union myrs_sgl *hw_sge; 1593 dma_addr_t sense_addr; 1594 struct scatterlist *sgl; 1595 unsigned long flags, timeout; 1596 int nsge; 1597 1598 if (!scmd->device->hostdata) { 1599 scmd->result = (DID_NO_CONNECT << 16); 1600 scsi_done(scmd); 1601 return 0; 1602 } 1603 1604 switch (scmd->cmnd[0]) { 1605 case REPORT_LUNS: 1606 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x20, 0x0); 1607 scsi_done(scmd); 1608 return 0; 1609 case MODE_SENSE: 1610 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1611 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1612 1613 if ((scmd->cmnd[2] & 0x3F) != 0x3F && 1614 (scmd->cmnd[2] & 0x3F) != 0x08) { 1615 /* Illegal request, invalid field in CDB */ 1616 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x24, 0); 1617 } else { 1618 myrs_mode_sense(cs, scmd, ldev_info); 1619 scmd->result = (DID_OK << 16); 1620 } 1621 scsi_done(scmd); 1622 return 0; 1623 } 1624 break; 1625 } 1626 1627 myrs_reset_cmd(cmd_blk); 1628 cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC, 1629 &sense_addr); 1630 if (!cmd_blk->sense) 1631 return SCSI_MLQUEUE_HOST_BUSY; 1632 cmd_blk->sense_addr = sense_addr; 1633 1634 timeout = rq->timeout; 1635 if (scmd->cmd_len <= 10) { 1636 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1637 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1638 1639 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10; 1640 mbox->SCSI_10.pdev.lun = ldev_info->lun; 1641 mbox->SCSI_10.pdev.target = ldev_info->target; 1642 mbox->SCSI_10.pdev.channel = ldev_info->channel; 1643 mbox->SCSI_10.pdev.ctlr = 0; 1644 } else { 1645 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU; 1646 mbox->SCSI_10.pdev.lun = sdev->lun; 1647 mbox->SCSI_10.pdev.target = sdev->id; 1648 mbox->SCSI_10.pdev.channel = sdev->channel; 1649 } 1650 mbox->SCSI_10.id = rq->tag + 3; 1651 mbox->SCSI_10.control.dma_ctrl_to_host = 1652 (scmd->sc_data_direction == DMA_FROM_DEVICE); 1653 if (rq->cmd_flags & REQ_FUA) 1654 mbox->SCSI_10.control.fua = true; 1655 mbox->SCSI_10.dma_size = scsi_bufflen(scmd); 1656 mbox->SCSI_10.sense_addr = cmd_blk->sense_addr; 1657 mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE; 1658 mbox->SCSI_10.cdb_len = scmd->cmd_len; 1659 if (timeout > 60) { 1660 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; 1661 mbox->SCSI_10.tmo.tmo_val = timeout / 60; 1662 } else { 1663 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; 1664 mbox->SCSI_10.tmo.tmo_val = timeout; 1665 } 1666 memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len); 1667 hw_sge = &mbox->SCSI_10.dma_addr; 1668 cmd_blk->dcdb = NULL; 1669 } else { 1670 dma_addr_t dcdb_dma; 1671 1672 cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC, 1673 &dcdb_dma); 1674 if (!cmd_blk->dcdb) { 1675 dma_pool_free(cs->sense_pool, cmd_blk->sense, 1676 cmd_blk->sense_addr); 1677 cmd_blk->sense = NULL; 1678 cmd_blk->sense_addr = 0; 1679 return SCSI_MLQUEUE_HOST_BUSY; 1680 } 1681 cmd_blk->dcdb_dma = dcdb_dma; 1682 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1683 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1684 1685 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256; 1686 mbox->SCSI_255.pdev.lun = ldev_info->lun; 1687 mbox->SCSI_255.pdev.target = ldev_info->target; 1688 mbox->SCSI_255.pdev.channel = ldev_info->channel; 1689 mbox->SCSI_255.pdev.ctlr = 0; 1690 } else { 1691 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU; 1692 mbox->SCSI_255.pdev.lun = sdev->lun; 1693 mbox->SCSI_255.pdev.target = sdev->id; 1694 mbox->SCSI_255.pdev.channel = sdev->channel; 1695 } 1696 mbox->SCSI_255.id = rq->tag + 3; 1697 mbox->SCSI_255.control.dma_ctrl_to_host = 1698 (scmd->sc_data_direction == DMA_FROM_DEVICE); 1699 if (rq->cmd_flags & REQ_FUA) 1700 mbox->SCSI_255.control.fua = true; 1701 mbox->SCSI_255.dma_size = scsi_bufflen(scmd); 1702 mbox->SCSI_255.sense_addr = cmd_blk->sense_addr; 1703 mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE; 1704 mbox->SCSI_255.cdb_len = scmd->cmd_len; 1705 mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma; 1706 if (timeout > 60) { 1707 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; 1708 mbox->SCSI_255.tmo.tmo_val = timeout / 60; 1709 } else { 1710 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; 1711 mbox->SCSI_255.tmo.tmo_val = timeout; 1712 } 1713 memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len); 1714 hw_sge = &mbox->SCSI_255.dma_addr; 1715 } 1716 if (scmd->sc_data_direction == DMA_NONE) 1717 goto submit; 1718 nsge = scsi_dma_map(scmd); 1719 if (nsge == 1) { 1720 sgl = scsi_sglist(scmd); 1721 hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl); 1722 hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl); 1723 } else { 1724 struct myrs_sge *hw_sgl; 1725 dma_addr_t hw_sgl_addr; 1726 int i; 1727 1728 if (nsge > 2) { 1729 hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC, 1730 &hw_sgl_addr); 1731 if (WARN_ON(!hw_sgl)) { 1732 if (cmd_blk->dcdb) { 1733 dma_pool_free(cs->dcdb_pool, 1734 cmd_blk->dcdb, 1735 cmd_blk->dcdb_dma); 1736 cmd_blk->dcdb = NULL; 1737 cmd_blk->dcdb_dma = 0; 1738 } 1739 dma_pool_free(cs->sense_pool, 1740 cmd_blk->sense, 1741 cmd_blk->sense_addr); 1742 cmd_blk->sense = NULL; 1743 cmd_blk->sense_addr = 0; 1744 return SCSI_MLQUEUE_HOST_BUSY; 1745 } 1746 cmd_blk->sgl = hw_sgl; 1747 cmd_blk->sgl_addr = hw_sgl_addr; 1748 if (scmd->cmd_len <= 10) 1749 mbox->SCSI_10.control.add_sge_mem = true; 1750 else 1751 mbox->SCSI_255.control.add_sge_mem = true; 1752 hw_sge->ext.sge0_len = nsge; 1753 hw_sge->ext.sge0_addr = cmd_blk->sgl_addr; 1754 } else 1755 hw_sgl = hw_sge->sge; 1756 1757 scsi_for_each_sg(scmd, sgl, nsge, i) { 1758 if (WARN_ON(!hw_sgl)) { 1759 scsi_dma_unmap(scmd); 1760 scmd->result = (DID_ERROR << 16); 1761 scsi_done(scmd); 1762 return 0; 1763 } 1764 hw_sgl->sge_addr = (u64)sg_dma_address(sgl); 1765 hw_sgl->sge_count = (u64)sg_dma_len(sgl); 1766 hw_sgl++; 1767 } 1768 } 1769 submit: 1770 spin_lock_irqsave(&cs->queue_lock, flags); 1771 myrs_qcmd(cs, cmd_blk); 1772 spin_unlock_irqrestore(&cs->queue_lock, flags); 1773 1774 return 0; 1775 } 1776 1777 static unsigned short myrs_translate_ldev(struct myrs_hba *cs, 1778 struct scsi_device *sdev) 1779 { 1780 unsigned short ldev_num; 1781 unsigned int chan_offset = 1782 sdev->channel - cs->ctlr_info->physchan_present; 1783 1784 ldev_num = sdev->id + chan_offset * sdev->host->max_id; 1785 1786 return ldev_num; 1787 } 1788 1789 static int myrs_slave_alloc(struct scsi_device *sdev) 1790 { 1791 struct myrs_hba *cs = shost_priv(sdev->host); 1792 unsigned char status; 1793 1794 if (sdev->channel > sdev->host->max_channel) 1795 return 0; 1796 1797 if (sdev->channel >= cs->ctlr_info->physchan_present) { 1798 struct myrs_ldev_info *ldev_info; 1799 unsigned short ldev_num; 1800 1801 if (sdev->lun > 0) 1802 return -ENXIO; 1803 1804 ldev_num = myrs_translate_ldev(cs, sdev); 1805 1806 ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL); 1807 if (!ldev_info) 1808 return -ENOMEM; 1809 1810 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1811 if (status != MYRS_STATUS_SUCCESS) { 1812 sdev->hostdata = NULL; 1813 kfree(ldev_info); 1814 } else { 1815 enum raid_level level; 1816 1817 dev_dbg(&sdev->sdev_gendev, 1818 "Logical device mapping %d:%d:%d -> %d\n", 1819 ldev_info->channel, ldev_info->target, 1820 ldev_info->lun, ldev_info->ldev_num); 1821 1822 sdev->hostdata = ldev_info; 1823 switch (ldev_info->raid_level) { 1824 case MYRS_RAID_LEVEL0: 1825 level = RAID_LEVEL_LINEAR; 1826 break; 1827 case MYRS_RAID_LEVEL1: 1828 level = RAID_LEVEL_1; 1829 break; 1830 case MYRS_RAID_LEVEL3: 1831 case MYRS_RAID_LEVEL3F: 1832 case MYRS_RAID_LEVEL3L: 1833 level = RAID_LEVEL_3; 1834 break; 1835 case MYRS_RAID_LEVEL5: 1836 case MYRS_RAID_LEVEL5L: 1837 level = RAID_LEVEL_5; 1838 break; 1839 case MYRS_RAID_LEVEL6: 1840 level = RAID_LEVEL_6; 1841 break; 1842 case MYRS_RAID_LEVELE: 1843 case MYRS_RAID_NEWSPAN: 1844 case MYRS_RAID_SPAN: 1845 level = RAID_LEVEL_LINEAR; 1846 break; 1847 case MYRS_RAID_JBOD: 1848 level = RAID_LEVEL_JBOD; 1849 break; 1850 default: 1851 level = RAID_LEVEL_UNKNOWN; 1852 break; 1853 } 1854 raid_set_level(myrs_raid_template, 1855 &sdev->sdev_gendev, level); 1856 if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) { 1857 const char *name; 1858 1859 name = myrs_devstate_name(ldev_info->dev_state); 1860 sdev_printk(KERN_DEBUG, sdev, 1861 "logical device in state %s\n", 1862 name ? name : "Invalid"); 1863 } 1864 } 1865 } else { 1866 struct myrs_pdev_info *pdev_info; 1867 1868 pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL); 1869 if (!pdev_info) 1870 return -ENOMEM; 1871 1872 status = myrs_get_pdev_info(cs, sdev->channel, 1873 sdev->id, sdev->lun, 1874 pdev_info); 1875 if (status != MYRS_STATUS_SUCCESS) { 1876 sdev->hostdata = NULL; 1877 kfree(pdev_info); 1878 return -ENXIO; 1879 } 1880 sdev->hostdata = pdev_info; 1881 } 1882 return 0; 1883 } 1884 1885 static int myrs_slave_configure(struct scsi_device *sdev) 1886 { 1887 struct myrs_hba *cs = shost_priv(sdev->host); 1888 struct myrs_ldev_info *ldev_info; 1889 1890 if (sdev->channel > sdev->host->max_channel) 1891 return -ENXIO; 1892 1893 if (sdev->channel < cs->ctlr_info->physchan_present) { 1894 /* Skip HBA device */ 1895 if (sdev->type == TYPE_RAID) 1896 return -ENXIO; 1897 sdev->no_uld_attach = 1; 1898 return 0; 1899 } 1900 if (sdev->lun != 0) 1901 return -ENXIO; 1902 1903 ldev_info = sdev->hostdata; 1904 if (!ldev_info) 1905 return -ENXIO; 1906 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || 1907 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) 1908 sdev->wce_default_on = 1; 1909 sdev->tagged_supported = 1; 1910 return 0; 1911 } 1912 1913 static void myrs_slave_destroy(struct scsi_device *sdev) 1914 { 1915 kfree(sdev->hostdata); 1916 } 1917 1918 static const struct scsi_host_template myrs_template = { 1919 .module = THIS_MODULE, 1920 .name = "DAC960", 1921 .proc_name = "myrs", 1922 .queuecommand = myrs_queuecommand, 1923 .eh_host_reset_handler = myrs_host_reset, 1924 .slave_alloc = myrs_slave_alloc, 1925 .slave_configure = myrs_slave_configure, 1926 .slave_destroy = myrs_slave_destroy, 1927 .cmd_size = sizeof(struct myrs_cmdblk), 1928 .shost_groups = myrs_shost_groups, 1929 .sdev_groups = myrs_sdev_groups, 1930 .this_id = -1, 1931 }; 1932 1933 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev, 1934 const struct pci_device_id *entry) 1935 { 1936 struct Scsi_Host *shost; 1937 struct myrs_hba *cs; 1938 1939 shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba)); 1940 if (!shost) 1941 return NULL; 1942 1943 shost->max_cmd_len = 16; 1944 shost->max_lun = 256; 1945 cs = shost_priv(shost); 1946 mutex_init(&cs->dcmd_mutex); 1947 mutex_init(&cs->cinfo_mutex); 1948 cs->host = shost; 1949 1950 return cs; 1951 } 1952 1953 /* 1954 * RAID template functions 1955 */ 1956 1957 /** 1958 * myrs_is_raid - return boolean indicating device is raid volume 1959 * @dev: the device struct object 1960 */ 1961 static int 1962 myrs_is_raid(struct device *dev) 1963 { 1964 struct scsi_device *sdev = to_scsi_device(dev); 1965 struct myrs_hba *cs = shost_priv(sdev->host); 1966 1967 return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0; 1968 } 1969 1970 /** 1971 * myrs_get_resync - get raid volume resync percent complete 1972 * @dev: the device struct object 1973 */ 1974 static void 1975 myrs_get_resync(struct device *dev) 1976 { 1977 struct scsi_device *sdev = to_scsi_device(dev); 1978 struct myrs_hba *cs = shost_priv(sdev->host); 1979 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1980 u64 percent_complete = 0; 1981 1982 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) 1983 return; 1984 if (ldev_info->rbld_active) { 1985 unsigned short ldev_num = ldev_info->ldev_num; 1986 1987 myrs_get_ldev_info(cs, ldev_num, ldev_info); 1988 percent_complete = ldev_info->rbld_lba * 100; 1989 do_div(percent_complete, ldev_info->cfg_devsize); 1990 } 1991 raid_set_resync(myrs_raid_template, dev, percent_complete); 1992 } 1993 1994 /** 1995 * myrs_get_state - get raid volume status 1996 * @dev: the device struct object 1997 */ 1998 static void 1999 myrs_get_state(struct device *dev) 2000 { 2001 struct scsi_device *sdev = to_scsi_device(dev); 2002 struct myrs_hba *cs = shost_priv(sdev->host); 2003 struct myrs_ldev_info *ldev_info = sdev->hostdata; 2004 enum raid_state state = RAID_STATE_UNKNOWN; 2005 2006 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) 2007 state = RAID_STATE_UNKNOWN; 2008 else { 2009 switch (ldev_info->dev_state) { 2010 case MYRS_DEVICE_ONLINE: 2011 state = RAID_STATE_ACTIVE; 2012 break; 2013 case MYRS_DEVICE_SUSPECTED_CRITICAL: 2014 case MYRS_DEVICE_CRITICAL: 2015 state = RAID_STATE_DEGRADED; 2016 break; 2017 case MYRS_DEVICE_REBUILD: 2018 state = RAID_STATE_RESYNCING; 2019 break; 2020 case MYRS_DEVICE_UNCONFIGURED: 2021 case MYRS_DEVICE_INVALID_STATE: 2022 state = RAID_STATE_UNKNOWN; 2023 break; 2024 default: 2025 state = RAID_STATE_OFFLINE; 2026 } 2027 } 2028 raid_set_state(myrs_raid_template, dev, state); 2029 } 2030 2031 static struct raid_function_template myrs_raid_functions = { 2032 .cookie = &myrs_template, 2033 .is_raid = myrs_is_raid, 2034 .get_resync = myrs_get_resync, 2035 .get_state = myrs_get_state, 2036 }; 2037 2038 /* 2039 * PCI interface functions 2040 */ 2041 static void myrs_flush_cache(struct myrs_hba *cs) 2042 { 2043 myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER); 2044 } 2045 2046 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk, 2047 struct scsi_cmnd *scmd) 2048 { 2049 unsigned char status; 2050 2051 if (!cmd_blk) 2052 return; 2053 2054 scsi_dma_unmap(scmd); 2055 status = cmd_blk->status; 2056 if (cmd_blk->sense) { 2057 if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) { 2058 unsigned int sense_len = SCSI_SENSE_BUFFERSIZE; 2059 2060 if (sense_len > cmd_blk->sense_len) 2061 sense_len = cmd_blk->sense_len; 2062 memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len); 2063 } 2064 dma_pool_free(cs->sense_pool, cmd_blk->sense, 2065 cmd_blk->sense_addr); 2066 cmd_blk->sense = NULL; 2067 cmd_blk->sense_addr = 0; 2068 } 2069 if (cmd_blk->dcdb) { 2070 dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb, 2071 cmd_blk->dcdb_dma); 2072 cmd_blk->dcdb = NULL; 2073 cmd_blk->dcdb_dma = 0; 2074 } 2075 if (cmd_blk->sgl) { 2076 dma_pool_free(cs->sg_pool, cmd_blk->sgl, 2077 cmd_blk->sgl_addr); 2078 cmd_blk->sgl = NULL; 2079 cmd_blk->sgl_addr = 0; 2080 } 2081 if (cmd_blk->residual) 2082 scsi_set_resid(scmd, cmd_blk->residual); 2083 if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE || 2084 status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2) 2085 scmd->result = (DID_BAD_TARGET << 16); 2086 else 2087 scmd->result = (DID_OK << 16) | status; 2088 scsi_done(scmd); 2089 } 2090 2091 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) 2092 { 2093 if (!cmd_blk) 2094 return; 2095 2096 if (cmd_blk->complete) { 2097 complete(cmd_blk->complete); 2098 cmd_blk->complete = NULL; 2099 } 2100 } 2101 2102 static void myrs_monitor(struct work_struct *work) 2103 { 2104 struct myrs_hba *cs = container_of(work, struct myrs_hba, 2105 monitor_work.work); 2106 struct Scsi_Host *shost = cs->host; 2107 struct myrs_ctlr_info *info = cs->ctlr_info; 2108 unsigned int epoch = cs->fwstat_buf->epoch; 2109 unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL; 2110 unsigned char status; 2111 2112 dev_dbg(&shost->shost_gendev, "monitor tick\n"); 2113 2114 status = myrs_get_fwstatus(cs); 2115 2116 if (cs->needs_update) { 2117 cs->needs_update = false; 2118 mutex_lock(&cs->cinfo_mutex); 2119 status = myrs_get_ctlr_info(cs); 2120 mutex_unlock(&cs->cinfo_mutex); 2121 } 2122 if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) { 2123 status = myrs_get_event(cs, cs->next_evseq, 2124 cs->event_buf); 2125 if (status == MYRS_STATUS_SUCCESS) { 2126 myrs_log_event(cs, cs->event_buf); 2127 cs->next_evseq++; 2128 interval = 1; 2129 } 2130 } 2131 2132 if (time_after(jiffies, cs->secondary_monitor_time 2133 + MYRS_SECONDARY_MONITOR_INTERVAL)) 2134 cs->secondary_monitor_time = jiffies; 2135 2136 if (info->bg_init_active + 2137 info->ldev_init_active + 2138 info->pdev_init_active + 2139 info->cc_active + 2140 info->rbld_active + 2141 info->exp_active != 0) { 2142 struct scsi_device *sdev; 2143 2144 shost_for_each_device(sdev, shost) { 2145 struct myrs_ldev_info *ldev_info; 2146 int ldev_num; 2147 2148 if (sdev->channel < info->physchan_present) 2149 continue; 2150 ldev_info = sdev->hostdata; 2151 if (!ldev_info) 2152 continue; 2153 ldev_num = ldev_info->ldev_num; 2154 myrs_get_ldev_info(cs, ldev_num, ldev_info); 2155 } 2156 cs->needs_update = true; 2157 } 2158 if (epoch == cs->epoch && 2159 cs->fwstat_buf->next_evseq == cs->next_evseq && 2160 (cs->needs_update == false || 2161 time_before(jiffies, cs->primary_monitor_time 2162 + MYRS_PRIMARY_MONITOR_INTERVAL))) { 2163 interval = MYRS_SECONDARY_MONITOR_INTERVAL; 2164 } 2165 2166 if (interval > 1) 2167 cs->primary_monitor_time = jiffies; 2168 queue_delayed_work(cs->work_q, &cs->monitor_work, interval); 2169 } 2170 2171 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs) 2172 { 2173 struct Scsi_Host *shost = cs->host; 2174 size_t elem_size, elem_align; 2175 2176 elem_align = sizeof(struct myrs_sge); 2177 elem_size = shost->sg_tablesize * elem_align; 2178 cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev, 2179 elem_size, elem_align, 0); 2180 if (cs->sg_pool == NULL) { 2181 shost_printk(KERN_ERR, shost, 2182 "Failed to allocate SG pool\n"); 2183 return false; 2184 } 2185 2186 cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev, 2187 MYRS_SENSE_SIZE, sizeof(int), 0); 2188 if (cs->sense_pool == NULL) { 2189 dma_pool_destroy(cs->sg_pool); 2190 cs->sg_pool = NULL; 2191 shost_printk(KERN_ERR, shost, 2192 "Failed to allocate sense data pool\n"); 2193 return false; 2194 } 2195 2196 cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev, 2197 MYRS_DCDB_SIZE, 2198 sizeof(unsigned char), 0); 2199 if (!cs->dcdb_pool) { 2200 dma_pool_destroy(cs->sg_pool); 2201 cs->sg_pool = NULL; 2202 dma_pool_destroy(cs->sense_pool); 2203 cs->sense_pool = NULL; 2204 shost_printk(KERN_ERR, shost, 2205 "Failed to allocate DCDB pool\n"); 2206 return false; 2207 } 2208 2209 snprintf(cs->work_q_name, sizeof(cs->work_q_name), 2210 "myrs_wq_%d", shost->host_no); 2211 cs->work_q = create_singlethread_workqueue(cs->work_q_name); 2212 if (!cs->work_q) { 2213 dma_pool_destroy(cs->dcdb_pool); 2214 cs->dcdb_pool = NULL; 2215 dma_pool_destroy(cs->sg_pool); 2216 cs->sg_pool = NULL; 2217 dma_pool_destroy(cs->sense_pool); 2218 cs->sense_pool = NULL; 2219 shost_printk(KERN_ERR, shost, 2220 "Failed to create workqueue\n"); 2221 return false; 2222 } 2223 2224 /* Initialize the Monitoring Timer. */ 2225 INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor); 2226 queue_delayed_work(cs->work_q, &cs->monitor_work, 1); 2227 2228 return true; 2229 } 2230 2231 static void myrs_destroy_mempools(struct myrs_hba *cs) 2232 { 2233 cancel_delayed_work_sync(&cs->monitor_work); 2234 destroy_workqueue(cs->work_q); 2235 2236 dma_pool_destroy(cs->sg_pool); 2237 dma_pool_destroy(cs->dcdb_pool); 2238 dma_pool_destroy(cs->sense_pool); 2239 } 2240 2241 static void myrs_unmap(struct myrs_hba *cs) 2242 { 2243 kfree(cs->event_buf); 2244 kfree(cs->ctlr_info); 2245 if (cs->fwstat_buf) { 2246 dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat), 2247 cs->fwstat_buf, cs->fwstat_addr); 2248 cs->fwstat_buf = NULL; 2249 } 2250 if (cs->first_stat_mbox) { 2251 dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size, 2252 cs->first_stat_mbox, cs->stat_mbox_addr); 2253 cs->first_stat_mbox = NULL; 2254 } 2255 if (cs->first_cmd_mbox) { 2256 dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size, 2257 cs->first_cmd_mbox, cs->cmd_mbox_addr); 2258 cs->first_cmd_mbox = NULL; 2259 } 2260 } 2261 2262 static void myrs_cleanup(struct myrs_hba *cs) 2263 { 2264 struct pci_dev *pdev = cs->pdev; 2265 2266 /* Free the memory mailbox, status, and related structures */ 2267 myrs_unmap(cs); 2268 2269 if (cs->mmio_base) { 2270 if (cs->disable_intr) 2271 cs->disable_intr(cs); 2272 iounmap(cs->mmio_base); 2273 cs->mmio_base = NULL; 2274 } 2275 if (cs->irq) 2276 free_irq(cs->irq, cs); 2277 if (cs->io_addr) 2278 release_region(cs->io_addr, 0x80); 2279 pci_set_drvdata(pdev, NULL); 2280 pci_disable_device(pdev); 2281 scsi_host_put(cs->host); 2282 } 2283 2284 static struct myrs_hba *myrs_detect(struct pci_dev *pdev, 2285 const struct pci_device_id *entry) 2286 { 2287 struct myrs_privdata *privdata = 2288 (struct myrs_privdata *)entry->driver_data; 2289 irq_handler_t irq_handler = privdata->irq_handler; 2290 unsigned int mmio_size = privdata->mmio_size; 2291 struct myrs_hba *cs = NULL; 2292 2293 cs = myrs_alloc_host(pdev, entry); 2294 if (!cs) { 2295 dev_err(&pdev->dev, "Unable to allocate Controller\n"); 2296 return NULL; 2297 } 2298 cs->pdev = pdev; 2299 2300 if (pci_enable_device(pdev)) 2301 goto Failure; 2302 2303 cs->pci_addr = pci_resource_start(pdev, 0); 2304 2305 pci_set_drvdata(pdev, cs); 2306 spin_lock_init(&cs->queue_lock); 2307 /* Map the Controller Register Window. */ 2308 if (mmio_size < PAGE_SIZE) 2309 mmio_size = PAGE_SIZE; 2310 cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size); 2311 if (cs->mmio_base == NULL) { 2312 dev_err(&pdev->dev, 2313 "Unable to map Controller Register Window\n"); 2314 goto Failure; 2315 } 2316 2317 cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK); 2318 if (privdata->hw_init(pdev, cs, cs->io_base)) 2319 goto Failure; 2320 2321 /* Acquire shared access to the IRQ Channel. */ 2322 if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) { 2323 dev_err(&pdev->dev, 2324 "Unable to acquire IRQ Channel %d\n", pdev->irq); 2325 goto Failure; 2326 } 2327 cs->irq = pdev->irq; 2328 return cs; 2329 2330 Failure: 2331 dev_err(&pdev->dev, 2332 "Failed to initialize Controller\n"); 2333 myrs_cleanup(cs); 2334 return NULL; 2335 } 2336 2337 /* 2338 * myrs_err_status reports Controller BIOS Messages passed through 2339 * the Error Status Register when the driver performs the BIOS handshaking. 2340 * It returns true for fatal errors and false otherwise. 2341 */ 2342 2343 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status, 2344 unsigned char parm0, unsigned char parm1) 2345 { 2346 struct pci_dev *pdev = cs->pdev; 2347 2348 switch (status) { 2349 case 0x00: 2350 dev_info(&pdev->dev, 2351 "Physical Device %d:%d Not Responding\n", 2352 parm1, parm0); 2353 break; 2354 case 0x08: 2355 dev_notice(&pdev->dev, "Spinning Up Drives\n"); 2356 break; 2357 case 0x30: 2358 dev_notice(&pdev->dev, "Configuration Checksum Error\n"); 2359 break; 2360 case 0x60: 2361 dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n"); 2362 break; 2363 case 0x70: 2364 dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n"); 2365 break; 2366 case 0x90: 2367 dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n", 2368 parm1, parm0); 2369 break; 2370 case 0xA0: 2371 dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n"); 2372 break; 2373 case 0xB0: 2374 dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n"); 2375 break; 2376 case 0xD0: 2377 dev_notice(&pdev->dev, "New Controller Configuration Found\n"); 2378 break; 2379 case 0xF0: 2380 dev_err(&pdev->dev, "Fatal Memory Parity Error\n"); 2381 return true; 2382 default: 2383 dev_err(&pdev->dev, "Unknown Initialization Error %02X\n", 2384 status); 2385 return true; 2386 } 2387 return false; 2388 } 2389 2390 /* 2391 * Hardware-specific functions 2392 */ 2393 2394 /* 2395 * DAC960 GEM Series Controllers. 2396 */ 2397 2398 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base) 2399 { 2400 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); 2401 2402 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2403 } 2404 2405 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base) 2406 { 2407 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24); 2408 2409 writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET); 2410 } 2411 2412 static inline void DAC960_GEM_reset_ctrl(void __iomem *base) 2413 { 2414 __le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24); 2415 2416 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2417 } 2418 2419 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base) 2420 { 2421 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); 2422 2423 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2424 } 2425 2426 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base) 2427 { 2428 __le32 val; 2429 2430 val = readl(base + DAC960_GEM_IDB_READ_OFFSET); 2431 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL; 2432 } 2433 2434 static inline bool DAC960_GEM_init_in_progress(void __iomem *base) 2435 { 2436 __le32 val; 2437 2438 val = readl(base + DAC960_GEM_IDB_READ_OFFSET); 2439 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS; 2440 } 2441 2442 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base) 2443 { 2444 __le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24); 2445 2446 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); 2447 } 2448 2449 static inline void DAC960_GEM_ack_intr(void __iomem *base) 2450 { 2451 __le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ | 2452 DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24); 2453 2454 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); 2455 } 2456 2457 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base) 2458 { 2459 __le32 val; 2460 2461 val = readl(base + DAC960_GEM_ODB_READ_OFFSET); 2462 return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL; 2463 } 2464 2465 static inline void DAC960_GEM_enable_intr(void __iomem *base) 2466 { 2467 __le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ | 2468 DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24); 2469 writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET); 2470 } 2471 2472 static inline void DAC960_GEM_disable_intr(void __iomem *base) 2473 { 2474 __le32 val = 0; 2475 2476 writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET); 2477 } 2478 2479 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 2480 union myrs_cmd_mbox *mbox) 2481 { 2482 memcpy(&mem_mbox->words[1], &mbox->words[1], 2483 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 2484 /* Barrier to avoid reordering */ 2485 wmb(); 2486 mem_mbox->words[0] = mbox->words[0]; 2487 /* Barrier to force PCI access */ 2488 mb(); 2489 } 2490 2491 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base, 2492 dma_addr_t cmd_mbox_addr) 2493 { 2494 dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET); 2495 } 2496 2497 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base) 2498 { 2499 return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2); 2500 } 2501 2502 static inline bool 2503 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error, 2504 unsigned char *param0, unsigned char *param1) 2505 { 2506 __le32 val; 2507 2508 val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET); 2509 if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING)) 2510 return false; 2511 *error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24); 2512 *param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0); 2513 *param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1); 2514 writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET); 2515 return true; 2516 } 2517 2518 static inline unsigned char 2519 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 2520 { 2521 unsigned char status; 2522 2523 while (DAC960_GEM_hw_mbox_is_full(base)) 2524 udelay(1); 2525 DAC960_GEM_write_hw_mbox(base, mbox_addr); 2526 DAC960_GEM_hw_mbox_new_cmd(base); 2527 while (!DAC960_GEM_hw_mbox_status_available(base)) 2528 udelay(1); 2529 status = DAC960_GEM_read_cmd_status(base); 2530 DAC960_GEM_ack_hw_mbox_intr(base); 2531 DAC960_GEM_ack_hw_mbox_status(base); 2532 2533 return status; 2534 } 2535 2536 static int DAC960_GEM_hw_init(struct pci_dev *pdev, 2537 struct myrs_hba *cs, void __iomem *base) 2538 { 2539 int timeout = 0; 2540 unsigned char status, parm0, parm1; 2541 2542 DAC960_GEM_disable_intr(base); 2543 DAC960_GEM_ack_hw_mbox_status(base); 2544 udelay(1000); 2545 while (DAC960_GEM_init_in_progress(base) && 2546 timeout < MYRS_MAILBOX_TIMEOUT) { 2547 if (DAC960_GEM_read_error_status(base, &status, 2548 &parm0, &parm1) && 2549 myrs_err_status(cs, status, parm0, parm1)) 2550 return -EIO; 2551 udelay(10); 2552 timeout++; 2553 } 2554 if (timeout == MYRS_MAILBOX_TIMEOUT) { 2555 dev_err(&pdev->dev, 2556 "Timeout waiting for Controller Initialisation\n"); 2557 return -ETIMEDOUT; 2558 } 2559 if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) { 2560 dev_err(&pdev->dev, 2561 "Unable to Enable Memory Mailbox Interface\n"); 2562 DAC960_GEM_reset_ctrl(base); 2563 return -EAGAIN; 2564 } 2565 DAC960_GEM_enable_intr(base); 2566 cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox; 2567 cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd; 2568 cs->disable_intr = DAC960_GEM_disable_intr; 2569 cs->reset = DAC960_GEM_reset_ctrl; 2570 return 0; 2571 } 2572 2573 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg) 2574 { 2575 struct myrs_hba *cs = arg; 2576 void __iomem *base = cs->io_base; 2577 struct myrs_stat_mbox *next_stat_mbox; 2578 unsigned long flags; 2579 2580 spin_lock_irqsave(&cs->queue_lock, flags); 2581 DAC960_GEM_ack_intr(base); 2582 next_stat_mbox = cs->next_stat_mbox; 2583 while (next_stat_mbox->id > 0) { 2584 unsigned short id = next_stat_mbox->id; 2585 struct scsi_cmnd *scmd = NULL; 2586 struct myrs_cmdblk *cmd_blk = NULL; 2587 2588 if (id == MYRS_DCMD_TAG) 2589 cmd_blk = &cs->dcmd_blk; 2590 else if (id == MYRS_MCMD_TAG) 2591 cmd_blk = &cs->mcmd_blk; 2592 else { 2593 scmd = scsi_host_find_tag(cs->host, id - 3); 2594 if (scmd) 2595 cmd_blk = scsi_cmd_priv(scmd); 2596 } 2597 if (cmd_blk) { 2598 cmd_blk->status = next_stat_mbox->status; 2599 cmd_blk->sense_len = next_stat_mbox->sense_len; 2600 cmd_blk->residual = next_stat_mbox->residual; 2601 } else 2602 dev_err(&cs->pdev->dev, 2603 "Unhandled command completion %d\n", id); 2604 2605 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 2606 if (++next_stat_mbox > cs->last_stat_mbox) 2607 next_stat_mbox = cs->first_stat_mbox; 2608 2609 if (cmd_blk) { 2610 if (id < 3) 2611 myrs_handle_cmdblk(cs, cmd_blk); 2612 else 2613 myrs_handle_scsi(cs, cmd_blk, scmd); 2614 } 2615 } 2616 cs->next_stat_mbox = next_stat_mbox; 2617 spin_unlock_irqrestore(&cs->queue_lock, flags); 2618 return IRQ_HANDLED; 2619 } 2620 2621 static struct myrs_privdata DAC960_GEM_privdata = { 2622 .hw_init = DAC960_GEM_hw_init, 2623 .irq_handler = DAC960_GEM_intr_handler, 2624 .mmio_size = DAC960_GEM_mmio_size, 2625 }; 2626 2627 /* 2628 * DAC960 BA Series Controllers. 2629 */ 2630 2631 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base) 2632 { 2633 writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); 2634 } 2635 2636 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base) 2637 { 2638 writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET); 2639 } 2640 2641 static inline void DAC960_BA_reset_ctrl(void __iomem *base) 2642 { 2643 writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET); 2644 } 2645 2646 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base) 2647 { 2648 writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); 2649 } 2650 2651 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base) 2652 { 2653 u8 val; 2654 2655 val = readb(base + DAC960_BA_IDB_OFFSET); 2656 return !(val & DAC960_BA_IDB_HWMBOX_EMPTY); 2657 } 2658 2659 static inline bool DAC960_BA_init_in_progress(void __iomem *base) 2660 { 2661 u8 val; 2662 2663 val = readb(base + DAC960_BA_IDB_OFFSET); 2664 return !(val & DAC960_BA_IDB_INIT_DONE); 2665 } 2666 2667 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base) 2668 { 2669 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); 2670 } 2671 2672 static inline void DAC960_BA_ack_intr(void __iomem *base) 2673 { 2674 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ, 2675 base + DAC960_BA_ODB_OFFSET); 2676 } 2677 2678 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base) 2679 { 2680 u8 val; 2681 2682 val = readb(base + DAC960_BA_ODB_OFFSET); 2683 return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL; 2684 } 2685 2686 static inline void DAC960_BA_enable_intr(void __iomem *base) 2687 { 2688 writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET); 2689 } 2690 2691 static inline void DAC960_BA_disable_intr(void __iomem *base) 2692 { 2693 writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET); 2694 } 2695 2696 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 2697 union myrs_cmd_mbox *mbox) 2698 { 2699 memcpy(&mem_mbox->words[1], &mbox->words[1], 2700 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 2701 /* Barrier to avoid reordering */ 2702 wmb(); 2703 mem_mbox->words[0] = mbox->words[0]; 2704 /* Barrier to force PCI access */ 2705 mb(); 2706 } 2707 2708 2709 static inline void DAC960_BA_write_hw_mbox(void __iomem *base, 2710 dma_addr_t cmd_mbox_addr) 2711 { 2712 dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET); 2713 } 2714 2715 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base) 2716 { 2717 return readw(base + DAC960_BA_CMDSTS_OFFSET + 2); 2718 } 2719 2720 static inline bool 2721 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error, 2722 unsigned char *param0, unsigned char *param1) 2723 { 2724 u8 val; 2725 2726 val = readb(base + DAC960_BA_ERRSTS_OFFSET); 2727 if (!(val & DAC960_BA_ERRSTS_PENDING)) 2728 return false; 2729 val &= ~DAC960_BA_ERRSTS_PENDING; 2730 *error = val; 2731 *param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0); 2732 *param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1); 2733 writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET); 2734 return true; 2735 } 2736 2737 static inline unsigned char 2738 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 2739 { 2740 unsigned char status; 2741 2742 while (DAC960_BA_hw_mbox_is_full(base)) 2743 udelay(1); 2744 DAC960_BA_write_hw_mbox(base, mbox_addr); 2745 DAC960_BA_hw_mbox_new_cmd(base); 2746 while (!DAC960_BA_hw_mbox_status_available(base)) 2747 udelay(1); 2748 status = DAC960_BA_read_cmd_status(base); 2749 DAC960_BA_ack_hw_mbox_intr(base); 2750 DAC960_BA_ack_hw_mbox_status(base); 2751 2752 return status; 2753 } 2754 2755 static int DAC960_BA_hw_init(struct pci_dev *pdev, 2756 struct myrs_hba *cs, void __iomem *base) 2757 { 2758 int timeout = 0; 2759 unsigned char status, parm0, parm1; 2760 2761 DAC960_BA_disable_intr(base); 2762 DAC960_BA_ack_hw_mbox_status(base); 2763 udelay(1000); 2764 while (DAC960_BA_init_in_progress(base) && 2765 timeout < MYRS_MAILBOX_TIMEOUT) { 2766 if (DAC960_BA_read_error_status(base, &status, 2767 &parm0, &parm1) && 2768 myrs_err_status(cs, status, parm0, parm1)) 2769 return -EIO; 2770 udelay(10); 2771 timeout++; 2772 } 2773 if (timeout == MYRS_MAILBOX_TIMEOUT) { 2774 dev_err(&pdev->dev, 2775 "Timeout waiting for Controller Initialisation\n"); 2776 return -ETIMEDOUT; 2777 } 2778 if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) { 2779 dev_err(&pdev->dev, 2780 "Unable to Enable Memory Mailbox Interface\n"); 2781 DAC960_BA_reset_ctrl(base); 2782 return -EAGAIN; 2783 } 2784 DAC960_BA_enable_intr(base); 2785 cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox; 2786 cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd; 2787 cs->disable_intr = DAC960_BA_disable_intr; 2788 cs->reset = DAC960_BA_reset_ctrl; 2789 return 0; 2790 } 2791 2792 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg) 2793 { 2794 struct myrs_hba *cs = arg; 2795 void __iomem *base = cs->io_base; 2796 struct myrs_stat_mbox *next_stat_mbox; 2797 unsigned long flags; 2798 2799 spin_lock_irqsave(&cs->queue_lock, flags); 2800 DAC960_BA_ack_intr(base); 2801 next_stat_mbox = cs->next_stat_mbox; 2802 while (next_stat_mbox->id > 0) { 2803 unsigned short id = next_stat_mbox->id; 2804 struct scsi_cmnd *scmd = NULL; 2805 struct myrs_cmdblk *cmd_blk = NULL; 2806 2807 if (id == MYRS_DCMD_TAG) 2808 cmd_blk = &cs->dcmd_blk; 2809 else if (id == MYRS_MCMD_TAG) 2810 cmd_blk = &cs->mcmd_blk; 2811 else { 2812 scmd = scsi_host_find_tag(cs->host, id - 3); 2813 if (scmd) 2814 cmd_blk = scsi_cmd_priv(scmd); 2815 } 2816 if (cmd_blk) { 2817 cmd_blk->status = next_stat_mbox->status; 2818 cmd_blk->sense_len = next_stat_mbox->sense_len; 2819 cmd_blk->residual = next_stat_mbox->residual; 2820 } else 2821 dev_err(&cs->pdev->dev, 2822 "Unhandled command completion %d\n", id); 2823 2824 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 2825 if (++next_stat_mbox > cs->last_stat_mbox) 2826 next_stat_mbox = cs->first_stat_mbox; 2827 2828 if (cmd_blk) { 2829 if (id < 3) 2830 myrs_handle_cmdblk(cs, cmd_blk); 2831 else 2832 myrs_handle_scsi(cs, cmd_blk, scmd); 2833 } 2834 } 2835 cs->next_stat_mbox = next_stat_mbox; 2836 spin_unlock_irqrestore(&cs->queue_lock, flags); 2837 return IRQ_HANDLED; 2838 } 2839 2840 static struct myrs_privdata DAC960_BA_privdata = { 2841 .hw_init = DAC960_BA_hw_init, 2842 .irq_handler = DAC960_BA_intr_handler, 2843 .mmio_size = DAC960_BA_mmio_size, 2844 }; 2845 2846 /* 2847 * DAC960 LP Series Controllers. 2848 */ 2849 2850 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base) 2851 { 2852 writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); 2853 } 2854 2855 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base) 2856 { 2857 writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET); 2858 } 2859 2860 static inline void DAC960_LP_reset_ctrl(void __iomem *base) 2861 { 2862 writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET); 2863 } 2864 2865 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base) 2866 { 2867 writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); 2868 } 2869 2870 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base) 2871 { 2872 u8 val; 2873 2874 val = readb(base + DAC960_LP_IDB_OFFSET); 2875 return val & DAC960_LP_IDB_HWMBOX_FULL; 2876 } 2877 2878 static inline bool DAC960_LP_init_in_progress(void __iomem *base) 2879 { 2880 u8 val; 2881 2882 val = readb(base + DAC960_LP_IDB_OFFSET); 2883 return val & DAC960_LP_IDB_INIT_IN_PROGRESS; 2884 } 2885 2886 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base) 2887 { 2888 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); 2889 } 2890 2891 static inline void DAC960_LP_ack_intr(void __iomem *base) 2892 { 2893 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ, 2894 base + DAC960_LP_ODB_OFFSET); 2895 } 2896 2897 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base) 2898 { 2899 u8 val; 2900 2901 val = readb(base + DAC960_LP_ODB_OFFSET); 2902 return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL; 2903 } 2904 2905 static inline void DAC960_LP_enable_intr(void __iomem *base) 2906 { 2907 writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET); 2908 } 2909 2910 static inline void DAC960_LP_disable_intr(void __iomem *base) 2911 { 2912 writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET); 2913 } 2914 2915 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 2916 union myrs_cmd_mbox *mbox) 2917 { 2918 memcpy(&mem_mbox->words[1], &mbox->words[1], 2919 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 2920 /* Barrier to avoid reordering */ 2921 wmb(); 2922 mem_mbox->words[0] = mbox->words[0]; 2923 /* Barrier to force PCI access */ 2924 mb(); 2925 } 2926 2927 static inline void DAC960_LP_write_hw_mbox(void __iomem *base, 2928 dma_addr_t cmd_mbox_addr) 2929 { 2930 dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET); 2931 } 2932 2933 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base) 2934 { 2935 return readw(base + DAC960_LP_CMDSTS_OFFSET + 2); 2936 } 2937 2938 static inline bool 2939 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error, 2940 unsigned char *param0, unsigned char *param1) 2941 { 2942 u8 val; 2943 2944 val = readb(base + DAC960_LP_ERRSTS_OFFSET); 2945 if (!(val & DAC960_LP_ERRSTS_PENDING)) 2946 return false; 2947 val &= ~DAC960_LP_ERRSTS_PENDING; 2948 *error = val; 2949 *param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0); 2950 *param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1); 2951 writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET); 2952 return true; 2953 } 2954 2955 static inline unsigned char 2956 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 2957 { 2958 unsigned char status; 2959 2960 while (DAC960_LP_hw_mbox_is_full(base)) 2961 udelay(1); 2962 DAC960_LP_write_hw_mbox(base, mbox_addr); 2963 DAC960_LP_hw_mbox_new_cmd(base); 2964 while (!DAC960_LP_hw_mbox_status_available(base)) 2965 udelay(1); 2966 status = DAC960_LP_read_cmd_status(base); 2967 DAC960_LP_ack_hw_mbox_intr(base); 2968 DAC960_LP_ack_hw_mbox_status(base); 2969 2970 return status; 2971 } 2972 2973 static int DAC960_LP_hw_init(struct pci_dev *pdev, 2974 struct myrs_hba *cs, void __iomem *base) 2975 { 2976 int timeout = 0; 2977 unsigned char status, parm0, parm1; 2978 2979 DAC960_LP_disable_intr(base); 2980 DAC960_LP_ack_hw_mbox_status(base); 2981 udelay(1000); 2982 while (DAC960_LP_init_in_progress(base) && 2983 timeout < MYRS_MAILBOX_TIMEOUT) { 2984 if (DAC960_LP_read_error_status(base, &status, 2985 &parm0, &parm1) && 2986 myrs_err_status(cs, status, parm0, parm1)) 2987 return -EIO; 2988 udelay(10); 2989 timeout++; 2990 } 2991 if (timeout == MYRS_MAILBOX_TIMEOUT) { 2992 dev_err(&pdev->dev, 2993 "Timeout waiting for Controller Initialisation\n"); 2994 return -ETIMEDOUT; 2995 } 2996 if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) { 2997 dev_err(&pdev->dev, 2998 "Unable to Enable Memory Mailbox Interface\n"); 2999 DAC960_LP_reset_ctrl(base); 3000 return -ENODEV; 3001 } 3002 DAC960_LP_enable_intr(base); 3003 cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox; 3004 cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd; 3005 cs->disable_intr = DAC960_LP_disable_intr; 3006 cs->reset = DAC960_LP_reset_ctrl; 3007 3008 return 0; 3009 } 3010 3011 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg) 3012 { 3013 struct myrs_hba *cs = arg; 3014 void __iomem *base = cs->io_base; 3015 struct myrs_stat_mbox *next_stat_mbox; 3016 unsigned long flags; 3017 3018 spin_lock_irqsave(&cs->queue_lock, flags); 3019 DAC960_LP_ack_intr(base); 3020 next_stat_mbox = cs->next_stat_mbox; 3021 while (next_stat_mbox->id > 0) { 3022 unsigned short id = next_stat_mbox->id; 3023 struct scsi_cmnd *scmd = NULL; 3024 struct myrs_cmdblk *cmd_blk = NULL; 3025 3026 if (id == MYRS_DCMD_TAG) 3027 cmd_blk = &cs->dcmd_blk; 3028 else if (id == MYRS_MCMD_TAG) 3029 cmd_blk = &cs->mcmd_blk; 3030 else { 3031 scmd = scsi_host_find_tag(cs->host, id - 3); 3032 if (scmd) 3033 cmd_blk = scsi_cmd_priv(scmd); 3034 } 3035 if (cmd_blk) { 3036 cmd_blk->status = next_stat_mbox->status; 3037 cmd_blk->sense_len = next_stat_mbox->sense_len; 3038 cmd_blk->residual = next_stat_mbox->residual; 3039 } else 3040 dev_err(&cs->pdev->dev, 3041 "Unhandled command completion %d\n", id); 3042 3043 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 3044 if (++next_stat_mbox > cs->last_stat_mbox) 3045 next_stat_mbox = cs->first_stat_mbox; 3046 3047 if (cmd_blk) { 3048 if (id < 3) 3049 myrs_handle_cmdblk(cs, cmd_blk); 3050 else 3051 myrs_handle_scsi(cs, cmd_blk, scmd); 3052 } 3053 } 3054 cs->next_stat_mbox = next_stat_mbox; 3055 spin_unlock_irqrestore(&cs->queue_lock, flags); 3056 return IRQ_HANDLED; 3057 } 3058 3059 static struct myrs_privdata DAC960_LP_privdata = { 3060 .hw_init = DAC960_LP_hw_init, 3061 .irq_handler = DAC960_LP_intr_handler, 3062 .mmio_size = DAC960_LP_mmio_size, 3063 }; 3064 3065 /* 3066 * Module functions 3067 */ 3068 static int 3069 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry) 3070 { 3071 struct myrs_hba *cs; 3072 int ret; 3073 3074 cs = myrs_detect(dev, entry); 3075 if (!cs) 3076 return -ENODEV; 3077 3078 ret = myrs_get_config(cs); 3079 if (ret < 0) { 3080 myrs_cleanup(cs); 3081 return ret; 3082 } 3083 3084 if (!myrs_create_mempools(dev, cs)) { 3085 ret = -ENOMEM; 3086 goto failed; 3087 } 3088 3089 ret = scsi_add_host(cs->host, &dev->dev); 3090 if (ret) { 3091 dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret); 3092 myrs_destroy_mempools(cs); 3093 goto failed; 3094 } 3095 scsi_scan_host(cs->host); 3096 return 0; 3097 failed: 3098 myrs_cleanup(cs); 3099 return ret; 3100 } 3101 3102 3103 static void myrs_remove(struct pci_dev *pdev) 3104 { 3105 struct myrs_hba *cs = pci_get_drvdata(pdev); 3106 3107 if (cs == NULL) 3108 return; 3109 3110 shost_printk(KERN_NOTICE, cs->host, "Flushing Cache..."); 3111 myrs_flush_cache(cs); 3112 myrs_destroy_mempools(cs); 3113 myrs_cleanup(cs); 3114 } 3115 3116 3117 static const struct pci_device_id myrs_id_table[] = { 3118 { 3119 PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX, 3120 PCI_DEVICE_ID_MYLEX_DAC960_GEM, 3121 PCI_VENDOR_ID_MYLEX, PCI_ANY_ID), 3122 .driver_data = (unsigned long) &DAC960_GEM_privdata, 3123 }, 3124 { 3125 PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata), 3126 }, 3127 { 3128 PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata), 3129 }, 3130 {0, }, 3131 }; 3132 3133 MODULE_DEVICE_TABLE(pci, myrs_id_table); 3134 3135 static struct pci_driver myrs_pci_driver = { 3136 .name = "myrs", 3137 .id_table = myrs_id_table, 3138 .probe = myrs_probe, 3139 .remove = myrs_remove, 3140 }; 3141 3142 static int __init myrs_init_module(void) 3143 { 3144 int ret; 3145 3146 myrs_raid_template = raid_class_attach(&myrs_raid_functions); 3147 if (!myrs_raid_template) 3148 return -ENODEV; 3149 3150 ret = pci_register_driver(&myrs_pci_driver); 3151 if (ret) 3152 raid_class_release(myrs_raid_template); 3153 3154 return ret; 3155 } 3156 3157 static void __exit myrs_cleanup_module(void) 3158 { 3159 pci_unregister_driver(&myrs_pci_driver); 3160 raid_class_release(myrs_raid_template); 3161 } 3162 3163 module_init(myrs_init_module); 3164 module_exit(myrs_cleanup_module); 3165 3166 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)"); 3167 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>"); 3168 MODULE_LICENSE("GPL"); 3169