xref: /linux/drivers/scsi/myrs.c (revision 8c994eff8fcfe8ecb1f1dbebed25b4d7bb75be12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
4  *
5  * This driver supports the newer, SCSI-based firmware interface only.
6  *
7  * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
8  *
9  * Based on the original DAC960 driver, which has
10  * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
11  * Portions Copyright 2002 by Mylex (An IBM Business Unit)
12  */
13 
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/raid_class.h>
20 #include <asm/unaligned.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_host.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_tcq.h>
26 #include "myrs.h"
27 
28 static struct raid_template *myrs_raid_template;
29 
30 static struct myrs_devstate_name_entry {
31 	enum myrs_devstate state;
32 	char *name;
33 } myrs_devstate_name_list[] = {
34 	{ MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
35 	{ MYRS_DEVICE_ONLINE, "Online" },
36 	{ MYRS_DEVICE_REBUILD, "Rebuild" },
37 	{ MYRS_DEVICE_MISSING, "Missing" },
38 	{ MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
39 	{ MYRS_DEVICE_OFFLINE, "Offline" },
40 	{ MYRS_DEVICE_CRITICAL, "Critical" },
41 	{ MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
42 	{ MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
43 	{ MYRS_DEVICE_STANDBY, "Standby" },
44 	{ MYRS_DEVICE_INVALID_STATE, "Invalid" },
45 };
46 
47 static char *myrs_devstate_name(enum myrs_devstate state)
48 {
49 	struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
50 	int i;
51 
52 	for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
53 		if (entry[i].state == state)
54 			return entry[i].name;
55 	}
56 	return NULL;
57 }
58 
59 static struct myrs_raid_level_name_entry {
60 	enum myrs_raid_level level;
61 	char *name;
62 } myrs_raid_level_name_list[] = {
63 	{ MYRS_RAID_LEVEL0, "RAID0" },
64 	{ MYRS_RAID_LEVEL1, "RAID1" },
65 	{ MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
66 	{ MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
67 	{ MYRS_RAID_LEVEL6, "RAID6" },
68 	{ MYRS_RAID_JBOD, "JBOD" },
69 	{ MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
70 	{ MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
71 	{ MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
72 	{ MYRS_RAID_SPAN, "Mylex SPAN" },
73 	{ MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
74 	{ MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
75 	{ MYRS_RAID_PHYSICAL, "Physical device" },
76 };
77 
78 static char *myrs_raid_level_name(enum myrs_raid_level level)
79 {
80 	struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
81 	int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
84 		if (entry[i].level == level)
85 			return entry[i].name;
86 	}
87 	return NULL;
88 }
89 
90 /*
91  * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
92  */
93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
94 {
95 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
96 
97 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
98 	cmd_blk->status = 0;
99 }
100 
101 /*
102  * myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
103  */
104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
105 {
106 	void __iomem *base = cs->io_base;
107 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
108 	union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
109 
110 	cs->write_cmd_mbox(next_mbox, mbox);
111 
112 	if (cs->prev_cmd_mbox1->words[0] == 0 ||
113 	    cs->prev_cmd_mbox2->words[0] == 0)
114 		cs->get_cmd_mbox(base);
115 
116 	cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
117 	cs->prev_cmd_mbox1 = next_mbox;
118 
119 	if (++next_mbox > cs->last_cmd_mbox)
120 		next_mbox = cs->first_cmd_mbox;
121 
122 	cs->next_cmd_mbox = next_mbox;
123 }
124 
125 /*
126  * myrs_exec_cmd - executes V2 Command and waits for completion.
127  */
128 static void myrs_exec_cmd(struct myrs_hba *cs,
129 		struct myrs_cmdblk *cmd_blk)
130 {
131 	DECLARE_COMPLETION_ONSTACK(complete);
132 	unsigned long flags;
133 
134 	cmd_blk->complete = &complete;
135 	spin_lock_irqsave(&cs->queue_lock, flags);
136 	myrs_qcmd(cs, cmd_blk);
137 	spin_unlock_irqrestore(&cs->queue_lock, flags);
138 
139 	wait_for_completion(&complete);
140 }
141 
142 /*
143  * myrs_report_progress - prints progress message
144  */
145 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
146 		unsigned char *msg, unsigned long blocks,
147 		unsigned long size)
148 {
149 	shost_printk(KERN_INFO, cs->host,
150 		     "Logical Drive %d: %s in Progress: %d%% completed\n",
151 		     ldev_num, msg,
152 		     (100 * (int)(blocks >> 7)) / (int)(size >> 7));
153 }
154 
155 /*
156  * myrs_get_ctlr_info - executes a Controller Information IOCTL Command
157  */
158 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
159 {
160 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
161 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
162 	dma_addr_t ctlr_info_addr;
163 	union myrs_sgl *sgl;
164 	unsigned char status;
165 	unsigned short ldev_present, ldev_critical, ldev_offline;
166 
167 	ldev_present = cs->ctlr_info->ldev_present;
168 	ldev_critical = cs->ctlr_info->ldev_critical;
169 	ldev_offline = cs->ctlr_info->ldev_offline;
170 
171 	ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
172 					sizeof(struct myrs_ctlr_info),
173 					DMA_FROM_DEVICE);
174 	if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
175 		return MYRS_STATUS_FAILED;
176 
177 	mutex_lock(&cs->dcmd_mutex);
178 	myrs_reset_cmd(cmd_blk);
179 	mbox->ctlr_info.id = MYRS_DCMD_TAG;
180 	mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
181 	mbox->ctlr_info.control.dma_ctrl_to_host = true;
182 	mbox->ctlr_info.control.no_autosense = true;
183 	mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
184 	mbox->ctlr_info.ctlr_num = 0;
185 	mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
186 	sgl = &mbox->ctlr_info.dma_addr;
187 	sgl->sge[0].sge_addr = ctlr_info_addr;
188 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
189 	dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
190 	myrs_exec_cmd(cs, cmd_blk);
191 	status = cmd_blk->status;
192 	mutex_unlock(&cs->dcmd_mutex);
193 	dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
194 			 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
195 	if (status == MYRS_STATUS_SUCCESS) {
196 		if (cs->ctlr_info->bg_init_active +
197 		    cs->ctlr_info->ldev_init_active +
198 		    cs->ctlr_info->pdev_init_active +
199 		    cs->ctlr_info->cc_active +
200 		    cs->ctlr_info->rbld_active +
201 		    cs->ctlr_info->exp_active != 0)
202 			cs->needs_update = true;
203 		if (cs->ctlr_info->ldev_present != ldev_present ||
204 		    cs->ctlr_info->ldev_critical != ldev_critical ||
205 		    cs->ctlr_info->ldev_offline != ldev_offline)
206 			shost_printk(KERN_INFO, cs->host,
207 				     "Logical drive count changes (%d/%d/%d)\n",
208 				     cs->ctlr_info->ldev_critical,
209 				     cs->ctlr_info->ldev_offline,
210 				     cs->ctlr_info->ldev_present);
211 	}
212 
213 	return status;
214 }
215 
216 /*
217  * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
218  */
219 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
220 		unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
221 {
222 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
223 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
224 	dma_addr_t ldev_info_addr;
225 	struct myrs_ldev_info ldev_info_orig;
226 	union myrs_sgl *sgl;
227 	unsigned char status;
228 
229 	memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
230 	ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
231 					sizeof(struct myrs_ldev_info),
232 					DMA_FROM_DEVICE);
233 	if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
234 		return MYRS_STATUS_FAILED;
235 
236 	mutex_lock(&cs->dcmd_mutex);
237 	myrs_reset_cmd(cmd_blk);
238 	mbox->ldev_info.id = MYRS_DCMD_TAG;
239 	mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
240 	mbox->ldev_info.control.dma_ctrl_to_host = true;
241 	mbox->ldev_info.control.no_autosense = true;
242 	mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
243 	mbox->ldev_info.ldev.ldev_num = ldev_num;
244 	mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
245 	sgl = &mbox->ldev_info.dma_addr;
246 	sgl->sge[0].sge_addr = ldev_info_addr;
247 	sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
248 	dev_dbg(&cs->host->shost_gendev,
249 		"Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
250 	myrs_exec_cmd(cs, cmd_blk);
251 	status = cmd_blk->status;
252 	mutex_unlock(&cs->dcmd_mutex);
253 	dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
254 			 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
255 	if (status == MYRS_STATUS_SUCCESS) {
256 		unsigned short ldev_num = ldev_info->ldev_num;
257 		struct myrs_ldev_info *new = ldev_info;
258 		struct myrs_ldev_info *old = &ldev_info_orig;
259 		unsigned long ldev_size = new->cfg_devsize;
260 
261 		if (new->dev_state != old->dev_state) {
262 			const char *name;
263 
264 			name = myrs_devstate_name(new->dev_state);
265 			shost_printk(KERN_INFO, cs->host,
266 				     "Logical Drive %d is now %s\n",
267 				     ldev_num, name ? name : "Invalid");
268 		}
269 		if ((new->soft_errs != old->soft_errs) ||
270 		    (new->cmds_failed != old->cmds_failed) ||
271 		    (new->deferred_write_errs != old->deferred_write_errs))
272 			shost_printk(KERN_INFO, cs->host,
273 				     "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
274 				     ldev_num, new->soft_errs,
275 				     new->cmds_failed,
276 				     new->deferred_write_errs);
277 		if (new->bg_init_active)
278 			myrs_report_progress(cs, ldev_num,
279 					     "Background Initialization",
280 					     new->bg_init_lba, ldev_size);
281 		else if (new->fg_init_active)
282 			myrs_report_progress(cs, ldev_num,
283 					     "Foreground Initialization",
284 					     new->fg_init_lba, ldev_size);
285 		else if (new->migration_active)
286 			myrs_report_progress(cs, ldev_num,
287 					     "Data Migration",
288 					     new->migration_lba, ldev_size);
289 		else if (new->patrol_active)
290 			myrs_report_progress(cs, ldev_num,
291 					     "Patrol Operation",
292 					     new->patrol_lba, ldev_size);
293 		if (old->bg_init_active && !new->bg_init_active)
294 			shost_printk(KERN_INFO, cs->host,
295 				     "Logical Drive %d: Background Initialization %s\n",
296 				     ldev_num,
297 				     (new->ldev_control.ldev_init_done ?
298 				      "Completed" : "Failed"));
299 	}
300 	return status;
301 }
302 
303 /*
304  * myrs_get_pdev_info - executes a "Read Physical Device Information" Command
305  */
306 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
307 		unsigned char channel, unsigned char target, unsigned char lun,
308 		struct myrs_pdev_info *pdev_info)
309 {
310 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
311 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
312 	dma_addr_t pdev_info_addr;
313 	union myrs_sgl *sgl;
314 	unsigned char status;
315 
316 	pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
317 					sizeof(struct myrs_pdev_info),
318 					DMA_FROM_DEVICE);
319 	if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
320 		return MYRS_STATUS_FAILED;
321 
322 	mutex_lock(&cs->dcmd_mutex);
323 	myrs_reset_cmd(cmd_blk);
324 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
325 	mbox->pdev_info.id = MYRS_DCMD_TAG;
326 	mbox->pdev_info.control.dma_ctrl_to_host = true;
327 	mbox->pdev_info.control.no_autosense = true;
328 	mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
329 	mbox->pdev_info.pdev.lun = lun;
330 	mbox->pdev_info.pdev.target = target;
331 	mbox->pdev_info.pdev.channel = channel;
332 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
333 	sgl = &mbox->pdev_info.dma_addr;
334 	sgl->sge[0].sge_addr = pdev_info_addr;
335 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
336 	dev_dbg(&cs->host->shost_gendev,
337 		"Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
338 		channel, target, lun);
339 	myrs_exec_cmd(cs, cmd_blk);
340 	status = cmd_blk->status;
341 	mutex_unlock(&cs->dcmd_mutex);
342 	dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
343 			 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
344 	return status;
345 }
346 
347 /*
348  * myrs_dev_op - executes a "Device Operation" Command
349  */
350 static unsigned char myrs_dev_op(struct myrs_hba *cs,
351 		enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
352 {
353 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
354 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
355 	unsigned char status;
356 
357 	mutex_lock(&cs->dcmd_mutex);
358 	myrs_reset_cmd(cmd_blk);
359 	mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
360 	mbox->dev_op.id = MYRS_DCMD_TAG;
361 	mbox->dev_op.control.dma_ctrl_to_host = true;
362 	mbox->dev_op.control.no_autosense = true;
363 	mbox->dev_op.ioctl_opcode = opcode;
364 	mbox->dev_op.opdev = opdev;
365 	myrs_exec_cmd(cs, cmd_blk);
366 	status = cmd_blk->status;
367 	mutex_unlock(&cs->dcmd_mutex);
368 	return status;
369 }
370 
371 /*
372  * myrs_translate_pdev - translates a Physical Device Channel and
373  * TargetID into a Logical Device.
374  */
375 static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
376 		unsigned char channel, unsigned char target, unsigned char lun,
377 		struct myrs_devmap *devmap)
378 {
379 	struct pci_dev *pdev = cs->pdev;
380 	dma_addr_t devmap_addr;
381 	struct myrs_cmdblk *cmd_blk;
382 	union myrs_cmd_mbox *mbox;
383 	union myrs_sgl *sgl;
384 	unsigned char status;
385 
386 	memset(devmap, 0x0, sizeof(struct myrs_devmap));
387 	devmap_addr = dma_map_single(&pdev->dev, devmap,
388 				     sizeof(struct myrs_devmap),
389 				     DMA_FROM_DEVICE);
390 	if (dma_mapping_error(&pdev->dev, devmap_addr))
391 		return MYRS_STATUS_FAILED;
392 
393 	mutex_lock(&cs->dcmd_mutex);
394 	cmd_blk = &cs->dcmd_blk;
395 	mbox = &cmd_blk->mbox;
396 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
397 	mbox->pdev_info.control.dma_ctrl_to_host = true;
398 	mbox->pdev_info.control.no_autosense = true;
399 	mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
400 	mbox->pdev_info.pdev.target = target;
401 	mbox->pdev_info.pdev.channel = channel;
402 	mbox->pdev_info.pdev.lun = lun;
403 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
404 	sgl = &mbox->pdev_info.dma_addr;
405 	sgl->sge[0].sge_addr = devmap_addr;
406 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
407 
408 	myrs_exec_cmd(cs, cmd_blk);
409 	status = cmd_blk->status;
410 	mutex_unlock(&cs->dcmd_mutex);
411 	dma_unmap_single(&pdev->dev, devmap_addr,
412 			 sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
413 	return status;
414 }
415 
416 /*
417  * myrs_get_event - executes a Get Event Command
418  */
419 static unsigned char myrs_get_event(struct myrs_hba *cs,
420 		unsigned int event_num, struct myrs_event *event_buf)
421 {
422 	struct pci_dev *pdev = cs->pdev;
423 	dma_addr_t event_addr;
424 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
425 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
426 	union myrs_sgl *sgl;
427 	unsigned char status;
428 
429 	event_addr = dma_map_single(&pdev->dev, event_buf,
430 				    sizeof(struct myrs_event), DMA_FROM_DEVICE);
431 	if (dma_mapping_error(&pdev->dev, event_addr))
432 		return MYRS_STATUS_FAILED;
433 
434 	mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
435 	mbox->get_event.dma_size = sizeof(struct myrs_event);
436 	mbox->get_event.evnum_upper = event_num >> 16;
437 	mbox->get_event.ctlr_num = 0;
438 	mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
439 	mbox->get_event.evnum_lower = event_num & 0xFFFF;
440 	sgl = &mbox->get_event.dma_addr;
441 	sgl->sge[0].sge_addr = event_addr;
442 	sgl->sge[0].sge_count = mbox->get_event.dma_size;
443 	myrs_exec_cmd(cs, cmd_blk);
444 	status = cmd_blk->status;
445 	dma_unmap_single(&pdev->dev, event_addr,
446 			 sizeof(struct myrs_event), DMA_FROM_DEVICE);
447 
448 	return status;
449 }
450 
451 /*
452  * myrs_get_fwstatus - executes a Get Health Status Command
453  */
454 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
455 {
456 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
457 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
458 	union myrs_sgl *sgl;
459 	unsigned char status = cmd_blk->status;
460 
461 	myrs_reset_cmd(cmd_blk);
462 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
463 	mbox->common.id = MYRS_MCMD_TAG;
464 	mbox->common.control.dma_ctrl_to_host = true;
465 	mbox->common.control.no_autosense = true;
466 	mbox->common.dma_size = sizeof(struct myrs_fwstat);
467 	mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
468 	sgl = &mbox->common.dma_addr;
469 	sgl->sge[0].sge_addr = cs->fwstat_addr;
470 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
471 	dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
472 	myrs_exec_cmd(cs, cmd_blk);
473 	status = cmd_blk->status;
474 
475 	return status;
476 }
477 
478 /*
479  * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
480  */
481 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
482 		enable_mbox_t enable_mbox_fn)
483 {
484 	void __iomem *base = cs->io_base;
485 	struct pci_dev *pdev = cs->pdev;
486 	union myrs_cmd_mbox *cmd_mbox;
487 	struct myrs_stat_mbox *stat_mbox;
488 	union myrs_cmd_mbox *mbox;
489 	dma_addr_t mbox_addr;
490 	unsigned char status = MYRS_STATUS_FAILED;
491 
492 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
493 		if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
494 			dev_err(&pdev->dev, "DMA mask out of range\n");
495 			return false;
496 		}
497 
498 	/* Temporary dma mapping, used only in the scope of this function */
499 	mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
500 				  &mbox_addr, GFP_KERNEL);
501 	if (dma_mapping_error(&pdev->dev, mbox_addr))
502 		return false;
503 
504 	/* These are the base addresses for the command memory mailbox array */
505 	cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
506 	cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
507 				      &cs->cmd_mbox_addr, GFP_KERNEL);
508 	if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
509 		dev_err(&pdev->dev, "Failed to map command mailbox\n");
510 		goto out_free;
511 	}
512 	cs->first_cmd_mbox = cmd_mbox;
513 	cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
514 	cs->last_cmd_mbox = cmd_mbox;
515 	cs->next_cmd_mbox = cs->first_cmd_mbox;
516 	cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
517 	cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
518 
519 	/* These are the base addresses for the status memory mailbox array */
520 	cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
521 	stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
522 				       &cs->stat_mbox_addr, GFP_KERNEL);
523 	if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
524 		dev_err(&pdev->dev, "Failed to map status mailbox\n");
525 		goto out_free;
526 	}
527 
528 	cs->first_stat_mbox = stat_mbox;
529 	stat_mbox += MYRS_MAX_STAT_MBOX - 1;
530 	cs->last_stat_mbox = stat_mbox;
531 	cs->next_stat_mbox = cs->first_stat_mbox;
532 
533 	cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
534 					    sizeof(struct myrs_fwstat),
535 					    &cs->fwstat_addr, GFP_KERNEL);
536 	if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
537 		dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
538 		cs->fwstat_buf = NULL;
539 		goto out_free;
540 	}
541 	cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), GFP_KERNEL);
542 	if (!cs->ctlr_info)
543 		goto out_free;
544 
545 	cs->event_buf = kzalloc(sizeof(struct myrs_event), GFP_KERNEL);
546 	if (!cs->event_buf)
547 		goto out_free;
548 
549 	/* Enable the Memory Mailbox Interface. */
550 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
551 	mbox->set_mbox.id = 1;
552 	mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
553 	mbox->set_mbox.control.no_autosense = true;
554 	mbox->set_mbox.first_cmd_mbox_size_kb =
555 		(MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
556 	mbox->set_mbox.first_stat_mbox_size_kb =
557 		(MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
558 	mbox->set_mbox.second_cmd_mbox_size_kb = 0;
559 	mbox->set_mbox.second_stat_mbox_size_kb = 0;
560 	mbox->set_mbox.sense_len = 0;
561 	mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
562 	mbox->set_mbox.fwstat_buf_size_kb = 1;
563 	mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
564 	mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
565 	mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
566 	status = enable_mbox_fn(base, mbox_addr);
567 
568 out_free:
569 	dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
570 			  mbox, mbox_addr);
571 	if (status != MYRS_STATUS_SUCCESS)
572 		dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
573 			status);
574 	return (status == MYRS_STATUS_SUCCESS);
575 }
576 
577 /*
578  * myrs_get_config - reads the Configuration Information
579  */
580 static int myrs_get_config(struct myrs_hba *cs)
581 {
582 	struct myrs_ctlr_info *info = cs->ctlr_info;
583 	struct Scsi_Host *shost = cs->host;
584 	unsigned char status;
585 	unsigned char model[20];
586 	unsigned char fw_version[12];
587 	int i, model_len;
588 
589 	/* Get data into dma-able area, then copy into permanent location */
590 	mutex_lock(&cs->cinfo_mutex);
591 	status = myrs_get_ctlr_info(cs);
592 	mutex_unlock(&cs->cinfo_mutex);
593 	if (status != MYRS_STATUS_SUCCESS) {
594 		shost_printk(KERN_ERR, shost,
595 			     "Failed to get controller information\n");
596 		return -ENODEV;
597 	}
598 
599 	/* Initialize the Controller Model Name and Full Model Name fields. */
600 	model_len = sizeof(info->ctlr_name);
601 	if (model_len > sizeof(model)-1)
602 		model_len = sizeof(model)-1;
603 	memcpy(model, info->ctlr_name, model_len);
604 	model_len--;
605 	while (model[model_len] == ' ' || model[model_len] == '\0')
606 		model_len--;
607 	model[++model_len] = '\0';
608 	strcpy(cs->model_name, "DAC960 ");
609 	strcat(cs->model_name, model);
610 	/* Initialize the Controller Firmware Version field. */
611 	sprintf(fw_version, "%d.%02d-%02d",
612 		info->fw_major_version, info->fw_minor_version,
613 		info->fw_turn_number);
614 	if (info->fw_major_version == 6 &&
615 	    info->fw_minor_version == 0 &&
616 	    info->fw_turn_number < 1) {
617 		shost_printk(KERN_WARNING, shost,
618 			"FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
619 			"STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
620 			"PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
621 			fw_version);
622 		return -ENODEV;
623 	}
624 	/* Initialize the Controller Channels and Targets. */
625 	shost->max_channel = info->physchan_present + info->virtchan_present;
626 	shost->max_id = info->max_targets[0];
627 	for (i = 1; i < 16; i++) {
628 		if (!info->max_targets[i])
629 			continue;
630 		if (shost->max_id < info->max_targets[i])
631 			shost->max_id = info->max_targets[i];
632 	}
633 
634 	/*
635 	 * Initialize the Controller Queue Depth, Driver Queue Depth,
636 	 * Logical Drive Count, Maximum Blocks per Command, Controller
637 	 * Scatter/Gather Limit, and Driver Scatter/Gather Limit.
638 	 * The Driver Queue Depth must be at most three less than
639 	 * the Controller Queue Depth; tag '1' is reserved for
640 	 * direct commands, and tag '2' for monitoring commands.
641 	 */
642 	shost->can_queue = info->max_tcq - 3;
643 	if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
644 		shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
645 	shost->max_sectors = info->max_transfer_size;
646 	shost->sg_tablesize = info->max_sge;
647 	if (shost->sg_tablesize > MYRS_SG_LIMIT)
648 		shost->sg_tablesize = MYRS_SG_LIMIT;
649 
650 	shost_printk(KERN_INFO, shost,
651 		"Configuring %s PCI RAID Controller\n", model);
652 	shost_printk(KERN_INFO, shost,
653 		"  Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
654 		fw_version, info->physchan_present, info->mem_size_mb);
655 
656 	shost_printk(KERN_INFO, shost,
657 		     "  Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
658 		     shost->can_queue, shost->max_sectors);
659 
660 	shost_printk(KERN_INFO, shost,
661 		     "  Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
662 		     shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
663 	for (i = 0; i < info->physchan_max; i++) {
664 		if (!info->max_targets[i])
665 			continue;
666 		shost_printk(KERN_INFO, shost,
667 			     "  Device Channel %d: max %d devices\n",
668 			     i, info->max_targets[i]);
669 	}
670 	shost_printk(KERN_INFO, shost,
671 		     "  Physical: %d/%d channels, %d disks, %d devices\n",
672 		     info->physchan_present, info->physchan_max,
673 		     info->pdisk_present, info->pdev_present);
674 
675 	shost_printk(KERN_INFO, shost,
676 		     "  Logical: %d/%d channels, %d disks\n",
677 		     info->virtchan_present, info->virtchan_max,
678 		     info->ldev_present);
679 	return 0;
680 }
681 
682 /*
683  * myrs_log_event - prints a Controller Event message
684  */
685 static struct {
686 	int ev_code;
687 	unsigned char *ev_msg;
688 } myrs_ev_list[] = {
689 	/* Physical Device Events (0x0000 - 0x007F) */
690 	{ 0x0001, "P Online" },
691 	{ 0x0002, "P Standby" },
692 	{ 0x0005, "P Automatic Rebuild Started" },
693 	{ 0x0006, "P Manual Rebuild Started" },
694 	{ 0x0007, "P Rebuild Completed" },
695 	{ 0x0008, "P Rebuild Cancelled" },
696 	{ 0x0009, "P Rebuild Failed for Unknown Reasons" },
697 	{ 0x000A, "P Rebuild Failed due to New Physical Device" },
698 	{ 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
699 	{ 0x000C, "S Offline" },
700 	{ 0x000D, "P Found" },
701 	{ 0x000E, "P Removed" },
702 	{ 0x000F, "P Unconfigured" },
703 	{ 0x0010, "P Expand Capacity Started" },
704 	{ 0x0011, "P Expand Capacity Completed" },
705 	{ 0x0012, "P Expand Capacity Failed" },
706 	{ 0x0013, "P Command Timed Out" },
707 	{ 0x0014, "P Command Aborted" },
708 	{ 0x0015, "P Command Retried" },
709 	{ 0x0016, "P Parity Error" },
710 	{ 0x0017, "P Soft Error" },
711 	{ 0x0018, "P Miscellaneous Error" },
712 	{ 0x0019, "P Reset" },
713 	{ 0x001A, "P Active Spare Found" },
714 	{ 0x001B, "P Warm Spare Found" },
715 	{ 0x001C, "S Sense Data Received" },
716 	{ 0x001D, "P Initialization Started" },
717 	{ 0x001E, "P Initialization Completed" },
718 	{ 0x001F, "P Initialization Failed" },
719 	{ 0x0020, "P Initialization Cancelled" },
720 	{ 0x0021, "P Failed because Write Recovery Failed" },
721 	{ 0x0022, "P Failed because SCSI Bus Reset Failed" },
722 	{ 0x0023, "P Failed because of Double Check Condition" },
723 	{ 0x0024, "P Failed because Device Cannot Be Accessed" },
724 	{ 0x0025, "P Failed because of Gross Error on SCSI Processor" },
725 	{ 0x0026, "P Failed because of Bad Tag from Device" },
726 	{ 0x0027, "P Failed because of Command Timeout" },
727 	{ 0x0028, "P Failed because of System Reset" },
728 	{ 0x0029, "P Failed because of Busy Status or Parity Error" },
729 	{ 0x002A, "P Failed because Host Set Device to Failed State" },
730 	{ 0x002B, "P Failed because of Selection Timeout" },
731 	{ 0x002C, "P Failed because of SCSI Bus Phase Error" },
732 	{ 0x002D, "P Failed because Device Returned Unknown Status" },
733 	{ 0x002E, "P Failed because Device Not Ready" },
734 	{ 0x002F, "P Failed because Device Not Found at Startup" },
735 	{ 0x0030, "P Failed because COD Write Operation Failed" },
736 	{ 0x0031, "P Failed because BDT Write Operation Failed" },
737 	{ 0x0039, "P Missing at Startup" },
738 	{ 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
739 	{ 0x003C, "P Temporarily Offline Device Automatically Made Online" },
740 	{ 0x003D, "P Standby Rebuild Started" },
741 	/* Logical Device Events (0x0080 - 0x00FF) */
742 	{ 0x0080, "M Consistency Check Started" },
743 	{ 0x0081, "M Consistency Check Completed" },
744 	{ 0x0082, "M Consistency Check Cancelled" },
745 	{ 0x0083, "M Consistency Check Completed With Errors" },
746 	{ 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
747 	{ 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
748 	{ 0x0086, "L Offline" },
749 	{ 0x0087, "L Critical" },
750 	{ 0x0088, "L Online" },
751 	{ 0x0089, "M Automatic Rebuild Started" },
752 	{ 0x008A, "M Manual Rebuild Started" },
753 	{ 0x008B, "M Rebuild Completed" },
754 	{ 0x008C, "M Rebuild Cancelled" },
755 	{ 0x008D, "M Rebuild Failed for Unknown Reasons" },
756 	{ 0x008E, "M Rebuild Failed due to New Physical Device" },
757 	{ 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
758 	{ 0x0090, "M Initialization Started" },
759 	{ 0x0091, "M Initialization Completed" },
760 	{ 0x0092, "M Initialization Cancelled" },
761 	{ 0x0093, "M Initialization Failed" },
762 	{ 0x0094, "L Found" },
763 	{ 0x0095, "L Deleted" },
764 	{ 0x0096, "M Expand Capacity Started" },
765 	{ 0x0097, "M Expand Capacity Completed" },
766 	{ 0x0098, "M Expand Capacity Failed" },
767 	{ 0x0099, "L Bad Block Found" },
768 	{ 0x009A, "L Size Changed" },
769 	{ 0x009B, "L Type Changed" },
770 	{ 0x009C, "L Bad Data Block Found" },
771 	{ 0x009E, "L Read of Data Block in BDT" },
772 	{ 0x009F, "L Write Back Data for Disk Block Lost" },
773 	{ 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
774 	{ 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
775 	{ 0x00A2, "L Standby Rebuild Started" },
776 	/* Fault Management Events (0x0100 - 0x017F) */
777 	{ 0x0140, "E Fan %d Failed" },
778 	{ 0x0141, "E Fan %d OK" },
779 	{ 0x0142, "E Fan %d Not Present" },
780 	{ 0x0143, "E Power Supply %d Failed" },
781 	{ 0x0144, "E Power Supply %d OK" },
782 	{ 0x0145, "E Power Supply %d Not Present" },
783 	{ 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
784 	{ 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
785 	{ 0x0148, "E Temperature Sensor %d Temperature Normal" },
786 	{ 0x0149, "E Temperature Sensor %d Not Present" },
787 	{ 0x014A, "E Enclosure Management Unit %d Access Critical" },
788 	{ 0x014B, "E Enclosure Management Unit %d Access OK" },
789 	{ 0x014C, "E Enclosure Management Unit %d Access Offline" },
790 	/* Controller Events (0x0180 - 0x01FF) */
791 	{ 0x0181, "C Cache Write Back Error" },
792 	{ 0x0188, "C Battery Backup Unit Found" },
793 	{ 0x0189, "C Battery Backup Unit Charge Level Low" },
794 	{ 0x018A, "C Battery Backup Unit Charge Level OK" },
795 	{ 0x0193, "C Installation Aborted" },
796 	{ 0x0195, "C Battery Backup Unit Physically Removed" },
797 	{ 0x0196, "C Memory Error During Warm Boot" },
798 	{ 0x019E, "C Memory Soft ECC Error Corrected" },
799 	{ 0x019F, "C Memory Hard ECC Error Corrected" },
800 	{ 0x01A2, "C Battery Backup Unit Failed" },
801 	{ 0x01AB, "C Mirror Race Recovery Failed" },
802 	{ 0x01AC, "C Mirror Race on Critical Drive" },
803 	/* Controller Internal Processor Events */
804 	{ 0x0380, "C Internal Controller Hung" },
805 	{ 0x0381, "C Internal Controller Firmware Breakpoint" },
806 	{ 0x0390, "C Internal Controller i960 Processor Specific Error" },
807 	{ 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
808 	{ 0, "" }
809 };
810 
811 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
812 {
813 	unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
814 	int ev_idx = 0, ev_code;
815 	unsigned char ev_type, *ev_msg;
816 	struct Scsi_Host *shost = cs->host;
817 	struct scsi_device *sdev;
818 	struct scsi_sense_hdr sshdr = {0};
819 	unsigned char sense_info[4];
820 	unsigned char cmd_specific[4];
821 
822 	if (ev->ev_code == 0x1C) {
823 		if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
824 			memset(&sshdr, 0x0, sizeof(sshdr));
825 			memset(sense_info, 0x0, sizeof(sense_info));
826 			memset(cmd_specific, 0x0, sizeof(cmd_specific));
827 		} else {
828 			memcpy(sense_info, &ev->sense_data[3], 4);
829 			memcpy(cmd_specific, &ev->sense_data[7], 4);
830 		}
831 	}
832 	if (sshdr.sense_key == VENDOR_SPECIFIC &&
833 	    (sshdr.asc == 0x80 || sshdr.asc == 0x81))
834 		ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
835 	while (true) {
836 		ev_code = myrs_ev_list[ev_idx].ev_code;
837 		if (ev_code == ev->ev_code || ev_code == 0)
838 			break;
839 		ev_idx++;
840 	}
841 	ev_type = myrs_ev_list[ev_idx].ev_msg[0];
842 	ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
843 	if (ev_code == 0) {
844 		shost_printk(KERN_WARNING, shost,
845 			     "Unknown Controller Event Code %04X\n",
846 			     ev->ev_code);
847 		return;
848 	}
849 	switch (ev_type) {
850 	case 'P':
851 		sdev = scsi_device_lookup(shost, ev->channel,
852 					  ev->target, 0);
853 		sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
854 			    ev->ev_seq, ev_msg);
855 		if (sdev && sdev->hostdata &&
856 		    sdev->channel < cs->ctlr_info->physchan_present) {
857 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
858 
859 			switch (ev->ev_code) {
860 			case 0x0001:
861 			case 0x0007:
862 				pdev_info->dev_state = MYRS_DEVICE_ONLINE;
863 				break;
864 			case 0x0002:
865 				pdev_info->dev_state = MYRS_DEVICE_STANDBY;
866 				break;
867 			case 0x000C:
868 				pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
869 				break;
870 			case 0x000E:
871 				pdev_info->dev_state = MYRS_DEVICE_MISSING;
872 				break;
873 			case 0x000F:
874 				pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
875 				break;
876 			}
877 		}
878 		break;
879 	case 'L':
880 		shost_printk(KERN_INFO, shost,
881 			     "event %d: Logical Drive %d %s\n",
882 			     ev->ev_seq, ev->lun, ev_msg);
883 		cs->needs_update = true;
884 		break;
885 	case 'M':
886 		shost_printk(KERN_INFO, shost,
887 			     "event %d: Logical Drive %d %s\n",
888 			     ev->ev_seq, ev->lun, ev_msg);
889 		cs->needs_update = true;
890 		break;
891 	case 'S':
892 		if (sshdr.sense_key == NO_SENSE ||
893 		    (sshdr.sense_key == NOT_READY &&
894 		     sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
895 					    sshdr.ascq == 0x02)))
896 			break;
897 		shost_printk(KERN_INFO, shost,
898 			     "event %d: Physical Device %d:%d %s\n",
899 			     ev->ev_seq, ev->channel, ev->target, ev_msg);
900 		shost_printk(KERN_INFO, shost,
901 			     "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
902 			     ev->channel, ev->target,
903 			     sshdr.sense_key, sshdr.asc, sshdr.ascq);
904 		shost_printk(KERN_INFO, shost,
905 			     "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
906 			     ev->channel, ev->target,
907 			     sense_info[0], sense_info[1],
908 			     sense_info[2], sense_info[3],
909 			     cmd_specific[0], cmd_specific[1],
910 			     cmd_specific[2], cmd_specific[3]);
911 		break;
912 	case 'E':
913 		if (cs->disable_enc_msg)
914 			break;
915 		sprintf(msg_buf, ev_msg, ev->lun);
916 		shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
917 			     ev->ev_seq, ev->target, msg_buf);
918 		break;
919 	case 'C':
920 		shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
921 			     ev->ev_seq, ev_msg);
922 		break;
923 	default:
924 		shost_printk(KERN_INFO, shost,
925 			     "event %d: Unknown Event Code %04X\n",
926 			     ev->ev_seq, ev->ev_code);
927 		break;
928 	}
929 }
930 
931 /*
932  * SCSI sysfs interface functions
933  */
934 static ssize_t raid_state_show(struct device *dev,
935 		struct device_attribute *attr, char *buf)
936 {
937 	struct scsi_device *sdev = to_scsi_device(dev);
938 	struct myrs_hba *cs = shost_priv(sdev->host);
939 	int ret;
940 
941 	if (!sdev->hostdata)
942 		return snprintf(buf, 16, "Unknown\n");
943 
944 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
945 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
946 		const char *name;
947 
948 		name = myrs_devstate_name(ldev_info->dev_state);
949 		if (name)
950 			ret = snprintf(buf, 32, "%s\n", name);
951 		else
952 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
953 				       ldev_info->dev_state);
954 	} else {
955 		struct myrs_pdev_info *pdev_info;
956 		const char *name;
957 
958 		pdev_info = sdev->hostdata;
959 		name = myrs_devstate_name(pdev_info->dev_state);
960 		if (name)
961 			ret = snprintf(buf, 32, "%s\n", name);
962 		else
963 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
964 				       pdev_info->dev_state);
965 	}
966 	return ret;
967 }
968 
969 static ssize_t raid_state_store(struct device *dev,
970 		struct device_attribute *attr, const char *buf, size_t count)
971 {
972 	struct scsi_device *sdev = to_scsi_device(dev);
973 	struct myrs_hba *cs = shost_priv(sdev->host);
974 	struct myrs_cmdblk *cmd_blk;
975 	union myrs_cmd_mbox *mbox;
976 	enum myrs_devstate new_state;
977 	unsigned short ldev_num;
978 	unsigned char status;
979 
980 	if (!strncmp(buf, "offline", 7) ||
981 	    !strncmp(buf, "kill", 4))
982 		new_state = MYRS_DEVICE_OFFLINE;
983 	else if (!strncmp(buf, "online", 6))
984 		new_state = MYRS_DEVICE_ONLINE;
985 	else if (!strncmp(buf, "standby", 7))
986 		new_state = MYRS_DEVICE_STANDBY;
987 	else
988 		return -EINVAL;
989 
990 	if (sdev->channel < cs->ctlr_info->physchan_present) {
991 		struct myrs_pdev_info *pdev_info = sdev->hostdata;
992 		struct myrs_devmap *pdev_devmap =
993 			(struct myrs_devmap *)&pdev_info->rsvd13;
994 
995 		if (pdev_info->dev_state == new_state) {
996 			sdev_printk(KERN_INFO, sdev,
997 				    "Device already in %s\n",
998 				    myrs_devstate_name(new_state));
999 			return count;
1000 		}
1001 		status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
1002 					     sdev->lun, pdev_devmap);
1003 		if (status != MYRS_STATUS_SUCCESS)
1004 			return -ENXIO;
1005 		ldev_num = pdev_devmap->ldev_num;
1006 	} else {
1007 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
1008 
1009 		if (ldev_info->dev_state == new_state) {
1010 			sdev_printk(KERN_INFO, sdev,
1011 				    "Device already in %s\n",
1012 				    myrs_devstate_name(new_state));
1013 			return count;
1014 		}
1015 		ldev_num = ldev_info->ldev_num;
1016 	}
1017 	mutex_lock(&cs->dcmd_mutex);
1018 	cmd_blk = &cs->dcmd_blk;
1019 	myrs_reset_cmd(cmd_blk);
1020 	mbox = &cmd_blk->mbox;
1021 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1022 	mbox->common.id = MYRS_DCMD_TAG;
1023 	mbox->common.control.dma_ctrl_to_host = true;
1024 	mbox->common.control.no_autosense = true;
1025 	mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
1026 	mbox->set_devstate.state = new_state;
1027 	mbox->set_devstate.ldev.ldev_num = ldev_num;
1028 	myrs_exec_cmd(cs, cmd_blk);
1029 	status = cmd_blk->status;
1030 	mutex_unlock(&cs->dcmd_mutex);
1031 	if (status == MYRS_STATUS_SUCCESS) {
1032 		if (sdev->channel < cs->ctlr_info->physchan_present) {
1033 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
1034 
1035 			pdev_info->dev_state = new_state;
1036 		} else {
1037 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1038 
1039 			ldev_info->dev_state = new_state;
1040 		}
1041 		sdev_printk(KERN_INFO, sdev,
1042 			    "Set device state to %s\n",
1043 			    myrs_devstate_name(new_state));
1044 		return count;
1045 	}
1046 	sdev_printk(KERN_INFO, sdev,
1047 		    "Failed to set device state to %s, status 0x%02x\n",
1048 		    myrs_devstate_name(new_state), status);
1049 	return -EINVAL;
1050 }
1051 static DEVICE_ATTR_RW(raid_state);
1052 
1053 static ssize_t raid_level_show(struct device *dev,
1054 		struct device_attribute *attr, char *buf)
1055 {
1056 	struct scsi_device *sdev = to_scsi_device(dev);
1057 	struct myrs_hba *cs = shost_priv(sdev->host);
1058 	const char *name = NULL;
1059 
1060 	if (!sdev->hostdata)
1061 		return snprintf(buf, 16, "Unknown\n");
1062 
1063 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1064 		struct myrs_ldev_info *ldev_info;
1065 
1066 		ldev_info = sdev->hostdata;
1067 		name = myrs_raid_level_name(ldev_info->raid_level);
1068 		if (!name)
1069 			return snprintf(buf, 32, "Invalid (%02X)\n",
1070 					ldev_info->dev_state);
1071 
1072 	} else
1073 		name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
1074 
1075 	return snprintf(buf, 32, "%s\n", name);
1076 }
1077 static DEVICE_ATTR_RO(raid_level);
1078 
1079 static ssize_t rebuild_show(struct device *dev,
1080 		struct device_attribute *attr, char *buf)
1081 {
1082 	struct scsi_device *sdev = to_scsi_device(dev);
1083 	struct myrs_hba *cs = shost_priv(sdev->host);
1084 	struct myrs_ldev_info *ldev_info;
1085 	unsigned short ldev_num;
1086 	unsigned char status;
1087 
1088 	if (sdev->channel < cs->ctlr_info->physchan_present)
1089 		return snprintf(buf, 32, "physical device - not rebuilding\n");
1090 
1091 	ldev_info = sdev->hostdata;
1092 	ldev_num = ldev_info->ldev_num;
1093 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1094 	if (status != MYRS_STATUS_SUCCESS) {
1095 		sdev_printk(KERN_INFO, sdev,
1096 			    "Failed to get device information, status 0x%02x\n",
1097 			    status);
1098 		return -EIO;
1099 	}
1100 	if (ldev_info->rbld_active) {
1101 		return snprintf(buf, 32, "rebuilding block %zu of %zu\n",
1102 				(size_t)ldev_info->rbld_lba,
1103 				(size_t)ldev_info->cfg_devsize);
1104 	} else
1105 		return snprintf(buf, 32, "not rebuilding\n");
1106 }
1107 
1108 static ssize_t rebuild_store(struct device *dev,
1109 		struct device_attribute *attr, const char *buf, size_t count)
1110 {
1111 	struct scsi_device *sdev = to_scsi_device(dev);
1112 	struct myrs_hba *cs = shost_priv(sdev->host);
1113 	struct myrs_ldev_info *ldev_info;
1114 	struct myrs_cmdblk *cmd_blk;
1115 	union myrs_cmd_mbox *mbox;
1116 	unsigned short ldev_num;
1117 	unsigned char status;
1118 	int rebuild, ret;
1119 
1120 	if (sdev->channel < cs->ctlr_info->physchan_present)
1121 		return -EINVAL;
1122 
1123 	ldev_info = sdev->hostdata;
1124 	if (!ldev_info)
1125 		return -ENXIO;
1126 	ldev_num = ldev_info->ldev_num;
1127 
1128 	ret = kstrtoint(buf, 0, &rebuild);
1129 	if (ret)
1130 		return ret;
1131 
1132 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1133 	if (status != MYRS_STATUS_SUCCESS) {
1134 		sdev_printk(KERN_INFO, sdev,
1135 			    "Failed to get device information, status 0x%02x\n",
1136 			    status);
1137 		return -EIO;
1138 	}
1139 
1140 	if (rebuild && ldev_info->rbld_active) {
1141 		sdev_printk(KERN_INFO, sdev,
1142 			    "Rebuild Not Initiated; already in progress\n");
1143 		return -EALREADY;
1144 	}
1145 	if (!rebuild && !ldev_info->rbld_active) {
1146 		sdev_printk(KERN_INFO, sdev,
1147 			    "Rebuild Not Cancelled; no rebuild in progress\n");
1148 		return count;
1149 	}
1150 
1151 	mutex_lock(&cs->dcmd_mutex);
1152 	cmd_blk = &cs->dcmd_blk;
1153 	myrs_reset_cmd(cmd_blk);
1154 	mbox = &cmd_blk->mbox;
1155 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1156 	mbox->common.id = MYRS_DCMD_TAG;
1157 	mbox->common.control.dma_ctrl_to_host = true;
1158 	mbox->common.control.no_autosense = true;
1159 	if (rebuild) {
1160 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1161 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
1162 	} else {
1163 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1164 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
1165 	}
1166 	myrs_exec_cmd(cs, cmd_blk);
1167 	status = cmd_blk->status;
1168 	mutex_unlock(&cs->dcmd_mutex);
1169 	if (status) {
1170 		sdev_printk(KERN_INFO, sdev,
1171 			    "Rebuild Not %s, status 0x%02x\n",
1172 			    rebuild ? "Initiated" : "Cancelled", status);
1173 		ret = -EIO;
1174 	} else {
1175 		sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
1176 			    rebuild ? "Initiated" : "Cancelled");
1177 		ret = count;
1178 	}
1179 
1180 	return ret;
1181 }
1182 static DEVICE_ATTR_RW(rebuild);
1183 
1184 static ssize_t consistency_check_show(struct device *dev,
1185 		struct device_attribute *attr, char *buf)
1186 {
1187 	struct scsi_device *sdev = to_scsi_device(dev);
1188 	struct myrs_hba *cs = shost_priv(sdev->host);
1189 	struct myrs_ldev_info *ldev_info;
1190 	unsigned short ldev_num;
1191 
1192 	if (sdev->channel < cs->ctlr_info->physchan_present)
1193 		return snprintf(buf, 32, "physical device - not checking\n");
1194 
1195 	ldev_info = sdev->hostdata;
1196 	if (!ldev_info)
1197 		return -ENXIO;
1198 	ldev_num = ldev_info->ldev_num;
1199 	myrs_get_ldev_info(cs, ldev_num, ldev_info);
1200 	if (ldev_info->cc_active)
1201 		return snprintf(buf, 32, "checking block %zu of %zu\n",
1202 				(size_t)ldev_info->cc_lba,
1203 				(size_t)ldev_info->cfg_devsize);
1204 	else
1205 		return snprintf(buf, 32, "not checking\n");
1206 }
1207 
1208 static ssize_t consistency_check_store(struct device *dev,
1209 		struct device_attribute *attr, const char *buf, size_t count)
1210 {
1211 	struct scsi_device *sdev = to_scsi_device(dev);
1212 	struct myrs_hba *cs = shost_priv(sdev->host);
1213 	struct myrs_ldev_info *ldev_info;
1214 	struct myrs_cmdblk *cmd_blk;
1215 	union myrs_cmd_mbox *mbox;
1216 	unsigned short ldev_num;
1217 	unsigned char status;
1218 	int check, ret;
1219 
1220 	if (sdev->channel < cs->ctlr_info->physchan_present)
1221 		return -EINVAL;
1222 
1223 	ldev_info = sdev->hostdata;
1224 	if (!ldev_info)
1225 		return -ENXIO;
1226 	ldev_num = ldev_info->ldev_num;
1227 
1228 	ret = kstrtoint(buf, 0, &check);
1229 	if (ret)
1230 		return ret;
1231 
1232 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1233 	if (status != MYRS_STATUS_SUCCESS) {
1234 		sdev_printk(KERN_INFO, sdev,
1235 			    "Failed to get device information, status 0x%02x\n",
1236 			    status);
1237 		return -EIO;
1238 	}
1239 	if (check && ldev_info->cc_active) {
1240 		sdev_printk(KERN_INFO, sdev,
1241 			    "Consistency Check Not Initiated; "
1242 			    "already in progress\n");
1243 		return -EALREADY;
1244 	}
1245 	if (!check && !ldev_info->cc_active) {
1246 		sdev_printk(KERN_INFO, sdev,
1247 			    "Consistency Check Not Cancelled; "
1248 			    "check not in progress\n");
1249 		return count;
1250 	}
1251 
1252 	mutex_lock(&cs->dcmd_mutex);
1253 	cmd_blk = &cs->dcmd_blk;
1254 	myrs_reset_cmd(cmd_blk);
1255 	mbox = &cmd_blk->mbox;
1256 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1257 	mbox->common.id = MYRS_DCMD_TAG;
1258 	mbox->common.control.dma_ctrl_to_host = true;
1259 	mbox->common.control.no_autosense = true;
1260 	if (check) {
1261 		mbox->cc.ldev.ldev_num = ldev_num;
1262 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
1263 		mbox->cc.restore_consistency = true;
1264 		mbox->cc.initialized_area_only = false;
1265 	} else {
1266 		mbox->cc.ldev.ldev_num = ldev_num;
1267 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
1268 	}
1269 	myrs_exec_cmd(cs, cmd_blk);
1270 	status = cmd_blk->status;
1271 	mutex_unlock(&cs->dcmd_mutex);
1272 	if (status != MYRS_STATUS_SUCCESS) {
1273 		sdev_printk(KERN_INFO, sdev,
1274 			    "Consistency Check Not %s, status 0x%02x\n",
1275 			    check ? "Initiated" : "Cancelled", status);
1276 		ret = -EIO;
1277 	} else {
1278 		sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
1279 			    check ? "Initiated" : "Cancelled");
1280 		ret = count;
1281 	}
1282 
1283 	return ret;
1284 }
1285 static DEVICE_ATTR_RW(consistency_check);
1286 
1287 static struct attribute *myrs_sdev_attrs[] = {
1288 	&dev_attr_consistency_check.attr,
1289 	&dev_attr_rebuild.attr,
1290 	&dev_attr_raid_state.attr,
1291 	&dev_attr_raid_level.attr,
1292 	NULL,
1293 };
1294 
1295 ATTRIBUTE_GROUPS(myrs_sdev);
1296 
1297 static ssize_t serial_show(struct device *dev,
1298 		struct device_attribute *attr, char *buf)
1299 {
1300 	struct Scsi_Host *shost = class_to_shost(dev);
1301 	struct myrs_hba *cs = shost_priv(shost);
1302 	char serial[17];
1303 
1304 	memcpy(serial, cs->ctlr_info->serial_number, 16);
1305 	serial[16] = '\0';
1306 	return snprintf(buf, 16, "%s\n", serial);
1307 }
1308 static DEVICE_ATTR_RO(serial);
1309 
1310 static ssize_t ctlr_num_show(struct device *dev,
1311 		struct device_attribute *attr, char *buf)
1312 {
1313 	struct Scsi_Host *shost = class_to_shost(dev);
1314 	struct myrs_hba *cs = shost_priv(shost);
1315 
1316 	return snprintf(buf, 20, "%d\n", cs->host->host_no);
1317 }
1318 static DEVICE_ATTR_RO(ctlr_num);
1319 
1320 static struct myrs_cpu_type_tbl {
1321 	enum myrs_cpu_type type;
1322 	char *name;
1323 } myrs_cpu_type_names[] = {
1324 	{ MYRS_CPUTYPE_i960CA, "i960CA" },
1325 	{ MYRS_CPUTYPE_i960RD, "i960RD" },
1326 	{ MYRS_CPUTYPE_i960RN, "i960RN" },
1327 	{ MYRS_CPUTYPE_i960RP, "i960RP" },
1328 	{ MYRS_CPUTYPE_NorthBay, "NorthBay" },
1329 	{ MYRS_CPUTYPE_StrongArm, "StrongARM" },
1330 	{ MYRS_CPUTYPE_i960RM, "i960RM" },
1331 };
1332 
1333 static ssize_t processor_show(struct device *dev,
1334 		struct device_attribute *attr, char *buf)
1335 {
1336 	struct Scsi_Host *shost = class_to_shost(dev);
1337 	struct myrs_hba *cs = shost_priv(shost);
1338 	struct myrs_cpu_type_tbl *tbl;
1339 	const char *first_processor = NULL;
1340 	const char *second_processor = NULL;
1341 	struct myrs_ctlr_info *info = cs->ctlr_info;
1342 	ssize_t ret;
1343 	int i;
1344 
1345 	if (info->cpu[0].cpu_count) {
1346 		tbl = myrs_cpu_type_names;
1347 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1348 			if (tbl[i].type == info->cpu[0].cpu_type) {
1349 				first_processor = tbl[i].name;
1350 				break;
1351 			}
1352 		}
1353 	}
1354 	if (info->cpu[1].cpu_count) {
1355 		tbl = myrs_cpu_type_names;
1356 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1357 			if (tbl[i].type == info->cpu[1].cpu_type) {
1358 				second_processor = tbl[i].name;
1359 				break;
1360 			}
1361 		}
1362 	}
1363 	if (first_processor && second_processor)
1364 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
1365 			       "2: %s (%s, %d cpus)\n",
1366 			       info->cpu[0].cpu_name,
1367 			       first_processor, info->cpu[0].cpu_count,
1368 			       info->cpu[1].cpu_name,
1369 			       second_processor, info->cpu[1].cpu_count);
1370 	else if (first_processor && !second_processor)
1371 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
1372 			       info->cpu[0].cpu_name,
1373 			       first_processor, info->cpu[0].cpu_count);
1374 	else if (!first_processor && second_processor)
1375 		ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
1376 			       info->cpu[1].cpu_name,
1377 			       second_processor, info->cpu[1].cpu_count);
1378 	else
1379 		ret = snprintf(buf, 64, "1: absent\n2: absent\n");
1380 
1381 	return ret;
1382 }
1383 static DEVICE_ATTR_RO(processor);
1384 
1385 static ssize_t model_show(struct device *dev,
1386 		struct device_attribute *attr, char *buf)
1387 {
1388 	struct Scsi_Host *shost = class_to_shost(dev);
1389 	struct myrs_hba *cs = shost_priv(shost);
1390 
1391 	return snprintf(buf, 28, "%s\n", cs->model_name);
1392 }
1393 static DEVICE_ATTR_RO(model);
1394 
1395 static ssize_t ctlr_type_show(struct device *dev,
1396 		struct device_attribute *attr, char *buf)
1397 {
1398 	struct Scsi_Host *shost = class_to_shost(dev);
1399 	struct myrs_hba *cs = shost_priv(shost);
1400 
1401 	return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
1402 }
1403 static DEVICE_ATTR_RO(ctlr_type);
1404 
1405 static ssize_t cache_size_show(struct device *dev,
1406 		struct device_attribute *attr, char *buf)
1407 {
1408 	struct Scsi_Host *shost = class_to_shost(dev);
1409 	struct myrs_hba *cs = shost_priv(shost);
1410 
1411 	return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
1412 }
1413 static DEVICE_ATTR_RO(cache_size);
1414 
1415 static ssize_t firmware_show(struct device *dev,
1416 		struct device_attribute *attr, char *buf)
1417 {
1418 	struct Scsi_Host *shost = class_to_shost(dev);
1419 	struct myrs_hba *cs = shost_priv(shost);
1420 
1421 	return snprintf(buf, 16, "%d.%02d-%02d\n",
1422 			cs->ctlr_info->fw_major_version,
1423 			cs->ctlr_info->fw_minor_version,
1424 			cs->ctlr_info->fw_turn_number);
1425 }
1426 static DEVICE_ATTR_RO(firmware);
1427 
1428 static ssize_t discovery_store(struct device *dev,
1429 		struct device_attribute *attr, const char *buf, size_t count)
1430 {
1431 	struct Scsi_Host *shost = class_to_shost(dev);
1432 	struct myrs_hba *cs = shost_priv(shost);
1433 	struct myrs_cmdblk *cmd_blk;
1434 	union myrs_cmd_mbox *mbox;
1435 	unsigned char status;
1436 
1437 	mutex_lock(&cs->dcmd_mutex);
1438 	cmd_blk = &cs->dcmd_blk;
1439 	myrs_reset_cmd(cmd_blk);
1440 	mbox = &cmd_blk->mbox;
1441 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1442 	mbox->common.id = MYRS_DCMD_TAG;
1443 	mbox->common.control.dma_ctrl_to_host = true;
1444 	mbox->common.control.no_autosense = true;
1445 	mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
1446 	myrs_exec_cmd(cs, cmd_blk);
1447 	status = cmd_blk->status;
1448 	mutex_unlock(&cs->dcmd_mutex);
1449 	if (status != MYRS_STATUS_SUCCESS) {
1450 		shost_printk(KERN_INFO, shost,
1451 			     "Discovery Not Initiated, status %02X\n",
1452 			     status);
1453 		return -EINVAL;
1454 	}
1455 	shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
1456 	cs->next_evseq = 0;
1457 	cs->needs_update = true;
1458 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
1459 	flush_delayed_work(&cs->monitor_work);
1460 	shost_printk(KERN_INFO, shost, "Discovery Completed\n");
1461 
1462 	return count;
1463 }
1464 static DEVICE_ATTR_WO(discovery);
1465 
1466 static ssize_t flush_cache_store(struct device *dev,
1467 		struct device_attribute *attr, const char *buf, size_t count)
1468 {
1469 	struct Scsi_Host *shost = class_to_shost(dev);
1470 	struct myrs_hba *cs = shost_priv(shost);
1471 	unsigned char status;
1472 
1473 	status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
1474 			     MYRS_RAID_CONTROLLER);
1475 	if (status == MYRS_STATUS_SUCCESS) {
1476 		shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
1477 		return count;
1478 	}
1479 	shost_printk(KERN_INFO, shost,
1480 		     "Cache Flush failed, status 0x%02x\n", status);
1481 	return -EIO;
1482 }
1483 static DEVICE_ATTR_WO(flush_cache);
1484 
1485 static ssize_t disable_enclosure_messages_show(struct device *dev,
1486 		struct device_attribute *attr, char *buf)
1487 {
1488 	struct Scsi_Host *shost = class_to_shost(dev);
1489 	struct myrs_hba *cs = shost_priv(shost);
1490 
1491 	return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
1492 }
1493 
1494 static ssize_t disable_enclosure_messages_store(struct device *dev,
1495 		struct device_attribute *attr, const char *buf, size_t count)
1496 {
1497 	struct scsi_device *sdev = to_scsi_device(dev);
1498 	struct myrs_hba *cs = shost_priv(sdev->host);
1499 	int value, ret;
1500 
1501 	ret = kstrtoint(buf, 0, &value);
1502 	if (ret)
1503 		return ret;
1504 
1505 	if (value > 2)
1506 		return -EINVAL;
1507 
1508 	cs->disable_enc_msg = value;
1509 	return count;
1510 }
1511 static DEVICE_ATTR_RW(disable_enclosure_messages);
1512 
1513 static struct attribute *myrs_shost_attrs[] = {
1514 	&dev_attr_serial.attr,
1515 	&dev_attr_ctlr_num.attr,
1516 	&dev_attr_processor.attr,
1517 	&dev_attr_model.attr,
1518 	&dev_attr_ctlr_type.attr,
1519 	&dev_attr_cache_size.attr,
1520 	&dev_attr_firmware.attr,
1521 	&dev_attr_discovery.attr,
1522 	&dev_attr_flush_cache.attr,
1523 	&dev_attr_disable_enclosure_messages.attr,
1524 	NULL,
1525 };
1526 
1527 ATTRIBUTE_GROUPS(myrs_shost);
1528 
1529 /*
1530  * SCSI midlayer interface
1531  */
1532 static int myrs_host_reset(struct scsi_cmnd *scmd)
1533 {
1534 	struct Scsi_Host *shost = scmd->device->host;
1535 	struct myrs_hba *cs = shost_priv(shost);
1536 
1537 	cs->reset(cs->io_base);
1538 	return SUCCESS;
1539 }
1540 
1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
1542 		struct myrs_ldev_info *ldev_info)
1543 {
1544 	unsigned char modes[32], *mode_pg;
1545 	bool dbd;
1546 	size_t mode_len;
1547 
1548 	dbd = (scmd->cmnd[1] & 0x08) == 0x08;
1549 	if (dbd) {
1550 		mode_len = 24;
1551 		mode_pg = &modes[4];
1552 	} else {
1553 		mode_len = 32;
1554 		mode_pg = &modes[12];
1555 	}
1556 	memset(modes, 0, sizeof(modes));
1557 	modes[0] = mode_len - 1;
1558 	modes[2] = 0x10; /* Enable FUA */
1559 	if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
1560 		modes[2] |= 0x80;
1561 	if (!dbd) {
1562 		unsigned char *block_desc = &modes[4];
1563 
1564 		modes[3] = 8;
1565 		put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
1566 		put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
1567 	}
1568 	mode_pg[0] = 0x08;
1569 	mode_pg[1] = 0x12;
1570 	if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
1571 		mode_pg[2] |= 0x01;
1572 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1573 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1574 		mode_pg[2] |= 0x04;
1575 	if (ldev_info->cacheline_size) {
1576 		mode_pg[2] |= 0x08;
1577 		put_unaligned_be16(1 << ldev_info->cacheline_size,
1578 				   &mode_pg[14]);
1579 	}
1580 
1581 	scsi_sg_copy_from_buffer(scmd, modes, mode_len);
1582 }
1583 
1584 static int myrs_queuecommand(struct Scsi_Host *shost,
1585 		struct scsi_cmnd *scmd)
1586 {
1587 	struct request *rq = scsi_cmd_to_rq(scmd);
1588 	struct myrs_hba *cs = shost_priv(shost);
1589 	struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
1590 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
1591 	struct scsi_device *sdev = scmd->device;
1592 	union myrs_sgl *hw_sge;
1593 	dma_addr_t sense_addr;
1594 	struct scatterlist *sgl;
1595 	unsigned long flags, timeout;
1596 	int nsge;
1597 
1598 	if (!scmd->device->hostdata) {
1599 		scmd->result = (DID_NO_CONNECT << 16);
1600 		scsi_done(scmd);
1601 		return 0;
1602 	}
1603 
1604 	switch (scmd->cmnd[0]) {
1605 	case REPORT_LUNS:
1606 		scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x20, 0x0);
1607 		scsi_done(scmd);
1608 		return 0;
1609 	case MODE_SENSE:
1610 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1611 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1612 
1613 			if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
1614 			    (scmd->cmnd[2] & 0x3F) != 0x08) {
1615 				/* Illegal request, invalid field in CDB */
1616 				scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x24, 0);
1617 			} else {
1618 				myrs_mode_sense(cs, scmd, ldev_info);
1619 				scmd->result = (DID_OK << 16);
1620 			}
1621 			scsi_done(scmd);
1622 			return 0;
1623 		}
1624 		break;
1625 	}
1626 
1627 	myrs_reset_cmd(cmd_blk);
1628 	cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
1629 					&sense_addr);
1630 	if (!cmd_blk->sense)
1631 		return SCSI_MLQUEUE_HOST_BUSY;
1632 	cmd_blk->sense_addr = sense_addr;
1633 
1634 	timeout = rq->timeout;
1635 	if (scmd->cmd_len <= 10) {
1636 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1637 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1638 
1639 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
1640 			mbox->SCSI_10.pdev.lun = ldev_info->lun;
1641 			mbox->SCSI_10.pdev.target = ldev_info->target;
1642 			mbox->SCSI_10.pdev.channel = ldev_info->channel;
1643 			mbox->SCSI_10.pdev.ctlr = 0;
1644 		} else {
1645 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
1646 			mbox->SCSI_10.pdev.lun = sdev->lun;
1647 			mbox->SCSI_10.pdev.target = sdev->id;
1648 			mbox->SCSI_10.pdev.channel = sdev->channel;
1649 		}
1650 		mbox->SCSI_10.id = rq->tag + 3;
1651 		mbox->SCSI_10.control.dma_ctrl_to_host =
1652 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1653 		if (rq->cmd_flags & REQ_FUA)
1654 			mbox->SCSI_10.control.fua = true;
1655 		mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
1656 		mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
1657 		mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
1658 		mbox->SCSI_10.cdb_len = scmd->cmd_len;
1659 		if (timeout > 60) {
1660 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1661 			mbox->SCSI_10.tmo.tmo_val = timeout / 60;
1662 		} else {
1663 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1664 			mbox->SCSI_10.tmo.tmo_val = timeout;
1665 		}
1666 		memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
1667 		hw_sge = &mbox->SCSI_10.dma_addr;
1668 		cmd_blk->dcdb = NULL;
1669 	} else {
1670 		dma_addr_t dcdb_dma;
1671 
1672 		cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
1673 					       &dcdb_dma);
1674 		if (!cmd_blk->dcdb) {
1675 			dma_pool_free(cs->sense_pool, cmd_blk->sense,
1676 				      cmd_blk->sense_addr);
1677 			cmd_blk->sense = NULL;
1678 			cmd_blk->sense_addr = 0;
1679 			return SCSI_MLQUEUE_HOST_BUSY;
1680 		}
1681 		cmd_blk->dcdb_dma = dcdb_dma;
1682 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1683 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1684 
1685 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
1686 			mbox->SCSI_255.pdev.lun = ldev_info->lun;
1687 			mbox->SCSI_255.pdev.target = ldev_info->target;
1688 			mbox->SCSI_255.pdev.channel = ldev_info->channel;
1689 			mbox->SCSI_255.pdev.ctlr = 0;
1690 		} else {
1691 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
1692 			mbox->SCSI_255.pdev.lun = sdev->lun;
1693 			mbox->SCSI_255.pdev.target = sdev->id;
1694 			mbox->SCSI_255.pdev.channel = sdev->channel;
1695 		}
1696 		mbox->SCSI_255.id = rq->tag + 3;
1697 		mbox->SCSI_255.control.dma_ctrl_to_host =
1698 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1699 		if (rq->cmd_flags & REQ_FUA)
1700 			mbox->SCSI_255.control.fua = true;
1701 		mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
1702 		mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
1703 		mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
1704 		mbox->SCSI_255.cdb_len = scmd->cmd_len;
1705 		mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
1706 		if (timeout > 60) {
1707 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1708 			mbox->SCSI_255.tmo.tmo_val = timeout / 60;
1709 		} else {
1710 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1711 			mbox->SCSI_255.tmo.tmo_val = timeout;
1712 		}
1713 		memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
1714 		hw_sge = &mbox->SCSI_255.dma_addr;
1715 	}
1716 	if (scmd->sc_data_direction == DMA_NONE)
1717 		goto submit;
1718 	nsge = scsi_dma_map(scmd);
1719 	if (nsge == 1) {
1720 		sgl = scsi_sglist(scmd);
1721 		hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
1722 		hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
1723 	} else {
1724 		struct myrs_sge *hw_sgl;
1725 		dma_addr_t hw_sgl_addr;
1726 		int i;
1727 
1728 		if (nsge > 2) {
1729 			hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
1730 						&hw_sgl_addr);
1731 			if (WARN_ON(!hw_sgl)) {
1732 				if (cmd_blk->dcdb) {
1733 					dma_pool_free(cs->dcdb_pool,
1734 						      cmd_blk->dcdb,
1735 						      cmd_blk->dcdb_dma);
1736 					cmd_blk->dcdb = NULL;
1737 					cmd_blk->dcdb_dma = 0;
1738 				}
1739 				dma_pool_free(cs->sense_pool,
1740 					      cmd_blk->sense,
1741 					      cmd_blk->sense_addr);
1742 				cmd_blk->sense = NULL;
1743 				cmd_blk->sense_addr = 0;
1744 				return SCSI_MLQUEUE_HOST_BUSY;
1745 			}
1746 			cmd_blk->sgl = hw_sgl;
1747 			cmd_blk->sgl_addr = hw_sgl_addr;
1748 			if (scmd->cmd_len <= 10)
1749 				mbox->SCSI_10.control.add_sge_mem = true;
1750 			else
1751 				mbox->SCSI_255.control.add_sge_mem = true;
1752 			hw_sge->ext.sge0_len = nsge;
1753 			hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
1754 		} else
1755 			hw_sgl = hw_sge->sge;
1756 
1757 		scsi_for_each_sg(scmd, sgl, nsge, i) {
1758 			if (WARN_ON(!hw_sgl)) {
1759 				scsi_dma_unmap(scmd);
1760 				scmd->result = (DID_ERROR << 16);
1761 				scsi_done(scmd);
1762 				return 0;
1763 			}
1764 			hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
1765 			hw_sgl->sge_count = (u64)sg_dma_len(sgl);
1766 			hw_sgl++;
1767 		}
1768 	}
1769 submit:
1770 	spin_lock_irqsave(&cs->queue_lock, flags);
1771 	myrs_qcmd(cs, cmd_blk);
1772 	spin_unlock_irqrestore(&cs->queue_lock, flags);
1773 
1774 	return 0;
1775 }
1776 
1777 static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
1778 		struct scsi_device *sdev)
1779 {
1780 	unsigned short ldev_num;
1781 	unsigned int chan_offset =
1782 		sdev->channel - cs->ctlr_info->physchan_present;
1783 
1784 	ldev_num = sdev->id + chan_offset * sdev->host->max_id;
1785 
1786 	return ldev_num;
1787 }
1788 
1789 static int myrs_slave_alloc(struct scsi_device *sdev)
1790 {
1791 	struct myrs_hba *cs = shost_priv(sdev->host);
1792 	unsigned char status;
1793 
1794 	if (sdev->channel > sdev->host->max_channel)
1795 		return 0;
1796 
1797 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1798 		struct myrs_ldev_info *ldev_info;
1799 		unsigned short ldev_num;
1800 
1801 		if (sdev->lun > 0)
1802 			return -ENXIO;
1803 
1804 		ldev_num = myrs_translate_ldev(cs, sdev);
1805 
1806 		ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL);
1807 		if (!ldev_info)
1808 			return -ENOMEM;
1809 
1810 		status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1811 		if (status != MYRS_STATUS_SUCCESS) {
1812 			sdev->hostdata = NULL;
1813 			kfree(ldev_info);
1814 		} else {
1815 			enum raid_level level;
1816 
1817 			dev_dbg(&sdev->sdev_gendev,
1818 				"Logical device mapping %d:%d:%d -> %d\n",
1819 				ldev_info->channel, ldev_info->target,
1820 				ldev_info->lun, ldev_info->ldev_num);
1821 
1822 			sdev->hostdata = ldev_info;
1823 			switch (ldev_info->raid_level) {
1824 			case MYRS_RAID_LEVEL0:
1825 				level = RAID_LEVEL_LINEAR;
1826 				break;
1827 			case MYRS_RAID_LEVEL1:
1828 				level = RAID_LEVEL_1;
1829 				break;
1830 			case MYRS_RAID_LEVEL3:
1831 			case MYRS_RAID_LEVEL3F:
1832 			case MYRS_RAID_LEVEL3L:
1833 				level = RAID_LEVEL_3;
1834 				break;
1835 			case MYRS_RAID_LEVEL5:
1836 			case MYRS_RAID_LEVEL5L:
1837 				level = RAID_LEVEL_5;
1838 				break;
1839 			case MYRS_RAID_LEVEL6:
1840 				level = RAID_LEVEL_6;
1841 				break;
1842 			case MYRS_RAID_LEVELE:
1843 			case MYRS_RAID_NEWSPAN:
1844 			case MYRS_RAID_SPAN:
1845 				level = RAID_LEVEL_LINEAR;
1846 				break;
1847 			case MYRS_RAID_JBOD:
1848 				level = RAID_LEVEL_JBOD;
1849 				break;
1850 			default:
1851 				level = RAID_LEVEL_UNKNOWN;
1852 				break;
1853 			}
1854 			raid_set_level(myrs_raid_template,
1855 				       &sdev->sdev_gendev, level);
1856 			if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
1857 				const char *name;
1858 
1859 				name = myrs_devstate_name(ldev_info->dev_state);
1860 				sdev_printk(KERN_DEBUG, sdev,
1861 					    "logical device in state %s\n",
1862 					    name ? name : "Invalid");
1863 			}
1864 		}
1865 	} else {
1866 		struct myrs_pdev_info *pdev_info;
1867 
1868 		pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL);
1869 		if (!pdev_info)
1870 			return -ENOMEM;
1871 
1872 		status = myrs_get_pdev_info(cs, sdev->channel,
1873 					    sdev->id, sdev->lun,
1874 					    pdev_info);
1875 		if (status != MYRS_STATUS_SUCCESS) {
1876 			sdev->hostdata = NULL;
1877 			kfree(pdev_info);
1878 			return -ENXIO;
1879 		}
1880 		sdev->hostdata = pdev_info;
1881 	}
1882 	return 0;
1883 }
1884 
1885 static int myrs_slave_configure(struct scsi_device *sdev)
1886 {
1887 	struct myrs_hba *cs = shost_priv(sdev->host);
1888 	struct myrs_ldev_info *ldev_info;
1889 
1890 	if (sdev->channel > sdev->host->max_channel)
1891 		return -ENXIO;
1892 
1893 	if (sdev->channel < cs->ctlr_info->physchan_present) {
1894 		/* Skip HBA device */
1895 		if (sdev->type == TYPE_RAID)
1896 			return -ENXIO;
1897 		sdev->no_uld_attach = 1;
1898 		return 0;
1899 	}
1900 	if (sdev->lun != 0)
1901 		return -ENXIO;
1902 
1903 	ldev_info = sdev->hostdata;
1904 	if (!ldev_info)
1905 		return -ENXIO;
1906 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1907 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1908 		sdev->wce_default_on = 1;
1909 	sdev->tagged_supported = 1;
1910 	return 0;
1911 }
1912 
1913 static void myrs_slave_destroy(struct scsi_device *sdev)
1914 {
1915 	kfree(sdev->hostdata);
1916 }
1917 
1918 static const struct scsi_host_template myrs_template = {
1919 	.module			= THIS_MODULE,
1920 	.name			= "DAC960",
1921 	.proc_name		= "myrs",
1922 	.queuecommand		= myrs_queuecommand,
1923 	.eh_host_reset_handler	= myrs_host_reset,
1924 	.slave_alloc		= myrs_slave_alloc,
1925 	.slave_configure	= myrs_slave_configure,
1926 	.slave_destroy		= myrs_slave_destroy,
1927 	.cmd_size		= sizeof(struct myrs_cmdblk),
1928 	.shost_groups		= myrs_shost_groups,
1929 	.sdev_groups		= myrs_sdev_groups,
1930 	.this_id		= -1,
1931 };
1932 
1933 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
1934 		const struct pci_device_id *entry)
1935 {
1936 	struct Scsi_Host *shost;
1937 	struct myrs_hba *cs;
1938 
1939 	shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
1940 	if (!shost)
1941 		return NULL;
1942 
1943 	shost->max_cmd_len = 16;
1944 	shost->max_lun = 256;
1945 	cs = shost_priv(shost);
1946 	mutex_init(&cs->dcmd_mutex);
1947 	mutex_init(&cs->cinfo_mutex);
1948 	cs->host = shost;
1949 
1950 	return cs;
1951 }
1952 
1953 /*
1954  * RAID template functions
1955  */
1956 
1957 /**
1958  * myrs_is_raid - return boolean indicating device is raid volume
1959  * @dev: the device struct object
1960  */
1961 static int
1962 myrs_is_raid(struct device *dev)
1963 {
1964 	struct scsi_device *sdev = to_scsi_device(dev);
1965 	struct myrs_hba *cs = shost_priv(sdev->host);
1966 
1967 	return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
1968 }
1969 
1970 /**
1971  * myrs_get_resync - get raid volume resync percent complete
1972  * @dev: the device struct object
1973  */
1974 static void
1975 myrs_get_resync(struct device *dev)
1976 {
1977 	struct scsi_device *sdev = to_scsi_device(dev);
1978 	struct myrs_hba *cs = shost_priv(sdev->host);
1979 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
1980 	u64 percent_complete = 0;
1981 
1982 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
1983 		return;
1984 	if (ldev_info->rbld_active) {
1985 		unsigned short ldev_num = ldev_info->ldev_num;
1986 
1987 		myrs_get_ldev_info(cs, ldev_num, ldev_info);
1988 		percent_complete = ldev_info->rbld_lba * 100;
1989 		do_div(percent_complete, ldev_info->cfg_devsize);
1990 	}
1991 	raid_set_resync(myrs_raid_template, dev, percent_complete);
1992 }
1993 
1994 /**
1995  * myrs_get_state - get raid volume status
1996  * @dev: the device struct object
1997  */
1998 static void
1999 myrs_get_state(struct device *dev)
2000 {
2001 	struct scsi_device *sdev = to_scsi_device(dev);
2002 	struct myrs_hba *cs = shost_priv(sdev->host);
2003 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
2004 	enum raid_state state = RAID_STATE_UNKNOWN;
2005 
2006 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
2007 		state = RAID_STATE_UNKNOWN;
2008 	else {
2009 		switch (ldev_info->dev_state) {
2010 		case MYRS_DEVICE_ONLINE:
2011 			state = RAID_STATE_ACTIVE;
2012 			break;
2013 		case MYRS_DEVICE_SUSPECTED_CRITICAL:
2014 		case MYRS_DEVICE_CRITICAL:
2015 			state = RAID_STATE_DEGRADED;
2016 			break;
2017 		case MYRS_DEVICE_REBUILD:
2018 			state = RAID_STATE_RESYNCING;
2019 			break;
2020 		case MYRS_DEVICE_UNCONFIGURED:
2021 		case MYRS_DEVICE_INVALID_STATE:
2022 			state = RAID_STATE_UNKNOWN;
2023 			break;
2024 		default:
2025 			state = RAID_STATE_OFFLINE;
2026 		}
2027 	}
2028 	raid_set_state(myrs_raid_template, dev, state);
2029 }
2030 
2031 static struct raid_function_template myrs_raid_functions = {
2032 	.cookie		= &myrs_template,
2033 	.is_raid	= myrs_is_raid,
2034 	.get_resync	= myrs_get_resync,
2035 	.get_state	= myrs_get_state,
2036 };
2037 
2038 /*
2039  * PCI interface functions
2040  */
2041 static void myrs_flush_cache(struct myrs_hba *cs)
2042 {
2043 	myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
2044 }
2045 
2046 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
2047 		struct scsi_cmnd *scmd)
2048 {
2049 	unsigned char status;
2050 
2051 	if (!cmd_blk)
2052 		return;
2053 
2054 	scsi_dma_unmap(scmd);
2055 	status = cmd_blk->status;
2056 	if (cmd_blk->sense) {
2057 		if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
2058 			unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
2059 
2060 			if (sense_len > cmd_blk->sense_len)
2061 				sense_len = cmd_blk->sense_len;
2062 			memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
2063 		}
2064 		dma_pool_free(cs->sense_pool, cmd_blk->sense,
2065 			      cmd_blk->sense_addr);
2066 		cmd_blk->sense = NULL;
2067 		cmd_blk->sense_addr = 0;
2068 	}
2069 	if (cmd_blk->dcdb) {
2070 		dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
2071 			      cmd_blk->dcdb_dma);
2072 		cmd_blk->dcdb = NULL;
2073 		cmd_blk->dcdb_dma = 0;
2074 	}
2075 	if (cmd_blk->sgl) {
2076 		dma_pool_free(cs->sg_pool, cmd_blk->sgl,
2077 			      cmd_blk->sgl_addr);
2078 		cmd_blk->sgl = NULL;
2079 		cmd_blk->sgl_addr = 0;
2080 	}
2081 	if (cmd_blk->residual)
2082 		scsi_set_resid(scmd, cmd_blk->residual);
2083 	if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
2084 	    status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
2085 		scmd->result = (DID_BAD_TARGET << 16);
2086 	else
2087 		scmd->result = (DID_OK << 16) | status;
2088 	scsi_done(scmd);
2089 }
2090 
2091 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
2092 {
2093 	if (!cmd_blk)
2094 		return;
2095 
2096 	if (cmd_blk->complete) {
2097 		complete(cmd_blk->complete);
2098 		cmd_blk->complete = NULL;
2099 	}
2100 }
2101 
2102 static void myrs_monitor(struct work_struct *work)
2103 {
2104 	struct myrs_hba *cs = container_of(work, struct myrs_hba,
2105 					   monitor_work.work);
2106 	struct Scsi_Host *shost = cs->host;
2107 	struct myrs_ctlr_info *info = cs->ctlr_info;
2108 	unsigned int epoch = cs->fwstat_buf->epoch;
2109 	unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
2110 	unsigned char status;
2111 
2112 	dev_dbg(&shost->shost_gendev, "monitor tick\n");
2113 
2114 	status = myrs_get_fwstatus(cs);
2115 
2116 	if (cs->needs_update) {
2117 		cs->needs_update = false;
2118 		mutex_lock(&cs->cinfo_mutex);
2119 		status = myrs_get_ctlr_info(cs);
2120 		mutex_unlock(&cs->cinfo_mutex);
2121 	}
2122 	if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
2123 		status = myrs_get_event(cs, cs->next_evseq,
2124 					cs->event_buf);
2125 		if (status == MYRS_STATUS_SUCCESS) {
2126 			myrs_log_event(cs, cs->event_buf);
2127 			cs->next_evseq++;
2128 			interval = 1;
2129 		}
2130 	}
2131 
2132 	if (time_after(jiffies, cs->secondary_monitor_time
2133 		       + MYRS_SECONDARY_MONITOR_INTERVAL))
2134 		cs->secondary_monitor_time = jiffies;
2135 
2136 	if (info->bg_init_active +
2137 	    info->ldev_init_active +
2138 	    info->pdev_init_active +
2139 	    info->cc_active +
2140 	    info->rbld_active +
2141 	    info->exp_active != 0) {
2142 		struct scsi_device *sdev;
2143 
2144 		shost_for_each_device(sdev, shost) {
2145 			struct myrs_ldev_info *ldev_info;
2146 			int ldev_num;
2147 
2148 			if (sdev->channel < info->physchan_present)
2149 				continue;
2150 			ldev_info = sdev->hostdata;
2151 			if (!ldev_info)
2152 				continue;
2153 			ldev_num = ldev_info->ldev_num;
2154 			myrs_get_ldev_info(cs, ldev_num, ldev_info);
2155 		}
2156 		cs->needs_update = true;
2157 	}
2158 	if (epoch == cs->epoch &&
2159 	    cs->fwstat_buf->next_evseq == cs->next_evseq &&
2160 	    (cs->needs_update == false ||
2161 	     time_before(jiffies, cs->primary_monitor_time
2162 			 + MYRS_PRIMARY_MONITOR_INTERVAL))) {
2163 		interval = MYRS_SECONDARY_MONITOR_INTERVAL;
2164 	}
2165 
2166 	if (interval > 1)
2167 		cs->primary_monitor_time = jiffies;
2168 	queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
2169 }
2170 
2171 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
2172 {
2173 	struct Scsi_Host *shost = cs->host;
2174 	size_t elem_size, elem_align;
2175 
2176 	elem_align = sizeof(struct myrs_sge);
2177 	elem_size = shost->sg_tablesize * elem_align;
2178 	cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
2179 				      elem_size, elem_align, 0);
2180 	if (cs->sg_pool == NULL) {
2181 		shost_printk(KERN_ERR, shost,
2182 			     "Failed to allocate SG pool\n");
2183 		return false;
2184 	}
2185 
2186 	cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
2187 					 MYRS_SENSE_SIZE, sizeof(int), 0);
2188 	if (cs->sense_pool == NULL) {
2189 		dma_pool_destroy(cs->sg_pool);
2190 		cs->sg_pool = NULL;
2191 		shost_printk(KERN_ERR, shost,
2192 			     "Failed to allocate sense data pool\n");
2193 		return false;
2194 	}
2195 
2196 	cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
2197 					MYRS_DCDB_SIZE,
2198 					sizeof(unsigned char), 0);
2199 	if (!cs->dcdb_pool) {
2200 		dma_pool_destroy(cs->sg_pool);
2201 		cs->sg_pool = NULL;
2202 		dma_pool_destroy(cs->sense_pool);
2203 		cs->sense_pool = NULL;
2204 		shost_printk(KERN_ERR, shost,
2205 			     "Failed to allocate DCDB pool\n");
2206 		return false;
2207 	}
2208 
2209 	snprintf(cs->work_q_name, sizeof(cs->work_q_name),
2210 		 "myrs_wq_%d", shost->host_no);
2211 	cs->work_q = create_singlethread_workqueue(cs->work_q_name);
2212 	if (!cs->work_q) {
2213 		dma_pool_destroy(cs->dcdb_pool);
2214 		cs->dcdb_pool = NULL;
2215 		dma_pool_destroy(cs->sg_pool);
2216 		cs->sg_pool = NULL;
2217 		dma_pool_destroy(cs->sense_pool);
2218 		cs->sense_pool = NULL;
2219 		shost_printk(KERN_ERR, shost,
2220 			     "Failed to create workqueue\n");
2221 		return false;
2222 	}
2223 
2224 	/* Initialize the Monitoring Timer. */
2225 	INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
2226 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
2227 
2228 	return true;
2229 }
2230 
2231 static void myrs_destroy_mempools(struct myrs_hba *cs)
2232 {
2233 	cancel_delayed_work_sync(&cs->monitor_work);
2234 	destroy_workqueue(cs->work_q);
2235 
2236 	dma_pool_destroy(cs->sg_pool);
2237 	dma_pool_destroy(cs->dcdb_pool);
2238 	dma_pool_destroy(cs->sense_pool);
2239 }
2240 
2241 static void myrs_unmap(struct myrs_hba *cs)
2242 {
2243 	kfree(cs->event_buf);
2244 	kfree(cs->ctlr_info);
2245 	if (cs->fwstat_buf) {
2246 		dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
2247 				  cs->fwstat_buf, cs->fwstat_addr);
2248 		cs->fwstat_buf = NULL;
2249 	}
2250 	if (cs->first_stat_mbox) {
2251 		dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
2252 				  cs->first_stat_mbox, cs->stat_mbox_addr);
2253 		cs->first_stat_mbox = NULL;
2254 	}
2255 	if (cs->first_cmd_mbox) {
2256 		dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
2257 				  cs->first_cmd_mbox, cs->cmd_mbox_addr);
2258 		cs->first_cmd_mbox = NULL;
2259 	}
2260 }
2261 
2262 static void myrs_cleanup(struct myrs_hba *cs)
2263 {
2264 	struct pci_dev *pdev = cs->pdev;
2265 
2266 	/* Free the memory mailbox, status, and related structures */
2267 	myrs_unmap(cs);
2268 
2269 	if (cs->mmio_base) {
2270 		if (cs->disable_intr)
2271 			cs->disable_intr(cs);
2272 		iounmap(cs->mmio_base);
2273 		cs->mmio_base = NULL;
2274 	}
2275 	if (cs->irq)
2276 		free_irq(cs->irq, cs);
2277 	if (cs->io_addr)
2278 		release_region(cs->io_addr, 0x80);
2279 	pci_set_drvdata(pdev, NULL);
2280 	pci_disable_device(pdev);
2281 	scsi_host_put(cs->host);
2282 }
2283 
2284 static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
2285 		const struct pci_device_id *entry)
2286 {
2287 	struct myrs_privdata *privdata =
2288 		(struct myrs_privdata *)entry->driver_data;
2289 	irq_handler_t irq_handler = privdata->irq_handler;
2290 	unsigned int mmio_size = privdata->mmio_size;
2291 	struct myrs_hba *cs = NULL;
2292 
2293 	cs = myrs_alloc_host(pdev, entry);
2294 	if (!cs) {
2295 		dev_err(&pdev->dev, "Unable to allocate Controller\n");
2296 		return NULL;
2297 	}
2298 	cs->pdev = pdev;
2299 
2300 	if (pci_enable_device(pdev))
2301 		goto Failure;
2302 
2303 	cs->pci_addr = pci_resource_start(pdev, 0);
2304 
2305 	pci_set_drvdata(pdev, cs);
2306 	spin_lock_init(&cs->queue_lock);
2307 	/* Map the Controller Register Window. */
2308 	if (mmio_size < PAGE_SIZE)
2309 		mmio_size = PAGE_SIZE;
2310 	cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size);
2311 	if (cs->mmio_base == NULL) {
2312 		dev_err(&pdev->dev,
2313 			"Unable to map Controller Register Window\n");
2314 		goto Failure;
2315 	}
2316 
2317 	cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
2318 	if (privdata->hw_init(pdev, cs, cs->io_base))
2319 		goto Failure;
2320 
2321 	/* Acquire shared access to the IRQ Channel. */
2322 	if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
2323 		dev_err(&pdev->dev,
2324 			"Unable to acquire IRQ Channel %d\n", pdev->irq);
2325 		goto Failure;
2326 	}
2327 	cs->irq = pdev->irq;
2328 	return cs;
2329 
2330 Failure:
2331 	dev_err(&pdev->dev,
2332 		"Failed to initialize Controller\n");
2333 	myrs_cleanup(cs);
2334 	return NULL;
2335 }
2336 
2337 /*
2338  * myrs_err_status reports Controller BIOS Messages passed through
2339  * the Error Status Register when the driver performs the BIOS handshaking.
2340  * It returns true for fatal errors and false otherwise.
2341  */
2342 
2343 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
2344 		unsigned char parm0, unsigned char parm1)
2345 {
2346 	struct pci_dev *pdev = cs->pdev;
2347 
2348 	switch (status) {
2349 	case 0x00:
2350 		dev_info(&pdev->dev,
2351 			 "Physical Device %d:%d Not Responding\n",
2352 			 parm1, parm0);
2353 		break;
2354 	case 0x08:
2355 		dev_notice(&pdev->dev, "Spinning Up Drives\n");
2356 		break;
2357 	case 0x30:
2358 		dev_notice(&pdev->dev, "Configuration Checksum Error\n");
2359 		break;
2360 	case 0x60:
2361 		dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
2362 		break;
2363 	case 0x70:
2364 		dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
2365 		break;
2366 	case 0x90:
2367 		dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
2368 			   parm1, parm0);
2369 		break;
2370 	case 0xA0:
2371 		dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
2372 		break;
2373 	case 0xB0:
2374 		dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
2375 		break;
2376 	case 0xD0:
2377 		dev_notice(&pdev->dev, "New Controller Configuration Found\n");
2378 		break;
2379 	case 0xF0:
2380 		dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
2381 		return true;
2382 	default:
2383 		dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
2384 			status);
2385 		return true;
2386 	}
2387 	return false;
2388 }
2389 
2390 /*
2391  * Hardware-specific functions
2392  */
2393 
2394 /*
2395  * DAC960 GEM Series Controllers.
2396  */
2397 
2398 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
2399 {
2400 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2401 
2402 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2403 }
2404 
2405 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
2406 {
2407 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
2408 
2409 	writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
2410 }
2411 
2412 static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
2413 {
2414 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
2415 
2416 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2417 }
2418 
2419 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
2420 {
2421 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2422 
2423 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2424 }
2425 
2426 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
2427 {
2428 	__le32 val;
2429 
2430 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2431 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
2432 }
2433 
2434 static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
2435 {
2436 	__le32 val;
2437 
2438 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2439 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
2440 }
2441 
2442 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
2443 {
2444 	__le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
2445 
2446 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2447 }
2448 
2449 static inline void DAC960_GEM_ack_intr(void __iomem *base)
2450 {
2451 	__le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
2452 				  DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
2453 
2454 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2455 }
2456 
2457 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
2458 {
2459 	__le32 val;
2460 
2461 	val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2462 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
2463 }
2464 
2465 static inline void DAC960_GEM_enable_intr(void __iomem *base)
2466 {
2467 	__le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2468 				  DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
2469 	writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
2470 }
2471 
2472 static inline void DAC960_GEM_disable_intr(void __iomem *base)
2473 {
2474 	__le32 val = 0;
2475 
2476 	writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
2477 }
2478 
2479 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2480 		union myrs_cmd_mbox *mbox)
2481 {
2482 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2483 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2484 	/* Barrier to avoid reordering */
2485 	wmb();
2486 	mem_mbox->words[0] = mbox->words[0];
2487 	/* Barrier to force PCI access */
2488 	mb();
2489 }
2490 
2491 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
2492 		dma_addr_t cmd_mbox_addr)
2493 {
2494 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
2495 }
2496 
2497 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
2498 {
2499 	return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
2500 }
2501 
2502 static inline bool
2503 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
2504 		unsigned char *param0, unsigned char *param1)
2505 {
2506 	__le32 val;
2507 
2508 	val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
2509 	if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
2510 		return false;
2511 	*error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
2512 	*param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
2513 	*param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
2514 	writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
2515 	return true;
2516 }
2517 
2518 static inline unsigned char
2519 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2520 {
2521 	unsigned char status;
2522 
2523 	while (DAC960_GEM_hw_mbox_is_full(base))
2524 		udelay(1);
2525 	DAC960_GEM_write_hw_mbox(base, mbox_addr);
2526 	DAC960_GEM_hw_mbox_new_cmd(base);
2527 	while (!DAC960_GEM_hw_mbox_status_available(base))
2528 		udelay(1);
2529 	status = DAC960_GEM_read_cmd_status(base);
2530 	DAC960_GEM_ack_hw_mbox_intr(base);
2531 	DAC960_GEM_ack_hw_mbox_status(base);
2532 
2533 	return status;
2534 }
2535 
2536 static int DAC960_GEM_hw_init(struct pci_dev *pdev,
2537 		struct myrs_hba *cs, void __iomem *base)
2538 {
2539 	int timeout = 0;
2540 	unsigned char status, parm0, parm1;
2541 
2542 	DAC960_GEM_disable_intr(base);
2543 	DAC960_GEM_ack_hw_mbox_status(base);
2544 	udelay(1000);
2545 	while (DAC960_GEM_init_in_progress(base) &&
2546 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2547 		if (DAC960_GEM_read_error_status(base, &status,
2548 						 &parm0, &parm1) &&
2549 		    myrs_err_status(cs, status, parm0, parm1))
2550 			return -EIO;
2551 		udelay(10);
2552 		timeout++;
2553 	}
2554 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2555 		dev_err(&pdev->dev,
2556 			"Timeout waiting for Controller Initialisation\n");
2557 		return -ETIMEDOUT;
2558 	}
2559 	if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
2560 		dev_err(&pdev->dev,
2561 			"Unable to Enable Memory Mailbox Interface\n");
2562 		DAC960_GEM_reset_ctrl(base);
2563 		return -EAGAIN;
2564 	}
2565 	DAC960_GEM_enable_intr(base);
2566 	cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
2567 	cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
2568 	cs->disable_intr = DAC960_GEM_disable_intr;
2569 	cs->reset = DAC960_GEM_reset_ctrl;
2570 	return 0;
2571 }
2572 
2573 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
2574 {
2575 	struct myrs_hba *cs = arg;
2576 	void __iomem *base = cs->io_base;
2577 	struct myrs_stat_mbox *next_stat_mbox;
2578 	unsigned long flags;
2579 
2580 	spin_lock_irqsave(&cs->queue_lock, flags);
2581 	DAC960_GEM_ack_intr(base);
2582 	next_stat_mbox = cs->next_stat_mbox;
2583 	while (next_stat_mbox->id > 0) {
2584 		unsigned short id = next_stat_mbox->id;
2585 		struct scsi_cmnd *scmd = NULL;
2586 		struct myrs_cmdblk *cmd_blk = NULL;
2587 
2588 		if (id == MYRS_DCMD_TAG)
2589 			cmd_blk = &cs->dcmd_blk;
2590 		else if (id == MYRS_MCMD_TAG)
2591 			cmd_blk = &cs->mcmd_blk;
2592 		else {
2593 			scmd = scsi_host_find_tag(cs->host, id - 3);
2594 			if (scmd)
2595 				cmd_blk = scsi_cmd_priv(scmd);
2596 		}
2597 		if (cmd_blk) {
2598 			cmd_blk->status = next_stat_mbox->status;
2599 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2600 			cmd_blk->residual = next_stat_mbox->residual;
2601 		} else
2602 			dev_err(&cs->pdev->dev,
2603 				"Unhandled command completion %d\n", id);
2604 
2605 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2606 		if (++next_stat_mbox > cs->last_stat_mbox)
2607 			next_stat_mbox = cs->first_stat_mbox;
2608 
2609 		if (cmd_blk) {
2610 			if (id < 3)
2611 				myrs_handle_cmdblk(cs, cmd_blk);
2612 			else
2613 				myrs_handle_scsi(cs, cmd_blk, scmd);
2614 		}
2615 	}
2616 	cs->next_stat_mbox = next_stat_mbox;
2617 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2618 	return IRQ_HANDLED;
2619 }
2620 
2621 static struct myrs_privdata DAC960_GEM_privdata = {
2622 	.hw_init =		DAC960_GEM_hw_init,
2623 	.irq_handler =		DAC960_GEM_intr_handler,
2624 	.mmio_size =		DAC960_GEM_mmio_size,
2625 };
2626 
2627 /*
2628  * DAC960 BA Series Controllers.
2629  */
2630 
2631 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
2632 {
2633 	writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2634 }
2635 
2636 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
2637 {
2638 	writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
2639 }
2640 
2641 static inline void DAC960_BA_reset_ctrl(void __iomem *base)
2642 {
2643 	writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
2644 }
2645 
2646 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
2647 {
2648 	writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2649 }
2650 
2651 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
2652 {
2653 	u8 val;
2654 
2655 	val = readb(base + DAC960_BA_IDB_OFFSET);
2656 	return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
2657 }
2658 
2659 static inline bool DAC960_BA_init_in_progress(void __iomem *base)
2660 {
2661 	u8 val;
2662 
2663 	val = readb(base + DAC960_BA_IDB_OFFSET);
2664 	return !(val & DAC960_BA_IDB_INIT_DONE);
2665 }
2666 
2667 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
2668 {
2669 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2670 }
2671 
2672 static inline void DAC960_BA_ack_intr(void __iomem *base)
2673 {
2674 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
2675 	       base + DAC960_BA_ODB_OFFSET);
2676 }
2677 
2678 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
2679 {
2680 	u8 val;
2681 
2682 	val = readb(base + DAC960_BA_ODB_OFFSET);
2683 	return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
2684 }
2685 
2686 static inline void DAC960_BA_enable_intr(void __iomem *base)
2687 {
2688 	writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
2689 }
2690 
2691 static inline void DAC960_BA_disable_intr(void __iomem *base)
2692 {
2693 	writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
2694 }
2695 
2696 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2697 		union myrs_cmd_mbox *mbox)
2698 {
2699 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2700 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2701 	/* Barrier to avoid reordering */
2702 	wmb();
2703 	mem_mbox->words[0] = mbox->words[0];
2704 	/* Barrier to force PCI access */
2705 	mb();
2706 }
2707 
2708 
2709 static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
2710 		dma_addr_t cmd_mbox_addr)
2711 {
2712 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
2713 }
2714 
2715 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
2716 {
2717 	return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
2718 }
2719 
2720 static inline bool
2721 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
2722 		unsigned char *param0, unsigned char *param1)
2723 {
2724 	u8 val;
2725 
2726 	val = readb(base + DAC960_BA_ERRSTS_OFFSET);
2727 	if (!(val & DAC960_BA_ERRSTS_PENDING))
2728 		return false;
2729 	val &= ~DAC960_BA_ERRSTS_PENDING;
2730 	*error = val;
2731 	*param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
2732 	*param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
2733 	writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
2734 	return true;
2735 }
2736 
2737 static inline unsigned char
2738 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2739 {
2740 	unsigned char status;
2741 
2742 	while (DAC960_BA_hw_mbox_is_full(base))
2743 		udelay(1);
2744 	DAC960_BA_write_hw_mbox(base, mbox_addr);
2745 	DAC960_BA_hw_mbox_new_cmd(base);
2746 	while (!DAC960_BA_hw_mbox_status_available(base))
2747 		udelay(1);
2748 	status = DAC960_BA_read_cmd_status(base);
2749 	DAC960_BA_ack_hw_mbox_intr(base);
2750 	DAC960_BA_ack_hw_mbox_status(base);
2751 
2752 	return status;
2753 }
2754 
2755 static int DAC960_BA_hw_init(struct pci_dev *pdev,
2756 		struct myrs_hba *cs, void __iomem *base)
2757 {
2758 	int timeout = 0;
2759 	unsigned char status, parm0, parm1;
2760 
2761 	DAC960_BA_disable_intr(base);
2762 	DAC960_BA_ack_hw_mbox_status(base);
2763 	udelay(1000);
2764 	while (DAC960_BA_init_in_progress(base) &&
2765 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2766 		if (DAC960_BA_read_error_status(base, &status,
2767 					      &parm0, &parm1) &&
2768 		    myrs_err_status(cs, status, parm0, parm1))
2769 			return -EIO;
2770 		udelay(10);
2771 		timeout++;
2772 	}
2773 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2774 		dev_err(&pdev->dev,
2775 			"Timeout waiting for Controller Initialisation\n");
2776 		return -ETIMEDOUT;
2777 	}
2778 	if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
2779 		dev_err(&pdev->dev,
2780 			"Unable to Enable Memory Mailbox Interface\n");
2781 		DAC960_BA_reset_ctrl(base);
2782 		return -EAGAIN;
2783 	}
2784 	DAC960_BA_enable_intr(base);
2785 	cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
2786 	cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
2787 	cs->disable_intr = DAC960_BA_disable_intr;
2788 	cs->reset = DAC960_BA_reset_ctrl;
2789 	return 0;
2790 }
2791 
2792 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
2793 {
2794 	struct myrs_hba *cs = arg;
2795 	void __iomem *base = cs->io_base;
2796 	struct myrs_stat_mbox *next_stat_mbox;
2797 	unsigned long flags;
2798 
2799 	spin_lock_irqsave(&cs->queue_lock, flags);
2800 	DAC960_BA_ack_intr(base);
2801 	next_stat_mbox = cs->next_stat_mbox;
2802 	while (next_stat_mbox->id > 0) {
2803 		unsigned short id = next_stat_mbox->id;
2804 		struct scsi_cmnd *scmd = NULL;
2805 		struct myrs_cmdblk *cmd_blk = NULL;
2806 
2807 		if (id == MYRS_DCMD_TAG)
2808 			cmd_blk = &cs->dcmd_blk;
2809 		else if (id == MYRS_MCMD_TAG)
2810 			cmd_blk = &cs->mcmd_blk;
2811 		else {
2812 			scmd = scsi_host_find_tag(cs->host, id - 3);
2813 			if (scmd)
2814 				cmd_blk = scsi_cmd_priv(scmd);
2815 		}
2816 		if (cmd_blk) {
2817 			cmd_blk->status = next_stat_mbox->status;
2818 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2819 			cmd_blk->residual = next_stat_mbox->residual;
2820 		} else
2821 			dev_err(&cs->pdev->dev,
2822 				"Unhandled command completion %d\n", id);
2823 
2824 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2825 		if (++next_stat_mbox > cs->last_stat_mbox)
2826 			next_stat_mbox = cs->first_stat_mbox;
2827 
2828 		if (cmd_blk) {
2829 			if (id < 3)
2830 				myrs_handle_cmdblk(cs, cmd_blk);
2831 			else
2832 				myrs_handle_scsi(cs, cmd_blk, scmd);
2833 		}
2834 	}
2835 	cs->next_stat_mbox = next_stat_mbox;
2836 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2837 	return IRQ_HANDLED;
2838 }
2839 
2840 static struct myrs_privdata DAC960_BA_privdata = {
2841 	.hw_init =		DAC960_BA_hw_init,
2842 	.irq_handler =		DAC960_BA_intr_handler,
2843 	.mmio_size =		DAC960_BA_mmio_size,
2844 };
2845 
2846 /*
2847  * DAC960 LP Series Controllers.
2848  */
2849 
2850 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
2851 {
2852 	writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2853 }
2854 
2855 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
2856 {
2857 	writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
2858 }
2859 
2860 static inline void DAC960_LP_reset_ctrl(void __iomem *base)
2861 {
2862 	writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
2863 }
2864 
2865 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
2866 {
2867 	writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2868 }
2869 
2870 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
2871 {
2872 	u8 val;
2873 
2874 	val = readb(base + DAC960_LP_IDB_OFFSET);
2875 	return val & DAC960_LP_IDB_HWMBOX_FULL;
2876 }
2877 
2878 static inline bool DAC960_LP_init_in_progress(void __iomem *base)
2879 {
2880 	u8 val;
2881 
2882 	val = readb(base + DAC960_LP_IDB_OFFSET);
2883 	return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
2884 }
2885 
2886 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
2887 {
2888 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2889 }
2890 
2891 static inline void DAC960_LP_ack_intr(void __iomem *base)
2892 {
2893 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
2894 	       base + DAC960_LP_ODB_OFFSET);
2895 }
2896 
2897 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
2898 {
2899 	u8 val;
2900 
2901 	val = readb(base + DAC960_LP_ODB_OFFSET);
2902 	return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
2903 }
2904 
2905 static inline void DAC960_LP_enable_intr(void __iomem *base)
2906 {
2907 	writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
2908 }
2909 
2910 static inline void DAC960_LP_disable_intr(void __iomem *base)
2911 {
2912 	writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
2913 }
2914 
2915 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2916 		union myrs_cmd_mbox *mbox)
2917 {
2918 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2919 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2920 	/* Barrier to avoid reordering */
2921 	wmb();
2922 	mem_mbox->words[0] = mbox->words[0];
2923 	/* Barrier to force PCI access */
2924 	mb();
2925 }
2926 
2927 static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
2928 		dma_addr_t cmd_mbox_addr)
2929 {
2930 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
2931 }
2932 
2933 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
2934 {
2935 	return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
2936 }
2937 
2938 static inline bool
2939 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
2940 		unsigned char *param0, unsigned char *param1)
2941 {
2942 	u8 val;
2943 
2944 	val = readb(base + DAC960_LP_ERRSTS_OFFSET);
2945 	if (!(val & DAC960_LP_ERRSTS_PENDING))
2946 		return false;
2947 	val &= ~DAC960_LP_ERRSTS_PENDING;
2948 	*error = val;
2949 	*param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
2950 	*param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
2951 	writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
2952 	return true;
2953 }
2954 
2955 static inline unsigned char
2956 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2957 {
2958 	unsigned char status;
2959 
2960 	while (DAC960_LP_hw_mbox_is_full(base))
2961 		udelay(1);
2962 	DAC960_LP_write_hw_mbox(base, mbox_addr);
2963 	DAC960_LP_hw_mbox_new_cmd(base);
2964 	while (!DAC960_LP_hw_mbox_status_available(base))
2965 		udelay(1);
2966 	status = DAC960_LP_read_cmd_status(base);
2967 	DAC960_LP_ack_hw_mbox_intr(base);
2968 	DAC960_LP_ack_hw_mbox_status(base);
2969 
2970 	return status;
2971 }
2972 
2973 static int DAC960_LP_hw_init(struct pci_dev *pdev,
2974 		struct myrs_hba *cs, void __iomem *base)
2975 {
2976 	int timeout = 0;
2977 	unsigned char status, parm0, parm1;
2978 
2979 	DAC960_LP_disable_intr(base);
2980 	DAC960_LP_ack_hw_mbox_status(base);
2981 	udelay(1000);
2982 	while (DAC960_LP_init_in_progress(base) &&
2983 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2984 		if (DAC960_LP_read_error_status(base, &status,
2985 					      &parm0, &parm1) &&
2986 		    myrs_err_status(cs, status, parm0, parm1))
2987 			return -EIO;
2988 		udelay(10);
2989 		timeout++;
2990 	}
2991 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2992 		dev_err(&pdev->dev,
2993 			"Timeout waiting for Controller Initialisation\n");
2994 		return -ETIMEDOUT;
2995 	}
2996 	if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
2997 		dev_err(&pdev->dev,
2998 			"Unable to Enable Memory Mailbox Interface\n");
2999 		DAC960_LP_reset_ctrl(base);
3000 		return -ENODEV;
3001 	}
3002 	DAC960_LP_enable_intr(base);
3003 	cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
3004 	cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
3005 	cs->disable_intr = DAC960_LP_disable_intr;
3006 	cs->reset = DAC960_LP_reset_ctrl;
3007 
3008 	return 0;
3009 }
3010 
3011 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
3012 {
3013 	struct myrs_hba *cs = arg;
3014 	void __iomem *base = cs->io_base;
3015 	struct myrs_stat_mbox *next_stat_mbox;
3016 	unsigned long flags;
3017 
3018 	spin_lock_irqsave(&cs->queue_lock, flags);
3019 	DAC960_LP_ack_intr(base);
3020 	next_stat_mbox = cs->next_stat_mbox;
3021 	while (next_stat_mbox->id > 0) {
3022 		unsigned short id = next_stat_mbox->id;
3023 		struct scsi_cmnd *scmd = NULL;
3024 		struct myrs_cmdblk *cmd_blk = NULL;
3025 
3026 		if (id == MYRS_DCMD_TAG)
3027 			cmd_blk = &cs->dcmd_blk;
3028 		else if (id == MYRS_MCMD_TAG)
3029 			cmd_blk = &cs->mcmd_blk;
3030 		else {
3031 			scmd = scsi_host_find_tag(cs->host, id - 3);
3032 			if (scmd)
3033 				cmd_blk = scsi_cmd_priv(scmd);
3034 		}
3035 		if (cmd_blk) {
3036 			cmd_blk->status = next_stat_mbox->status;
3037 			cmd_blk->sense_len = next_stat_mbox->sense_len;
3038 			cmd_blk->residual = next_stat_mbox->residual;
3039 		} else
3040 			dev_err(&cs->pdev->dev,
3041 				"Unhandled command completion %d\n", id);
3042 
3043 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
3044 		if (++next_stat_mbox > cs->last_stat_mbox)
3045 			next_stat_mbox = cs->first_stat_mbox;
3046 
3047 		if (cmd_blk) {
3048 			if (id < 3)
3049 				myrs_handle_cmdblk(cs, cmd_blk);
3050 			else
3051 				myrs_handle_scsi(cs, cmd_blk, scmd);
3052 		}
3053 	}
3054 	cs->next_stat_mbox = next_stat_mbox;
3055 	spin_unlock_irqrestore(&cs->queue_lock, flags);
3056 	return IRQ_HANDLED;
3057 }
3058 
3059 static struct myrs_privdata DAC960_LP_privdata = {
3060 	.hw_init =		DAC960_LP_hw_init,
3061 	.irq_handler =		DAC960_LP_intr_handler,
3062 	.mmio_size =		DAC960_LP_mmio_size,
3063 };
3064 
3065 /*
3066  * Module functions
3067  */
3068 static int
3069 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
3070 {
3071 	struct myrs_hba *cs;
3072 	int ret;
3073 
3074 	cs = myrs_detect(dev, entry);
3075 	if (!cs)
3076 		return -ENODEV;
3077 
3078 	ret = myrs_get_config(cs);
3079 	if (ret < 0) {
3080 		myrs_cleanup(cs);
3081 		return ret;
3082 	}
3083 
3084 	if (!myrs_create_mempools(dev, cs)) {
3085 		ret = -ENOMEM;
3086 		goto failed;
3087 	}
3088 
3089 	ret = scsi_add_host(cs->host, &dev->dev);
3090 	if (ret) {
3091 		dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
3092 		myrs_destroy_mempools(cs);
3093 		goto failed;
3094 	}
3095 	scsi_scan_host(cs->host);
3096 	return 0;
3097 failed:
3098 	myrs_cleanup(cs);
3099 	return ret;
3100 }
3101 
3102 
3103 static void myrs_remove(struct pci_dev *pdev)
3104 {
3105 	struct myrs_hba *cs = pci_get_drvdata(pdev);
3106 
3107 	if (cs == NULL)
3108 		return;
3109 
3110 	shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
3111 	myrs_flush_cache(cs);
3112 	myrs_destroy_mempools(cs);
3113 	myrs_cleanup(cs);
3114 }
3115 
3116 
3117 static const struct pci_device_id myrs_id_table[] = {
3118 	{
3119 		PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
3120 			       PCI_DEVICE_ID_MYLEX_DAC960_GEM,
3121 			       PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
3122 		.driver_data	= (unsigned long) &DAC960_GEM_privdata,
3123 	},
3124 	{
3125 		PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
3126 	},
3127 	{
3128 		PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
3129 	},
3130 	{0, },
3131 };
3132 
3133 MODULE_DEVICE_TABLE(pci, myrs_id_table);
3134 
3135 static struct pci_driver myrs_pci_driver = {
3136 	.name		= "myrs",
3137 	.id_table	= myrs_id_table,
3138 	.probe		= myrs_probe,
3139 	.remove		= myrs_remove,
3140 };
3141 
3142 static int __init myrs_init_module(void)
3143 {
3144 	int ret;
3145 
3146 	myrs_raid_template = raid_class_attach(&myrs_raid_functions);
3147 	if (!myrs_raid_template)
3148 		return -ENODEV;
3149 
3150 	ret = pci_register_driver(&myrs_pci_driver);
3151 	if (ret)
3152 		raid_class_release(myrs_raid_template);
3153 
3154 	return ret;
3155 }
3156 
3157 static void __exit myrs_cleanup_module(void)
3158 {
3159 	pci_unregister_driver(&myrs_pci_driver);
3160 	raid_class_release(myrs_raid_template);
3161 }
3162 
3163 module_init(myrs_init_module);
3164 module_exit(myrs_cleanup_module);
3165 
3166 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
3167 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
3168 MODULE_LICENSE("GPL");
3169