xref: /linux/drivers/scsi/myrs.c (revision 5ff328836dfde0cef9f28c8b8791a90a36d7a183)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
4  *
5  * This driver supports the newer, SCSI-based firmware interface only.
6  *
7  * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
8  *
9  * Based on the original DAC960 driver, which has
10  * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
11  * Portions Copyright 2002 by Mylex (An IBM Business Unit)
12  */
13 
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/raid_class.h>
20 #include <asm/unaligned.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_host.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_tcq.h>
26 #include "myrs.h"
27 
28 static struct raid_template *myrs_raid_template;
29 
30 static struct myrs_devstate_name_entry {
31 	enum myrs_devstate state;
32 	char *name;
33 } myrs_devstate_name_list[] = {
34 	{ MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
35 	{ MYRS_DEVICE_ONLINE, "Online" },
36 	{ MYRS_DEVICE_REBUILD, "Rebuild" },
37 	{ MYRS_DEVICE_MISSING, "Missing" },
38 	{ MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
39 	{ MYRS_DEVICE_OFFLINE, "Offline" },
40 	{ MYRS_DEVICE_CRITICAL, "Critical" },
41 	{ MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
42 	{ MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
43 	{ MYRS_DEVICE_STANDBY, "Standby" },
44 	{ MYRS_DEVICE_INVALID_STATE, "Invalid" },
45 };
46 
47 static char *myrs_devstate_name(enum myrs_devstate state)
48 {
49 	struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
50 	int i;
51 
52 	for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
53 		if (entry[i].state == state)
54 			return entry[i].name;
55 	}
56 	return NULL;
57 }
58 
59 static struct myrs_raid_level_name_entry {
60 	enum myrs_raid_level level;
61 	char *name;
62 } myrs_raid_level_name_list[] = {
63 	{ MYRS_RAID_LEVEL0, "RAID0" },
64 	{ MYRS_RAID_LEVEL1, "RAID1" },
65 	{ MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
66 	{ MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
67 	{ MYRS_RAID_LEVEL6, "RAID6" },
68 	{ MYRS_RAID_JBOD, "JBOD" },
69 	{ MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
70 	{ MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
71 	{ MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
72 	{ MYRS_RAID_SPAN, "Mylex SPAN" },
73 	{ MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
74 	{ MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
75 	{ MYRS_RAID_PHYSICAL, "Physical device" },
76 };
77 
78 static char *myrs_raid_level_name(enum myrs_raid_level level)
79 {
80 	struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
81 	int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
84 		if (entry[i].level == level)
85 			return entry[i].name;
86 	}
87 	return NULL;
88 }
89 
90 /**
91  * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
92  */
93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
94 {
95 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
96 
97 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
98 	cmd_blk->status = 0;
99 }
100 
101 /**
102  * myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
103  */
104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
105 {
106 	void __iomem *base = cs->io_base;
107 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
108 	union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
109 
110 	cs->write_cmd_mbox(next_mbox, mbox);
111 
112 	if (cs->prev_cmd_mbox1->words[0] == 0 ||
113 	    cs->prev_cmd_mbox2->words[0] == 0)
114 		cs->get_cmd_mbox(base);
115 
116 	cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
117 	cs->prev_cmd_mbox1 = next_mbox;
118 
119 	if (++next_mbox > cs->last_cmd_mbox)
120 		next_mbox = cs->first_cmd_mbox;
121 
122 	cs->next_cmd_mbox = next_mbox;
123 }
124 
125 /**
126  * myrs_exec_cmd - executes V2 Command and waits for completion.
127  */
128 static void myrs_exec_cmd(struct myrs_hba *cs,
129 		struct myrs_cmdblk *cmd_blk)
130 {
131 	DECLARE_COMPLETION_ONSTACK(complete);
132 	unsigned long flags;
133 
134 	cmd_blk->complete = &complete;
135 	spin_lock_irqsave(&cs->queue_lock, flags);
136 	myrs_qcmd(cs, cmd_blk);
137 	spin_unlock_irqrestore(&cs->queue_lock, flags);
138 
139 	WARN_ON(in_interrupt());
140 	wait_for_completion(&complete);
141 }
142 
143 /**
144  * myrs_report_progress - prints progress message
145  */
146 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
147 		unsigned char *msg, unsigned long blocks,
148 		unsigned long size)
149 {
150 	shost_printk(KERN_INFO, cs->host,
151 		     "Logical Drive %d: %s in Progress: %d%% completed\n",
152 		     ldev_num, msg,
153 		     (100 * (int)(blocks >> 7)) / (int)(size >> 7));
154 }
155 
156 /**
157  * myrs_get_ctlr_info - executes a Controller Information IOCTL Command
158  */
159 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
160 {
161 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
162 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
163 	dma_addr_t ctlr_info_addr;
164 	union myrs_sgl *sgl;
165 	unsigned char status;
166 	unsigned short ldev_present, ldev_critical, ldev_offline;
167 
168 	ldev_present = cs->ctlr_info->ldev_present;
169 	ldev_critical = cs->ctlr_info->ldev_critical;
170 	ldev_offline = cs->ctlr_info->ldev_offline;
171 
172 	ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
173 					sizeof(struct myrs_ctlr_info),
174 					DMA_FROM_DEVICE);
175 	if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
176 		return MYRS_STATUS_FAILED;
177 
178 	mutex_lock(&cs->dcmd_mutex);
179 	myrs_reset_cmd(cmd_blk);
180 	mbox->ctlr_info.id = MYRS_DCMD_TAG;
181 	mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
182 	mbox->ctlr_info.control.dma_ctrl_to_host = true;
183 	mbox->ctlr_info.control.no_autosense = true;
184 	mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
185 	mbox->ctlr_info.ctlr_num = 0;
186 	mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
187 	sgl = &mbox->ctlr_info.dma_addr;
188 	sgl->sge[0].sge_addr = ctlr_info_addr;
189 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
190 	dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
191 	myrs_exec_cmd(cs, cmd_blk);
192 	status = cmd_blk->status;
193 	mutex_unlock(&cs->dcmd_mutex);
194 	dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
195 			 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
196 	if (status == MYRS_STATUS_SUCCESS) {
197 		if (cs->ctlr_info->bg_init_active +
198 		    cs->ctlr_info->ldev_init_active +
199 		    cs->ctlr_info->pdev_init_active +
200 		    cs->ctlr_info->cc_active +
201 		    cs->ctlr_info->rbld_active +
202 		    cs->ctlr_info->exp_active != 0)
203 			cs->needs_update = true;
204 		if (cs->ctlr_info->ldev_present != ldev_present ||
205 		    cs->ctlr_info->ldev_critical != ldev_critical ||
206 		    cs->ctlr_info->ldev_offline != ldev_offline)
207 			shost_printk(KERN_INFO, cs->host,
208 				     "Logical drive count changes (%d/%d/%d)\n",
209 				     cs->ctlr_info->ldev_critical,
210 				     cs->ctlr_info->ldev_offline,
211 				     cs->ctlr_info->ldev_present);
212 	}
213 
214 	return status;
215 }
216 
217 /**
218  * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
219  */
220 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
221 		unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
222 {
223 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
224 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
225 	dma_addr_t ldev_info_addr;
226 	struct myrs_ldev_info ldev_info_orig;
227 	union myrs_sgl *sgl;
228 	unsigned char status;
229 
230 	memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
231 	ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
232 					sizeof(struct myrs_ldev_info),
233 					DMA_FROM_DEVICE);
234 	if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
235 		return MYRS_STATUS_FAILED;
236 
237 	mutex_lock(&cs->dcmd_mutex);
238 	myrs_reset_cmd(cmd_blk);
239 	mbox->ldev_info.id = MYRS_DCMD_TAG;
240 	mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
241 	mbox->ldev_info.control.dma_ctrl_to_host = true;
242 	mbox->ldev_info.control.no_autosense = true;
243 	mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
244 	mbox->ldev_info.ldev.ldev_num = ldev_num;
245 	mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
246 	sgl = &mbox->ldev_info.dma_addr;
247 	sgl->sge[0].sge_addr = ldev_info_addr;
248 	sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
249 	dev_dbg(&cs->host->shost_gendev,
250 		"Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
251 	myrs_exec_cmd(cs, cmd_blk);
252 	status = cmd_blk->status;
253 	mutex_unlock(&cs->dcmd_mutex);
254 	dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
255 			 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
256 	if (status == MYRS_STATUS_SUCCESS) {
257 		unsigned short ldev_num = ldev_info->ldev_num;
258 		struct myrs_ldev_info *new = ldev_info;
259 		struct myrs_ldev_info *old = &ldev_info_orig;
260 		unsigned long ldev_size = new->cfg_devsize;
261 
262 		if (new->dev_state != old->dev_state) {
263 			const char *name;
264 
265 			name = myrs_devstate_name(new->dev_state);
266 			shost_printk(KERN_INFO, cs->host,
267 				     "Logical Drive %d is now %s\n",
268 				     ldev_num, name ? name : "Invalid");
269 		}
270 		if ((new->soft_errs != old->soft_errs) ||
271 		    (new->cmds_failed != old->cmds_failed) ||
272 		    (new->deferred_write_errs != old->deferred_write_errs))
273 			shost_printk(KERN_INFO, cs->host,
274 				     "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
275 				     ldev_num, new->soft_errs,
276 				     new->cmds_failed,
277 				     new->deferred_write_errs);
278 		if (new->bg_init_active)
279 			myrs_report_progress(cs, ldev_num,
280 					     "Background Initialization",
281 					     new->bg_init_lba, ldev_size);
282 		else if (new->fg_init_active)
283 			myrs_report_progress(cs, ldev_num,
284 					     "Foreground Initialization",
285 					     new->fg_init_lba, ldev_size);
286 		else if (new->migration_active)
287 			myrs_report_progress(cs, ldev_num,
288 					     "Data Migration",
289 					     new->migration_lba, ldev_size);
290 		else if (new->patrol_active)
291 			myrs_report_progress(cs, ldev_num,
292 					     "Patrol Operation",
293 					     new->patrol_lba, ldev_size);
294 		if (old->bg_init_active && !new->bg_init_active)
295 			shost_printk(KERN_INFO, cs->host,
296 				     "Logical Drive %d: Background Initialization %s\n",
297 				     ldev_num,
298 				     (new->ldev_control.ldev_init_done ?
299 				      "Completed" : "Failed"));
300 	}
301 	return status;
302 }
303 
304 /**
305  * myrs_get_pdev_info - executes a "Read Physical Device Information" Command
306  */
307 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
308 		unsigned char channel, unsigned char target, unsigned char lun,
309 		struct myrs_pdev_info *pdev_info)
310 {
311 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
312 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
313 	dma_addr_t pdev_info_addr;
314 	union myrs_sgl *sgl;
315 	unsigned char status;
316 
317 	pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
318 					sizeof(struct myrs_pdev_info),
319 					DMA_FROM_DEVICE);
320 	if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
321 		return MYRS_STATUS_FAILED;
322 
323 	mutex_lock(&cs->dcmd_mutex);
324 	myrs_reset_cmd(cmd_blk);
325 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
326 	mbox->pdev_info.id = MYRS_DCMD_TAG;
327 	mbox->pdev_info.control.dma_ctrl_to_host = true;
328 	mbox->pdev_info.control.no_autosense = true;
329 	mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
330 	mbox->pdev_info.pdev.lun = lun;
331 	mbox->pdev_info.pdev.target = target;
332 	mbox->pdev_info.pdev.channel = channel;
333 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
334 	sgl = &mbox->pdev_info.dma_addr;
335 	sgl->sge[0].sge_addr = pdev_info_addr;
336 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
337 	dev_dbg(&cs->host->shost_gendev,
338 		"Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
339 		channel, target, lun);
340 	myrs_exec_cmd(cs, cmd_blk);
341 	status = cmd_blk->status;
342 	mutex_unlock(&cs->dcmd_mutex);
343 	dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
344 			 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
345 	return status;
346 }
347 
348 /**
349  * myrs_dev_op - executes a "Device Operation" Command
350  */
351 static unsigned char myrs_dev_op(struct myrs_hba *cs,
352 		enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
353 {
354 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
355 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
356 	unsigned char status;
357 
358 	mutex_lock(&cs->dcmd_mutex);
359 	myrs_reset_cmd(cmd_blk);
360 	mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
361 	mbox->dev_op.id = MYRS_DCMD_TAG;
362 	mbox->dev_op.control.dma_ctrl_to_host = true;
363 	mbox->dev_op.control.no_autosense = true;
364 	mbox->dev_op.ioctl_opcode = opcode;
365 	mbox->dev_op.opdev = opdev;
366 	myrs_exec_cmd(cs, cmd_blk);
367 	status = cmd_blk->status;
368 	mutex_unlock(&cs->dcmd_mutex);
369 	return status;
370 }
371 
372 /**
373  * myrs_translate_pdev - translates a Physical Device Channel and
374  * TargetID into a Logical Device.
375  */
376 static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
377 		unsigned char channel, unsigned char target, unsigned char lun,
378 		struct myrs_devmap *devmap)
379 {
380 	struct pci_dev *pdev = cs->pdev;
381 	dma_addr_t devmap_addr;
382 	struct myrs_cmdblk *cmd_blk;
383 	union myrs_cmd_mbox *mbox;
384 	union myrs_sgl *sgl;
385 	unsigned char status;
386 
387 	memset(devmap, 0x0, sizeof(struct myrs_devmap));
388 	devmap_addr = dma_map_single(&pdev->dev, devmap,
389 				     sizeof(struct myrs_devmap),
390 				     DMA_FROM_DEVICE);
391 	if (dma_mapping_error(&pdev->dev, devmap_addr))
392 		return MYRS_STATUS_FAILED;
393 
394 	mutex_lock(&cs->dcmd_mutex);
395 	cmd_blk = &cs->dcmd_blk;
396 	mbox = &cmd_blk->mbox;
397 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
398 	mbox->pdev_info.control.dma_ctrl_to_host = true;
399 	mbox->pdev_info.control.no_autosense = true;
400 	mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
401 	mbox->pdev_info.pdev.target = target;
402 	mbox->pdev_info.pdev.channel = channel;
403 	mbox->pdev_info.pdev.lun = lun;
404 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
405 	sgl = &mbox->pdev_info.dma_addr;
406 	sgl->sge[0].sge_addr = devmap_addr;
407 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
408 
409 	myrs_exec_cmd(cs, cmd_blk);
410 	status = cmd_blk->status;
411 	mutex_unlock(&cs->dcmd_mutex);
412 	dma_unmap_single(&pdev->dev, devmap_addr,
413 			 sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
414 	return status;
415 }
416 
417 /**
418  * myrs_get_event - executes a Get Event Command
419  */
420 static unsigned char myrs_get_event(struct myrs_hba *cs,
421 		unsigned int event_num, struct myrs_event *event_buf)
422 {
423 	struct pci_dev *pdev = cs->pdev;
424 	dma_addr_t event_addr;
425 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
426 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
427 	union myrs_sgl *sgl;
428 	unsigned char status;
429 
430 	event_addr = dma_map_single(&pdev->dev, event_buf,
431 				    sizeof(struct myrs_event), DMA_FROM_DEVICE);
432 	if (dma_mapping_error(&pdev->dev, event_addr))
433 		return MYRS_STATUS_FAILED;
434 
435 	mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
436 	mbox->get_event.dma_size = sizeof(struct myrs_event);
437 	mbox->get_event.evnum_upper = event_num >> 16;
438 	mbox->get_event.ctlr_num = 0;
439 	mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
440 	mbox->get_event.evnum_lower = event_num & 0xFFFF;
441 	sgl = &mbox->get_event.dma_addr;
442 	sgl->sge[0].sge_addr = event_addr;
443 	sgl->sge[0].sge_count = mbox->get_event.dma_size;
444 	myrs_exec_cmd(cs, cmd_blk);
445 	status = cmd_blk->status;
446 	dma_unmap_single(&pdev->dev, event_addr,
447 			 sizeof(struct myrs_event), DMA_FROM_DEVICE);
448 
449 	return status;
450 }
451 
452 /*
453  * myrs_get_fwstatus - executes a Get Health Status Command
454  */
455 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
456 {
457 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
458 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
459 	union myrs_sgl *sgl;
460 	unsigned char status = cmd_blk->status;
461 
462 	myrs_reset_cmd(cmd_blk);
463 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
464 	mbox->common.id = MYRS_MCMD_TAG;
465 	mbox->common.control.dma_ctrl_to_host = true;
466 	mbox->common.control.no_autosense = true;
467 	mbox->common.dma_size = sizeof(struct myrs_fwstat);
468 	mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
469 	sgl = &mbox->common.dma_addr;
470 	sgl->sge[0].sge_addr = cs->fwstat_addr;
471 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
472 	dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
473 	myrs_exec_cmd(cs, cmd_blk);
474 	status = cmd_blk->status;
475 
476 	return status;
477 }
478 
479 /**
480  * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
481  */
482 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
483 		enable_mbox_t enable_mbox_fn)
484 {
485 	void __iomem *base = cs->io_base;
486 	struct pci_dev *pdev = cs->pdev;
487 	union myrs_cmd_mbox *cmd_mbox;
488 	struct myrs_stat_mbox *stat_mbox;
489 	union myrs_cmd_mbox *mbox;
490 	dma_addr_t mbox_addr;
491 	unsigned char status = MYRS_STATUS_FAILED;
492 
493 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
494 		if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
495 			dev_err(&pdev->dev, "DMA mask out of range\n");
496 			return false;
497 		}
498 
499 	/* Temporary dma mapping, used only in the scope of this function */
500 	mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
501 				  &mbox_addr, GFP_KERNEL);
502 	if (dma_mapping_error(&pdev->dev, mbox_addr))
503 		return false;
504 
505 	/* These are the base addresses for the command memory mailbox array */
506 	cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
507 	cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
508 				      &cs->cmd_mbox_addr, GFP_KERNEL);
509 	if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
510 		dev_err(&pdev->dev, "Failed to map command mailbox\n");
511 		goto out_free;
512 	}
513 	cs->first_cmd_mbox = cmd_mbox;
514 	cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
515 	cs->last_cmd_mbox = cmd_mbox;
516 	cs->next_cmd_mbox = cs->first_cmd_mbox;
517 	cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
518 	cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
519 
520 	/* These are the base addresses for the status memory mailbox array */
521 	cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
522 	stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
523 				       &cs->stat_mbox_addr, GFP_KERNEL);
524 	if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
525 		dev_err(&pdev->dev, "Failed to map status mailbox\n");
526 		goto out_free;
527 	}
528 
529 	cs->first_stat_mbox = stat_mbox;
530 	stat_mbox += MYRS_MAX_STAT_MBOX - 1;
531 	cs->last_stat_mbox = stat_mbox;
532 	cs->next_stat_mbox = cs->first_stat_mbox;
533 
534 	cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
535 					    sizeof(struct myrs_fwstat),
536 					    &cs->fwstat_addr, GFP_KERNEL);
537 	if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
538 		dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
539 		cs->fwstat_buf = NULL;
540 		goto out_free;
541 	}
542 	cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info),
543 				GFP_KERNEL | GFP_DMA);
544 	if (!cs->ctlr_info)
545 		goto out_free;
546 
547 	cs->event_buf = kzalloc(sizeof(struct myrs_event),
548 				GFP_KERNEL | GFP_DMA);
549 	if (!cs->event_buf)
550 		goto out_free;
551 
552 	/* Enable the Memory Mailbox Interface. */
553 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
554 	mbox->set_mbox.id = 1;
555 	mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
556 	mbox->set_mbox.control.no_autosense = true;
557 	mbox->set_mbox.first_cmd_mbox_size_kb =
558 		(MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
559 	mbox->set_mbox.first_stat_mbox_size_kb =
560 		(MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
561 	mbox->set_mbox.second_cmd_mbox_size_kb = 0;
562 	mbox->set_mbox.second_stat_mbox_size_kb = 0;
563 	mbox->set_mbox.sense_len = 0;
564 	mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
565 	mbox->set_mbox.fwstat_buf_size_kb = 1;
566 	mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
567 	mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
568 	mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
569 	status = enable_mbox_fn(base, mbox_addr);
570 
571 out_free:
572 	dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
573 			  mbox, mbox_addr);
574 	if (status != MYRS_STATUS_SUCCESS)
575 		dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
576 			status);
577 	return (status == MYRS_STATUS_SUCCESS);
578 }
579 
580 /**
581  * myrs_get_config - reads the Configuration Information
582  */
583 static int myrs_get_config(struct myrs_hba *cs)
584 {
585 	struct myrs_ctlr_info *info = cs->ctlr_info;
586 	struct Scsi_Host *shost = cs->host;
587 	unsigned char status;
588 	unsigned char model[20];
589 	unsigned char fw_version[12];
590 	int i, model_len;
591 
592 	/* Get data into dma-able area, then copy into permanent location */
593 	mutex_lock(&cs->cinfo_mutex);
594 	status = myrs_get_ctlr_info(cs);
595 	mutex_unlock(&cs->cinfo_mutex);
596 	if (status != MYRS_STATUS_SUCCESS) {
597 		shost_printk(KERN_ERR, shost,
598 			     "Failed to get controller information\n");
599 		return -ENODEV;
600 	}
601 
602 	/* Initialize the Controller Model Name and Full Model Name fields. */
603 	model_len = sizeof(info->ctlr_name);
604 	if (model_len > sizeof(model)-1)
605 		model_len = sizeof(model)-1;
606 	memcpy(model, info->ctlr_name, model_len);
607 	model_len--;
608 	while (model[model_len] == ' ' || model[model_len] == '\0')
609 		model_len--;
610 	model[++model_len] = '\0';
611 	strcpy(cs->model_name, "DAC960 ");
612 	strcat(cs->model_name, model);
613 	/* Initialize the Controller Firmware Version field. */
614 	sprintf(fw_version, "%d.%02d-%02d",
615 		info->fw_major_version, info->fw_minor_version,
616 		info->fw_turn_number);
617 	if (info->fw_major_version == 6 &&
618 	    info->fw_minor_version == 0 &&
619 	    info->fw_turn_number < 1) {
620 		shost_printk(KERN_WARNING, shost,
621 			"FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
622 			"STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
623 			"PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
624 			fw_version);
625 		return -ENODEV;
626 	}
627 	/* Initialize the Controller Channels and Targets. */
628 	shost->max_channel = info->physchan_present + info->virtchan_present;
629 	shost->max_id = info->max_targets[0];
630 	for (i = 1; i < 16; i++) {
631 		if (!info->max_targets[i])
632 			continue;
633 		if (shost->max_id < info->max_targets[i])
634 			shost->max_id = info->max_targets[i];
635 	}
636 
637 	/*
638 	 * Initialize the Controller Queue Depth, Driver Queue Depth,
639 	 * Logical Drive Count, Maximum Blocks per Command, Controller
640 	 * Scatter/Gather Limit, and Driver Scatter/Gather Limit.
641 	 * The Driver Queue Depth must be at most three less than
642 	 * the Controller Queue Depth; tag '1' is reserved for
643 	 * direct commands, and tag '2' for monitoring commands.
644 	 */
645 	shost->can_queue = info->max_tcq - 3;
646 	if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
647 		shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
648 	shost->max_sectors = info->max_transfer_size;
649 	shost->sg_tablesize = info->max_sge;
650 	if (shost->sg_tablesize > MYRS_SG_LIMIT)
651 		shost->sg_tablesize = MYRS_SG_LIMIT;
652 
653 	shost_printk(KERN_INFO, shost,
654 		"Configuring %s PCI RAID Controller\n", model);
655 	shost_printk(KERN_INFO, shost,
656 		"  Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
657 		fw_version, info->physchan_present, info->mem_size_mb);
658 
659 	shost_printk(KERN_INFO, shost,
660 		     "  Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
661 		     shost->can_queue, shost->max_sectors);
662 
663 	shost_printk(KERN_INFO, shost,
664 		     "  Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
665 		     shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
666 	for (i = 0; i < info->physchan_max; i++) {
667 		if (!info->max_targets[i])
668 			continue;
669 		shost_printk(KERN_INFO, shost,
670 			     "  Device Channel %d: max %d devices\n",
671 			     i, info->max_targets[i]);
672 	}
673 	shost_printk(KERN_INFO, shost,
674 		     "  Physical: %d/%d channels, %d disks, %d devices\n",
675 		     info->physchan_present, info->physchan_max,
676 		     info->pdisk_present, info->pdev_present);
677 
678 	shost_printk(KERN_INFO, shost,
679 		     "  Logical: %d/%d channels, %d disks\n",
680 		     info->virtchan_present, info->virtchan_max,
681 		     info->ldev_present);
682 	return 0;
683 }
684 
685 /**
686  * myrs_log_event - prints a Controller Event message
687  */
688 static struct {
689 	int ev_code;
690 	unsigned char *ev_msg;
691 } myrs_ev_list[] = {
692 	/* Physical Device Events (0x0000 - 0x007F) */
693 	{ 0x0001, "P Online" },
694 	{ 0x0002, "P Standby" },
695 	{ 0x0005, "P Automatic Rebuild Started" },
696 	{ 0x0006, "P Manual Rebuild Started" },
697 	{ 0x0007, "P Rebuild Completed" },
698 	{ 0x0008, "P Rebuild Cancelled" },
699 	{ 0x0009, "P Rebuild Failed for Unknown Reasons" },
700 	{ 0x000A, "P Rebuild Failed due to New Physical Device" },
701 	{ 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
702 	{ 0x000C, "S Offline" },
703 	{ 0x000D, "P Found" },
704 	{ 0x000E, "P Removed" },
705 	{ 0x000F, "P Unconfigured" },
706 	{ 0x0010, "P Expand Capacity Started" },
707 	{ 0x0011, "P Expand Capacity Completed" },
708 	{ 0x0012, "P Expand Capacity Failed" },
709 	{ 0x0013, "P Command Timed Out" },
710 	{ 0x0014, "P Command Aborted" },
711 	{ 0x0015, "P Command Retried" },
712 	{ 0x0016, "P Parity Error" },
713 	{ 0x0017, "P Soft Error" },
714 	{ 0x0018, "P Miscellaneous Error" },
715 	{ 0x0019, "P Reset" },
716 	{ 0x001A, "P Active Spare Found" },
717 	{ 0x001B, "P Warm Spare Found" },
718 	{ 0x001C, "S Sense Data Received" },
719 	{ 0x001D, "P Initialization Started" },
720 	{ 0x001E, "P Initialization Completed" },
721 	{ 0x001F, "P Initialization Failed" },
722 	{ 0x0020, "P Initialization Cancelled" },
723 	{ 0x0021, "P Failed because Write Recovery Failed" },
724 	{ 0x0022, "P Failed because SCSI Bus Reset Failed" },
725 	{ 0x0023, "P Failed because of Double Check Condition" },
726 	{ 0x0024, "P Failed because Device Cannot Be Accessed" },
727 	{ 0x0025, "P Failed because of Gross Error on SCSI Processor" },
728 	{ 0x0026, "P Failed because of Bad Tag from Device" },
729 	{ 0x0027, "P Failed because of Command Timeout" },
730 	{ 0x0028, "P Failed because of System Reset" },
731 	{ 0x0029, "P Failed because of Busy Status or Parity Error" },
732 	{ 0x002A, "P Failed because Host Set Device to Failed State" },
733 	{ 0x002B, "P Failed because of Selection Timeout" },
734 	{ 0x002C, "P Failed because of SCSI Bus Phase Error" },
735 	{ 0x002D, "P Failed because Device Returned Unknown Status" },
736 	{ 0x002E, "P Failed because Device Not Ready" },
737 	{ 0x002F, "P Failed because Device Not Found at Startup" },
738 	{ 0x0030, "P Failed because COD Write Operation Failed" },
739 	{ 0x0031, "P Failed because BDT Write Operation Failed" },
740 	{ 0x0039, "P Missing at Startup" },
741 	{ 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
742 	{ 0x003C, "P Temporarily Offline Device Automatically Made Online" },
743 	{ 0x003D, "P Standby Rebuild Started" },
744 	/* Logical Device Events (0x0080 - 0x00FF) */
745 	{ 0x0080, "M Consistency Check Started" },
746 	{ 0x0081, "M Consistency Check Completed" },
747 	{ 0x0082, "M Consistency Check Cancelled" },
748 	{ 0x0083, "M Consistency Check Completed With Errors" },
749 	{ 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
750 	{ 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
751 	{ 0x0086, "L Offline" },
752 	{ 0x0087, "L Critical" },
753 	{ 0x0088, "L Online" },
754 	{ 0x0089, "M Automatic Rebuild Started" },
755 	{ 0x008A, "M Manual Rebuild Started" },
756 	{ 0x008B, "M Rebuild Completed" },
757 	{ 0x008C, "M Rebuild Cancelled" },
758 	{ 0x008D, "M Rebuild Failed for Unknown Reasons" },
759 	{ 0x008E, "M Rebuild Failed due to New Physical Device" },
760 	{ 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
761 	{ 0x0090, "M Initialization Started" },
762 	{ 0x0091, "M Initialization Completed" },
763 	{ 0x0092, "M Initialization Cancelled" },
764 	{ 0x0093, "M Initialization Failed" },
765 	{ 0x0094, "L Found" },
766 	{ 0x0095, "L Deleted" },
767 	{ 0x0096, "M Expand Capacity Started" },
768 	{ 0x0097, "M Expand Capacity Completed" },
769 	{ 0x0098, "M Expand Capacity Failed" },
770 	{ 0x0099, "L Bad Block Found" },
771 	{ 0x009A, "L Size Changed" },
772 	{ 0x009B, "L Type Changed" },
773 	{ 0x009C, "L Bad Data Block Found" },
774 	{ 0x009E, "L Read of Data Block in BDT" },
775 	{ 0x009F, "L Write Back Data for Disk Block Lost" },
776 	{ 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
777 	{ 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
778 	{ 0x00A2, "L Standby Rebuild Started" },
779 	/* Fault Management Events (0x0100 - 0x017F) */
780 	{ 0x0140, "E Fan %d Failed" },
781 	{ 0x0141, "E Fan %d OK" },
782 	{ 0x0142, "E Fan %d Not Present" },
783 	{ 0x0143, "E Power Supply %d Failed" },
784 	{ 0x0144, "E Power Supply %d OK" },
785 	{ 0x0145, "E Power Supply %d Not Present" },
786 	{ 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
787 	{ 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
788 	{ 0x0148, "E Temperature Sensor %d Temperature Normal" },
789 	{ 0x0149, "E Temperature Sensor %d Not Present" },
790 	{ 0x014A, "E Enclosure Management Unit %d Access Critical" },
791 	{ 0x014B, "E Enclosure Management Unit %d Access OK" },
792 	{ 0x014C, "E Enclosure Management Unit %d Access Offline" },
793 	/* Controller Events (0x0180 - 0x01FF) */
794 	{ 0x0181, "C Cache Write Back Error" },
795 	{ 0x0188, "C Battery Backup Unit Found" },
796 	{ 0x0189, "C Battery Backup Unit Charge Level Low" },
797 	{ 0x018A, "C Battery Backup Unit Charge Level OK" },
798 	{ 0x0193, "C Installation Aborted" },
799 	{ 0x0195, "C Battery Backup Unit Physically Removed" },
800 	{ 0x0196, "C Memory Error During Warm Boot" },
801 	{ 0x019E, "C Memory Soft ECC Error Corrected" },
802 	{ 0x019F, "C Memory Hard ECC Error Corrected" },
803 	{ 0x01A2, "C Battery Backup Unit Failed" },
804 	{ 0x01AB, "C Mirror Race Recovery Failed" },
805 	{ 0x01AC, "C Mirror Race on Critical Drive" },
806 	/* Controller Internal Processor Events */
807 	{ 0x0380, "C Internal Controller Hung" },
808 	{ 0x0381, "C Internal Controller Firmware Breakpoint" },
809 	{ 0x0390, "C Internal Controller i960 Processor Specific Error" },
810 	{ 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
811 	{ 0, "" }
812 };
813 
814 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
815 {
816 	unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
817 	int ev_idx = 0, ev_code;
818 	unsigned char ev_type, *ev_msg;
819 	struct Scsi_Host *shost = cs->host;
820 	struct scsi_device *sdev;
821 	struct scsi_sense_hdr sshdr;
822 	unsigned char sense_info[4];
823 	unsigned char cmd_specific[4];
824 
825 	if (ev->ev_code == 0x1C) {
826 		if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
827 			memset(&sshdr, 0x0, sizeof(sshdr));
828 			memset(sense_info, 0x0, sizeof(sense_info));
829 			memset(cmd_specific, 0x0, sizeof(cmd_specific));
830 		} else {
831 			memcpy(sense_info, &ev->sense_data[3], 4);
832 			memcpy(cmd_specific, &ev->sense_data[7], 4);
833 		}
834 	}
835 	if (sshdr.sense_key == VENDOR_SPECIFIC &&
836 	    (sshdr.asc == 0x80 || sshdr.asc == 0x81))
837 		ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
838 	while (true) {
839 		ev_code = myrs_ev_list[ev_idx].ev_code;
840 		if (ev_code == ev->ev_code || ev_code == 0)
841 			break;
842 		ev_idx++;
843 	}
844 	ev_type = myrs_ev_list[ev_idx].ev_msg[0];
845 	ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
846 	if (ev_code == 0) {
847 		shost_printk(KERN_WARNING, shost,
848 			     "Unknown Controller Event Code %04X\n",
849 			     ev->ev_code);
850 		return;
851 	}
852 	switch (ev_type) {
853 	case 'P':
854 		sdev = scsi_device_lookup(shost, ev->channel,
855 					  ev->target, 0);
856 		sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
857 			    ev->ev_seq, ev_msg);
858 		if (sdev && sdev->hostdata &&
859 		    sdev->channel < cs->ctlr_info->physchan_present) {
860 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
861 
862 			switch (ev->ev_code) {
863 			case 0x0001:
864 			case 0x0007:
865 				pdev_info->dev_state = MYRS_DEVICE_ONLINE;
866 				break;
867 			case 0x0002:
868 				pdev_info->dev_state = MYRS_DEVICE_STANDBY;
869 				break;
870 			case 0x000C:
871 				pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
872 				break;
873 			case 0x000E:
874 				pdev_info->dev_state = MYRS_DEVICE_MISSING;
875 				break;
876 			case 0x000F:
877 				pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
878 				break;
879 			}
880 		}
881 		break;
882 	case 'L':
883 		shost_printk(KERN_INFO, shost,
884 			     "event %d: Logical Drive %d %s\n",
885 			     ev->ev_seq, ev->lun, ev_msg);
886 		cs->needs_update = true;
887 		break;
888 	case 'M':
889 		shost_printk(KERN_INFO, shost,
890 			     "event %d: Logical Drive %d %s\n",
891 			     ev->ev_seq, ev->lun, ev_msg);
892 		cs->needs_update = true;
893 		break;
894 	case 'S':
895 		if (sshdr.sense_key == NO_SENSE ||
896 		    (sshdr.sense_key == NOT_READY &&
897 		     sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
898 					    sshdr.ascq == 0x02)))
899 			break;
900 		shost_printk(KERN_INFO, shost,
901 			     "event %d: Physical Device %d:%d %s\n",
902 			     ev->ev_seq, ev->channel, ev->target, ev_msg);
903 		shost_printk(KERN_INFO, shost,
904 			     "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
905 			     ev->channel, ev->target,
906 			     sshdr.sense_key, sshdr.asc, sshdr.ascq);
907 		shost_printk(KERN_INFO, shost,
908 			     "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
909 			     ev->channel, ev->target,
910 			     sense_info[0], sense_info[1],
911 			     sense_info[2], sense_info[3],
912 			     cmd_specific[0], cmd_specific[1],
913 			     cmd_specific[2], cmd_specific[3]);
914 		break;
915 	case 'E':
916 		if (cs->disable_enc_msg)
917 			break;
918 		sprintf(msg_buf, ev_msg, ev->lun);
919 		shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
920 			     ev->ev_seq, ev->target, msg_buf);
921 		break;
922 	case 'C':
923 		shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
924 			     ev->ev_seq, ev_msg);
925 		break;
926 	default:
927 		shost_printk(KERN_INFO, shost,
928 			     "event %d: Unknown Event Code %04X\n",
929 			     ev->ev_seq, ev->ev_code);
930 		break;
931 	}
932 }
933 
934 /*
935  * SCSI sysfs interface functions
936  */
937 static ssize_t raid_state_show(struct device *dev,
938 		struct device_attribute *attr, char *buf)
939 {
940 	struct scsi_device *sdev = to_scsi_device(dev);
941 	struct myrs_hba *cs = shost_priv(sdev->host);
942 	int ret;
943 
944 	if (!sdev->hostdata)
945 		return snprintf(buf, 16, "Unknown\n");
946 
947 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
948 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
949 		const char *name;
950 
951 		name = myrs_devstate_name(ldev_info->dev_state);
952 		if (name)
953 			ret = snprintf(buf, 32, "%s\n", name);
954 		else
955 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
956 				       ldev_info->dev_state);
957 	} else {
958 		struct myrs_pdev_info *pdev_info;
959 		const char *name;
960 
961 		pdev_info = sdev->hostdata;
962 		name = myrs_devstate_name(pdev_info->dev_state);
963 		if (name)
964 			ret = snprintf(buf, 32, "%s\n", name);
965 		else
966 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
967 				       pdev_info->dev_state);
968 	}
969 	return ret;
970 }
971 
972 static ssize_t raid_state_store(struct device *dev,
973 		struct device_attribute *attr, const char *buf, size_t count)
974 {
975 	struct scsi_device *sdev = to_scsi_device(dev);
976 	struct myrs_hba *cs = shost_priv(sdev->host);
977 	struct myrs_cmdblk *cmd_blk;
978 	union myrs_cmd_mbox *mbox;
979 	enum myrs_devstate new_state;
980 	unsigned short ldev_num;
981 	unsigned char status;
982 
983 	if (!strncmp(buf, "offline", 7) ||
984 	    !strncmp(buf, "kill", 4))
985 		new_state = MYRS_DEVICE_OFFLINE;
986 	else if (!strncmp(buf, "online", 6))
987 		new_state = MYRS_DEVICE_ONLINE;
988 	else if (!strncmp(buf, "standby", 7))
989 		new_state = MYRS_DEVICE_STANDBY;
990 	else
991 		return -EINVAL;
992 
993 	if (sdev->channel < cs->ctlr_info->physchan_present) {
994 		struct myrs_pdev_info *pdev_info = sdev->hostdata;
995 		struct myrs_devmap *pdev_devmap =
996 			(struct myrs_devmap *)&pdev_info->rsvd13;
997 
998 		if (pdev_info->dev_state == new_state) {
999 			sdev_printk(KERN_INFO, sdev,
1000 				    "Device already in %s\n",
1001 				    myrs_devstate_name(new_state));
1002 			return count;
1003 		}
1004 		status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
1005 					     sdev->lun, pdev_devmap);
1006 		if (status != MYRS_STATUS_SUCCESS)
1007 			return -ENXIO;
1008 		ldev_num = pdev_devmap->ldev_num;
1009 	} else {
1010 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
1011 
1012 		if (ldev_info->dev_state == new_state) {
1013 			sdev_printk(KERN_INFO, sdev,
1014 				    "Device already in %s\n",
1015 				    myrs_devstate_name(new_state));
1016 			return count;
1017 		}
1018 		ldev_num = ldev_info->ldev_num;
1019 	}
1020 	mutex_lock(&cs->dcmd_mutex);
1021 	cmd_blk = &cs->dcmd_blk;
1022 	myrs_reset_cmd(cmd_blk);
1023 	mbox = &cmd_blk->mbox;
1024 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1025 	mbox->common.id = MYRS_DCMD_TAG;
1026 	mbox->common.control.dma_ctrl_to_host = true;
1027 	mbox->common.control.no_autosense = true;
1028 	mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
1029 	mbox->set_devstate.state = new_state;
1030 	mbox->set_devstate.ldev.ldev_num = ldev_num;
1031 	myrs_exec_cmd(cs, cmd_blk);
1032 	status = cmd_blk->status;
1033 	mutex_unlock(&cs->dcmd_mutex);
1034 	if (status == MYRS_STATUS_SUCCESS) {
1035 		if (sdev->channel < cs->ctlr_info->physchan_present) {
1036 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
1037 
1038 			pdev_info->dev_state = new_state;
1039 		} else {
1040 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1041 
1042 			ldev_info->dev_state = new_state;
1043 		}
1044 		sdev_printk(KERN_INFO, sdev,
1045 			    "Set device state to %s\n",
1046 			    myrs_devstate_name(new_state));
1047 		return count;
1048 	}
1049 	sdev_printk(KERN_INFO, sdev,
1050 		    "Failed to set device state to %s, status 0x%02x\n",
1051 		    myrs_devstate_name(new_state), status);
1052 	return -EINVAL;
1053 }
1054 static DEVICE_ATTR_RW(raid_state);
1055 
1056 static ssize_t raid_level_show(struct device *dev,
1057 		struct device_attribute *attr, char *buf)
1058 {
1059 	struct scsi_device *sdev = to_scsi_device(dev);
1060 	struct myrs_hba *cs = shost_priv(sdev->host);
1061 	const char *name = NULL;
1062 
1063 	if (!sdev->hostdata)
1064 		return snprintf(buf, 16, "Unknown\n");
1065 
1066 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1067 		struct myrs_ldev_info *ldev_info;
1068 
1069 		ldev_info = sdev->hostdata;
1070 		name = myrs_raid_level_name(ldev_info->raid_level);
1071 		if (!name)
1072 			return snprintf(buf, 32, "Invalid (%02X)\n",
1073 					ldev_info->dev_state);
1074 
1075 	} else
1076 		name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
1077 
1078 	return snprintf(buf, 32, "%s\n", name);
1079 }
1080 static DEVICE_ATTR_RO(raid_level);
1081 
1082 static ssize_t rebuild_show(struct device *dev,
1083 		struct device_attribute *attr, char *buf)
1084 {
1085 	struct scsi_device *sdev = to_scsi_device(dev);
1086 	struct myrs_hba *cs = shost_priv(sdev->host);
1087 	struct myrs_ldev_info *ldev_info;
1088 	unsigned short ldev_num;
1089 	unsigned char status;
1090 
1091 	if (sdev->channel < cs->ctlr_info->physchan_present)
1092 		return snprintf(buf, 32, "physical device - not rebuilding\n");
1093 
1094 	ldev_info = sdev->hostdata;
1095 	ldev_num = ldev_info->ldev_num;
1096 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1097 	if (status != MYRS_STATUS_SUCCESS) {
1098 		sdev_printk(KERN_INFO, sdev,
1099 			    "Failed to get device information, status 0x%02x\n",
1100 			    status);
1101 		return -EIO;
1102 	}
1103 	if (ldev_info->rbld_active) {
1104 		return snprintf(buf, 32, "rebuilding block %zu of %zu\n",
1105 				(size_t)ldev_info->rbld_lba,
1106 				(size_t)ldev_info->cfg_devsize);
1107 	} else
1108 		return snprintf(buf, 32, "not rebuilding\n");
1109 }
1110 
1111 static ssize_t rebuild_store(struct device *dev,
1112 		struct device_attribute *attr, const char *buf, size_t count)
1113 {
1114 	struct scsi_device *sdev = to_scsi_device(dev);
1115 	struct myrs_hba *cs = shost_priv(sdev->host);
1116 	struct myrs_ldev_info *ldev_info;
1117 	struct myrs_cmdblk *cmd_blk;
1118 	union myrs_cmd_mbox *mbox;
1119 	unsigned short ldev_num;
1120 	unsigned char status;
1121 	int rebuild, ret;
1122 
1123 	if (sdev->channel < cs->ctlr_info->physchan_present)
1124 		return -EINVAL;
1125 
1126 	ldev_info = sdev->hostdata;
1127 	if (!ldev_info)
1128 		return -ENXIO;
1129 	ldev_num = ldev_info->ldev_num;
1130 
1131 	ret = kstrtoint(buf, 0, &rebuild);
1132 	if (ret)
1133 		return ret;
1134 
1135 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1136 	if (status != MYRS_STATUS_SUCCESS) {
1137 		sdev_printk(KERN_INFO, sdev,
1138 			    "Failed to get device information, status 0x%02x\n",
1139 			    status);
1140 		return -EIO;
1141 	}
1142 
1143 	if (rebuild && ldev_info->rbld_active) {
1144 		sdev_printk(KERN_INFO, sdev,
1145 			    "Rebuild Not Initiated; already in progress\n");
1146 		return -EALREADY;
1147 	}
1148 	if (!rebuild && !ldev_info->rbld_active) {
1149 		sdev_printk(KERN_INFO, sdev,
1150 			    "Rebuild Not Cancelled; no rebuild in progress\n");
1151 		return count;
1152 	}
1153 
1154 	mutex_lock(&cs->dcmd_mutex);
1155 	cmd_blk = &cs->dcmd_blk;
1156 	myrs_reset_cmd(cmd_blk);
1157 	mbox = &cmd_blk->mbox;
1158 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1159 	mbox->common.id = MYRS_DCMD_TAG;
1160 	mbox->common.control.dma_ctrl_to_host = true;
1161 	mbox->common.control.no_autosense = true;
1162 	if (rebuild) {
1163 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1164 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
1165 	} else {
1166 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1167 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
1168 	}
1169 	myrs_exec_cmd(cs, cmd_blk);
1170 	status = cmd_blk->status;
1171 	mutex_unlock(&cs->dcmd_mutex);
1172 	if (status) {
1173 		sdev_printk(KERN_INFO, sdev,
1174 			    "Rebuild Not %s, status 0x%02x\n",
1175 			    rebuild ? "Initiated" : "Cancelled", status);
1176 		ret = -EIO;
1177 	} else {
1178 		sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
1179 			    rebuild ? "Initiated" : "Cancelled");
1180 		ret = count;
1181 	}
1182 
1183 	return ret;
1184 }
1185 static DEVICE_ATTR_RW(rebuild);
1186 
1187 static ssize_t consistency_check_show(struct device *dev,
1188 		struct device_attribute *attr, char *buf)
1189 {
1190 	struct scsi_device *sdev = to_scsi_device(dev);
1191 	struct myrs_hba *cs = shost_priv(sdev->host);
1192 	struct myrs_ldev_info *ldev_info;
1193 	unsigned short ldev_num;
1194 	unsigned char status;
1195 
1196 	if (sdev->channel < cs->ctlr_info->physchan_present)
1197 		return snprintf(buf, 32, "physical device - not checking\n");
1198 
1199 	ldev_info = sdev->hostdata;
1200 	if (!ldev_info)
1201 		return -ENXIO;
1202 	ldev_num = ldev_info->ldev_num;
1203 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1204 	if (ldev_info->cc_active)
1205 		return snprintf(buf, 32, "checking block %zu of %zu\n",
1206 				(size_t)ldev_info->cc_lba,
1207 				(size_t)ldev_info->cfg_devsize);
1208 	else
1209 		return snprintf(buf, 32, "not checking\n");
1210 }
1211 
1212 static ssize_t consistency_check_store(struct device *dev,
1213 		struct device_attribute *attr, const char *buf, size_t count)
1214 {
1215 	struct scsi_device *sdev = to_scsi_device(dev);
1216 	struct myrs_hba *cs = shost_priv(sdev->host);
1217 	struct myrs_ldev_info *ldev_info;
1218 	struct myrs_cmdblk *cmd_blk;
1219 	union myrs_cmd_mbox *mbox;
1220 	unsigned short ldev_num;
1221 	unsigned char status;
1222 	int check, ret;
1223 
1224 	if (sdev->channel < cs->ctlr_info->physchan_present)
1225 		return -EINVAL;
1226 
1227 	ldev_info = sdev->hostdata;
1228 	if (!ldev_info)
1229 		return -ENXIO;
1230 	ldev_num = ldev_info->ldev_num;
1231 
1232 	ret = kstrtoint(buf, 0, &check);
1233 	if (ret)
1234 		return ret;
1235 
1236 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1237 	if (status != MYRS_STATUS_SUCCESS) {
1238 		sdev_printk(KERN_INFO, sdev,
1239 			    "Failed to get device information, status 0x%02x\n",
1240 			    status);
1241 		return -EIO;
1242 	}
1243 	if (check && ldev_info->cc_active) {
1244 		sdev_printk(KERN_INFO, sdev,
1245 			    "Consistency Check Not Initiated; "
1246 			    "already in progress\n");
1247 		return -EALREADY;
1248 	}
1249 	if (!check && !ldev_info->cc_active) {
1250 		sdev_printk(KERN_INFO, sdev,
1251 			    "Consistency Check Not Cancelled; "
1252 			    "check not in progress\n");
1253 		return count;
1254 	}
1255 
1256 	mutex_lock(&cs->dcmd_mutex);
1257 	cmd_blk = &cs->dcmd_blk;
1258 	myrs_reset_cmd(cmd_blk);
1259 	mbox = &cmd_blk->mbox;
1260 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1261 	mbox->common.id = MYRS_DCMD_TAG;
1262 	mbox->common.control.dma_ctrl_to_host = true;
1263 	mbox->common.control.no_autosense = true;
1264 	if (check) {
1265 		mbox->cc.ldev.ldev_num = ldev_num;
1266 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
1267 		mbox->cc.restore_consistency = true;
1268 		mbox->cc.initialized_area_only = false;
1269 	} else {
1270 		mbox->cc.ldev.ldev_num = ldev_num;
1271 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
1272 	}
1273 	myrs_exec_cmd(cs, cmd_blk);
1274 	status = cmd_blk->status;
1275 	mutex_unlock(&cs->dcmd_mutex);
1276 	if (status != MYRS_STATUS_SUCCESS) {
1277 		sdev_printk(KERN_INFO, sdev,
1278 			    "Consistency Check Not %s, status 0x%02x\n",
1279 			    check ? "Initiated" : "Cancelled", status);
1280 		ret = -EIO;
1281 	} else {
1282 		sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
1283 			    check ? "Initiated" : "Cancelled");
1284 		ret = count;
1285 	}
1286 
1287 	return ret;
1288 }
1289 static DEVICE_ATTR_RW(consistency_check);
1290 
1291 static struct device_attribute *myrs_sdev_attrs[] = {
1292 	&dev_attr_consistency_check,
1293 	&dev_attr_rebuild,
1294 	&dev_attr_raid_state,
1295 	&dev_attr_raid_level,
1296 	NULL,
1297 };
1298 
1299 static ssize_t serial_show(struct device *dev,
1300 		struct device_attribute *attr, char *buf)
1301 {
1302 	struct Scsi_Host *shost = class_to_shost(dev);
1303 	struct myrs_hba *cs = shost_priv(shost);
1304 	char serial[17];
1305 
1306 	memcpy(serial, cs->ctlr_info->serial_number, 16);
1307 	serial[16] = '\0';
1308 	return snprintf(buf, 16, "%s\n", serial);
1309 }
1310 static DEVICE_ATTR_RO(serial);
1311 
1312 static ssize_t ctlr_num_show(struct device *dev,
1313 		struct device_attribute *attr, char *buf)
1314 {
1315 	struct Scsi_Host *shost = class_to_shost(dev);
1316 	struct myrs_hba *cs = shost_priv(shost);
1317 
1318 	return snprintf(buf, 20, "%d\n", cs->host->host_no);
1319 }
1320 static DEVICE_ATTR_RO(ctlr_num);
1321 
1322 static struct myrs_cpu_type_tbl {
1323 	enum myrs_cpu_type type;
1324 	char *name;
1325 } myrs_cpu_type_names[] = {
1326 	{ MYRS_CPUTYPE_i960CA, "i960CA" },
1327 	{ MYRS_CPUTYPE_i960RD, "i960RD" },
1328 	{ MYRS_CPUTYPE_i960RN, "i960RN" },
1329 	{ MYRS_CPUTYPE_i960RP, "i960RP" },
1330 	{ MYRS_CPUTYPE_NorthBay, "NorthBay" },
1331 	{ MYRS_CPUTYPE_StrongArm, "StrongARM" },
1332 	{ MYRS_CPUTYPE_i960RM, "i960RM" },
1333 };
1334 
1335 static ssize_t processor_show(struct device *dev,
1336 		struct device_attribute *attr, char *buf)
1337 {
1338 	struct Scsi_Host *shost = class_to_shost(dev);
1339 	struct myrs_hba *cs = shost_priv(shost);
1340 	struct myrs_cpu_type_tbl *tbl;
1341 	const char *first_processor = NULL;
1342 	const char *second_processor = NULL;
1343 	struct myrs_ctlr_info *info = cs->ctlr_info;
1344 	ssize_t ret;
1345 	int i;
1346 
1347 	if (info->cpu[0].cpu_count) {
1348 		tbl = myrs_cpu_type_names;
1349 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1350 			if (tbl[i].type == info->cpu[0].cpu_type) {
1351 				first_processor = tbl[i].name;
1352 				break;
1353 			}
1354 		}
1355 	}
1356 	if (info->cpu[1].cpu_count) {
1357 		tbl = myrs_cpu_type_names;
1358 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1359 			if (tbl[i].type == info->cpu[1].cpu_type) {
1360 				second_processor = tbl[i].name;
1361 				break;
1362 			}
1363 		}
1364 	}
1365 	if (first_processor && second_processor)
1366 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
1367 			       "2: %s (%s, %d cpus)\n",
1368 			       info->cpu[0].cpu_name,
1369 			       first_processor, info->cpu[0].cpu_count,
1370 			       info->cpu[1].cpu_name,
1371 			       second_processor, info->cpu[1].cpu_count);
1372 	else if (first_processor && !second_processor)
1373 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
1374 			       info->cpu[0].cpu_name,
1375 			       first_processor, info->cpu[0].cpu_count);
1376 	else if (!first_processor && second_processor)
1377 		ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
1378 			       info->cpu[1].cpu_name,
1379 			       second_processor, info->cpu[1].cpu_count);
1380 	else
1381 		ret = snprintf(buf, 64, "1: absent\n2: absent\n");
1382 
1383 	return ret;
1384 }
1385 static DEVICE_ATTR_RO(processor);
1386 
1387 static ssize_t model_show(struct device *dev,
1388 		struct device_attribute *attr, char *buf)
1389 {
1390 	struct Scsi_Host *shost = class_to_shost(dev);
1391 	struct myrs_hba *cs = shost_priv(shost);
1392 
1393 	return snprintf(buf, 28, "%s\n", cs->model_name);
1394 }
1395 static DEVICE_ATTR_RO(model);
1396 
1397 static ssize_t ctlr_type_show(struct device *dev,
1398 		struct device_attribute *attr, char *buf)
1399 {
1400 	struct Scsi_Host *shost = class_to_shost(dev);
1401 	struct myrs_hba *cs = shost_priv(shost);
1402 
1403 	return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
1404 }
1405 static DEVICE_ATTR_RO(ctlr_type);
1406 
1407 static ssize_t cache_size_show(struct device *dev,
1408 		struct device_attribute *attr, char *buf)
1409 {
1410 	struct Scsi_Host *shost = class_to_shost(dev);
1411 	struct myrs_hba *cs = shost_priv(shost);
1412 
1413 	return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
1414 }
1415 static DEVICE_ATTR_RO(cache_size);
1416 
1417 static ssize_t firmware_show(struct device *dev,
1418 		struct device_attribute *attr, char *buf)
1419 {
1420 	struct Scsi_Host *shost = class_to_shost(dev);
1421 	struct myrs_hba *cs = shost_priv(shost);
1422 
1423 	return snprintf(buf, 16, "%d.%02d-%02d\n",
1424 			cs->ctlr_info->fw_major_version,
1425 			cs->ctlr_info->fw_minor_version,
1426 			cs->ctlr_info->fw_turn_number);
1427 }
1428 static DEVICE_ATTR_RO(firmware);
1429 
1430 static ssize_t discovery_store(struct device *dev,
1431 		struct device_attribute *attr, const char *buf, size_t count)
1432 {
1433 	struct Scsi_Host *shost = class_to_shost(dev);
1434 	struct myrs_hba *cs = shost_priv(shost);
1435 	struct myrs_cmdblk *cmd_blk;
1436 	union myrs_cmd_mbox *mbox;
1437 	unsigned char status;
1438 
1439 	mutex_lock(&cs->dcmd_mutex);
1440 	cmd_blk = &cs->dcmd_blk;
1441 	myrs_reset_cmd(cmd_blk);
1442 	mbox = &cmd_blk->mbox;
1443 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1444 	mbox->common.id = MYRS_DCMD_TAG;
1445 	mbox->common.control.dma_ctrl_to_host = true;
1446 	mbox->common.control.no_autosense = true;
1447 	mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
1448 	myrs_exec_cmd(cs, cmd_blk);
1449 	status = cmd_blk->status;
1450 	mutex_unlock(&cs->dcmd_mutex);
1451 	if (status != MYRS_STATUS_SUCCESS) {
1452 		shost_printk(KERN_INFO, shost,
1453 			     "Discovery Not Initiated, status %02X\n",
1454 			     status);
1455 		return -EINVAL;
1456 	}
1457 	shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
1458 	cs->next_evseq = 0;
1459 	cs->needs_update = true;
1460 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
1461 	flush_delayed_work(&cs->monitor_work);
1462 	shost_printk(KERN_INFO, shost, "Discovery Completed\n");
1463 
1464 	return count;
1465 }
1466 static DEVICE_ATTR_WO(discovery);
1467 
1468 static ssize_t flush_cache_store(struct device *dev,
1469 		struct device_attribute *attr, const char *buf, size_t count)
1470 {
1471 	struct Scsi_Host *shost = class_to_shost(dev);
1472 	struct myrs_hba *cs = shost_priv(shost);
1473 	unsigned char status;
1474 
1475 	status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
1476 			     MYRS_RAID_CONTROLLER);
1477 	if (status == MYRS_STATUS_SUCCESS) {
1478 		shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
1479 		return count;
1480 	}
1481 	shost_printk(KERN_INFO, shost,
1482 		     "Cache Flush failed, status 0x%02x\n", status);
1483 	return -EIO;
1484 }
1485 static DEVICE_ATTR_WO(flush_cache);
1486 
1487 static ssize_t disable_enclosure_messages_show(struct device *dev,
1488 		struct device_attribute *attr, char *buf)
1489 {
1490 	struct Scsi_Host *shost = class_to_shost(dev);
1491 	struct myrs_hba *cs = shost_priv(shost);
1492 
1493 	return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
1494 }
1495 
1496 static ssize_t disable_enclosure_messages_store(struct device *dev,
1497 		struct device_attribute *attr, const char *buf, size_t count)
1498 {
1499 	struct scsi_device *sdev = to_scsi_device(dev);
1500 	struct myrs_hba *cs = shost_priv(sdev->host);
1501 	int value, ret;
1502 
1503 	ret = kstrtoint(buf, 0, &value);
1504 	if (ret)
1505 		return ret;
1506 
1507 	if (value > 2)
1508 		return -EINVAL;
1509 
1510 	cs->disable_enc_msg = value;
1511 	return count;
1512 }
1513 static DEVICE_ATTR_RW(disable_enclosure_messages);
1514 
1515 static struct device_attribute *myrs_shost_attrs[] = {
1516 	&dev_attr_serial,
1517 	&dev_attr_ctlr_num,
1518 	&dev_attr_processor,
1519 	&dev_attr_model,
1520 	&dev_attr_ctlr_type,
1521 	&dev_attr_cache_size,
1522 	&dev_attr_firmware,
1523 	&dev_attr_discovery,
1524 	&dev_attr_flush_cache,
1525 	&dev_attr_disable_enclosure_messages,
1526 	NULL,
1527 };
1528 
1529 /*
1530  * SCSI midlayer interface
1531  */
1532 int myrs_host_reset(struct scsi_cmnd *scmd)
1533 {
1534 	struct Scsi_Host *shost = scmd->device->host;
1535 	struct myrs_hba *cs = shost_priv(shost);
1536 
1537 	cs->reset(cs->io_base);
1538 	return SUCCESS;
1539 }
1540 
1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
1542 		struct myrs_ldev_info *ldev_info)
1543 {
1544 	unsigned char modes[32], *mode_pg;
1545 	bool dbd;
1546 	size_t mode_len;
1547 
1548 	dbd = (scmd->cmnd[1] & 0x08) == 0x08;
1549 	if (dbd) {
1550 		mode_len = 24;
1551 		mode_pg = &modes[4];
1552 	} else {
1553 		mode_len = 32;
1554 		mode_pg = &modes[12];
1555 	}
1556 	memset(modes, 0, sizeof(modes));
1557 	modes[0] = mode_len - 1;
1558 	modes[2] = 0x10; /* Enable FUA */
1559 	if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
1560 		modes[2] |= 0x80;
1561 	if (!dbd) {
1562 		unsigned char *block_desc = &modes[4];
1563 
1564 		modes[3] = 8;
1565 		put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
1566 		put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
1567 	}
1568 	mode_pg[0] = 0x08;
1569 	mode_pg[1] = 0x12;
1570 	if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
1571 		mode_pg[2] |= 0x01;
1572 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1573 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1574 		mode_pg[2] |= 0x04;
1575 	if (ldev_info->cacheline_size) {
1576 		mode_pg[2] |= 0x08;
1577 		put_unaligned_be16(1 << ldev_info->cacheline_size,
1578 				   &mode_pg[14]);
1579 	}
1580 
1581 	scsi_sg_copy_from_buffer(scmd, modes, mode_len);
1582 }
1583 
1584 static int myrs_queuecommand(struct Scsi_Host *shost,
1585 		struct scsi_cmnd *scmd)
1586 {
1587 	struct myrs_hba *cs = shost_priv(shost);
1588 	struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
1589 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
1590 	struct scsi_device *sdev = scmd->device;
1591 	union myrs_sgl *hw_sge;
1592 	dma_addr_t sense_addr;
1593 	struct scatterlist *sgl;
1594 	unsigned long flags, timeout;
1595 	int nsge;
1596 
1597 	if (!scmd->device->hostdata) {
1598 		scmd->result = (DID_NO_CONNECT << 16);
1599 		scmd->scsi_done(scmd);
1600 		return 0;
1601 	}
1602 
1603 	switch (scmd->cmnd[0]) {
1604 	case REPORT_LUNS:
1605 		scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST,
1606 					0x20, 0x0);
1607 		scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
1608 		scmd->scsi_done(scmd);
1609 		return 0;
1610 	case MODE_SENSE:
1611 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1612 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1613 
1614 			if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
1615 			    (scmd->cmnd[2] & 0x3F) != 0x08) {
1616 				/* Illegal request, invalid field in CDB */
1617 				scsi_build_sense_buffer(0, scmd->sense_buffer,
1618 					ILLEGAL_REQUEST, 0x24, 0);
1619 				scmd->result = (DRIVER_SENSE << 24) |
1620 					SAM_STAT_CHECK_CONDITION;
1621 			} else {
1622 				myrs_mode_sense(cs, scmd, ldev_info);
1623 				scmd->result = (DID_OK << 16);
1624 			}
1625 			scmd->scsi_done(scmd);
1626 			return 0;
1627 		}
1628 		break;
1629 	}
1630 
1631 	myrs_reset_cmd(cmd_blk);
1632 	cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
1633 					&sense_addr);
1634 	if (!cmd_blk->sense)
1635 		return SCSI_MLQUEUE_HOST_BUSY;
1636 	cmd_blk->sense_addr = sense_addr;
1637 
1638 	timeout = scmd->request->timeout;
1639 	if (scmd->cmd_len <= 10) {
1640 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1641 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1642 
1643 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
1644 			mbox->SCSI_10.pdev.lun = ldev_info->lun;
1645 			mbox->SCSI_10.pdev.target = ldev_info->target;
1646 			mbox->SCSI_10.pdev.channel = ldev_info->channel;
1647 			mbox->SCSI_10.pdev.ctlr = 0;
1648 		} else {
1649 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
1650 			mbox->SCSI_10.pdev.lun = sdev->lun;
1651 			mbox->SCSI_10.pdev.target = sdev->id;
1652 			mbox->SCSI_10.pdev.channel = sdev->channel;
1653 		}
1654 		mbox->SCSI_10.id = scmd->request->tag + 3;
1655 		mbox->SCSI_10.control.dma_ctrl_to_host =
1656 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1657 		if (scmd->request->cmd_flags & REQ_FUA)
1658 			mbox->SCSI_10.control.fua = true;
1659 		mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
1660 		mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
1661 		mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
1662 		mbox->SCSI_10.cdb_len = scmd->cmd_len;
1663 		if (timeout > 60) {
1664 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1665 			mbox->SCSI_10.tmo.tmo_val = timeout / 60;
1666 		} else {
1667 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1668 			mbox->SCSI_10.tmo.tmo_val = timeout;
1669 		}
1670 		memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
1671 		hw_sge = &mbox->SCSI_10.dma_addr;
1672 		cmd_blk->dcdb = NULL;
1673 	} else {
1674 		dma_addr_t dcdb_dma;
1675 
1676 		cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
1677 					       &dcdb_dma);
1678 		if (!cmd_blk->dcdb) {
1679 			dma_pool_free(cs->sense_pool, cmd_blk->sense,
1680 				      cmd_blk->sense_addr);
1681 			cmd_blk->sense = NULL;
1682 			cmd_blk->sense_addr = 0;
1683 			return SCSI_MLQUEUE_HOST_BUSY;
1684 		}
1685 		cmd_blk->dcdb_dma = dcdb_dma;
1686 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1687 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1688 
1689 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
1690 			mbox->SCSI_255.pdev.lun = ldev_info->lun;
1691 			mbox->SCSI_255.pdev.target = ldev_info->target;
1692 			mbox->SCSI_255.pdev.channel = ldev_info->channel;
1693 			mbox->SCSI_255.pdev.ctlr = 0;
1694 		} else {
1695 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
1696 			mbox->SCSI_255.pdev.lun = sdev->lun;
1697 			mbox->SCSI_255.pdev.target = sdev->id;
1698 			mbox->SCSI_255.pdev.channel = sdev->channel;
1699 		}
1700 		mbox->SCSI_255.id = scmd->request->tag + 3;
1701 		mbox->SCSI_255.control.dma_ctrl_to_host =
1702 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1703 		if (scmd->request->cmd_flags & REQ_FUA)
1704 			mbox->SCSI_255.control.fua = true;
1705 		mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
1706 		mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
1707 		mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
1708 		mbox->SCSI_255.cdb_len = scmd->cmd_len;
1709 		mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
1710 		if (timeout > 60) {
1711 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1712 			mbox->SCSI_255.tmo.tmo_val = timeout / 60;
1713 		} else {
1714 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1715 			mbox->SCSI_255.tmo.tmo_val = timeout;
1716 		}
1717 		memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
1718 		hw_sge = &mbox->SCSI_255.dma_addr;
1719 	}
1720 	if (scmd->sc_data_direction == DMA_NONE)
1721 		goto submit;
1722 	nsge = scsi_dma_map(scmd);
1723 	if (nsge == 1) {
1724 		sgl = scsi_sglist(scmd);
1725 		hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
1726 		hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
1727 	} else {
1728 		struct myrs_sge *hw_sgl;
1729 		dma_addr_t hw_sgl_addr;
1730 		int i;
1731 
1732 		if (nsge > 2) {
1733 			hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
1734 						&hw_sgl_addr);
1735 			if (WARN_ON(!hw_sgl)) {
1736 				if (cmd_blk->dcdb) {
1737 					dma_pool_free(cs->dcdb_pool,
1738 						      cmd_blk->dcdb,
1739 						      cmd_blk->dcdb_dma);
1740 					cmd_blk->dcdb = NULL;
1741 					cmd_blk->dcdb_dma = 0;
1742 				}
1743 				dma_pool_free(cs->sense_pool,
1744 					      cmd_blk->sense,
1745 					      cmd_blk->sense_addr);
1746 				cmd_blk->sense = NULL;
1747 				cmd_blk->sense_addr = 0;
1748 				return SCSI_MLQUEUE_HOST_BUSY;
1749 			}
1750 			cmd_blk->sgl = hw_sgl;
1751 			cmd_blk->sgl_addr = hw_sgl_addr;
1752 			if (scmd->cmd_len <= 10)
1753 				mbox->SCSI_10.control.add_sge_mem = true;
1754 			else
1755 				mbox->SCSI_255.control.add_sge_mem = true;
1756 			hw_sge->ext.sge0_len = nsge;
1757 			hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
1758 		} else
1759 			hw_sgl = hw_sge->sge;
1760 
1761 		scsi_for_each_sg(scmd, sgl, nsge, i) {
1762 			if (WARN_ON(!hw_sgl)) {
1763 				scsi_dma_unmap(scmd);
1764 				scmd->result = (DID_ERROR << 16);
1765 				scmd->scsi_done(scmd);
1766 				return 0;
1767 			}
1768 			hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
1769 			hw_sgl->sge_count = (u64)sg_dma_len(sgl);
1770 			hw_sgl++;
1771 		}
1772 	}
1773 submit:
1774 	spin_lock_irqsave(&cs->queue_lock, flags);
1775 	myrs_qcmd(cs, cmd_blk);
1776 	spin_unlock_irqrestore(&cs->queue_lock, flags);
1777 
1778 	return 0;
1779 }
1780 
1781 static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
1782 		struct scsi_device *sdev)
1783 {
1784 	unsigned short ldev_num;
1785 	unsigned int chan_offset =
1786 		sdev->channel - cs->ctlr_info->physchan_present;
1787 
1788 	ldev_num = sdev->id + chan_offset * sdev->host->max_id;
1789 
1790 	return ldev_num;
1791 }
1792 
1793 static int myrs_slave_alloc(struct scsi_device *sdev)
1794 {
1795 	struct myrs_hba *cs = shost_priv(sdev->host);
1796 	unsigned char status;
1797 
1798 	if (sdev->channel > sdev->host->max_channel)
1799 		return 0;
1800 
1801 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1802 		struct myrs_ldev_info *ldev_info;
1803 		unsigned short ldev_num;
1804 
1805 		if (sdev->lun > 0)
1806 			return -ENXIO;
1807 
1808 		ldev_num = myrs_translate_ldev(cs, sdev);
1809 
1810 		ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL|GFP_DMA);
1811 		if (!ldev_info)
1812 			return -ENOMEM;
1813 
1814 		status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1815 		if (status != MYRS_STATUS_SUCCESS) {
1816 			sdev->hostdata = NULL;
1817 			kfree(ldev_info);
1818 		} else {
1819 			enum raid_level level;
1820 
1821 			dev_dbg(&sdev->sdev_gendev,
1822 				"Logical device mapping %d:%d:%d -> %d\n",
1823 				ldev_info->channel, ldev_info->target,
1824 				ldev_info->lun, ldev_info->ldev_num);
1825 
1826 			sdev->hostdata = ldev_info;
1827 			switch (ldev_info->raid_level) {
1828 			case MYRS_RAID_LEVEL0:
1829 				level = RAID_LEVEL_LINEAR;
1830 				break;
1831 			case MYRS_RAID_LEVEL1:
1832 				level = RAID_LEVEL_1;
1833 				break;
1834 			case MYRS_RAID_LEVEL3:
1835 			case MYRS_RAID_LEVEL3F:
1836 			case MYRS_RAID_LEVEL3L:
1837 				level = RAID_LEVEL_3;
1838 				break;
1839 			case MYRS_RAID_LEVEL5:
1840 			case MYRS_RAID_LEVEL5L:
1841 				level = RAID_LEVEL_5;
1842 				break;
1843 			case MYRS_RAID_LEVEL6:
1844 				level = RAID_LEVEL_6;
1845 				break;
1846 			case MYRS_RAID_LEVELE:
1847 			case MYRS_RAID_NEWSPAN:
1848 			case MYRS_RAID_SPAN:
1849 				level = RAID_LEVEL_LINEAR;
1850 				break;
1851 			case MYRS_RAID_JBOD:
1852 				level = RAID_LEVEL_JBOD;
1853 				break;
1854 			default:
1855 				level = RAID_LEVEL_UNKNOWN;
1856 				break;
1857 			}
1858 			raid_set_level(myrs_raid_template,
1859 				       &sdev->sdev_gendev, level);
1860 			if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
1861 				const char *name;
1862 
1863 				name = myrs_devstate_name(ldev_info->dev_state);
1864 				sdev_printk(KERN_DEBUG, sdev,
1865 					    "logical device in state %s\n",
1866 					    name ? name : "Invalid");
1867 			}
1868 		}
1869 	} else {
1870 		struct myrs_pdev_info *pdev_info;
1871 
1872 		pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL|GFP_DMA);
1873 		if (!pdev_info)
1874 			return -ENOMEM;
1875 
1876 		status = myrs_get_pdev_info(cs, sdev->channel,
1877 					    sdev->id, sdev->lun,
1878 					    pdev_info);
1879 		if (status != MYRS_STATUS_SUCCESS) {
1880 			sdev->hostdata = NULL;
1881 			kfree(pdev_info);
1882 			return -ENXIO;
1883 		}
1884 		sdev->hostdata = pdev_info;
1885 	}
1886 	return 0;
1887 }
1888 
1889 static int myrs_slave_configure(struct scsi_device *sdev)
1890 {
1891 	struct myrs_hba *cs = shost_priv(sdev->host);
1892 	struct myrs_ldev_info *ldev_info;
1893 
1894 	if (sdev->channel > sdev->host->max_channel)
1895 		return -ENXIO;
1896 
1897 	if (sdev->channel < cs->ctlr_info->physchan_present) {
1898 		/* Skip HBA device */
1899 		if (sdev->type == TYPE_RAID)
1900 			return -ENXIO;
1901 		sdev->no_uld_attach = 1;
1902 		return 0;
1903 	}
1904 	if (sdev->lun != 0)
1905 		return -ENXIO;
1906 
1907 	ldev_info = sdev->hostdata;
1908 	if (!ldev_info)
1909 		return -ENXIO;
1910 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1911 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1912 		sdev->wce_default_on = 1;
1913 	sdev->tagged_supported = 1;
1914 	return 0;
1915 }
1916 
1917 static void myrs_slave_destroy(struct scsi_device *sdev)
1918 {
1919 	kfree(sdev->hostdata);
1920 }
1921 
1922 struct scsi_host_template myrs_template = {
1923 	.module			= THIS_MODULE,
1924 	.name			= "DAC960",
1925 	.proc_name		= "myrs",
1926 	.queuecommand		= myrs_queuecommand,
1927 	.eh_host_reset_handler	= myrs_host_reset,
1928 	.slave_alloc		= myrs_slave_alloc,
1929 	.slave_configure	= myrs_slave_configure,
1930 	.slave_destroy		= myrs_slave_destroy,
1931 	.cmd_size		= sizeof(struct myrs_cmdblk),
1932 	.shost_attrs		= myrs_shost_attrs,
1933 	.sdev_attrs		= myrs_sdev_attrs,
1934 	.this_id		= -1,
1935 };
1936 
1937 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
1938 		const struct pci_device_id *entry)
1939 {
1940 	struct Scsi_Host *shost;
1941 	struct myrs_hba *cs;
1942 
1943 	shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
1944 	if (!shost)
1945 		return NULL;
1946 
1947 	shost->max_cmd_len = 16;
1948 	shost->max_lun = 256;
1949 	cs = shost_priv(shost);
1950 	mutex_init(&cs->dcmd_mutex);
1951 	mutex_init(&cs->cinfo_mutex);
1952 	cs->host = shost;
1953 
1954 	return cs;
1955 }
1956 
1957 /*
1958  * RAID template functions
1959  */
1960 
1961 /**
1962  * myrs_is_raid - return boolean indicating device is raid volume
1963  * @dev the device struct object
1964  */
1965 static int
1966 myrs_is_raid(struct device *dev)
1967 {
1968 	struct scsi_device *sdev = to_scsi_device(dev);
1969 	struct myrs_hba *cs = shost_priv(sdev->host);
1970 
1971 	return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
1972 }
1973 
1974 /**
1975  * myrs_get_resync - get raid volume resync percent complete
1976  * @dev the device struct object
1977  */
1978 static void
1979 myrs_get_resync(struct device *dev)
1980 {
1981 	struct scsi_device *sdev = to_scsi_device(dev);
1982 	struct myrs_hba *cs = shost_priv(sdev->host);
1983 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
1984 	u64 percent_complete = 0;
1985 	u8 status;
1986 
1987 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
1988 		return;
1989 	if (ldev_info->rbld_active) {
1990 		unsigned short ldev_num = ldev_info->ldev_num;
1991 
1992 		status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1993 		percent_complete = ldev_info->rbld_lba * 100;
1994 		do_div(percent_complete, ldev_info->cfg_devsize);
1995 	}
1996 	raid_set_resync(myrs_raid_template, dev, percent_complete);
1997 }
1998 
1999 /**
2000  * myrs_get_state - get raid volume status
2001  * @dev the device struct object
2002  */
2003 static void
2004 myrs_get_state(struct device *dev)
2005 {
2006 	struct scsi_device *sdev = to_scsi_device(dev);
2007 	struct myrs_hba *cs = shost_priv(sdev->host);
2008 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
2009 	enum raid_state state = RAID_STATE_UNKNOWN;
2010 
2011 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
2012 		state = RAID_STATE_UNKNOWN;
2013 	else {
2014 		switch (ldev_info->dev_state) {
2015 		case MYRS_DEVICE_ONLINE:
2016 			state = RAID_STATE_ACTIVE;
2017 			break;
2018 		case MYRS_DEVICE_SUSPECTED_CRITICAL:
2019 		case MYRS_DEVICE_CRITICAL:
2020 			state = RAID_STATE_DEGRADED;
2021 			break;
2022 		case MYRS_DEVICE_REBUILD:
2023 			state = RAID_STATE_RESYNCING;
2024 			break;
2025 		case MYRS_DEVICE_UNCONFIGURED:
2026 		case MYRS_DEVICE_INVALID_STATE:
2027 			state = RAID_STATE_UNKNOWN;
2028 			break;
2029 		default:
2030 			state = RAID_STATE_OFFLINE;
2031 		}
2032 	}
2033 	raid_set_state(myrs_raid_template, dev, state);
2034 }
2035 
2036 struct raid_function_template myrs_raid_functions = {
2037 	.cookie		= &myrs_template,
2038 	.is_raid	= myrs_is_raid,
2039 	.get_resync	= myrs_get_resync,
2040 	.get_state	= myrs_get_state,
2041 };
2042 
2043 /*
2044  * PCI interface functions
2045  */
2046 void myrs_flush_cache(struct myrs_hba *cs)
2047 {
2048 	myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
2049 }
2050 
2051 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
2052 		struct scsi_cmnd *scmd)
2053 {
2054 	unsigned char status;
2055 
2056 	if (!cmd_blk)
2057 		return;
2058 
2059 	scsi_dma_unmap(scmd);
2060 	status = cmd_blk->status;
2061 	if (cmd_blk->sense) {
2062 		if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
2063 			unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
2064 
2065 			if (sense_len > cmd_blk->sense_len)
2066 				sense_len = cmd_blk->sense_len;
2067 			memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
2068 		}
2069 		dma_pool_free(cs->sense_pool, cmd_blk->sense,
2070 			      cmd_blk->sense_addr);
2071 		cmd_blk->sense = NULL;
2072 		cmd_blk->sense_addr = 0;
2073 	}
2074 	if (cmd_blk->dcdb) {
2075 		dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
2076 			      cmd_blk->dcdb_dma);
2077 		cmd_blk->dcdb = NULL;
2078 		cmd_blk->dcdb_dma = 0;
2079 	}
2080 	if (cmd_blk->sgl) {
2081 		dma_pool_free(cs->sg_pool, cmd_blk->sgl,
2082 			      cmd_blk->sgl_addr);
2083 		cmd_blk->sgl = NULL;
2084 		cmd_blk->sgl_addr = 0;
2085 	}
2086 	if (cmd_blk->residual)
2087 		scsi_set_resid(scmd, cmd_blk->residual);
2088 	if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
2089 	    status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
2090 		scmd->result = (DID_BAD_TARGET << 16);
2091 	else
2092 		scmd->result = (DID_OK << 16) | status;
2093 	scmd->scsi_done(scmd);
2094 }
2095 
2096 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
2097 {
2098 	if (!cmd_blk)
2099 		return;
2100 
2101 	if (cmd_blk->complete) {
2102 		complete(cmd_blk->complete);
2103 		cmd_blk->complete = NULL;
2104 	}
2105 }
2106 
2107 static void myrs_monitor(struct work_struct *work)
2108 {
2109 	struct myrs_hba *cs = container_of(work, struct myrs_hba,
2110 					   monitor_work.work);
2111 	struct Scsi_Host *shost = cs->host;
2112 	struct myrs_ctlr_info *info = cs->ctlr_info;
2113 	unsigned int epoch = cs->fwstat_buf->epoch;
2114 	unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
2115 	unsigned char status;
2116 
2117 	dev_dbg(&shost->shost_gendev, "monitor tick\n");
2118 
2119 	status = myrs_get_fwstatus(cs);
2120 
2121 	if (cs->needs_update) {
2122 		cs->needs_update = false;
2123 		mutex_lock(&cs->cinfo_mutex);
2124 		status = myrs_get_ctlr_info(cs);
2125 		mutex_unlock(&cs->cinfo_mutex);
2126 	}
2127 	if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
2128 		status = myrs_get_event(cs, cs->next_evseq,
2129 					cs->event_buf);
2130 		if (status == MYRS_STATUS_SUCCESS) {
2131 			myrs_log_event(cs, cs->event_buf);
2132 			cs->next_evseq++;
2133 			interval = 1;
2134 		}
2135 	}
2136 
2137 	if (time_after(jiffies, cs->secondary_monitor_time
2138 		       + MYRS_SECONDARY_MONITOR_INTERVAL))
2139 		cs->secondary_monitor_time = jiffies;
2140 
2141 	if (info->bg_init_active +
2142 	    info->ldev_init_active +
2143 	    info->pdev_init_active +
2144 	    info->cc_active +
2145 	    info->rbld_active +
2146 	    info->exp_active != 0) {
2147 		struct scsi_device *sdev;
2148 
2149 		shost_for_each_device(sdev, shost) {
2150 			struct myrs_ldev_info *ldev_info;
2151 			int ldev_num;
2152 
2153 			if (sdev->channel < info->physchan_present)
2154 				continue;
2155 			ldev_info = sdev->hostdata;
2156 			if (!ldev_info)
2157 				continue;
2158 			ldev_num = ldev_info->ldev_num;
2159 			myrs_get_ldev_info(cs, ldev_num, ldev_info);
2160 		}
2161 		cs->needs_update = true;
2162 	}
2163 	if (epoch == cs->epoch &&
2164 	    cs->fwstat_buf->next_evseq == cs->next_evseq &&
2165 	    (cs->needs_update == false ||
2166 	     time_before(jiffies, cs->primary_monitor_time
2167 			 + MYRS_PRIMARY_MONITOR_INTERVAL))) {
2168 		interval = MYRS_SECONDARY_MONITOR_INTERVAL;
2169 	}
2170 
2171 	if (interval > 1)
2172 		cs->primary_monitor_time = jiffies;
2173 	queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
2174 }
2175 
2176 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
2177 {
2178 	struct Scsi_Host *shost = cs->host;
2179 	size_t elem_size, elem_align;
2180 
2181 	elem_align = sizeof(struct myrs_sge);
2182 	elem_size = shost->sg_tablesize * elem_align;
2183 	cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
2184 				      elem_size, elem_align, 0);
2185 	if (cs->sg_pool == NULL) {
2186 		shost_printk(KERN_ERR, shost,
2187 			     "Failed to allocate SG pool\n");
2188 		return false;
2189 	}
2190 
2191 	cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
2192 					 MYRS_SENSE_SIZE, sizeof(int), 0);
2193 	if (cs->sense_pool == NULL) {
2194 		dma_pool_destroy(cs->sg_pool);
2195 		cs->sg_pool = NULL;
2196 		shost_printk(KERN_ERR, shost,
2197 			     "Failed to allocate sense data pool\n");
2198 		return false;
2199 	}
2200 
2201 	cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
2202 					MYRS_DCDB_SIZE,
2203 					sizeof(unsigned char), 0);
2204 	if (!cs->dcdb_pool) {
2205 		dma_pool_destroy(cs->sg_pool);
2206 		cs->sg_pool = NULL;
2207 		dma_pool_destroy(cs->sense_pool);
2208 		cs->sense_pool = NULL;
2209 		shost_printk(KERN_ERR, shost,
2210 			     "Failed to allocate DCDB pool\n");
2211 		return false;
2212 	}
2213 
2214 	snprintf(cs->work_q_name, sizeof(cs->work_q_name),
2215 		 "myrs_wq_%d", shost->host_no);
2216 	cs->work_q = create_singlethread_workqueue(cs->work_q_name);
2217 	if (!cs->work_q) {
2218 		dma_pool_destroy(cs->dcdb_pool);
2219 		cs->dcdb_pool = NULL;
2220 		dma_pool_destroy(cs->sg_pool);
2221 		cs->sg_pool = NULL;
2222 		dma_pool_destroy(cs->sense_pool);
2223 		cs->sense_pool = NULL;
2224 		shost_printk(KERN_ERR, shost,
2225 			     "Failed to create workqueue\n");
2226 		return false;
2227 	}
2228 
2229 	/* Initialize the Monitoring Timer. */
2230 	INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
2231 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
2232 
2233 	return true;
2234 }
2235 
2236 static void myrs_destroy_mempools(struct myrs_hba *cs)
2237 {
2238 	cancel_delayed_work_sync(&cs->monitor_work);
2239 	destroy_workqueue(cs->work_q);
2240 
2241 	dma_pool_destroy(cs->sg_pool);
2242 	dma_pool_destroy(cs->dcdb_pool);
2243 	dma_pool_destroy(cs->sense_pool);
2244 }
2245 
2246 static void myrs_unmap(struct myrs_hba *cs)
2247 {
2248 	kfree(cs->event_buf);
2249 	kfree(cs->ctlr_info);
2250 	if (cs->fwstat_buf) {
2251 		dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
2252 				  cs->fwstat_buf, cs->fwstat_addr);
2253 		cs->fwstat_buf = NULL;
2254 	}
2255 	if (cs->first_stat_mbox) {
2256 		dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
2257 				  cs->first_stat_mbox, cs->stat_mbox_addr);
2258 		cs->first_stat_mbox = NULL;
2259 	}
2260 	if (cs->first_cmd_mbox) {
2261 		dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
2262 				  cs->first_cmd_mbox, cs->cmd_mbox_addr);
2263 		cs->first_cmd_mbox = NULL;
2264 	}
2265 }
2266 
2267 static void myrs_cleanup(struct myrs_hba *cs)
2268 {
2269 	struct pci_dev *pdev = cs->pdev;
2270 
2271 	/* Free the memory mailbox, status, and related structures */
2272 	myrs_unmap(cs);
2273 
2274 	if (cs->mmio_base) {
2275 		cs->disable_intr(cs);
2276 		iounmap(cs->mmio_base);
2277 	}
2278 	if (cs->irq)
2279 		free_irq(cs->irq, cs);
2280 	if (cs->io_addr)
2281 		release_region(cs->io_addr, 0x80);
2282 	iounmap(cs->mmio_base);
2283 	pci_set_drvdata(pdev, NULL);
2284 	pci_disable_device(pdev);
2285 	scsi_host_put(cs->host);
2286 }
2287 
2288 static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
2289 		const struct pci_device_id *entry)
2290 {
2291 	struct myrs_privdata *privdata =
2292 		(struct myrs_privdata *)entry->driver_data;
2293 	irq_handler_t irq_handler = privdata->irq_handler;
2294 	unsigned int mmio_size = privdata->mmio_size;
2295 	struct myrs_hba *cs = NULL;
2296 
2297 	cs = myrs_alloc_host(pdev, entry);
2298 	if (!cs) {
2299 		dev_err(&pdev->dev, "Unable to allocate Controller\n");
2300 		return NULL;
2301 	}
2302 	cs->pdev = pdev;
2303 
2304 	if (pci_enable_device(pdev))
2305 		goto Failure;
2306 
2307 	cs->pci_addr = pci_resource_start(pdev, 0);
2308 
2309 	pci_set_drvdata(pdev, cs);
2310 	spin_lock_init(&cs->queue_lock);
2311 	/* Map the Controller Register Window. */
2312 	if (mmio_size < PAGE_SIZE)
2313 		mmio_size = PAGE_SIZE;
2314 	cs->mmio_base = ioremap_nocache(cs->pci_addr & PAGE_MASK, mmio_size);
2315 	if (cs->mmio_base == NULL) {
2316 		dev_err(&pdev->dev,
2317 			"Unable to map Controller Register Window\n");
2318 		goto Failure;
2319 	}
2320 
2321 	cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
2322 	if (privdata->hw_init(pdev, cs, cs->io_base))
2323 		goto Failure;
2324 
2325 	/* Acquire shared access to the IRQ Channel. */
2326 	if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
2327 		dev_err(&pdev->dev,
2328 			"Unable to acquire IRQ Channel %d\n", pdev->irq);
2329 		goto Failure;
2330 	}
2331 	cs->irq = pdev->irq;
2332 	return cs;
2333 
2334 Failure:
2335 	dev_err(&pdev->dev,
2336 		"Failed to initialize Controller\n");
2337 	myrs_cleanup(cs);
2338 	return NULL;
2339 }
2340 
2341 /**
2342  * myrs_err_status reports Controller BIOS Messages passed through
2343   the Error Status Register when the driver performs the BIOS handshaking.
2344   It returns true for fatal errors and false otherwise.
2345 */
2346 
2347 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
2348 		unsigned char parm0, unsigned char parm1)
2349 {
2350 	struct pci_dev *pdev = cs->pdev;
2351 
2352 	switch (status) {
2353 	case 0x00:
2354 		dev_info(&pdev->dev,
2355 			 "Physical Device %d:%d Not Responding\n",
2356 			 parm1, parm0);
2357 		break;
2358 	case 0x08:
2359 		dev_notice(&pdev->dev, "Spinning Up Drives\n");
2360 		break;
2361 	case 0x30:
2362 		dev_notice(&pdev->dev, "Configuration Checksum Error\n");
2363 		break;
2364 	case 0x60:
2365 		dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
2366 		break;
2367 	case 0x70:
2368 		dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
2369 		break;
2370 	case 0x90:
2371 		dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
2372 			   parm1, parm0);
2373 		break;
2374 	case 0xA0:
2375 		dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
2376 		break;
2377 	case 0xB0:
2378 		dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
2379 		break;
2380 	case 0xD0:
2381 		dev_notice(&pdev->dev, "New Controller Configuration Found\n");
2382 		break;
2383 	case 0xF0:
2384 		dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
2385 		return true;
2386 	default:
2387 		dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
2388 			status);
2389 		return true;
2390 	}
2391 	return false;
2392 }
2393 
2394 /*
2395  * Hardware-specific functions
2396  */
2397 
2398 /*
2399  * DAC960 GEM Series Controllers.
2400  */
2401 
2402 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
2403 {
2404 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2405 
2406 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2407 }
2408 
2409 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
2410 {
2411 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
2412 
2413 	writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
2414 }
2415 
2416 static inline void DAC960_GEM_gen_intr(void __iomem *base)
2417 {
2418 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_GEN_IRQ << 24);
2419 
2420 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2421 }
2422 
2423 static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
2424 {
2425 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
2426 
2427 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2428 }
2429 
2430 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
2431 {
2432 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2433 
2434 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2435 }
2436 
2437 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
2438 {
2439 	__le32 val;
2440 
2441 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2442 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
2443 }
2444 
2445 static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
2446 {
2447 	__le32 val;
2448 
2449 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2450 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
2451 }
2452 
2453 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
2454 {
2455 	__le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
2456 
2457 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2458 }
2459 
2460 static inline void DAC960_GEM_ack_mem_mbox_intr(void __iomem *base)
2461 {
2462 	__le32 val = cpu_to_le32(DAC960_GEM_ODB_MMBOX_ACK_IRQ << 24);
2463 
2464 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2465 }
2466 
2467 static inline void DAC960_GEM_ack_intr(void __iomem *base)
2468 {
2469 	__le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
2470 				  DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
2471 
2472 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2473 }
2474 
2475 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
2476 {
2477 	__le32 val;
2478 
2479 	val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2480 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
2481 }
2482 
2483 static inline bool DAC960_GEM_mem_mbox_status_available(void __iomem *base)
2484 {
2485 	__le32 val;
2486 
2487 	val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2488 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_MMBOX_STS_AVAIL;
2489 }
2490 
2491 static inline void DAC960_GEM_enable_intr(void __iomem *base)
2492 {
2493 	__le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2494 				  DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
2495 	writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
2496 }
2497 
2498 static inline void DAC960_GEM_disable_intr(void __iomem *base)
2499 {
2500 	__le32 val = 0;
2501 
2502 	writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
2503 }
2504 
2505 static inline bool DAC960_GEM_intr_enabled(void __iomem *base)
2506 {
2507 	__le32 val;
2508 
2509 	val = readl(base + DAC960_GEM_IRQMASK_READ_OFFSET);
2510 	return !((le32_to_cpu(val) >> 24) &
2511 		 (DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2512 		  DAC960_GEM_IRQMASK_MMBOX_IRQ));
2513 }
2514 
2515 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2516 		union myrs_cmd_mbox *mbox)
2517 {
2518 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2519 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2520 	/* Barrier to avoid reordering */
2521 	wmb();
2522 	mem_mbox->words[0] = mbox->words[0];
2523 	/* Barrier to force PCI access */
2524 	mb();
2525 }
2526 
2527 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
2528 		dma_addr_t cmd_mbox_addr)
2529 {
2530 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
2531 }
2532 
2533 static inline unsigned short DAC960_GEM_read_cmd_ident(void __iomem *base)
2534 {
2535 	return readw(base + DAC960_GEM_CMDSTS_OFFSET);
2536 }
2537 
2538 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
2539 {
2540 	return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
2541 }
2542 
2543 static inline bool
2544 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
2545 		unsigned char *param0, unsigned char *param1)
2546 {
2547 	__le32 val;
2548 
2549 	val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
2550 	if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
2551 		return false;
2552 	*error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
2553 	*param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
2554 	*param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
2555 	writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
2556 	return true;
2557 }
2558 
2559 static inline unsigned char
2560 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2561 {
2562 	unsigned char status;
2563 
2564 	while (DAC960_GEM_hw_mbox_is_full(base))
2565 		udelay(1);
2566 	DAC960_GEM_write_hw_mbox(base, mbox_addr);
2567 	DAC960_GEM_hw_mbox_new_cmd(base);
2568 	while (!DAC960_GEM_hw_mbox_status_available(base))
2569 		udelay(1);
2570 	status = DAC960_GEM_read_cmd_status(base);
2571 	DAC960_GEM_ack_hw_mbox_intr(base);
2572 	DAC960_GEM_ack_hw_mbox_status(base);
2573 
2574 	return status;
2575 }
2576 
2577 static int DAC960_GEM_hw_init(struct pci_dev *pdev,
2578 		struct myrs_hba *cs, void __iomem *base)
2579 {
2580 	int timeout = 0;
2581 	unsigned char status, parm0, parm1;
2582 
2583 	DAC960_GEM_disable_intr(base);
2584 	DAC960_GEM_ack_hw_mbox_status(base);
2585 	udelay(1000);
2586 	while (DAC960_GEM_init_in_progress(base) &&
2587 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2588 		if (DAC960_GEM_read_error_status(base, &status,
2589 						 &parm0, &parm1) &&
2590 		    myrs_err_status(cs, status, parm0, parm1))
2591 			return -EIO;
2592 		udelay(10);
2593 		timeout++;
2594 	}
2595 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2596 		dev_err(&pdev->dev,
2597 			"Timeout waiting for Controller Initialisation\n");
2598 		return -ETIMEDOUT;
2599 	}
2600 	if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
2601 		dev_err(&pdev->dev,
2602 			"Unable to Enable Memory Mailbox Interface\n");
2603 		DAC960_GEM_reset_ctrl(base);
2604 		return -EAGAIN;
2605 	}
2606 	DAC960_GEM_enable_intr(base);
2607 	cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
2608 	cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
2609 	cs->disable_intr = DAC960_GEM_disable_intr;
2610 	cs->reset = DAC960_GEM_reset_ctrl;
2611 	return 0;
2612 }
2613 
2614 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
2615 {
2616 	struct myrs_hba *cs = arg;
2617 	void __iomem *base = cs->io_base;
2618 	struct myrs_stat_mbox *next_stat_mbox;
2619 	unsigned long flags;
2620 
2621 	spin_lock_irqsave(&cs->queue_lock, flags);
2622 	DAC960_GEM_ack_intr(base);
2623 	next_stat_mbox = cs->next_stat_mbox;
2624 	while (next_stat_mbox->id > 0) {
2625 		unsigned short id = next_stat_mbox->id;
2626 		struct scsi_cmnd *scmd = NULL;
2627 		struct myrs_cmdblk *cmd_blk = NULL;
2628 
2629 		if (id == MYRS_DCMD_TAG)
2630 			cmd_blk = &cs->dcmd_blk;
2631 		else if (id == MYRS_MCMD_TAG)
2632 			cmd_blk = &cs->mcmd_blk;
2633 		else {
2634 			scmd = scsi_host_find_tag(cs->host, id - 3);
2635 			if (scmd)
2636 				cmd_blk = scsi_cmd_priv(scmd);
2637 		}
2638 		if (cmd_blk) {
2639 			cmd_blk->status = next_stat_mbox->status;
2640 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2641 			cmd_blk->residual = next_stat_mbox->residual;
2642 		} else
2643 			dev_err(&cs->pdev->dev,
2644 				"Unhandled command completion %d\n", id);
2645 
2646 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2647 		if (++next_stat_mbox > cs->last_stat_mbox)
2648 			next_stat_mbox = cs->first_stat_mbox;
2649 
2650 		if (cmd_blk) {
2651 			if (id < 3)
2652 				myrs_handle_cmdblk(cs, cmd_blk);
2653 			else
2654 				myrs_handle_scsi(cs, cmd_blk, scmd);
2655 		}
2656 	}
2657 	cs->next_stat_mbox = next_stat_mbox;
2658 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2659 	return IRQ_HANDLED;
2660 }
2661 
2662 struct myrs_privdata DAC960_GEM_privdata = {
2663 	.hw_init =		DAC960_GEM_hw_init,
2664 	.irq_handler =		DAC960_GEM_intr_handler,
2665 	.mmio_size =		DAC960_GEM_mmio_size,
2666 };
2667 
2668 /*
2669  * DAC960 BA Series Controllers.
2670  */
2671 
2672 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
2673 {
2674 	writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2675 }
2676 
2677 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
2678 {
2679 	writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
2680 }
2681 
2682 static inline void DAC960_BA_gen_intr(void __iomem *base)
2683 {
2684 	writeb(DAC960_BA_IDB_GEN_IRQ, base + DAC960_BA_IDB_OFFSET);
2685 }
2686 
2687 static inline void DAC960_BA_reset_ctrl(void __iomem *base)
2688 {
2689 	writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
2690 }
2691 
2692 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
2693 {
2694 	writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2695 }
2696 
2697 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
2698 {
2699 	u8 val;
2700 
2701 	val = readb(base + DAC960_BA_IDB_OFFSET);
2702 	return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
2703 }
2704 
2705 static inline bool DAC960_BA_init_in_progress(void __iomem *base)
2706 {
2707 	u8 val;
2708 
2709 	val = readb(base + DAC960_BA_IDB_OFFSET);
2710 	return !(val & DAC960_BA_IDB_INIT_DONE);
2711 }
2712 
2713 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
2714 {
2715 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2716 }
2717 
2718 static inline void DAC960_BA_ack_mem_mbox_intr(void __iomem *base)
2719 {
2720 	writeb(DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2721 }
2722 
2723 static inline void DAC960_BA_ack_intr(void __iomem *base)
2724 {
2725 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
2726 	       base + DAC960_BA_ODB_OFFSET);
2727 }
2728 
2729 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
2730 {
2731 	u8 val;
2732 
2733 	val = readb(base + DAC960_BA_ODB_OFFSET);
2734 	return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
2735 }
2736 
2737 static inline bool DAC960_BA_mem_mbox_status_available(void __iomem *base)
2738 {
2739 	u8 val;
2740 
2741 	val = readb(base + DAC960_BA_ODB_OFFSET);
2742 	return val & DAC960_BA_ODB_MMBOX_STS_AVAIL;
2743 }
2744 
2745 static inline void DAC960_BA_enable_intr(void __iomem *base)
2746 {
2747 	writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
2748 }
2749 
2750 static inline void DAC960_BA_disable_intr(void __iomem *base)
2751 {
2752 	writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
2753 }
2754 
2755 static inline bool DAC960_BA_intr_enabled(void __iomem *base)
2756 {
2757 	u8 val;
2758 
2759 	val = readb(base + DAC960_BA_IRQMASK_OFFSET);
2760 	return !(val & DAC960_BA_IRQMASK_DISABLE_IRQ);
2761 }
2762 
2763 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2764 		union myrs_cmd_mbox *mbox)
2765 {
2766 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2767 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2768 	/* Barrier to avoid reordering */
2769 	wmb();
2770 	mem_mbox->words[0] = mbox->words[0];
2771 	/* Barrier to force PCI access */
2772 	mb();
2773 }
2774 
2775 
2776 static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
2777 		dma_addr_t cmd_mbox_addr)
2778 {
2779 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
2780 }
2781 
2782 static inline unsigned short DAC960_BA_read_cmd_ident(void __iomem *base)
2783 {
2784 	return readw(base + DAC960_BA_CMDSTS_OFFSET);
2785 }
2786 
2787 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
2788 {
2789 	return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
2790 }
2791 
2792 static inline bool
2793 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
2794 		unsigned char *param0, unsigned char *param1)
2795 {
2796 	u8 val;
2797 
2798 	val = readb(base + DAC960_BA_ERRSTS_OFFSET);
2799 	if (!(val & DAC960_BA_ERRSTS_PENDING))
2800 		return false;
2801 	val &= ~DAC960_BA_ERRSTS_PENDING;
2802 	*error = val;
2803 	*param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
2804 	*param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
2805 	writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
2806 	return true;
2807 }
2808 
2809 static inline unsigned char
2810 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2811 {
2812 	unsigned char status;
2813 
2814 	while (DAC960_BA_hw_mbox_is_full(base))
2815 		udelay(1);
2816 	DAC960_BA_write_hw_mbox(base, mbox_addr);
2817 	DAC960_BA_hw_mbox_new_cmd(base);
2818 	while (!DAC960_BA_hw_mbox_status_available(base))
2819 		udelay(1);
2820 	status = DAC960_BA_read_cmd_status(base);
2821 	DAC960_BA_ack_hw_mbox_intr(base);
2822 	DAC960_BA_ack_hw_mbox_status(base);
2823 
2824 	return status;
2825 }
2826 
2827 static int DAC960_BA_hw_init(struct pci_dev *pdev,
2828 		struct myrs_hba *cs, void __iomem *base)
2829 {
2830 	int timeout = 0;
2831 	unsigned char status, parm0, parm1;
2832 
2833 	DAC960_BA_disable_intr(base);
2834 	DAC960_BA_ack_hw_mbox_status(base);
2835 	udelay(1000);
2836 	while (DAC960_BA_init_in_progress(base) &&
2837 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2838 		if (DAC960_BA_read_error_status(base, &status,
2839 					      &parm0, &parm1) &&
2840 		    myrs_err_status(cs, status, parm0, parm1))
2841 			return -EIO;
2842 		udelay(10);
2843 		timeout++;
2844 	}
2845 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2846 		dev_err(&pdev->dev,
2847 			"Timeout waiting for Controller Initialisation\n");
2848 		return -ETIMEDOUT;
2849 	}
2850 	if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
2851 		dev_err(&pdev->dev,
2852 			"Unable to Enable Memory Mailbox Interface\n");
2853 		DAC960_BA_reset_ctrl(base);
2854 		return -EAGAIN;
2855 	}
2856 	DAC960_BA_enable_intr(base);
2857 	cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
2858 	cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
2859 	cs->disable_intr = DAC960_BA_disable_intr;
2860 	cs->reset = DAC960_BA_reset_ctrl;
2861 	return 0;
2862 }
2863 
2864 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
2865 {
2866 	struct myrs_hba *cs = arg;
2867 	void __iomem *base = cs->io_base;
2868 	struct myrs_stat_mbox *next_stat_mbox;
2869 	unsigned long flags;
2870 
2871 	spin_lock_irqsave(&cs->queue_lock, flags);
2872 	DAC960_BA_ack_intr(base);
2873 	next_stat_mbox = cs->next_stat_mbox;
2874 	while (next_stat_mbox->id > 0) {
2875 		unsigned short id = next_stat_mbox->id;
2876 		struct scsi_cmnd *scmd = NULL;
2877 		struct myrs_cmdblk *cmd_blk = NULL;
2878 
2879 		if (id == MYRS_DCMD_TAG)
2880 			cmd_blk = &cs->dcmd_blk;
2881 		else if (id == MYRS_MCMD_TAG)
2882 			cmd_blk = &cs->mcmd_blk;
2883 		else {
2884 			scmd = scsi_host_find_tag(cs->host, id - 3);
2885 			if (scmd)
2886 				cmd_blk = scsi_cmd_priv(scmd);
2887 		}
2888 		if (cmd_blk) {
2889 			cmd_blk->status = next_stat_mbox->status;
2890 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2891 			cmd_blk->residual = next_stat_mbox->residual;
2892 		} else
2893 			dev_err(&cs->pdev->dev,
2894 				"Unhandled command completion %d\n", id);
2895 
2896 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2897 		if (++next_stat_mbox > cs->last_stat_mbox)
2898 			next_stat_mbox = cs->first_stat_mbox;
2899 
2900 		if (cmd_blk) {
2901 			if (id < 3)
2902 				myrs_handle_cmdblk(cs, cmd_blk);
2903 			else
2904 				myrs_handle_scsi(cs, cmd_blk, scmd);
2905 		}
2906 	}
2907 	cs->next_stat_mbox = next_stat_mbox;
2908 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2909 	return IRQ_HANDLED;
2910 }
2911 
2912 struct myrs_privdata DAC960_BA_privdata = {
2913 	.hw_init =		DAC960_BA_hw_init,
2914 	.irq_handler =		DAC960_BA_intr_handler,
2915 	.mmio_size =		DAC960_BA_mmio_size,
2916 };
2917 
2918 /*
2919  * DAC960 LP Series Controllers.
2920  */
2921 
2922 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
2923 {
2924 	writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2925 }
2926 
2927 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
2928 {
2929 	writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
2930 }
2931 
2932 static inline void DAC960_LP_gen_intr(void __iomem *base)
2933 {
2934 	writeb(DAC960_LP_IDB_GEN_IRQ, base + DAC960_LP_IDB_OFFSET);
2935 }
2936 
2937 static inline void DAC960_LP_reset_ctrl(void __iomem *base)
2938 {
2939 	writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
2940 }
2941 
2942 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
2943 {
2944 	writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2945 }
2946 
2947 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
2948 {
2949 	u8 val;
2950 
2951 	val = readb(base + DAC960_LP_IDB_OFFSET);
2952 	return val & DAC960_LP_IDB_HWMBOX_FULL;
2953 }
2954 
2955 static inline bool DAC960_LP_init_in_progress(void __iomem *base)
2956 {
2957 	u8 val;
2958 
2959 	val = readb(base + DAC960_LP_IDB_OFFSET);
2960 	return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
2961 }
2962 
2963 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
2964 {
2965 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2966 }
2967 
2968 static inline void DAC960_LP_ack_mem_mbox_intr(void __iomem *base)
2969 {
2970 	writeb(DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2971 }
2972 
2973 static inline void DAC960_LP_ack_intr(void __iomem *base)
2974 {
2975 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
2976 	       base + DAC960_LP_ODB_OFFSET);
2977 }
2978 
2979 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
2980 {
2981 	u8 val;
2982 
2983 	val = readb(base + DAC960_LP_ODB_OFFSET);
2984 	return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
2985 }
2986 
2987 static inline bool DAC960_LP_mem_mbox_status_available(void __iomem *base)
2988 {
2989 	u8 val;
2990 
2991 	val = readb(base + DAC960_LP_ODB_OFFSET);
2992 	return val & DAC960_LP_ODB_MMBOX_STS_AVAIL;
2993 }
2994 
2995 static inline void DAC960_LP_enable_intr(void __iomem *base)
2996 {
2997 	writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
2998 }
2999 
3000 static inline void DAC960_LP_disable_intr(void __iomem *base)
3001 {
3002 	writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
3003 }
3004 
3005 static inline bool DAC960_LP_intr_enabled(void __iomem *base)
3006 {
3007 	u8 val;
3008 
3009 	val = readb(base + DAC960_LP_IRQMASK_OFFSET);
3010 	return !(val & DAC960_LP_IRQMASK_DISABLE_IRQ);
3011 }
3012 
3013 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
3014 		union myrs_cmd_mbox *mbox)
3015 {
3016 	memcpy(&mem_mbox->words[1], &mbox->words[1],
3017 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
3018 	/* Barrier to avoid reordering */
3019 	wmb();
3020 	mem_mbox->words[0] = mbox->words[0];
3021 	/* Barrier to force PCI access */
3022 	mb();
3023 }
3024 
3025 static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
3026 		dma_addr_t cmd_mbox_addr)
3027 {
3028 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
3029 }
3030 
3031 static inline unsigned short DAC960_LP_read_cmd_ident(void __iomem *base)
3032 {
3033 	return readw(base + DAC960_LP_CMDSTS_OFFSET);
3034 }
3035 
3036 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
3037 {
3038 	return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
3039 }
3040 
3041 static inline bool
3042 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
3043 		unsigned char *param0, unsigned char *param1)
3044 {
3045 	u8 val;
3046 
3047 	val = readb(base + DAC960_LP_ERRSTS_OFFSET);
3048 	if (!(val & DAC960_LP_ERRSTS_PENDING))
3049 		return false;
3050 	val &= ~DAC960_LP_ERRSTS_PENDING;
3051 	*error = val;
3052 	*param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
3053 	*param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
3054 	writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
3055 	return true;
3056 }
3057 
3058 static inline unsigned char
3059 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
3060 {
3061 	unsigned char status;
3062 
3063 	while (DAC960_LP_hw_mbox_is_full(base))
3064 		udelay(1);
3065 	DAC960_LP_write_hw_mbox(base, mbox_addr);
3066 	DAC960_LP_hw_mbox_new_cmd(base);
3067 	while (!DAC960_LP_hw_mbox_status_available(base))
3068 		udelay(1);
3069 	status = DAC960_LP_read_cmd_status(base);
3070 	DAC960_LP_ack_hw_mbox_intr(base);
3071 	DAC960_LP_ack_hw_mbox_status(base);
3072 
3073 	return status;
3074 }
3075 
3076 static int DAC960_LP_hw_init(struct pci_dev *pdev,
3077 		struct myrs_hba *cs, void __iomem *base)
3078 {
3079 	int timeout = 0;
3080 	unsigned char status, parm0, parm1;
3081 
3082 	DAC960_LP_disable_intr(base);
3083 	DAC960_LP_ack_hw_mbox_status(base);
3084 	udelay(1000);
3085 	while (DAC960_LP_init_in_progress(base) &&
3086 	       timeout < MYRS_MAILBOX_TIMEOUT) {
3087 		if (DAC960_LP_read_error_status(base, &status,
3088 					      &parm0, &parm1) &&
3089 		    myrs_err_status(cs, status, parm0, parm1))
3090 			return -EIO;
3091 		udelay(10);
3092 		timeout++;
3093 	}
3094 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
3095 		dev_err(&pdev->dev,
3096 			"Timeout waiting for Controller Initialisation\n");
3097 		return -ETIMEDOUT;
3098 	}
3099 	if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
3100 		dev_err(&pdev->dev,
3101 			"Unable to Enable Memory Mailbox Interface\n");
3102 		DAC960_LP_reset_ctrl(base);
3103 		return -ENODEV;
3104 	}
3105 	DAC960_LP_enable_intr(base);
3106 	cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
3107 	cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
3108 	cs->disable_intr = DAC960_LP_disable_intr;
3109 	cs->reset = DAC960_LP_reset_ctrl;
3110 
3111 	return 0;
3112 }
3113 
3114 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
3115 {
3116 	struct myrs_hba *cs = arg;
3117 	void __iomem *base = cs->io_base;
3118 	struct myrs_stat_mbox *next_stat_mbox;
3119 	unsigned long flags;
3120 
3121 	spin_lock_irqsave(&cs->queue_lock, flags);
3122 	DAC960_LP_ack_intr(base);
3123 	next_stat_mbox = cs->next_stat_mbox;
3124 	while (next_stat_mbox->id > 0) {
3125 		unsigned short id = next_stat_mbox->id;
3126 		struct scsi_cmnd *scmd = NULL;
3127 		struct myrs_cmdblk *cmd_blk = NULL;
3128 
3129 		if (id == MYRS_DCMD_TAG)
3130 			cmd_blk = &cs->dcmd_blk;
3131 		else if (id == MYRS_MCMD_TAG)
3132 			cmd_blk = &cs->mcmd_blk;
3133 		else {
3134 			scmd = scsi_host_find_tag(cs->host, id - 3);
3135 			if (scmd)
3136 				cmd_blk = scsi_cmd_priv(scmd);
3137 		}
3138 		if (cmd_blk) {
3139 			cmd_blk->status = next_stat_mbox->status;
3140 			cmd_blk->sense_len = next_stat_mbox->sense_len;
3141 			cmd_blk->residual = next_stat_mbox->residual;
3142 		} else
3143 			dev_err(&cs->pdev->dev,
3144 				"Unhandled command completion %d\n", id);
3145 
3146 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
3147 		if (++next_stat_mbox > cs->last_stat_mbox)
3148 			next_stat_mbox = cs->first_stat_mbox;
3149 
3150 		if (cmd_blk) {
3151 			if (id < 3)
3152 				myrs_handle_cmdblk(cs, cmd_blk);
3153 			else
3154 				myrs_handle_scsi(cs, cmd_blk, scmd);
3155 		}
3156 	}
3157 	cs->next_stat_mbox = next_stat_mbox;
3158 	spin_unlock_irqrestore(&cs->queue_lock, flags);
3159 	return IRQ_HANDLED;
3160 }
3161 
3162 struct myrs_privdata DAC960_LP_privdata = {
3163 	.hw_init =		DAC960_LP_hw_init,
3164 	.irq_handler =		DAC960_LP_intr_handler,
3165 	.mmio_size =		DAC960_LP_mmio_size,
3166 };
3167 
3168 /*
3169  * Module functions
3170  */
3171 static int
3172 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
3173 {
3174 	struct myrs_hba *cs;
3175 	int ret;
3176 
3177 	cs = myrs_detect(dev, entry);
3178 	if (!cs)
3179 		return -ENODEV;
3180 
3181 	ret = myrs_get_config(cs);
3182 	if (ret < 0) {
3183 		myrs_cleanup(cs);
3184 		return ret;
3185 	}
3186 
3187 	if (!myrs_create_mempools(dev, cs)) {
3188 		ret = -ENOMEM;
3189 		goto failed;
3190 	}
3191 
3192 	ret = scsi_add_host(cs->host, &dev->dev);
3193 	if (ret) {
3194 		dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
3195 		myrs_destroy_mempools(cs);
3196 		goto failed;
3197 	}
3198 	scsi_scan_host(cs->host);
3199 	return 0;
3200 failed:
3201 	myrs_cleanup(cs);
3202 	return ret;
3203 }
3204 
3205 
3206 static void myrs_remove(struct pci_dev *pdev)
3207 {
3208 	struct myrs_hba *cs = pci_get_drvdata(pdev);
3209 
3210 	if (cs == NULL)
3211 		return;
3212 
3213 	shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
3214 	myrs_flush_cache(cs);
3215 	myrs_destroy_mempools(cs);
3216 	myrs_cleanup(cs);
3217 }
3218 
3219 
3220 static const struct pci_device_id myrs_id_table[] = {
3221 	{
3222 		PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
3223 			       PCI_DEVICE_ID_MYLEX_DAC960_GEM,
3224 			       PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
3225 		.driver_data	= (unsigned long) &DAC960_GEM_privdata,
3226 	},
3227 	{
3228 		PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
3229 	},
3230 	{
3231 		PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
3232 	},
3233 	{0, },
3234 };
3235 
3236 MODULE_DEVICE_TABLE(pci, myrs_id_table);
3237 
3238 static struct pci_driver myrs_pci_driver = {
3239 	.name		= "myrs",
3240 	.id_table	= myrs_id_table,
3241 	.probe		= myrs_probe,
3242 	.remove		= myrs_remove,
3243 };
3244 
3245 static int __init myrs_init_module(void)
3246 {
3247 	int ret;
3248 
3249 	myrs_raid_template = raid_class_attach(&myrs_raid_functions);
3250 	if (!myrs_raid_template)
3251 		return -ENODEV;
3252 
3253 	ret = pci_register_driver(&myrs_pci_driver);
3254 	if (ret)
3255 		raid_class_release(myrs_raid_template);
3256 
3257 	return ret;
3258 }
3259 
3260 static void __exit myrs_cleanup_module(void)
3261 {
3262 	pci_unregister_driver(&myrs_pci_driver);
3263 	raid_class_release(myrs_raid_template);
3264 }
3265 
3266 module_init(myrs_init_module);
3267 module_exit(myrs_cleanup_module);
3268 
3269 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
3270 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
3271 MODULE_LICENSE("GPL");
3272