1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 64 65 #include "mpt3sas_base.h" 66 67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 68 69 70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 71 72 /* maximum controller queue depth */ 73 #define MAX_HBA_QUEUE_DEPTH 30000 74 #define MAX_CHAIN_DEPTH 100000 75 static int max_queue_depth = -1; 76 module_param(max_queue_depth, int, 0444); 77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 78 79 static int max_sgl_entries = -1; 80 module_param(max_sgl_entries, int, 0444); 81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 82 83 static int msix_disable = -1; 84 module_param(msix_disable, int, 0444); 85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 86 87 static int smp_affinity_enable = 1; 88 module_param(smp_affinity_enable, int, 0444); 89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 90 91 static int max_msix_vectors = -1; 92 module_param(max_msix_vectors, int, 0444); 93 MODULE_PARM_DESC(max_msix_vectors, 94 " max msix vectors"); 95 96 static int irqpoll_weight = -1; 97 module_param(irqpoll_weight, int, 0444); 98 MODULE_PARM_DESC(irqpoll_weight, 99 "irq poll weight (default= one fourth of HBA queue depth)"); 100 101 static int mpt3sas_fwfault_debug; 102 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 103 " enable detection of firmware fault and halt firmware - (default=0)"); 104 105 static int perf_mode = -1; 106 module_param(perf_mode, int, 0444); 107 MODULE_PARM_DESC(perf_mode, 108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 109 "0 - balanced: high iops mode is enabled &\n\t\t" 110 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 111 "1 - iops: high iops mode is disabled &\n\t\t" 112 "interrupt coalescing is enabled on all queues,\n\t\t" 113 "2 - latency: high iops mode is disabled &\n\t\t" 114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 115 "\t\tdefault - default perf_mode is 'balanced'" 116 ); 117 118 static int poll_queues; 119 module_param(poll_queues, int, 0444); 120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 122 "when poll_queues are enabled then &\n\t\t" 123 "perf_mode is set to latency mode. &\n\t\t" 124 ); 125 126 enum mpt3sas_perf_mode { 127 MPT_PERF_MODE_DEFAULT = -1, 128 MPT_PERF_MODE_BALANCED = 0, 129 MPT_PERF_MODE_IOPS = 1, 130 MPT_PERF_MODE_LATENCY = 2, 131 }; 132 133 static int 134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 135 u32 ioc_state, int timeout); 136 static int 137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 138 static void 139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 140 141 static u32 142 _base_readl_ext_retry(const void __iomem *addr); 143 144 /** 145 * mpt3sas_base_check_cmd_timeout - Function 146 * to check timeout and command termination due 147 * to Host reset. 148 * 149 * @ioc: per adapter object. 150 * @status: Status of issued command. 151 * @mpi_request:mf request pointer. 152 * @sz: size of buffer. 153 * 154 * Return: 1/0 Reset to be done or Not 155 */ 156 u8 157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 158 u8 status, void *mpi_request, int sz) 159 { 160 u8 issue_reset = 0; 161 162 if (!(status & MPT3_CMD_RESET)) 163 issue_reset = 1; 164 165 ioc_err(ioc, "Command %s\n", 166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 167 _debug_dump_mf(mpi_request, sz); 168 169 return issue_reset; 170 } 171 172 /** 173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 174 * @val: ? 175 * @kp: ? 176 * 177 * Return: ? 178 */ 179 static int 180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 181 { 182 int ret = param_set_int(val, kp); 183 struct MPT3SAS_ADAPTER *ioc; 184 185 if (ret) 186 return ret; 187 188 /* global ioc spinlock to protect controller list on list operations */ 189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 190 spin_lock(&gioc_lock); 191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 192 ioc->fwfault_debug = mpt3sas_fwfault_debug; 193 spin_unlock(&gioc_lock); 194 return 0; 195 } 196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 197 param_get_int, &mpt3sas_fwfault_debug, 0644); 198 199 /** 200 * _base_readl_aero - retry readl for max three times. 201 * @addr: MPT Fusion system interface register address 202 * 203 * Retry the readl() for max three times if it gets zero value 204 * while reading the system interface register. 205 */ 206 static inline u32 207 _base_readl_aero(const void __iomem *addr) 208 { 209 u32 i = 0, ret_val; 210 211 do { 212 ret_val = readl(addr); 213 i++; 214 } while (ret_val == 0 && i < 3); 215 216 return ret_val; 217 } 218 219 static u32 220 _base_readl_ext_retry(const void __iomem *addr) 221 { 222 u32 i, ret_val; 223 224 for (i = 0 ; i < 30 ; i++) { 225 ret_val = readl(addr); 226 if (ret_val != 0) 227 break; 228 } 229 230 return ret_val; 231 } 232 233 static inline u32 234 _base_readl(const void __iomem *addr) 235 { 236 return readl(addr); 237 } 238 239 /** 240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 241 * in BAR0 space. 242 * 243 * @ioc: per adapter object 244 * @reply: reply message frame(lower 32bit addr) 245 * @index: System request message index. 246 */ 247 static void 248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 249 u32 index) 250 { 251 /* 252 * 256 is offset within sys register. 253 * 256 offset MPI frame starts. Max MPI frame supported is 32. 254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 255 */ 256 u16 cmd_credit = ioc->facts.RequestCredit + 1; 257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 258 MPI_FRAME_START_OFFSET + 259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 260 261 writel(reply, reply_free_iomem); 262 } 263 264 /** 265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 266 * to system/BAR0 region. 267 * 268 * @dst_iomem: Pointer to the destination location in BAR0 space. 269 * @src: Pointer to the Source data. 270 * @size: Size of data to be copied. 271 */ 272 static void 273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 274 { 275 int i; 276 u32 *src_virt_mem = (u32 *)src; 277 278 for (i = 0; i < size/4; i++) 279 writel((u32)src_virt_mem[i], 280 (void __iomem *)dst_iomem + (i * 4)); 281 } 282 283 /** 284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 285 * 286 * @dst_iomem: Pointer to the destination location in BAR0 space. 287 * @src: Pointer to the Source data. 288 * @size: Size of data to be copied. 289 */ 290 static void 291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 292 { 293 int i; 294 u32 *src_virt_mem = (u32 *)(src); 295 296 for (i = 0; i < size/4; i++) 297 writel((u32)src_virt_mem[i], 298 (void __iomem *)dst_iomem + (i * 4)); 299 } 300 301 /** 302 * _base_get_chain - Calculates and Returns virtual chain address 303 * for the provided smid in BAR0 space. 304 * 305 * @ioc: per adapter object 306 * @smid: system request message index 307 * @sge_chain_count: Scatter gather chain count. 308 * 309 * Return: the chain address. 310 */ 311 static inline void __iomem* 312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 313 u8 sge_chain_count) 314 { 315 void __iomem *base_chain, *chain_virt; 316 u16 cmd_credit = ioc->facts.RequestCredit + 1; 317 318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 319 (cmd_credit * ioc->request_sz) + 320 REPLY_FREE_POOL_SIZE; 321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 322 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 323 return chain_virt; 324 } 325 326 /** 327 * _base_get_chain_phys - Calculates and Returns physical address 328 * in BAR0 for scatter gather chains, for 329 * the provided smid. 330 * 331 * @ioc: per adapter object 332 * @smid: system request message index 333 * @sge_chain_count: Scatter gather chain count. 334 * 335 * Return: Physical chain address. 336 */ 337 static inline phys_addr_t 338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 339 u8 sge_chain_count) 340 { 341 phys_addr_t base_chain_phys, chain_phys; 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 345 (cmd_credit * ioc->request_sz) + 346 REPLY_FREE_POOL_SIZE; 347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 348 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 349 return chain_phys; 350 } 351 352 /** 353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 354 * buffer address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 363 static void __iomem * 364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 365 { 366 u16 cmd_credit = ioc->facts.RequestCredit + 1; 367 // Added extra 1 to reach end of chain. 368 void __iomem *chain_end = _base_get_chain(ioc, 369 cmd_credit + 1, 370 ioc->facts.MaxChainDepth); 371 return chain_end + (smid * 64 * 1024); 372 } 373 374 /** 375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 376 * Host buffer Physical address for the provided smid. 377 * (Each smid can have 64K starts from 17024) 378 * 379 * @ioc: per adapter object 380 * @smid: system request message index 381 * 382 * Return: Pointer to buffer location in BAR0. 383 */ 384 static phys_addr_t 385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 386 { 387 u16 cmd_credit = ioc->facts.RequestCredit + 1; 388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 389 cmd_credit + 1, 390 ioc->facts.MaxChainDepth); 391 return chain_end_phys + (smid * 64 * 1024); 392 } 393 394 /** 395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 396 * lookup list and Provides chain_buffer 397 * address for the matching dma address. 398 * (Each smid can have 64K starts from 17024) 399 * 400 * @ioc: per adapter object 401 * @chain_buffer_dma: Chain buffer dma address. 402 * 403 * Return: Pointer to chain buffer. Or Null on Failure. 404 */ 405 static void * 406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 407 dma_addr_t chain_buffer_dma) 408 { 409 u16 index, j; 410 struct chain_tracker *ct; 411 412 for (index = 0; index < ioc->scsiio_depth; index++) { 413 for (j = 0; j < ioc->chains_needed_per_io; j++) { 414 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 415 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 416 return ct->chain_buffer; 417 } 418 } 419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 420 return NULL; 421 } 422 423 /** 424 * _clone_sg_entries - MPI EP's scsiio and config requests 425 * are handled here. Base function for 426 * double buffering, before submitting 427 * the requests. 428 * 429 * @ioc: per adapter object. 430 * @mpi_request: mf request pointer. 431 * @smid: system request message index. 432 */ 433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 434 void *mpi_request, u16 smid) 435 { 436 Mpi2SGESimple32_t *sgel, *sgel_next; 437 u32 sgl_flags, sge_chain_count = 0; 438 bool is_write = false; 439 u16 i = 0; 440 void __iomem *buffer_iomem; 441 phys_addr_t buffer_iomem_phys; 442 void __iomem *buff_ptr; 443 phys_addr_t buff_ptr_phys; 444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 446 phys_addr_t dst_addr_phys; 447 MPI2RequestHeader_t *request_hdr; 448 struct scsi_cmnd *scmd; 449 struct scatterlist *sg_scmd = NULL; 450 int is_scsiio_req = 0; 451 452 request_hdr = (MPI2RequestHeader_t *) mpi_request; 453 454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 455 Mpi25SCSIIORequest_t *scsiio_request = 456 (Mpi25SCSIIORequest_t *)mpi_request; 457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 458 is_scsiio_req = 1; 459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 460 Mpi2ConfigRequest_t *config_req = 461 (Mpi2ConfigRequest_t *)mpi_request; 462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 463 } else 464 return; 465 466 /* From smid we can get scsi_cmd, once we have sg_scmd, 467 * we just need to get sg_virt and sg_next to get virtual 468 * address associated with sgel->Address. 469 */ 470 471 if (is_scsiio_req) { 472 /* Get scsi_cmd using smid */ 473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 474 if (scmd == NULL) { 475 ioc_err(ioc, "scmd is NULL\n"); 476 return; 477 } 478 479 /* Get sg_scmd from scmd provided */ 480 sg_scmd = scsi_sglist(scmd); 481 } 482 483 /* 484 * 0 - 255 System register 485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 486 * 4352 - 4864 Reply_free pool (512 byte is reserved 487 * considering maxCredit 32. Reply need extra 488 * room, for mCPU case kept four times of 489 * maxCredit). 490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 491 * 128 byte size = 12288) 492 * 17152 - x Host buffer mapped with smid. 493 * (Each smid can have 64K Max IO.) 494 * BAR0+Last 1K MSIX Addr and Data 495 * Total size in use 2113664 bytes of 4MB BAR0 496 */ 497 498 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 500 501 buff_ptr = buffer_iomem; 502 buff_ptr_phys = buffer_iomem_phys; 503 WARN_ON(buff_ptr_phys > U32_MAX); 504 505 if (le32_to_cpu(sgel->FlagsLength) & 506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 507 is_write = true; 508 509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 510 511 sgl_flags = 512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 513 514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 516 /* 517 * Helper function which on passing 518 * chain_buffer_dma returns chain_buffer. Get 519 * the virtual address for sgel->Address 520 */ 521 sgel_next = 522 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 523 le32_to_cpu(sgel->Address)); 524 if (sgel_next == NULL) 525 return; 526 /* 527 * This is coping 128 byte chain 528 * frame (not a host buffer) 529 */ 530 dst_chain_addr[sge_chain_count] = 531 _base_get_chain(ioc, 532 smid, sge_chain_count); 533 src_chain_addr[sge_chain_count] = 534 (void *) sgel_next; 535 dst_addr_phys = _base_get_chain_phys(ioc, 536 smid, sge_chain_count); 537 WARN_ON(dst_addr_phys > U32_MAX); 538 sgel->Address = 539 cpu_to_le32(lower_32_bits(dst_addr_phys)); 540 sgel = sgel_next; 541 sge_chain_count++; 542 break; 543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 544 if (is_write) { 545 if (is_scsiio_req) { 546 _base_clone_to_sys_mem(buff_ptr, 547 sg_virt(sg_scmd), 548 (le32_to_cpu(sgel->FlagsLength) & 549 0x00ffffff)); 550 /* 551 * FIXME: this relies on a a zero 552 * PCI mem_offset. 553 */ 554 sgel->Address = 555 cpu_to_le32((u32)buff_ptr_phys); 556 } else { 557 _base_clone_to_sys_mem(buff_ptr, 558 ioc->config_vaddr, 559 (le32_to_cpu(sgel->FlagsLength) & 560 0x00ffffff)); 561 sgel->Address = 562 cpu_to_le32((u32)buff_ptr_phys); 563 } 564 } 565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 566 0x00ffffff); 567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 568 0x00ffffff); 569 if ((le32_to_cpu(sgel->FlagsLength) & 570 (MPI2_SGE_FLAGS_END_OF_BUFFER 571 << MPI2_SGE_FLAGS_SHIFT))) 572 goto eob_clone_chain; 573 else { 574 /* 575 * Every single element in MPT will have 576 * associated sg_next. Better to sanity that 577 * sg_next is not NULL, but it will be a bug 578 * if it is null. 579 */ 580 if (is_scsiio_req) { 581 sg_scmd = sg_next(sg_scmd); 582 if (sg_scmd) 583 sgel++; 584 else 585 goto eob_clone_chain; 586 } 587 } 588 break; 589 } 590 } 591 592 eob_clone_chain: 593 for (i = 0; i < sge_chain_count; i++) { 594 if (is_scsiio_req) 595 _base_clone_to_sys_mem(dst_chain_addr[i], 596 src_chain_addr[i], ioc->request_sz); 597 } 598 } 599 600 /** 601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 602 * @arg: input argument, used to derive ioc 603 * 604 * Return: 605 * 0 if controller is removed from pci subsystem. 606 * -1 for other case. 607 */ 608 static int mpt3sas_remove_dead_ioc_func(void *arg) 609 { 610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 611 struct pci_dev *pdev; 612 613 if (!ioc) 614 return -1; 615 616 pdev = ioc->pdev; 617 if (!pdev) 618 return -1; 619 pci_stop_and_remove_bus_device_locked(pdev); 620 return 0; 621 } 622 623 /** 624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 625 * @ioc: Per Adapter Object 626 * 627 * Return: nothing. 628 */ 629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 630 { 631 Mpi26IoUnitControlRequest_t *mpi_request; 632 Mpi26IoUnitControlReply_t *mpi_reply; 633 u16 smid; 634 ktime_t current_time; 635 u64 TimeStamp = 0; 636 u8 issue_reset = 0; 637 638 mutex_lock(&ioc->scsih_cmds.mutex); 639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 641 goto out; 642 } 643 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 644 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 645 if (!smid) { 646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 648 goto out; 649 } 650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 651 ioc->scsih_cmds.smid = smid; 652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 656 current_time = ktime_get_real(); 657 TimeStamp = ktime_to_ms(current_time); 658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 660 init_completion(&ioc->scsih_cmds.done); 661 ioc->put_smid_default(ioc, smid); 662 dinitprintk(ioc, ioc_info(ioc, 663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 664 TimeStamp)); 665 wait_for_completion_timeout(&ioc->scsih_cmds.done, 666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 668 mpt3sas_check_cmd_timeout(ioc, 669 ioc->scsih_cmds.status, mpi_request, 670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 671 goto issue_host_reset; 672 } 673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 674 mpi_reply = ioc->scsih_cmds.reply; 675 dinitprintk(ioc, ioc_info(ioc, 676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 677 le16_to_cpu(mpi_reply->IOCStatus), 678 le32_to_cpu(mpi_reply->IOCLogInfo))); 679 } 680 issue_host_reset: 681 if (issue_reset) 682 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 684 out: 685 mutex_unlock(&ioc->scsih_cmds.mutex); 686 } 687 688 /** 689 * _base_fault_reset_work - workq handling ioc fault conditions 690 * @work: input argument, used to derive ioc 691 * 692 * Context: sleep. 693 */ 694 static void 695 _base_fault_reset_work(struct work_struct *work) 696 { 697 struct MPT3SAS_ADAPTER *ioc = 698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 699 unsigned long flags; 700 u32 doorbell; 701 int rc; 702 struct task_struct *p; 703 704 705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 707 ioc->pci_error_recovery) 708 goto rearm_timer; 709 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 710 711 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 713 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 714 715 /* It may be possible that EEH recovery can resolve some of 716 * pci bus failure issues rather removing the dead ioc function 717 * by considering controller is in a non-operational state. So 718 * here priority is given to the EEH recovery. If it doesn't 719 * not resolve this issue, mpt3sas driver will consider this 720 * controller to non-operational state and remove the dead ioc 721 * function. 722 */ 723 if (ioc->non_operational_loop++ < 5) { 724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 725 flags); 726 goto rearm_timer; 727 } 728 729 /* 730 * Call _scsih_flush_pending_cmds callback so that we flush all 731 * pending commands back to OS. This call is required to avoid 732 * deadlock at block layer. Dead IOC will fail to do diag reset, 733 * and this call is safe since dead ioc will never return any 734 * command back from HW. 735 */ 736 mpt3sas_base_pause_mq_polling(ioc); 737 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 738 /* 739 * Set remove_host flag early since kernel thread will 740 * take some time to execute. 741 */ 742 ioc->remove_host = 1; 743 /*Remove the Dead Host */ 744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 746 if (IS_ERR(p)) 747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 748 __func__); 749 else 750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 751 __func__); 752 return; /* don't rearm timer */ 753 } 754 755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 757 ioc->manu_pg11.CoreDumpTOSec : 758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 759 760 timeout /= (FAULT_POLLING_INTERVAL/1000); 761 762 if (ioc->ioc_coredump_loop == 0) { 763 mpt3sas_print_coredump_info(ioc, 764 doorbell & MPI2_DOORBELL_DATA_MASK); 765 /* do not accept any IOs and disable the interrupts */ 766 spin_lock_irqsave( 767 &ioc->ioc_reset_in_progress_lock, flags); 768 ioc->shost_recovery = 1; 769 spin_unlock_irqrestore( 770 &ioc->ioc_reset_in_progress_lock, flags); 771 mpt3sas_base_mask_interrupts(ioc); 772 mpt3sas_base_pause_mq_polling(ioc); 773 _base_clear_outstanding_commands(ioc); 774 } 775 776 ioc_info(ioc, "%s: CoreDump loop %d.", 777 __func__, ioc->ioc_coredump_loop); 778 779 /* Wait until CoreDump completes or times out */ 780 if (ioc->ioc_coredump_loop++ < timeout) { 781 spin_lock_irqsave( 782 &ioc->ioc_reset_in_progress_lock, flags); 783 goto rearm_timer; 784 } 785 } 786 787 if (ioc->ioc_coredump_loop) { 788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 790 __func__, ioc->ioc_coredump_loop); 791 else 792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 793 __func__, ioc->ioc_coredump_loop); 794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 795 } 796 ioc->non_operational_loop = 0; 797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 798 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 799 ioc_warn(ioc, "%s: hard reset: %s\n", 800 __func__, rc == 0 ? "success" : "failed"); 801 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 803 mpt3sas_print_fault_code(ioc, doorbell & 804 MPI2_DOORBELL_DATA_MASK); 805 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 806 MPI2_IOC_STATE_COREDUMP) 807 mpt3sas_print_coredump_info(ioc, doorbell & 808 MPI2_DOORBELL_DATA_MASK); 809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 810 MPI2_IOC_STATE_OPERATIONAL) 811 return; /* don't rearm timer */ 812 } 813 ioc->ioc_coredump_loop = 0; 814 if (ioc->time_sync_interval && 815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 816 ioc->timestamp_update_count = 0; 817 _base_sync_drv_fw_timestamp(ioc); 818 } 819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 820 rearm_timer: 821 if (ioc->fault_reset_work_q) 822 queue_delayed_work(ioc->fault_reset_work_q, 823 &ioc->fault_reset_work, 824 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 826 } 827 828 /** 829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 830 * @ioc: per adapter object 831 * 832 * Context: sleep. 833 */ 834 void 835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 836 { 837 unsigned long flags; 838 839 if (ioc->fault_reset_work_q) 840 return; 841 842 ioc->timestamp_update_count = 0; 843 /* initialize fault polling */ 844 845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 846 snprintf(ioc->fault_reset_work_q_name, 847 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 848 ioc->driver_name, ioc->id); 849 ioc->fault_reset_work_q = 850 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 851 if (!ioc->fault_reset_work_q) { 852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 853 return; 854 } 855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 856 if (ioc->fault_reset_work_q) 857 queue_delayed_work(ioc->fault_reset_work_q, 858 &ioc->fault_reset_work, 859 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 860 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 861 } 862 863 /** 864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 865 * @ioc: per adapter object 866 * 867 * Context: sleep. 868 */ 869 void 870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 871 { 872 unsigned long flags; 873 struct workqueue_struct *wq; 874 875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 876 wq = ioc->fault_reset_work_q; 877 ioc->fault_reset_work_q = NULL; 878 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 879 if (wq) { 880 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 881 flush_workqueue(wq); 882 destroy_workqueue(wq); 883 } 884 } 885 886 /** 887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 888 * @ioc: per adapter object 889 * @fault_code: fault code 890 */ 891 void 892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 893 { 894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 895 } 896 897 /** 898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 899 * @ioc: per adapter object 900 * @fault_code: fault code 901 * 902 * Return: nothing. 903 */ 904 void 905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 906 { 907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 908 } 909 910 /** 911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 912 * completes or times out 913 * @ioc: per adapter object 914 * @caller: caller function name 915 * 916 * Return: 0 for success, non-zero for failure. 917 */ 918 int 919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 920 const char *caller) 921 { 922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 923 ioc->manu_pg11.CoreDumpTOSec : 924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 925 926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 927 timeout); 928 929 if (ioc_state) 930 ioc_err(ioc, 931 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 932 caller, ioc_state); 933 else 934 ioc_info(ioc, 935 "%s: CoreDump completed. (ioc_state=0x%x)\n", 936 caller, ioc_state); 937 938 return ioc_state; 939 } 940 941 /** 942 * mpt3sas_halt_firmware - halt's mpt controller firmware 943 * @ioc: per adapter object 944 * 945 * For debugging timeout related issues. Writing 0xCOFFEE00 946 * to the doorbell register will halt controller firmware. With 947 * the purpose to stop both driver and firmware, the enduser can 948 * obtain a ring buffer from controller UART. 949 */ 950 void 951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 952 { 953 u32 doorbell; 954 955 if (!ioc->fwfault_debug) 956 return; 957 958 dump_stack(); 959 960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 962 mpt3sas_print_fault_code(ioc, doorbell & 963 MPI2_DOORBELL_DATA_MASK); 964 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 965 MPI2_IOC_STATE_COREDUMP) { 966 mpt3sas_print_coredump_info(ioc, doorbell & 967 MPI2_DOORBELL_DATA_MASK); 968 } else { 969 writel(0xC0FFEE00, &ioc->chip->Doorbell); 970 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 971 } 972 973 if (ioc->fwfault_debug == 2) 974 for (;;) 975 ; 976 else 977 panic("panic in %s\n", __func__); 978 } 979 980 /** 981 * _base_sas_ioc_info - verbose translation of the ioc status 982 * @ioc: per adapter object 983 * @mpi_reply: reply mf payload returned from firmware 984 * @request_hdr: request mf 985 */ 986 static void 987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 988 MPI2RequestHeader_t *request_hdr) 989 { 990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 991 MPI2_IOCSTATUS_MASK; 992 char *desc = NULL; 993 u16 frame_sz; 994 char *func_str = NULL; 995 996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 1000 return; 1001 1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 1003 return; 1004 /* 1005 * Older Firmware version doesn't support driver trigger pages. 1006 * So, skip displaying 'config invalid type' type 1007 * of error message. 1008 */ 1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 1011 1012 if ((rqst->ExtPageType == 1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 1015 return; 1016 } 1017 } 1018 1019 switch (ioc_status) { 1020 1021 /**************************************************************************** 1022 * Common IOCStatus values for all replies 1023 ****************************************************************************/ 1024 1025 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1026 desc = "invalid function"; 1027 break; 1028 case MPI2_IOCSTATUS_BUSY: 1029 desc = "busy"; 1030 break; 1031 case MPI2_IOCSTATUS_INVALID_SGL: 1032 desc = "invalid sgl"; 1033 break; 1034 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1035 desc = "internal error"; 1036 break; 1037 case MPI2_IOCSTATUS_INVALID_VPID: 1038 desc = "invalid vpid"; 1039 break; 1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1041 desc = "insufficient resources"; 1042 break; 1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1044 desc = "insufficient power"; 1045 break; 1046 case MPI2_IOCSTATUS_INVALID_FIELD: 1047 desc = "invalid field"; 1048 break; 1049 case MPI2_IOCSTATUS_INVALID_STATE: 1050 desc = "invalid state"; 1051 break; 1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1053 desc = "op state not supported"; 1054 break; 1055 1056 /**************************************************************************** 1057 * Config IOCStatus values 1058 ****************************************************************************/ 1059 1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1061 desc = "config invalid action"; 1062 break; 1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1064 desc = "config invalid type"; 1065 break; 1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1067 desc = "config invalid page"; 1068 break; 1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1070 desc = "config invalid data"; 1071 break; 1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1073 desc = "config no defaults"; 1074 break; 1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1076 desc = "config can't commit"; 1077 break; 1078 1079 /**************************************************************************** 1080 * SCSI IO Reply 1081 ****************************************************************************/ 1082 1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1095 break; 1096 1097 /**************************************************************************** 1098 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1099 ****************************************************************************/ 1100 1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1102 desc = "eedp guard error"; 1103 break; 1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1105 desc = "eedp ref tag error"; 1106 break; 1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1108 desc = "eedp app tag error"; 1109 break; 1110 1111 /**************************************************************************** 1112 * SCSI Target values 1113 ****************************************************************************/ 1114 1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1116 desc = "target invalid io index"; 1117 break; 1118 case MPI2_IOCSTATUS_TARGET_ABORTED: 1119 desc = "target aborted"; 1120 break; 1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1122 desc = "target no conn retryable"; 1123 break; 1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1125 desc = "target no connection"; 1126 break; 1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1128 desc = "target xfer count mismatch"; 1129 break; 1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1131 desc = "target data offset error"; 1132 break; 1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1134 desc = "target too much write data"; 1135 break; 1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1137 desc = "target iu too short"; 1138 break; 1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1140 desc = "target ack nak timeout"; 1141 break; 1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1143 desc = "target nak received"; 1144 break; 1145 1146 /**************************************************************************** 1147 * Serial Attached SCSI values 1148 ****************************************************************************/ 1149 1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1151 desc = "smp request failed"; 1152 break; 1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1154 desc = "smp data overrun"; 1155 break; 1156 1157 /**************************************************************************** 1158 * Diagnostic Buffer Post / Diagnostic Release values 1159 ****************************************************************************/ 1160 1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1162 desc = "diagnostic released"; 1163 break; 1164 default: 1165 break; 1166 } 1167 1168 if (!desc) 1169 return; 1170 1171 switch (request_hdr->Function) { 1172 case MPI2_FUNCTION_CONFIG: 1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1174 func_str = "config_page"; 1175 break; 1176 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1178 func_str = "task_mgmt"; 1179 break; 1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1182 func_str = "sas_iounit_ctl"; 1183 break; 1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1185 frame_sz = sizeof(Mpi2SepRequest_t); 1186 func_str = "enclosure"; 1187 break; 1188 case MPI2_FUNCTION_IOC_INIT: 1189 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1190 func_str = "ioc_init"; 1191 break; 1192 case MPI2_FUNCTION_PORT_ENABLE: 1193 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1194 func_str = "port_enable"; 1195 break; 1196 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1198 func_str = "smp_passthru"; 1199 break; 1200 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1202 ioc->sge_size; 1203 func_str = "nvme_encapsulated"; 1204 break; 1205 default: 1206 frame_sz = 32; 1207 func_str = "unknown"; 1208 break; 1209 } 1210 1211 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1212 desc, ioc_status, request_hdr, func_str); 1213 1214 _debug_dump_mf(request_hdr, frame_sz/4); 1215 } 1216 1217 /** 1218 * _base_display_event_data - verbose translation of firmware asyn events 1219 * @ioc: per adapter object 1220 * @mpi_reply: reply mf payload returned from firmware 1221 */ 1222 static void 1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1224 Mpi2EventNotificationReply_t *mpi_reply) 1225 { 1226 char *desc = NULL; 1227 u16 event; 1228 1229 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1230 return; 1231 1232 event = le16_to_cpu(mpi_reply->Event); 1233 1234 switch (event) { 1235 case MPI2_EVENT_LOG_DATA: 1236 desc = "Log Data"; 1237 break; 1238 case MPI2_EVENT_STATE_CHANGE: 1239 desc = "Status Change"; 1240 break; 1241 case MPI2_EVENT_HARD_RESET_RECEIVED: 1242 desc = "Hard Reset Received"; 1243 break; 1244 case MPI2_EVENT_EVENT_CHANGE: 1245 desc = "Event Change"; 1246 break; 1247 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1248 desc = "Device Status Change"; 1249 break; 1250 case MPI2_EVENT_IR_OPERATION_STATUS: 1251 if (!ioc->hide_ir_msg) 1252 desc = "IR Operation Status"; 1253 break; 1254 case MPI2_EVENT_SAS_DISCOVERY: 1255 { 1256 Mpi2EventDataSasDiscovery_t *event_data = 1257 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1258 ioc_info(ioc, "Discovery: (%s)", 1259 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1260 "start" : "stop"); 1261 if (event_data->DiscoveryStatus) 1262 pr_cont(" discovery_status(0x%08x)", 1263 le32_to_cpu(event_data->DiscoveryStatus)); 1264 pr_cont("\n"); 1265 return; 1266 } 1267 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1268 desc = "SAS Broadcast Primitive"; 1269 break; 1270 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1271 desc = "SAS Init Device Status Change"; 1272 break; 1273 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1274 desc = "SAS Init Table Overflow"; 1275 break; 1276 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1277 desc = "SAS Topology Change List"; 1278 break; 1279 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1280 desc = "SAS Enclosure Device Status Change"; 1281 break; 1282 case MPI2_EVENT_IR_VOLUME: 1283 if (!ioc->hide_ir_msg) 1284 desc = "IR Volume"; 1285 break; 1286 case MPI2_EVENT_IR_PHYSICAL_DISK: 1287 if (!ioc->hide_ir_msg) 1288 desc = "IR Physical Disk"; 1289 break; 1290 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1291 if (!ioc->hide_ir_msg) 1292 desc = "IR Configuration Change List"; 1293 break; 1294 case MPI2_EVENT_LOG_ENTRY_ADDED: 1295 if (!ioc->hide_ir_msg) 1296 desc = "Log Entry Added"; 1297 break; 1298 case MPI2_EVENT_TEMP_THRESHOLD: 1299 desc = "Temperature Threshold"; 1300 break; 1301 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1302 desc = "Cable Event"; 1303 break; 1304 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1305 desc = "SAS Device Discovery Error"; 1306 break; 1307 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1308 desc = "PCIE Device Status Change"; 1309 break; 1310 case MPI2_EVENT_PCIE_ENUMERATION: 1311 { 1312 Mpi26EventDataPCIeEnumeration_t *event_data = 1313 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1314 ioc_info(ioc, "PCIE Enumeration: (%s)", 1315 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1316 "start" : "stop"); 1317 if (event_data->EnumerationStatus) 1318 pr_cont("enumeration_status(0x%08x)", 1319 le32_to_cpu(event_data->EnumerationStatus)); 1320 pr_cont("\n"); 1321 return; 1322 } 1323 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1324 desc = "PCIE Topology Change List"; 1325 break; 1326 } 1327 1328 if (!desc) 1329 return; 1330 1331 ioc_info(ioc, "%s\n", desc); 1332 } 1333 1334 /** 1335 * _base_sas_log_info - verbose translation of firmware log info 1336 * @ioc: per adapter object 1337 * @log_info: log info 1338 */ 1339 static void 1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info) 1341 { 1342 union loginfo_type { 1343 u32 loginfo; 1344 struct { 1345 u32 subcode:16; 1346 u32 code:8; 1347 u32 originator:4; 1348 u32 bus_type:4; 1349 } dw; 1350 }; 1351 union loginfo_type sas_loginfo; 1352 char *originator_str = NULL; 1353 1354 sas_loginfo.loginfo = log_info; 1355 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1356 return; 1357 1358 /* each nexus loss loginfo */ 1359 if (log_info == 0x31170000) 1360 return; 1361 1362 /* eat the loginfos associated with task aborts */ 1363 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1364 0x31140000 || log_info == 0x31130000)) 1365 return; 1366 1367 switch (sas_loginfo.dw.originator) { 1368 case 0: 1369 originator_str = "IOP"; 1370 break; 1371 case 1: 1372 originator_str = "PL"; 1373 break; 1374 case 2: 1375 if (!ioc->hide_ir_msg) 1376 originator_str = "IR"; 1377 else 1378 originator_str = "WarpDrive"; 1379 break; 1380 } 1381 1382 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1383 log_info, 1384 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1385 } 1386 1387 /** 1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1389 * @ioc: per adapter object 1390 * @smid: system request message index 1391 * @msix_index: MSIX table index supplied by the OS 1392 * @reply: reply message frame (lower 32bit addr) 1393 */ 1394 static void 1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1396 u32 reply) 1397 { 1398 MPI2DefaultReply_t *mpi_reply; 1399 u16 ioc_status; 1400 u32 loginfo = 0; 1401 1402 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1403 if (unlikely(!mpi_reply)) { 1404 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1405 __FILE__, __LINE__, __func__); 1406 return; 1407 } 1408 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1409 1410 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1411 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1412 _base_sas_ioc_info(ioc, mpi_reply, 1413 mpt3sas_base_get_msg_frame(ioc, smid)); 1414 } 1415 1416 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1417 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1418 _base_sas_log_info(ioc, loginfo); 1419 } 1420 1421 if (ioc_status || loginfo) { 1422 ioc_status &= MPI2_IOCSTATUS_MASK; 1423 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1424 } 1425 } 1426 1427 /** 1428 * mpt3sas_base_done - base internal command completion routine 1429 * @ioc: per adapter object 1430 * @smid: system request message index 1431 * @msix_index: MSIX table index supplied by the OS 1432 * @reply: reply message frame(lower 32bit addr) 1433 * 1434 * Return: 1435 * 1 meaning mf should be freed from _base_interrupt 1436 * 0 means the mf is freed from this function. 1437 */ 1438 u8 1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1440 u32 reply) 1441 { 1442 MPI2DefaultReply_t *mpi_reply; 1443 1444 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1445 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1446 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1447 1448 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1449 return 1; 1450 1451 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1452 if (mpi_reply) { 1453 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1454 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1455 } 1456 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1457 1458 complete(&ioc->base_cmds.done); 1459 return 1; 1460 } 1461 1462 /** 1463 * _base_async_event - main callback handler for firmware asyn events 1464 * @ioc: per adapter object 1465 * @msix_index: MSIX table index supplied by the OS 1466 * @reply: reply message frame(lower 32bit addr) 1467 * 1468 * Return: 1469 * 1 meaning mf should be freed from _base_interrupt 1470 * 0 means the mf is freed from this function. 1471 */ 1472 static u8 1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1474 { 1475 Mpi2EventNotificationReply_t *mpi_reply; 1476 Mpi2EventAckRequest_t *ack_request; 1477 u16 smid; 1478 struct _event_ack_list *delayed_event_ack; 1479 1480 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1481 if (!mpi_reply) 1482 return 1; 1483 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1484 return 1; 1485 1486 _base_display_event_data(ioc, mpi_reply); 1487 1488 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1489 goto out; 1490 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1491 if (!smid) { 1492 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1493 GFP_ATOMIC); 1494 if (!delayed_event_ack) 1495 goto out; 1496 INIT_LIST_HEAD(&delayed_event_ack->list); 1497 delayed_event_ack->Event = mpi_reply->Event; 1498 delayed_event_ack->EventContext = mpi_reply->EventContext; 1499 list_add_tail(&delayed_event_ack->list, 1500 &ioc->delayed_event_ack_list); 1501 dewtprintk(ioc, 1502 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1503 le16_to_cpu(mpi_reply->Event))); 1504 goto out; 1505 } 1506 1507 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1508 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1509 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1510 ack_request->Event = mpi_reply->Event; 1511 ack_request->EventContext = mpi_reply->EventContext; 1512 ack_request->VF_ID = 0; /* TODO */ 1513 ack_request->VP_ID = 0; 1514 ioc->put_smid_default(ioc, smid); 1515 1516 out: 1517 1518 /* scsih callback handler */ 1519 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1520 1521 /* ctl callback handler */ 1522 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1523 1524 return 1; 1525 } 1526 1527 static struct scsiio_tracker * 1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1529 { 1530 struct scsi_cmnd *cmd; 1531 1532 if (WARN_ON(!smid) || 1533 WARN_ON(smid >= ioc->hi_priority_smid)) 1534 return NULL; 1535 1536 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1537 if (cmd) 1538 return scsi_cmd_priv(cmd); 1539 1540 return NULL; 1541 } 1542 1543 /** 1544 * _base_get_cb_idx - obtain the callback index 1545 * @ioc: per adapter object 1546 * @smid: system request message index 1547 * 1548 * Return: callback index. 1549 */ 1550 static u8 1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1552 { 1553 int i; 1554 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1555 u8 cb_idx = 0xFF; 1556 1557 if (smid < ioc->hi_priority_smid) { 1558 struct scsiio_tracker *st; 1559 1560 if (smid < ctl_smid) { 1561 st = _get_st_from_smid(ioc, smid); 1562 if (st) 1563 cb_idx = st->cb_idx; 1564 } else if (smid == ctl_smid) 1565 cb_idx = ioc->ctl_cb_idx; 1566 } else if (smid < ioc->internal_smid) { 1567 i = smid - ioc->hi_priority_smid; 1568 cb_idx = ioc->hpr_lookup[i].cb_idx; 1569 } else if (smid <= ioc->hba_queue_depth) { 1570 i = smid - ioc->internal_smid; 1571 cb_idx = ioc->internal_lookup[i].cb_idx; 1572 } 1573 return cb_idx; 1574 } 1575 1576 /** 1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1578 * when driver is flushing out the IOs. 1579 * @ioc: per adapter object 1580 * 1581 * Pause polling on the mq poll (io uring) queues when driver is flushing 1582 * out the IOs. Otherwise we may see the race condition of completing the same 1583 * IO from two paths. 1584 * 1585 * Returns nothing. 1586 */ 1587 void 1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1589 { 1590 int iopoll_q_count = 1591 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1592 int qid; 1593 1594 for (qid = 0; qid < iopoll_q_count; qid++) 1595 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1596 1597 /* 1598 * wait for current poll to complete. 1599 */ 1600 for (qid = 0; qid < iopoll_q_count; qid++) { 1601 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1602 cpu_relax(); 1603 udelay(500); 1604 } 1605 } 1606 } 1607 1608 /** 1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1610 * @ioc: per adapter object 1611 * 1612 * Returns nothing. 1613 */ 1614 void 1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1616 { 1617 int iopoll_q_count = 1618 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1619 int qid; 1620 1621 for (qid = 0; qid < iopoll_q_count; qid++) 1622 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1623 } 1624 1625 /** 1626 * mpt3sas_base_mask_interrupts - disable interrupts 1627 * @ioc: per adapter object 1628 * 1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1630 */ 1631 void 1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1633 { 1634 u32 him_register; 1635 1636 ioc->mask_interrupts = 1; 1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1638 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1639 writel(him_register, &ioc->chip->HostInterruptMask); 1640 ioc->base_readl(&ioc->chip->HostInterruptMask); 1641 } 1642 1643 /** 1644 * mpt3sas_base_unmask_interrupts - enable interrupts 1645 * @ioc: per adapter object 1646 * 1647 * Enabling only Reply Interrupts 1648 */ 1649 void 1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1651 { 1652 u32 him_register; 1653 1654 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1655 him_register &= ~MPI2_HIM_RIM; 1656 writel(him_register, &ioc->chip->HostInterruptMask); 1657 ioc->mask_interrupts = 0; 1658 } 1659 1660 union reply_descriptor { 1661 u64 word; 1662 struct { 1663 u32 low; 1664 u32 high; 1665 } u; 1666 }; 1667 1668 static u32 base_mod64(u64 dividend, u32 divisor) 1669 { 1670 u32 remainder; 1671 1672 if (!divisor) 1673 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1674 remainder = do_div(dividend, divisor); 1675 return remainder; 1676 } 1677 1678 /** 1679 * _base_process_reply_queue - Process reply descriptors from reply 1680 * descriptor post queue. 1681 * @reply_q: per IRQ's reply queue object. 1682 * 1683 * Return: number of reply descriptors processed from reply 1684 * descriptor queue. 1685 */ 1686 static int 1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1688 { 1689 union reply_descriptor rd; 1690 u64 completed_cmds; 1691 u8 request_descript_type; 1692 u16 smid; 1693 u8 cb_idx; 1694 u32 reply; 1695 u8 msix_index = reply_q->msix_index; 1696 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1697 Mpi2ReplyDescriptorsUnion_t *rpf; 1698 u8 rc; 1699 1700 completed_cmds = 0; 1701 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1702 return completed_cmds; 1703 1704 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1705 request_descript_type = rpf->Default.ReplyFlags 1706 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1708 atomic_dec(&reply_q->busy); 1709 return completed_cmds; 1710 } 1711 1712 cb_idx = 0xFF; 1713 do { 1714 rd.word = le64_to_cpu(rpf->Words); 1715 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1716 goto out; 1717 reply = 0; 1718 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1719 if (request_descript_type == 1720 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1721 request_descript_type == 1722 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1723 request_descript_type == 1724 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1725 cb_idx = _base_get_cb_idx(ioc, smid); 1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1727 (likely(mpt_callbacks[cb_idx] != NULL))) { 1728 rc = mpt_callbacks[cb_idx](ioc, smid, 1729 msix_index, 0); 1730 if (rc) 1731 mpt3sas_base_free_smid(ioc, smid); 1732 } 1733 } else if (request_descript_type == 1734 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1735 reply = le32_to_cpu( 1736 rpf->AddressReply.ReplyFrameAddress); 1737 if (reply > ioc->reply_dma_max_address || 1738 reply < ioc->reply_dma_min_address) 1739 reply = 0; 1740 if (smid) { 1741 cb_idx = _base_get_cb_idx(ioc, smid); 1742 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1743 (likely(mpt_callbacks[cb_idx] != NULL))) { 1744 rc = mpt_callbacks[cb_idx](ioc, smid, 1745 msix_index, reply); 1746 if (reply) 1747 _base_display_reply_info(ioc, 1748 smid, msix_index, reply); 1749 if (rc) 1750 mpt3sas_base_free_smid(ioc, 1751 smid); 1752 } 1753 } else { 1754 _base_async_event(ioc, msix_index, reply); 1755 } 1756 1757 /* reply free queue handling */ 1758 if (reply) { 1759 ioc->reply_free_host_index = 1760 (ioc->reply_free_host_index == 1761 (ioc->reply_free_queue_depth - 1)) ? 1762 0 : ioc->reply_free_host_index + 1; 1763 ioc->reply_free[ioc->reply_free_host_index] = 1764 cpu_to_le32(reply); 1765 if (ioc->is_mcpu_endpoint) 1766 _base_clone_reply_to_sys_mem(ioc, 1767 reply, 1768 ioc->reply_free_host_index); 1769 writel(ioc->reply_free_host_index, 1770 &ioc->chip->ReplyFreeHostIndex); 1771 } 1772 } 1773 1774 rpf->Words = cpu_to_le64(ULLONG_MAX); 1775 reply_q->reply_post_host_index = 1776 (reply_q->reply_post_host_index == 1777 (ioc->reply_post_queue_depth - 1)) ? 0 : 1778 reply_q->reply_post_host_index + 1; 1779 request_descript_type = 1780 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1781 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1782 completed_cmds++; 1783 /* Update the reply post host index after continuously 1784 * processing the threshold number of Reply Descriptors. 1785 * So that FW can find enough entries to post the Reply 1786 * Descriptors in the reply descriptor post queue. 1787 */ 1788 if (completed_cmds >= ioc->thresh_hold) { 1789 if (ioc->combined_reply_queue) { 1790 writel(reply_q->reply_post_host_index | 1791 ((msix_index & 7) << 1792 MPI2_RPHI_MSIX_INDEX_SHIFT), 1793 ioc->replyPostRegisterIndex[msix_index/8]); 1794 } else { 1795 writel(reply_q->reply_post_host_index | 1796 (msix_index << 1797 MPI2_RPHI_MSIX_INDEX_SHIFT), 1798 &ioc->chip->ReplyPostHostIndex); 1799 } 1800 if (!reply_q->is_iouring_poll_q && 1801 !reply_q->irq_poll_scheduled) { 1802 reply_q->irq_poll_scheduled = true; 1803 irq_poll_sched(&reply_q->irqpoll); 1804 } 1805 atomic_dec(&reply_q->busy); 1806 return completed_cmds; 1807 } 1808 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1809 goto out; 1810 if (!reply_q->reply_post_host_index) 1811 rpf = reply_q->reply_post_free; 1812 else 1813 rpf++; 1814 } while (1); 1815 1816 out: 1817 1818 if (!completed_cmds) { 1819 atomic_dec(&reply_q->busy); 1820 return completed_cmds; 1821 } 1822 1823 if (ioc->is_warpdrive) { 1824 writel(reply_q->reply_post_host_index, 1825 ioc->reply_post_host_index[msix_index]); 1826 atomic_dec(&reply_q->busy); 1827 return completed_cmds; 1828 } 1829 1830 /* Update Reply Post Host Index. 1831 * For those HBA's which support combined reply queue feature 1832 * 1. Get the correct Supplemental Reply Post Host Index Register. 1833 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1834 * Index Register address bank i.e replyPostRegisterIndex[], 1835 * 2. Then update this register with new reply host index value 1836 * in ReplyPostIndex field and the MSIxIndex field with 1837 * msix_index value reduced to a value between 0 and 7, 1838 * using a modulo 8 operation. Since each Supplemental Reply Post 1839 * Host Index Register supports 8 MSI-X vectors. 1840 * 1841 * For other HBA's just update the Reply Post Host Index register with 1842 * new reply host index value in ReplyPostIndex Field and msix_index 1843 * value in MSIxIndex field. 1844 */ 1845 if (ioc->combined_reply_queue) 1846 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1847 MPI2_RPHI_MSIX_INDEX_SHIFT), 1848 ioc->replyPostRegisterIndex[msix_index/8]); 1849 else 1850 writel(reply_q->reply_post_host_index | (msix_index << 1851 MPI2_RPHI_MSIX_INDEX_SHIFT), 1852 &ioc->chip->ReplyPostHostIndex); 1853 atomic_dec(&reply_q->busy); 1854 return completed_cmds; 1855 } 1856 1857 /** 1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1859 * @shost: Scsi_Host object 1860 * @queue_num: hw ctx queue number 1861 * 1862 * Return number of entries that has been processed from poll queue. 1863 */ 1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1865 { 1866 struct MPT3SAS_ADAPTER *ioc = 1867 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1868 struct adapter_reply_queue *reply_q; 1869 int num_entries = 0; 1870 int qid = queue_num - ioc->iopoll_q_start_index; 1871 1872 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1873 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1874 return 0; 1875 1876 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1877 1878 num_entries = _base_process_reply_queue(reply_q); 1879 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1880 1881 return num_entries; 1882 } 1883 1884 /** 1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1886 * @irq: irq number (not used) 1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1888 * 1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1890 */ 1891 static irqreturn_t 1892 _base_interrupt(int irq, void *bus_id) 1893 { 1894 struct adapter_reply_queue *reply_q = bus_id; 1895 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1896 1897 if (ioc->mask_interrupts) 1898 return IRQ_NONE; 1899 if (reply_q->irq_poll_scheduled) 1900 return IRQ_HANDLED; 1901 return ((_base_process_reply_queue(reply_q) > 0) ? 1902 IRQ_HANDLED : IRQ_NONE); 1903 } 1904 1905 /** 1906 * _base_irqpoll - IRQ poll callback handler 1907 * @irqpoll: irq_poll object 1908 * @budget: irq poll weight 1909 * 1910 * Return: number of reply descriptors processed 1911 */ 1912 static int 1913 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1914 { 1915 struct adapter_reply_queue *reply_q; 1916 int num_entries = 0; 1917 1918 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1919 irqpoll); 1920 if (reply_q->irq_line_enable) { 1921 disable_irq_nosync(reply_q->os_irq); 1922 reply_q->irq_line_enable = false; 1923 } 1924 num_entries = _base_process_reply_queue(reply_q); 1925 if (num_entries < budget) { 1926 irq_poll_complete(irqpoll); 1927 reply_q->irq_poll_scheduled = false; 1928 reply_q->irq_line_enable = true; 1929 enable_irq(reply_q->os_irq); 1930 /* 1931 * Go for one more round of processing the 1932 * reply descriptor post queue in case the HBA 1933 * Firmware has posted some reply descriptors 1934 * while reenabling the IRQ. 1935 */ 1936 _base_process_reply_queue(reply_q); 1937 } 1938 1939 return num_entries; 1940 } 1941 1942 /** 1943 * _base_init_irqpolls - initliaze IRQ polls 1944 * @ioc: per adapter object 1945 * 1946 * Return: nothing 1947 */ 1948 static void 1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1950 { 1951 struct adapter_reply_queue *reply_q, *next; 1952 1953 if (list_empty(&ioc->reply_queue_list)) 1954 return; 1955 1956 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1957 if (reply_q->is_iouring_poll_q) 1958 continue; 1959 irq_poll_init(&reply_q->irqpoll, 1960 ioc->hba_queue_depth/4, _base_irqpoll); 1961 reply_q->irq_poll_scheduled = false; 1962 reply_q->irq_line_enable = true; 1963 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1964 reply_q->msix_index); 1965 } 1966 } 1967 1968 /** 1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1970 * @ioc: per adapter object 1971 * 1972 * Return: Whether or not MSI/X is enabled. 1973 */ 1974 static inline int 1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1976 { 1977 return (ioc->facts.IOCCapabilities & 1978 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1979 } 1980 1981 /** 1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1983 * @ioc: per adapter object 1984 * @poll: poll over reply descriptor pools incase interrupt for 1985 * timed-out SCSI command got delayed 1986 * Context: non-ISR context 1987 * 1988 * Called when a Task Management request has completed. 1989 */ 1990 void 1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1992 { 1993 struct adapter_reply_queue *reply_q; 1994 1995 /* If MSIX capability is turned off 1996 * then multi-queues are not enabled 1997 */ 1998 if (!_base_is_controller_msix_enabled(ioc)) 1999 return; 2000 2001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2002 if (ioc->shost_recovery || ioc->remove_host || 2003 ioc->pci_error_recovery) 2004 return; 2005 /* TMs are on msix_index == 0 */ 2006 if (reply_q->msix_index == 0) 2007 continue; 2008 2009 if (reply_q->is_iouring_poll_q) { 2010 _base_process_reply_queue(reply_q); 2011 continue; 2012 } 2013 2014 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 2015 if (reply_q->irq_poll_scheduled) { 2016 /* Calling irq_poll_disable will wait for any pending 2017 * callbacks to have completed. 2018 */ 2019 irq_poll_disable(&reply_q->irqpoll); 2020 irq_poll_enable(&reply_q->irqpoll); 2021 /* check how the scheduled poll has ended, 2022 * clean up only if necessary 2023 */ 2024 if (reply_q->irq_poll_scheduled) { 2025 reply_q->irq_poll_scheduled = false; 2026 reply_q->irq_line_enable = true; 2027 enable_irq(reply_q->os_irq); 2028 } 2029 } 2030 2031 if (poll) 2032 _base_process_reply_queue(reply_q); 2033 } 2034 } 2035 2036 /** 2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2038 * @cb_idx: callback index 2039 */ 2040 void 2041 mpt3sas_base_release_callback_handler(u8 cb_idx) 2042 { 2043 mpt_callbacks[cb_idx] = NULL; 2044 } 2045 2046 /** 2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2048 * @cb_func: callback function 2049 * 2050 * Return: Index of @cb_func. 2051 */ 2052 u8 2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2054 { 2055 u8 cb_idx; 2056 2057 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2058 if (mpt_callbacks[cb_idx] == NULL) 2059 break; 2060 2061 mpt_callbacks[cb_idx] = cb_func; 2062 return cb_idx; 2063 } 2064 2065 /** 2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2067 */ 2068 void 2069 mpt3sas_base_initialize_callback_handler(void) 2070 { 2071 u8 cb_idx; 2072 2073 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2074 mpt3sas_base_release_callback_handler(cb_idx); 2075 } 2076 2077 2078 /** 2079 * _base_build_zero_len_sge - build zero length sg entry 2080 * @ioc: per adapter object 2081 * @paddr: virtual address for SGE 2082 * 2083 * Create a zero length scatter gather entry to insure the IOCs hardware has 2084 * something to use if the target device goes brain dead and tries 2085 * to send data even when none is asked for. 2086 */ 2087 static void 2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2089 { 2090 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2091 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2092 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2093 MPI2_SGE_FLAGS_SHIFT); 2094 ioc->base_add_sg_single(paddr, flags_length, -1); 2095 } 2096 2097 /** 2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2099 * @paddr: virtual address for SGE 2100 * @flags_length: SGE flags and data transfer length 2101 * @dma_addr: Physical address 2102 */ 2103 static void 2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2105 { 2106 Mpi2SGESimple32_t *sgel = paddr; 2107 2108 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2109 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2110 sgel->FlagsLength = cpu_to_le32(flags_length); 2111 sgel->Address = cpu_to_le32(dma_addr); 2112 } 2113 2114 2115 /** 2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2117 * @paddr: virtual address for SGE 2118 * @flags_length: SGE flags and data transfer length 2119 * @dma_addr: Physical address 2120 */ 2121 static void 2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2123 { 2124 Mpi2SGESimple64_t *sgel = paddr; 2125 2126 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2127 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2128 sgel->FlagsLength = cpu_to_le32(flags_length); 2129 sgel->Address = cpu_to_le64(dma_addr); 2130 } 2131 2132 /** 2133 * _base_get_chain_buffer_tracker - obtain chain tracker 2134 * @ioc: per adapter object 2135 * @scmd: SCSI commands of the IO request 2136 * 2137 * Return: chain tracker from chain_lookup table using key as 2138 * smid and smid's chain_offset. 2139 */ 2140 static struct chain_tracker * 2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2142 struct scsi_cmnd *scmd) 2143 { 2144 struct chain_tracker *chain_req; 2145 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2146 u16 smid = st->smid; 2147 u8 chain_offset = 2148 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2149 2150 if (chain_offset == ioc->chains_needed_per_io) 2151 return NULL; 2152 2153 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2154 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2155 return chain_req; 2156 } 2157 2158 2159 /** 2160 * _base_build_sg - build generic sg 2161 * @ioc: per adapter object 2162 * @psge: virtual address for SGE 2163 * @data_out_dma: physical address for WRITES 2164 * @data_out_sz: data xfer size for WRITES 2165 * @data_in_dma: physical address for READS 2166 * @data_in_sz: data xfer size for READS 2167 */ 2168 static void 2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2170 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2171 size_t data_in_sz) 2172 { 2173 u32 sgl_flags; 2174 2175 if (!data_out_sz && !data_in_sz) { 2176 _base_build_zero_len_sge(ioc, psge); 2177 return; 2178 } 2179 2180 if (data_out_sz && data_in_sz) { 2181 /* WRITE sgel first */ 2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2183 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2184 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2185 ioc->base_add_sg_single(psge, sgl_flags | 2186 data_out_sz, data_out_dma); 2187 2188 /* incr sgel */ 2189 psge += ioc->sge_size; 2190 2191 /* READ sgel last */ 2192 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2193 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2194 MPI2_SGE_FLAGS_END_OF_LIST); 2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2196 ioc->base_add_sg_single(psge, sgl_flags | 2197 data_in_sz, data_in_dma); 2198 } else if (data_out_sz) /* WRITE */ { 2199 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2200 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2201 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2202 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2203 ioc->base_add_sg_single(psge, sgl_flags | 2204 data_out_sz, data_out_dma); 2205 } else if (data_in_sz) /* READ */ { 2206 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2207 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2208 MPI2_SGE_FLAGS_END_OF_LIST); 2209 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2210 ioc->base_add_sg_single(psge, sgl_flags | 2211 data_in_sz, data_in_dma); 2212 } 2213 } 2214 2215 /* IEEE format sgls */ 2216 2217 /** 2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2219 * a native SGL (NVMe PRP). 2220 * @ioc: per adapter object 2221 * @smid: system request message index for getting asscociated SGL 2222 * @nvme_encap_request: the NVMe request msg frame pointer 2223 * @data_out_dma: physical address for WRITES 2224 * @data_out_sz: data xfer size for WRITES 2225 * @data_in_dma: physical address for READS 2226 * @data_in_sz: data xfer size for READS 2227 * 2228 * The native SGL is built starting in the first PRP 2229 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2230 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2231 * used to describe a larger data buffer. If the data buffer is too large to 2232 * describe using the two PRP entriess inside the NVMe message, then PRP1 2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2234 * list located elsewhere in memory to describe the remaining data memory 2235 * segments. The PRP list will be contiguous. 2236 * 2237 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2238 * consists of a list of PRP entries to describe a number of noncontigous 2239 * physical memory segments as a single memory buffer, just as a SGL does. Note 2240 * however, that this function is only used by the IOCTL call, so the memory 2241 * given will be guaranteed to be contiguous. There is no need to translate 2242 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2243 * contiguous space that is one page size each. 2244 * 2245 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2246 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2247 * contains the second PRP element if the memory being described fits within 2 2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2249 * 2250 * A PRP list pointer contains the address of a PRP list, structured as a linear 2251 * array of PRP entries. Each PRP entry in this list describes a segment of 2252 * physical memory. 2253 * 2254 * Each 64-bit PRP entry comprises an address and an offset field. The address 2255 * always points at the beginning of a 4KB physical memory page, and the offset 2256 * describes where within that 4KB page the memory segment begins. Only the 2257 * first element in a PRP list may contain a non-zero offset, implying that all 2258 * memory segments following the first begin at the start of a 4KB page. 2259 * 2260 * Each PRP element normally describes 4KB of physical memory, with exceptions 2261 * for the first and last elements in the list. If the memory being described 2262 * by the list begins at a non-zero offset within the first 4KB page, then the 2263 * first PRP element will contain a non-zero offset indicating where the region 2264 * begins within the 4KB page. The last memory segment may end before the end 2265 * of the 4KB segment, depending upon the overall size of the memory being 2266 * described by the PRP list. 2267 * 2268 * Since PRP entries lack any indication of size, the overall data buffer length 2269 * is used to determine where the end of the data memory buffer is located, and 2270 * how many PRP entries are required to describe it. 2271 */ 2272 static void 2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2274 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2275 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2276 size_t data_in_sz) 2277 { 2278 int prp_size = NVME_PRP_SIZE; 2279 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2280 __le64 *prp_page; 2281 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2282 u32 offset, entry_len; 2283 u32 page_mask_result, page_mask; 2284 size_t length; 2285 struct mpt3sas_nvme_cmd *nvme_cmd = 2286 (void *)nvme_encap_request->NVMe_Command; 2287 2288 /* 2289 * Not all commands require a data transfer. If no data, just return 2290 * without constructing any PRP. 2291 */ 2292 if (!data_in_sz && !data_out_sz) 2293 return; 2294 prp1_entry = &nvme_cmd->prp1; 2295 prp2_entry = &nvme_cmd->prp2; 2296 prp_entry = prp1_entry; 2297 /* 2298 * For the PRP entries, use the specially allocated buffer of 2299 * contiguous memory. 2300 */ 2301 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2302 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2303 2304 /* 2305 * Check if we are within 1 entry of a page boundary we don't 2306 * want our first entry to be a PRP List entry. 2307 */ 2308 page_mask = ioc->page_size - 1; 2309 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2310 if (!page_mask_result) { 2311 /* Bump up to next page boundary. */ 2312 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2313 prp_page_dma = prp_page_dma + prp_size; 2314 } 2315 2316 /* 2317 * Set PRP physical pointer, which initially points to the current PRP 2318 * DMA memory page. 2319 */ 2320 prp_entry_dma = prp_page_dma; 2321 2322 /* Get physical address and length of the data buffer. */ 2323 if (data_in_sz) { 2324 dma_addr = data_in_dma; 2325 length = data_in_sz; 2326 } else { 2327 dma_addr = data_out_dma; 2328 length = data_out_sz; 2329 } 2330 2331 /* Loop while the length is not zero. */ 2332 while (length) { 2333 /* 2334 * Check if we need to put a list pointer here if we are at 2335 * page boundary - prp_size (8 bytes). 2336 */ 2337 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2338 if (!page_mask_result) { 2339 /* 2340 * This is the last entry in a PRP List, so we need to 2341 * put a PRP list pointer here. What this does is: 2342 * - bump the current memory pointer to the next 2343 * address, which will be the next full page. 2344 * - set the PRP Entry to point to that page. This 2345 * is now the PRP List pointer. 2346 * - bump the PRP Entry pointer the start of the 2347 * next page. Since all of this PRP memory is 2348 * contiguous, no need to get a new page - it's 2349 * just the next address. 2350 */ 2351 prp_entry_dma++; 2352 *prp_entry = cpu_to_le64(prp_entry_dma); 2353 prp_entry++; 2354 } 2355 2356 /* Need to handle if entry will be part of a page. */ 2357 offset = dma_addr & page_mask; 2358 entry_len = ioc->page_size - offset; 2359 2360 if (prp_entry == prp1_entry) { 2361 /* 2362 * Must fill in the first PRP pointer (PRP1) before 2363 * moving on. 2364 */ 2365 *prp1_entry = cpu_to_le64(dma_addr); 2366 2367 /* 2368 * Now point to the second PRP entry within the 2369 * command (PRP2). 2370 */ 2371 prp_entry = prp2_entry; 2372 } else if (prp_entry == prp2_entry) { 2373 /* 2374 * Should the PRP2 entry be a PRP List pointer or just 2375 * a regular PRP pointer? If there is more than one 2376 * more page of data, must use a PRP List pointer. 2377 */ 2378 if (length > ioc->page_size) { 2379 /* 2380 * PRP2 will contain a PRP List pointer because 2381 * more PRP's are needed with this command. The 2382 * list will start at the beginning of the 2383 * contiguous buffer. 2384 */ 2385 *prp2_entry = cpu_to_le64(prp_entry_dma); 2386 2387 /* 2388 * The next PRP Entry will be the start of the 2389 * first PRP List. 2390 */ 2391 prp_entry = prp_page; 2392 } else { 2393 /* 2394 * After this, the PRP Entries are complete. 2395 * This command uses 2 PRP's and no PRP list. 2396 */ 2397 *prp2_entry = cpu_to_le64(dma_addr); 2398 } 2399 } else { 2400 /* 2401 * Put entry in list and bump the addresses. 2402 * 2403 * After PRP1 and PRP2 are filled in, this will fill in 2404 * all remaining PRP entries in a PRP List, one per 2405 * each time through the loop. 2406 */ 2407 *prp_entry = cpu_to_le64(dma_addr); 2408 prp_entry++; 2409 prp_entry_dma++; 2410 } 2411 2412 /* 2413 * Bump the phys address of the command's data buffer by the 2414 * entry_len. 2415 */ 2416 dma_addr += entry_len; 2417 2418 /* Decrement length accounting for last partial page. */ 2419 if (entry_len > length) 2420 length = 0; 2421 else 2422 length -= entry_len; 2423 } 2424 } 2425 2426 /** 2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2428 * SGLs specific to NVMe drives only 2429 * 2430 * @ioc: per adapter object 2431 * @scmd: SCSI command from the mid-layer 2432 * @mpi_request: mpi request 2433 * @smid: msg Index 2434 * @sge_count: scatter gather element count. 2435 * 2436 * Return: true: PRPs are built 2437 * false: IEEE SGLs needs to be built 2438 */ 2439 static void 2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2441 struct scsi_cmnd *scmd, 2442 Mpi25SCSIIORequest_t *mpi_request, 2443 u16 smid, int sge_count) 2444 { 2445 int sge_len, num_prp_in_chain = 0; 2446 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2447 __le64 *curr_buff; 2448 dma_addr_t msg_dma, sge_addr, offset; 2449 u32 page_mask, page_mask_result; 2450 struct scatterlist *sg_scmd; 2451 u32 first_prp_len; 2452 int data_len = scsi_bufflen(scmd); 2453 u32 nvme_pg_size; 2454 2455 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2456 /* 2457 * Nvme has a very convoluted prp format. One prp is required 2458 * for each page or partial page. Driver need to split up OS sg_list 2459 * entries if it is longer than one page or cross a page 2460 * boundary. Driver also have to insert a PRP list pointer entry as 2461 * the last entry in each physical page of the PRP list. 2462 * 2463 * NOTE: The first PRP "entry" is actually placed in the first 2464 * SGL entry in the main message as IEEE 64 format. The 2nd 2465 * entry in the main message is the chain element, and the rest 2466 * of the PRP entries are built in the contiguous pcie buffer. 2467 */ 2468 page_mask = nvme_pg_size - 1; 2469 2470 /* 2471 * Native SGL is needed. 2472 * Put a chain element in main message frame that points to the first 2473 * chain buffer. 2474 * 2475 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2476 * a native SGL. 2477 */ 2478 2479 /* Set main message chain element pointer */ 2480 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2481 /* 2482 * For NVMe the chain element needs to be the 2nd SG entry in the main 2483 * message. 2484 */ 2485 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2486 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2487 2488 /* 2489 * For the PRP entries, use the specially allocated buffer of 2490 * contiguous memory. Normal chain buffers can't be used 2491 * because each chain buffer would need to be the size of an OS 2492 * page (4k). 2493 */ 2494 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2495 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2496 2497 main_chain_element->Address = cpu_to_le64(msg_dma); 2498 main_chain_element->NextChainOffset = 0; 2499 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2501 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2502 2503 /* Build first prp, sge need not to be page aligned*/ 2504 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2505 sg_scmd = scsi_sglist(scmd); 2506 sge_addr = sg_dma_address(sg_scmd); 2507 sge_len = sg_dma_len(sg_scmd); 2508 2509 offset = sge_addr & page_mask; 2510 first_prp_len = nvme_pg_size - offset; 2511 2512 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2513 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2514 2515 data_len -= first_prp_len; 2516 2517 if (sge_len > first_prp_len) { 2518 sge_addr += first_prp_len; 2519 sge_len -= first_prp_len; 2520 } else if (data_len && (sge_len == first_prp_len)) { 2521 sg_scmd = sg_next(sg_scmd); 2522 sge_addr = sg_dma_address(sg_scmd); 2523 sge_len = sg_dma_len(sg_scmd); 2524 } 2525 2526 for (;;) { 2527 offset = sge_addr & page_mask; 2528 2529 /* Put PRP pointer due to page boundary*/ 2530 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2531 if (unlikely(!page_mask_result)) { 2532 scmd_printk(KERN_NOTICE, 2533 scmd, "page boundary curr_buff: 0x%p\n", 2534 curr_buff); 2535 msg_dma += 8; 2536 *curr_buff = cpu_to_le64(msg_dma); 2537 curr_buff++; 2538 num_prp_in_chain++; 2539 } 2540 2541 *curr_buff = cpu_to_le64(sge_addr); 2542 curr_buff++; 2543 msg_dma += 8; 2544 num_prp_in_chain++; 2545 2546 sge_addr += nvme_pg_size; 2547 sge_len -= nvme_pg_size; 2548 data_len -= nvme_pg_size; 2549 2550 if (data_len <= 0) 2551 break; 2552 2553 if (sge_len > 0) 2554 continue; 2555 2556 sg_scmd = sg_next(sg_scmd); 2557 sge_addr = sg_dma_address(sg_scmd); 2558 sge_len = sg_dma_len(sg_scmd); 2559 } 2560 2561 main_chain_element->Length = 2562 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2563 return; 2564 } 2565 2566 static bool 2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2568 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2569 { 2570 u32 data_length = 0; 2571 bool build_prp = true; 2572 2573 data_length = scsi_bufflen(scmd); 2574 if (pcie_device && 2575 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2576 build_prp = false; 2577 return build_prp; 2578 } 2579 2580 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2581 * we built IEEE SGL 2582 */ 2583 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2584 build_prp = false; 2585 2586 return build_prp; 2587 } 2588 2589 /** 2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2591 * determine if the driver needs to build a native SGL. If so, that native 2592 * SGL is built in the special contiguous buffers allocated especially for 2593 * PCIe SGL creation. If the driver will not build a native SGL, return 2594 * TRUE and a normal IEEE SGL will be built. Currently this routine 2595 * supports NVMe. 2596 * @ioc: per adapter object 2597 * @mpi_request: mf request pointer 2598 * @smid: system request message index 2599 * @scmd: scsi command 2600 * @pcie_device: points to the PCIe device's info 2601 * 2602 * Return: 0 if native SGL was built, 1 if no SGL was built 2603 */ 2604 static int 2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2606 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2607 struct _pcie_device *pcie_device) 2608 { 2609 int sges_left; 2610 2611 /* Get the SG list pointer and info. */ 2612 sges_left = scsi_dma_map(scmd); 2613 if (sges_left < 0) 2614 return 1; 2615 2616 /* Check if we need to build a native SG list. */ 2617 if (!base_is_prp_possible(ioc, pcie_device, 2618 scmd, sges_left)) { 2619 /* We built a native SG list, just return. */ 2620 goto out; 2621 } 2622 2623 /* 2624 * Build native NVMe PRP. 2625 */ 2626 base_make_prp_nvme(ioc, scmd, mpi_request, 2627 smid, sges_left); 2628 2629 return 0; 2630 out: 2631 scsi_dma_unmap(scmd); 2632 return 1; 2633 } 2634 2635 /** 2636 * _base_add_sg_single_ieee - add sg element for IEEE format 2637 * @paddr: virtual address for SGE 2638 * @flags: SGE flags 2639 * @chain_offset: number of 128 byte elements from start of segment 2640 * @length: data transfer length 2641 * @dma_addr: Physical address 2642 */ 2643 static void 2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2645 dma_addr_t dma_addr) 2646 { 2647 Mpi25IeeeSgeChain64_t *sgel = paddr; 2648 2649 sgel->Flags = flags; 2650 sgel->NextChainOffset = chain_offset; 2651 sgel->Length = cpu_to_le32(length); 2652 sgel->Address = cpu_to_le64(dma_addr); 2653 } 2654 2655 /** 2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2657 * @ioc: per adapter object 2658 * @paddr: virtual address for SGE 2659 * 2660 * Create a zero length scatter gather entry to insure the IOCs hardware has 2661 * something to use if the target device goes brain dead and tries 2662 * to send data even when none is asked for. 2663 */ 2664 static void 2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2666 { 2667 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2669 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2670 2671 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2672 } 2673 2674 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd) 2675 { 2676 /* 2677 * Some firmware versions byte-swap the REPORT ZONES command reply from 2678 * ATA-ZAC devices by directly accessing in the host buffer. This does 2679 * not respect the default command DMA direction and causes IOMMU page 2680 * faults on some architectures with an IOMMU enforcing write mappings 2681 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer 2682 * mapping bi-directional. 2683 */ 2684 if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES) 2685 cmd->sc_data_direction = DMA_BIDIRECTIONAL; 2686 2687 return scsi_dma_map(cmd); 2688 } 2689 2690 /** 2691 * _base_build_sg_scmd - main sg creation routine 2692 * pcie_device is unused here! 2693 * @ioc: per adapter object 2694 * @scmd: scsi command 2695 * @smid: system request message index 2696 * @unused: unused pcie_device pointer 2697 * Context: none. 2698 * 2699 * The main routine that builds scatter gather table from a given 2700 * scsi request sent via the .queuecommand main handler. 2701 * 2702 * Return: 0 success, anything else error 2703 */ 2704 static int 2705 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2706 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2707 { 2708 Mpi2SCSIIORequest_t *mpi_request; 2709 dma_addr_t chain_dma; 2710 struct scatterlist *sg_scmd; 2711 void *sg_local, *chain; 2712 u32 chain_offset; 2713 u32 chain_length; 2714 u32 chain_flags; 2715 int sges_left; 2716 u32 sges_in_segment; 2717 u32 sgl_flags; 2718 u32 sgl_flags_last_element; 2719 u32 sgl_flags_end_buffer; 2720 struct chain_tracker *chain_req; 2721 2722 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2723 2724 /* init scatter gather flags */ 2725 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2726 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2727 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2728 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2729 << MPI2_SGE_FLAGS_SHIFT; 2730 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2731 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2732 << MPI2_SGE_FLAGS_SHIFT; 2733 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2734 2735 sg_scmd = scsi_sglist(scmd); 2736 sges_left = _base_scsi_dma_map(scmd); 2737 if (sges_left < 0) 2738 return -ENOMEM; 2739 2740 sg_local = &mpi_request->SGL; 2741 sges_in_segment = ioc->max_sges_in_main_message; 2742 if (sges_left <= sges_in_segment) 2743 goto fill_in_last_segment; 2744 2745 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2746 (sges_in_segment * ioc->sge_size))/4; 2747 2748 /* fill in main message segment when there is a chain following */ 2749 while (sges_in_segment) { 2750 if (sges_in_segment == 1) 2751 ioc->base_add_sg_single(sg_local, 2752 sgl_flags_last_element | sg_dma_len(sg_scmd), 2753 sg_dma_address(sg_scmd)); 2754 else 2755 ioc->base_add_sg_single(sg_local, sgl_flags | 2756 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2757 sg_scmd = sg_next(sg_scmd); 2758 sg_local += ioc->sge_size; 2759 sges_left--; 2760 sges_in_segment--; 2761 } 2762 2763 /* initializing the chain flags and pointers */ 2764 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2765 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2766 if (!chain_req) 2767 return -1; 2768 chain = chain_req->chain_buffer; 2769 chain_dma = chain_req->chain_buffer_dma; 2770 do { 2771 sges_in_segment = (sges_left <= 2772 ioc->max_sges_in_chain_message) ? sges_left : 2773 ioc->max_sges_in_chain_message; 2774 chain_offset = (sges_left == sges_in_segment) ? 2775 0 : (sges_in_segment * ioc->sge_size)/4; 2776 chain_length = sges_in_segment * ioc->sge_size; 2777 if (chain_offset) { 2778 chain_offset = chain_offset << 2779 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2780 chain_length += ioc->sge_size; 2781 } 2782 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2783 chain_length, chain_dma); 2784 sg_local = chain; 2785 if (!chain_offset) 2786 goto fill_in_last_segment; 2787 2788 /* fill in chain segments */ 2789 while (sges_in_segment) { 2790 if (sges_in_segment == 1) 2791 ioc->base_add_sg_single(sg_local, 2792 sgl_flags_last_element | 2793 sg_dma_len(sg_scmd), 2794 sg_dma_address(sg_scmd)); 2795 else 2796 ioc->base_add_sg_single(sg_local, sgl_flags | 2797 sg_dma_len(sg_scmd), 2798 sg_dma_address(sg_scmd)); 2799 sg_scmd = sg_next(sg_scmd); 2800 sg_local += ioc->sge_size; 2801 sges_left--; 2802 sges_in_segment--; 2803 } 2804 2805 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2806 if (!chain_req) 2807 return -1; 2808 chain = chain_req->chain_buffer; 2809 chain_dma = chain_req->chain_buffer_dma; 2810 } while (1); 2811 2812 2813 fill_in_last_segment: 2814 2815 /* fill the last segment */ 2816 while (sges_left) { 2817 if (sges_left == 1) 2818 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2819 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2820 else 2821 ioc->base_add_sg_single(sg_local, sgl_flags | 2822 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2823 sg_scmd = sg_next(sg_scmd); 2824 sg_local += ioc->sge_size; 2825 sges_left--; 2826 } 2827 2828 return 0; 2829 } 2830 2831 /** 2832 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2833 * @ioc: per adapter object 2834 * @scmd: scsi command 2835 * @smid: system request message index 2836 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2837 * constructed on need. 2838 * Context: none. 2839 * 2840 * The main routine that builds scatter gather table from a given 2841 * scsi request sent via the .queuecommand main handler. 2842 * 2843 * Return: 0 success, anything else error 2844 */ 2845 static int 2846 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2847 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2848 { 2849 Mpi25SCSIIORequest_t *mpi_request; 2850 dma_addr_t chain_dma; 2851 struct scatterlist *sg_scmd; 2852 void *sg_local, *chain; 2853 u32 chain_offset; 2854 u32 chain_length; 2855 int sges_left; 2856 u32 sges_in_segment; 2857 u8 simple_sgl_flags; 2858 u8 simple_sgl_flags_last; 2859 u8 chain_sgl_flags; 2860 struct chain_tracker *chain_req; 2861 2862 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2863 2864 /* init scatter gather flags */ 2865 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2866 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2867 simple_sgl_flags_last = simple_sgl_flags | 2868 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2869 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2870 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2871 2872 /* Check if we need to build a native SG list. */ 2873 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2874 smid, scmd, pcie_device) == 0)) { 2875 /* We built a native SG list, just return. */ 2876 return 0; 2877 } 2878 2879 sg_scmd = scsi_sglist(scmd); 2880 sges_left = _base_scsi_dma_map(scmd); 2881 if (sges_left < 0) 2882 return -ENOMEM; 2883 2884 sg_local = &mpi_request->SGL; 2885 sges_in_segment = (ioc->request_sz - 2886 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2887 if (sges_left <= sges_in_segment) 2888 goto fill_in_last_segment; 2889 2890 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2891 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2892 2893 /* fill in main message segment when there is a chain following */ 2894 while (sges_in_segment > 1) { 2895 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2896 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2897 sg_scmd = sg_next(sg_scmd); 2898 sg_local += ioc->sge_size_ieee; 2899 sges_left--; 2900 sges_in_segment--; 2901 } 2902 2903 /* initializing the pointers */ 2904 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2905 if (!chain_req) 2906 return -1; 2907 chain = chain_req->chain_buffer; 2908 chain_dma = chain_req->chain_buffer_dma; 2909 do { 2910 sges_in_segment = (sges_left <= 2911 ioc->max_sges_in_chain_message) ? sges_left : 2912 ioc->max_sges_in_chain_message; 2913 chain_offset = (sges_left == sges_in_segment) ? 2914 0 : sges_in_segment; 2915 chain_length = sges_in_segment * ioc->sge_size_ieee; 2916 if (chain_offset) 2917 chain_length += ioc->sge_size_ieee; 2918 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2919 chain_offset, chain_length, chain_dma); 2920 2921 sg_local = chain; 2922 if (!chain_offset) 2923 goto fill_in_last_segment; 2924 2925 /* fill in chain segments */ 2926 while (sges_in_segment) { 2927 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2928 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2929 sg_scmd = sg_next(sg_scmd); 2930 sg_local += ioc->sge_size_ieee; 2931 sges_left--; 2932 sges_in_segment--; 2933 } 2934 2935 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2936 if (!chain_req) 2937 return -1; 2938 chain = chain_req->chain_buffer; 2939 chain_dma = chain_req->chain_buffer_dma; 2940 } while (1); 2941 2942 2943 fill_in_last_segment: 2944 2945 /* fill the last segment */ 2946 while (sges_left > 0) { 2947 if (sges_left == 1) 2948 _base_add_sg_single_ieee(sg_local, 2949 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2950 sg_dma_address(sg_scmd)); 2951 else 2952 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2953 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2954 sg_scmd = sg_next(sg_scmd); 2955 sg_local += ioc->sge_size_ieee; 2956 sges_left--; 2957 } 2958 2959 return 0; 2960 } 2961 2962 /** 2963 * _base_build_sg_ieee - build generic sg for IEEE format 2964 * @ioc: per adapter object 2965 * @psge: virtual address for SGE 2966 * @data_out_dma: physical address for WRITES 2967 * @data_out_sz: data xfer size for WRITES 2968 * @data_in_dma: physical address for READS 2969 * @data_in_sz: data xfer size for READS 2970 */ 2971 static void 2972 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2973 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2974 size_t data_in_sz) 2975 { 2976 u8 sgl_flags; 2977 2978 if (!data_out_sz && !data_in_sz) { 2979 _base_build_zero_len_sge_ieee(ioc, psge); 2980 return; 2981 } 2982 2983 if (data_out_sz && data_in_sz) { 2984 /* WRITE sgel first */ 2985 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2986 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2987 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2988 data_out_dma); 2989 2990 /* incr sgel */ 2991 psge += ioc->sge_size_ieee; 2992 2993 /* READ sgel last */ 2994 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2995 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2996 data_in_dma); 2997 } else if (data_out_sz) /* WRITE */ { 2998 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2999 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3000 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3001 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 3002 data_out_dma); 3003 } else if (data_in_sz) /* READ */ { 3004 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3005 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3006 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3007 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 3008 data_in_dma); 3009 } 3010 } 3011 3012 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 3013 3014 /** 3015 * _base_config_dma_addressing - set dma addressing 3016 * @ioc: per adapter object 3017 * @pdev: PCI device struct 3018 * 3019 * Return: 0 for success, non-zero for failure. 3020 */ 3021 static int 3022 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 3023 { 3024 struct sysinfo s; 3025 u64 coherent_dma_mask, dma_mask; 3026 3027 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) { 3028 ioc->dma_mask = 32; 3029 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32); 3030 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 3031 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) { 3032 ioc->dma_mask = 63; 3033 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63); 3034 } else { 3035 ioc->dma_mask = 64; 3036 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64); 3037 } 3038 3039 if (ioc->use_32bit_dma) 3040 coherent_dma_mask = DMA_BIT_MASK(32); 3041 3042 if (dma_set_mask(&pdev->dev, dma_mask) || 3043 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask)) 3044 return -ENODEV; 3045 3046 if (ioc->dma_mask > 32) { 3047 ioc->base_add_sg_single = &_base_add_sg_single_64; 3048 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3049 } else { 3050 ioc->base_add_sg_single = &_base_add_sg_single_32; 3051 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3052 } 3053 3054 si_meminfo(&s); 3055 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3056 ioc->dma_mask, convert_to_kb(s.totalram)); 3057 3058 return 0; 3059 } 3060 3061 /** 3062 * _base_check_enable_msix - checks MSIX capabable. 3063 * @ioc: per adapter object 3064 * 3065 * Check to see if card is capable of MSIX, and set number 3066 * of available msix vectors 3067 */ 3068 static int 3069 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3070 { 3071 int base; 3072 u16 message_control; 3073 3074 /* Check whether controller SAS2008 B0 controller, 3075 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3076 */ 3077 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3078 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3079 return -EINVAL; 3080 } 3081 3082 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3083 if (!base) { 3084 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3085 return -EINVAL; 3086 } 3087 3088 /* get msix vector count */ 3089 /* NUMA_IO not supported for older controllers */ 3090 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3091 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3092 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3093 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3094 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3095 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3096 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3097 ioc->msix_vector_count = 1; 3098 else { 3099 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3100 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3101 } 3102 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3103 ioc->msix_vector_count)); 3104 return 0; 3105 } 3106 3107 /** 3108 * mpt3sas_base_free_irq - free irq 3109 * @ioc: per adapter object 3110 * 3111 * Freeing respective reply_queue from the list. 3112 */ 3113 void 3114 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3115 { 3116 unsigned int irq; 3117 struct adapter_reply_queue *reply_q, *next; 3118 3119 if (list_empty(&ioc->reply_queue_list)) 3120 return; 3121 3122 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3123 list_del(&reply_q->list); 3124 if (reply_q->is_iouring_poll_q) { 3125 kfree(reply_q); 3126 continue; 3127 } 3128 3129 if (ioc->smp_affinity_enable) { 3130 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); 3131 irq_update_affinity_hint(irq, NULL); 3132 } 3133 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3134 reply_q); 3135 kfree(reply_q); 3136 } 3137 } 3138 3139 /** 3140 * _base_request_irq - request irq 3141 * @ioc: per adapter object 3142 * @index: msix index into vector table 3143 * 3144 * Inserting respective reply_queue into the list. 3145 */ 3146 static int 3147 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3148 { 3149 struct pci_dev *pdev = ioc->pdev; 3150 struct adapter_reply_queue *reply_q; 3151 int r, qid; 3152 3153 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3154 if (!reply_q) { 3155 ioc_err(ioc, "unable to allocate memory %zu!\n", 3156 sizeof(struct adapter_reply_queue)); 3157 return -ENOMEM; 3158 } 3159 reply_q->ioc = ioc; 3160 reply_q->msix_index = index; 3161 3162 atomic_set(&reply_q->busy, 0); 3163 3164 if (index >= ioc->iopoll_q_start_index) { 3165 qid = index - ioc->iopoll_q_start_index; 3166 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3167 ioc->driver_name, ioc->id, qid); 3168 reply_q->is_iouring_poll_q = 1; 3169 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3170 goto out; 3171 } 3172 3173 3174 if (ioc->msix_enable) 3175 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3176 ioc->driver_name, ioc->id, index); 3177 else 3178 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3179 ioc->driver_name, ioc->id); 3180 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3181 IRQF_SHARED, reply_q->name, reply_q); 3182 if (r) { 3183 pr_err("%s: unable to allocate interrupt %d!\n", 3184 reply_q->name, pci_irq_vector(pdev, index)); 3185 kfree(reply_q); 3186 return -EBUSY; 3187 } 3188 out: 3189 INIT_LIST_HEAD(&reply_q->list); 3190 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3191 return 0; 3192 } 3193 3194 /** 3195 * _base_assign_reply_queues - assigning msix index for each cpu 3196 * @ioc: per adapter object 3197 * 3198 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3199 */ 3200 static void 3201 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3202 { 3203 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq; 3204 struct adapter_reply_queue *reply_q; 3205 int iopoll_q_count = ioc->reply_queue_count - 3206 ioc->iopoll_q_start_index; 3207 const struct cpumask *mask; 3208 3209 if (!_base_is_controller_msix_enabled(ioc)) 3210 return; 3211 3212 if (ioc->msix_load_balance) 3213 return; 3214 3215 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3216 3217 nr_cpus = num_online_cpus(); 3218 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3219 ioc->facts.MaxMSIxVectors); 3220 if (!nr_msix) 3221 return; 3222 3223 if (ioc->smp_affinity_enable) { 3224 3225 /* 3226 * set irq affinity to local numa node for those irqs 3227 * corresponding to high iops queues. 3228 */ 3229 if (ioc->high_iops_queues) { 3230 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev)); 3231 for (index = 0; index < ioc->high_iops_queues; 3232 index++) { 3233 irq = pci_irq_vector(ioc->pdev, index); 3234 irq_set_affinity_and_hint(irq, mask); 3235 } 3236 } 3237 3238 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3239 const cpumask_t *mask; 3240 3241 if (reply_q->msix_index < ioc->high_iops_queues || 3242 reply_q->msix_index >= ioc->iopoll_q_start_index) 3243 continue; 3244 3245 mask = pci_irq_get_affinity(ioc->pdev, 3246 reply_q->msix_index); 3247 if (!mask) { 3248 ioc_warn(ioc, "no affinity for msi %x\n", 3249 reply_q->msix_index); 3250 goto fall_back; 3251 } 3252 3253 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3254 if (cpu >= ioc->cpu_msix_table_sz) 3255 break; 3256 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3257 } 3258 } 3259 return; 3260 } 3261 3262 fall_back: 3263 cpu = cpumask_first(cpu_online_mask); 3264 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3265 index = 0; 3266 3267 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3268 unsigned int i, group = nr_cpus / nr_msix; 3269 3270 if (reply_q->msix_index < ioc->high_iops_queues || 3271 reply_q->msix_index >= ioc->iopoll_q_start_index) 3272 continue; 3273 3274 if (cpu >= nr_cpus) 3275 break; 3276 3277 if (index < nr_cpus % nr_msix) 3278 group++; 3279 3280 for (i = 0 ; i < group ; i++) { 3281 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3282 cpu = cpumask_next(cpu, cpu_online_mask); 3283 } 3284 index++; 3285 } 3286 } 3287 3288 /** 3289 * _base_check_and_enable_high_iops_queues - enable high iops mode 3290 * @ioc: per adapter object 3291 * @hba_msix_vector_count: msix vectors supported by HBA 3292 * 3293 * Enable high iops queues only if 3294 * - HBA is a SEA/AERO controller and 3295 * - MSI-Xs vector supported by the HBA is 128 and 3296 * - total CPU count in the system >=16 and 3297 * - loaded driver with default max_msix_vectors module parameter and 3298 * - system booted in non kdump mode 3299 * 3300 * Return: nothing. 3301 */ 3302 static void 3303 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3304 int hba_msix_vector_count) 3305 { 3306 u16 lnksta, speed; 3307 3308 /* 3309 * Disable high iops queues if io uring poll queues are enabled. 3310 */ 3311 if (perf_mode == MPT_PERF_MODE_IOPS || 3312 perf_mode == MPT_PERF_MODE_LATENCY || 3313 ioc->io_uring_poll_queues) { 3314 ioc->high_iops_queues = 0; 3315 return; 3316 } 3317 3318 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3319 3320 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3321 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3322 3323 if (speed < 0x4) { 3324 ioc->high_iops_queues = 0; 3325 return; 3326 } 3327 } 3328 3329 if (!reset_devices && ioc->is_aero_ioc && 3330 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3331 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3332 max_msix_vectors == -1) 3333 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3334 else 3335 ioc->high_iops_queues = 0; 3336 } 3337 3338 /** 3339 * mpt3sas_base_disable_msix - disables msix 3340 * @ioc: per adapter object 3341 * 3342 */ 3343 void 3344 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3345 { 3346 if (!ioc->msix_enable) 3347 return; 3348 pci_free_irq_vectors(ioc->pdev); 3349 ioc->msix_enable = 0; 3350 kfree(ioc->io_uring_poll_queues); 3351 } 3352 3353 /** 3354 * _base_alloc_irq_vectors - allocate msix vectors 3355 * @ioc: per adapter object 3356 * 3357 */ 3358 static int 3359 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3360 { 3361 int i, irq_flags = PCI_IRQ_MSIX; 3362 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3363 struct irq_affinity *descp = &desc; 3364 /* 3365 * Don't allocate msix vectors for poll_queues. 3366 * msix_vectors is always within a range of FW supported reply queue. 3367 */ 3368 int nr_msix_vectors = ioc->iopoll_q_start_index; 3369 3370 3371 if (ioc->smp_affinity_enable) 3372 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3373 else 3374 descp = NULL; 3375 3376 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3377 ioc->reply_queue_count, nr_msix_vectors); 3378 3379 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3380 ioc->high_iops_queues, 3381 nr_msix_vectors, irq_flags, descp); 3382 3383 return i; 3384 } 3385 3386 /** 3387 * _base_enable_msix - enables msix, failback to io_apic 3388 * @ioc: per adapter object 3389 * 3390 */ 3391 static int 3392 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3393 { 3394 int r; 3395 int i, local_max_msix_vectors; 3396 u8 try_msix = 0; 3397 int iopoll_q_count = 0; 3398 3399 ioc->msix_load_balance = false; 3400 3401 if (msix_disable == -1 || msix_disable == 0) 3402 try_msix = 1; 3403 3404 if (!try_msix) 3405 goto try_ioapic; 3406 3407 if (_base_check_enable_msix(ioc) != 0) 3408 goto try_ioapic; 3409 3410 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3411 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3412 ioc->cpu_count, max_msix_vectors); 3413 3414 ioc->reply_queue_count = 3415 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3416 3417 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3418 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3419 else 3420 local_max_msix_vectors = max_msix_vectors; 3421 3422 if (local_max_msix_vectors == 0) 3423 goto try_ioapic; 3424 3425 /* 3426 * Enable msix_load_balance only if combined reply queue mode is 3427 * disabled on SAS3 & above generation HBA devices. 3428 */ 3429 if (!ioc->combined_reply_queue && 3430 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3431 ioc_info(ioc, 3432 "combined ReplyQueue is off, Enabling msix load balance\n"); 3433 ioc->msix_load_balance = true; 3434 } 3435 3436 /* 3437 * smp affinity setting is not need when msix load balance 3438 * is enabled. 3439 */ 3440 if (ioc->msix_load_balance) 3441 ioc->smp_affinity_enable = 0; 3442 3443 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3444 ioc->shost->host_tagset = 0; 3445 3446 /* 3447 * Enable io uring poll queues only if host_tagset is enabled. 3448 */ 3449 if (ioc->shost->host_tagset) 3450 iopoll_q_count = poll_queues; 3451 3452 if (iopoll_q_count) { 3453 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3454 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3455 if (!ioc->io_uring_poll_queues) 3456 iopoll_q_count = 0; 3457 } 3458 3459 if (ioc->is_aero_ioc) 3460 _base_check_and_enable_high_iops_queues(ioc, 3461 ioc->msix_vector_count); 3462 3463 /* 3464 * Add high iops queues count to reply queue count if high iops queues 3465 * are enabled. 3466 */ 3467 ioc->reply_queue_count = min_t(int, 3468 ioc->reply_queue_count + ioc->high_iops_queues, 3469 ioc->msix_vector_count); 3470 3471 /* 3472 * Adjust the reply queue count incase reply queue count 3473 * exceeds the user provided MSIx vectors count. 3474 */ 3475 if (local_max_msix_vectors > 0) 3476 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3477 ioc->reply_queue_count); 3478 /* 3479 * Add io uring poll queues count to reply queues count 3480 * if io uring is enabled in driver. 3481 */ 3482 if (iopoll_q_count) { 3483 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3484 iopoll_q_count = 0; 3485 ioc->reply_queue_count = min_t(int, 3486 ioc->reply_queue_count + iopoll_q_count, 3487 ioc->msix_vector_count); 3488 } 3489 3490 /* 3491 * Starting index of io uring poll queues in reply queue list. 3492 */ 3493 ioc->iopoll_q_start_index = 3494 ioc->reply_queue_count - iopoll_q_count; 3495 3496 r = _base_alloc_irq_vectors(ioc); 3497 if (r < 0) { 3498 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3499 goto try_ioapic; 3500 } 3501 3502 /* 3503 * Adjust the reply queue count if the allocated 3504 * MSIx vectors is less then the requested number 3505 * of MSIx vectors. 3506 */ 3507 if (r < ioc->iopoll_q_start_index) { 3508 ioc->reply_queue_count = r + iopoll_q_count; 3509 ioc->iopoll_q_start_index = 3510 ioc->reply_queue_count - iopoll_q_count; 3511 } 3512 3513 ioc->msix_enable = 1; 3514 for (i = 0; i < ioc->reply_queue_count; i++) { 3515 r = _base_request_irq(ioc, i); 3516 if (r) { 3517 mpt3sas_base_free_irq(ioc); 3518 mpt3sas_base_disable_msix(ioc); 3519 goto try_ioapic; 3520 } 3521 } 3522 3523 ioc_info(ioc, "High IOPs queues : %s\n", 3524 ioc->high_iops_queues ? "enabled" : "disabled"); 3525 3526 return 0; 3527 3528 /* failback to io_apic interrupt routing */ 3529 try_ioapic: 3530 ioc->high_iops_queues = 0; 3531 ioc_info(ioc, "High IOPs queues : disabled\n"); 3532 ioc->reply_queue_count = 1; 3533 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3534 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_INTX); 3535 if (r < 0) { 3536 dfailprintk(ioc, 3537 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3538 r)); 3539 } else 3540 r = _base_request_irq(ioc, 0); 3541 3542 return r; 3543 } 3544 3545 /** 3546 * mpt3sas_base_unmap_resources - free controller resources 3547 * @ioc: per adapter object 3548 */ 3549 static void 3550 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3551 { 3552 struct pci_dev *pdev = ioc->pdev; 3553 3554 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3555 3556 mpt3sas_base_free_irq(ioc); 3557 mpt3sas_base_disable_msix(ioc); 3558 3559 kfree(ioc->replyPostRegisterIndex); 3560 ioc->replyPostRegisterIndex = NULL; 3561 3562 3563 if (ioc->chip_phys) { 3564 iounmap(ioc->chip); 3565 ioc->chip_phys = 0; 3566 } 3567 3568 if (pci_is_enabled(pdev)) { 3569 pci_release_selected_regions(ioc->pdev, ioc->bars); 3570 pci_disable_device(pdev); 3571 } 3572 } 3573 3574 static int 3575 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3576 3577 /** 3578 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3579 * and if it is in fault state then issue diag reset. 3580 * @ioc: per adapter object 3581 * 3582 * Return: 0 for success, non-zero for failure. 3583 */ 3584 int 3585 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3586 { 3587 u32 ioc_state; 3588 int rc = -EFAULT; 3589 3590 dinitprintk(ioc, pr_info("%s\n", __func__)); 3591 if (ioc->pci_error_recovery) 3592 return 0; 3593 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3594 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3595 3596 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3597 mpt3sas_print_fault_code(ioc, ioc_state & 3598 MPI2_DOORBELL_DATA_MASK); 3599 mpt3sas_base_mask_interrupts(ioc); 3600 rc = _base_diag_reset(ioc); 3601 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3602 MPI2_IOC_STATE_COREDUMP) { 3603 mpt3sas_print_coredump_info(ioc, ioc_state & 3604 MPI2_DOORBELL_DATA_MASK); 3605 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3606 mpt3sas_base_mask_interrupts(ioc); 3607 rc = _base_diag_reset(ioc); 3608 } 3609 3610 return rc; 3611 } 3612 3613 /** 3614 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3615 * @ioc: per adapter object 3616 * 3617 * Return: 0 for success, non-zero for failure. 3618 */ 3619 int 3620 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3621 { 3622 struct pci_dev *pdev = ioc->pdev; 3623 u32 memap_sz; 3624 u32 pio_sz; 3625 int i, r = 0, rc; 3626 u64 pio_chip = 0; 3627 phys_addr_t chip_phys = 0; 3628 struct adapter_reply_queue *reply_q; 3629 int iopoll_q_count = 0; 3630 3631 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3632 3633 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3634 if (pci_enable_device_mem(pdev)) { 3635 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3636 ioc->bars = 0; 3637 return -ENODEV; 3638 } 3639 3640 3641 if (pci_request_selected_regions(pdev, ioc->bars, 3642 ioc->driver_name)) { 3643 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3644 ioc->bars = 0; 3645 r = -ENODEV; 3646 goto out_fail; 3647 } 3648 3649 pci_set_master(pdev); 3650 3651 3652 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3653 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3654 r = -ENODEV; 3655 goto out_fail; 3656 } 3657 3658 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3659 (!memap_sz || !pio_sz); i++) { 3660 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3661 if (pio_sz) 3662 continue; 3663 pio_chip = (u64)pci_resource_start(pdev, i); 3664 pio_sz = pci_resource_len(pdev, i); 3665 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3666 if (memap_sz) 3667 continue; 3668 ioc->chip_phys = pci_resource_start(pdev, i); 3669 chip_phys = ioc->chip_phys; 3670 memap_sz = pci_resource_len(pdev, i); 3671 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3672 } 3673 } 3674 3675 if (ioc->chip == NULL) { 3676 ioc_err(ioc, 3677 "unable to map adapter memory! or resource not found\n"); 3678 r = -EINVAL; 3679 goto out_fail; 3680 } 3681 3682 mpt3sas_base_mask_interrupts(ioc); 3683 3684 r = _base_get_ioc_facts(ioc); 3685 if (r) { 3686 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3687 if (rc || (_base_get_ioc_facts(ioc))) 3688 goto out_fail; 3689 } 3690 3691 if (!ioc->rdpq_array_enable_assigned) { 3692 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3693 ioc->rdpq_array_enable_assigned = 1; 3694 } 3695 3696 r = _base_enable_msix(ioc); 3697 if (r) 3698 goto out_fail; 3699 3700 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3701 for (i = 0; i < iopoll_q_count; i++) { 3702 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3703 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3704 } 3705 3706 if (!ioc->is_driver_loading) 3707 _base_init_irqpolls(ioc); 3708 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3709 * revision HBAs and also only when reply queue count is greater than 8 3710 */ 3711 if (ioc->combined_reply_queue) { 3712 /* Determine the Supplemental Reply Post Host Index Registers 3713 * Addresse. Supplemental Reply Post Host Index Registers 3714 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3715 * each register is at offset bytes of 3716 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3717 */ 3718 ioc->replyPostRegisterIndex = kcalloc( 3719 ioc->combined_reply_index_count, 3720 sizeof(resource_size_t *), GFP_KERNEL); 3721 if (!ioc->replyPostRegisterIndex) { 3722 ioc_err(ioc, 3723 "allocation for replyPostRegisterIndex failed!\n"); 3724 r = -ENOMEM; 3725 goto out_fail; 3726 } 3727 3728 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3729 ioc->replyPostRegisterIndex[i] = 3730 (resource_size_t __iomem *) 3731 ((u8 __force *)&ioc->chip->Doorbell + 3732 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3733 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3734 } 3735 } 3736 3737 if (ioc->is_warpdrive) { 3738 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3739 &ioc->chip->ReplyPostHostIndex; 3740 3741 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3742 ioc->reply_post_host_index[i] = 3743 (resource_size_t __iomem *) 3744 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3745 * 4))); 3746 } 3747 3748 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3749 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3750 pr_info("%s: enabled: index: %d\n", 3751 reply_q->name, reply_q->msix_index); 3752 continue; 3753 } 3754 3755 pr_info("%s: %s enabled: IRQ %d\n", 3756 reply_q->name, 3757 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3758 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3759 } 3760 3761 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3762 &chip_phys, ioc->chip, memap_sz); 3763 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3764 (unsigned long long)pio_chip, pio_sz); 3765 3766 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3767 pci_save_state(pdev); 3768 return 0; 3769 3770 out_fail: 3771 mpt3sas_base_unmap_resources(ioc); 3772 return r; 3773 } 3774 3775 /** 3776 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3777 * @ioc: per adapter object 3778 * @smid: system request message index(smid zero is invalid) 3779 * 3780 * Return: virt pointer to message frame. 3781 */ 3782 void * 3783 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3784 { 3785 return (void *)(ioc->request + (smid * ioc->request_sz)); 3786 } 3787 3788 /** 3789 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3790 * @ioc: per adapter object 3791 * @smid: system request message index 3792 * 3793 * Return: virt pointer to sense buffer. 3794 */ 3795 void * 3796 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3797 { 3798 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3799 } 3800 3801 /** 3802 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3803 * @ioc: per adapter object 3804 * @smid: system request message index 3805 * 3806 * Return: phys pointer to the low 32bit address of the sense buffer. 3807 */ 3808 __le32 3809 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3810 { 3811 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3812 SCSI_SENSE_BUFFERSIZE)); 3813 } 3814 3815 /** 3816 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3817 * @ioc: per adapter object 3818 * @smid: system request message index 3819 * 3820 * Return: virt pointer to a PCIe SGL. 3821 */ 3822 void * 3823 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3824 { 3825 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3826 } 3827 3828 /** 3829 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3830 * @ioc: per adapter object 3831 * @smid: system request message index 3832 * 3833 * Return: phys pointer to the address of the PCIe buffer. 3834 */ 3835 dma_addr_t 3836 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3837 { 3838 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3839 } 3840 3841 /** 3842 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3843 * @ioc: per adapter object 3844 * @phys_addr: lower 32 physical addr of the reply 3845 * 3846 * Converts 32bit lower physical addr into a virt address. 3847 */ 3848 void * 3849 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3850 { 3851 if (!phys_addr) 3852 return NULL; 3853 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3854 } 3855 3856 /** 3857 * _base_get_msix_index - get the msix index 3858 * @ioc: per adapter object 3859 * @scmd: scsi_cmnd object 3860 * 3861 * Return: msix index of general reply queues, 3862 * i.e. reply queue on which IO request's reply 3863 * should be posted by the HBA firmware. 3864 */ 3865 static inline u8 3866 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3867 struct scsi_cmnd *scmd) 3868 { 3869 /* Enables reply_queue load balancing */ 3870 if (ioc->msix_load_balance) 3871 return ioc->reply_queue_count ? 3872 base_mod64(atomic64_add_return(1, 3873 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3874 3875 if (scmd && ioc->shost->nr_hw_queues > 1) { 3876 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3877 3878 return blk_mq_unique_tag_to_hwq(tag) + 3879 ioc->high_iops_queues; 3880 } 3881 3882 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3883 } 3884 3885 /** 3886 * _base_get_high_iops_msix_index - get the msix index of 3887 * high iops queues 3888 * @ioc: per adapter object 3889 * @scmd: scsi_cmnd object 3890 * 3891 * Return: msix index of high iops reply queues. 3892 * i.e. high iops reply queue on which IO request's 3893 * reply should be posted by the HBA firmware. 3894 */ 3895 static inline u8 3896 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3897 struct scsi_cmnd *scmd) 3898 { 3899 /** 3900 * Round robin the IO interrupts among the high iops 3901 * reply queues in terms of batch count 16 when outstanding 3902 * IOs on the target device is >=8. 3903 */ 3904 3905 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3906 return base_mod64(( 3907 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3908 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3909 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3910 3911 return _base_get_msix_index(ioc, scmd); 3912 } 3913 3914 /** 3915 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3916 * @ioc: per adapter object 3917 * @cb_idx: callback index 3918 * 3919 * Return: smid (zero is invalid) 3920 */ 3921 u16 3922 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3923 { 3924 unsigned long flags; 3925 struct request_tracker *request; 3926 u16 smid; 3927 3928 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3929 if (list_empty(&ioc->internal_free_list)) { 3930 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3931 ioc_err(ioc, "%s: smid not available\n", __func__); 3932 return 0; 3933 } 3934 3935 request = list_entry(ioc->internal_free_list.next, 3936 struct request_tracker, tracker_list); 3937 request->cb_idx = cb_idx; 3938 smid = request->smid; 3939 list_del(&request->tracker_list); 3940 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3941 return smid; 3942 } 3943 3944 /** 3945 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3946 * @ioc: per adapter object 3947 * @cb_idx: callback index 3948 * @scmd: pointer to scsi command object 3949 * 3950 * Return: smid (zero is invalid) 3951 */ 3952 u16 3953 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3954 struct scsi_cmnd *scmd) 3955 { 3956 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3957 u16 smid; 3958 u32 tag, unique_tag; 3959 3960 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3961 tag = blk_mq_unique_tag_to_tag(unique_tag); 3962 3963 /* 3964 * Store hw queue number corresponding to the tag. 3965 * This hw queue number is used later to determine 3966 * the unique_tag using the logic below. This unique_tag 3967 * is used to retrieve the scmd pointer corresponding 3968 * to tag using scsi_host_find_tag() API. 3969 * 3970 * tag = smid - 1; 3971 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3972 */ 3973 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3974 3975 smid = tag + 1; 3976 request->cb_idx = cb_idx; 3977 request->smid = smid; 3978 request->scmd = scmd; 3979 INIT_LIST_HEAD(&request->chain_list); 3980 return smid; 3981 } 3982 3983 /** 3984 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3985 * @ioc: per adapter object 3986 * @cb_idx: callback index 3987 * 3988 * Return: smid (zero is invalid) 3989 */ 3990 u16 3991 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3992 { 3993 unsigned long flags; 3994 struct request_tracker *request; 3995 u16 smid; 3996 3997 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3998 if (list_empty(&ioc->hpr_free_list)) { 3999 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4000 return 0; 4001 } 4002 4003 request = list_entry(ioc->hpr_free_list.next, 4004 struct request_tracker, tracker_list); 4005 request->cb_idx = cb_idx; 4006 smid = request->smid; 4007 list_del(&request->tracker_list); 4008 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4009 return smid; 4010 } 4011 4012 static void 4013 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 4014 { 4015 /* 4016 * See _wait_for_commands_to_complete() call with regards to this code. 4017 */ 4018 if (ioc->shost_recovery && ioc->pending_io_count) { 4019 ioc->pending_io_count = scsi_host_busy(ioc->shost); 4020 if (ioc->pending_io_count == 0) 4021 wake_up(&ioc->reset_wq); 4022 } 4023 } 4024 4025 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 4026 struct scsiio_tracker *st) 4027 { 4028 if (WARN_ON(st->smid == 0)) 4029 return; 4030 st->cb_idx = 0xFF; 4031 st->direct_io = 0; 4032 st->scmd = NULL; 4033 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4034 st->smid = 0; 4035 } 4036 4037 /** 4038 * mpt3sas_base_free_smid - put smid back on free_list 4039 * @ioc: per adapter object 4040 * @smid: system request message index 4041 */ 4042 void 4043 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4044 { 4045 unsigned long flags; 4046 int i; 4047 4048 if (smid < ioc->hi_priority_smid) { 4049 struct scsiio_tracker *st; 4050 void *request; 4051 4052 st = _get_st_from_smid(ioc, smid); 4053 if (!st) { 4054 _base_recovery_check(ioc); 4055 return; 4056 } 4057 4058 /* Clear MPI request frame */ 4059 request = mpt3sas_base_get_msg_frame(ioc, smid); 4060 memset(request, 0, ioc->request_sz); 4061 4062 mpt3sas_base_clear_st(ioc, st); 4063 _base_recovery_check(ioc); 4064 ioc->io_queue_num[smid - 1] = 0; 4065 return; 4066 } 4067 4068 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4069 if (smid < ioc->internal_smid) { 4070 /* hi-priority */ 4071 i = smid - ioc->hi_priority_smid; 4072 ioc->hpr_lookup[i].cb_idx = 0xFF; 4073 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4074 } else if (smid <= ioc->hba_queue_depth) { 4075 /* internal queue */ 4076 i = smid - ioc->internal_smid; 4077 ioc->internal_lookup[i].cb_idx = 0xFF; 4078 list_add(&ioc->internal_lookup[i].tracker_list, 4079 &ioc->internal_free_list); 4080 } 4081 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4082 } 4083 4084 /** 4085 * _base_mpi_ep_writeq - 32 bit write to MMIO 4086 * @b: data payload 4087 * @addr: address in MMIO space 4088 * @writeq_lock: spin lock 4089 * 4090 * This special handling for MPI EP to take care of 32 bit 4091 * environment where its not quarenteed to send the entire word 4092 * in one transfer. 4093 */ 4094 static inline void 4095 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4096 spinlock_t *writeq_lock) 4097 { 4098 unsigned long flags; 4099 4100 spin_lock_irqsave(writeq_lock, flags); 4101 __raw_writel((u32)(b), addr); 4102 __raw_writel((u32)(b >> 32), (addr + 4)); 4103 spin_unlock_irqrestore(writeq_lock, flags); 4104 } 4105 4106 /** 4107 * _base_writeq - 64 bit write to MMIO 4108 * @b: data payload 4109 * @addr: address in MMIO space 4110 * @writeq_lock: spin lock 4111 * 4112 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4113 * care of 32 bit environment where its not quarenteed to send the entire word 4114 * in one transfer. 4115 */ 4116 #if defined(writeq) && defined(CONFIG_64BIT) 4117 static inline void 4118 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4119 { 4120 wmb(); 4121 __raw_writeq(b, addr); 4122 barrier(); 4123 } 4124 #else 4125 static inline void 4126 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4127 { 4128 _base_mpi_ep_writeq(b, addr, writeq_lock); 4129 } 4130 #endif 4131 4132 /** 4133 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4134 * variable of scsi tracker 4135 * @ioc: per adapter object 4136 * @smid: system request message index 4137 * 4138 * Return: msix index. 4139 */ 4140 static u8 4141 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4142 { 4143 struct scsiio_tracker *st = NULL; 4144 4145 if (smid < ioc->hi_priority_smid) 4146 st = _get_st_from_smid(ioc, smid); 4147 4148 if (st == NULL) 4149 return _base_get_msix_index(ioc, NULL); 4150 4151 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4152 return st->msix_io; 4153 } 4154 4155 /** 4156 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4157 * @ioc: per adapter object 4158 * @smid: system request message index 4159 * @handle: device handle 4160 */ 4161 static void 4162 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4163 u16 smid, u16 handle) 4164 { 4165 Mpi2RequestDescriptorUnion_t descriptor; 4166 u64 *request = (u64 *)&descriptor; 4167 void *mpi_req_iomem; 4168 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4169 4170 _clone_sg_entries(ioc, (void *) mfp, smid); 4171 mpi_req_iomem = (void __force *)ioc->chip + 4172 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4173 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4174 ioc->request_sz); 4175 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4176 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4177 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4178 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4179 descriptor.SCSIIO.LMID = 0; 4180 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4181 &ioc->scsi_lookup_lock); 4182 } 4183 4184 /** 4185 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4186 * @ioc: per adapter object 4187 * @smid: system request message index 4188 * @handle: device handle 4189 */ 4190 static void 4191 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4192 { 4193 Mpi2RequestDescriptorUnion_t descriptor; 4194 u64 *request = (u64 *)&descriptor; 4195 4196 4197 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4198 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4199 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4200 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4201 descriptor.SCSIIO.LMID = 0; 4202 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4203 &ioc->scsi_lookup_lock); 4204 } 4205 4206 /** 4207 * _base_put_smid_fast_path - send fast path request to firmware 4208 * @ioc: per adapter object 4209 * @smid: system request message index 4210 * @handle: device handle 4211 */ 4212 static void 4213 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4214 u16 handle) 4215 { 4216 Mpi2RequestDescriptorUnion_t descriptor; 4217 u64 *request = (u64 *)&descriptor; 4218 4219 descriptor.SCSIIO.RequestFlags = 4220 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4221 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4222 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4223 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4224 descriptor.SCSIIO.LMID = 0; 4225 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4226 &ioc->scsi_lookup_lock); 4227 } 4228 4229 /** 4230 * _base_put_smid_hi_priority - send Task Management request to firmware 4231 * @ioc: per adapter object 4232 * @smid: system request message index 4233 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4234 */ 4235 static void 4236 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4237 u16 msix_task) 4238 { 4239 Mpi2RequestDescriptorUnion_t descriptor; 4240 void *mpi_req_iomem; 4241 u64 *request; 4242 4243 if (ioc->is_mcpu_endpoint) { 4244 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4245 4246 /* TBD 256 is offset within sys register. */ 4247 mpi_req_iomem = (void __force *)ioc->chip 4248 + MPI_FRAME_START_OFFSET 4249 + (smid * ioc->request_sz); 4250 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4251 ioc->request_sz); 4252 } 4253 4254 request = (u64 *)&descriptor; 4255 4256 descriptor.HighPriority.RequestFlags = 4257 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4258 descriptor.HighPriority.MSIxIndex = msix_task; 4259 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4260 descriptor.HighPriority.LMID = 0; 4261 descriptor.HighPriority.Reserved1 = 0; 4262 if (ioc->is_mcpu_endpoint) 4263 _base_mpi_ep_writeq(*request, 4264 &ioc->chip->RequestDescriptorPostLow, 4265 &ioc->scsi_lookup_lock); 4266 else 4267 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4268 &ioc->scsi_lookup_lock); 4269 } 4270 4271 /** 4272 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4273 * firmware 4274 * @ioc: per adapter object 4275 * @smid: system request message index 4276 */ 4277 void 4278 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4279 { 4280 Mpi2RequestDescriptorUnion_t descriptor; 4281 u64 *request = (u64 *)&descriptor; 4282 4283 descriptor.Default.RequestFlags = 4284 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4285 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4286 descriptor.Default.SMID = cpu_to_le16(smid); 4287 descriptor.Default.LMID = 0; 4288 descriptor.Default.DescriptorTypeDependent = 0; 4289 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4290 &ioc->scsi_lookup_lock); 4291 } 4292 4293 /** 4294 * _base_put_smid_default - Default, primarily used for config pages 4295 * @ioc: per adapter object 4296 * @smid: system request message index 4297 */ 4298 static void 4299 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4300 { 4301 Mpi2RequestDescriptorUnion_t descriptor; 4302 void *mpi_req_iomem; 4303 u64 *request; 4304 4305 if (ioc->is_mcpu_endpoint) { 4306 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4307 4308 _clone_sg_entries(ioc, (void *) mfp, smid); 4309 /* TBD 256 is offset within sys register */ 4310 mpi_req_iomem = (void __force *)ioc->chip + 4311 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4312 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4313 ioc->request_sz); 4314 } 4315 request = (u64 *)&descriptor; 4316 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4317 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4318 descriptor.Default.SMID = cpu_to_le16(smid); 4319 descriptor.Default.LMID = 0; 4320 descriptor.Default.DescriptorTypeDependent = 0; 4321 if (ioc->is_mcpu_endpoint) 4322 _base_mpi_ep_writeq(*request, 4323 &ioc->chip->RequestDescriptorPostLow, 4324 &ioc->scsi_lookup_lock); 4325 else 4326 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4327 &ioc->scsi_lookup_lock); 4328 } 4329 4330 /** 4331 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4332 * Atomic Request Descriptor 4333 * @ioc: per adapter object 4334 * @smid: system request message index 4335 * @handle: device handle, unused in this function, for function type match 4336 * 4337 * Return: nothing. 4338 */ 4339 static void 4340 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4341 u16 handle) 4342 { 4343 Mpi26AtomicRequestDescriptor_t descriptor; 4344 u32 *request = (u32 *)&descriptor; 4345 4346 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4347 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4348 descriptor.SMID = cpu_to_le16(smid); 4349 4350 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4351 } 4352 4353 /** 4354 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4355 * using Atomic Request Descriptor 4356 * @ioc: per adapter object 4357 * @smid: system request message index 4358 * @handle: device handle, unused in this function, for function type match 4359 * Return: nothing 4360 */ 4361 static void 4362 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4363 u16 handle) 4364 { 4365 Mpi26AtomicRequestDescriptor_t descriptor; 4366 u32 *request = (u32 *)&descriptor; 4367 4368 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4369 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4370 descriptor.SMID = cpu_to_le16(smid); 4371 4372 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4373 } 4374 4375 /** 4376 * _base_put_smid_hi_priority_atomic - send Task Management request to 4377 * firmware using Atomic Request Descriptor 4378 * @ioc: per adapter object 4379 * @smid: system request message index 4380 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4381 * 4382 * Return: nothing. 4383 */ 4384 static void 4385 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4386 u16 msix_task) 4387 { 4388 Mpi26AtomicRequestDescriptor_t descriptor; 4389 u32 *request = (u32 *)&descriptor; 4390 4391 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4392 descriptor.MSIxIndex = msix_task; 4393 descriptor.SMID = cpu_to_le16(smid); 4394 4395 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4396 } 4397 4398 /** 4399 * _base_put_smid_default_atomic - Default, primarily used for config pages 4400 * use Atomic Request Descriptor 4401 * @ioc: per adapter object 4402 * @smid: system request message index 4403 * 4404 * Return: nothing. 4405 */ 4406 static void 4407 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4408 { 4409 Mpi26AtomicRequestDescriptor_t descriptor; 4410 u32 *request = (u32 *)&descriptor; 4411 4412 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4413 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4414 descriptor.SMID = cpu_to_le16(smid); 4415 4416 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4417 } 4418 4419 /** 4420 * _base_display_OEMs_branding - Display branding string 4421 * @ioc: per adapter object 4422 */ 4423 static void 4424 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4425 { 4426 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4427 return; 4428 4429 switch (ioc->pdev->subsystem_vendor) { 4430 case PCI_VENDOR_ID_INTEL: 4431 switch (ioc->pdev->device) { 4432 case MPI2_MFGPAGE_DEVID_SAS2008: 4433 switch (ioc->pdev->subsystem_device) { 4434 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4435 ioc_info(ioc, "%s\n", 4436 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4437 break; 4438 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4439 ioc_info(ioc, "%s\n", 4440 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4441 break; 4442 case MPT2SAS_INTEL_SSD910_SSDID: 4443 ioc_info(ioc, "%s\n", 4444 MPT2SAS_INTEL_SSD910_BRANDING); 4445 break; 4446 default: 4447 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4448 ioc->pdev->subsystem_device); 4449 break; 4450 } 4451 break; 4452 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4453 switch (ioc->pdev->subsystem_device) { 4454 case MPT2SAS_INTEL_RS25GB008_SSDID: 4455 ioc_info(ioc, "%s\n", 4456 MPT2SAS_INTEL_RS25GB008_BRANDING); 4457 break; 4458 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4459 ioc_info(ioc, "%s\n", 4460 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4461 break; 4462 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4463 ioc_info(ioc, "%s\n", 4464 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4465 break; 4466 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4467 ioc_info(ioc, "%s\n", 4468 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4469 break; 4470 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4471 ioc_info(ioc, "%s\n", 4472 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4473 break; 4474 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4475 ioc_info(ioc, "%s\n", 4476 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4477 break; 4478 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4479 ioc_info(ioc, "%s\n", 4480 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4481 break; 4482 default: 4483 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4484 ioc->pdev->subsystem_device); 4485 break; 4486 } 4487 break; 4488 case MPI25_MFGPAGE_DEVID_SAS3008: 4489 switch (ioc->pdev->subsystem_device) { 4490 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4491 ioc_info(ioc, "%s\n", 4492 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4493 break; 4494 4495 case MPT3SAS_INTEL_RS3GC008_SSDID: 4496 ioc_info(ioc, "%s\n", 4497 MPT3SAS_INTEL_RS3GC008_BRANDING); 4498 break; 4499 case MPT3SAS_INTEL_RS3FC044_SSDID: 4500 ioc_info(ioc, "%s\n", 4501 MPT3SAS_INTEL_RS3FC044_BRANDING); 4502 break; 4503 case MPT3SAS_INTEL_RS3UC080_SSDID: 4504 ioc_info(ioc, "%s\n", 4505 MPT3SAS_INTEL_RS3UC080_BRANDING); 4506 break; 4507 default: 4508 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4509 ioc->pdev->subsystem_device); 4510 break; 4511 } 4512 break; 4513 default: 4514 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4515 ioc->pdev->subsystem_device); 4516 break; 4517 } 4518 break; 4519 case PCI_VENDOR_ID_DELL: 4520 switch (ioc->pdev->device) { 4521 case MPI2_MFGPAGE_DEVID_SAS2008: 4522 switch (ioc->pdev->subsystem_device) { 4523 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4524 ioc_info(ioc, "%s\n", 4525 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4526 break; 4527 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4528 ioc_info(ioc, "%s\n", 4529 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4530 break; 4531 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4532 ioc_info(ioc, "%s\n", 4533 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4534 break; 4535 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4536 ioc_info(ioc, "%s\n", 4537 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4538 break; 4539 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4540 ioc_info(ioc, "%s\n", 4541 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4542 break; 4543 case MPT2SAS_DELL_PERC_H200_SSDID: 4544 ioc_info(ioc, "%s\n", 4545 MPT2SAS_DELL_PERC_H200_BRANDING); 4546 break; 4547 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4548 ioc_info(ioc, "%s\n", 4549 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4550 break; 4551 default: 4552 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4553 ioc->pdev->subsystem_device); 4554 break; 4555 } 4556 break; 4557 case MPI25_MFGPAGE_DEVID_SAS3008: 4558 switch (ioc->pdev->subsystem_device) { 4559 case MPT3SAS_DELL_12G_HBA_SSDID: 4560 ioc_info(ioc, "%s\n", 4561 MPT3SAS_DELL_12G_HBA_BRANDING); 4562 break; 4563 default: 4564 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4565 ioc->pdev->subsystem_device); 4566 break; 4567 } 4568 break; 4569 default: 4570 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4571 ioc->pdev->subsystem_device); 4572 break; 4573 } 4574 break; 4575 case PCI_VENDOR_ID_CISCO: 4576 switch (ioc->pdev->device) { 4577 case MPI25_MFGPAGE_DEVID_SAS3008: 4578 switch (ioc->pdev->subsystem_device) { 4579 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4580 ioc_info(ioc, "%s\n", 4581 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4582 break; 4583 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4584 ioc_info(ioc, "%s\n", 4585 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4586 break; 4587 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4588 ioc_info(ioc, "%s\n", 4589 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4590 break; 4591 default: 4592 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4593 ioc->pdev->subsystem_device); 4594 break; 4595 } 4596 break; 4597 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4598 switch (ioc->pdev->subsystem_device) { 4599 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4600 ioc_info(ioc, "%s\n", 4601 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4602 break; 4603 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4604 ioc_info(ioc, "%s\n", 4605 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4606 break; 4607 default: 4608 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4609 ioc->pdev->subsystem_device); 4610 break; 4611 } 4612 break; 4613 default: 4614 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4615 ioc->pdev->subsystem_device); 4616 break; 4617 } 4618 break; 4619 case MPT2SAS_HP_3PAR_SSVID: 4620 switch (ioc->pdev->device) { 4621 case MPI2_MFGPAGE_DEVID_SAS2004: 4622 switch (ioc->pdev->subsystem_device) { 4623 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4624 ioc_info(ioc, "%s\n", 4625 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4626 break; 4627 default: 4628 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4629 ioc->pdev->subsystem_device); 4630 break; 4631 } 4632 break; 4633 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4634 switch (ioc->pdev->subsystem_device) { 4635 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4636 ioc_info(ioc, "%s\n", 4637 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4638 break; 4639 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4640 ioc_info(ioc, "%s\n", 4641 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4642 break; 4643 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4644 ioc_info(ioc, "%s\n", 4645 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4646 break; 4647 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4648 ioc_info(ioc, "%s\n", 4649 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4650 break; 4651 default: 4652 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4653 ioc->pdev->subsystem_device); 4654 break; 4655 } 4656 break; 4657 default: 4658 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4659 ioc->pdev->subsystem_device); 4660 break; 4661 } 4662 break; 4663 default: 4664 break; 4665 } 4666 } 4667 4668 /** 4669 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4670 * version from FW Image Header. 4671 * @ioc: per adapter object 4672 * 4673 * Return: 0 for success, non-zero for failure. 4674 */ 4675 static int 4676 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4677 { 4678 Mpi2FWImageHeader_t *fw_img_hdr; 4679 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4680 Mpi25FWUploadRequest_t *mpi_request; 4681 Mpi2FWUploadReply_t mpi_reply; 4682 int r = 0, issue_diag_reset = 0; 4683 u32 package_version = 0; 4684 void *fwpkg_data = NULL; 4685 dma_addr_t fwpkg_data_dma; 4686 u16 smid, ioc_status; 4687 size_t data_length; 4688 4689 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4690 4691 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4692 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4693 return -EAGAIN; 4694 } 4695 4696 data_length = sizeof(Mpi2FWImageHeader_t); 4697 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4698 &fwpkg_data_dma, GFP_KERNEL); 4699 if (!fwpkg_data) { 4700 ioc_err(ioc, 4701 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4702 __FILE__, __LINE__, __func__); 4703 return -ENOMEM; 4704 } 4705 4706 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4707 if (!smid) { 4708 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4709 r = -EAGAIN; 4710 goto out; 4711 } 4712 4713 ioc->base_cmds.status = MPT3_CMD_PENDING; 4714 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4715 ioc->base_cmds.smid = smid; 4716 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4717 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4718 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4719 mpi_request->ImageSize = cpu_to_le32(data_length); 4720 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4721 data_length); 4722 init_completion(&ioc->base_cmds.done); 4723 ioc->put_smid_default(ioc, smid); 4724 /* Wait for 15 seconds */ 4725 wait_for_completion_timeout(&ioc->base_cmds.done, 4726 FW_IMG_HDR_READ_TIMEOUT*HZ); 4727 ioc_info(ioc, "%s: complete\n", __func__); 4728 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4729 ioc_err(ioc, "%s: timeout\n", __func__); 4730 _debug_dump_mf(mpi_request, 4731 sizeof(Mpi25FWUploadRequest_t)/4); 4732 issue_diag_reset = 1; 4733 } else { 4734 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4735 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4736 memcpy(&mpi_reply, ioc->base_cmds.reply, 4737 sizeof(Mpi2FWUploadReply_t)); 4738 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4739 MPI2_IOCSTATUS_MASK; 4740 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4741 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4742 if (le32_to_cpu(fw_img_hdr->Signature) == 4743 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4744 cmp_img_hdr = 4745 (Mpi26ComponentImageHeader_t *) 4746 (fwpkg_data); 4747 package_version = 4748 le32_to_cpu( 4749 cmp_img_hdr->ApplicationSpecific); 4750 } else 4751 package_version = 4752 le32_to_cpu( 4753 fw_img_hdr->PackageVersion.Word); 4754 if (package_version) 4755 ioc_info(ioc, 4756 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4757 ((package_version) & 0xFF000000) >> 24, 4758 ((package_version) & 0x00FF0000) >> 16, 4759 ((package_version) & 0x0000FF00) >> 8, 4760 (package_version) & 0x000000FF); 4761 } else { 4762 _debug_dump_mf(&mpi_reply, 4763 sizeof(Mpi2FWUploadReply_t)/4); 4764 } 4765 } 4766 } 4767 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4768 out: 4769 if (fwpkg_data) 4770 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4771 fwpkg_data_dma); 4772 if (issue_diag_reset) { 4773 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4774 return -EFAULT; 4775 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4776 return -EFAULT; 4777 r = -EAGAIN; 4778 } 4779 return r; 4780 } 4781 4782 /** 4783 * _base_display_ioc_capabilities - Display IOC's capabilities. 4784 * @ioc: per adapter object 4785 */ 4786 static void 4787 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4788 { 4789 int i = 0; 4790 char desc[17] = {0}; 4791 u32 iounit_pg1_flags; 4792 4793 memtostr(desc, ioc->manu_pg0.ChipName); 4794 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n", 4795 desc, 4796 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4797 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4798 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4799 ioc->facts.FWVersion.Word & 0x000000FF, 4800 ioc->pdev->revision); 4801 4802 _base_display_OEMs_branding(ioc); 4803 4804 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4805 pr_info("%sNVMe", i ? "," : ""); 4806 i++; 4807 } 4808 4809 ioc_info(ioc, "Protocol=("); 4810 4811 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4812 pr_cont("Initiator"); 4813 i++; 4814 } 4815 4816 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4817 pr_cont("%sTarget", i ? "," : ""); 4818 i++; 4819 } 4820 4821 i = 0; 4822 pr_cont("), Capabilities=("); 4823 4824 if (!ioc->hide_ir_msg) { 4825 if (ioc->facts.IOCCapabilities & 4826 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4827 pr_cont("Raid"); 4828 i++; 4829 } 4830 } 4831 4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4833 pr_cont("%sTLR", i ? "," : ""); 4834 i++; 4835 } 4836 4837 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4838 pr_cont("%sMulticast", i ? "," : ""); 4839 i++; 4840 } 4841 4842 if (ioc->facts.IOCCapabilities & 4843 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4844 pr_cont("%sBIDI Target", i ? "," : ""); 4845 i++; 4846 } 4847 4848 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4849 pr_cont("%sEEDP", i ? "," : ""); 4850 i++; 4851 } 4852 4853 if (ioc->facts.IOCCapabilities & 4854 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4855 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4856 i++; 4857 } 4858 4859 if (ioc->facts.IOCCapabilities & 4860 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4861 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4862 i++; 4863 } 4864 4865 if (ioc->facts.IOCCapabilities & 4866 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4867 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4868 i++; 4869 } 4870 4871 if (ioc->facts.IOCCapabilities & 4872 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4873 pr_cont("%sTask Set Full", i ? "," : ""); 4874 i++; 4875 } 4876 4877 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4878 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4879 pr_cont("%sNCQ", i ? "," : ""); 4880 i++; 4881 } 4882 4883 pr_cont(")\n"); 4884 } 4885 4886 /** 4887 * mpt3sas_base_update_missing_delay - change the missing delay timers 4888 * @ioc: per adapter object 4889 * @device_missing_delay: amount of time till device is reported missing 4890 * @io_missing_delay: interval IO is returned when there is a missing device 4891 * 4892 * Passed on the command line, this function will modify the device missing 4893 * delay, as well as the io missing delay. This should be called at driver 4894 * load time. 4895 */ 4896 void 4897 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4898 u16 device_missing_delay, u8 io_missing_delay) 4899 { 4900 u16 dmd, dmd_new, dmd_orignal; 4901 u8 io_missing_delay_original; 4902 u16 sz; 4903 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4904 Mpi2ConfigReply_t mpi_reply; 4905 u8 num_phys = 0; 4906 u16 ioc_status; 4907 4908 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4909 if (!num_phys) 4910 return; 4911 4912 sz = struct_size(sas_iounit_pg1, PhyData, num_phys); 4913 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4914 if (!sas_iounit_pg1) { 4915 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4916 __FILE__, __LINE__, __func__); 4917 goto out; 4918 } 4919 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4920 sas_iounit_pg1, sz))) { 4921 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4922 __FILE__, __LINE__, __func__); 4923 goto out; 4924 } 4925 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4926 MPI2_IOCSTATUS_MASK; 4927 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4928 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4929 __FILE__, __LINE__, __func__); 4930 goto out; 4931 } 4932 4933 /* device missing delay */ 4934 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4935 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4936 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4937 else 4938 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4939 dmd_orignal = dmd; 4940 if (device_missing_delay > 0x7F) { 4941 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4942 device_missing_delay; 4943 dmd = dmd / 16; 4944 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4945 } else 4946 dmd = device_missing_delay; 4947 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4948 4949 /* io missing delay */ 4950 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4951 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4952 4953 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4954 sz)) { 4955 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4956 dmd_new = (dmd & 4957 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4958 else 4959 dmd_new = 4960 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4961 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4962 dmd_orignal, dmd_new); 4963 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4964 io_missing_delay_original, 4965 io_missing_delay); 4966 ioc->device_missing_delay = dmd_new; 4967 ioc->io_missing_delay = io_missing_delay; 4968 } 4969 4970 out: 4971 kfree(sas_iounit_pg1); 4972 } 4973 4974 /** 4975 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4976 * according to performance mode. 4977 * @ioc : per adapter object 4978 * 4979 * Return: zero on success; otherwise return EAGAIN error code asking the 4980 * caller to retry. 4981 */ 4982 static int 4983 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4984 { 4985 Mpi2IOCPage1_t ioc_pg1; 4986 Mpi2ConfigReply_t mpi_reply; 4987 int rc; 4988 4989 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4990 if (rc) 4991 return rc; 4992 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4993 4994 switch (perf_mode) { 4995 case MPT_PERF_MODE_DEFAULT: 4996 case MPT_PERF_MODE_BALANCED: 4997 if (ioc->high_iops_queues) { 4998 ioc_info(ioc, 4999 "Enable interrupt coalescing only for first\t" 5000 "%d reply queues\n", 5001 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 5002 /* 5003 * If 31st bit is zero then interrupt coalescing is 5004 * enabled for all reply descriptor post queues. 5005 * If 31st bit is set to one then user can 5006 * enable/disable interrupt coalescing on per reply 5007 * descriptor post queue group(8) basis. So to enable 5008 * interrupt coalescing only on first reply descriptor 5009 * post queue group 31st bit and zero th bit is enabled. 5010 */ 5011 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 5012 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 5013 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5014 if (rc) 5015 return rc; 5016 ioc_info(ioc, "performance mode: balanced\n"); 5017 return 0; 5018 } 5019 fallthrough; 5020 case MPT_PERF_MODE_LATENCY: 5021 /* 5022 * Enable interrupt coalescing on all reply queues 5023 * with timeout value 0xA 5024 */ 5025 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 5026 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5027 ioc_pg1.ProductSpecific = 0; 5028 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5029 if (rc) 5030 return rc; 5031 ioc_info(ioc, "performance mode: latency\n"); 5032 break; 5033 case MPT_PERF_MODE_IOPS: 5034 /* 5035 * Enable interrupt coalescing on all reply queues. 5036 */ 5037 ioc_info(ioc, 5038 "performance mode: iops with coalescing timeout: 0x%x\n", 5039 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5040 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5041 ioc_pg1.ProductSpecific = 0; 5042 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5043 if (rc) 5044 return rc; 5045 break; 5046 } 5047 return 0; 5048 } 5049 5050 /** 5051 * _base_get_event_diag_triggers - get event diag trigger values from 5052 * persistent pages 5053 * @ioc : per adapter object 5054 * 5055 * Return: nothing. 5056 */ 5057 static int 5058 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5059 { 5060 Mpi26DriverTriggerPage2_t trigger_pg2; 5061 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5062 MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg; 5063 Mpi2ConfigReply_t mpi_reply; 5064 int r = 0, i = 0; 5065 u16 count = 0; 5066 u16 ioc_status; 5067 5068 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5069 &trigger_pg2); 5070 if (r) 5071 return r; 5072 5073 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5074 MPI2_IOCSTATUS_MASK; 5075 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5076 dinitprintk(ioc, 5077 ioc_err(ioc, 5078 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5079 __func__, ioc_status)); 5080 return 0; 5081 } 5082 5083 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5084 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5085 count = min_t(u16, NUM_VALID_ENTRIES, count); 5086 ioc->diag_trigger_event.ValidEntries = count; 5087 5088 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5089 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5090 for (i = 0; i < count; i++) { 5091 event_tg->EventValue = le16_to_cpu( 5092 mpi_event_tg->MPIEventCode); 5093 event_tg->LogEntryQualifier = le16_to_cpu( 5094 mpi_event_tg->MPIEventCodeSpecific); 5095 event_tg++; 5096 mpi_event_tg++; 5097 } 5098 } 5099 return 0; 5100 } 5101 5102 /** 5103 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5104 * persistent pages 5105 * @ioc : per adapter object 5106 * 5107 * Return: 0 on success; otherwise return failure status. 5108 */ 5109 static int 5110 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5111 { 5112 Mpi26DriverTriggerPage3_t trigger_pg3; 5113 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5114 MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg; 5115 Mpi2ConfigReply_t mpi_reply; 5116 int r = 0, i = 0; 5117 u16 count = 0; 5118 u16 ioc_status; 5119 5120 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5121 &trigger_pg3); 5122 if (r) 5123 return r; 5124 5125 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5126 MPI2_IOCSTATUS_MASK; 5127 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5128 dinitprintk(ioc, 5129 ioc_err(ioc, 5130 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5131 __func__, ioc_status)); 5132 return 0; 5133 } 5134 5135 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5136 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5137 count = min_t(u16, NUM_VALID_ENTRIES, count); 5138 ioc->diag_trigger_scsi.ValidEntries = count; 5139 5140 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5141 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5142 for (i = 0; i < count; i++) { 5143 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5144 scsi_tg->ASC = mpi_scsi_tg->ASC; 5145 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5146 5147 scsi_tg++; 5148 mpi_scsi_tg++; 5149 } 5150 } 5151 return 0; 5152 } 5153 5154 /** 5155 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5156 * persistent pages 5157 * @ioc : per adapter object 5158 * 5159 * Return: 0 on success; otherwise return failure status. 5160 */ 5161 static int 5162 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5163 { 5164 Mpi26DriverTriggerPage4_t trigger_pg4; 5165 struct SL_WH_MPI_TRIGGER_T *status_tg; 5166 MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg; 5167 Mpi2ConfigReply_t mpi_reply; 5168 int r = 0, i = 0; 5169 u16 count = 0; 5170 u16 ioc_status; 5171 5172 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5173 &trigger_pg4); 5174 if (r) 5175 return r; 5176 5177 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5178 MPI2_IOCSTATUS_MASK; 5179 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5180 dinitprintk(ioc, 5181 ioc_err(ioc, 5182 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5183 __func__, ioc_status)); 5184 return 0; 5185 } 5186 5187 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5188 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5189 count = min_t(u16, NUM_VALID_ENTRIES, count); 5190 ioc->diag_trigger_mpi.ValidEntries = count; 5191 5192 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5193 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5194 5195 for (i = 0; i < count; i++) { 5196 status_tg->IOCStatus = le16_to_cpu( 5197 mpi_status_tg->IOCStatus); 5198 status_tg->IocLogInfo = le32_to_cpu( 5199 mpi_status_tg->LogInfo); 5200 5201 status_tg++; 5202 mpi_status_tg++; 5203 } 5204 } 5205 return 0; 5206 } 5207 5208 /** 5209 * _base_get_master_diag_triggers - get master diag trigger values from 5210 * persistent pages 5211 * @ioc : per adapter object 5212 * 5213 * Return: nothing. 5214 */ 5215 static int 5216 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5217 { 5218 Mpi26DriverTriggerPage1_t trigger_pg1; 5219 Mpi2ConfigReply_t mpi_reply; 5220 int r; 5221 u16 ioc_status; 5222 5223 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5224 &trigger_pg1); 5225 if (r) 5226 return r; 5227 5228 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5229 MPI2_IOCSTATUS_MASK; 5230 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5231 dinitprintk(ioc, 5232 ioc_err(ioc, 5233 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5234 __func__, ioc_status)); 5235 return 0; 5236 } 5237 5238 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5239 ioc->diag_trigger_master.MasterData |= 5240 le32_to_cpu( 5241 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5242 return 0; 5243 } 5244 5245 /** 5246 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5247 * driver trigger pages or not 5248 * @ioc : per adapter object 5249 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5250 * 5251 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5252 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5253 * return EAGAIN if diag reset occurred due to FW fault and asking the 5254 * caller to retry the command. 5255 * 5256 */ 5257 static int 5258 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5259 { 5260 Mpi26DriverTriggerPage0_t trigger_pg0; 5261 int r = 0; 5262 Mpi2ConfigReply_t mpi_reply; 5263 u16 ioc_status; 5264 5265 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5266 &trigger_pg0); 5267 if (r) 5268 return r; 5269 5270 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5271 MPI2_IOCSTATUS_MASK; 5272 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5273 return -EFAULT; 5274 5275 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5276 return 0; 5277 } 5278 5279 /** 5280 * _base_get_diag_triggers - Retrieve diag trigger values from 5281 * persistent pages. 5282 * @ioc : per adapter object 5283 * 5284 * Return: zero on success; otherwise return EAGAIN error codes 5285 * asking the caller to retry. 5286 */ 5287 static int 5288 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5289 { 5290 int trigger_flags; 5291 int r; 5292 5293 /* 5294 * Default setting of master trigger. 5295 */ 5296 ioc->diag_trigger_master.MasterData = 5297 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5298 5299 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5300 if (r) { 5301 if (r == -EAGAIN) 5302 return r; 5303 /* 5304 * Don't go for error handling when FW doesn't support 5305 * driver trigger pages. 5306 */ 5307 return 0; 5308 } 5309 5310 ioc->supports_trigger_pages = 1; 5311 5312 /* 5313 * Retrieve master diag trigger values from driver trigger pg1 5314 * if master trigger bit enabled in TriggerFlags. 5315 */ 5316 if ((u16)trigger_flags & 5317 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5318 r = _base_get_master_diag_triggers(ioc); 5319 if (r) 5320 return r; 5321 } 5322 5323 /* 5324 * Retrieve event diag trigger values from driver trigger pg2 5325 * if event trigger bit enabled in TriggerFlags. 5326 */ 5327 if ((u16)trigger_flags & 5328 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5329 r = _base_get_event_diag_triggers(ioc); 5330 if (r) 5331 return r; 5332 } 5333 5334 /* 5335 * Retrieve scsi diag trigger values from driver trigger pg3 5336 * if scsi trigger bit enabled in TriggerFlags. 5337 */ 5338 if ((u16)trigger_flags & 5339 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5340 r = _base_get_scsi_diag_triggers(ioc); 5341 if (r) 5342 return r; 5343 } 5344 /* 5345 * Retrieve mpi error diag trigger values from driver trigger pg4 5346 * if loginfo trigger bit enabled in TriggerFlags. 5347 */ 5348 if ((u16)trigger_flags & 5349 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5350 r = _base_get_mpi_diag_triggers(ioc); 5351 if (r) 5352 return r; 5353 } 5354 return 0; 5355 } 5356 5357 /** 5358 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5359 * online FW update, in case updated FW supports driver 5360 * trigger pages. 5361 * @ioc : per adapter object 5362 * 5363 * Return: nothing. 5364 */ 5365 static void 5366 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5367 { 5368 5369 if (ioc->diag_trigger_master.MasterData) 5370 mpt3sas_config_update_driver_trigger_pg1(ioc, 5371 &ioc->diag_trigger_master, 1); 5372 5373 if (ioc->diag_trigger_event.ValidEntries) 5374 mpt3sas_config_update_driver_trigger_pg2(ioc, 5375 &ioc->diag_trigger_event, 1); 5376 5377 if (ioc->diag_trigger_scsi.ValidEntries) 5378 mpt3sas_config_update_driver_trigger_pg3(ioc, 5379 &ioc->diag_trigger_scsi, 1); 5380 5381 if (ioc->diag_trigger_mpi.ValidEntries) 5382 mpt3sas_config_update_driver_trigger_pg4(ioc, 5383 &ioc->diag_trigger_mpi, 1); 5384 } 5385 5386 /** 5387 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5388 * - On failure set default QD values. 5389 * @ioc : per adapter object 5390 * 5391 * Returns 0 for success, non-zero for failure. 5392 * 5393 */ 5394 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5395 { 5396 Mpi2ConfigReply_t mpi_reply; 5397 Mpi2SasIOUnitPage1_t sas_iounit_pg1; 5398 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5399 u16 depth; 5400 int rc = 0; 5401 5402 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5403 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5404 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5405 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5406 if (!ioc->is_gen35_ioc) 5407 goto out; 5408 /* sas iounit page 1 */ 5409 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5410 &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t)); 5411 if (rc) { 5412 pr_err("%s: failure at %s:%d/%s()!\n", 5413 ioc->name, __FILE__, __LINE__, __func__); 5414 goto out; 5415 } 5416 5417 depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth); 5418 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5419 5420 depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth); 5421 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5422 5423 depth = sas_iounit_pg1.SATAMaxQDepth; 5424 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH); 5425 5426 /* pcie iounit page 1 */ 5427 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5428 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5429 if (rc) { 5430 pr_err("%s: failure at %s:%d/%s()!\n", 5431 ioc->name, __FILE__, __LINE__, __func__); 5432 goto out; 5433 } 5434 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5435 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5436 MPT3SAS_NVME_QUEUE_DEPTH; 5437 out: 5438 dinitprintk(ioc, pr_err( 5439 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5440 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5441 ioc->max_sata_qd, ioc->max_nvme_qd)); 5442 return rc; 5443 } 5444 5445 /** 5446 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1 5447 * 5448 * @ioc : per adapter object 5449 * @n : ptr to the ATTO nvram structure 5450 * Return: 0 for success, non-zero for failure. 5451 */ 5452 static int 5453 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc, 5454 struct ATTO_SAS_NVRAM *n) 5455 { 5456 int r = -EINVAL; 5457 union ATTO_SAS_ADDRESS *s1; 5458 u32 len; 5459 u8 *pb; 5460 u8 ckSum; 5461 5462 /* validate nvram checksum */ 5463 pb = (u8 *) n; 5464 ckSum = ATTO_SASNVR_CKSUM_SEED; 5465 len = sizeof(struct ATTO_SAS_NVRAM); 5466 5467 while (len--) 5468 ckSum = ckSum + pb[len]; 5469 5470 if (ckSum) { 5471 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n"); 5472 return r; 5473 } 5474 5475 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr; 5476 5477 if (n->Signature[0] != 'E' 5478 || n->Signature[1] != 'S' 5479 || n->Signature[2] != 'A' 5480 || n->Signature[3] != 'S') 5481 ioc_err(ioc, "Invalid ATTO NVRAM signature\n"); 5482 else if (n->Version > ATTO_SASNVR_VERSION) 5483 ioc_info(ioc, "Invalid ATTO NVRAM version"); 5484 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1)) 5485 || s1->b[0] != 0x50 5486 || s1->b[1] != 0x01 5487 || s1->b[2] != 0x08 5488 || (s1->b[3] & 0xF0) != 0x60 5489 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) { 5490 ioc_err(ioc, "Invalid ATTO SAS address\n"); 5491 } else 5492 r = 0; 5493 return r; 5494 } 5495 5496 /** 5497 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1 5498 * 5499 * @ioc : per adapter object 5500 * @sas_addr : return sas address 5501 * Return: 0 for success, non-zero for failure. 5502 */ 5503 static int 5504 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr) 5505 { 5506 Mpi2ManufacturingPage1_t mfg_pg1; 5507 Mpi2ConfigReply_t mpi_reply; 5508 struct ATTO_SAS_NVRAM *nvram; 5509 int r; 5510 __be64 addr; 5511 5512 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1); 5513 if (r) { 5514 ioc_err(ioc, "Failed to read manufacturing page 1\n"); 5515 return r; 5516 } 5517 5518 /* validate nvram */ 5519 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD; 5520 r = mpt3sas_atto_validate_nvram(ioc, nvram); 5521 if (r) 5522 return r; 5523 5524 addr = *((__be64 *) nvram->SasAddr); 5525 sas_addr->q = cpu_to_le64(be64_to_cpu(addr)); 5526 return r; 5527 } 5528 5529 /** 5530 * mpt3sas_atto_init - perform initializaion for ATTO branded 5531 * adapter. 5532 * @ioc : per adapter object 5533 *5 5534 * Return: 0 for success, non-zero for failure. 5535 */ 5536 static int 5537 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc) 5538 { 5539 int sz = 0; 5540 Mpi2BiosPage4_t *bios_pg4 = NULL; 5541 Mpi2ConfigReply_t mpi_reply; 5542 int r; 5543 int ix; 5544 union ATTO_SAS_ADDRESS sas_addr; 5545 union ATTO_SAS_ADDRESS temp; 5546 union ATTO_SAS_ADDRESS bias; 5547 5548 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr); 5549 if (r) 5550 return r; 5551 5552 /* get header first to get size */ 5553 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0); 5554 if (r) { 5555 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n"); 5556 return r; 5557 } 5558 5559 sz = mpi_reply.Header.PageLength * sizeof(u32); 5560 bios_pg4 = kzalloc(sz, GFP_KERNEL); 5561 if (!bios_pg4) { 5562 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n"); 5563 return -ENOMEM; 5564 } 5565 5566 /* read bios page 4 */ 5567 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5568 if (r) { 5569 ioc_err(ioc, "Failed to read ATTO bios page 4\n"); 5570 goto out; 5571 } 5572 5573 /* Update bios page 4 with the ATTO WWID */ 5574 bias.q = sas_addr.q; 5575 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS; 5576 5577 for (ix = 0; ix < bios_pg4->NumPhys; ix++) { 5578 temp.q = sas_addr.q; 5579 temp.b[7] += ix; 5580 bios_pg4->Phy[ix].ReassignmentWWID = temp.q; 5581 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q; 5582 } 5583 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5584 5585 out: 5586 kfree(bios_pg4); 5587 return r; 5588 } 5589 5590 /** 5591 * _base_static_config_pages - static start of day config pages 5592 * @ioc: per adapter object 5593 */ 5594 static int 5595 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5596 { 5597 Mpi2IOUnitPage8_t iounit_pg8; 5598 Mpi2ConfigReply_t mpi_reply; 5599 u32 iounit_pg1_flags; 5600 int tg_flags = 0; 5601 int rc; 5602 ioc->nvme_abort_timeout = 30; 5603 5604 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5605 &ioc->manu_pg0); 5606 if (rc) 5607 return rc; 5608 if (ioc->ir_firmware) { 5609 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5610 &ioc->manu_pg10); 5611 if (rc) 5612 return rc; 5613 } 5614 5615 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 5616 rc = mpt3sas_atto_init(ioc); 5617 if (rc) 5618 return rc; 5619 } 5620 5621 /* 5622 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5623 * flag unset in NVDATA. 5624 */ 5625 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5626 &ioc->manu_pg11); 5627 if (rc) 5628 return rc; 5629 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5630 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5631 ioc->name); 5632 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5633 ioc->manu_pg11.EEDPTagMode |= 0x1; 5634 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5635 &ioc->manu_pg11); 5636 } 5637 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5638 ioc->tm_custom_handling = 1; 5639 else { 5640 ioc->tm_custom_handling = 0; 5641 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5642 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5643 else if (ioc->manu_pg11.NVMeAbortTO > 5644 NVME_TASK_ABORT_MAX_TIMEOUT) 5645 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5646 else 5647 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5648 } 5649 ioc->time_sync_interval = 5650 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5651 if (ioc->time_sync_interval) { 5652 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5653 ioc->time_sync_interval = 5654 ioc->time_sync_interval * SECONDS_PER_HOUR; 5655 else 5656 ioc->time_sync_interval = 5657 ioc->time_sync_interval * SECONDS_PER_MIN; 5658 dinitprintk(ioc, ioc_info(ioc, 5659 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5660 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5661 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5662 } else { 5663 if (ioc->is_gen35_ioc) 5664 ioc_warn(ioc, 5665 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5666 } 5667 rc = _base_assign_fw_reported_qd(ioc); 5668 if (rc) 5669 return rc; 5670 5671 /* 5672 * ATTO doesn't use bios page 2 and 3 for bios settings. 5673 */ 5674 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) 5675 ioc->bios_pg3.BiosVersion = 0; 5676 else { 5677 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5678 if (rc) 5679 return rc; 5680 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5681 if (rc) 5682 return rc; 5683 } 5684 5685 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5686 if (rc) 5687 return rc; 5688 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5689 if (rc) 5690 return rc; 5691 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5692 if (rc) 5693 return rc; 5694 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8); 5695 if (rc) 5696 return rc; 5697 _base_display_ioc_capabilities(ioc); 5698 5699 /* 5700 * Enable task_set_full handling in iounit_pg1 when the 5701 * facts capabilities indicate that its supported. 5702 */ 5703 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5704 if ((ioc->facts.IOCCapabilities & 5705 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5706 iounit_pg1_flags &= 5707 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5708 else 5709 iounit_pg1_flags |= 5710 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5711 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5712 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5713 if (rc) 5714 return rc; 5715 5716 if (iounit_pg8.NumSensors) 5717 ioc->temp_sensors_count = iounit_pg8.NumSensors; 5718 if (ioc->is_aero_ioc) { 5719 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5720 if (rc) 5721 return rc; 5722 } 5723 if (ioc->is_gen35_ioc) { 5724 if (ioc->is_driver_loading) { 5725 rc = _base_get_diag_triggers(ioc); 5726 if (rc) 5727 return rc; 5728 } else { 5729 /* 5730 * In case of online HBA FW update operation, 5731 * check whether updated FW supports the driver trigger 5732 * pages or not. 5733 * - If previous FW has not supported driver trigger 5734 * pages and newer FW supports them then update these 5735 * pages with current diag trigger values. 5736 * - If previous FW has supported driver trigger pages 5737 * and new FW doesn't support them then disable 5738 * support_trigger_pages flag. 5739 */ 5740 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5741 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5742 _base_update_diag_trigger_pages(ioc); 5743 else if (ioc->supports_trigger_pages && 5744 tg_flags == -EFAULT) 5745 ioc->supports_trigger_pages = 0; 5746 } 5747 } 5748 return 0; 5749 } 5750 5751 /** 5752 * mpt3sas_free_enclosure_list - release memory 5753 * @ioc: per adapter object 5754 * 5755 * Free memory allocated during enclosure add. 5756 */ 5757 void 5758 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5759 { 5760 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5761 5762 /* Free enclosure list */ 5763 list_for_each_entry_safe(enclosure_dev, 5764 enclosure_dev_next, &ioc->enclosure_list, list) { 5765 list_del(&enclosure_dev->list); 5766 kfree(enclosure_dev); 5767 } 5768 } 5769 5770 /** 5771 * _base_release_memory_pools - release memory 5772 * @ioc: per adapter object 5773 * 5774 * Free memory allocated from _base_allocate_memory_pools. 5775 */ 5776 static void 5777 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5778 { 5779 int i = 0; 5780 int j = 0; 5781 int dma_alloc_count = 0; 5782 struct chain_tracker *ct; 5783 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5784 5785 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5786 5787 if (ioc->request) { 5788 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5789 ioc->request, ioc->request_dma); 5790 dexitprintk(ioc, 5791 ioc_info(ioc, "request_pool(0x%p): free\n", 5792 ioc->request)); 5793 ioc->request = NULL; 5794 } 5795 5796 if (ioc->sense) { 5797 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5798 dma_pool_destroy(ioc->sense_dma_pool); 5799 dexitprintk(ioc, 5800 ioc_info(ioc, "sense_pool(0x%p): free\n", 5801 ioc->sense)); 5802 ioc->sense = NULL; 5803 } 5804 5805 if (ioc->reply) { 5806 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5807 dma_pool_destroy(ioc->reply_dma_pool); 5808 dexitprintk(ioc, 5809 ioc_info(ioc, "reply_pool(0x%p): free\n", 5810 ioc->reply)); 5811 ioc->reply = NULL; 5812 } 5813 5814 if (ioc->reply_free) { 5815 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5816 ioc->reply_free_dma); 5817 dma_pool_destroy(ioc->reply_free_dma_pool); 5818 dexitprintk(ioc, 5819 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5820 ioc->reply_free)); 5821 ioc->reply_free = NULL; 5822 } 5823 5824 if (ioc->reply_post) { 5825 dma_alloc_count = DIV_ROUND_UP(count, 5826 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5827 for (i = 0; i < count; i++) { 5828 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5829 && dma_alloc_count) { 5830 if (ioc->reply_post[i].reply_post_free) { 5831 dma_pool_free( 5832 ioc->reply_post_free_dma_pool, 5833 ioc->reply_post[i].reply_post_free, 5834 ioc->reply_post[i].reply_post_free_dma); 5835 dexitprintk(ioc, ioc_info(ioc, 5836 "reply_post_free_pool(0x%p): free\n", 5837 ioc->reply_post[i].reply_post_free)); 5838 ioc->reply_post[i].reply_post_free = 5839 NULL; 5840 } 5841 --dma_alloc_count; 5842 } 5843 } 5844 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5845 if (ioc->reply_post_free_array && 5846 ioc->rdpq_array_enable) { 5847 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5848 ioc->reply_post_free_array, 5849 ioc->reply_post_free_array_dma); 5850 ioc->reply_post_free_array = NULL; 5851 } 5852 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5853 kfree(ioc->reply_post); 5854 } 5855 5856 if (ioc->pcie_sgl_dma_pool) { 5857 for (i = 0; i < ioc->scsiio_depth; i++) { 5858 dma_pool_free(ioc->pcie_sgl_dma_pool, 5859 ioc->pcie_sg_lookup[i].pcie_sgl, 5860 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5861 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5862 } 5863 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5864 } 5865 kfree(ioc->pcie_sg_lookup); 5866 ioc->pcie_sg_lookup = NULL; 5867 5868 if (ioc->config_page) { 5869 dexitprintk(ioc, 5870 ioc_info(ioc, "config_page(0x%p): free\n", 5871 ioc->config_page)); 5872 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5873 ioc->config_page, ioc->config_page_dma); 5874 } 5875 5876 kfree(ioc->hpr_lookup); 5877 ioc->hpr_lookup = NULL; 5878 kfree(ioc->internal_lookup); 5879 ioc->internal_lookup = NULL; 5880 if (ioc->chain_lookup) { 5881 for (i = 0; i < ioc->scsiio_depth; i++) { 5882 for (j = ioc->chains_per_prp_buffer; 5883 j < ioc->chains_needed_per_io; j++) { 5884 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5885 if (ct && ct->chain_buffer) 5886 dma_pool_free(ioc->chain_dma_pool, 5887 ct->chain_buffer, 5888 ct->chain_buffer_dma); 5889 } 5890 kfree(ioc->chain_lookup[i].chains_per_smid); 5891 } 5892 dma_pool_destroy(ioc->chain_dma_pool); 5893 kfree(ioc->chain_lookup); 5894 ioc->chain_lookup = NULL; 5895 } 5896 5897 kfree(ioc->io_queue_num); 5898 ioc->io_queue_num = NULL; 5899 } 5900 5901 /** 5902 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5903 * having same upper 32bits in their base memory address. 5904 * @start_address: Base address of a reply queue set 5905 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5906 * 5907 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5908 * memory address, else 0. 5909 */ 5910 static int 5911 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz) 5912 { 5913 dma_addr_t end_address; 5914 5915 end_address = start_address + pool_sz - 1; 5916 5917 if (upper_32_bits(start_address) == upper_32_bits(end_address)) 5918 return 1; 5919 else 5920 return 0; 5921 } 5922 5923 /** 5924 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5925 * @ioc: Adapter object 5926 * 5927 * Return: 0 for success, non-zero for failure. 5928 **/ 5929 static inline int 5930 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5931 { 5932 int reduce_sz = 64; 5933 5934 if ((ioc->hba_queue_depth - reduce_sz) > 5935 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5936 ioc->hba_queue_depth -= reduce_sz; 5937 return 0; 5938 } else 5939 return -ENOMEM; 5940 } 5941 5942 /** 5943 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5944 * for pcie sgl pools. 5945 * @ioc: Adapter object 5946 * @sz: DMA Pool size 5947 * 5948 * Return: 0 for success, non-zero for failure. 5949 */ 5950 5951 static int 5952 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5953 { 5954 int i = 0, j = 0; 5955 struct chain_tracker *ct; 5956 5957 ioc->pcie_sgl_dma_pool = 5958 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5959 ioc->page_size, 0); 5960 if (!ioc->pcie_sgl_dma_pool) { 5961 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5962 return -ENOMEM; 5963 } 5964 5965 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5966 ioc->chains_per_prp_buffer = 5967 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5968 for (i = 0; i < ioc->scsiio_depth; i++) { 5969 ioc->pcie_sg_lookup[i].pcie_sgl = 5970 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5971 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5972 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5973 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5974 return -EAGAIN; 5975 } 5976 5977 if (!mpt3sas_check_same_4gb_region( 5978 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) { 5979 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5980 ioc->pcie_sg_lookup[i].pcie_sgl, 5981 (unsigned long long) 5982 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5983 ioc->use_32bit_dma = true; 5984 return -EAGAIN; 5985 } 5986 5987 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5988 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5989 ct->chain_buffer = 5990 ioc->pcie_sg_lookup[i].pcie_sgl + 5991 (j * ioc->chain_segment_sz); 5992 ct->chain_buffer_dma = 5993 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5994 (j * ioc->chain_segment_sz); 5995 } 5996 } 5997 dinitprintk(ioc, ioc_info(ioc, 5998 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5999 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 6000 dinitprintk(ioc, ioc_info(ioc, 6001 "Number of chains can fit in a PRP page(%d)\n", 6002 ioc->chains_per_prp_buffer)); 6003 return 0; 6004 } 6005 6006 /** 6007 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 6008 * for chain dma pool. 6009 * @ioc: Adapter object 6010 * @sz: DMA Pool size 6011 * 6012 * Return: 0 for success, non-zero for failure. 6013 */ 6014 static int 6015 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6016 { 6017 int i = 0, j = 0; 6018 struct chain_tracker *ctr; 6019 6020 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 6021 ioc->chain_segment_sz, 16, 0); 6022 if (!ioc->chain_dma_pool) 6023 return -ENOMEM; 6024 6025 for (i = 0; i < ioc->scsiio_depth; i++) { 6026 for (j = ioc->chains_per_prp_buffer; 6027 j < ioc->chains_needed_per_io; j++) { 6028 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 6029 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 6030 GFP_KERNEL, &ctr->chain_buffer_dma); 6031 if (!ctr->chain_buffer) 6032 return -EAGAIN; 6033 if (!mpt3sas_check_same_4gb_region( 6034 ctr->chain_buffer_dma, ioc->chain_segment_sz)) { 6035 ioc_err(ioc, 6036 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 6037 ctr->chain_buffer, 6038 (unsigned long long)ctr->chain_buffer_dma); 6039 ioc->use_32bit_dma = true; 6040 return -EAGAIN; 6041 } 6042 } 6043 } 6044 dinitprintk(ioc, ioc_info(ioc, 6045 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 6046 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 6047 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 6048 ioc->chain_segment_sz))/1024)); 6049 return 0; 6050 } 6051 6052 /** 6053 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 6054 * for sense dma pool. 6055 * @ioc: Adapter object 6056 * @sz: DMA Pool size 6057 * Return: 0 for success, non-zero for failure. 6058 */ 6059 static int 6060 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6061 { 6062 ioc->sense_dma_pool = 6063 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 6064 if (!ioc->sense_dma_pool) 6065 return -ENOMEM; 6066 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 6067 GFP_KERNEL, &ioc->sense_dma); 6068 if (!ioc->sense) 6069 return -EAGAIN; 6070 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) { 6071 dinitprintk(ioc, pr_err( 6072 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 6073 ioc->sense, (unsigned long long) ioc->sense_dma)); 6074 ioc->use_32bit_dma = true; 6075 return -EAGAIN; 6076 } 6077 ioc_info(ioc, 6078 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 6079 ioc->sense, (unsigned long long)ioc->sense_dma, 6080 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 6081 return 0; 6082 } 6083 6084 /** 6085 * _base_allocate_reply_pool - Allocating DMA'able memory 6086 * for reply pool. 6087 * @ioc: Adapter object 6088 * @sz: DMA Pool size 6089 * Return: 0 for success, non-zero for failure. 6090 */ 6091 static int 6092 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6093 { 6094 /* reply pool, 4 byte align */ 6095 ioc->reply_dma_pool = dma_pool_create("reply pool", 6096 &ioc->pdev->dev, sz, 4, 0); 6097 if (!ioc->reply_dma_pool) 6098 return -ENOMEM; 6099 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 6100 &ioc->reply_dma); 6101 if (!ioc->reply) 6102 return -EAGAIN; 6103 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) { 6104 dinitprintk(ioc, pr_err( 6105 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 6106 ioc->reply, (unsigned long long) ioc->reply_dma)); 6107 ioc->use_32bit_dma = true; 6108 return -EAGAIN; 6109 } 6110 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 6111 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 6112 ioc_info(ioc, 6113 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 6114 ioc->reply, (unsigned long long)ioc->reply_dma, 6115 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 6116 return 0; 6117 } 6118 6119 /** 6120 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 6121 * for reply free dma pool. 6122 * @ioc: Adapter object 6123 * @sz: DMA Pool size 6124 * Return: 0 for success, non-zero for failure. 6125 */ 6126 static int 6127 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6128 { 6129 /* reply free queue, 16 byte align */ 6130 ioc->reply_free_dma_pool = dma_pool_create( 6131 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 6132 if (!ioc->reply_free_dma_pool) 6133 return -ENOMEM; 6134 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 6135 GFP_KERNEL, &ioc->reply_free_dma); 6136 if (!ioc->reply_free) 6137 return -EAGAIN; 6138 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) { 6139 dinitprintk(ioc, 6140 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6141 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 6142 ioc->use_32bit_dma = true; 6143 return -EAGAIN; 6144 } 6145 memset(ioc->reply_free, 0, sz); 6146 dinitprintk(ioc, ioc_info(ioc, 6147 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 6148 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 6149 dinitprintk(ioc, ioc_info(ioc, 6150 "reply_free_dma (0x%llx)\n", 6151 (unsigned long long)ioc->reply_free_dma)); 6152 return 0; 6153 } 6154 6155 /** 6156 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 6157 * for reply post free array. 6158 * @ioc: Adapter object 6159 * @reply_post_free_array_sz: DMA Pool size 6160 * Return: 0 for success, non-zero for failure. 6161 */ 6162 6163 static int 6164 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 6165 u32 reply_post_free_array_sz) 6166 { 6167 ioc->reply_post_free_array_dma_pool = 6168 dma_pool_create("reply_post_free_array pool", 6169 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 6170 if (!ioc->reply_post_free_array_dma_pool) 6171 return -ENOMEM; 6172 ioc->reply_post_free_array = 6173 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6174 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6175 if (!ioc->reply_post_free_array) 6176 return -EAGAIN; 6177 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma, 6178 reply_post_free_array_sz)) { 6179 dinitprintk(ioc, pr_err( 6180 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6181 ioc->reply_free, 6182 (unsigned long long) ioc->reply_free_dma)); 6183 ioc->use_32bit_dma = true; 6184 return -EAGAIN; 6185 } 6186 return 0; 6187 } 6188 /** 6189 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6190 * for reply queues. 6191 * @ioc: per adapter object 6192 * @sz: DMA Pool size 6193 * Return: 0 for success, non-zero for failure. 6194 */ 6195 static int 6196 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6197 { 6198 int i = 0; 6199 u32 dma_alloc_count = 0; 6200 int reply_post_free_sz = ioc->reply_post_queue_depth * 6201 sizeof(Mpi2DefaultReplyDescriptor_t); 6202 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6203 6204 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6205 GFP_KERNEL); 6206 if (!ioc->reply_post) 6207 return -ENOMEM; 6208 /* 6209 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6210 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6211 * be within 4GB boundary i.e reply queues in a set must have same 6212 * upper 32-bits in their memory address. so here driver is allocating 6213 * the DMA'able memory for reply queues according. 6214 * Driver uses limitation of 6215 * VENTURA_SERIES to manage INVADER_SERIES as well. 6216 */ 6217 dma_alloc_count = DIV_ROUND_UP(count, 6218 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6219 ioc->reply_post_free_dma_pool = 6220 dma_pool_create("reply_post_free pool", 6221 &ioc->pdev->dev, sz, 16, 0); 6222 if (!ioc->reply_post_free_dma_pool) 6223 return -ENOMEM; 6224 for (i = 0; i < count; i++) { 6225 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6226 ioc->reply_post[i].reply_post_free = 6227 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6228 GFP_KERNEL, 6229 &ioc->reply_post[i].reply_post_free_dma); 6230 if (!ioc->reply_post[i].reply_post_free) 6231 return -ENOMEM; 6232 /* 6233 * Each set of RDPQ pool must satisfy 4gb boundary 6234 * restriction. 6235 * 1) Check if allocated resources for RDPQ pool are in 6236 * the same 4GB range. 6237 * 2) If #1 is true, continue with 64 bit DMA. 6238 * 3) If #1 is false, return 1. which means free all the 6239 * resources and set DMA mask to 32 and allocate. 6240 */ 6241 if (!mpt3sas_check_same_4gb_region( 6242 ioc->reply_post[i].reply_post_free_dma, sz)) { 6243 dinitprintk(ioc, 6244 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6245 "reply_post_free_dma = (0x%llx)\n", 6246 ioc->reply_post[i].reply_post_free, 6247 (unsigned long long) 6248 ioc->reply_post[i].reply_post_free_dma)); 6249 return -EAGAIN; 6250 } 6251 dma_alloc_count--; 6252 6253 } else { 6254 ioc->reply_post[i].reply_post_free = 6255 (Mpi2ReplyDescriptorsUnion_t *) 6256 ((long)ioc->reply_post[i-1].reply_post_free 6257 + reply_post_free_sz); 6258 ioc->reply_post[i].reply_post_free_dma = 6259 (dma_addr_t) 6260 (ioc->reply_post[i-1].reply_post_free_dma + 6261 reply_post_free_sz); 6262 } 6263 } 6264 return 0; 6265 } 6266 6267 /** 6268 * _base_allocate_memory_pools - allocate start of day memory pools 6269 * @ioc: per adapter object 6270 * 6271 * Return: 0 success, anything else error. 6272 */ 6273 static int 6274 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6275 { 6276 struct mpt3sas_facts *facts; 6277 u16 max_sge_elements; 6278 u16 chains_needed_per_io; 6279 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6280 u32 retry_sz; 6281 u32 rdpq_sz = 0, sense_sz = 0; 6282 u16 max_request_credit, nvme_blocks_needed; 6283 unsigned short sg_tablesize; 6284 u16 sge_size; 6285 int i; 6286 int ret = 0, rc = 0; 6287 6288 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6289 6290 6291 retry_sz = 0; 6292 facts = &ioc->facts; 6293 6294 /* command line tunables for max sgl entries */ 6295 if (max_sgl_entries != -1) 6296 sg_tablesize = max_sgl_entries; 6297 else { 6298 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6299 sg_tablesize = MPT2SAS_SG_DEPTH; 6300 else 6301 sg_tablesize = MPT3SAS_SG_DEPTH; 6302 } 6303 6304 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6305 if (reset_devices) 6306 sg_tablesize = min_t(unsigned short, sg_tablesize, 6307 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6308 6309 if (ioc->is_mcpu_endpoint) 6310 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6311 else { 6312 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6313 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6314 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6315 sg_tablesize = min_t(unsigned short, sg_tablesize, 6316 SG_MAX_SEGMENTS); 6317 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6318 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6319 } 6320 ioc->shost->sg_tablesize = sg_tablesize; 6321 } 6322 6323 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6324 (facts->RequestCredit / 4)); 6325 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6326 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6327 INTERNAL_SCSIIO_CMDS_COUNT)) { 6328 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6329 facts->RequestCredit); 6330 return -ENOMEM; 6331 } 6332 ioc->internal_depth = 10; 6333 } 6334 6335 ioc->hi_priority_depth = ioc->internal_depth - (5); 6336 /* command line tunables for max controller queue depth */ 6337 if (max_queue_depth != -1 && max_queue_depth != 0) { 6338 max_request_credit = min_t(u16, max_queue_depth + 6339 ioc->internal_depth, facts->RequestCredit); 6340 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6341 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6342 } else if (reset_devices) 6343 max_request_credit = min_t(u16, facts->RequestCredit, 6344 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6345 else 6346 max_request_credit = min_t(u16, facts->RequestCredit, 6347 MAX_HBA_QUEUE_DEPTH); 6348 6349 /* Firmware maintains additional facts->HighPriorityCredit number of 6350 * credits for HiPriprity Request messages, so hba queue depth will be 6351 * sum of max_request_credit and high priority queue depth. 6352 */ 6353 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6354 6355 /* request frame size */ 6356 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6357 6358 /* reply frame size */ 6359 ioc->reply_sz = facts->ReplyFrameSize * 4; 6360 6361 /* chain segment size */ 6362 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6363 if (facts->IOCMaxChainSegmentSize) 6364 ioc->chain_segment_sz = 6365 facts->IOCMaxChainSegmentSize * 6366 MAX_CHAIN_ELEMT_SZ; 6367 else 6368 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6369 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6370 MAX_CHAIN_ELEMT_SZ; 6371 } else 6372 ioc->chain_segment_sz = ioc->request_sz; 6373 6374 /* calculate the max scatter element size */ 6375 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6376 6377 retry_allocation: 6378 total_sz = 0; 6379 /* calculate number of sg elements left over in the 1st frame */ 6380 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6381 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6382 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6383 6384 /* now do the same for a chain buffer */ 6385 max_sge_elements = ioc->chain_segment_sz - sge_size; 6386 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6387 6388 /* 6389 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6390 */ 6391 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6392 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6393 + 1; 6394 if (chains_needed_per_io > facts->MaxChainDepth) { 6395 chains_needed_per_io = facts->MaxChainDepth; 6396 ioc->shost->sg_tablesize = min_t(u16, 6397 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6398 * chains_needed_per_io), ioc->shost->sg_tablesize); 6399 } 6400 ioc->chains_needed_per_io = chains_needed_per_io; 6401 6402 /* reply free queue sizing - taking into account for 64 FW events */ 6403 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6404 6405 /* mCPU manage single counters for simplicity */ 6406 if (ioc->is_mcpu_endpoint) 6407 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6408 else { 6409 /* calculate reply descriptor post queue depth */ 6410 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6411 ioc->reply_free_queue_depth + 1; 6412 /* align the reply post queue on the next 16 count boundary */ 6413 if (ioc->reply_post_queue_depth % 16) 6414 ioc->reply_post_queue_depth += 16 - 6415 (ioc->reply_post_queue_depth % 16); 6416 } 6417 6418 if (ioc->reply_post_queue_depth > 6419 facts->MaxReplyDescriptorPostQueueDepth) { 6420 ioc->reply_post_queue_depth = 6421 facts->MaxReplyDescriptorPostQueueDepth - 6422 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6423 ioc->hba_queue_depth = 6424 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6425 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6426 } 6427 6428 ioc_info(ioc, 6429 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6430 "sge_per_io(%d), chains_per_io(%d)\n", 6431 ioc->max_sges_in_main_message, 6432 ioc->max_sges_in_chain_message, 6433 ioc->shost->sg_tablesize, 6434 ioc->chains_needed_per_io); 6435 6436 /* reply post queue, 16 byte align */ 6437 reply_post_free_sz = ioc->reply_post_queue_depth * 6438 sizeof(Mpi2DefaultReplyDescriptor_t); 6439 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6440 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6441 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6442 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6443 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6444 if (ret == -EAGAIN) { 6445 /* 6446 * Free allocated bad RDPQ memory pools. 6447 * Change dma coherent mask to 32 bit and reallocate RDPQ 6448 */ 6449 _base_release_memory_pools(ioc); 6450 ioc->use_32bit_dma = true; 6451 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6452 ioc_err(ioc, 6453 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6454 return -ENODEV; 6455 } 6456 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6457 return -ENOMEM; 6458 } else if (ret == -ENOMEM) 6459 return -ENOMEM; 6460 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6461 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6462 ioc->scsiio_depth = ioc->hba_queue_depth - 6463 ioc->hi_priority_depth - ioc->internal_depth; 6464 6465 /* set the scsi host can_queue depth 6466 * with some internal commands that could be outstanding 6467 */ 6468 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6469 dinitprintk(ioc, 6470 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6471 ioc->shost->can_queue)); 6472 6473 /* contiguous pool for request and chains, 16 byte align, one extra " 6474 * "frame for smid=0 6475 */ 6476 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6477 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6478 6479 /* hi-priority queue */ 6480 sz += (ioc->hi_priority_depth * ioc->request_sz); 6481 6482 /* internal queue */ 6483 sz += (ioc->internal_depth * ioc->request_sz); 6484 6485 ioc->request_dma_sz = sz; 6486 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6487 &ioc->request_dma, GFP_KERNEL); 6488 if (!ioc->request) { 6489 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6490 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6491 ioc->request_sz, sz / 1024); 6492 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6493 goto out; 6494 retry_sz = 64; 6495 ioc->hba_queue_depth -= retry_sz; 6496 _base_release_memory_pools(ioc); 6497 goto retry_allocation; 6498 } 6499 6500 if (retry_sz) 6501 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6502 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6503 ioc->request_sz, sz / 1024); 6504 6505 /* hi-priority queue */ 6506 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6507 ioc->request_sz); 6508 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6509 ioc->request_sz); 6510 6511 /* internal queue */ 6512 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6513 ioc->request_sz); 6514 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6515 ioc->request_sz); 6516 6517 ioc_info(ioc, 6518 "request pool(0x%p) - dma(0x%llx): " 6519 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6520 ioc->request, (unsigned long long) ioc->request_dma, 6521 ioc->hba_queue_depth, ioc->request_sz, 6522 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6523 6524 total_sz += sz; 6525 6526 dinitprintk(ioc, 6527 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6528 ioc->request, ioc->scsiio_depth)); 6529 6530 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6531 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6532 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6533 if (!ioc->chain_lookup) { 6534 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6535 goto out; 6536 } 6537 6538 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6539 for (i = 0; i < ioc->scsiio_depth; i++) { 6540 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6541 if (!ioc->chain_lookup[i].chains_per_smid) { 6542 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6543 goto out; 6544 } 6545 } 6546 6547 /* initialize hi-priority queue smid's */ 6548 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6549 sizeof(struct request_tracker), GFP_KERNEL); 6550 if (!ioc->hpr_lookup) { 6551 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6552 goto out; 6553 } 6554 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6555 dinitprintk(ioc, 6556 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6557 ioc->hi_priority, 6558 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6559 6560 /* initialize internal queue smid's */ 6561 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6562 sizeof(struct request_tracker), GFP_KERNEL); 6563 if (!ioc->internal_lookup) { 6564 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6565 goto out; 6566 } 6567 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6568 dinitprintk(ioc, 6569 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6570 ioc->internal, 6571 ioc->internal_depth, ioc->internal_smid)); 6572 6573 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6574 sizeof(u16), GFP_KERNEL); 6575 if (!ioc->io_queue_num) 6576 goto out; 6577 /* 6578 * The number of NVMe page sized blocks needed is: 6579 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6580 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6581 * that is placed in the main message frame. 8 is the size of each PRP 6582 * entry or PRP list pointer entry. 8 is subtracted from page_size 6583 * because of the PRP list pointer entry at the end of a page, so this 6584 * is not counted as a PRP entry. The 1 added page is a round up. 6585 * 6586 * To avoid allocation failures due to the amount of memory that could 6587 * be required for NVMe PRP's, only each set of NVMe blocks will be 6588 * contiguous, so a new set is allocated for each possible I/O. 6589 */ 6590 6591 ioc->chains_per_prp_buffer = 0; 6592 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6593 nvme_blocks_needed = 6594 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6595 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6596 nvme_blocks_needed++; 6597 6598 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6599 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6600 if (!ioc->pcie_sg_lookup) { 6601 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6602 goto out; 6603 } 6604 sz = nvme_blocks_needed * ioc->page_size; 6605 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6606 if (rc == -ENOMEM) 6607 return -ENOMEM; 6608 else if (rc == -EAGAIN) 6609 goto try_32bit_dma; 6610 total_sz += sz * ioc->scsiio_depth; 6611 } 6612 6613 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6614 if (rc == -ENOMEM) 6615 return -ENOMEM; 6616 else if (rc == -EAGAIN) 6617 goto try_32bit_dma; 6618 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6619 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6620 dinitprintk(ioc, 6621 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6622 ioc->chain_depth, ioc->chain_segment_sz, 6623 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6624 /* sense buffers, 4 byte align */ 6625 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6626 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6627 if (rc == -ENOMEM) 6628 return -ENOMEM; 6629 else if (rc == -EAGAIN) 6630 goto try_32bit_dma; 6631 total_sz += sense_sz; 6632 /* reply pool, 4 byte align */ 6633 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6634 rc = _base_allocate_reply_pool(ioc, sz); 6635 if (rc == -ENOMEM) 6636 return -ENOMEM; 6637 else if (rc == -EAGAIN) 6638 goto try_32bit_dma; 6639 total_sz += sz; 6640 6641 /* reply free queue, 16 byte align */ 6642 sz = ioc->reply_free_queue_depth * 4; 6643 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6644 if (rc == -ENOMEM) 6645 return -ENOMEM; 6646 else if (rc == -EAGAIN) 6647 goto try_32bit_dma; 6648 dinitprintk(ioc, 6649 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6650 (unsigned long long)ioc->reply_free_dma)); 6651 total_sz += sz; 6652 if (ioc->rdpq_array_enable) { 6653 reply_post_free_array_sz = ioc->reply_queue_count * 6654 sizeof(Mpi2IOCInitRDPQArrayEntry); 6655 rc = _base_allocate_reply_post_free_array(ioc, 6656 reply_post_free_array_sz); 6657 if (rc == -ENOMEM) 6658 return -ENOMEM; 6659 else if (rc == -EAGAIN) 6660 goto try_32bit_dma; 6661 } 6662 ioc->config_page_sz = 512; 6663 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6664 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6665 if (!ioc->config_page) { 6666 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6667 goto out; 6668 } 6669 6670 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6671 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6672 ioc->config_page_sz); 6673 total_sz += ioc->config_page_sz; 6674 6675 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6676 total_sz / 1024); 6677 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6678 ioc->shost->can_queue, facts->RequestCredit); 6679 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6680 ioc->shost->sg_tablesize); 6681 return 0; 6682 6683 try_32bit_dma: 6684 _base_release_memory_pools(ioc); 6685 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6686 /* Change dma coherent mask to 32 bit and reallocate */ 6687 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6688 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6689 pci_name(ioc->pdev)); 6690 return -ENODEV; 6691 } 6692 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6693 return -ENOMEM; 6694 goto retry_allocation; 6695 6696 out: 6697 return -ENOMEM; 6698 } 6699 6700 /** 6701 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6702 * @ioc: Pointer to MPT_ADAPTER structure 6703 * @cooked: Request raw or cooked IOC state 6704 * 6705 * Return: all IOC Doorbell register bits if cooked==0, else just the 6706 * Doorbell bits in MPI_IOC_STATE_MASK. 6707 */ 6708 u32 6709 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6710 { 6711 u32 s, sc; 6712 6713 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6714 sc = s & MPI2_IOC_STATE_MASK; 6715 return cooked ? sc : s; 6716 } 6717 6718 /** 6719 * _base_wait_on_iocstate - waiting on a particular ioc state 6720 * @ioc: ? 6721 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6722 * @timeout: timeout in second 6723 * 6724 * Return: 0 for success, non-zero for failure. 6725 */ 6726 static int 6727 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6728 { 6729 u32 count, cntdn; 6730 u32 current_state; 6731 6732 count = 0; 6733 cntdn = 1000 * timeout; 6734 do { 6735 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6736 if (current_state == ioc_state) 6737 return 0; 6738 if (count && current_state == MPI2_IOC_STATE_FAULT) 6739 break; 6740 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6741 break; 6742 6743 usleep_range(1000, 1500); 6744 count++; 6745 } while (--cntdn); 6746 6747 return current_state; 6748 } 6749 6750 /** 6751 * _base_dump_reg_set - This function will print hexdump of register set. 6752 * @ioc: per adapter object 6753 * 6754 * Return: nothing. 6755 */ 6756 static inline void 6757 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6758 { 6759 unsigned int i, sz = 256; 6760 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6761 6762 ioc_info(ioc, "System Register set:\n"); 6763 for (i = 0; i < (sz / sizeof(u32)); i++) 6764 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6765 } 6766 6767 /** 6768 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6769 * a write to the doorbell) 6770 * @ioc: per adapter object 6771 * @timeout: timeout in seconds 6772 * 6773 * Return: 0 for success, non-zero for failure. 6774 * 6775 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6776 */ 6777 6778 static int 6779 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6780 { 6781 u32 cntdn, count; 6782 u32 int_status; 6783 6784 count = 0; 6785 cntdn = 1000 * timeout; 6786 do { 6787 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6788 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6789 dhsprintk(ioc, 6790 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6791 __func__, count, timeout)); 6792 return 0; 6793 } 6794 6795 usleep_range(1000, 1500); 6796 count++; 6797 } while (--cntdn); 6798 6799 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6800 __func__, count, int_status); 6801 return -EFAULT; 6802 } 6803 6804 static int 6805 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6806 { 6807 u32 cntdn, count; 6808 u32 int_status; 6809 6810 count = 0; 6811 cntdn = 2000 * timeout; 6812 do { 6813 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6814 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6815 dhsprintk(ioc, 6816 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6817 __func__, count, timeout)); 6818 return 0; 6819 } 6820 6821 udelay(500); 6822 count++; 6823 } while (--cntdn); 6824 6825 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6826 __func__, count, int_status); 6827 return -EFAULT; 6828 6829 } 6830 6831 /** 6832 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6833 * @ioc: per adapter object 6834 * @timeout: timeout in second 6835 * 6836 * Return: 0 for success, non-zero for failure. 6837 * 6838 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6839 * doorbell. 6840 */ 6841 static int 6842 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6843 { 6844 u32 cntdn, count; 6845 u32 int_status; 6846 u32 doorbell; 6847 6848 count = 0; 6849 cntdn = 1000 * timeout; 6850 do { 6851 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6852 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6853 dhsprintk(ioc, 6854 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6855 __func__, count, timeout)); 6856 return 0; 6857 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6858 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6859 if ((doorbell & MPI2_IOC_STATE_MASK) == 6860 MPI2_IOC_STATE_FAULT) { 6861 mpt3sas_print_fault_code(ioc, doorbell); 6862 return -EFAULT; 6863 } 6864 if ((doorbell & MPI2_IOC_STATE_MASK) == 6865 MPI2_IOC_STATE_COREDUMP) { 6866 mpt3sas_print_coredump_info(ioc, doorbell); 6867 return -EFAULT; 6868 } 6869 } else if (int_status == 0xFFFFFFFF) 6870 goto out; 6871 6872 usleep_range(1000, 1500); 6873 count++; 6874 } while (--cntdn); 6875 6876 out: 6877 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6878 __func__, count, int_status); 6879 return -EFAULT; 6880 } 6881 6882 /** 6883 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6884 * @ioc: per adapter object 6885 * @timeout: timeout in second 6886 * 6887 * Return: 0 for success, non-zero for failure. 6888 */ 6889 static int 6890 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6891 { 6892 u32 cntdn, count; 6893 u32 doorbell_reg; 6894 6895 count = 0; 6896 cntdn = 1000 * timeout; 6897 do { 6898 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6899 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6900 dhsprintk(ioc, 6901 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6902 __func__, count, timeout)); 6903 return 0; 6904 } 6905 6906 usleep_range(1000, 1500); 6907 count++; 6908 } while (--cntdn); 6909 6910 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6911 __func__, count, doorbell_reg); 6912 return -EFAULT; 6913 } 6914 6915 /** 6916 * _base_send_ioc_reset - send doorbell reset 6917 * @ioc: per adapter object 6918 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6919 * @timeout: timeout in second 6920 * 6921 * Return: 0 for success, non-zero for failure. 6922 */ 6923 static int 6924 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6925 { 6926 u32 ioc_state; 6927 int r = 0; 6928 unsigned long flags; 6929 6930 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6931 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6932 return -EFAULT; 6933 } 6934 6935 if (!(ioc->facts.IOCCapabilities & 6936 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6937 return -EFAULT; 6938 6939 ioc_info(ioc, "sending message unit reset !!\n"); 6940 6941 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6942 &ioc->chip->Doorbell); 6943 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6944 r = -EFAULT; 6945 goto out; 6946 } 6947 6948 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6949 if (ioc_state) { 6950 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6951 __func__, ioc_state); 6952 r = -EFAULT; 6953 goto out; 6954 } 6955 out: 6956 if (r != 0) { 6957 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6958 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6959 /* 6960 * Wait for IOC state CoreDump to clear only during 6961 * HBA initialization & release time. 6962 */ 6963 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6964 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6965 ioc->fault_reset_work_q == NULL)) { 6966 spin_unlock_irqrestore( 6967 &ioc->ioc_reset_in_progress_lock, flags); 6968 mpt3sas_print_coredump_info(ioc, ioc_state); 6969 mpt3sas_base_wait_for_coredump_completion(ioc, 6970 __func__); 6971 spin_lock_irqsave( 6972 &ioc->ioc_reset_in_progress_lock, flags); 6973 } 6974 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6975 } 6976 ioc_info(ioc, "message unit reset: %s\n", 6977 r == 0 ? "SUCCESS" : "FAILED"); 6978 return r; 6979 } 6980 6981 /** 6982 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6983 * @ioc: per adapter object 6984 * @timeout: timeout in seconds 6985 * 6986 * Return: Waits up to timeout seconds for the IOC to 6987 * become operational. Returns 0 if IOC is present 6988 * and operational; otherwise returns %-EFAULT. 6989 */ 6990 6991 int 6992 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6993 { 6994 int wait_state_count = 0; 6995 u32 ioc_state; 6996 6997 do { 6998 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6999 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 7000 break; 7001 7002 /* 7003 * Watchdog thread will be started after IOC Initialization, so 7004 * no need to wait here for IOC state to become operational 7005 * when IOC Initialization is on. Instead the driver will 7006 * return ETIME status, so that calling function can issue 7007 * diag reset operation and retry the command. 7008 */ 7009 if (ioc->is_driver_loading) 7010 return -ETIME; 7011 7012 ssleep(1); 7013 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 7014 __func__, ++wait_state_count); 7015 } while (--timeout); 7016 if (!timeout) { 7017 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 7018 return -EFAULT; 7019 } 7020 if (wait_state_count) 7021 ioc_info(ioc, "ioc is operational\n"); 7022 return 0; 7023 } 7024 7025 /** 7026 * _base_handshake_req_reply_wait - send request thru doorbell interface 7027 * @ioc: per adapter object 7028 * @request_bytes: request length 7029 * @request: pointer having request payload 7030 * @reply_bytes: reply length 7031 * @reply: pointer to reply payload 7032 * @timeout: timeout in second 7033 * 7034 * Return: 0 for success, non-zero for failure. 7035 */ 7036 static int 7037 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 7038 u32 *request, int reply_bytes, u16 *reply, int timeout) 7039 { 7040 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 7041 int i; 7042 u8 failed; 7043 __le32 *mfp; 7044 7045 /* make sure doorbell is not in use */ 7046 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 7047 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 7048 return -EFAULT; 7049 } 7050 7051 /* clear pending doorbell interrupts from previous state changes */ 7052 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 7053 MPI2_HIS_IOC2SYS_DB_STATUS) 7054 writel(0, &ioc->chip->HostInterruptStatus); 7055 7056 /* send message to ioc */ 7057 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 7058 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 7059 &ioc->chip->Doorbell); 7060 7061 if ((_base_spin_on_doorbell_int(ioc, 5))) { 7062 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7063 __LINE__); 7064 return -EFAULT; 7065 } 7066 writel(0, &ioc->chip->HostInterruptStatus); 7067 7068 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 7069 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 7070 __LINE__); 7071 return -EFAULT; 7072 } 7073 7074 /* send message 32-bits at a time */ 7075 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 7076 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 7077 if ((_base_wait_for_doorbell_ack(ioc, 5))) 7078 failed = 1; 7079 } 7080 7081 if (failed) { 7082 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 7083 __LINE__); 7084 return -EFAULT; 7085 } 7086 7087 /* now wait for the reply */ 7088 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 7089 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7090 __LINE__); 7091 return -EFAULT; 7092 } 7093 7094 /* read the first two 16-bits, it gives the total length of the reply */ 7095 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7096 & MPI2_DOORBELL_DATA_MASK); 7097 writel(0, &ioc->chip->HostInterruptStatus); 7098 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7099 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7100 __LINE__); 7101 return -EFAULT; 7102 } 7103 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7104 & MPI2_DOORBELL_DATA_MASK); 7105 writel(0, &ioc->chip->HostInterruptStatus); 7106 7107 for (i = 2; i < default_reply->MsgLength * 2; i++) { 7108 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7109 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7110 __LINE__); 7111 return -EFAULT; 7112 } 7113 if (i >= reply_bytes/2) /* overflow case */ 7114 ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 7115 else 7116 reply[i] = le16_to_cpu( 7117 ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7118 & MPI2_DOORBELL_DATA_MASK); 7119 writel(0, &ioc->chip->HostInterruptStatus); 7120 } 7121 7122 _base_wait_for_doorbell_int(ioc, 5); 7123 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 7124 dhsprintk(ioc, 7125 ioc_info(ioc, "doorbell is in use (line=%d)\n", 7126 __LINE__)); 7127 } 7128 writel(0, &ioc->chip->HostInterruptStatus); 7129 7130 if (ioc->logging_level & MPT_DEBUG_INIT) { 7131 mfp = (__le32 *)reply; 7132 pr_info("\toffset:data\n"); 7133 for (i = 0; i < reply_bytes/4; i++) 7134 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7135 le32_to_cpu(mfp[i])); 7136 } 7137 return 0; 7138 } 7139 7140 /** 7141 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 7142 * @ioc: per adapter object 7143 * @mpi_reply: the reply payload from FW 7144 * @mpi_request: the request payload sent to FW 7145 * 7146 * The SAS IO Unit Control Request message allows the host to perform low-level 7147 * operations, such as resets on the PHYs of the IO Unit, also allows the host 7148 * to obtain the IOC assigned device handles for a device if it has other 7149 * identifying information about the device, in addition allows the host to 7150 * remove IOC resources associated with the device. 7151 * 7152 * Return: 0 for success, non-zero for failure. 7153 */ 7154 int 7155 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 7156 Mpi2SasIoUnitControlReply_t *mpi_reply, 7157 Mpi2SasIoUnitControlRequest_t *mpi_request) 7158 { 7159 u16 smid; 7160 u8 issue_reset = 0; 7161 int rc; 7162 void *request; 7163 7164 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7165 7166 mutex_lock(&ioc->base_cmds.mutex); 7167 7168 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7169 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7170 rc = -EAGAIN; 7171 goto out; 7172 } 7173 7174 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7175 if (rc) 7176 goto out; 7177 7178 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7179 if (!smid) { 7180 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7181 rc = -EAGAIN; 7182 goto out; 7183 } 7184 7185 rc = 0; 7186 ioc->base_cmds.status = MPT3_CMD_PENDING; 7187 request = mpt3sas_base_get_msg_frame(ioc, smid); 7188 ioc->base_cmds.smid = smid; 7189 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7190 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7191 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7192 ioc->ioc_link_reset_in_progress = 1; 7193 init_completion(&ioc->base_cmds.done); 7194 ioc->put_smid_default(ioc, smid); 7195 wait_for_completion_timeout(&ioc->base_cmds.done, 7196 msecs_to_jiffies(10000)); 7197 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7198 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7199 ioc->ioc_link_reset_in_progress) 7200 ioc->ioc_link_reset_in_progress = 0; 7201 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7202 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7203 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7204 issue_reset); 7205 goto issue_host_reset; 7206 } 7207 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7208 memcpy(mpi_reply, ioc->base_cmds.reply, 7209 sizeof(Mpi2SasIoUnitControlReply_t)); 7210 else 7211 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7212 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7213 goto out; 7214 7215 issue_host_reset: 7216 if (issue_reset) 7217 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7218 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7219 rc = -EFAULT; 7220 out: 7221 mutex_unlock(&ioc->base_cmds.mutex); 7222 return rc; 7223 } 7224 7225 /** 7226 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7227 * @ioc: per adapter object 7228 * @mpi_reply: the reply payload from FW 7229 * @mpi_request: the request payload sent to FW 7230 * 7231 * The SCSI Enclosure Processor request message causes the IOC to 7232 * communicate with SES devices to control LED status signals. 7233 * 7234 * Return: 0 for success, non-zero for failure. 7235 */ 7236 int 7237 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7238 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7239 { 7240 u16 smid; 7241 u8 issue_reset = 0; 7242 int rc; 7243 void *request; 7244 7245 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7246 7247 mutex_lock(&ioc->base_cmds.mutex); 7248 7249 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7250 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7251 rc = -EAGAIN; 7252 goto out; 7253 } 7254 7255 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7256 if (rc) 7257 goto out; 7258 7259 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7260 if (!smid) { 7261 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7262 rc = -EAGAIN; 7263 goto out; 7264 } 7265 7266 rc = 0; 7267 ioc->base_cmds.status = MPT3_CMD_PENDING; 7268 request = mpt3sas_base_get_msg_frame(ioc, smid); 7269 ioc->base_cmds.smid = smid; 7270 memset(request, 0, ioc->request_sz); 7271 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7272 init_completion(&ioc->base_cmds.done); 7273 ioc->put_smid_default(ioc, smid); 7274 wait_for_completion_timeout(&ioc->base_cmds.done, 7275 msecs_to_jiffies(10000)); 7276 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7277 mpt3sas_check_cmd_timeout(ioc, 7278 ioc->base_cmds.status, mpi_request, 7279 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7280 goto issue_host_reset; 7281 } 7282 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7283 memcpy(mpi_reply, ioc->base_cmds.reply, 7284 sizeof(Mpi2SepReply_t)); 7285 else 7286 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7287 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7288 goto out; 7289 7290 issue_host_reset: 7291 if (issue_reset) 7292 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7293 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7294 rc = -EFAULT; 7295 out: 7296 mutex_unlock(&ioc->base_cmds.mutex); 7297 return rc; 7298 } 7299 7300 /** 7301 * _base_get_port_facts - obtain port facts reply and save in ioc 7302 * @ioc: per adapter object 7303 * @port: ? 7304 * 7305 * Return: 0 for success, non-zero for failure. 7306 */ 7307 static int 7308 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7309 { 7310 Mpi2PortFactsRequest_t mpi_request; 7311 Mpi2PortFactsReply_t mpi_reply; 7312 struct mpt3sas_port_facts *pfacts; 7313 int mpi_reply_sz, mpi_request_sz, r; 7314 7315 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7316 7317 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7318 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7319 memset(&mpi_request, 0, mpi_request_sz); 7320 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7321 mpi_request.PortNumber = port; 7322 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7323 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7324 7325 if (r != 0) { 7326 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7327 return r; 7328 } 7329 7330 pfacts = &ioc->pfacts[port]; 7331 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7332 pfacts->PortNumber = mpi_reply.PortNumber; 7333 pfacts->VP_ID = mpi_reply.VP_ID; 7334 pfacts->VF_ID = mpi_reply.VF_ID; 7335 pfacts->MaxPostedCmdBuffers = 7336 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7337 7338 return 0; 7339 } 7340 7341 /** 7342 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7343 * @ioc: per adapter object 7344 * @timeout: 7345 * 7346 * Return: 0 for success, non-zero for failure. 7347 */ 7348 static int 7349 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7350 { 7351 u32 ioc_state; 7352 int rc; 7353 7354 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7355 7356 if (ioc->pci_error_recovery) { 7357 dfailprintk(ioc, 7358 ioc_info(ioc, "%s: host in pci error recovery\n", 7359 __func__)); 7360 return -EFAULT; 7361 } 7362 7363 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7364 dhsprintk(ioc, 7365 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7366 __func__, ioc_state)); 7367 7368 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7369 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7370 return 0; 7371 7372 if (ioc_state & MPI2_DOORBELL_USED) { 7373 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7374 goto issue_diag_reset; 7375 } 7376 7377 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7378 mpt3sas_print_fault_code(ioc, ioc_state & 7379 MPI2_DOORBELL_DATA_MASK); 7380 goto issue_diag_reset; 7381 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7382 MPI2_IOC_STATE_COREDUMP) { 7383 ioc_info(ioc, 7384 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7385 __func__, ioc_state); 7386 return -EFAULT; 7387 } 7388 7389 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7390 if (ioc_state) { 7391 dfailprintk(ioc, 7392 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7393 __func__, ioc_state)); 7394 return -EFAULT; 7395 } 7396 7397 return 0; 7398 7399 issue_diag_reset: 7400 rc = _base_diag_reset(ioc); 7401 return rc; 7402 } 7403 7404 /** 7405 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7406 * @ioc: per adapter object 7407 * 7408 * Return: 0 for success, non-zero for failure. 7409 */ 7410 static int 7411 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7412 { 7413 Mpi2IOCFactsRequest_t mpi_request; 7414 Mpi2IOCFactsReply_t mpi_reply; 7415 struct mpt3sas_facts *facts; 7416 int mpi_reply_sz, mpi_request_sz, r; 7417 7418 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7419 7420 r = _base_wait_for_iocstate(ioc, 10); 7421 if (r) { 7422 dfailprintk(ioc, 7423 ioc_info(ioc, "%s: failed getting to correct state\n", 7424 __func__)); 7425 return r; 7426 } 7427 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7428 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7429 memset(&mpi_request, 0, mpi_request_sz); 7430 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7431 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7432 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7433 7434 if (r != 0) { 7435 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7436 return r; 7437 } 7438 7439 facts = &ioc->facts; 7440 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7441 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7442 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7443 facts->VP_ID = mpi_reply.VP_ID; 7444 facts->VF_ID = mpi_reply.VF_ID; 7445 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7446 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7447 facts->WhoInit = mpi_reply.WhoInit; 7448 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7449 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7450 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7451 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7452 ioc->combined_reply_queue = 0; 7453 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7454 facts->MaxReplyDescriptorPostQueueDepth = 7455 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7456 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7457 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7458 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7459 ioc->ir_firmware = 1; 7460 if ((facts->IOCCapabilities & 7461 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7462 ioc->rdpq_array_capable = 1; 7463 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7464 && ioc->is_aero_ioc) 7465 ioc->atomic_desc_capable = 1; 7466 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7467 facts->IOCRequestFrameSize = 7468 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7469 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7470 facts->IOCMaxChainSegmentSize = 7471 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7472 } 7473 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7474 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7475 ioc->shost->max_id = -1; 7476 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7477 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7478 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7479 facts->HighPriorityCredit = 7480 le16_to_cpu(mpi_reply.HighPriorityCredit); 7481 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7482 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7483 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7484 7485 /* 7486 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7487 */ 7488 ioc->page_size = 1 << facts->CurrentHostPageSize; 7489 if (ioc->page_size == 1) { 7490 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7491 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7492 } 7493 dinitprintk(ioc, 7494 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7495 facts->CurrentHostPageSize)); 7496 7497 dinitprintk(ioc, 7498 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7499 facts->RequestCredit, facts->MaxChainDepth)); 7500 dinitprintk(ioc, 7501 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7502 facts->IOCRequestFrameSize * 4, 7503 facts->ReplyFrameSize * 4)); 7504 return 0; 7505 } 7506 7507 /** 7508 * _base_send_ioc_init - send ioc_init to firmware 7509 * @ioc: per adapter object 7510 * 7511 * Return: 0 for success, non-zero for failure. 7512 */ 7513 static int 7514 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7515 { 7516 Mpi2IOCInitRequest_t mpi_request; 7517 Mpi2IOCInitReply_t mpi_reply; 7518 int i, r = 0; 7519 ktime_t current_time; 7520 u16 ioc_status; 7521 u32 reply_post_free_array_sz = 0; 7522 7523 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7524 7525 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7526 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7527 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7528 mpi_request.VF_ID = 0; /* TODO */ 7529 mpi_request.VP_ID = 0; 7530 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7531 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7532 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7533 7534 if (_base_is_controller_msix_enabled(ioc)) 7535 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7536 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7537 mpi_request.ReplyDescriptorPostQueueDepth = 7538 cpu_to_le16(ioc->reply_post_queue_depth); 7539 mpi_request.ReplyFreeQueueDepth = 7540 cpu_to_le16(ioc->reply_free_queue_depth); 7541 7542 mpi_request.SenseBufferAddressHigh = 7543 cpu_to_le32((u64)ioc->sense_dma >> 32); 7544 mpi_request.SystemReplyAddressHigh = 7545 cpu_to_le32((u64)ioc->reply_dma >> 32); 7546 mpi_request.SystemRequestFrameBaseAddress = 7547 cpu_to_le64((u64)ioc->request_dma); 7548 mpi_request.ReplyFreeQueueAddress = 7549 cpu_to_le64((u64)ioc->reply_free_dma); 7550 7551 if (ioc->rdpq_array_enable) { 7552 reply_post_free_array_sz = ioc->reply_queue_count * 7553 sizeof(Mpi2IOCInitRDPQArrayEntry); 7554 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7555 for (i = 0; i < ioc->reply_queue_count; i++) 7556 ioc->reply_post_free_array[i].RDPQBaseAddress = 7557 cpu_to_le64( 7558 (u64)ioc->reply_post[i].reply_post_free_dma); 7559 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7560 mpi_request.ReplyDescriptorPostQueueAddress = 7561 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7562 } else { 7563 mpi_request.ReplyDescriptorPostQueueAddress = 7564 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7565 } 7566 7567 /* 7568 * Set the flag to enable CoreDump state feature in IOC firmware. 7569 */ 7570 mpi_request.ConfigurationFlags |= 7571 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7572 7573 /* This time stamp specifies number of milliseconds 7574 * since epoch ~ midnight January 1, 1970. 7575 */ 7576 current_time = ktime_get_real(); 7577 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7578 7579 if (ioc->logging_level & MPT_DEBUG_INIT) { 7580 __le32 *mfp; 7581 int i; 7582 7583 mfp = (__le32 *)&mpi_request; 7584 ioc_info(ioc, "\toffset:data\n"); 7585 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7586 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7587 le32_to_cpu(mfp[i])); 7588 } 7589 7590 r = _base_handshake_req_reply_wait(ioc, 7591 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7592 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7593 7594 if (r != 0) { 7595 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7596 return r; 7597 } 7598 7599 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7600 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7601 mpi_reply.IOCLogInfo) { 7602 ioc_err(ioc, "%s: failed\n", __func__); 7603 r = -EIO; 7604 } 7605 7606 /* Reset TimeSync Counter*/ 7607 ioc->timestamp_update_count = 0; 7608 return r; 7609 } 7610 7611 /** 7612 * mpt3sas_port_enable_done - command completion routine for port enable 7613 * @ioc: per adapter object 7614 * @smid: system request message index 7615 * @msix_index: MSIX table index supplied by the OS 7616 * @reply: reply message frame(lower 32bit addr) 7617 * 7618 * Return: 1 meaning mf should be freed from _base_interrupt 7619 * 0 means the mf is freed from this function. 7620 */ 7621 u8 7622 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7623 u32 reply) 7624 { 7625 MPI2DefaultReply_t *mpi_reply; 7626 u16 ioc_status; 7627 7628 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7629 return 1; 7630 7631 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7632 if (!mpi_reply) 7633 return 1; 7634 7635 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7636 return 1; 7637 7638 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7639 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7640 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7641 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7642 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7643 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7644 ioc->port_enable_failed = 1; 7645 7646 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7647 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7648 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7649 mpt3sas_port_enable_complete(ioc); 7650 return 1; 7651 } else { 7652 ioc->start_scan_failed = ioc_status; 7653 ioc->start_scan = 0; 7654 return 1; 7655 } 7656 } 7657 complete(&ioc->port_enable_cmds.done); 7658 return 1; 7659 } 7660 7661 /** 7662 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7663 * @ioc: per adapter object 7664 * 7665 * Return: 0 for success, non-zero for failure. 7666 */ 7667 static int 7668 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7669 { 7670 Mpi2PortEnableRequest_t *mpi_request; 7671 Mpi2PortEnableReply_t *mpi_reply; 7672 int r = 0; 7673 u16 smid; 7674 u16 ioc_status; 7675 7676 ioc_info(ioc, "sending port enable !!\n"); 7677 7678 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7679 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7680 return -EAGAIN; 7681 } 7682 7683 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7684 if (!smid) { 7685 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7686 return -EAGAIN; 7687 } 7688 7689 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7690 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7691 ioc->port_enable_cmds.smid = smid; 7692 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7693 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7694 7695 init_completion(&ioc->port_enable_cmds.done); 7696 ioc->put_smid_default(ioc, smid); 7697 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7698 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7699 ioc_err(ioc, "%s: timeout\n", __func__); 7700 _debug_dump_mf(mpi_request, 7701 sizeof(Mpi2PortEnableRequest_t)/4); 7702 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7703 r = -EFAULT; 7704 else 7705 r = -ETIME; 7706 goto out; 7707 } 7708 7709 mpi_reply = ioc->port_enable_cmds.reply; 7710 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7711 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7712 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7713 __func__, ioc_status); 7714 r = -EFAULT; 7715 goto out; 7716 } 7717 7718 out: 7719 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7720 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7721 return r; 7722 } 7723 7724 /** 7725 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7726 * @ioc: per adapter object 7727 * 7728 * Return: 0 for success, non-zero for failure. 7729 */ 7730 int 7731 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7732 { 7733 Mpi2PortEnableRequest_t *mpi_request; 7734 u16 smid; 7735 7736 ioc_info(ioc, "sending port enable !!\n"); 7737 7738 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7739 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7740 return -EAGAIN; 7741 } 7742 7743 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7744 if (!smid) { 7745 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7746 return -EAGAIN; 7747 } 7748 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7749 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7750 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7751 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7752 ioc->port_enable_cmds.smid = smid; 7753 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7754 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7755 7756 ioc->put_smid_default(ioc, smid); 7757 return 0; 7758 } 7759 7760 /** 7761 * _base_determine_wait_on_discovery - desposition 7762 * @ioc: per adapter object 7763 * 7764 * Decide whether to wait on discovery to complete. Used to either 7765 * locate boot device, or report volumes ahead of physical devices. 7766 * 7767 * Return: 1 for wait, 0 for don't wait. 7768 */ 7769 static int 7770 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7771 { 7772 /* We wait for discovery to complete if IR firmware is loaded. 7773 * The sas topology events arrive before PD events, so we need time to 7774 * turn on the bit in ioc->pd_handles to indicate PD 7775 * Also, it maybe required to report Volumes ahead of physical 7776 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7777 */ 7778 if (ioc->ir_firmware) 7779 return 1; 7780 7781 /* if no Bios, then we don't need to wait */ 7782 if (!ioc->bios_pg3.BiosVersion) 7783 return 0; 7784 7785 /* Bios is present, then we drop down here. 7786 * 7787 * If there any entries in the Bios Page 2, then we wait 7788 * for discovery to complete. 7789 */ 7790 7791 /* Current Boot Device */ 7792 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7793 MPI2_BIOSPAGE2_FORM_MASK) == 7794 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7795 /* Request Boot Device */ 7796 (ioc->bios_pg2.ReqBootDeviceForm & 7797 MPI2_BIOSPAGE2_FORM_MASK) == 7798 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7799 /* Alternate Request Boot Device */ 7800 (ioc->bios_pg2.ReqAltBootDeviceForm & 7801 MPI2_BIOSPAGE2_FORM_MASK) == 7802 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7803 return 0; 7804 7805 return 1; 7806 } 7807 7808 /** 7809 * _base_unmask_events - turn on notification for this event 7810 * @ioc: per adapter object 7811 * @event: firmware event 7812 * 7813 * The mask is stored in ioc->event_masks. 7814 */ 7815 static void 7816 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7817 { 7818 u32 desired_event; 7819 7820 if (event >= 128) 7821 return; 7822 7823 desired_event = (1 << (event % 32)); 7824 7825 if (event < 32) 7826 ioc->event_masks[0] &= ~desired_event; 7827 else if (event < 64) 7828 ioc->event_masks[1] &= ~desired_event; 7829 else if (event < 96) 7830 ioc->event_masks[2] &= ~desired_event; 7831 else if (event < 128) 7832 ioc->event_masks[3] &= ~desired_event; 7833 } 7834 7835 /** 7836 * _base_event_notification - send event notification 7837 * @ioc: per adapter object 7838 * 7839 * Return: 0 for success, non-zero for failure. 7840 */ 7841 static int 7842 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7843 { 7844 Mpi2EventNotificationRequest_t *mpi_request; 7845 u16 smid; 7846 int r = 0; 7847 int i, issue_diag_reset = 0; 7848 7849 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7850 7851 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7852 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7853 return -EAGAIN; 7854 } 7855 7856 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7857 if (!smid) { 7858 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7859 return -EAGAIN; 7860 } 7861 ioc->base_cmds.status = MPT3_CMD_PENDING; 7862 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7863 ioc->base_cmds.smid = smid; 7864 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7865 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7866 mpi_request->VF_ID = 0; /* TODO */ 7867 mpi_request->VP_ID = 0; 7868 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7869 mpi_request->EventMasks[i] = 7870 cpu_to_le32(ioc->event_masks[i]); 7871 init_completion(&ioc->base_cmds.done); 7872 ioc->put_smid_default(ioc, smid); 7873 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7874 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7875 ioc_err(ioc, "%s: timeout\n", __func__); 7876 _debug_dump_mf(mpi_request, 7877 sizeof(Mpi2EventNotificationRequest_t)/4); 7878 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7879 r = -EFAULT; 7880 else 7881 issue_diag_reset = 1; 7882 7883 } else 7884 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7885 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7886 7887 if (issue_diag_reset) { 7888 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7889 return -EFAULT; 7890 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7891 return -EFAULT; 7892 r = -EAGAIN; 7893 } 7894 return r; 7895 } 7896 7897 /** 7898 * mpt3sas_base_validate_event_type - validating event types 7899 * @ioc: per adapter object 7900 * @event_type: firmware event 7901 * 7902 * This will turn on firmware event notification when application 7903 * ask for that event. We don't mask events that are already enabled. 7904 */ 7905 void 7906 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7907 { 7908 int i, j; 7909 u32 event_mask, desired_event; 7910 u8 send_update_to_fw; 7911 7912 for (i = 0, send_update_to_fw = 0; i < 7913 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7914 event_mask = ~event_type[i]; 7915 desired_event = 1; 7916 for (j = 0; j < 32; j++) { 7917 if (!(event_mask & desired_event) && 7918 (ioc->event_masks[i] & desired_event)) { 7919 ioc->event_masks[i] &= ~desired_event; 7920 send_update_to_fw = 1; 7921 } 7922 desired_event = (desired_event << 1); 7923 } 7924 } 7925 7926 if (!send_update_to_fw) 7927 return; 7928 7929 mutex_lock(&ioc->base_cmds.mutex); 7930 _base_event_notification(ioc); 7931 mutex_unlock(&ioc->base_cmds.mutex); 7932 } 7933 7934 /** 7935 * mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes 7936 * @ioc: per adapter object 7937 * @host_diagnostic: host diagnostic register content 7938 * 7939 * Return: 0 for success, non-zero for failure. 7940 */ 7941 7942 int 7943 mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc, 7944 u32 *host_diagnostic) 7945 { 7946 7947 u32 count; 7948 *host_diagnostic = 0; 7949 count = 0; 7950 7951 do { 7952 /* Write magic sequence to WriteSequence register 7953 * Loop until in diagnostic mode 7954 */ 7955 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7956 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7957 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7958 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7959 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7960 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7961 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7962 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7963 7964 /* wait 100 msec */ 7965 msleep(100); 7966 7967 if (count++ > 20) { 7968 ioc_info(ioc, 7969 "Stop writing magic sequence after 20 retries\n"); 7970 _base_dump_reg_set(ioc); 7971 return -EFAULT; 7972 } 7973 7974 *host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 7975 drsprintk(ioc, 7976 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7977 count, *host_diagnostic)); 7978 7979 } while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7980 return 0; 7981 } 7982 7983 /** 7984 * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes 7985 * @ioc: per adapter object 7986 */ 7987 7988 void 7989 mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc) 7990 { 7991 drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n")); 7992 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7993 } 7994 7995 /** 7996 * _base_diag_reset - the "big hammer" start of day reset 7997 * @ioc: per adapter object 7998 * 7999 * Return: 0 for success, non-zero for failure. 8000 */ 8001 static int 8002 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 8003 { 8004 u32 host_diagnostic; 8005 u32 ioc_state; 8006 u32 count; 8007 u32 hcb_size; 8008 8009 ioc_info(ioc, "sending diag reset !!\n"); 8010 8011 pci_cfg_access_lock(ioc->pdev); 8012 8013 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 8014 8015 mutex_lock(&ioc->hostdiag_unlock_mutex); 8016 if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic)) 8017 goto out; 8018 8019 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 8020 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 8021 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 8022 &ioc->chip->HostDiagnostic); 8023 8024 /* This delay allows the chip PCIe hardware time to finish reset tasks */ 8025 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 8026 8027 /* Approximately 300 second max wait */ 8028 for (count = 0; count < (300000000 / 8029 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 8030 8031 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 8032 8033 if (host_diagnostic == 0xFFFFFFFF) { 8034 ioc_info(ioc, 8035 "Invalid host diagnostic register value\n"); 8036 _base_dump_reg_set(ioc); 8037 goto out; 8038 } 8039 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 8040 break; 8041 8042 /* Wait to pass the second read delay window */ 8043 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000); 8044 } 8045 8046 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 8047 8048 drsprintk(ioc, 8049 ioc_info(ioc, "restart the adapter assuming the\n" 8050 "HCB Address points to good F/W\n")); 8051 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 8052 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 8053 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 8054 8055 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 8056 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 8057 &ioc->chip->HCBSize); 8058 } 8059 8060 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 8061 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 8062 &ioc->chip->HostDiagnostic); 8063 8064 mpt3sas_base_lock_host_diagnostic(ioc); 8065 mutex_unlock(&ioc->hostdiag_unlock_mutex); 8066 8067 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 8068 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 8069 if (ioc_state) { 8070 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8071 __func__, ioc_state); 8072 _base_dump_reg_set(ioc); 8073 goto out; 8074 } 8075 8076 pci_cfg_access_unlock(ioc->pdev); 8077 ioc_info(ioc, "diag reset: SUCCESS\n"); 8078 return 0; 8079 8080 out: 8081 pci_cfg_access_unlock(ioc->pdev); 8082 ioc_err(ioc, "diag reset: FAILED\n"); 8083 mutex_unlock(&ioc->hostdiag_unlock_mutex); 8084 return -EFAULT; 8085 } 8086 8087 /** 8088 * mpt3sas_base_make_ioc_ready - put controller in READY state 8089 * @ioc: per adapter object 8090 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8091 * 8092 * Return: 0 for success, non-zero for failure. 8093 */ 8094 int 8095 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 8096 { 8097 u32 ioc_state; 8098 int rc; 8099 int count; 8100 8101 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8102 8103 if (ioc->pci_error_recovery) 8104 return 0; 8105 8106 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8107 dhsprintk(ioc, 8108 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 8109 __func__, ioc_state)); 8110 8111 /* if in RESET state, it should move to READY state shortly */ 8112 count = 0; 8113 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 8114 while ((ioc_state & MPI2_IOC_STATE_MASK) != 8115 MPI2_IOC_STATE_READY) { 8116 if (count++ == 10) { 8117 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8118 __func__, ioc_state); 8119 return -EFAULT; 8120 } 8121 ssleep(1); 8122 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8123 } 8124 } 8125 8126 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 8127 return 0; 8128 8129 if (ioc_state & MPI2_DOORBELL_USED) { 8130 ioc_info(ioc, "unexpected doorbell active!\n"); 8131 goto issue_diag_reset; 8132 } 8133 8134 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 8135 mpt3sas_print_fault_code(ioc, ioc_state & 8136 MPI2_DOORBELL_DATA_MASK); 8137 goto issue_diag_reset; 8138 } 8139 8140 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 8141 /* 8142 * if host reset is invoked while watch dog thread is waiting 8143 * for IOC state to be changed to Fault state then driver has 8144 * to wait here for CoreDump state to clear otherwise reset 8145 * will be issued to the FW and FW move the IOC state to 8146 * reset state without copying the FW logs to coredump region. 8147 */ 8148 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 8149 mpt3sas_print_coredump_info(ioc, ioc_state & 8150 MPI2_DOORBELL_DATA_MASK); 8151 mpt3sas_base_wait_for_coredump_completion(ioc, 8152 __func__); 8153 } 8154 goto issue_diag_reset; 8155 } 8156 8157 if (type == FORCE_BIG_HAMMER) 8158 goto issue_diag_reset; 8159 8160 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 8161 if (!(_base_send_ioc_reset(ioc, 8162 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 8163 return 0; 8164 } 8165 8166 issue_diag_reset: 8167 rc = _base_diag_reset(ioc); 8168 return rc; 8169 } 8170 8171 /** 8172 * _base_make_ioc_operational - put controller in OPERATIONAL state 8173 * @ioc: per adapter object 8174 * 8175 * Return: 0 for success, non-zero for failure. 8176 */ 8177 static int 8178 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 8179 { 8180 int r, i, index, rc; 8181 unsigned long flags; 8182 u32 reply_address; 8183 u16 smid; 8184 struct _tr_list *delayed_tr, *delayed_tr_next; 8185 struct _sc_list *delayed_sc, *delayed_sc_next; 8186 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 8187 u8 hide_flag; 8188 struct adapter_reply_queue *reply_q; 8189 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 8190 8191 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8192 8193 /* clean the delayed target reset list */ 8194 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8195 &ioc->delayed_tr_list, list) { 8196 list_del(&delayed_tr->list); 8197 kfree(delayed_tr); 8198 } 8199 8200 8201 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8202 &ioc->delayed_tr_volume_list, list) { 8203 list_del(&delayed_tr->list); 8204 kfree(delayed_tr); 8205 } 8206 8207 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8208 &ioc->delayed_sc_list, list) { 8209 list_del(&delayed_sc->list); 8210 kfree(delayed_sc); 8211 } 8212 8213 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8214 &ioc->delayed_event_ack_list, list) { 8215 list_del(&delayed_event_ack->list); 8216 kfree(delayed_event_ack); 8217 } 8218 8219 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8220 8221 /* hi-priority queue */ 8222 INIT_LIST_HEAD(&ioc->hpr_free_list); 8223 smid = ioc->hi_priority_smid; 8224 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8225 ioc->hpr_lookup[i].cb_idx = 0xFF; 8226 ioc->hpr_lookup[i].smid = smid; 8227 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8228 &ioc->hpr_free_list); 8229 } 8230 8231 /* internal queue */ 8232 INIT_LIST_HEAD(&ioc->internal_free_list); 8233 smid = ioc->internal_smid; 8234 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8235 ioc->internal_lookup[i].cb_idx = 0xFF; 8236 ioc->internal_lookup[i].smid = smid; 8237 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8238 &ioc->internal_free_list); 8239 } 8240 8241 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8242 8243 /* initialize Reply Free Queue */ 8244 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8245 i < ioc->reply_free_queue_depth ; i++, reply_address += 8246 ioc->reply_sz) { 8247 ioc->reply_free[i] = cpu_to_le32(reply_address); 8248 if (ioc->is_mcpu_endpoint) 8249 _base_clone_reply_to_sys_mem(ioc, 8250 reply_address, i); 8251 } 8252 8253 /* initialize reply queues */ 8254 if (ioc->is_driver_loading) 8255 _base_assign_reply_queues(ioc); 8256 8257 /* initialize Reply Post Free Queue */ 8258 index = 0; 8259 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8260 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8261 /* 8262 * If RDPQ is enabled, switch to the next allocation. 8263 * Otherwise advance within the contiguous region. 8264 */ 8265 if (ioc->rdpq_array_enable) { 8266 reply_q->reply_post_free = 8267 ioc->reply_post[index++].reply_post_free; 8268 } else { 8269 reply_q->reply_post_free = reply_post_free_contig; 8270 reply_post_free_contig += ioc->reply_post_queue_depth; 8271 } 8272 8273 reply_q->reply_post_host_index = 0; 8274 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8275 reply_q->reply_post_free[i].Words = 8276 cpu_to_le64(ULLONG_MAX); 8277 if (!_base_is_controller_msix_enabled(ioc)) 8278 goto skip_init_reply_post_free_queue; 8279 } 8280 skip_init_reply_post_free_queue: 8281 8282 r = _base_send_ioc_init(ioc); 8283 if (r) { 8284 /* 8285 * No need to check IOC state for fault state & issue 8286 * diag reset during host reset. This check is need 8287 * only during driver load time. 8288 */ 8289 if (!ioc->is_driver_loading) 8290 return r; 8291 8292 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8293 if (rc || (_base_send_ioc_init(ioc))) 8294 return r; 8295 } 8296 8297 /* initialize reply free host index */ 8298 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8299 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8300 8301 /* initialize reply post host index */ 8302 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8303 if (ioc->combined_reply_queue) 8304 writel((reply_q->msix_index & 7)<< 8305 MPI2_RPHI_MSIX_INDEX_SHIFT, 8306 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8307 else 8308 writel(reply_q->msix_index << 8309 MPI2_RPHI_MSIX_INDEX_SHIFT, 8310 &ioc->chip->ReplyPostHostIndex); 8311 8312 if (!_base_is_controller_msix_enabled(ioc)) 8313 goto skip_init_reply_post_host_index; 8314 } 8315 8316 skip_init_reply_post_host_index: 8317 8318 mpt3sas_base_unmask_interrupts(ioc); 8319 8320 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8321 r = _base_display_fwpkg_version(ioc); 8322 if (r) 8323 return r; 8324 } 8325 8326 r = _base_static_config_pages(ioc); 8327 if (r) 8328 return r; 8329 8330 r = _base_event_notification(ioc); 8331 if (r) 8332 return r; 8333 8334 if (!ioc->shost_recovery) { 8335 8336 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8337 == 0x80) { 8338 hide_flag = (u8) ( 8339 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8340 MFG_PAGE10_HIDE_SSDS_MASK); 8341 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8342 ioc->mfg_pg10_hide_flag = hide_flag; 8343 } 8344 8345 ioc->wait_for_discovery_to_complete = 8346 _base_determine_wait_on_discovery(ioc); 8347 8348 return r; /* scan_start and scan_finished support */ 8349 } 8350 8351 r = _base_send_port_enable(ioc); 8352 if (r) 8353 return r; 8354 8355 return r; 8356 } 8357 8358 /** 8359 * mpt3sas_base_free_resources - free resources controller resources 8360 * @ioc: per adapter object 8361 */ 8362 void 8363 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8364 { 8365 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8366 8367 /* synchronizing freeing resource with pci_access_mutex lock */ 8368 mutex_lock(&ioc->pci_access_mutex); 8369 if (ioc->chip_phys && ioc->chip) { 8370 mpt3sas_base_mask_interrupts(ioc); 8371 ioc->shost_recovery = 1; 8372 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8373 ioc->shost_recovery = 0; 8374 } 8375 8376 mpt3sas_base_unmap_resources(ioc); 8377 mutex_unlock(&ioc->pci_access_mutex); 8378 return; 8379 } 8380 8381 /** 8382 * mpt3sas_base_attach - attach controller instance 8383 * @ioc: per adapter object 8384 * 8385 * Return: 0 for success, non-zero for failure. 8386 */ 8387 int 8388 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8389 { 8390 int r, i, rc; 8391 int cpu_id, last_cpu_id = 0; 8392 8393 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8394 8395 /* setup cpu_msix_table */ 8396 ioc->cpu_count = num_online_cpus(); 8397 for_each_online_cpu(cpu_id) 8398 last_cpu_id = cpu_id; 8399 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8400 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8401 ioc->reply_queue_count = 1; 8402 if (!ioc->cpu_msix_table) { 8403 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8404 r = -ENOMEM; 8405 goto out_free_resources; 8406 } 8407 8408 if (ioc->is_warpdrive) { 8409 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8410 sizeof(resource_size_t *), GFP_KERNEL); 8411 if (!ioc->reply_post_host_index) { 8412 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8413 r = -ENOMEM; 8414 goto out_free_resources; 8415 } 8416 } 8417 8418 ioc->smp_affinity_enable = smp_affinity_enable; 8419 8420 ioc->rdpq_array_enable_assigned = 0; 8421 ioc->use_32bit_dma = false; 8422 ioc->dma_mask = 64; 8423 if (ioc->is_aero_ioc) { 8424 ioc->base_readl = &_base_readl_aero; 8425 ioc->base_readl_ext_retry = &_base_readl_ext_retry; 8426 } else { 8427 ioc->base_readl = &_base_readl; 8428 ioc->base_readl_ext_retry = &_base_readl; 8429 } 8430 r = mpt3sas_base_map_resources(ioc); 8431 if (r) 8432 goto out_free_resources; 8433 8434 pci_set_drvdata(ioc->pdev, ioc->shost); 8435 r = _base_get_ioc_facts(ioc); 8436 if (r) { 8437 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8438 if (rc || (_base_get_ioc_facts(ioc))) 8439 goto out_free_resources; 8440 } 8441 8442 switch (ioc->hba_mpi_version_belonged) { 8443 case MPI2_VERSION: 8444 ioc->build_sg_scmd = &_base_build_sg_scmd; 8445 ioc->build_sg = &_base_build_sg; 8446 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8447 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8448 break; 8449 case MPI25_VERSION: 8450 case MPI26_VERSION: 8451 /* 8452 * In SAS3.0, 8453 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8454 * Target Status - all require the IEEE formatted scatter gather 8455 * elements. 8456 */ 8457 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8458 ioc->build_sg = &_base_build_sg_ieee; 8459 ioc->build_nvme_prp = &_base_build_nvme_prp; 8460 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8461 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8462 if (ioc->high_iops_queues) 8463 ioc->get_msix_index_for_smlio = 8464 &_base_get_high_iops_msix_index; 8465 else 8466 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8467 break; 8468 } 8469 if (ioc->atomic_desc_capable) { 8470 ioc->put_smid_default = &_base_put_smid_default_atomic; 8471 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8472 ioc->put_smid_fast_path = 8473 &_base_put_smid_fast_path_atomic; 8474 ioc->put_smid_hi_priority = 8475 &_base_put_smid_hi_priority_atomic; 8476 } else { 8477 ioc->put_smid_default = &_base_put_smid_default; 8478 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8479 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8480 if (ioc->is_mcpu_endpoint) 8481 ioc->put_smid_scsi_io = 8482 &_base_put_smid_mpi_ep_scsi_io; 8483 else 8484 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8485 } 8486 /* 8487 * These function pointers for other requests that don't 8488 * the require IEEE scatter gather elements. 8489 * 8490 * For example Configuration Pages and SAS IOUNIT Control don't. 8491 */ 8492 ioc->build_sg_mpi = &_base_build_sg; 8493 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8494 8495 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8496 if (r) 8497 goto out_free_resources; 8498 8499 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8500 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8501 if (!ioc->pfacts) { 8502 r = -ENOMEM; 8503 goto out_free_resources; 8504 } 8505 8506 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8507 r = _base_get_port_facts(ioc, i); 8508 if (r) { 8509 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8510 if (rc || (_base_get_port_facts(ioc, i))) 8511 goto out_free_resources; 8512 } 8513 } 8514 8515 r = _base_allocate_memory_pools(ioc); 8516 if (r) 8517 goto out_free_resources; 8518 8519 if (irqpoll_weight > 0) 8520 ioc->thresh_hold = irqpoll_weight; 8521 else 8522 ioc->thresh_hold = ioc->hba_queue_depth/4; 8523 8524 _base_init_irqpolls(ioc); 8525 init_waitqueue_head(&ioc->reset_wq); 8526 8527 /* allocate memory pd handle bitmask list */ 8528 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8529 if (ioc->facts.MaxDevHandle % 8) 8530 ioc->pd_handles_sz++; 8531 /* 8532 * pd_handles_sz should have, at least, the minimal room for 8533 * set_bit()/test_bit(), otherwise out-of-memory touch may occur. 8534 */ 8535 ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long)); 8536 8537 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8538 GFP_KERNEL); 8539 if (!ioc->pd_handles) { 8540 r = -ENOMEM; 8541 goto out_free_resources; 8542 } 8543 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8544 GFP_KERNEL); 8545 if (!ioc->blocking_handles) { 8546 r = -ENOMEM; 8547 goto out_free_resources; 8548 } 8549 8550 /* allocate memory for pending OS device add list */ 8551 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8552 if (ioc->facts.MaxDevHandle % 8) 8553 ioc->pend_os_device_add_sz++; 8554 8555 /* 8556 * pend_os_device_add_sz should have, at least, the minimal room for 8557 * set_bit()/test_bit(), otherwise out-of-memory may occur. 8558 */ 8559 ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz, 8560 sizeof(unsigned long)); 8561 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8562 GFP_KERNEL); 8563 if (!ioc->pend_os_device_add) { 8564 r = -ENOMEM; 8565 goto out_free_resources; 8566 } 8567 8568 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8569 ioc->device_remove_in_progress = 8570 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8571 if (!ioc->device_remove_in_progress) { 8572 r = -ENOMEM; 8573 goto out_free_resources; 8574 } 8575 8576 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8577 8578 /* base internal command bits */ 8579 mutex_init(&ioc->base_cmds.mutex); 8580 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8581 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8582 8583 /* port_enable command bits */ 8584 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8585 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8586 8587 /* transport internal command bits */ 8588 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8589 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8590 mutex_init(&ioc->transport_cmds.mutex); 8591 8592 /* scsih internal command bits */ 8593 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8594 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8595 mutex_init(&ioc->scsih_cmds.mutex); 8596 8597 /* task management internal command bits */ 8598 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8599 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8600 mutex_init(&ioc->tm_cmds.mutex); 8601 8602 /* config page internal command bits */ 8603 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8604 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8605 mutex_init(&ioc->config_cmds.mutex); 8606 8607 /* ctl module internal command bits */ 8608 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8609 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8610 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8611 mutex_init(&ioc->ctl_cmds.mutex); 8612 8613 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8614 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8615 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8616 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8617 r = -ENOMEM; 8618 goto out_free_resources; 8619 } 8620 8621 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8622 ioc->event_masks[i] = -1; 8623 8624 /* here we enable the events we care about */ 8625 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8626 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8627 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8628 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8629 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8630 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8631 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8632 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8633 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8634 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8635 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8636 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8637 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8638 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8639 if (ioc->is_gen35_ioc) { 8640 _base_unmask_events(ioc, 8641 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8642 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8643 _base_unmask_events(ioc, 8644 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8645 } 8646 } 8647 r = _base_make_ioc_operational(ioc); 8648 if (r == -EAGAIN) { 8649 r = _base_make_ioc_operational(ioc); 8650 if (r) 8651 goto out_free_resources; 8652 } 8653 8654 /* 8655 * Copy current copy of IOCFacts in prev_fw_facts 8656 * and it will be used during online firmware upgrade. 8657 */ 8658 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8659 sizeof(struct mpt3sas_facts)); 8660 8661 ioc->non_operational_loop = 0; 8662 ioc->ioc_coredump_loop = 0; 8663 ioc->got_task_abort_from_ioctl = 0; 8664 return 0; 8665 8666 out_free_resources: 8667 8668 ioc->remove_host = 1; 8669 8670 mpt3sas_base_free_resources(ioc); 8671 _base_release_memory_pools(ioc); 8672 pci_set_drvdata(ioc->pdev, NULL); 8673 kfree(ioc->cpu_msix_table); 8674 if (ioc->is_warpdrive) 8675 kfree(ioc->reply_post_host_index); 8676 kfree(ioc->pd_handles); 8677 kfree(ioc->blocking_handles); 8678 kfree(ioc->device_remove_in_progress); 8679 kfree(ioc->pend_os_device_add); 8680 kfree(ioc->tm_cmds.reply); 8681 kfree(ioc->transport_cmds.reply); 8682 kfree(ioc->scsih_cmds.reply); 8683 kfree(ioc->config_cmds.reply); 8684 kfree(ioc->base_cmds.reply); 8685 kfree(ioc->port_enable_cmds.reply); 8686 kfree(ioc->ctl_cmds.reply); 8687 kfree(ioc->ctl_cmds.sense); 8688 kfree(ioc->pfacts); 8689 ioc->ctl_cmds.reply = NULL; 8690 ioc->base_cmds.reply = NULL; 8691 ioc->tm_cmds.reply = NULL; 8692 ioc->scsih_cmds.reply = NULL; 8693 ioc->transport_cmds.reply = NULL; 8694 ioc->config_cmds.reply = NULL; 8695 ioc->pfacts = NULL; 8696 return r; 8697 } 8698 8699 8700 /** 8701 * mpt3sas_base_detach - remove controller instance 8702 * @ioc: per adapter object 8703 */ 8704 void 8705 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8706 { 8707 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8708 8709 mpt3sas_base_stop_watchdog(ioc); 8710 mpt3sas_base_free_resources(ioc); 8711 _base_release_memory_pools(ioc); 8712 mpt3sas_free_enclosure_list(ioc); 8713 pci_set_drvdata(ioc->pdev, NULL); 8714 kfree(ioc->cpu_msix_table); 8715 if (ioc->is_warpdrive) 8716 kfree(ioc->reply_post_host_index); 8717 kfree(ioc->pd_handles); 8718 kfree(ioc->blocking_handles); 8719 kfree(ioc->device_remove_in_progress); 8720 kfree(ioc->pend_os_device_add); 8721 kfree(ioc->pfacts); 8722 kfree(ioc->ctl_cmds.reply); 8723 kfree(ioc->ctl_cmds.sense); 8724 kfree(ioc->base_cmds.reply); 8725 kfree(ioc->port_enable_cmds.reply); 8726 kfree(ioc->tm_cmds.reply); 8727 kfree(ioc->transport_cmds.reply); 8728 kfree(ioc->scsih_cmds.reply); 8729 kfree(ioc->config_cmds.reply); 8730 } 8731 8732 /** 8733 * _base_pre_reset_handler - pre reset handler 8734 * @ioc: per adapter object 8735 */ 8736 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8737 { 8738 mpt3sas_scsih_pre_reset_handler(ioc); 8739 mpt3sas_ctl_pre_reset_handler(ioc); 8740 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8741 } 8742 8743 /** 8744 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8745 * @ioc: per adapter object 8746 */ 8747 static void 8748 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8749 { 8750 dtmprintk(ioc, 8751 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8752 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8753 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8754 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8755 complete(&ioc->transport_cmds.done); 8756 } 8757 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8758 ioc->base_cmds.status |= MPT3_CMD_RESET; 8759 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8760 complete(&ioc->base_cmds.done); 8761 } 8762 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8763 ioc->port_enable_failed = 1; 8764 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8765 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8766 if (ioc->is_driver_loading) { 8767 ioc->start_scan_failed = 8768 MPI2_IOCSTATUS_INTERNAL_ERROR; 8769 ioc->start_scan = 0; 8770 } else { 8771 complete(&ioc->port_enable_cmds.done); 8772 } 8773 } 8774 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8775 ioc->config_cmds.status |= MPT3_CMD_RESET; 8776 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8777 ioc->config_cmds.smid = USHRT_MAX; 8778 complete(&ioc->config_cmds.done); 8779 } 8780 } 8781 8782 /** 8783 * _base_clear_outstanding_commands - clear all outstanding commands 8784 * @ioc: per adapter object 8785 */ 8786 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8787 { 8788 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8789 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8790 _base_clear_outstanding_mpt_commands(ioc); 8791 } 8792 8793 /** 8794 * _base_reset_done_handler - reset done handler 8795 * @ioc: per adapter object 8796 */ 8797 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8798 { 8799 mpt3sas_scsih_reset_done_handler(ioc); 8800 mpt3sas_ctl_reset_done_handler(ioc); 8801 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8802 } 8803 8804 /** 8805 * mpt3sas_wait_for_commands_to_complete - reset controller 8806 * @ioc: Pointer to MPT_ADAPTER structure 8807 * 8808 * This function is waiting 10s for all pending commands to complete 8809 * prior to putting controller in reset. 8810 */ 8811 void 8812 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8813 { 8814 u32 ioc_state; 8815 8816 ioc->pending_io_count = 0; 8817 8818 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8819 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8820 return; 8821 8822 /* pending command count */ 8823 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8824 8825 if (!ioc->pending_io_count) 8826 return; 8827 8828 /* wait for pending commands to complete */ 8829 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8830 } 8831 8832 /** 8833 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8834 * attributes during online firmware upgrade and update the corresponding 8835 * IOC variables accordingly. 8836 * 8837 * @ioc: Pointer to MPT_ADAPTER structure 8838 */ 8839 static int 8840 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8841 { 8842 u16 pd_handles_sz; 8843 void *pd_handles = NULL, *blocking_handles = NULL; 8844 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8845 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8846 8847 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8848 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8849 if (ioc->facts.MaxDevHandle % 8) 8850 pd_handles_sz++; 8851 8852 /* 8853 * pd_handles should have, at least, the minimal room for 8854 * set_bit()/test_bit(), otherwise out-of-memory touch may 8855 * occur. 8856 */ 8857 pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long)); 8858 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8859 GFP_KERNEL); 8860 if (!pd_handles) { 8861 ioc_info(ioc, 8862 "Unable to allocate the memory for pd_handles of sz: %d\n", 8863 pd_handles_sz); 8864 return -ENOMEM; 8865 } 8866 memset(pd_handles + ioc->pd_handles_sz, 0, 8867 (pd_handles_sz - ioc->pd_handles_sz)); 8868 ioc->pd_handles = pd_handles; 8869 8870 blocking_handles = krealloc(ioc->blocking_handles, 8871 pd_handles_sz, GFP_KERNEL); 8872 if (!blocking_handles) { 8873 ioc_info(ioc, 8874 "Unable to allocate the memory for " 8875 "blocking_handles of sz: %d\n", 8876 pd_handles_sz); 8877 return -ENOMEM; 8878 } 8879 memset(blocking_handles + ioc->pd_handles_sz, 0, 8880 (pd_handles_sz - ioc->pd_handles_sz)); 8881 ioc->blocking_handles = blocking_handles; 8882 ioc->pd_handles_sz = pd_handles_sz; 8883 8884 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8885 pd_handles_sz, GFP_KERNEL); 8886 if (!pend_os_device_add) { 8887 ioc_info(ioc, 8888 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8889 pd_handles_sz); 8890 return -ENOMEM; 8891 } 8892 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8893 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8894 ioc->pend_os_device_add = pend_os_device_add; 8895 ioc->pend_os_device_add_sz = pd_handles_sz; 8896 8897 device_remove_in_progress = krealloc( 8898 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8899 if (!device_remove_in_progress) { 8900 ioc_info(ioc, 8901 "Unable to allocate the memory for " 8902 "device_remove_in_progress of sz: %d\n " 8903 , pd_handles_sz); 8904 return -ENOMEM; 8905 } 8906 memset(device_remove_in_progress + 8907 ioc->device_remove_in_progress_sz, 0, 8908 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8909 ioc->device_remove_in_progress = device_remove_in_progress; 8910 ioc->device_remove_in_progress_sz = pd_handles_sz; 8911 } 8912 8913 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8914 return 0; 8915 } 8916 8917 /** 8918 * mpt3sas_base_hard_reset_handler - reset controller 8919 * @ioc: Pointer to MPT_ADAPTER structure 8920 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8921 * 8922 * Return: 0 for success, non-zero for failure. 8923 */ 8924 int 8925 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8926 enum reset_type type) 8927 { 8928 int r; 8929 unsigned long flags; 8930 u32 ioc_state; 8931 u8 is_fault = 0, is_trigger = 0; 8932 8933 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8934 8935 if (ioc->pci_error_recovery) { 8936 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8937 r = 0; 8938 goto out_unlocked; 8939 } 8940 8941 if (mpt3sas_fwfault_debug) 8942 mpt3sas_halt_firmware(ioc); 8943 8944 /* wait for an active reset in progress to complete */ 8945 mutex_lock(&ioc->reset_in_progress_mutex); 8946 8947 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8948 ioc->shost_recovery = 1; 8949 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8950 8951 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8952 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8953 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8954 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8955 is_trigger = 1; 8956 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8957 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8958 (ioc_state & MPI2_IOC_STATE_MASK) == 8959 MPI2_IOC_STATE_COREDUMP) { 8960 is_fault = 1; 8961 ioc->htb_rel.trigger_info_dwords[1] = 8962 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8963 } 8964 } 8965 _base_pre_reset_handler(ioc); 8966 mpt3sas_wait_for_commands_to_complete(ioc); 8967 mpt3sas_base_mask_interrupts(ioc); 8968 mpt3sas_base_pause_mq_polling(ioc); 8969 r = mpt3sas_base_make_ioc_ready(ioc, type); 8970 if (r) 8971 goto out; 8972 _base_clear_outstanding_commands(ioc); 8973 8974 /* If this hard reset is called while port enable is active, then 8975 * there is no reason to call make_ioc_operational 8976 */ 8977 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8978 ioc->remove_host = 1; 8979 r = -EFAULT; 8980 goto out; 8981 } 8982 r = _base_get_ioc_facts(ioc); 8983 if (r) 8984 goto out; 8985 8986 r = _base_check_ioc_facts_changes(ioc); 8987 if (r) { 8988 ioc_info(ioc, 8989 "Some of the parameters got changed in this new firmware" 8990 " image and it requires system reboot\n"); 8991 goto out; 8992 } 8993 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8994 panic("%s: Issue occurred with flashing controller firmware." 8995 "Please reboot the system and ensure that the correct" 8996 " firmware version is running\n", ioc->name); 8997 8998 r = _base_make_ioc_operational(ioc); 8999 if (!r) 9000 _base_reset_done_handler(ioc); 9001 9002 out: 9003 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 9004 9005 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 9006 ioc->shost_recovery = 0; 9007 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 9008 ioc->ioc_reset_count++; 9009 mutex_unlock(&ioc->reset_in_progress_mutex); 9010 mpt3sas_base_resume_mq_polling(ioc); 9011 9012 out_unlocked: 9013 if ((r == 0) && is_trigger) { 9014 if (is_fault) 9015 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 9016 else 9017 mpt3sas_trigger_master(ioc, 9018 MASTER_TRIGGER_ADAPTER_RESET); 9019 } 9020 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 9021 return r; 9022 } 9023